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We propose a reinforcement learning (RL) scheme for feedback quantum control within the quantum approx-
imate optimization algorithm (QAOA). We reformulate the QAOA variational minimization as a learning task,
where an RL agent chooses the control parameters for the unitaries, given partial information on the system.
Such an RL scheme finds a policy converging to the optimal adiabatic solution of the quantum Ising chain that

can also be successfully transferred between systems with different sizes, even in the presence of disorder. This
allows for immediate experimental verification of our proposal on more complicated models: the RL agent is
trained on a small control system, simulated on classical hardware, and then tested on a larger physical sample.
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I. INTRODUCTION

Quantum optimization and control are at the leading edge

of current research in quantum computation [1]. Quantum
annealing (QA) [2-6], alias adiabatic quantum computation
(AQC) [7,8], is a promising quantum algorithm implemented
[9] in present noisy intermediate-scale quantum devices [10].
More recently, the quantum approximate optimization algo-
rithm (QAOA) [11]—a hybrid quantum-classical variational
optimization scheme [12]—has gained momentum [13-16]
and has been successfully realized in several experimental
platforms [17,18].
__In QA/AQC, one constructs an interpolating Hamiltonian
H(s) = sH. + (1 — s)H,, where, e.g., for spin-1/2 systems
H. is the problem Hamiltonian whose ground state (GS) we
are searching [19] while H.=—h > ] 6}‘ is a transverse field
term. Adiabatic dynamics is then attempted by slowly in-
creasing s(¢) from s(0) = 0 to s(t) = 1 in a large annealing
time 7, starting from some easy-to-prepare initial state |+),
the GS of H,. The difficulty is usually associated with the
growing annealing time t necessary when the system crosses
a transition point, especially of first order [20].

QAOA, instead, uses a variational Ansatz of the form

,
Ve, B) = (1’[ ¢ ihllein/l ) ) . M
t=1

where y =yy,...,yp and B = B,..., Bp are 2P real pa-
rameters. The state |Vp(p, B)) is as a sequence of quantum
gates, corresponding to 2P unitaries applied to the initial state,
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each parameterized by control parameters y; or f;. QAOA
consists of a classical minimization in the 2P-dimensional
energy landscape, which is in general not a trivial task [21],
because local optimizations tend to get trapped into one of the
many local minima, producing irregular parameters (y*, %),
hard to implement and sensitive to noise. To obtain stable and
regular schedules (y*, B*), easily generalized to different val-
ues of P and implemented experimentally, iterative procedures
should be employed [14,16,17]. For quantum Ising chains,
smooth regular optimal parameters can be found [14], which
are adiabatic in a digitized-QA /AQC [22] context.

One might regard QAOA as an optimal control process
[23] in which one acts sequentially on the system in order
to maximize a final reward. This reformulation seems par-
ticularly suited for reinforcement learning (RL) [24-27]. As
schematically represented in Fig. 1(a), at each discrete time
step ¢ an “agent” is given some information, through some
observables O,_; measured on the state S,_; = |y,_;) of the
system on which it acts (the “environment”). The agent then
performs an action a,—here choosing (y;, B;)—obtaining a
new state S; = |y;) and receiving a “reward” r,, measuring
the quality of |v).

Several questions come to mind, which have not been
addressed in the recent literature on RL applied to quantum
problems [28-36]: (i) is RL-assisted QAOA able to “learn”
optimal schedules? (ii) Are the schedules found smooth in t?
(iii) How to dwell with the fact that getting information from
|;) involves quantum measurements which destroy the state?
(iv) Are the strategies learned transferable to larger systems?

In this article we show, on the paradigmatic example of the
transverse field Ising chain, that optimal strategies can be ef-
fectively learned with the proximal policy optimization (PPO)
algorithm [37] employing very small neural networks (NN).
We show that RL automatically learns smooth schedules,
hence realizing an optimal controlled digitized-QA algorithm
[14,38]. By working with disordered quantum Ising chains
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FIG. 1. Scheme of (a) a single step of Reinforcement Learning
for QAOA; (b) the “episodes” loop in each kth training “epoch,” with
the “policy” and “state-value” neural networks IT,, and Vgl?.
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we show that strategies “learned” on small samples can be
successfully transferred to larger systems, hence alleviating
the “measurement problem”: one can learn a strategy on a
small problem which can be simulated on a computer, and
implement it on a larger experimental setup [39].

