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A B S T R A C T

In this work we study data-driven reduced order models with a specific focus on
reduction in parameter space to fight the curse of dimensionality, especially for
functions with low-intrinsic structure, in the context of digital twins. To this end we
proposed two different methods to improve the accuracy of responce surfaces built
using the Active Subspaces (AS): a kernel-based approach which maps the inputs
onto an higher dimensional space before applying AS, and a local approach in
which a clustering induced by the presence of a global active subspace is exploited
to construct localized regressors. We also used AS within a multi-fidelity nonlinear
autoregressive scheme to reduced the approximation error of high-dimensional
scalar function using only high-fidelity data. This multi-fidelity approach has also
been integrated within a non-intrusive Proper Oorthogonal Decomposition (POD)
based framework in which every modal coefficient is reconstructed with a greater
precision.

Moving to optimization algorithms we devised an extension of the classical
genetic algorithm exploiting AS to accelerate the convergence, especially for high-
dimensional optimization problems.

We applied different combinations of such methods in a diverse range of engineer-
ing problems such as structural optimization of cruise ships, shape optimization of
a combatant hull and a NACA airfoil profile, and the prediction of hydroacoustic
noises. A specific attention has been devoted to the naval engineering applications
and many of the methodological advances in this work have been inspired by them.

This work has been conducted within the framework of the IRONTH project, an
industrial Ph.D. grant financed by Fincantieri S.p.A..
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1
I N T R O D U C T I O N A N D M O T I VAT I O N S

Nowadays the spread of digital twins is ubiquitous in engineering, but still many
improvements have to be made. A static digital twin is no more capable to provide
an edge in the modern era of data. The model has to be able to evolve dynamically
and to integrate in real-time informations coming from sensors, external services,
and simulations. This leads to a vast amount of input parameters for every quantity
of interest. Thus to construct reliable response surfaces and reduced order models
the number of samples needed grows exponentially: this is the concept of curse of
dimensionality.

Is it possible to reduce the environmental impact of the modern cruise ship
manufacturing from a structural point of view? This is the main question we posed
ourselves at the start of this project with Fincantieri S.p.A.. The minimization of
the amount of steel was a natural choice to both reduce the raw materials needed
to build the entire ship and to make the hull more efficient thus reducing also the
operational costs in terms of fuel consumption. Of course, we cannot perform such
minimization without considering some stability constraints to be satisfied. In fact,
we aim at a more efficient hull preserving the structural behaviour of the ship.

Data-driven Model Order Reduction (MOR) allows a fast and accurate prediction
of not only scalar quantities but also fields of interest originating from parametrized
systems. This is especially useful for many-query problems such as optimization
loops, inverse problems, and uncertainty quantification. The need of surrogate
models for a real-time evaluation of the quantities of interest for optimization tasks
is only the first step, we need to integrate also reduction in parameter space, due to
the increased complexity of the industrial artifacts and computational capabilities,
which enables more and more complex simulations with a high number of degrees
of freedom.

There is a huge effort to fight the curse of dimensionality originating from high-
dimensional inputs design, and parameter space reduction plays a key role in this
regard. Active Subspaces (AS) is one of the most spread techniques for linear input
space dimensionality reduction. It is able to identify linear combinations of all the
parameters along which the function of interest varies the most, on average. This
results in a ridge approximation.

In this thesis we present two very different approaches to improve the accuracy
of response surfaces built using AS, which can be seen as a step towards nonlinear
extension of AS. The first one relies on a nonlinear mapping of the inputs onto
an higher dimensional feature space before computing the active subspace, and is
called Kernel-based Active Subspaces (KAS). The second approach is built upon a

1



2 introduction and motivations

localization idea, which exploits a clustering of the input parameters. Local Active
Subspaces (LAS) uses the presence of a global AS to induce a transversal splitting of
the response surface design. So even if we have local linear approximations, they
encode nonlinear infomations. Both methods were developed in collaboration with
Francesco Romor which I tutored during his master thesis.

We exploited AS also to create a multi-fidelity nonlinear autoregressive scheme
which works using only high-fidelity simulations. The low-fidelity is built via
a regression over the active subspace, thus we do not need coarser meshes or
simplified models to run.

We also developed numerical and modular pipelines for data-driven non-intrusive
optimization for parametrized systems, in an industrial context, with a special focus
on naval engineering. We considered both structural and geometric parameteriza-
tions. This advanced numerical framework involves parameter space reduction at
multiple steps of the optimization procedure: approximation of the quantities of
interest, enhancement of the reduced order models, and efficient optimization of
high-dimensional functions exploiting the presence of an active subspace, which led
to the creation of a new extension of the classical genetic algorithm, called Active
Subspaces Genetic Algorithm (ASGA).

The numerical results present in this thesis have been obtained thanks to sev-
eral scientific software packages created within SISSA mathLab in the last years.
We developed and used PyDMD [71] for all the computation regarding Dynamic
Mode Decomposition, EZyRB [70] for the non-intrusive Proper Orthogonal Decom-
position (POD)-based Reduced Order Methods (ROMs) for parametrized systems,
PyGeM [269] for the geometrical parametrization and morphing. PyDMD in partic-
ular won the first prize in the Junior Faculty Category of the DSWeb 2019 Contest:
Tutorials on Dynamical Systems Software. Finally, this project also led to the release
of a Python package for parameter space reduction, called ATHENA [222]. We
thank all the contributors and main developers.

The collaboration with Fincantieri S.p.A. has been fundamental to understand
the needs and bottlenecks of current state of the art in industrial optimization. This
pushed us to advance the state of the art for parameter space reduction due to the
complexity of modern cruise ships in terms of design parameters.

1.1 thesis outline

The thesis is divided in four parts. The first one is devoted to the reduced order
methods, the second to optimization, the third to naval engineering applications,
and the fourth to more academic applications.

In figure 1.1 we show an illustration of the methods used in the present work,
which comprises the first two parts of the thesis. In the illustration we also empha-
size the relationship and the connections between parameter space dimensionality
reduction and reduced order modeling for parametrized systems. In particular
these parts are organized as follows:

• Part 1: Data-driven reduced order modeling
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Figure 1.1: Illustrative sketch of the methods used in this thesis for parameter space and
model order reduction together with their relationship.

– In Chapter 2 we review the AS technique for linear parameter space
reduction and we propose a nonlinear extension, called KAS, which
exploits an intermediate mapping on a higher-dimensional feature space.
The new method is tested on both scalar and vector-valued functions of
interest and compared with classical AS.

– In Chapter 3 we present another approach to go beyond the linear
limitations of AS, which we called Local Active Subspaces. This new
technique uses a clustering of the input parameters and a supervised
distance metric induced by the global AS. We prove the benefits of such
localized approach over classical benchmarks.

– In Chapter 4 we introduce a multi-fidelity data fusion method built
using the regression over the Active Subspaces as low-fidelity model.
This results in a nonlinear autoregressive scheme with multi-fidelity
Gaussian Process Regression (GPR) which does not need a simpler model
or a corser mesh to create the low-fidelity model. The accuracy of the
method is demonstrated for the approximation of high-dimensional
scalar functions with low-intrinsic dimensionality.

– In Chapter 5 we present a general non-intrusive data-driven reduced
order modeling framework based on POD for parametric problems, and
we review Dynamic Mode Decomposition (DMD) for time-dependent
equation-free MOR. Here we also propose a coupling with the multi-
fidelity approach introduced in chapter 4. This is a cornerstone to enable
a full coupling between reduction in input and output spaces.

• Part 2: Optimization methods

– In Chapter 6 we extend the classical Genetic Algorithm (GA) exploiting
Active Subspaces to accelerate the convergence of the method for the
optimization of high-dimensional functions. We prove effectiveness of the
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Figure 1.2: Illustrative sketch of the part of the thesis regarding the academic and the naval
engineering applications.

ASGA over different benchmark test functions and for the optimization
of the lift-to-drag coefficient a parametrized NACA airfoil.

