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We show that the quantum approximate optimization algorithm (QAOA) can construct, with polynomially
scaling resources, the ground state of the fully connected p-spin Ising ferromagnet, a problem that notoriously
poses severe difficulties to a vanilla quantum annealing (QA) approach due to the exponentially small gaps
encountered at first-order phase transition for p > 3. For a target ground state at arbitrary transverse field,
we find that an appropriate QAOA parameter initialization is necessary to achieve good performance of the
algorithm when the number of variational parameters 2P is much smaller than the system size N because of
the large number of suboptimal local minima. Instead, when P exceeds a critical value Py o< N, the structure of
the parameter space simplifies, as all minima become degenerate. This allows achieving the ground state with
perfect fidelity with a number of parameters scaling extensively with N and with resources scaling polynomially

with N.
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I. INTRODUCTION

Efficient optimization and ground-state (GS) preparation
are two of the most prominent issues in the growing field
of quantum technology [1,2]. Optimization is a long-standing
problem in physics and computer science and lies at the root
of the efforts to show a possible “quantum supremacy” [3-5]
over classical algorithms. A robust-state preparation strategy,
in turn, would be a crucial tool for quantum technologies
and would also allow “solving,” using quantum hardware,
many long-standing problems in condensed-matter theory and
quantum chemistry [6—8]. The two are intimately connected,
as many optimization tasks can be reformulated in terms of
finding the classical ground state of an appropriate spin-glass
Hamiltonian [9].

A traditional tool in this field has been quantum an-
nealing [10-13] (QA), also known as adiabatic quantum
computation [14,15], which relies on the adiabatic theorem
to find the ground state of a target Hamiltonian, starting
from a trivial initial state. Although QA appeared to be more
efficient than its classical counterpart for certain problems
[13,16-19], it is limited by the smallest gap encountered dur-
ing the evolution, which vanishes, in the thermodynamic limit,
when the system crosses a phase transition. In this context, the
fully connected p-spin Ising ferromagnet is a simple but useful
benchmark for optimization methods because a vanilla QA
approach fails due to the exponentially small gap at the first-
order phase transition encountered for p > 3 [20-22]. Several
techniques have been advocated to overcome the slowness
induced by such an exponentially small gap, including the
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introduction of nonstoquastic terms [23,24], pausing [25],
dissipative effects [26,27], and approximated counterdiabatic
driving [28]. Their successful application, however, often de-
pends on the knowledge of the spectrum or on the phase
diagram of the model, thus making these techniques highly
problem specific.

Recent alternative ground-state preparation approaches
[29-31] rely on hybrid quantum-classical variational tech-
niques [32] to tackle such problems, avoiding the possible
limitations imposed by a QA adiabatic evolution. In this work,
we will focus on one such scheme, the quantum approximate
optimization algorithm (QAOA) [30,33,34].

The core idea of QAOA is to write a trial wave function
as a product of many unitary operators, each depending on
a classical variational parameter, applied to a state simple to
construct, usually a product state with spins aligned in the x
direction. Quantum hardware performs the discrete quantum
dynamics and measures the expectation value of the target
Hamiltonian, which is then minimized by an external classical
algorithm, as a real function in a high-dimensional parameter
space.

Although QAOA is a universal computational scheme [35],
its performance strongly depends on the details of the target
Hamiltonian. QAOA seems to perform rather well on Max-
Cut problems [34] and on short-range spin systems [36,37].
The Grover search problem has also been studied within
QAOA, showing that it leads to the optimal square-root
speedup with respect to classical algorithms [38]. For generic
long-range Hamiltonians, however, many open questions re-
main. The questions concern, in particular, the efficiency of
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the algorithm when a large number of unitaries are employed,
the ability to deal with first-order phase transitions, and the
existence of “smooth” sets of optimal parameters [34,39,40].
Addressing these issues, an essential step towards experimen-
tal implementations of QAOA in realistic problems, will be
the goal of our work. We will show that QAOA can con-
struct, with polynomially scaling resources, the ground state
of the fully connected p-spin Ising ferromagnet for all p > 2,
hence including the case where a first-order phase transition
occurs. For a generic target state, we find that an appropriate
QAOA parameter initialization is necessary to achieve good
performance of the algorithm when the number of variational
parameters 2P is much smaller than the system size NV because
of the large number of suboptimal local minima. Finally, we
show that when P > P o< N, the structure of the parameter
space simplifies, and all minima become degenerate. This
allows us to achieve the ground state with perfect fidelity with
a number of parameters scaling extensively with N and with
resources scaling polynomially with N.