The rest of the paper is organized as follows. In Sec. II, we
describe the connection between QAOA and reinforcement
learning and illustrate our method. In Sec. III, we report
our results on the transverse field Ising model (TFIM) in
one dimension, with periodic boundary conditions, where
detailed QAOA results are already known [14,40] and ex-
act numerical results are obtained via the Jordan-Wigner
transformation [41]. Further benchmarks on the Lipkin-
Meshkov-Glick model (LMG), i.e., Ising with infinite range
interaction, are reported in Sec. IV. We draw our conclusions
and present future outlooks in Sec. V.

II. RL-ASSISTED QAOA

Here we describe how to implement a QAOA ground state
search aided by an RL agent. In order to make our argu-
ments clearer, we specify the discussion on the uniform TFIM
model. To apply our method to a different spin model, it is
sufficient to change the problem specific Hamiltonian H

We define the target Hamiltonian ng = H. + hH, with

_—JZAJ“JZH, H=-Y46. @
j

Given a set of QAOA parameters (p, f8), we gauge the quality
of the resulting state from the residual energy density

EP(Ya .B) - Emin
Emax - Emin

where Ep(y, B) = (¥p(¥, B)|Hupl¥p(y, B)) is the variational
energy, and E.x and En;, are the highest and lowest eigen-
values of the target Hamiltonian. Specifically, the results
presented below will concern targeting the ground state for
h = 0, although the approach can be easily extended to the
case with 7 > 0. At h = 0, the residual energy is bounded by
the inequality [14]

ep (V. B) = , 3

if 2P < N

_1
Sy, B) = 2P+2 . ’ @)
0 if 2P >N

which becomes an equality when (p, B) are optimal QAOA
parameters.

The key ingredients of the RL-assisted algorithm are as
follows.

State. The state S, at time step t=1,...,P is
encoded by the wave-function |[y;), defined iteratively
as  |y) =e Phe iy, ), with  |Yo) = |4) =
«/2W® (11)i 4+ 11):). Due to the symmetry of both H,

and HZ, |Y) is always Z, symmetric. The agent has partial
information through a number of observables O,_; measured
on |Y,_1). Our choice (witht — 1 — 1) is

= {6565, 1vn), (Wil67 1w} (&)

where a single value of j is enough when translational

invariance is respected. Interestingly, the agent seems to

achieve comparable results even with a single observable
= (16367, 1)

Acnon The action a, corresponds to (y;, B;). The condi-
tional probability of a, given the observables O,_;—called
“policy” in RL—is denoted by ITy(a,|O;—1), where 0 are the
parameters of a NN. Iy(a|O) is a stochastic Gaussian policy
[24,42], whose mean and standard deviation are computed by
the NN.

Reward. A reward r; is calculated at time ¢. In our present
implementation, r,—;,_p_; =0 and only rp > 0. The final
reward rp = R(Ep) is associated to minimizing the final
expectation value Ep = (wp|erg|1/fp) Here, R(Ep) is mono-
tonically increasing when Ep decreases. Specifically, we take
R(Ep) = —Ep, but different nonlinear choices have been
tested.

Training. The training process consists of a number Nep,
of “epochs”, as sketched in Fig. 1(b). During each epoch the
RL agent explores with a fixed policy, Nep; state-action tra-
jectories, or “episodes,” each involving P steps ¢t =1, ..., P.
At the end of each epoch, the policy is updated to favor
trajectories with higher reward. The particular RL algorithm
we used is the proximal policy optimization (PPO) algorithm
[37], from the OpenAl SpinningUp library [42]. PPO is an
actor-critic algorithm where two independent NN are used to
parametrize the policy ITy(a,|O;—1) and the state-value func-
tion [24] VQI:[(O,) = E"[rp], which estimates the expected
reward for a system in a state with observables O; and evolv-
ing with the policy IT. V,/1(O,) is used to calculate the updates
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after each epoch [42]. In our numerical simulations, we used
NN with two fully connected hidden layers of 32 and 16 neu-
rons respectively, and linear-rectification (ReLu) activation
function. We discuss in Appendix A our choices regarding
training parameters, observables, and reward function.

