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1 Introduction

Cosmic inflation freezes the quantum fluctuations of the inflaton field into classical fluctu-

ations which source the large-scale structures in the universe. While such a processing of

field fluctuations happens generically both for nearly massless scalars and gravitons, the

situation is different for gauge fields. This is a simple consequence of the classical Weyl

invariance of the Yang-Mills action. The dynamics of a gauge field governed by a Weyl

invariant action in a Friedmann-Robertson-Walker spacetime is independent of the scale

factor, and hence naively unaffected by the expansion of the universe.

However, the classical Weyl invariance of the Yang-Mills action is violated in the

quantum theory because of the need to regularize the path integral. These Weyl anomalies,

or equivalently the nontrivial beta functions of the theory, imply that the quantum effective

action obtained after integrating out massless charged particles is no longer Weyl invariant.

This is expected to lead to an anomalous dependence on the scale factor under a fairly mild

assumption that the masses of the charged particles that contribute to the quantum loops

are negligible compared to the Hubble scale during the cosmological era of interest. For

the Maxwell theory, the violation of Weyl invariance can lead to gauge field excitations in

the early universe, and thus to the generation of electromagnetic fields.

In our universe, magnetic fields are observed on various scales such as in galaxies and

galaxy clusters. Recent gamma ray observations suggest the presence of magnetic fields

even in intergalactic voids. In order to explain the origin of the magnetic fields, theories of
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primordial magnetogenesis have been studied in the literature, where most models violate

the Weyl invariance explicitly at the classical level by coupling the gauge field to some

degrees of freedom beyond the Standard Model of particle physics [1, 2]. See e.g. [3–10] for

reviews on magnetic fields in the universe from different perspectives.

It was pointed out in [11] that the Weyl anomaly of quantum electrodynamics itself

should also induce magnetic field generation. If true, this would be a natural realization

of primordial magnetogenesis within the Standard Model. Moreover, since the anomaly

is intrinsic to the Standard Model, its contribution to the magnetic fields, if any, is ir-

reducible. Hence it is important to evaluate this also for the purpose of identifying the

minimum seed magnetic fields of our universe. Since [11], there have indeed been many

studies on this topic. However, there is currently little consensus on the effect of the Weyl

anomaly on magnetic field generation. One of the main difficulties in proceeding with these

computations is that the quantum effective action in curved spacetime is in general very

hard to evaluate. In principle, it is a well-posed problem in perturbation theory. One can

regularize the path integral covariantly using dimensional regularization or short proper-

time regularization and evaluate the effective action using the background field method.

However, explicit evaluation of the path integral for a generic metric is not feasible. For

instance, to obtain the one-loop effective action it is necessary to compute the heat ker-

nel of a Laplace-like operator in an arbitrary background, which amounts to solving the

Schrödinger problem for an arbitrary potential.

One could evaluate the effective action perturbatively in the weak field limit using

covariant nonlocal expansion of the heat kernel developed by Barvinsky, Vilkovisky, and

collaborators [12, 13]. The effective action in this expansion has been worked out to third

order in curvatures [14–17]. Similar results have been obtained independently by Donoghue

and El-Menoufi [18, 19] using Feynman diagrams. Some of the earlier works on primordial

magnetogenesis from anomalies, e.g. [20], relies on the effective action derived in this weak

field approximation. The weak field expansion is valid in the regime R2 � ∇2R, where R
denotes a generalized curvature including both a typical geometric curvature R as well as

a typical gauge field strength F . During slow-roll inflation, one is in the regime of slowly

varying geometric curvatures, R2 � ∇2R, whereas during matter domination, one has

R2 ∼ ∇2R. Thus, during much of the cosmological evolution, the curvatures are not weak

compared to their derivatives. Therefore, to study primordial magnetogenesis reliably over

a long range of cosmological evolution, it is essential to overcome the limitations of the

weak field approximation.

It was shown recently in [21], that one can go beyond the weak field approximation for

Weyl flat spacetimes. In this case, one can exploit Weyl anomalies and the symmetries of

the background metric to completely determine the dependence of the effective action on the

scale factor at one-loop even when the changes in the scale factor are large. The main ad-

vantage of this approach is that Weyl anomalous dimensions of local operators can be com-

puted reliably using local computations such as the Schwinger-DeWitt expansion without

requiring the weak field approximation R2 � ∇2R. The resulting action obtained by inte-

grating the anomaly is necessarily nonlocal and essentially resums the Barvinsky-Vilkovisky

expansion to all orders in curvatures albeit for the restricted class of Weyl-flat metrics. A
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practical advantage is that one can extract the essential physics with relative ease using

only the local Schwinger-DeWitt expansion which is computationally much simpler.

In this paper we use the quantum effective action of [21] beyond the weak field limit, and

present the first consistent computation of the effect of the Weyl anomaly on cosmological

magnetic field generation. We study U(1) gauge fields originating as vacuum fluctuations in

the inflationary universe, and analyze their evolution during the inflation and post-inflation

epochs. Our main conclusion is that there is no production of coherent magnetic fields from

the Weyl anomaly of quantum electrodynamics, contrary to the claims of previous works.

Our results hold independently of the details of the cosmological history, or of the number

of massless charged particles in the theory. We show, in particular, that even if there were

extra charged particles in addition to those of the Standard Model, the Weyl anomaly with

an increased beta function still would not produce any magnetic fields.

Since the time-dependence introduced by the Weyl anomaly is unusually weak, the

analysis of the (non)generation of magnetic fields requires careful consideration of the

nature of the field fluctuations, in particular whether they are classical or quantum. For this

purpose, we introduce general criteria for assessing the quantumness of field fluctuations.

Using these criteria, we find that the quantum fluctuations of the gauge field actually do

not get converted into classical fluctuations.

The paper is organized as follows. In section 2 we review the derivation [21] of the one-

loop quantum effective action for a Weyl-flat metric. In section 3 we canonically quantize

the gauge fields using this action and introduce the criteria for quantumness. In section 4

we analyze the evolution of the gauge field in the early universe and show that there is no

production of coherent magnetic fields. In section 5 we comment on the relation of our

work to earlier works and conclude with a discussion of possible extensions.

2 Nonlocal effective action for quantum electrodynamics

In the early universe before the electroweak phase transition, quarks and leptons are mass-

less.1 Consider the hypercharge U(1) gauge field of the Standard Model coupled to these

massless Dirac fermions which we collectively denote by Ψ. The classical Lorentzian action

in curved spacetime is

S0[g,A,Ψ] = −
∫
d4x

√
|g|
[

1

4 e2
0

FµνF
µν + i Ψ̄ Γa eµa DµΨ

]
, (2.1)

where Fµν = ∂µAν − ∂νAµ, and e2
0 is the bare charge. The covariant derivative is defined

including both the gauge connection Aµ and the spin connection in the spinor representa-

tion wabµ :

Dµ := ∂µ −
i

2
wabµ Jab − iQAµ , (2.2)

where {Jab} are the Lorentz representation matrices and Q is the quantized charge of the

field in units of e0.