The last two parts are devoted to the naval engineering applications and to the
more academic ones, respectively. In figure 1.2 we sketch the subdivision of part 3
and 4, highlighting the methods been used. In particular the chapters are organized
as follows:

• Part 3: Applications in naval engineering

– In Chapter 7 we present the main application which has led to the
majority of the methodological development: the structural optimiza-
tion of passenger ship hulls. Among the different ROMs we exploit the
coupling between Proper Orthogonal Decomposition with Interpola-
tion (PODI) and Nonlinear Autoregressive Multi-fidelity Gaussian Pro-
cess Regression (NARGP) with AS, introduced in chapter 4. We apply
the optimization framework to a Fincantieri’s hull with two different
parameterizations showing how the pipeline is able to efficiently deal
with high-dimensional parametric problems.

– In Chapter 8 we present a hull shape design optimization pipeline which
exploits non-intrusive model order reduction, ASGA as optimizer, and an
innovative self-learning mesh morphing. Geometrical deformations are
propagated from surface modifications to volumetric meshes. We apply
the proposed framework to a benchmark hull.

• Part 4: Academic CFD applications

– In Chapter 9 we apply data-driven reduced order methods such as
PODI and DMD to reconstruct and predict Large Eddy Simulation (LES)
simulations of flow past a sphere for for hydroacoustic analysis. We show
the computational savings for the evaluation of both linear and nonlinear
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terms of hydroacoustic noise. This academic case unveils the potential
application of such methodologies for a fast and accurate analysis of
noise creation of marine propellers thus enabling more environmental
friendly shape design.

– In Chapter 10 we introduce a first preliminary extension of DMD to handle
parametric reduction of scalar output of interests evolving in time. This
represents a first step towards parametric DMD for Computational Fluid
Dynamics (CFD) predictions. We also employ parameter space reduction
for time-dependent problems to discard unnecessary parameters and
improve the prediction accuracy of the lift coefficient.





Part I

D ATA - D R I V E N R E D U C E D O R D E R M O D E L I N G





2
A K E R N E L A P P R O A C H T O PA R A M E T E R S PA C E R E D U C T I O N

In this chapter, after reviewing Active Subspaces for parameter space linear reduc-
tion, we propose a new method to perform a nonlinear reduction in parameter
spaces called Kernel-based Active Subspaces (KAS). By using a kernel approach it is
possible to find active subspaces in high-dimensional feature spaces. A mathemati-
cal foundation of the method is presented, with several applications to benchmark
model functions, both scalar and vector-valued. We also apply the kernel-based
active subspaces extension to a Computational Fluid Dynamics (CFD) parametric
problem using the Discontinuous Galerkin method. A full comparison with respect
to the linear active subspaces technique is provided for all the applications, proving
the better performances of the proposed method. Moreover we show how the new
kernel method overcomes the drawbacks of the active subspaces application for
radial symmetric model functions. All the results presented in this chapter appeared
in [221].

9



10 a kernel approach to parameter space reduction

2.1 literature review

Nowadays, in many industrial settings the simulation of complex systems requires a
huge amount of computational power. Problems involving high-fidelity simulations
are usually large-scale, moreover the amount of solutions required increases with
the number of parameters. In this context we mention multidisciplinary analysis
and optimization, inverse problems, optimal control, and uncertainty quantification;
they all suffer from the curse of dimensionality, that is the complexity of the
algorithms grows exponentially with the dimension of the input parameter space.
Data-driven Reduced Order Methods (ROMs) [37, 227, 230] have been developed
to deal with such complex problems but the limit for high dimensional parameter
spaces remains.

One approach to alleviate the curse of dimensionality is to identify and exploit
some notion of low-dimensional structure of the model function. A possible lin-
ear input coordinate transformation technique is the Sliced Inverse Regression
(SIR) [161] approach and its extensions [59, 162, 289]. Sharing some characteristics
with SIR, there is the Active Subspaces (AS) property [54, 55, 228, 291] which, in
the last years, has emerged as a powerful linear data-driven technique to construct
ridge approximations using gradients of the model function. AS has been success-
fully applied to quantify uncertainty in the numerical simulation of the HyShot II
scramjet [58], and for sensitivity analysis of an integrated hydrologic model [129].
Reduction in parameter space has been coupled with model order reduction tech-
niques [112, 212, 226] to enable more complex numerical studies without increasing
the computational load. We mention the use of AS in cardiovascular applications
with Proper Orthogonal Decomposition (POD)-Galerkin [266], in nonlinear struc-
tural analysis [106], in nautical and naval engineering [267, 268, 270, 272], coupled
with Proper Orthogonal Decomposition with Interpolation for structural and CFD
analysis [72], and with Dynamic Mode Decomposition in [271]. Advances in efficient
global design optimization with surrogate modeling are presented in [168, 169] and
applied to the shape design of the N + 2 Supersonic Passenger Jet. Applications to
enhance optimization methods have been developed in [73, 99, 275].

Possible extensions and variants of the active subspaces property are the Modified
Active Subspace method [160], the Active Manifold method [35] which reduces the
problem to the analysis of a 1D manifold by traversing level sets of the model func-
tion at the expense of high online costs, the shared Active Subspace method [131],
the active subspaces property for multivariate functions [291], and more recently an
extension of AS to dynamical systems [3]. Another method is the Nonlinear Level
set Learning [294] which exploits RevNets to reduce the input parameter space
with a nonlinear transformation.

The search for low dimensional structures is also investigated in machine learning
with manifold learning algorithms. In this context the AS methodology can be seen
as a supervised dimension reduction technique along with Kernel Principal Com-
ponent Analysis [257] and Supervised Kernel Principal Component Analysis [15].
Other methods in the context of kernel-based ROMs are [110, 140, 180]. In [194] a
non-linear extension of the active subspaces property based on Random Fourier
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Features [163, 214] is introduced and compared with machine learning manifold
learning algorithms for the construction of Gaussian Process Regression (GPR) [287].

From the ideas introduced in [194], we developed a new active subspaces exten-
sion called KASs. Our contribution with this work presents a solid mathematical
foundation of the method, provides a generalization to vector valued model func-
tions, algorithms for every component of the method, and the application to several
test problems of increasing complexity. The KAS method is finally applied to a
computational fluid dynamic problem and compared with the standard AS tech-
nique. We study the evolution of fluid flow past a NACA 0012 airfoil in a duct
composed by an initialization channel and a chamber. The motion is modelled with
the unsteady incompressible Navier-Stokes equations, and discretized with the
Discontinuous Galerkin (DG) method [113]. Physical and geometrical parameters
are introduced and sensitivity analysis of the lift and drag coefficients with respect
to these parameters is provided.

The chapter is divided as follows: in section 2.2 we briefly present the active
subspaces property of a model function with a focus on the construction of Gaussian
process response surfaces. Section 2.3 illustrates the novel method called kernel-
based active subspaces for both scalar and vector-valued model functions. Several
tests to compare AS and KAS are provided in section 2.4 where we start from
scalar functions with radial symmetry of increasing dimension, we analyse an
epidemiology model and a vector-valued output generated from a stochastic elliptic
Partial Differential Equation (PDE). A parametric CFD test case for the study of the
flow past a NACA airfoil using the Discontinuous Galerkin method is presented in
section 2.5. Finally we outline some perspectives and future studies in section 2.6.

2.2 active subspaces for parameter space reduction

Active Subspaces approach proposed by Trent Russi [228] and developed by Paul
Constantine [54] is a technique for dimension reduction in parameter space. In brief
AS are defined as the leading eigenspaces of the second moment matrix of the model
function’s gradient (for scalar model functions) and constitutes a global sensitivity
index more informative than coordinate-aligned derivative-based ones [291]. In the
context of ridge regression, the choice of the active subspace corresponds to the
minimizer of an upper bound of the mean square error obtained through Poincaré-
type inequalities [291]. After performing dimension reduction in the parameter
space through AS, the method can be applied to reduce the computational costs
of different parameter studies such as inverse problems, optimization tasks and
numerical integration [54]. In this work we are going to focus on the construction
of response surfaces with Gaussian process regression.

Assumption 1 (Hypothesis on input and output spaces). The quantities related to the
input space are:

• m 2 N the dimension of the input space,

• (W, F , P) the probability space,

• X : (W, F , P) ! R
m, the absolutely continuous random vector representing the

parameters,
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• r : R
m ! R, the probability density of X with support X ⇢ R

m.

The quantities related to the output are:

• d 2 N the dimension of the output space,

• V = (R
d, RV) the Euclidean space with metric RV 2M(d⇥ d) and norm

kxk2
RV

= x
TRVx,

• f : X ⇢ R
m ! V, the quantity of interest.