III. RESULTS: ISING MODEL

Let us now focus on the numerical results obtained on the
one dimensional Ising model with PBC, both with uniform
and random couplings. As a recap, the problem Hamiltonian
reads

N
H o=~ 1665, . ©)
j=1

We start considering the uniform TFIM, where J; = J. The
model has a paramagnetic (h > J) and a ferromagnetic (h <
J) phase, separated by a second-order transition at 4 = J. In
the RL training, the system is initially prepared in the state
[¥) = |4), while the NNs for the policy and the state-value
function are both initialized with random parameters. The
agent is then trained for Nep, = 1024 epochs, each comprising
Nepi = 100 episodes of P steps each. After training, we test the
RL algorithm with ~50 runs.

Figure 2(a) shows the results obtained by the RL-trained
policy. For P < 6, the trained RL agent finds optimal QAOA
parameters, saturating the bound for €5* in Eq. (4). In par-
ticular, for small system sizes N, when P > N/2, the agent
finds the exact target ground state, and €5° = 0. For longer
episodes (P > 6), the residual energy deviates from the lower
bound due to two factors: (i) the longer the episode, the
more difficult it is to learn the policy, as a larger number
of training epochs are necessary to reach convergence; (ii)
since we are using a stochastic policy, the error due to the
finite width of the action distributions is accumulated dur-
ing an episode, leading to larger relative errors for longer
trajectories. To cure this fact, we supplement the RL-trained
policy with a final gradient based local optimization (LO)
of the parameters (y, 8), employing the Broyden-Fletcher-
Goldfard-Shanno (BFGS) algorithm [43], see Appendix B for
more details on the algorithm. This last step is computation-
ally cheap, since the RL training brings the agent already close
to a local minimum, provided Ny, is large enough. The resid-
ual energy data obtained in this way, denoted by RL 4+ LO in
Fig. 2(a), falls on top of the optimal curve €5° = within
numerical precision.

To visualize the action choices, we translate y; and §; into
the corresponding interpolation parameter s, which a Trotter-
digitized QA/AQC would show, which for 4 = 0 is given by
[14]

1
P13

G
vi+B
Figure 2(b) shows the interpolation parameter s, during an
episode, for a chain of N = 128 spins and P = 8. Differ-
ent curves are obtained by repeating a test run of the same
stochastic policy, trained for Nep, = 1024 epochs. The pa-
rameters obtained through the RL policy are smooth, and
different tests result in similar s-shaped profiles for s,. When
a final local minimization is added, the curves for s; coalesce

(N

St

0.25 1 N —8 RL
—6— N =8 RL+1O
0.20 1 —a— N —32RL
—&— N =32 RL+LO
s O] —=— N =128 RL
£ —5— N =128 RL+LO
0.10 e (2P 1 2)
0.05 4
0.00 1
1.0
0.9 __ 0.8
0,8 i 0.6
0.4
0.7 A
061
-~
VA
0.5
0.4 =128 RL
-—- N =128 RL+LO
0.3 A ) )
(b)  Nepo=1024 ©  iterative LO

01 02 03 04 05
t/(P+1)

0.6 0.7 0.8 0.9

FIG. 2. (a) Residual energy density €5*, Eq. (3), vs P. The target
state is ferromagnetic with # = 0. Full symbols: results from RL
only; empty symbols: a local optimization (LO) supplements the
RL actions (RL + LO); data are averaged over 50 test runs. The
black dashed line is the lower bound of Eq. (4). (b) The schedule
sy = ¥:/(¥, + B;). Full blue lines denote s, learned after Ne,, = 1024
epochs on a chain of N = 128 sites. After LO (dashed red lines), they
all collapse on the minimum corresponding to the iterative LO solu-
tion [14] (black empty squares). (Inset) Same data for Ne,, = 128
training epochs, where not all the LO optimized actions sets fall onto
the iterative LO solution.

and coincides with the smooth optimal schedule obtained in
Ref. [14] through an independent iterative local optimization
strategy. When the training is at an early stage, i.e., the number
of epochs is small, see inset of Fig. 2(b), the profiles s; are
more irregular and do not fall all in the same smooth minimum
upon performing the LO (see the three dashed red lines).