1The expectation value of the Higgs field could fluctuate during inflation with an amplitude of the order of

the inflationary Hubble scale. However, since most of the Yukawa couplings are small, the induced masses for

these fermions would still be smaller than the Hubble scale and thus could be treated as effectively massless.

– 3 –



J
H
E
P
1
1
(
2
0
1
8
)
0
3
9

Classically, this action is invariant under Weyl transformation:

gµν → e2ξ(x)gµν , gµν → e−2ξ(x)gµν , Ψ→ e−
3
2
ξ(x)Ψ , Aµ → Aµ . (2.3)

The Weyl symmetry is anomalous because in the quantum theory one must introduce a

mass scale M to renormalize the theory which violates the Weyl invariance. The Weyl

anomaly introduces a coupling of the gauge field to the Weyl factor of the metric. To

analyze its effects on the fluctuations one can proceed in two steps. One can first perform

the path integral over fermions treating both the metric and the gauge field as backgrounds.

The resulting effective action for the electromagnetic field will include all quantum effects

of fermions in loops. It is necessarily nonlocal because it is obtained by integrating out

massless fields. One can then quantize the gauge field using this effective action to study

the propagation of photons including all vacuum polarization effects as well as interactions

with the background metric.

In flat spacetime, with gµν = ηµν , the quantum effective action can be computed using

standard field theory methods. Up to one loop order, the quadratic action for the gauge

fields is given by2

Sflat[η,A] = − 1

4e2

∫
d4x

[
Fµν(x)Fµν(x)− β̃(e)

∫
d4y Fµν(x)L(x− y)Fµν(y)

]
(2.4)

where e2 ≡ e2(M) is the coupling renormalized at a renormalization scale M , and β̃(e) is

the beta function of log e, i.e.,
d log e

d logM
= β̃(e). (2.5)

The beta function of quantum electrodynamics takes positive values, which is written as

β̃(e) =
be2

2
, where b =

Tr (Q2)

6π2
. (2.6)

Here the coefficient b is expressed in terms of the trace of the charge operator taken over

all massless charged fermions.3 To keep the discussion general, we will also allow for the

possibility of extra massless charged particles beyond the Standard Model in the early

universe, and treat the beta function as an arbitrary positive parameter.

The bilocal kernel in the second term of the action is defined by a Fourier transform:

L(x− y) ≡ 〈x| log

(
−∂2

M2

)
|y〉 =

∫
d4p

(2π)4
eipµ(xµ−yµ) log

(
pνp

ν

M2

)
. (2.7)

The action in position space may seem a bit unfamiliar but is more easily recognizable in

momentum space where it takes the form

Sflat[η,A] = − 1

4 e2

∫
d4p

(2π)4
ηραησβ F̃ρσ(−p)

[
1− β̃ log

(
pνp

ν

M2

)]
F̃αβ(p). (2.8)

2The quantum effective action in general contains higher powers of the field strength but the resulting

nonlinearities will not be relevant for our purposes.
3The fluctutions of the photon field are related to the flucutions of the hypercharge gauge field by a

number of order unity that depends on the Weinberg angle. This distinction will not be important for our

conclusions.
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Figure 1. The first term in the top line represents the classical propagation of the photon whereas

the second term in the top line represents the one-loop correction to the propagator due to vacuum

polarization in flat space. All diagrams in the bottom line represent vacuum polarization in the

presence of a curved metric gµν = ηµν + hµν treating hµν as a perturbation. The Barvinsky-

Vilkovisky expansion gives the covariantized nonlocal action resumming the specific powers of h

required for general covariance. Equation (2.11) obtained by integrating the anomaly resums these

diagrams to all orders into a simple expression for Weyl-flat spacetimes.

In this form, one recognizes the first term as the classical action with renormalized coupling

and the second term as the usual one-loop logarithmic running of the coupling constant.

We are interested in the effective action in a curved spacetime. To get some intuition

about the effect of the curvature, it is useful to consider the weak field limit so that

the metric is close to being flat, gµν = ηµν + hµν . If hµν is very small, then one can

treat it as a perturbation to compute the corrections using Feynman diagrams. Various

corrections arising from the interactions with the non-flat background metric are shown

diagrammatically in figure 1 for the photon propagator. It is clear that even at one loop

order, there are an infinite number of diagrams that contribute to the propagator. The

Barvinsky-Vilkovisky expansion and related results complete the obtained expressions into

non-linear and covariant functions of hµν . Doing so however to a fixed order in hµν implies

one neglects higher curvatures when compared to higher derivatives. More concretely,

R2 ∼ (∂2h)2, ∇2R ∼ ∂4h. (2.9)

As a result this ‘curvature expansion’ is very different from the usual ‘derivative expansion’

and is justified only in the limit ∇2R � R2. If one is interested in a metric such as the

Friedmann-Robertson-Walker metric that differs substantially from the Minkowski metric,

a perturbative evaluation in this weak field limit clearly would not be adequate.

It was shown in [21] that for Weyl-flat metrics, i.e., of the form gµν = e2Ωηµν , it is

indeed possible to obtain the quantum effective action at one-loop as an exact functional

of Ω without assuming small h. This is achieved by integrating the Weyl anomaly and

matching with the flat space results [21]. The part of the action that contains the gauge
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field takes a simple form:4

S[g,A] = Sflat[η,A] + SB[η,Ω, A] , (2.10)

where Sflat is the effective action at one-loop as in (2.4), and SB has the anomalous depen-

dence on the Weyl factor (or the scale factor in a Friedmann-Robertson-Walker spacetime):

SB[η,Ω, A] = − β̃

2e2

∫
d4xΩ(x)Fµν(x)Fµν(x) (2.11)

where the indices are raised using the Minkowski metric as in (2.4). Thus the total effective

action can be written as

S = − 1

4e2

∫
d4x d4y Fµν(x) 〈x|

[
1− β̃ log

(
−∂2

M2 exp(2Ω(x))

)]
|y〉Fµν(y). (2.12)

Even though the resummed answer of (2.11) is a local functional of Ω, it must come

from nonlocal terms when expressed in terms of the original metric gµν . There are non-

local functionals that evaluate to the Weyl factor Ω(x) on Weyl-flat backgrounds [22–24].

One example is the Riegert functional:

Ω[g](x) =
1

4

∫
d4y

√
|g(y)|G4(x, y)F4[g](y) , (2.13)

where

F4[g] := E4[g]− 2

3
∇2R[g] =

(
RµνρσR

µνρσ − 4RµνR
µν +R2 − 2

3
∇2R

)
[g] , (2.14)

and the Green function G4(x, y) defined by

∆y
4[g]G4(x, y) =

δ(4)(x− y)√
|g|

(2.15)

is the inverse of the Weyl-covariant quartic differential operator

∆4[g] =
(
∇2
)2

+ 2Rµν∇µ∇ν +
1

3
(∇νR)∇ν −

2

3
R∇2 . (2.16)

The expression (2.13) is manifestly covariant but nonlocal, consistent with the fact that

the anomalous Ω dependence represents genuine long-distance quantum effects that cannot

be removed by counter-terms that are local functionals of the metric. In the perturbative

Barvinsky-Vilkovisky regime we have R2 � ∇2R and one can expand the expression for

Ω (2.13) in curvatures to obtain to leading order

Ω[g](x) = −1

6

1

∇2
R+ . . . . (2.17)

It is clear from (2.13) that this expression receives corrections to all orders in R. The simple

expression (2.10) effectively resums these contributions to all orders as explained in [21].