The rest of the paper is organized as follows. In Sec. II
we present the model and describe the QAOA algorithm. In
Sec. III we present our main analytical and numerical results:
some technical analytical details are reported in Appendix A.
Finally, we draw our conclusions and discuss future outlooks
in Sec. IV.

II. MODEL AND QAOA ALGORITHM

As a benchmark for QAOA on long-range models
we focus on the ferromagnetic fully connected p-spin
model [20-22,41,42]:

1 N p N
—T (Za;) —h( ]) , (1)
j=1 j=1

where 67° are Pauli matrices at site j, N is the total number
of sites, and / is a transverse field. This model displays, for
p =2, a second-order quantum phase transition at a criti-
cal transverse field h. = 2 from a paramagnetic (h > h.) to
a symmetry-broken ferromagnetic phase (h < h.). The tran-
sition becomes first order for p > 2, and h. decreases for
increasing p, with i, — 1 for p — oo [21].

The QAOA algorithm [30] is a variational method to find
the ground state of a target Hamiltonian H,,,.. Starting from
an initial spin state polarized along the X direction |+) =
27N2( ) + 1IN, QAOA writes the following variational
ansatz:

Wp(y, B)) = e—iﬁpﬁxe—iwﬁ; . e_iﬁlﬁre_iylsz|+) )

H, target —

in terms of 2P variational parameters y = (y;---yp) and
B=(B---Bp), where H, and H, are noncommuting
Hamiltonians depending on the problem we wish to solve.
Here we take H, = — ) j 6;, the standard transverse field
term, and an interaction term H,,

N P
H, = —(Z 6;) : 3)
j=1

chosen for convenience to have a superextensive form with
an integer spectrum. These choices allow us to restrict the

parameter space for y,, and B, to the interval [0, 7]. In each
QAOA run the variational energy cost function

Ep(y, B) = (Vp(¥, B)Huaged |V (¥, B)) 4)

is minimized, until convergence to a local minimum (y*, 8*)
is obtained. The quality of the variational solution is gauged
by computing the residual energy density [37]

EP(}’*v ﬂ*) - Emin
Emax - Emin

where E\i, and E.y are the smallest and largest eigenvalues,
respectively, of the target Hamiltonian.

The connection with a QA approach is interesting [37].
In QA one would write_an interpolating Hamiltonian [15]
H(s) = sH, . + (1 — $)H,, with s(t) driven from s(0) =0
to s(r) =1 in a sufficiently large annealing time 7. A
lowest-order Trotter decomposition of the corresponding step-
discretized evolution operator—with s,,—;..p being constant
for a time interval Af,,—;..p—would then result in a state of
the form of Eq. (2) with

suAt, 1 _ Atml L—h 6
N ﬁm—T[ —su(1=h),  (6)

where the total evolution time, i.e., the run time associated
with the set of 2P evolution operators, would be given by

T u Atm d p—1
D B AR S o N C)

m=1 m=1

G;f’s(y*, ﬂ*) — , (5)

VYm =

While an optimization of the parameters s, and Af, is, in
principle, possible, the standard linear schedule s(t) =1/t
would result in a digitized-QA scheme where s,, = m/P and
At,, = At = t/P [43,44]. With these choices, a convenient
starting point for the QAOA optimization algorithm would
be to take y = 442 1 and B9 = S [1 — 2(1 — h)] with
the possible addition of a small noise term. Alternatively,
we might choose a completely random initial point with
y,g, ;6,?1 € [0, w]. Limiting the variational parameters in the
interval [0, 7] is motivated by the symmetries of the func-
tion Ep(y, ), which we describe in Appendix B. Thus, the
total evolution time, Eq. (7), is limited by T < wP(1 + NP,
These two alternative choices will be henceforth referred to as
l-init and r-init.

III. RESULTS

Reference [45] showed that the target ground state of
the p = 2 fully connected Ising ferromagnet with & = 0, the
so-called Lipkin-Meshov-Glick [46] model, can be perfectly
constructed, with unit fidelity, with the shortest QAOA circuit,
P =1, if the number of sites N is odd. For even N instead,
P =2 is required to reach exactly the GS. Reference [47]
recently showed that a whole class of spin-glass models can
be constructed in which QAOA shows such a property. Here
we show (see the detailed proof in Appendix A) that the
general p-spin model in Eq. (1) belongs, for 2 = 0, to the class
of P =1 QAOA-solvable problems for odd N. The proof is

based on finding a set of sufficient conditions to reach unit
2

fidelity F(y, B) = [{(¥uel¥p=1(y, B))| = 1. This provides a
set of parameters (y, B) that can be used to prepare the exact
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ground state for 7 = 0. For P = 1 the target state fidelity reads