Next, we turn to the random TFIM case. Here, for each
chain length N we fix the disorder instance {J;};—,. y with
J; € [0, 1], both for the training and the test of the RL pol-
icy. Despite translational invariance is now lost, the relevant
observables O, consist only of the two chain-averaged terms
O, = (W |H.1Yr,), (Y |H|ry)}. All the parameters involved
in training the NN are fixed as for the uniform TFIM.

Figure 3(a) shows the residual energy €5° vs P obtained
from the bare RL (full symbols) and from RL followed by a
local optimization (RL + LO, empty symbols). The local op-
timization significantly improves the quality for large P > 10.
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FIG. 3. (a) Residual energy, Eq. (3), vs P for a single instance of the random TFIM: comparison between bare RL and RL followed by
local optimization (RL + LO) results. (b) The optimized s, obtained with different procedures. Empty squares: the iterative LO process of
Ref. [14]; Blue circles: RL + LO performed directly on a N = 128 chain; gray lines: RLy_s+LOy_,, i.€., training of a N = 8 chain used as
Ansatz for LO of the N = 128 chain. (c) The residual energy obtained by training the policy on a single disordered instance with N, sites
and tested on 10 instances of length N, = 128, before (red squares) and after (blue circles) a local optimization. Grey lines connect the same

disorder instance.

A detailed study of the behavior of €;* for large P and a com-
parison with the results obtained [44] by a linear-QA/AQC
scheme, with s(¢) = ¢/, is left to a future study.

Figure 3(b) shows the optimal parameter s; = y;/(y: + B;)
found by the RL + LO method (filled circles), compared to
the s; constructed with the iterative optimization strategy de-
scribed in Ref. [14] (empty squares): the agreement between
the two is remarkable, showing that the RL-assisted QAOA
effectively “learns” smooth action trajectories. The most re-
markable fact, however, is shown by the series of grey lines
present in Fig. 3(b). These are obtained by training the RL
agent on a much smaller instance with N = 8§ sites, and testing
the RL-policy to the larger chain with N = 128, followed by
local optimizations of the learned parameters. These results
show a large transferability of the RL policies, which holds
even in the absence of the final LO. When looking at the
residual energy obtained with different training instance sizes,
reported in Fig. 3(c), a striking result emerges: after a local
optimization (blue circles), the residual energy is independent
of the particular training instance and depends only on the
disordered sample where the LO is performed. The dispersion
of the RL + LO data is due only to the 10 different disor-
der instances. Without LO (red squares), the residual energy
displays a mild dependence on Ny, and the best results are
obtained for Nyin = Niest, as expected.

Policy transferability suggests the following way-out from
the “measurement problem” involved in the construction of
the state observables O,. Indeed, in an experimental im-
plementation of RL-assisted QAOA, the RL agent could
observe a small system, efficiently simulated on classical
hardware, and then use the learned actions to evolve the larger
experimental one. This reduces drastically the number of
measurements to be performed and allows to test RL-assisted
QAOA on physical quantum platforms.

IV. RESULTS: FULLY CONNECTED ISING MODEL

To corroborate the results presented in the previous sec-
tion, we benchmarked our method also on the infinite range
Ising ferromagnet, or Lipkin-Meshkov-Glick (LMG) model,

described by the Hamiltonian

®

2
H= _11\/(26;) —hZ&f.

Since [H, §?] = 0, with S the total spin of the system, numer-
ically exact dynamics is accessible in the maximally polarized
subspace with §? = %(%’ + 1). It also provides another useful
benchmark for our method, because it displays some peculiar-
ities within the QAOA framework. It has a very rugged energy
landscape [45], which makes local optimizations unstable: it
is hard to find good minima when P < N/2 and, in a previous
work [45], we failed in finding smooth parameter sets. In
particular, the iterative optimization used in Refs. [14,16,17]
does not work.