4In the space of metrics, this action is evaluated in the subspace of Weyl-flat metrics. For this reason it

is beyond the reach of this method to compute the equations of motion for the background metric which

requires a functional variation with respect to gµν even in directions orthogonal to the Weyl orbits.

– 6 –
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3 Quantization of the gauge field

We now quantize the gauge field in a flat Friedmann-Robertson-Walker background,

ds2 = a(τ)2
(
−dτ2 + dx2

)
. (3.1)

Here the Weyl factor is Ω = log a, and thus the effective action (2.12) takes the form

S = −1

4

∫
d4x1d

4x2 I2(x1, x2)Fµν(x1)Fµν(x2), (3.2)

with

I2(x1, x2) =
1

e2

∫
d4k

(2π)4
eikµ(xµ1−x

µ
2 )

[
1− β̃ log

(
a2
?

a(τ1)2

)
− β̃ log

(
kνk

ν

M2a2
?

)]
, (3.3)

where xµ and kµ are comoving coordinates and wave number, respectively, and the indices

are raised and lowered with the Minkowski metric. We have introduced a scale factor a?
and split the action into kνk

ν-dependent and independent parts; this splitting is completely

arbitrary, and hence a? can also be chosen arbitrarily.

3.1 Simplified effective action

Let us decompose the spatial components of the gauge field into irrotational and incom-

pressible parts,

Aµ = (A0, ∂iS + Vi) with ∂iVi = 0, (3.4)

where we use Latin letters to denote spatial indices (i = 1, 2, 3), and the sum over repeated

spatial indices is implied irrespective of their positions. One can check that A0 is a Lagrange

multiplier, whose constraint equation can be used to eliminate both A0 and S from the

action to yield

S =
1

2

∫
d4x1d

4x2 I2(x1, x2)
{
V ′i (x1)V ′i (x2)− ∂iVj(x1)∂iVj(x2)

}
, (3.5)

where we drop surface terms, and a prime denotes a derivative with respect to the conformal

time τ . We now go to momentum space,

Vi(τ,x) =
∑
p=1,2

∫
d3k

(2π)3
eik·x ε

(p)
i (k)u

(p)
k (τ), (3.6)

where ε
(p)
i (k) (p = 1, 2) are two orthonormal polarization vectors that satisfy

ε
(p)
i (k) ki = 0, ε

(p)
i (k) ε

(q)
i (k) = δpq. (3.7)

From these conditions, it follows that∑
p=1,2

ε
(p)
i (k) ε

(p)
j (k) = δij −

kikj
k2

, (3.8)

– 7 –
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where we use k to denote the amplitude of the spatial wave number, i.e. k = |k|. Unlike the

spacetime indices, we do not assume implicit summation over the polarization index (p).

The equation of motion of Vi requires the mode function u
(p)
k (τ) to obey

0 =

{
1 + 2β̃ log

(
a(τ)

a?

)}{
u
′′(p)
k (τ) + k2u

(p)
k (τ)

}
+ 2β̃

a′(τ)

a(τ)
u
′(p)
k (τ)

− β̃
∫
dτ̃
{
u
′′(p)
k (τ̃) + k2u

(p)
k (τ̃)

}∫ dk0

2π
e−ik

0(τ−τ̃) log

(
kµk

µ

M2a2
?

)
.

(3.9)

In order to estimate the second line, let us make the crude assumption that the k0 integral

amounts to the replacement∫
dk0

2π
e−ik

0(τ−τ̃) log

(
kµk

µ

M2a2
?

)
→ δ(τ − τ̃) log

(
k2

M2a2
?

)
, (3.10)

where the coefficient of δ(τ− τ̃) is obtained by integrating both sides over τ . Then compar-

ing with the terms in the { } parentheses in the first line of (3.9), one sees that the second

line is negligible when ∣∣∣∣1 + 2β̃ log

(
a

a?

)∣∣∣∣� ∣∣∣∣β̃ log

(
k2

M2a2
?

)∣∣∣∣ . (3.11)

The second line of the equation of motion follows from the log(kνk
ν) term of (3.3) in

the action. Hence as long as the wave modes of interest satisfy the condition (3.11), we

can ignore this term and use a simplified effective action of

Ssimp = −1

4

∫
d4x I(τ)2 Fµν(x)Fµν(x), (3.12)

where

I(τ)2 =
1

e2

[
1 + 2β̃ log

(
a(τ)

a?

)]
. (3.13)

The equation of motion (3.9) reduces to

u
′′(p)
k + 2

I ′

I
u
′(p)
k + k2u

(p)
k = 0. (3.14)

The action of the form (3.12) with various time-dependent functions I2 has been studied in

the context of primordial magnetogenesis since the seminal work of [2]. However we stress

that, unlike many models of magnetogenesis whose time dependences are attributed to

couplings to scalar fields extraneous to the Standard Model, here, the function I2 of (3.13)

arises from the Weyl anomaly of quantum electrodynamics and thus is intrinsic to the

Standard Model. It should also be noted that, due to the positivity of the beta function

of quantum electrodynamics, I2 monotonically increases in time.

As is indicated by the equation of motion, there is no mixing between different wave

modes under the simplified action. This allows us to take the parameter a? differently for

each wave mode upon carrying out computations. A convenient choice we adopt is

a? =
k

M
, (3.15)

– 8 –
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so that the simplifying condition (3.11) can be satisfied for a sufficiently long period of

time for every wave mode. However we should also remark that even with this choice, the

log(kνk
ν) term does not drop out completely. This is because we have used the approxima-

tion (3.10), and thus in the right hand side of the condition (3.11), the argument of the log

should be considered to have some width around k2/M2a2
?. Hence we rewrite the simplify-

ing condition for the choice of (3.15), by combining with the further assumption of I2 > 0, as

1 + 2β̃ log

(
aM

k

)
� β̃. (3.16)

If, on the other hand, the log(kνk
ν) term cannot be ignored, this signals that the theory

is strongly coupled.5 The Landau pole at which the coupling e blows up can be read off

from the running of the coupling (2.5) as

Λmax = M exp

(
1

2β̃

)
. (3.17)

In terms of this, (3.16) is rewritten as k/a < Λmax exp(−1/2). Hence the simplifying con-

dition can be understood as the requirement that the physical momentum should be below

the Landau pole during the times when one wishes to carry out computations.

The function I2 (3.3) in the full effective action is independent of the renormalization

scale M , since the coupling runs as (2.5). We note that with the choice (3.15) for a?, the

function I2 (3.13) in the simplified action also becomes independent of M .