F(y, B) = [(Yrargle Ple= 7| 1) 2

1 ) -
=== )¢ " Yugle PHIDE, (8)
7L

where |Y,,) is the h = 0 target ground state and the sum
in the second line runs over the 2V basis states |I) of the
computational basis, with A,|I) = E;|l). Equation (8) shows
that F is the scalar product of two 2V -dimensional unit vectors
of components

F=|v-upP )

with

vyl = &E (B = Wagle PN, (10)

V2N
To ensure F = 1, the Cauchy-Schwarz inequality requires
v(y) and u(B) to be parallel up to an overall phase factor.
As discussed in Appendix A, this requires g = 7. A unit
fidelity further imposes [47] that all terms appearing in the
sum in Eq. (2) are pure phase factors, which have to be
identical for all /, modulo 2. In Appendix A we perform the
calculation explicitly, showing that the pair (8 = 7,y = %)
attains unit fidelity / = 1 for odd p, while for even p the
precise value of y depends on p. As a remark, notice that in
the theoretical proof we used, for convenience, the fidelity,
rather than the residual energy. In the following numerics,
however, we will prefer the residual energy as a figure of
merit since it is directly linked to the variational minimization
of the expectation value of the target Hamiltonian. Moreover,
computing the fidelity requires full knowledge of the target
ground state, which, in general, is not available for large
systems. The variational energy, instead, is computed more
easily, and it is accessible also in experimental implementa-
tion of QAOA [40], without performing full tomography of
the variational state. Finally, when the residual energy van-
ishes, also perfect fidelity / = 1 is attained, so both figures
of merit show when the target state is prepared exactly.

The possibility of preparing exactly the GS with P =1 is
noteworthy, as it suggests that one can construct the exact
h = 0 classical ground state with an algorithm whose equiv-
alent computational time [see Eq. (7)] scales as N”~!. On
the contrary, for any finite N, a vanilla QA algorithm would
need to cope with a minimum spectral gap at the transition
point [20-22,42,48], which scales as A ~ N~/3 if p =2 and
A ~ e~%N if p = 3: with a linear-schedule annealing, this
implies a total annealing time T o« A2, and hence, T ~ N?/3
forp=2,and 7 ~ 2N for p > 2. Therefore, QAOA shows
an exponential speedup with respect to a linear-schedule QA
for p > 2 without exploiting any knowledge of the spectrum
or of the phase diagram.

Such a remarkable property is, however, lost as soon as one
targets a ground state with # # 0, where QAOA is no longer
able to find the exact ground state with a small parameter num-
ber, P = 1 or 2. We find that the energy landscape Ep(y, B)
is extremely rugged for P > 2, making local optimizations—
specifically, we use the Broyden-Fletcher-Goldfard-Shanno
(BFGS) algorithm [49]—highly dependent on the initial set
of parameters (»°, B°). We observe a very different behavior if
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FIG. 1. (a) Results of local optimizations with (y°, ,BO) initialized
randomly in [0, 7] (r-init) averaged over 100 different realizations
for several values of N and h = % for p = 2. The shaded areas
show the range between the best and worst results obtained for each
set of data. The inset shows the collapsed data (in log scale) after
rescaling P — (P — 2)/N. (b) Same data for p = 3. The rescaling
in the inset now is P — (P — 1)/N, and the black line is the curve

(1 — P/P;)’. Results for larger p > 3 are qualitatively similar.

the minimization is initialized with parameters y and 8° cho-
sen randomly in [0, 7] (r-init) or, rather, with an initial guess
based on a linear schedule, y = £¢2 L and B9 = 41 —
(1 — h)] (I-init). The results for the random initialization are
summarized in Fig. 1, where we show the normalized residual

energy [Eq. (5)] versus the number of QAOA steps P for

h= @ < h,., whose target state lies in the ferromagnetic
phase for any value of p. Data for different system sizes N col-
lapse perfectly after rescaling P — (P — 2)/N [see the inset
in Fig. 1(a)] and drop below machine precision at P = P}, =
% + 2. Correspondingly, the variance of the residual energy
distribution, which is rather large for P < Py, as witnessed
by the error bars, drops to zero at Py, implying that all local
minima become degenerate. The colored shaded area around
each curve shows the range between the lowest and highest
residual energies obtained for each value of P and N. The
distribution of individual optimizations is symmetric around
the average, with the exception of small values of P where the
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FIG. 2. Number of iterations required for the BFGS minimiza-
tion algorithm to converge, averaged over 20 optimization runs
with random initializations of QAOA parameters. The corresponding
value of P is N/2 42 for even p and N + 1 for odd p, which is
sufficient to obtain a residual energy below the numerical error.

r-init QAOA occasionally finds a local minimum with very
small residual energy. For better readability, in the following
figures we report only error bars corresponding to the standard
deviation of our data.