Let B(R
m) be the Borel s-algebra of R

m. We will consider the Hilbert space
L2(R

m, B(R
m), r ; V) of the measurable functions f : (R

m, B(R
m), r) ! (R

d, RV)
such that

k f k2
L2 :=

Z

X
k f (x)k2

RV
dr(x)  •;

and we will consider the Sobolev space H1(R
m, B(R

m), r ; V) of measurable func-
tions f : (R

m, B(R
m), r)! (R

d, RV) such that

k f k2
H1 := k f k2

L2 + kr f k2
L2 = k f k2

L2 + | f |2H1  • (2.1)

where r f is the weak derivative of f . We briefly recall how dimension reduction in
parameter space is achieved in the construction of response surfaces. The first step
involves the approximation of the model function with ridge approximation. We
will follow [197, 291] for a review of the method.

The ridge approximation problem can be stated in the following way:

Problem 1 (Ridge approximation). Let B(R
m) be the Borel s-algebra of R

m. Given
r 2 N, r ⌧ d and a tolerance e � 0, find the profile h : (R

m, B(R
m), r) ! V and the

r-rank projection Pr : R
m ! R

m such that

Er[k f (X)� h(PrX)k2
V ]  e2. (2.2)

In particular we are interested in the minimization problem

argmin
Pr2M(m⇥m)

Er
⇥
k f (X)� h̃(PrX)k2

V
⇤

, (2.3)

where h̃ � Pr = Er[ f |s(Pr)] is the conditional expectation of f under the distribution
r given the s-algebra s(Pr). The linear space ker(Pr) ⇢ R

m is the reduced parameter
space. The existence of h̃ is guaranteed by the Doob-Dynkin lemma [26]. The
function h̃ is proven to be the optimal profile for each fixed Pr, as a consequence of
the definition of the conditional expectation of a random variable with respect to a
s-algebra.

Dimension reduction is effective if the previous inequality in equation (2.2) is
satisfied for a specific tolerance. The choice of r is certainly of central importance:
the dimension of reduced parameter space can be chosen a priori for a specific
parameter study (for example r-dimensional regression), it can be chosen in order
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to satisfy the inequality in equation (2.2) or it is determined to guarantee a good
accuracy of the numerical method used to evaluate it [Corollary 3.10, [57]].

If e2 ⌧ Var( f (X)) = Er[k f (X)� Er[ f (X])k2
V ] then Xr = PrX is an explanatory

variable for f (X). Dividing the left term of the inequality equation (2.2) with
Er[k f (X)� Er[ f (X])k2

V ] we obtain the Relative Root Mean Square Error (RRMSE)
and since it is a normalized quantity, we will use it to make comparisons between
different models

RRMSE =

s
Er[k f (X)� g(PrX)k2

V ]

Er[k f (X)�Er[ f (X)]k2
V ]

. (2.4)

Remark 1 (Pr is not unique). We could also have used the r-rank projection Pr : R
m ! R

r

instead. It can be shown that if h̃ is the optimal profile, then Pr is not uniquely defined and
can be chosen arbitrarily from the set {Qr : R

m ! R
m| ker Qr = ker Pr}, see [Proposition

2.2, [291]].

The following lemma is the key ingredient in the proof of the existence of an
active subspace. It is inherently linked to probability Poincaré inequalities of the
kind

Z

X
kh(x)k2

L2 dr  CP(X , r)
Z

X
krh(x)k2

L2 dr, (2.5)

for zero-mean functions in the Sobolev space h 2 H1(X ), where CP(X , r) is the
Poincaré constant dependent on the domain X and on the probability density
functions (p.d.f.), r. We need to make the following assumption to prove the next
lemma and the next theorem.

Assumption 2. The probability density function r : X ! R
m belongs to one of the

following classes:

1. X is convex and bounded, 9d, D > 0 : 0 < d  kr(x)kL•  D < • 8x 2 X ,

2. r(x) ⇠ exp(�V(x)) where V : R
m ! (�•, •] , V 2 C2 is a-uniformly convex,

u
THess(V(x))u � akuk2

2, 8x, u 2 R
m (2.6)

where Hess(V(x)) is the Hessian of V(x).

3. r(x) ⇠ exp(�V(x)) where V is a convex function. In this case we require also f
Lipschitz continuous.

In particular the uniform distribution belongs to the first class, the multivariate
Gaussian distribution N (m, S) to the second with a = 1/(smax(S)) and the expo-
nential and Laplace distributions to the third. A complete analysis of the various
cases is done in [197].

Lemma 1. Let (W, F , P) be a probability space, X : (W, F , P) ! R
m an absolutely

continuous random vector with probability density function r belonging to one of the classes
from the assumption 2. Then the following inequality is satisfied

Er

h�
h�Er[h|s(Pr)]

�2 |s(Pr)
i
 CP(Pr, r) Er

h
k(I � PT

r )rhk2
2|s(Pr)

i
(2.7)

for all scalar functions h 2 H1(X ) and for all r-rank orthogonal projectors, Pr, where
CP(Pr, r) is the Poincaré constant depending on Pr and on the p.d.f. r.
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A summary of the values of the Poincaré constant in relationship with the choice
of the probability density function r is reported in [197].

Remark 2. In the next theorem the projection Pr will depend on the output function f , so
also the Poincaré constant CP(Pr, r) will depend in fact on f .

We introduce the following notation for the matrix that substitutes the covariance
matrix of the gradient r f in the case of the application of AS to scalar model
functions [57]

H =
Z

X
(Dx f (x))TRV(r)(Dx f (x)) dr(x). (2.8)

where Dx f (x) 2M(d⇥m) is the Jacobian matrix of f . The matrix RV(r) depends
on the class which r belongs to.

Theorem 1. (Existence of an active subspace) Under the previous hypothesis in assump-
tion 1, let f 2 H1(R

m, B(R
m), r ; V) and let the p.d.f. r satisfy lemma 1 and assumption 2.

In particular if r belongs to the third class of assumption 2, we also require f Lipschitz
continuous. Then the solution P̃r of the ridge approximation problem 1 is the orthogonal
projector to the eigenspace of the first r-eigenvalues of the eigenvalue problem for H ordered
by magnitude

Hvi = livi 8i 2 {1, . . . , m}, P̃r =
r

Â
j=1

vj ⌦ vj,

with r 2 N chosen such that

Er
⇥
k f (X)� h(P̃rX)k2

V
⇤
 C(CP, t)

 
m

Â
i=r+1

li

! 1
1+t

 e2. (2.9)

with C(CP, t) a constant depending on t > 0 related to the choice of r and on the Poincaré
constant from lemma 1.

Proof of theorem 1: existence of an active subspace. This theorem summarizes the re-
sults from Proposition 2.5 and Proposition 2.6 of [291], and from Lemma 3.1, Lemma
4.2, Lemma 4.3, Lemma 4.4 and Theorem 4.5 of [197]. The proof is remodelled
from [197, 291], and it is developed in five steps:

1. Since RV 2 M(d, d) is symmetric positive definite there exists a basis of
eigenvectors (wi)i2{1,...,d} and a corresponding set of positive eigenvalues
(bi)i2{1,...,d} such that

RV =
d

Â
i=1

bi wi ⌦wi. (2.10)

2. Let us define the ridge approximation error as

e = kf� h � PrkL2(Rm,B(Rm),r;V) = Er
⇥
k(f(X)� h(Pr(X))k2

V
⇤

. (2.11)
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Then we can decompose the error analysis for each component employing the
spectral decomposition (2.10)

Er
⇥
ke(X)k2

V
⇤

= Er [tr((RVe(X))⌦ e(X))] =

=
d

Â
i=1

bi Er [tr(((wi ⌦wi)e(X))⌦ e(X))] =

=
d

Â
i=1

bi Er [(wi · e(X)) tr(wi ⌦ e(X))] =

=
d

Â
i=1

bi Er
⇥
(wi · e(X))2⇤ , (2.12)

so we can define ei(X) = wi · e(X) = fi(X)� hi(Pr(X)), 8i 2 {1, . . . , d} and
treat each component separately.