3.2 Canonical quantization

In order to quantize the gauge field, we promote Vi to an operator,

Vi(τ,x) =
∑
p=1,2

∫
d3k

(2π)3
ε
(p)
i (k)

{
eik·xa

(p)
k u

(p)
k (τ) + e−ik·xa

†(p)
k u

∗(p)
k (τ)

}
, (3.18)

where a
(p)
k and a

†(p)
k are annihilation and creation operators satisfying the commutation

relations,

[a
(p)
k , a

(q)
l ] = [a

†(p)
k , a

†(q)
l ] = 0, [a

(p)
k , a

†(q)
l ] = (2π)3 δpq δ(3)(k − l). (3.19)

For Vi and its conjugate momentum which follows from the Lagrangian L = (I2/2)(V ′i V
′
i −

∂iVj∂iVj) (cf. (3.5)) as

Πi =
∂L
∂V ′i

= I2V ′i , (3.20)

we further impose the commutation relations

[Vi(τ,x), Vj(τ,y)] = [Πi(τ,x), Πj(τ,y)] = 0,

[Vi(τ,x), Πj(τ,y)] = iδ(3)(x− y)

(
δij −

∂i∂j
∂l∂l

)
.

(3.21)

5The condition (3.16) is rewritten as I2 � β̃/e2 = b/2. Violating this condition provides an explicit

example of what is often referred to in the literature as the “strong coupling problem” of magnetogenesis

with a tiny I [25].
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The second line can be rewritten using (3.8) as

[Vi(τ,x), Πj(τ,y)] = i
∑
p=1,2

∫
d3k

(2π)3
eik·(x−y)ε

(p)
i (k) ε

(p)
j (k). (3.22)

Choosing the polarization vectors such that

ε
(p)
i (k) = ε

(p)
i (−k), (3.23)

one can check that the commutation relations (3.19) are equivalent to (3.21) when the

mode function is independent of the direction of k, i.e.,

u
(p)
k = u

(p)
k , (3.24)

and also obeys

I2
(
u

(p)
k u

′∗(p)
k − u∗(p)k u

′(p)
k

)
= i. (3.25)

It follows from the equation of motion (3.14) that the left hand side of this condition is

time-independent, and thus this sets the normalization of the mode function.

3.3 Photon number and quantumness measure

Before proceeding to compute the cosmological evolution of the gauge field fluctuations,

we introduce two measures of ‘quantumness’ to determine when the field fluctuations can

be regarded as classical. See also [26, 27] for discussions along similar lines.

In order to separately discuss each wave mode, we focus on the Fourier components of

the operator Vi (3.18) and its conjugate momentum:

Vi(τ,x) =
∑
p=1,2

∫
d3k

(2π)3
eik·xε

(p)
i (k) v

(p)
k (τ),

Πi(τ,x) =
∑
p=1,2

∫
d3k

(2π)3
eik·xε

(p)
i (k)π

(p)
k (τ) .

(3.26)

The Fourier modes can be expressed in terms of the annihilation and creation operators as

v
(p)
k (τ) = a

(p)
k u

(p)
k (τ) + a

†(p)
−k u

∗(p)
k (τ), π

(p)
k (τ) = I(τ)2

(
a

(p)
k u

′(p)
k (τ) + a

†(p)
−k u

′∗(p)
k (τ)

)
.

(3.27)

The commutation relations (3.19) or (3.21) entail

[v
(p)
k (τ), v

(q)
l (τ)] = [π

(p)
k (τ), π

(q)
l (τ)] = 0, [v

(p)
k (τ), π

(q)
l (τ)] = i(2π)3 δpq δ(3)(k+l). (3.28)

We now introduce time-dependent annihilation and creation operators as

b
(p)
k (τ) ≡

√
k

2
I(τ) v

(p)
k (τ) +

i√
2k

π
(p)
k (τ)

I(τ)
, b

†(p)
k (τ) ≡

√
k

2
I(τ) v

(p)
−k(τ)− i√

2k

π
(p)
−k(τ)

I(τ)
,

(3.29)
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so that b
(p)
k and b

†(p)
k satisfy equal-time commutation relations similar to (3.19) of a

(p)
k and

a
†(p)
k , as well as diagonalize the Hamiltonian,

H̃ =

∫
d3x

(
ΠiV

′
i − L

)
=
∑
p=1,2

∫
d3k

(2π)3
k

(
b
†(p)
k b

(p)
k +

1

2
[b

(p)
k , b

†(p)
k ]

)
. (3.30)

The two sets of annihilation and creation operators are related by

b
(p)
k (τ) = α

(p)
k (τ) a

(p)
k + β

∗(p)
k (τ) a

†(p)
−k , b

†(p)
k (τ) = α

∗(p)
k (τ) a

†(p)
k + β

(p)
k (τ) a

(p)
−k, (3.31)

through time-dependent Bogoliubov coefficients:

α
(p)
k = I

(√
k

2
u

(p)
k +

i√
2k

u
′(p)
k

)
, β

(p)
k = I

(√
k

2
u

(p)
k −

i√
2k

u
′(p)
k

)
. (3.32)

Using the normalization condition (3.25), one can check that the amplitudes of the coeffi-

cients obey

|α(p)
k |

2 − |β(p)
k |

2 = 1, (3.33)

|β(p)
k |

2 =
I2

2

(
k |u(p)

k |
2 +
|u′(p)k |

2

k

)
− 1

2
. (3.34)

When an adiabatic vacuum exists, b
†(p)
k b

(p)
k counts the numbers of photons with polar-

ization p and comoving momentum k. However this operator itself is defined at all times,

and it can be interpreted as an instantaneous photon number. Now let us suppose a
(p)
k and

a
†(p)
k to have initially diagonalized the Hamiltonian, i.e. β

(p)
k = 0 in the distant past, and

that the system was initially in a vacuum state defined by a
(p)
k |0〉 = 0 for p = 1, 2 and for

all k. Then at some later time, the number of created photons per comoving volume is

written as

1

V

∑
p=1,2

∫
d3k

(2π)3
〈0|b†(p)k b

(p)
k |0〉 =

∑
p=1,2

∫
dk

k

(
4π

3k3

)−1 2

3π
|β(p)
k |

2, (3.35)

where V ≡
∫
d3x = (2π)3δ(3)(0). Thus one sees that 2

3π |β
(p)
k |

2 represents the number

of photons with polarization p and comoving momentum of order6 k, within a comoving

sphere of radius k−1. The photon number |β(p)
k |

2 (we will omit the coefficient 2
3π as we

are interested in order-of-magnitude estimates) is useful for judging whether magnetic field

generation takes place: a successful magnetogenesis model that gives rise to magnetic

fields with correlation length of k−1 does so by creating a large number of photons with

momentum k, thus is characterized by |β(p)
k |

2 � 1. On the other hand, if the photon

number is as small as |β(p)
k |

2 = O(1), then it is clearly not enough to support coherent

magnetic fields in the universe.