Here we show that reinforcement learning makes the lo-
cal optimization more reliable than other standard QAOA
approaches. We consider a target Hamiltonian corresponding
to a nonzero transverse field I/-I:,rgcl = ﬁz + hH, and we focus
on reaching the ferromagnetic phase when the system is ini-
tially prepared in the paramagnetic state |+). In Fig. 4(a), we
present the data obtained with the different protocols for a

chain of N = 64 spins and target transverse field h = @
The quality of RL alone deteriorates rapidly when P increases,
even if still better than QAOA with purely random initializa-
tion. When RL is coupled to a subsequent local optimization,
the results are much more stable. A data collapse shows that
results for different chain length collapse nicely when P is
rescaled with the logarithm of the system size N, see Fig. 4(b).
Thus among QAOA variational Ansatz for the LMG model,
exist a class of minima that allows to reach very small residual
energy with an evolution time increasing only logarithmically
with the system size N. However these minima are very
hard to find with local optimization, indeed only RL-assisted
QAOA is able to address it correctly, among all the techniques
we tested (random initialization, linear initialization, iterative
local optimization).

Another nice feature of RL-assisted QAOA is the (partial)
smoothness of the interpolation parameter s,, which was ab-
sent in standard QAOA approach. Since the transverse field of
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FIG. 4. (a) Comparison between the residual energy curves ob-
tained with different protocols: QAOA with random initialization
(blue circles), QAOA with linear initialization (green squares), RL
(red triangles), and RL + LO (black triangles). The data refer to a
chain of N = 64 spins. (b) data collapse of the residual energy curves
after rescaling P — P/log, N.

the target Hamiltonian is nonzero, s, takes the form

-
(I =my + B ’
In Fig. 5(a), we report the interpolation parameter s; (blue

lines) for ten different test runs of an RL policy trained on
a system of N = 64 spins with P = 10 and target transverse

©))

St

field h = @ Alongside we plot the s, relative to the local
optimization (dashed red lines) on top of the actions chosen
by the RL agent. Comparing with the results obtained from
l-init QAOA in Fig. 5(b), the difference in smoothness is
striking. Even after the final local optimization, the RL actions
are much more regular and the different trajectories clearly
suggest the presence of a common basin linked to some con-
tinuous schedule s(¢). An interesting feature of the schedule
learned by the algorithm is that it is not the discretization of an
annealing protocol that interpolates between Hgrive and H,..
Indeed, s; does not start close to O at the beginning of the
episode, but as ¢+ — 0 s, reaches a finite value close to 0.5,
indicating that the associated continuous schedule s(¢) is not
adiabatic with respect to the instantaneous Hamiltonian.
Finally, let us discuss the transferability of the policy in
the LMG model. We report in Fig. 6 the residual energies we
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FIG. 5. (a) Learned actions after 1024 training epochs on a chain
of N =64 (blue lines), and their local optimization (red dashed
lines). (b) Optimal parameter sets from QAOA with local optimiza-
tion (blue lines), their average (thick green line) and the linear Ansarz
(black line). In both panels, P = 10 and the target transverse field
ish= % In both panels, we indicate the typical residual energy
found for those parameters sets.
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FIG. 6. Residual energy obtained by training the policy on a
system of Ny, spins and then applying the actions on a test system
of Nest = 128 spins. Red squares refer to the direct transfer of the RL
actions, while blue circles have a local optimization on top. The inset
shows the same data in log scale, where it is possible to appreciate
the difference in the average performance depending on the value of
Ntrain-
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obtained by training the NN on a system of Ny, spins for
1024 epochs and then testing the policy on a larger set with
Neest = 128, both with and without a local optimization on
top (blue circles and red squares respectively). At difference
with the random TFIM model presented in the main text, now
the transferred policy display a clear change in performance
depending on the ratio between the training and the test sys-
tem sizes. The final local optimization tends to smear out this
difference in the residual energies, but clearly the performance
is better when Niyain = MNest, as indicated also by the smaller
errorbar.

V. CONCLUSION AND OUTLOOK

We have shown that the optimal QAOA strategies for the
TFIM [14] can be effectively learned with a simple PPO
algorithm [37] employing rather small NNs. The observables
measured on a state, referring to the two competing terms
in the Hamiltonian and providing information to the “agent,”
seem to be effective in the learning process. RL learns smooth
control parameters, hence realizing an RL-assisted feedback
quantum control for the schedule s(¢) of a digitized QA/AQC
algorithm [14], in absence of any spectral information. By
working with disordered quantum Ising chains, we showed
that strategies “learned” on small samples can be successfully
transferred to larger systems, hence alleviating the “measure-
ment problem”: one can learn a strategy on a small problem
simulated on a computer, and implement it on a larger experi-
mental setup.