3. The next step involves the application of lemma 1 to the scalar functions
fi(X)� hi(Pr(X)), 8i 2 {1, . . . , d}

Er

h
( fi(X)� hi(Pr(X)))2

i
=

= Er

h
Er

h
( fi(X)� hi(Pr(X)))2 |s(Pr)

ii
=

= Er

h
Cp(r, Pr(X))Er

h
k(I � PT

r )r fi(X)k2
2|s(Pr)

ii
=

= Er
⇥
Cp(r, Pr(X))

⇤ 1
p Er

h
k(I � PT

r )r fi(X)k2
2

i 1
q , (2.13)

where we used the Hölder inequality with indexes (p, q) = (•, 1) when
r belongs to the first and second classes of assumption 2, and (p, q) =
( t+1

t , 1 + t) when r belongs to the third class.

Then we can bound Er
⇥
(Cp, Pr(X))

⇤ 1
p with a constant C(Cp(r, Pr(X))) which

depends on the class of r (see Lemma 3.1, Lemma 4.2, Lemma 4.3, Lemma 4.4
and Theorem 4.5 of [197]) as follows

Er
⇥
Cp(r, Pr(X))

⇤ 1
p Er

h
k(I � PT

r )r fi(X)k2
2

i 1
q 

 C(Cp(r, Pr(X))) tr(Er

h
(I � PT

r )r fi(X)(r fi(X))T(I � Pr)
i 1

q
) =

= C(Cp(r, Pr(X))) tr((I � PT
r )Er

h
r fi(X)(r fi(X))T

i
(I � Pr))

1
q . (2.14)

4. The spectral decomposition in equation (2.10) is employed again and the
covariance matrix H is introduced in the last equation below. We substitute
C(Cp(r, Pr(X))) with q for seek of compactness:
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Er
⇥
ke(X)k2

V
⇤



d

Â
i=1

bi q tr((I � PT
r )Er

h
((rf(X))T

wi)⌦ ((rf(X))T
wi)
i
(I � Pr))

1
q =

= q tr((I � PT
r )Er

"
(rf(X))T

 
d

Â
i=1

b
q
i wi ⌦wi

!
rf(X)

#
(I � Pr))

1
q =

= q tr((I � PT
r )Er

h
(rf(X))TRV(r)rf(X)

i
(I � Pr))

1
q =

= q tr((I � PT
r )H(I � Pr))

1
q , (2.15)

where RV(r) is the original metric matrix if r belongs to the first or second
class of assumption 2 and is equal to

d

Â
i=1

b1+t
i wi ⌦wi, (2.16)

if r belongs to the third class.

5. Finally the bound in the statement of the theorem is recovered solving the
following minimization problem with classical model reduction arguments
employing Singular Value Decomposition (SVD)

P̃r = argmin
Pr2O(m,m)

tr((I � PT
r )H(I � Pr)). (2.17)

The eigenspace span{v1, . . . , vr} ⇢ R
m is the active subspace and the remaining

eigenvectors generate the inactive subspace span{vr+1, . . . , vm} ⇢ R
m. The con-

dition f 2 L2(R
m, B(R

m), r ; V) is necessary for f to satisfy the error bound in
equation (2.2). For the explicit procedure to compute the active subspace given
its dimension r see algorithm 1. To have an idea of how the projection along the
AS works on a simple example we can have a look at figure 2.1 where we show 3
projections along different subspaces.

Figure 2.1: Sufficient summary plot for a 7-dimensional hyperparaboloid for three different
rotation of the input parameter space. Last panel shows the model function along the active
subspace.
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Algorithm 1 Active subspace computation.
Input:

gradients dataset dY = (dy1, . . . , dyM)T, dyi 2M(d⇥m)
spd metric matrix RV 2M(d⇥ d)
active subspace dimension r

Output:
active eigenvectors W1 = (v1, . . . , vr), vi 2 R

m

inactive eigenvectors W2 = (vr+1, . . . , vm), vi 2 R
m

ordered eigenvalues (l1, . . . , lm)

1: Compute the covariance matrix with Monte Carlo:

H̃ =
1
M

M

Â
j=1

dY[j, :, :]TRVdY[j, :, :].

2: Solve the eigenvalue problem:

H̃vi = livi 8i 2 {1, . . . , m},
W1 = (v1, . . . , vr), W2 = (vr+1, . . . , vm).

2.2.1 Sampling the inactive variable

We remark that the projection map onto the active subspace is a surjective map
because W

T
1 is defined as a linear projection onto a subspace. So the back-mapping

from the active subspace onto W is not trivial. Let x
⇤
M be a point in the active

subspace, we can find K points in the full parameter space which are mapped onto
x
⇤
M by W

T
1 . Following from the decomposition introduced above we have

x = W1W
T
1 x + W2W

T
2 x = W1xM + W2y 8x 2 W, (2.18)

with the additional constraint coming from the rescaling of the input parameters
needed to apply AS: �1  x  1. With 1 we denote the vector in R

k with all
elements equal to 1. To sample the inactive variable y we need to satisfy

�1  W1x
⇤
M + W2y  1, (2.19)

or equivalently

W2y  1�W1x
⇤
M �W2y  1 + W1x

⇤
M. (2.20)

These inequalities define a polytope in R
k�M from which we want to uniformly

sample K points. The inactive variables are in general sampled from the conditional
distribution p(y|x⇤M), here we show how to perform it for the uniform distribution.
For more general distributions one should use Hamiltonian Monte Carlo. Here we
start with a rejection sampling scheme, which finds a bounding hyperbox for the
polytope, draws points uniformly from it, and rejects points outside the polytope. In
case this method does not return enough samples, we use a hit and run method [19,
166, 252] for sampling from the polytope. This method starts from the center
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of the largest hypersphere within the polytope, then selects a random direction
and identifies the longest segment lying inside the polytope. The new sample is
randomly drawn along this segment. This procedure continues by iterating the
same steps starting from the last sample until K samples are found. If also that
does not work, we select K copies of the Chebyshev center [32] of the polytope. In
figure 2.2 we depicted the sampling strategy, at different stages.

Chebyshev center

New samples

Polytope

Figure 2.2: Illustration of the inactive variable sampling strategy. Successive steps are
depicted at once. We highlight the Chebyshev center, the selection of the next sample using
the hit and run method, and the polytope defined by equation (2.20).

2.2.2 Response surfaces

The term response surface refers to the general procedure of finding the values of
a model function f for new inputs without directly computing it but exploiting
regression or interpolation from a training set {xi, f (xi)}. We will follow [57, 291]
for a review of the construction of response surfaces. The procedure for constructing
a Gaussian process response is reported in algorithm 2, while in algorithm 3 we
show how to exploit the response surface to predict the model function at new
input parameters.

Directly applying the Monte Carlo method with N samples we get a reduced
approximation of f as

(g � Pr)(X) = Eµ [ f (X)|s(Pr)] ⇡
1
N

N

Â
i=1

f (P̂rX + (Id � P̂r)Yi) =: ĝ(P̂rX), (2.21)

where Y1, . . . , YN are independent and identically distributed samples of Y ⇠ r,
and P̂r is an approximation of Pr obtained discretizing H with Monte Carlo. An
intermediate approximation error is obtained employing the Poincaré inequality
and the central limit theorem for the Monte Carlo approximation

Eµ
⇥
( f (X)� ĝ(P̂rX))2⇤  C1

⇣
1 + N�1/2

⌘2
(ln+1 + · · · + lm), (2.22)

where C1 is a constant, and ln+1, . . . , lm are the eigenvalues of the inactive subspace
of H [Theorem 4.4, [57]].

In practice ĝ(P̂rX) is approximated with a regression or an interpolation such that
a response surface R satisfying Eµ

⇥
(ĝ(P̂rx)�R(P̂rx)2)

⇤
 C2d is built, where C2
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is a constant, and d depends on the chosen method. An estimate for the successive
approximations

f (X) ⇡ ge(PrX) ⇡ ĝe,N(P̂rX) ⇡ Re,N,d(P̂rX), (2.23)

is given by

Eµ
⇥
( f (X)�R(P̂rX))2⇤

 C1(1 + N�1/2)2
⇣

e(l1 + · · · + ln)
1/2 + (ln+1 + · · · + lm)1/2

⌘2
+ C2l

where dist(Im(Pr), Im(P̂r))  e, and li are the eigenvalues of H [Theorem 4.8, [57]].
In our numerical simulations we will build the response surface R with GPR [287].