6We assume that |β(p)
k |

2 is smooth in k so that it does not have sharp features in any narrow range

of ∆k � k.
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One can define another measure of quantumness introduced in [27] (see also discus-

sions in [28]), by the product of the standard deviations of v
(p)
k and π

(p)
k in units of their

commutator:

κ
(p)
k (τ) ≡

∣∣∣∣∣〈0|v
(p)
k (τ) v

(p)
−k(τ)|0〉 〈0|π(p)

k (τ)π
(p)
−k(τ)|0〉

[v
(p)
k (τ), π

(p)
−k(τ)]2

∣∣∣∣∣
1/2

= I(τ)2
∣∣∣u(p)
k (τ)u

′(p)
k (τ)

∣∣∣ . (3.36)

This quantity also corresponds to the classical volume of the space spanned by vk and π−k,

divided by their quantum uncertainty.7 It takes a value of κ
(p)
k ∼ 1 if the gauge field fluctu-

ation with wave number k is quantum mechanical. On the other hand, if the fluctuations

are effectively classical and large compared to the quantum uncertainty, then κ
(p)
k � 1.

This measure can also be used to quantify the conversion of quantum fluctuations into

classical ones. As an example, consider a (nearly) massless scalar field in a de Sitter back-

ground (such as the inflaton), for which the measure κk can similarly be defined in terms

of the scalar fluctuation and its conjugate momentum. Given that the fluctuation starts in

a Bunch-Davies vacuum when the wave mode k is deep inside the Hubble horizon, one can

check that κk grows from ∼ 1 when the wave mode is inside the horizon, to κk � 1 outside

the horizon, suggesting that the quantum fluctuations “become classical” upon horizon exit.

The quantumness measure can also be expressed in terms of the Bogoliubov coefficients

as

(κ
(p)
k )2 =

1

4

∣∣∣(α(p)
k )2 − (β

(p)
k )2

∣∣∣2 =
1

4
+ |β(p)

k |
2
(

1 + |β(p)
k |

2
)

sin2
{

arg(α
(p)
k β

∗(p)
k )

}
, (3.37)

where we have used (3.33) upon moving to the far right hand side. This clearly shows that

κ
(p)
k takes its minimum value 1/2 when there is no photon production, i.e., for β

(p)
k = 0. Is

is also useful to note that the instantaneous photon number |β(p)
k |

2 corresponds to the sum

of squares of the standard deviations of v
(p)
k and π

(p)
k with weights (kI2)±1, cf. (3.34). An

inequality relation of

|β(p)
k |

2 ≥ κ(p)
k −

1

2
(3.38)

is satisfied.

The classical Maxwell theory is described by setting I2 = 1/e2, with which the mode

function is a linear combination of plane waves. Then |β(p)
k | simply corresponds to the

amplitude of the coefficient of the negative frequency wave, and thus is time-independent.

It can also be checked in this case that arg(α
(p)
k β

∗(p)
k ) = −2kτ + const., and hence one

sees from (3.37) that κ
(p)
k for plane waves oscillates in time within the range 1/2 ≤ κ

(p)
k ≤

1/2 + |β(p)
k |

2.

4 Cosmological evolution of the gauge field

The anomalous dependence of the effective action for quantum electrodynamics on the

scale factor couples the gauge field to the cosmological expansion. Here, in order to study

7Here κ
(p)
k is defined slightly differently from the κ introduced in appendix B.3 of [27]: κ = (2κ

(p)
k )−2.
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the time evolution, the initial condition of the gauge field needs to be specified. A natural

option is to start as quantum fluctuations when the wave modes were once deep inside the

Hubble horizon of the inflationary universe. This Bunch-Davies vacuum during the early

stage of the inflationary epoch will be the starting point of our computation.

It should also be noted that the scale factor dependence does not “switch off”, as long

as there are massless particles around, and thus the cosmological background continues

to affect the gauge field equation of motion even after inflation. (In this respect, the

effect of the Weyl anomaly serves as a subclass of the inflationary plus post-inflationary

magnetogenesis scenario proposed in [29].) After inflation ends, the universe typically enters

an epoch dominated by a harmonically oscillating inflaton field, whose kinetic and potential

energies averaged over the oscillation are equal and thus behaves as pressureless matter.

Then eventually the inflaton decays and heats up the universe; during this reheating phase,

the universe is expected to become filled with charged particles and thus the gauge field

evolution can no longer be described by the source-free equation of motion (3.14). We

also note that after the electroweak phase transition, the charged particles in the Standard

Model will obtain masses and therefore our effective action (2.10) becomes invalid. Hence

the gauge field evolution will be followed up until the time of reheating or electroweak

phase transition, whichever happens earlier.

4.1 Bunch-Davies vacuum

For the purpose of obtaining a gauge field solution that corresponds to the vacuum fluctu-

ations, it is convenient to rewrite the equation of motion (3.14) into the following form:

(Iuk)
′′ + ω2

k Iuk = 0, where ωk =

(
k2 − I ′′

I

)1/2

. (4.1)

We have dropped the polarization index (p) because the action is symmetric between the

two polarizations. This equation admits an approximate solution of the WKB-type

uWKB
k (τ) =

1√
2ωk(τ) I(τ)

exp

(
−i
∫ τ

dτ̃ ωk(τ̃)

)
, (4.2)

given that the time-dependent frequency ωk satisfies the adiabatic conditions,∣∣∣∣ω′kω2
k

∣∣∣∣2 , ∣∣∣∣ω′′kω3
k

∣∣∣∣� 1. (4.3)

When further

ω2
k > 0, (4.4)

then ωk is real and positive, and the WKB solution (4.2) describes a positive frequency

solution that satisfies the normalization condition (3.25). The period when the above

conditions are satisfied can be understood by noting that

I ′′

k2I
=

b

2I2

(
aH

k

)2(
1 +

H ′

aH2
− b

2I2

)
. (4.5)
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Here H = a′/a2 is the Hubble rate. The simplifying condition (3.16) imposes b � 2I2,

and |H ′/aH2| . 1 is usually satisfied in a cosmological background. Hence for wave modes

that are inside the Hubble horizon, i.e. k > aH, it follows that k2 � |I ′′/I|. This yields

ω2
k ' k2, satisfying the conditions (4.3) and (4.4).

In an inflationary universe, if one traces fluctuations with a fixed comoving wave num-

ber k back in time, then its physical wavelength becomes smaller than the Hubble radius.

Therefore we adopt the solution (4.2) when each wave mode was sub-horizon during infla-

tion, and take as the initial state the Bunch-Davies vacuum |0〉 annihilated by ak. Starting

from this initial condition, we will see in the following sections how the vacuum fluctuations

evolve as the universe expands.