A discussion of recent RL-work related to QAOA is
here appropriate. References [28,34,36] have all formulated
RL strategies to learn optimal variational parameters (y, ).
While sharing similar RL tools, their approach is markedly
different from ours: they identify the RL “state” with the
whole set of QAOA parameters. The agent has no access to
the internal quantum state, and no information on the evo-
lution process can be exploited in the optimization. In this
way, the issue of measuring the intermediate quantum state
is bypassed. This choice, however, reduces RL to a heuristic
optimization which forfeits the most relevant feature of the
RL framework: the possibility to drive the process with a
step-by-step evolution, which takes into account the effect
of the previous action, including the possible noise, before
choosing the next one. An alternative proposal, closer to ours
in methods but tackling different physical questions, has re-
cently appeared in Ref. [35].

Concerning future developments, we mention possible im-
provements to the “measurement problem.” One possibility
is to introduce ancillary bits to provide intermediate infor-
mation to the RL agent without destroying the state of the
system, in a way similar to Ref. [30]. Possible alternatives are
performing weak measurements [46], or providing the agent
with a set of single-shot measurements [47], instead of the
averages of observables. A second issue is the sensitivity to
noise: our numerical experiments have shown that noise in
the initial state preparation does not harm the ability to learn
the correct strategies. Finally, the application to other models
is worth pursuing: preliminary results on small Sharrington-
Kirkpatrick spin glass samples are encouraging.
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APPENDIX A: POLICY AND TRAINING PARAMETERS

The results presented in the main text are obtained by
training a PPO algorithm for 1024 epochs of 100 episodes
each. The reward function is the simplest possible r, =
=8 PV (¥, B)|Huw| ¥ (p, B)), and the RL agent receives it
only at the end of each episode (+ = P). Here we discuss
briefly our choices of training parameters, the hyperparam-
eters in RL language.

The PPO algorithm has been chosen beacuse it is one of
the most advanced RL methods suited for problems with a
continuous action space [37,42], such as QAOA. This algo-
rithm is implemented in the OpenAl SpinningUp [42] library
with a stochastic diagonal Gaussian policy. This means that
at each step the two parameters which constitute the action
a; = (y;, B;) are extracted from independent Gaussian distri-
butions, with the averages given by the output of the Neural
Network that parametrizes the policy. The logarithm of the
variance of the two Gaussian distributions are also parameters
learned during the training process. The code for the Quantum
environment is publicly available in Ref. [48].

The reward function must measure the variational quality
of the final wavefunction |y (p, B))p, hence it must be a mono-
tonic increasing function of minus the final energy Ep(y, B).
We tested two choices:

R(Ep(y, B)) = —Ep(y. B) (AD)

and

R(Ep(y, B)) = e BN (A2)

where the system size N is used to prevent the reward to
diverge. The factor 4 increases the steepness of the reward
function towards the optimal control value Ep(y, B) = —N
(for the TFIM model). A possible advantage of the exponen-
tial choice over the linear one is indeed the higher derivative
towards the maximum possible reward, which should improve
policy optimization when the agent has already reached a
good strategy. However, we do not see an appreciable differ-
ence between the two choices, as reported in Fig. 7, where we
show the convergence of the corresponding residual energy
to the QAOA optimal value €& = (2P + 2)~!. There is little
difference between the two choices of the reward function.
Moreover one can see that the residual energy decrease very
slowly with the number of epochs, making it inconvenient
to try reaching the optimal value by increasing N, instead
of adding a local optimization on top of the Reinforcement
Learning process.

To choose the number of episodes per training epoch, i.e.,
the number of trajectories used to evaluate and update the
policy, we tested several values Nep, = 50, 100, 150, 200,
on a single TFIM model with N = 32 and P = 10. We found
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FIG. 7. Difference between the residual energy during the train-
ing and QAOA optimal value ﬁ’ for a uniform Ising chain of
N = 32 spins and episode length P = 10. We compare two choices
of the reward function given by Eqgs. (Al) and (A2), blue and red
lines, respectively. The black solid line is an heuristic upper bound
for the convergence speed of the residual energy obtained from RL
protocol to the optimal value.

that Nepi = 100 gives the lowest average residual energy, as
reported in Fig. 8.