The scaling shown in Fig. 1 holds for any value of the
transverse field & if the QAOA minimization is initialized
with random parameters. In general, we find that the residual
energy follows

s _ {(I_Flj’g)b if P <Py,

11
i it P> P}, (b

with b ~ 3. Remarkably, this scaling holds also for p > 2,
with similar values of b, with the only difference being that
Py = N + 1 for odd p because of the lack of the Z, symmetry.
This in turn suggests that for finite N one can attain perfect
control of the state with P = Py o< N, physically correspond-
ing to a total evolution time that scales as a power law with
N. Our data for p = 3 are reported in Fig. 1(b), where, in the
inset, we also highlight the curve described by Eq. (11) (solid
black line). Once again, this is at variance with a standard
linear-schedule QA, where the total evolution time has to scale
exponentially with N when the transition is first order, i.e., for
p>2.

We have shown that a QAOA circuit with P = Pj o« N
is sufficient to prepare the exact ground state of the p-spin
model for an arbitrary target 4. However, to estimate the total
computational complexity of running the QAOA algorithm to
solve the p-spin model, we must include the computational
cost of finding the QAOA variational parameters. Indeed,
during the optimization process, the quantum device is used
Nier times to sample the optimization landscape associated
with QAOA circuits of P = Py. In Fig. 2 we show the number
of iterations Ny, required for convergence as a function of
N. Nj. appears to increase linearly with N, with a slope that
depends on only the parity of p. Hence, the total computa-
tional time needed for converging to the exact ground state,
at an arbitrary transverse field, is, at most, polynomial in N,
namely, O(N 2), since it requires an order O(N) of iterations

—o— l-init P=5
r-init P=5
—m— l-init P=15
—=— r-init P=15
—%— l-init P=25
—— r-init P=25

10-7 4 107° N=64
1077 p:3 p:2
10-9 4 1~ F\_\‘
00 05 10 15 20 25 30 i
0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. 3. QAOA residual energy versus the transverse field 4 for
a system with N =64 and P =5, 15,25 for random (r-init) and
linear (l-init) initialization of the QAOA parameters. Notice that
P =N/242=34forp=2and P; =N + 1 =65 for p = 3. The
vertical dashed lines show the critical transverse field: 4. = 2 for
p =2 (main plot) and h. >~ 1.3 for p = 3 (inset). The linear ini-
tialization (l-init) corresponds to Eq. (6) multiplied elementwise by
a noise factor (1 + r), with r € [-0.05, 0.05]*" being a vector of
uniformly distributed random numbers. Data are averaged over 100
different instances of r.

and a similar number of variational parameters, all in the range
[0, r]. In an experimental setup, one has to take into account
also the measurement process, which will increase the total
computational cost of the QAOA optimization. As explained
in Ref. [50], this extra cost is again polynomial in N, and for
the p-spin model it can be estimated as

1 + |h])?
M < %NZ; (12)
ems

see Appendix C for details. Here M is the number of measure-
ments required to estimate the energy Ep(y, B) with an error
€ms- The number of iterations required for the optimization
then scales as O(N?), taking into account both Eq. (12) and
the scaling shown in Fig. 2, leading to a total computational
cost still polynomial in N.

Let us now focus on the dependence of the QAOA per-
formance on the initial choice of the variational parameters.
A linear initialization of QAOA parameters, with small noise
(see the caption of Fig. 3 for details), improves drastically
the QAOA performance. This is illustrated in Fig. 3, where
the results of the two competing schemes, random (r-init)
versus linear (I-init) initialization, are shown for a system with
N = 64 for both p = 2 (main plot) and p = 3 (inset) and three
fixed values of P = 5, 15, 25. Notice how the linear initializa-
tion is able to “detect” the quantum paramagnetic phase for
h > h, as being “easy,” with the QAOA minima found to have
vanishingly small residual energy, almost to machine preci-
sion, even if P < Py. This occurs not only in the second-order
transition case with p =2 but also in the more “difficult”
first-order case with p = 3. At variance with that, a random
initialization performs, on average, quite independently of the
target transverse field # and knows nothing about the location
of the critical field. Interestingly, this suggests that the QAOA
for small P is sensitive to the phase diagram of the target
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FIG. 4. Comparison between the optimized residual energy ob-
tained from a linear initial guess plus small noise (I-init) and from
random initialization (r-init) for two system sizes, N =32 and N =
64.In (a) p=2,and in (b) p = 3.