4.2 Landau pole bound

If we go back in time sufficiently far, the physical momentum of a comoving mode k hits

the Landau pole (3.17) and we enter the strong coupling regime. Here the simplifying

condition (3.16) also breaks down. Hence in order to be able to set the Bunch-Davies

initial condition while maintaining perturbative control, there needs to be a period during

inflation when k/a < Λmax as well as the adiabaticity (4.3) and stability (4.4) conditions

hold simultaneously. We just saw that the conditions (4.3) and (4.4) hold when the mode

is sub-horizon, i.e. k/a > Hinf , where Hinf is the Hubble rate during inflation. Therefore

we infer a bound for the inflationary Hubble rate

Hinf < Λmax, (4.6)

so that the Bunch-Davies vacuum can be adopted during the period of Hinf < k/a < Λmax.

We also see that this Landau pole bound on inflation collectively describes the various

conditions imposed in the previous sections, namely, adiabaticity (4.3) and stability (4.4)

during the early stage of inflation, as well as the simplifying condition (3.16) throughout

the times of interest.

The current observational limit on primordial gravitational waves sets an upper bound

on the inflation scale as Hinf . 1014 GeV [30]. The Landau pole Λmax can be smaller

than this observational bound if there were sufficiently many massless charged particles

in the early universe. Taking for example the coupling to run through e2(MZ) ≈ 4π/128

at MZ ≈ 91.2 GeV [31], a beta function coefficient as large as b & 0.4 would lead to

Λmax . 1014 GeV. For such a large beta function, the adiabatic and perturbative regimes

cannot coexist for the gauge field during high-scale inflation.

4.3 Slowly running coupling

Before analyzing the gauge field evolution in full generality, let us first focus on cases

with tiny beta functions. Such cases can be treated analytically, by approximating the

I2 function (3.13) for small β̃ as

I2 ' 1

e2

(
a

a?

)2β̃

. (4.7)
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We will later verify the validity of this approximation by comparing with the results ob-

tained from the original logarithmic I2.

In a flat Friedmann-Robertson-Walker universe with a constant equation of state w,

the equation of motion (3.14) under the power-law I2 admits solutions in terms of Hankel

functions as [29],

uk = zν
{
c1H

(1)
ν (z) + c2H

(2)
ν (z)

}
, where z =

2

|1 + 3w|
k

aH
, ν =

1

2
− 2β̃

1 + 3w
, (4.8)

and the coefficients c1, c2 are independent of time. Here, the equation of state parameter w

can take any value except for −1/3, and the variable z scales with the scale factor as

z ∝ a(1+3w)/2. The time derivative of the mode function is written as

u′k = sign(1 + 3w) kzν
{
c1H

(1)
ν−1(z) + c2H

(2)
ν−1(z)

}
. (4.9)

The behaviors of uk and u′k in the super-horizon limit, i.e. z → 0, can be read off from the

asymptotic forms of the Hankel function:

H(1)
ν (z) =

(
H(2)
ν (z)

)∗
∼ − i

π
Γ(ν)

(z
2

)−ν
,

H
(1)
ν−1(z) =

(
H

(2)
ν−1(z)

)∗
∼ −e(1−ν)πi i

π
Γ(1− ν)

(z
2

)ν−1
,

(4.10)

which are valid when β̃ is small such that 0 < ν < 1 is satisfied.

During inflation. The inflationary epoch is characterized by the equation of state w =

−1 and a time-independent Hubble rate Hinf . The solution that asymptotes to a positive

frequency solution in the past is

uk =
1

2I

(
π

aHinf

) 1
2

H
(1)
1
2

+β̃

(
k

aHinf

)
, (4.11)

whose normalization is set by (3.25) up to an unphysical phase. Therefore the amplitudes

of the mode function and its time derivative are obtained as

kI2|uk|2 =
πk

4aHinf

∣∣∣∣H(1)
1
2

+β̃

(
k

aHinf

)∣∣∣∣2 ∼ (Γ(1
2 + β̃))2

2π

(
2aHinf

k

)2β̃

,

1

k
I2|u′k|2 =

πk

4aHinf

∣∣∣∣H(1)

− 1
2

+β̃

(
k

aHinf

)∣∣∣∣2 ∼ (Γ(1
2 − β̃))2

2π

(
2aHinf

k

)−2β̃

,

(4.12)

where the far right hand sides show the asymptotic forms in the super-horizon limit ob-

tained by using (4.10). The geometric mean of these amplitudes yields the quantumness

measure (3.36),

κk =
πk

4aHinf

∣∣∣∣H(1)
1
2

+β̃

(
k

aHinf

)
H

(1)

− 1
2

+β̃

(
k

aHinf

)∣∣∣∣ . (4.13)

In the sub-horizon limit k/aHinf → ∞, this parameter approaches κk ∼ 1/2 and thus the

gauge field fluctuations are quantum mechanical, which should be the case since we have

started in the Bunch-Davies vacuum.
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The important question is whether the fluctuations become classical upon horizon

exit, as in the case for light scalar fields during inflation. Using the reflection relation

Γ($)Γ(1−$) = π/ sin(π$) for $ /∈ Z, the asymptotic value of the quantumness parameter

in the super-horizon limit k/aHinf → 0 is obtained as

κk ∼
1

2 cos(πβ̃)
. (4.14)

Thus we find that κk becomes time-independent outside the horizon, and its asymptotic

value depends8 only on β̃. Most importantly, κk is of order unity for β̃ � 1. This implies

that if the beta function is small in the early universe, the time-dependence induced by the

Weyl anomaly is not sufficient for converting vacuum fluctuations of the gauge field into

classical ones. Therefore no classical magnetic fields would arise.

We also estimate the instantaneous photon number (3.34) outside the horizon by sum-

ming the asymptotic expressions of (4.12), yielding

|βk|2 ∼
(Γ(1

2 + β̃))2

4π

(
2aHinf

k

)2β̃

+
(Γ(1

2 − β̃))2

4π

(
2aHinf

k

)−2β̃

− 1

2
. (4.15)

The first term grows in time as ∝ a2β̃ , hence it will eventually dominate the right hand

side if we wait long enough. In a realistic cosmology, however, this term does not become

much larger than unity. We will see this explicitly in the following sections.

After inflation. One can evaluate the mode function also in the effectively matter-

dominated epoch after inflation by matching solutions for w = −1 and w = 0 at the end of

inflation. However let us take a simplified approach: from the solutions (4.8) and (4.9) for

generic w, and the asymptotic forms of the Hankel function (4.10), one can infer the time-

dependences of the mode function outside the horizon in a generic cosmological background

as

I2|uk|2 ∝ a2β̃ , I2|u′k|2 ∝ a−2β̃ . (4.16)

These super-horizon evolutions are determined only by the beta function β̃. Hence we find

that for wave modes that exit the horizon during inflation, the super-horizon expressions

in (4.12) continue to hold even after inflation, until the mode re-enters the horizon.9 In

particular, the super-horizon expressions (4.14) for κk and (4.15) for |βk|2 also hold while

the wave mode is outside the horizon; these expressions are the main results of the small-β̃

analysis. Thus we find that κk stays constant, while |βk|2 basically continues to grow until

horizon re-entry.

If the mode re-enters the horizon before reheating and electroweak phase transition,

then we can continually use our effective action for analyzing the gauge field dynamics.