Algorithm 2 Response surface construction with Gaussian process regression over
the active subspace.

Input:
normalized input dataset X = (x1, . . . , xM)T, xi 2 R

m

output dataset Y = (y1, . . . , yM)T, yi 2 R

active eigenvectors W1 = (v1, . . . , vr), vi 2 R
m

kernel k : R
m ⇥R

m ! R

Output:
trained Gaussian process

1: Project inputs in the active subspace:

XW1 = X̃ 2M(M⇥ r).

2: Evaluate the Gram matrix:

Kij = k(x̃i, x̃j), 1  i, j  r.

3: Tune the hyperparameters maximizing the maximum likelihood:

f ⇠ N (Y, K), e ⇠ N (0, sIM), y(x) = f(x) + e,
p(y|x, f, w, s) = N (0, K + sIM),
(w, s) = argmin

(w,s)

(� log(p(y|x, f, w, s))).

2.3 kernel-based active subspaces

The kernel-based extension of the AS property we present is based on the prelimi-
nary works in the context of supervised dimension reduction algorithms in machine
learning in [194].

Keeping the notations of assumption 1, X : (W, F , P) ! R
m is the absolutely

continuous random vector representing the m-dimensional inputs with density
r : X ⇢ R

m ! R, and f : X ⇢ R
m ! (V, RV) is the model function that we

assume to be continuously differentiable and Lipschitz continuous.
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Algorithm 3 Prediction phase using the Gaussian process response surface over the
active subspace.

Input:
trained response surface, y(x)
active eigenvectors W1 = (v1, . . . , vr), vi 2 R

m

test samples x, xi 2 R
m

Output:
prediction t

1: Map the test samples x onto the active subspace: x̃ = W1x.
2: Evaluate the Gaussian process on x̃:

t = f(x̃),

E[t] = k(x̃, X)K�1
f,

s2(t) = k(x̃, x̃)� k(x̃, X)K�1k(X, x̃).

One drawback of sufficient dimension reduction with AS applied to ridge ap-
proximation is that if a clear linear trend is missing, projecting the inputs as PrX

represents a loss of accuracy on the approximation of the model f that may not be
compensated even by the choice of the optimal profile h̃ � Pr = Er[ f |s(Pr)]. In order
to overcome this, non-linear dimension reduction to one-dimensional parameter
space could be achieved discovering a curve in the space of parameters that cuts
transversely the level sets of f , this variation is presented in [35] as Active Manifold.
Another approach could consist in finding a diffeomorphism f that reshapes the
level sets such that subsequently applying AS dimension reduction to the new
model function f̃ � f = f could be more profitable:

X ⇢ R
m f(X ) ⇢ R

m

V

f

f
f̃

Unfortunately constructing the Active Manifold or finding the right diffeomor-
phism f could be a complicate matter. If we renounce to have a backward map and
we weaken the bond of the method with the model, we can consider an immer-
sion f from the space of parameters X to an infinite-dimensional Hilbert space H

obtaining

X ⇢ R
m f(X ) ⇢ H

V

f

f
f̃

This is a common procedure in machine learning in order to increase the number
of features [287]. Then AS is applied to the new model function f̃ : f(X ) ⇢ H ! V
with parameter space f(X ) ⇢ H. A response surface can be built with algorithm 2
remembering to replace every occurrence of the inputs x with their images f(x). A
synthetic scheme of the procedure is represented in figure 2.3.
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Feature space
mapping

Active
subspace

Projection

Regression

Active variable

Figure 2.3: Illustration of the construction of a one-dimensional response surface with
kernel-based active subspaces and Gaussian process regression.

Remark 3. In this case the AS method may be theoretically formulated as an application of
the spectral decomposition to the integral operator TH : H ! H

H =
Z

f(X )
(RV � dz f̃ (z))⌦ dz f̃ (z) dµ(z),

since it is adjoint and compact.

In practice we consider a discretization of the infinite-dimensional Hilbert space
R

D ' H with D > m. Sufficient dimension reduction with AS results in the choice
of a r-rank projection in the much broader set of r-rank projections in H.

Since for AS only the samples of the Jacobian matrix of the model function are
employed, we can ignore the definition of the new map f̃ : f(X ) ⇢ H ! (V, RV)
and focus only on the computation of the Jacobian matrix of f̃ with respect to
the new input variable z := f(x). Taking the difference of the Jacobian Dz f̃ with
its mean in case it is not a centered random matrix [160], the covariance matrix
becomes

H̃ =
Z

f(X )

h
(Dz f̃ )T(z)

i
RV
⇥
(Dz f̃ )(z)

⇤
dµ(z)

=
Z

X

h
(Dz f̃ )T(f(x))

i
RV
⇥
(Dz f̃ )(f(x))

⇤
dLX(x),
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where µ := f � LX is the pushforward probability measure of LX, the law of
probability of X, with respect to the map f. Simple Monte Carlo can be applied
sampling from the distribution r in the input space X

H̃ =
Z

X

h
(Dz f̃ )T(f(x))

i
RV
⇥
(Dz f̃ )(f(x))

⇤
dLX(x)

⇡ 1
M

M

Â
i=1

h
(Dz f̃ )T(f(xi))

i
RV
⇥
(Dz f̃ )(f(xi))

⇤
.

The gradients of f̃ with respect to the new input variable Z are computed from the
known values Dx f with the chain rule.

Remark 4. The application of the chain rule to the composition of functions f̃ � f : R
m !

H ! V is theoretically validated if f̃ is defined in an open set U � f(X ). If f is non
singular and also injective the new input space is a m-dimensional submanifold of H. If f
is also smooth there exists a smooth extension of f̃ : f(X ) ⇢ H ! V, see [160].

If the Hilbert space H has finite dimension H ⇠ R
D this procedure leaves us

with an underdetermined linear system to solve for Dz f̃

Dz f̃ (f(x))Df(x) = Dx f (x),

Dz f̃ (f(x)) = Dx f (x)(Df(x))†, (2.24)

where † stands for the right Moore-Penrose inverse of the matrix Df(x) with rank
r, that is

(Df(x))† = VS†UT,

with the usual notation for the SVD of Df(x)

Df(x) = USVT, (2.25)

and S† 2M(r⇥ r) equal to the diagonal matrix with the inverse of the singular
values as diagonal elements.

Remark 5. In the AS method we approximate the random variable X as

PrX = v1(v1 · X) + · · · + vr(vr · X), (2.26)

with {vi} ⇢ R
m the active eigenvectors, whereas with KAS the reduced input space is

contained in H

PrX = v1(v1 · f(X)) + · · · + vr(vr · f(X)), (2.27)

with {vi} ⇢ H the active eigenvectors of KAS. In this case the model is enriched by the
non-linear feature map f.
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Algorithm 4 Kernel-based active subspace computation.
Input:

gradients dataset dY = (dy1, . . . , dyM)T, dyi 2M(d⇥m)
spd metric matrix RV 2M(d⇥ d)
feature subspace dimension D
feature map f : R

m ! R
D

active subspace dimension r
Output:

active eigenvectors W1 = (v1, . . . , vr), vi 2 R
D

inactive eigenvectors W2 = (vr+1, . . . , vD), vi 2 R
D

ordered eigenvalues (l1, . . . , lD)

1: Evaluate gradients solving an overdetermined linear system:

8j 2 {1, . . . , M}, dY[j, :, :](Df)† = dỸ[j, :, :] 2M(d, D).

2: Compute the covariance matrix with Monte Carlo:

H̃ =
1
M

M

Â
k=1

dỸ[k, :, :]TRVdỸ[k, :, :].

3: Solve the eigenvalue problem:

H̃vi = livi 8i 2 {1, . . . , D},
W1 = (v1, . . . , vr), W2 = (vr+1, . . . , vD).

2.3.1 Choice of the Feature Map

The choice for the map f suggested in [194] is linked to the theory of Reproducing
Kernel Hilbert Spaces (RKHS) [23], and it is defined as

z = f(x) =

r
2
D

sf cos(Wx + b), (2.28)

cos(Wx + b) :=
1p
D

(cos(W[1, :] · x + b1), . . . , cos(W[D, :] · x + bD))T (2.29)

where sf is an hyperparameter corresponding to the empirical variance of the
model, W 2M(D⇥m, R) is the projection matrix whose rows are sampled from a
probability distribution µ on R

m and b 2 R
D is a bias term whose components are

sampled independently and uniformly in the interval [0, 2p]. We remark that its
Jacobian can be computed analytically as

∂zj

∂xi = �
r

2
D

sf sin

 
D

Â
k=1

Wikxk + bk

!
Wij, (2.30)

for all i 2 {1, . . . , m}, and for all j 2 {1, . . . , D}.