Hamiltonian: choosing a good ansatz for the initial parameter
set (¥°, B%) is fundamental to initialize the variational wave
function in a good basin of attraction, where the minimization
leads to small values of €5°. Whether this feature is unique to
infinite-range models or is a common property of long-range
Hamiltonians is an interesting issue to pursue in future works.

The linear initialization also displays better efficiency,
compared to the random one, when the target state belongs
to the ferromagnetic phase (h < h.) and P < Py. This is illus-
trated in Fig. 4 for p = 2 [Fig. 4(a)] and p = 3 [Fig. 4(b)].
Here, however, the improvement is only quantitative—ep®
decreases faster and scales better with system size—since the
actual change in the landscape, with degenerate global min-
ima, occurs only at Py,. Moreover, the system displays a large
roughness of the variational energy landscape, which makes
the task of obtaining good variational minima extremely de-
manding, especially for p > 3, hence justifying the poorer
improvement of 1-init over r-init observed in Fig. 4(b).

A smooth change in the control parameters is useful for
experimental implementations of QAOA algorithms [40]. Be-
sides allowing for easier control of external fields, they might
also lead to faster convergence to a local minimum [37],
hence reducing the number of measurements to be performed.

Finding local minima (p*, B*) which can be seen as the
discretization of some continuous function proves, however,
to be a difficult task for the present model. In contrast to
Refs. [34,37], an iterative procedure that initializes o°, ﬁo)
from an interpolation of a smooth set, obtained for a smaller
parameter space, does not seem to work in a straightforward
way. The linear initialization we have adopted is able to find
reasonably smooth (y*, %) only for small values of P. As
the dimensionality of the parameter space increases and so
does the roughness and the number of local minima, the
optimal parameters obtained starting from a linear initial-
ization scheme appear to be increasingly irregular (data not
shown). Our failed attempts do not exclude the possibility
that smart smooth choices for (¥°, 8°) can be constructed:
they signal only that finding them is a nontrivial task due
to the extreme roughness of the energy landscape. Recent
results of reinforcement-learning-assisted QAOA show that
smooth protocols can be constructed [51]; whether or not they
describe the discretization of an adiabatic schedule is still an
open question.

IV. CONCLUSIONS

We analyzed the performance of QAOA on the fully con-
nected p-spin model, showing that it is able to find exactly the
ferromagnetic ground state with polynomial resources, even
when the system encounters a first-order phase transition. In
particular, the algorithm prepares the ground state of H, with
only P =1 (if N is odd) or P = 2 (if N is even) steps, with
a corresponding evolution time that scales as N”~!, while a
vanilla QA would require an exponentially long annealing
time. This exact minimum, however, exists only for zero trans-
verse field, 4 = 0. Interestingly, the exact minimum, which
clearly survives for P > 2, is very hard to find with gradient-
based optimization schemes due to the extreme roughness of
the energy landscape, especially for p > 2. The “hardness”
of the problem for p > 2 is thus reflected in the difficulty
in finding the correct absolute minimum, rather than in the
resources (i.e., the computational time) needed.

The performance of the optimization itself strongly de-
pends on the initialization of the variational parameters
(»°, B°). For a random initialization, the residual energy drops
below machine precision as (Py — P)”, with b~ 3 and P
growing linearly with N. This behavior is independent of the
target transverse field 4 and from p, with the only difference
being that Py = N/2 + 2 for even p and Py = N + 1 for odd
p. With a linear initialization, the algorithm performs much
better and is able to detect the presence of a phase transition,
although the improvement deteriorates rapidly as P increases
because of the growing number of “bad” local minima.

For future developments, it would be interesting to un-
derstand whether infinite- or long-range Hamiltonians can be
used to boost QAOA performance on short-range models. The
idea is to add a further unitary e~iM in Eq. (2), generated
by a long-range Hamiltonian HZ’ , unrelated to the problem to
be solved. This enlarges the portion of Hilbert space approx-
imated with a QAOA ansatz for a fixed number of Trotter
steps P at the price, however, of increasing the number of
variational parameters.
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At variance with Refs. [34,37,40], we are unable to con-
struct minima in the energy landscape associated with smooth
parameters (p*, B*). These regular parameter choices are of-
ten desired since they might be linked to adiabatic schedules
which would improve the protocol s(¢) in a continuous-time
QA framework and allow, within QAOA, for a faster mini-
mum search in the 2P-dimensional parameter space once a
solution for P’ < P is known [37,40]. Preliminary results [51]
with reinforcement-learning [52] methods applied to the
QAOA evolution suggest that smooth choices of (y*, 8*) do
indeed exist, but they are hard to find with local optimizations.
Whether or not global minima are related to smooth values of
(y*, B*) remains an open and interesting question.
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APPENDIX A: EXACT GROUND-STATE PREPARATION
FORP =1