8Since the approximate expression (4.7) for I2 explicitly depends on the renormalization scale M , so

does the asymptotic value (4.14). However this M -dependence is tiny for slowly running couplings.
9This kind of argument breaks down when the leading order approximations for the two Hankel func-

tions H
(1)
ν (z) and H

(2)
ν (z) cancel each other in the mode function. Such cases are presented in [29]. However

in the current case where the power β̃ of the I2 function is tiny, the cancellation does not happen as we

will see in the next section by comparing with numerical results that the scaling (4.16) indeed holds until

horizon re-entry.
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Inside the horizon, where adiabaticity is recovered, the photon number |βk|2 becomes con-

stant. On the other hand, the quantumness parameter κk oscillates in time between 1/2

and 1/2 + |βk|2, as described below (3.38).

We see from (4.15) that in order to have substantial photon production, i.e. |βk|2 � 1,

the quantity (aHinf/k)2β̃ needs to become large while the mode is outside the horizon. A

larger Hinf and β̃, as well as a smaller k are favorable for this purpose. Here, for example,

the magnitude of aHinf/k upon the electroweak phase transition at TEW ∼ 100 GeV is,

given that the universe has thermalized by then,

aEWHinf

k
∼ 1041

(
Hinf

1014 GeV

)(
k

a0
· 10 Gpc

)−1

, (4.17)

where a0 is the scale factor today. The detailed value can be modified for different cos-

mological histories, but what is relevant here is that even with the observably allowed

highest inflation scale Hinf ∼ 1014 GeV, and with the size of the observable universe

a0/k ∼ 10 Gpc (or even on scales tens of orders of magnitude beyond that), if the beta

function is β̃ = O(0.01), then (aEWHinf/k)2β̃ = O(10). Hence the number of photons

created over the cosmological history would only be of |βk|2 = O(10), which is too small

to support coherent magnetic fields.

On the other hand, the power-law I2 (4.7) with β̃ = 1 yields an equation of motion

equivalent to that of a minimally coupled massless scalar field. Indeed, if one were to use

the power-law I2 with β̃ & 1, then |βk|2 and κk are found to significantly grow outside the

horizon; thus one would conclude that gauge fluctuations do become classical and give rise

to cosmological magnetic fields for a large beta function. However, in reality the power-law

approximation breaks down when β̃ is not tiny, and we will explicitly see in the next section

that the fluctuations of the gauge field actually never become classical, independently of

the value of β̃.

4.4 General coupling

In order to analyze quantum electrodynamics with generic beta functions, we have numer-

ically solved the equation of motion (3.14) for the original logarithmic I2 function (3.13),

with a? chosen as (3.15). Starting from the WKB initial condition (4.2) during inflation

when Hinf < k/a < Λmax is satisfied, the mode function is computed in an inflationary

as well as the post-inflation matter-dominated backgrounds. For the coupling we used

e2(MZ ≈ 91.2 GeV) ≈ 4π/128 [31], and considered it to run with a constant beta function

coefficient b in (2.6).10 For three light generations, b is of order 0.1.

In figure 2 we plot the evolution of |βk|2 and κk − 1/2 as functions of the scale fac-

tor a/a0. Here the inflation scale is fixed to Hinf = 1014 GeV, and the reheating temperature

to Treh = 100 GeV such that it coincides with the scale of electroweak phase transition.

The beta function coefficient is taken as b = 0.01 (thus β̃(MZ) ≈ 5× 10−4), and the gauge

field parameters are shown for two wave numbers: k/a0 = (10 Gpc)−1 (red lines) which

corresponds to the size of the observable universe today, and k/a0 = (10−6 pc)−1 (blue

10In reality, b is not a constant since the number of effectively massless particles depends on the energy

scale. Moreover, the hypercharge is related to the physical electric charge through the Weinberg angle.

However, these do not change the orders of magnitude of βk and κk for the electromagnetic field.
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lines) which re-enters the Hubble horizon before reheating. The figure displays the time

evolution from when both modes are inside the horizon during inflation, until the time

of reheating. The vertical dotted line indicates the end of inflation, and the dot-dashed

lines for the moments of Hubble horizon exit/re-entry. With the beta function being tiny,

the analytic expressions (4.14) and (4.15) derived in the previous section well describe the

behaviors of κk and |βk|2 outside the horizon. After the mode k/a0 = (10−6 pc)−1 re-enters

the horizon (after the blue dot-dashed line on the right), |βk|2 becomes constant whereas

κk oscillates within the range of (3.38). |βk|2 is larger for smaller k as there is more time

for super-horizon evolution, however even with k/a0 = (10 Gpc)−1, |βk|2 does not exceed

unity by the time of reheating.

Figure 3 shows |βk|2 and κk − 1/2 as functions of the beta function coefficient b.

Here the wave number is fixed to k/a0 = (10 Gpc)−1, and the reheating temperature to

Treh = 100 GeV. The gauge field parameters |βk|2 and κk in the figure are evaluated at

the electroweak phase transition, which coincides with the time of reheating. The solid

curves with different colors correspond to different inflation scales, which are chosen as

Hinf = 1014 GeV (blue), 106 GeV (orange), and 1 GeV (red). The Landau pole bound

on the inflation scale (4.6) imposes an upper bound on the beta function coefficient as

bmax ≈ 0.4 for Hinf = 1014 GeV, and bmax ≈ 1.1 for Hinf = 106 GeV. The computations

have been performed for values of b up to 0.7 × bmax, which are shown as the endpoints

of the blue and orange curves. On the other hand, if the inflation scale is as low as

Hinf/2π . 100 GeV, the electroweak symmetry would already be broken during inflation.

However even in such cases, there might still be massless charged particles in the early

universe for some reason. Hence for completeness, we have also carried out computations

with Hinf = 1 GeV. There is no Landau pole bound on b with such a low-scale inflation, as

is obvious from Hinf being smaller than the scale MZ where we set the coupling. Hence this

extreme case allows us to assess the implications of large beta functions, although it should

also be noted that as one increases b, perturbation theory will eventually break down.

The wave mode k/a0 = (10 Gpc)−1 for which the parameters are evaluated is way

outside the horizon at the electroweak phase transition, thus the super-horizon approxima-

tions (4.14) and (4.15) should be valid for small beta functions. These are shown as the

dashed lines in the plots: in the left panel, (4.15) is plotted using (4.17), with the colors

of the dashed lines corresponding to the different inflation scales. In the right panel there

is just one black dashed line, because (4.14) for κk only depends on the beta function.11

The analytic approximations indeed agree well with the numerical results at b . 0.1. With

larger b, the numerical results for Hinf = 1014 GeV and 106 GeV show that even when ap-

proaching the Landau pole bound, the parameters |βk|2 and κk are at most of order unity.

For Hinf = 1 GeV (assuming the existence of massless charged particles), |βk|2 and κk
become less sensitive to b at b & 1 and thus turns out not to exceed order unity even with

large b. Here we have focused on a rather small wave number k/a0 = (10 Gpc)−1 and a low

reheating temperature Treh = 100 GeV; however for larger k and Treh, the value of |βk|2

upon reheating becomes even smaller as there is less time for the super-horizon evolution.