Remark 6. In order to guarantee the correctness of the procedure for evaluating the
gradients we have to prove that the feature map is injective and non singular. In general
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however the feature map in equation (2.28) is not injective due to the periodicity of the
cosine but at least it is almost surely non singular if the dimension of the feature space is
high enough.

Remark 7 (Other choices for the feature map). The feature map in equation (2.28) is not
the only effective immersion that provides a kernel-based extension of the active subspaces.
For example an alternative is the following composition of a linear map with a sigmoid

f(z) =
C

1 + a e�Wz
,

where C is a constant, a is an hyperparameter to be tuned, and W 2M(D, m) is, as before,
a matrix whose rows are sampled from a probability distribution on R

m.
Other choices involve the use of Deep Neural Networks to learn the profile h and the

projection function Pr of the ridge approximation problem [274].

Remark 8. The tuning of the hyperparameters of the spectral measure chosen is the most
computationally expensive part of the procedure. It consists in a global optimization problem
where the dimension of the domain can vary between 1 and the dimension of the input space
m. The object function to optimize is the RRMSE

RRMSE(Ytest, Ttest) =

s
ÂN

i=1(ti � yi)2

ÂN
i=1(ti � ȳ)2

, (2.31)

where Ttest = (ti)i2{1,...,N} are the predictions obtained from the one-dimensional response
surface built with KAS and associated to the test set, Ytest = (yi)i2{1,...,N} are the targets
associated to the test set, and ȳ is the mean value of the targets. We implemented a
logarithmic grid-search in algorithm 5 making use of the SciPy library [280]. Another choice
could be Bayesian stochastic optimization implemented in [91].

2.3.2 Random Fourier Features

The motivation behind the choice for the map in equation (2.28) comes from the
theory on Reproducing Kernel Hilbert Spaces. The infinite-dimensional Hilbert
space (H, h·, ·i) is assumed to be a RKHS with real shift-invariant kernel k : X ⇥X !
R with k(0) = 1 and feature map f.

In order to get a discrete approximation of f : X ⇢ R
m ! H, random Fourier

features are employed [163, 214]. Bochner’s theorem [183] guarantees the existence
of a spectral probability measure µ such that

k(x, y) =
Z

Rm
eiw·(x�y) dµ(w).

From this identity we can get a discrete approximation of the scalar product h·, ·i
with Monte Carlo method, exploiting the fact that the kernel is real

hf(x), f(y)i = k(x, y) ⇡ 1
D

D

Â
i=1

cos(wi · x + bi) cos(wi · y + bi) = z
T

z, (2.32)

z =
1p
D

(cos(w1 · x + b1), . . . , cos(wD · x + bD)), (2.33)
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Algorithm 5 Tuning the feature map with logarithmic grid-search.
Input:

normalized input dataset X = (x1, . . . , xM)T, xi 2 R
m

output dataset Y = (y1, . . . , yM)T, yi 2 R

gradients dataset dY = (dy1, . . . , dyM)T, dyi 2M(d⇥ D)
spd metric matrix RV 2M(d⇥ d)
feature subspace dimension D
feature map f : R

m ! R
D

spectral density with hyperparameter a, µ
active subspace dimension r
tolerance for the tuning procedure tol ⇡ 0.8

Output:
projection matrix W
bias b

1: Create the grid G and set the variable BEST to 1.
2: for a 2 G do

3: Compute the feature map projection matrix W associated to the
hyperparameter 10a, and the uniformly sampled bias b:

W[i, :] sampled from µ(10a), 8i 2 {1, . . . , D},
b[i] ⇠ U (0, 2p).

4: Compute score with n-fold cross validation:
5: for i 1 to n do

6: Divide input, output, and gradients in train and test datasets.
7: Compute (W1, W2, (l1, . . . , lD)) with KAS method in algorithm 4

with inputs (dYtrain, RV , D, f, r).
8: Build the GPR response surface with inputs (Xtrain, Ytrain, W1, k)

using algorithm 2.
9: Predict the values Ttest using algorithm 3 with input Xtest.

10: Evaluate the score as score[n] = RRMSE(Ytest, Ttest).
11: if score[n] > tol then

12: Stop cross validation and pass to the next value of a.
13: end if

14: end for

15: if mean(score) <BEST then

16: Save W and b, and set BEST to mean(score).
17: end if

18: end for
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and from this relation we obtain the approximation f ⇡ z. The sampled vectors
{wi}i=1,...,D are called random Fourier features. The scalars {bi}i=1,...,D are bias
terms introduced since in the approximation we have excluded some trigonometric
terms from the following initial expression

1
D

D

Â
i=1

(cos(wi · x) cos(wi · y)� sin(wi · x) sin(wi · y)) .

Random Fourier features are frequently used to approximate kernels. We con-
sider only spectral probability measures which have a probability density, usually
named spectral density. Under some regularity conditions on the kernel, an ex-
plicit probabilistic bound depending on the dimension of the feature space D can
be proved [183]. This technique is used to scale up Kernel Principal Component
Analysis [236, 238] and Supervised Kernel Principal Component Analysis [15], but
in the case of KAS the resulting overdetermined linear system employed to compute
the Jacobian matrix of the new model function increases in dimension instead.

Remark 9 (Radial basis function kernel). The most famous kernel is the squared expo-
nential kernel also called Radial Basis Functions (RBF) kernel

kRBF(x, y) = exp
✓
�kx� yk2

2l2

◆
, (2.34)

where l is the characteristic length-scale. The spectral density is Gaussian N (0, 1/4p2l2):

S(w) = (2pl2)D/2exp(�2p2l2w2). (2.35)

Thanks to Bochner’s theorem to every probability distribution that admits a
probability density function corresponds a stationary positive definite kernel. So
having in mind the definition of the feature map f from equation (2.28), we can
choose any probability distribution for sampling the random projection matrix
W 2 M(D ⇥ m, R) without focusing on the corresponding kernel since it is not
needed by the numerical procedure.

After the choice of the spectral measure the corresponding hyperparameters have
to be tuned. This is linked to the choice of the hypothesis model in machine learning
and it is usually carried out for the hyperparameters of the employed kernel. From
the choice of the kernel and the corresponding hyperparameters some regularity
properties of the model are implicitly assumed [287].

2.4 benchmark test problems

In this section we are going to present some benchmark tests to prove the potential
gain of KAS over standard linear AS, for both scalar and vectorial model functions.
In particular we test KAS on radial symmetric functions, with 2-dimensional and
8-dimensional parameter spaces, on the approximation of the reproduction number
R0 of the SEIR model, and finally on a vectorial output function that is the solution
of a Poisson problem.

One dimensional response surfaces are built following the algorithm described
in section 2.2.2. The tuning of the hyperparameters of the feature map is carried
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out with a logarithmic grid-search and 5-fold cross validation for the Ebola test
case, while for the other cases we employed Bayesian stochastic optimization
implemented in [91] with 3-fold cross validation. The score function chosen is
the RRMSE. For the radial symmetric and Ebola test cases the inputs are sampled
from a uniform distribution with problem dependent ranges. For the stochastic
elliptic partial differential case the inputs are the coefficients of a Karhunen–Loève
expansion and are sampled from a normal distribution.

2.4.1 Radial symmetric functions

Radial symmetric functions represent a class of model functions for which AS is
not able to unveil any low dimensional behaviour. In fact for these functions any
rotation of the parameter space produce the same model representation. Instead
KAS is able to overcome this problem thanks to the mapping onto the feature space.