Regarding the observables provided to the agent, there are
several available choices. The first is full tomography of the
wave function, which has the huge disadvantage of requiring
an exponentially large number of measurements to provide
reliable information. Moreover it is a redundant description
of the state, and the neural network needs first to learn how
to compress it and extract the relevant information, before
optimizing the policy. The performance of the method with
this choice turns out to be rather poor and the convergence to-
wards an optimal strategy very slow. Furthermore the number
of nodes in the NN has to scale with the system size in order
to be able to extract the information, worsening efficiency at
larger sizes, and hampering transferability.

When focusing on observables, one of the most intuitive
choice is provide the expectation values of the problem and

0.060 A
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0.056 - ¢
% 0.054 - ‘
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0.048 -
ooss | PP
50 100 150 200
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FIG. 8. Average residual energy at the end of the training versus
the number of episodes per training epoch. The data are obtained for
a uniform Ising chain of N = 32 spins and episode length P = 10.

the driving Hamiltonians, I:I\Z and I-7x This is what we used
throughout this article. This choice has the advantage of being
easily accessible from the Jordan-Wigner representation of
the Ising chain and allows to visualize the policy as a vector
function of two real variables. Moreover it is an efficient
description of the state for what regards the optimization task,
since (H,) is directly linked to the reward function. This set of
observable has been enlarged to include correlation functions
at longer distances (6767,,). The test we performed did not
indicate any increase in the performance. Preliminary results
instead suggest that (H.) alone is sufficient to learn optimal
smooth schedules.

An alternative choice would be computing the expectation
value of the three component of the magnetization (S), with
o = x, Y, z,as done in Ref. [35]. This however does not work

when the state preserves Z, symmetry, as in the TFIM case.

APPENDIX B: LOCAL OPTIMIZATION WITH BFGS

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm is an iterative optimization method for nonlinear
uncontrained problems, that belong to the class of quasi-
Newton method. Convergence is guaranteed to a local
stationary point only if the function has a quadratic Taylor
expansion around the minimum. However, it can reach good
performances also for non smooth problems, such as QAOA.

Let us illustrate briefly how the algorithm works. The goal
of the algorithm is to minimize a scalar differentiable function
f(x), where x is an unbounded vector in R”. Starting from
an initial estimate of the stationary point Xy, the algorithm
proceeds iteratively to improve the estimate at each step k. At
each iteration, the algorithm searches for a minimum along the
direction di, given by the solution of the Newton equation:

Hd; = V£(x) (B1)

where Hj is an estimated Hessian matrix, also updated itera-
tively, and V f(x;) is the function gradient. V f can either be
provided analytically or obtained through algorithmic differ-
entiation. The next point X is then found by minimizing
f (X + ydy;) over a scalar parameter y > 0.

The distinctive feature of BFGS is the how the Hessian esti-
mation is updated. At each step, we impose the quasi-Newton
condition on Hy:

Hy18 =y« (B2)

where we defined the two quantities
Yie = V(X)) = V) (B3)
Sk = Xk41 — X - (B4)

The convexity of f(xx), which is required for convergence,
can be verified by checking s yx > 0. This condition must
be enforced expliticly, to be sure that Hj is always positive
definite. Therefore, at each step, BFGS does not compute the
whole new Hessian evaluated in X4, but is is updated using
two symmetric rank-one matrices Uy and V, chosen in such
a way that their sum is a rank-two matrix:

Hyy1 = Hy + Uy + Vi . (BS)
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This is easily done by writing the matrices Uy and Vj as
Uy = quu' (B6)
Vi = Bvv', (B7)

which indeed guarantees that Hj; remains positive definite.
It is convenient to choose the vectors u and v such that u = y;

and v = H;s;. Then imposing Eq. (B2), we obtain

1
“= y/{Sk’
B=— ! . (B8)
SZHkSk

Finally, we substitute back « and g into Egs. (B6) and (BS5)
and obtain the update rule for the Hessian matrix.
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