11The expressions (4.14) and (4.15) assume a tiny beta function, hence upon plotting the dashed lines,

the running is neglected and the coupling is fixed to e2 = 4π/128.
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Figure 2. Time evolution of the instantaneous photon number |βk|2 (dashed lines) and quantum-

ness parameter κk subtracted by 1/2 (solid lines), for wave numbers k/a0 = (10 Gpc)−1 (red lines)

and (10−6 pc)−1 (blue lines). The beta function coefficient is set to b = 0.01. The background cos-

mology is fixed as Hinf = 1014 GeV where inflation ends at the vertical dotted line, and reheating

with Treh = 100 GeV taking place at the right edge of the plot. The wave mode k/a0 = (10 Gpc)−1

exits the Hubble horizon at the vertical red dot-dashed line, whereas k/a0 = (10−6 pc)−1 exits and

then re-enters the horizon at the blue dot-dashed lines.
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b10-5
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1
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|βk 2EW

0.001 0.010 0.100 1 10
b10-8
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10-2

(κk - 1/2)EW

Figure 3. Instantaneous photon number |βk|2 (left) and quantumness parameter κk subtracted

by 1/2 (right) at the electroweak phase transition, as functions of the beta function coefficient b.

The results are shown for a wave number k/a0 = (10 Gpc)−1. The reheating temperature is fixed

to Treh = 100 GeV, while the inflation scale is varied as Hinf = 1014 GeV (blue solid lines), 106 GeV

(orange solid), and 1 GeV (red solid). The endpoints of the curves show where the Landau pole

bound is saturated (see text for details). The dashed lines show the analytic approximations derived

for small beta functions: (4.15) for |βk|2, and (4.14) for κk.

A heuristic argument for why the logarithmic I2 function (3.13) never leads to substan-

tial photon production goes as follows: even if the beta function is as large as β̃ = 1, while

the universe expands by, say, 100 e-foldings starting from a?, the logarithmic I2 grows only

by a factor of 200. On the other hand, if one were to obtain the same growth rate with a

power-law I2 (4.7), the power would have to be as small as β̃ ≈ 0.03; then it is clear from

the expressions (4.14) and (4.15) that the effect on photon production is tiny.

Thus we find that, for generic values of the beta function, inflation/reheating scales,

and wave number, the instantaneous photon number |βk|2 and quantumness measure κk
do not become much greater than unity. Here, the physical meaning of |βk|2 may seem
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ambiguous when the wave mode is outside the horizon and thus an adiabatic vacuum is

absent. However as was discussed above (4.17), the quantity |βk|2 needs to become large

while outside the horizon in order to have a large number of photons to support coherent

magnetic fields. Moreover, the quantumness measure κk is bounded from above by |βk|2 +

1/2, cf. (3.38). Therefore we can conclude that, unless some additional process significantly

excites the gauge field after the electroweak phase transition or reheating (namely, after our

effective action becomes invalid), the Weyl anomaly does not convert vacuum fluctuations of

the gauge field into classical fluctuations, let alone coherent magnetic fields in the universe.

5 Conclusions and discussion

We have analyzed cosmological excitation of magnetic fields due to the Weyl anomaly of

quantum electrodynamics. Despite the anomalous dependence of the quantum effective

action on the scale factor of the metric, we showed that the vacuum fluctuations of the

gauge field do not get converted into classical fluctuations, as long as inflation happens

at scales below the Landau pole. In particular, the number of photons with a comoving

momentum k produced within a comoving volume k−3 was found to be at most of order

unity, for generic k. With such a small number of created photons, we conclude that the

Weyl anomaly does not give rise to coherent magnetic fields in the universe. Our conclusion

is independent of the details of the cosmological history, or the number of massless charged

particles in the theory.

For obtaining this result, which disproves the claims of many previous works, there

were two key ingredients. The first was the quantum effective action beyond the weak

gravitational field limit. We saw that, especially for cases where the beta function of quan-

tum electrodynamics was large in the early universe, one could draw dramatically incorrect

conclusions from inappropriate assumptions about the effective action. The essential point

is that the anomalous dependence of the effective action on the metric is associated to the

renormalization group flow of the gauge coupling, and therefore the dependence is only log-

arithmic in the scale factor, cf. (3.2) and (3.3); this is in contrast with the case of massless

scalar fields having power-law dependences on the scale factor at the classical level. The

second element was a proper evaluation of the nature of the gauge field fluctuations, which

we discussed quantitatively in terms of the photon number (3.34) and the quantumness

parameter (3.36). Focusing on these quantities, we explicitly showed that the logarithmic

dependence on the background metric induced by the Weyl anomaly does not lead to any

generation of coherent classical magnetic fields.

We now briefly comment on some of the earlier works on Weyl anomaly-driven magne-

togenesis. The original works [11, 32] approximated the effect from the Weyl anomaly as a

power-law I2 for a generic beta function, and thus arrived at the incorrect conclusion that

a large beta function gives rise to observably large magnetic fields. On the other hand, the

recent work [20] relies on the effective action derived in the weak gravitational field limit.

The Weyl factor in an inflationary background is computed using the curvature expansion

of (2.17), which yields Ω ∼ (2/3) log a in the asymptotic future, instead of the exact an-

swer of log a. At any rate, a logarithmic I2 is obtained with a form similar to (3.13) up
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to numerical coefficients. However, the fact that a logarithmic I2 cannot produce enough

photons to support coherent magnetic fields was overlooked.

Our considerations can also be applied to quantum chromodynamics. The effective

action is analogous to (2.10) with β̃ given by the beta function of quantum chromodynam-

ics coupled to massless quarks. One main difference from electrodynamics is that the beta

function is negative, yielding asymptotic freedom; hence the theory goes into the strongly

coupled regime in the late universe. The time evolution of the mode function can further

be altered by the nonlinearities of the Yang-Mills action. Here, since the dependence of the

effective action on the scale factor is anyway logarithmic, it may turn out that color mag-

netic fields are also not generated by the Weyl anomaly; however, it would be worthwhile to

analyze systematically the range of possibilities that can arise for SU(N) Yang-Mills fields.

With such analyses, one should also be able to evaluate the effect of the possible mixing of

the SU(2) gauge field fluctuations into the photons upon the electroweak phase transition,

which we did not consider in this paper. The study of the effects of the Weyl anomaly

in the strongly coupled regime, for instance electrodynamics with inflation scales higher

than the Landau pole (thus with a very large beta function), or chromodynamics near the

confinement transition is very interesting but would require nonperturbative methods.

Even though the Weyl anomaly does not generate coherent magnetic fields in the uni-

verse, it can produce a small number of photons in the squeezed state. The squeezed

light from the Weyl anomaly may have interesting consequences for astrophysical observa-

tions [26, 33]. Our criteria for quantumness could also be useful for studying field excita-

tions in other processes with weak time dependence.
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