We present two benchmarks: an 8-dimensional hyperparaboloid defined as

f : [�1, 1]8 ⇢ R
8 ! R, f (x) =

1
2
kxk2, (2.36)

and the surface of revolution in R
3 with generatrix g(x) = sin(x2) that reads as

follows

f : [�3, 3]2 ⇢ R
2 ! R, f (x) = sin(kxk2). (2.37)

The gradients are computed analytically.
For the hyperparaboloid we used Ns = 500 independent, uniformly distributed

training samples in [�1, 1]8, while for the sine case the training samples are
Ns = 800 in [�3, 3]2. In both cases the test samples are 500. The feature space
has dimension 1000 for the first case and for the second case both. The spectral
distribution chosen is the multivariate normal with hyperparameter a uniform vari-
ance lId, and a product of Laplace distributions with µ and b as hyperparameters,
respectively. The tuning is carried out with 3-fold cross validation. The results are
summarized in table 2.1.

Table 2.1: Performance results for AS and KAS methods. For each case we report the
parameter space dimension, the number of samples Ns used for the training, the chosen
distribution, the dimension of the feature space, and the RRMSE mean and standard
deviation for AS and KAS. In bold the best results.

Case Dim Ns
Spectral Feature RRMSE AS RRMSE KAS

distribution space dim

Hyperparaboloid 8 500 N (0, lId) 1000 0.98 ± 0.03 0.23 ± 0.02

Sine 2 800 Laplace(µ, b) 1000 1.011 ± 0.01 0.31 ± 0.06

Ebola 8 800 Beta(a, b) 1000 0.46 ± 0.31 0.31 ± 0.03

SPDE (2.42) 10 1000 N (0, S) 1500 0.611 ± 0.001 0.515 ± 0.013

Looking at the eigenvalues of the uncentered covariance matrix of the gradients
H̃ for the hyperparaboloid case in figure 2.4, we can clearly see how the decay for AS
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Figure 2.4: Eigenvalues of the covariance matrix H̃ 2 R
8⇥8 applied to the hyperparaboloid

case for the AS procedure on the left, and the first 10 eigenvalues of the covariance matrix
H̃ 2 R

1000⇥1000 for the KAS procedure applied to the same case on the right.

is almost absent, while using KAS the decay after the first eigenvalue is pronounced,
suggesting the presence of an active subspace of dimension 1.

The one-dimensional sufficient summary plots, which are f (x) against WT
1 x — in

the AS case — or against WT
1 f(x) — in the KAS case —, are shown in figure 2.5 and

figure 2.6, respectively. On the left panels we present the Gaussian process response
surfaces obtained from the active subspaces reduction, while on the right panels
the ones obtained with the kernel-based AS extension. As we can see AS fails to
properly reduce the parameter spaces, since there are no preferred directions over
which the model functions vary the most. The KAS approach, on the contrary, is
able to unveil the generatrix behaviour for the sine case, and a linear trend for the
hyperparaboloid. This results in a reduction of the RMS of one order of magnitude,
in both cases (see table 2.1).
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Figure 2.5: Comparison between the sufficiency summary plots obtained from the applica-
tion of AS and KAS methods for the hyperparaboloid model function with domain [�1, 1]8,
defined in equation (2.36). The left plot refers to AS, the right plot to KAS. With the blue
solid line we depict the posterior mean of the GP, with the shadow area the confidence
intervals, and with the blue dots the testing points.
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Figure 2.6: Comparison between the sufficiency summary plots obtained from the appli-
cation of AS and KAS methods for the surface of revolution model function with domain
[�3, 3]2, defined in equation (2.37). The left plot refers to AS, the right plot to KAS. With the
blue solid line we depict the posterior mean of the GP, with the shadow area the confidence
intervals, and with the blue dots the testing points.

2.4.2 SEIR model for the spread of Ebola

In most engineering applications the output of interest presents a monotonic be-
haviour with respect to the parameters. This means that, for example, the increment
in the inputs produces a proportional response in the outputs. Rarely the model
function has a radial symmetry, and in such cases the parameter space can be
divided in subdomains, which are analyzed separately. In this section we are going
to present a test case where there is no radial symmetry, showing that, even in this
case the kernel-based AS presents better performance with respect to AS.

For the Ebola test case1, the output of interest is the basic reproduction number
R0 of the SEIR model, described in [74], which reads

R0 =
b1 + b2r1g1

w + b3
g2

y

g1 + y
, (2.38)

with parameters distributed uniformly in W ⇢ R
8. The parameter space W is

defined by the lower and upper bounds summarized in table 2.2.

Table 2.2: Parameter ranges for the ebola model. Data taken from [74].

b1 b2 b3 r1 g1 g2 w y

Lower bound 0.1 0.1 0.05 0.41 0.0276 0.081 0.25 0.0833

Upper bound 0.4 0.4 0.2 1 0.1702 0.21 0.5 0.7

We can compare the two one-dimensional response surfaces obtained with Gaus-
sian process regression. The training samples are Ns = 800, and we use 1000
features. As spectral measure we use again the multivariate gaussian distribution
N (0, S) with hyperparameters the elements of the diagonal of the covariance ma-
trix. The tuning is carried out with 5-fold cross validation. Even in this case, the

1 The dataset was taken from https://github.com/paulcon/as-data-sets.

https://github.com/paulcon/as-data-sets
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KAS approach results in smaller RRMSE with respect to the use of AS (around 60%
less), as reported in table 2.1. In figure 2.7 we report the comparison of the two
approaches over an active subspace of dimension 1.

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
Active variable WT

1 x

0

1

2

3

4

5

6
f

(
x
)

Mean

Test

Confidence

�0.025 �0.020 �0.015 �0.010 �0.005 0.000 0.005 0.010

Active variable WT
1 �(x)

0

1

2

3

4

f
(
x
)

Mean

Test

Confidence

Figure 2.7: Comparison between the sufficiency summary plots obtained from the appli-
cation of AS and KAS methods for the R0 model function with domain W, defined in
equation (2.38). The left plot refers to AS, the right plot to KAS. With the blue solid line we
depict the posterior mean of the GP, with the shadow area the confidence intervals, and
with the blue dots the testing points.

2.4.3 Elliptic Partial Differential Equation with random coefficients

In our last benchmark test case we apply the Kernel-based Active Subspaces
to a vectorial model function, that is the solution of a Poisson problem with
heterogeneous diffusion coefficient. We refer to [291] for an application, on the
same problem, of the AS approach.

We consider the following stochastic Poisson problem on the square x = (x, y) 2
W := [0, 1]2:

8
>>>>>><

>>>>>>:

�r · (k ru) = 1, x 2 W,

u = 0, x 2 ∂Wtop [ ∂Wbottom,

u = 10y(1� y), x 2 ∂Wleft,

n ·ru = 0, x 2 ∂Wright,

(2.39)

with Neumann boundary condition on the right side of the domain, that is ∂Wright,
and Dirichlet boundary conditions on the remaining part of ∂W. The diffusion
coefficient k : (W, A, P)⇥W ! R, where A is a s-algebra, is such that log(k) is a
Gaussian random field, with covariance function C(x, y) defined by

C(x, y) = exp
✓
�kx� yk2

b2

◆
, 8x, y 2 W, (2.40)

where b = 0.03 is the correlation length. This random field is approximated with
the truncated Karhunen–Loève decomposition

k(s, x) ⇡ exp

 
m

Â
i=0

Xi(s)giyi(x)

!
8(s, x) 2 W⇥W, (2.41)
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where (Xi)i21,...,m are independent standard normal distributed random variables,
and (gi, yi)i21,...,d are the eigenpairs of the Karhunen–Loève decomposition of the
zero-mean random field k.

In our simulation the domain W is discretized with a triangular unstructured
mesh T with 3194 triangles. The parameter space has dimension m = 10. The
simulations are carried out with the finite element method (FEM) with polynomial
order one, and for each simulation the parameters (Xi)ß=1,...m are sampled from a
standard normal distribution. The solution u is evaluated at d = 1668 degrees of
freedom, thus (V, RV) ⇡ (R

d, S + M) where the metric RV is approximated with the
sum of the stiffness matrix S 2 R

d⇥R
d and the mass matrix M 2 R

d⇥R
d. This sum

is a discretization of the norm of the Sobolev space H1(W). The number of features
used in the KAS procedure is D = 1500, the number of different independent
simulations is M = 1000.