In this Appendix we will show that one can get the ex-
act target ground state of the p-spin model with a single
QAOA step, P = 1, starting from the fully x-polarized state
|+) = # ®IJY=1 (I1); +14);), provided the number of sites
N is odd. This holds true for all possible values of p and
generalizes the result of Ref. [45] to p > 2.

1. P = 1: Requirements for 8
For P = 1 the QAOA state has only two parameters, which
we will denote by y and 8, without an index. Let |y,,,) denote

the (target) ground state of the model, and let us define the
fidelity

F, B) = (Vg ¥p=1(y, B))I?

= [(Vrargle e 4) 2

1 ) .
=|—= Y ¢ " WYrargle P, (AL
VoN 5
where we have expanded the initial state |[+) = «/;TN )
as an equal superposition of all possible 2V classical z-basis
configurations |/) and we used H,|l) = E;|l), where E; is the

energy of the configuration |/). Let us now define the follow-
ing two 2" -dimensional complex vectors:

1 =

— ivE — —ipH,
vyl = @e , [u(B)i = (Vuargle 11). (A2)
Simple algebra shows that they have unit norm, ||v(y)|| =1

and ||u(B)|| = 1, and that the fidelity can be expressed as a

scalar product of them: F(y, B) = |v'(y) - u(8)|%>. Hence, by

the Cauchy-Schwarz inequality,
I=F@,p=N()up)l < 30cR,

such that  u(B) = “v(y), (A3)

i.e., the two vectors coincide, up to an overall phase factor.
Since |[v(y)]; |> = ZLN, this in turn implies that we must have

(Wraele PP = P = 55 VL
So far, our arguments have been rather general. We now
specialize our discussion to the case where |,,,) is the ground
state of the classical p-spin ferromagnet.
For odd p, we have [y,,) = |1 --- 1), and a simple calcu-
lation shows that

(A4)

(Yrgle P11y = [ T(1 1 cos B 1; + isin g 6711;)

N
i1

~

= (cos BYV (i sin )M, (A5)

where N[T and Nl¢ denote the number of 1 and | spins in the
configuration |/). Hence, the requirement given by Eq. (A4) is
satisfied only if

5 w 3 Sm Inw
PET T g
Similar arguments have been used (see Ref. [47]) for the more
general case in which [y,,) is the classical ground state of a
generic spin-glass Hamiltonian.

For even p the calculation is slightly more involved since
the target state is now a nonclassical superposition of the two
degenerate ferromagnetic states,

1
cos’ B =sin’ B = 3 (A6)

1
W) = —= (11 D+ 1L ]).

(A7)
V2
Hence,
tar, BB 2 = L (cos )NIT(i sin )NIi
g 2
T (cosB)V (isinf)V 2. (A8)
Once again, one easily verifies that g = 7 satisfies the re-

quirement (A4), provided N is odd, so that NIT and Nf have

opposite parities, and therefore, | + iV |2 = 2.

From now on we will therefore restrict our choice of 8 to
B = 7, a necessary condition for unit fidelity, and study the
conditions that y has to verify. Essentially, the value of y will
have to be chosen in such a way that the various phase factors
interfere constructively in a way that is independent of /. For
this goal, we notice that the energy E; of the configuration |/)

can be expressed as
P
E = —<z|<Z &;) 1) = =(N! =N}y = =M]', (A9)
J

where M; = NlT - Nﬁ is the total magnetization of the config-
uration.

2. P =1 and odd p: Requirements for y

Here we prove that for odd values of p and N, the p-
spin QAOA circuit of depth P =1 and parameters (y =

7. B =7) is sufficient to prepare the ferromagnetic target

state |,,) =| 1 --- 7). Substituting g = 7 and i =>7 in
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Eq. (AS) and using E; =

(r3)=

Taking y = 7 gives

—M/ in Eq. (A1), we get

2
zyMl '7
e
2N Z

(A10)

2

T 1 2
(5 3) = |y Lo [0 +2)) - mod 8]}
5 2
z—g[(M,Jerf) mod 8]}

1
-3 Do
l
2
=1,

2
z?n[N mod 8]}

1
= 2_N Zexp
I
(A11)

where we have used the fact that forodd N, M; = N — 2N1l is
also odd and the following property of arithmetic congruences
holds:

M/™'=1 mod8=—M'=M, mod8 ifpisodd.
(A12)
Equation (A1l) proves our initial claim that the QAOA
protocol (y = 7, B = 7) prepares the target ground state of
H. for the p-spin ferromagnet with unit fidelity, provided N

and p are both odd.

3. P =1 and even p: Requirements for y

For even values of p, the system is Z, symmetric. The
p-spin QAOA circuit preserves such symmetry. Therefore,
the targeted ground state of H; is |¥,,) in Eq. (A7). As we
did in the previous section, we compute the fidelity between
the output [p=1(y, B = 7)) of the QAOA circuit and the

(nonclassical) target state |,,,) in Eq. (A7):

T NIT 2

. (A13)

T 1 P e"%Nf¢ + i3
Flrp=7) =@ e (—
4 2 p V2

‘We observe that for odd N = N,T + N, l, NlT and Nf must have
opposite parities, and the term inside the parentheses is a pure
phase factor, which can be expressed as

is N
e 3 1 + e . i e*lﬂf(Ml) (A14)
V2
where
0 forM mod 8= =1,
fM) = {1 for M mod§==+3. (A1

Hence, omitting the irrelevant /-independent common factor
€'V we can rewrite the fidelity as

b4 1 .
]-‘(y’ Z> = 5% 3 iy My o)
I

The arithmetic to prove that the various phase factors can
be made [/ independent for a judicious choice of y is now,
for even p, slightly more involved. By experimenting with

2
(A16)

this expression for p < 10, we come out with the following
unconventional parametrization of an even value of p: for
every even p, two natural numbers, n and &, can be found such
that

p =21 4 ndk, (A17)
Correspondingly, given the value of k in Eq. (A17), we will
set the value of y to

2w

The crucial arithmetic identity which we will use (see Sec. A 3
for a proof) is the following:

m2k+] +n2k

mod 2% = f(m)23 4+ 1 Vm € Z with odd m,

(A19)
where f(m) is the function given in Eq. (A15).

With these definitions, it is immediate possible to verify
that

()

1 —i ,271 k+1 40k
= e e e [ 20|
l

2

2

2 o+
= 5w Z e (MI)CXP{lW[(M )72 mod 2k+4]}

2

_ 2N Ze Uff(Ml)eXp {12 paw [f(Ml)szr? + 1]}

2
=1 (A20)

— L Z oI f(M) em f(M,)sz%
N

Proof of identity in Eq. (A19). For completeness, we also
present a proof of the arithmetic identity equation (A19). To
prove Eq. (A19), it is sufficient to show that

VkeN, meZ, modd,
=f(m)2k+3.

(mzk+l — 1) mod 2F+4

(A21)

We prove Eq. (A21) by induction over k:
(i) We show that Eq. (A21) holds for k = 0.
For k = 0, a direct computation, for odd m, gives

(m*" —1) mod 2°** = im® — 1) mod 16
=@m—1)im+1) mod 16

= f(m)2>. (A22)

(i1) We show that if Eq. (A21) holds for a given k € N and
for all odd m € N, then it holds also for k + 1.
Using Eq. (A21), we write

2k+1

= @, 2" + f(m) 23 41, (A23)
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with a,, € Z. Then, we have
(mz(k+l)+l _ 1)
— (mzk +1 l)( 2k+l )
= [@, 2 + f(m) 2@, 257 + fF(m) 2F5 2]
= [@, 257 + f(m) 2" [@,, 2573 + Fm) 2FF2 11

(A24)
From this, we derive
(m2<k+‘>+‘ _ 1) mod 2k+D+4
= f(m) 2@, 2% + f(m)2X*2 £ 1] mod 24+
(A25)
= fm) 2, (A26)

where we have used that f(m) = 0, 1 for all odd m € Z. This
indeed implies that for all k € N,

(m*" —1) mod 2¢** = f(m)2"+? =

(k+1)+4 _ (k+1)+3
mod 2 f(m)2 .

(mz(k+l)+l _ 1)
(A27)

This concludes the proof by induction of Eq. (A21).
Incidentally, as an immediate consequence of Eq. (A21) we
get that, for any n € N,

2k+1

mod 214 = fm) 2 +1, (A28)
ok+2 mod 2k+4 — 1’ (A29)
m? 2 mod 2K = f(m) 2" + 1. (A30)

Notice that Eq. (A29) also follows from the properties of
the multiplicative group of integers modulo 2% discussed in
Refs. [53,54] [e.g., (Z /2K Z)* = C; x Cysa].

APPENDIX B: SYMMETRIES OF THE PARAMETER
SPACE FOR GENERAL P, N, AND p

We discuss here the symmetries in the parameter space of
Eq. (4), which we recall here for convenience,

Ep(y, B) = (Yp(¥, B)|Huaged [V (¥, B)).

A first trivial operation that leaves the energy unaltered is the

inversion (y, ) — —(y, B), which corresponds to the com-
plex conjugate of Eq. (4). Indeed, it is immediately possible
to see that

(BI)

P
Bl ivall |y )
) =[] e e ) =

m=1

[Vp(=y. — ey, B))*, (B2)

given that |yg) =
S..

|+) is a real wave function in the basis of

The symmetries on the B parameters are shared by all
QAOA wave functions where quantum fluctuations are in-
duced by a magnetic field transverse to the computational
basis. We can write a single evolution operator e~ #f: as a
set of rotations on each individual spin,

N
¢l = Pn 200 = (R) (cos B + 67 sin B).

j=

(B3)

TABLE I. Symmetry operations for the QAOA process of the p-
spin model. It is understood that any component of y or 8 can be
modified.

Symmetry operation

VN, p E(—y,—B)=E(y,B)
podd E(y,B+m)=E(y,B)
p even E(y,B+7%)=E.B)
N odd E(y+m.B)=E(y.B)
N even Ey+55.B=E®,B)

A shift 8,, — B, + m changes the sign of each term in the
product, leading to

N

=®(—cos,3m—6;‘sin/3m)

J=1

e~ {(Butm)Hy

N
N X (cos B + 67 sin B).  (B4)
j=1

which is a trivial global phase that does not change the energy
in Eq. (4). Moreover, if p is even, the target Hamiltonian is Z,
symmetric. Recall that Hy, = —S, (twice the total spin), which
implies that

5 (BS)

. g 55 = 1
e target € target

because e~'2% is a 7 rotation around the x direction, which
gives a global spin flip 6 crj — crf, leading to Ep(y, B+ 5) =
EP(}’a ﬂ)

The symmetry for p is subtler and is model specific. Notice

first that S, =) ; 61? has integer eigenvalues, even or odd

depending on N, and so does f]; = —S8”. Following the same
notation introduced previously, we write a single QAOA evo-

lution operator as
—lJ/m E ell/m |l

If N is odd, the eigenvalues M, of S? are also odd, and the
periodicity of y,, is w because

(B6)

(Ym +70M] = yuM! + 7 mod 27. (B7)

Hence, the shift y, = YmtT introduces a global phase

e~ i +mH: » which is irrelevant in the expectation
value of the energy. If N is even, the eigenvalues M/ of 8P are
multiples of 27; hence,

eilym

(ym+ )M” yuM? mod 27, (BS)

2r-1

. i 7 \3P Y
which means that ¢’ 1% — ¢S8! In Table I we summa-

rize the symmetries we have discussed.

APPENDIX C: ACCOUNTING FOR THE MEASUREMENT
PROCESS

Within the QAOA scheme, the expectation value Ep(y, B)
is usually estimated by repeated measurements. In this Ap-
pendix we take into account the cost of such measurements
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and discuss how this changes the scaling of the computational
time needed to solve the p-spin model.

To keep the analysis straightforward, we consider a simple
but suboptimal measurement strategy [50]. We first decom-
pose the Hamiltonian into a sum of Pauli strings; then we
estimate the expectation value of each Pauli string indepen-
dently by repeated measurements. In this scheme, the total
number of measurements M needed to estimate Ep(y, ) up
to a target precision €, is bounded by [50]

2

€ms

where w; are the coefficients of the Pauli strings appearing
in the Hamiltonian. For the p-spin target Hamiltonian [see
Eq. (1)], the bound reads

2
M < M}\ﬂ. (C2)

2
€ms

Running the QAOA with P = P*, we can find the solution
up to precision €, with a total number of measurements M Nje;.
The computational cost associated with the measurements is
therefore O(N?z). The total computational cost of the QAOA
algorithm hence becomes

fec ~ Nier[cQaoa-10(P*) + cms—1O(N? /€5 |
= cQaoalO(N?) + Cmslo(N3/6§1s) . (C3)

Here cqaoar and cpg are, respectively, the cost of perform-
ing one QAOA step on the quantum device and measuring
all the qubits ones. We conclude that, even after including
the cost of measurements, the computational cost of finding
an approximate ground state of the p-spin Hamiltonian with
QAOA remains polynomial in the system size.
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