Three outputs of interest are considered. The first target function f : R
m ! R is

the mean value of the solution at the right boundary ∂Wright, which reads

f (X) =
1

|∂Wright|

Z

∂Wright

u(s) ds, (2.42)

and it is used to tune the feature map minimizing the RRMSE of the Gaussian
process regression, as described in algorithm 5. A summary of the results for the
first output is reported in table 2.1. The plots of the regression are reported in
figure 2.8. Even in this case both from a qualitative and a quantitative point of view,
the kernel-based approach achieves the best results.
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Figure 2.8: Comparison between the sufficiency summary plots obtained from the applica-
tion of AS and KAS methods for the stochastic PDE model, defined in equation (2.39) and
equation (2.42). The left plot refers to AS, the right plot to KAS. With the blue solid line we
depict the posterior mean of the GP, with the shadow area the confidence intervals, and
with the blue dots the testing points.

The second output we consider is the solution function

f : R
m ! (V, RV) ⇡ (R

d, S), f (X) = u 2 R
d. (2.43)

This output can be employed as a surrogate model to predict the solution u given
the parameters X that define the diffusion coefficient instead of carrying out the
numerical simulation. It can be shown that the AS and KAS modes are distinguished
but can detect some common regions of interest as shown in table 2.3.
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The third output is the evaluation of the solution at a specific degree of freedom
with index î, that is

f : R
m ! R, f (X) = uî 2 R, (2.44)

in this case the dimension of the input space is m = 100. Since we use a Lagrangian
basis in the finite element formulation and the polinomial order is 1, the node of the
mesh associated to the chosen degree of freedom has coordinates [0.27, 0.427] 2 W.
Qualitatively we can see from table 2.3 that the AS modes locate features in the
domain which are relatively more regular with respect to the KAS modes. To obtain
this result we increased the dimension of the input space, otherwise not even the AS
modes could locate properly the position in the domain W of the degree of freedom.

In the second and third case the diffusion coefficient is given by

k(x) = exp

 
D

Â
i=1

vj[i]ỹj(x)

!
8(s, x) 2 W⇥W, (2.45)

where vj 2 R
D, j 2 {1, . . . , D}, is the j-th active eigenvector from the KAS procedure

and the functions Ỹ := (ỹ1, . . . , ỹD) are defined by

Ỹ = f(Y), (2.46)

where f is the feature map defined in equation (2.28) with the projection matrix W
and bias b, and Y := (g1y1, . . . , gmym).

Remark 10. The gradients of the three outputs of interest considered are evaluated with the
adjoint method.

2.5 a cfd parametric application of kas using dg method

We want to test the kernel-based extension of the active subspaces in a compu-
tational fluid dynamics context. The lift and drag coefficients of a NACA 0012
airfoil are considered as model functions. Numerical simulations are carried out
with different input parameters for quantities that describe the geometry and the
physical conditions of the problem. The evolution of the model is protracted until a
periodic regime is reached. Once the simulation data have been collected, sensitivity
analysis is performed searching for an active subspace and response surfaces with
GPR are then built from the application of AS and KAS techniques.

The fluid motion is modelled through the unsteady incompressible Navier-Stokes
equations approximated through the Chorin-Temam operator-splitting method
implemented in HopeFOAM [121]. HopeFOAM is an extension of OpenFOAM [284],
an open source software for the solution of complex fluid flows problems, to variable
higher order element method and it adopts a Discontinuous Galerkin Method, based
on the formulation proposed by Hesthaven and Warburton [113].

The Discontinuous Galerkin method is a high-order method, which has appealing
features such as the low artificial viscosity and a convergence rate which is optimal
also on unstructured grids, commonly used in industrial frameworks. In addition
to this, DG is naturally suited for the solution of problems described by conservative
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Table 2.3: First 3 modes using Karhunen–Loève (K-L) decomposition, AS, and KAS, for the
outputs defined in equation (2.42), equation (2.43), and equation (2.44).

Case Mode 1 Mode 2 Mode 3

K-L

AS (2.42)

KAS (2.42)

AS (2.43)

KAS (2.43)

AS (2.44)

KAS (2.44)
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governing equations (Navier Stokes equations, Maxwell’s equations and so on) and
for parallel computing. All these properties are due to the fact that, differently
from formulations based on standard finite elements, no continuity is imposed on
the cell boundaries and neighboring elements only exchange a common flux. The
major drawback of DG is its high computational cost with respect to continuous
Galerkin methods, due to the need of evaluating fluxes during each time step and
the presence of extra degree of freedoms in correspondence of the elemental edges.

Nowadays efforts are aimed at applying the DG in problems which involve
deformable domains [293] and at improving the computational efficiency of the DG
adopting techniques based on hybridization methods, matrix-free implementations,
and massive parallelization [191, 201].

2.5.1 Domain and mesh description

The domain W of the fluid dynamic simulation is a two-dimensional duct with a
sudden area expansion and a NACA 0012 airfoil is placed in the largest section. The
inflow ∂WI is placed at the beginning of the narrowest part of the duct, and here the
fluid velocity, constant along all the boundary, is imposed. The outlet is placed on the
right hand side and it is denoted with ∂WO. We refer with ∂WW := ∂W\{∂WO [ ∂WI}
to the boundaries of the airfoil and to the walls of the duct, where no slip boundary
conditions are applied. The horizontal lengths of the sections of the channels
are 0.6 m and 1.35 m, respectively. The vertical length of the duct after the area
expansion is 0.4 m, while the width of the first one depends on two distinct
parameters. The airfoil has a chord-length equal to 0.1 m but its position with
respect to the duct and its angle of attack are described by geometric parameters.
Further details about the geometric parameterization of the geometry are provided
in the following section. A proper triangulation is introduced with the aid of the
gmsh [103] tool and the domain is discretized with 4445 unstructured elements.

The evaluation of the Reynolds, the Mach number and the other adimensional
magnitudes, commonly used for characterizing the fluid flow field, requires the
definition of some reference magnitudes. For the problem at hand we consider the
equivalent diameter of the channel in correspondence of the inlet as the reference
lengthscale, while the reference velocity is the one imposed at the inlet.

2.5.2 Parameter space description

We chose 7 heterogeneous parameters for the model: 2 physical, and 5 geometrical
which describe the width of the channel and the position of the airfoil. In table 2.4 are
reported the ranges for the geometrical and physical parameters of the simulation.
U is the first component of the initial velocity, n is the kinematic viscosity, x0 and
y0 are the horizontal and vertical components of the translation of the airfoil with
respect to its reference position (see figure 2.9), a is the angle of the counterclockwise
rotation and the center of rotation is located right in the middle of the airfoil, y+

and y� are the module of the vertical displacements of the upper and lower side of
the initial conduct from a prescribed position.
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Table 2.4: Parameter ranges for the NACA problem.

n U x0 y0 a y+ y�

Lower bound 0.00036 0.5 -0.099 -0.035 0 -0.02 -0.02

Upper bound 0.00060 2 0.099 0.035 0.0698 0.02 0.02

Figure 2.9: Domain configuration for minimum and maximum values of some geometric
parameters. In order are represented the maximum angle of attack a, the ranges for the
horizontal translation x0, the ranges for the vertical translation y0, and the minimum
opening of the channel which depends on the parameters y+ and y� in table 2.4.

In figure 2.9 are reported different configurations of the domain for the minimum
and maximum values of the parameters a, x0, y0, and the minimum opening of the
channel.

We have considered only the counterclockwise rotation of the airfoil for symmet-
rical reasons. The range of the Reynolds number varies from 400 to 2000, still under
the regime of laminar flow.

2.5.3 Governing equations

The CFD problem is modeled through the incompressible Navier-Stokes and the
open source solver HopeFOAM has been employed for solving this set of equa-
tions [113].

Let W ⇢ R
2 be the two-dimensional domain introduced in section 2.5.1, and let

us consider the incompressible Navier-Stokes equations. Omitting the dependence
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on (x, t) 2 W⇥R
+ in the first two equations for sake of compactness, the governing

equations are
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

∂tu + (u ·r)u = �rp + nDu x 2 W,

r · u = 0 x 2 W,

u(x, 0) = u0, p(x, 0) = 0 x 2 W,

u(x, t) = u0, n ·rp(x, t) = 0 x 2 ∂WI ,

u(x, t) = 0, n ·rp(x, t) = 0 x 2 ∂WW ,

n ·ru(x, t) = 0, p(x, t) = 1 x 2 ∂WO,

(2.47)

where p is the scalar pressure field, u = (u, v) is the velocity field, n is the viscosity
constant and u0 is the initial velocity. In conservative form, the previous equations
can be rewritten as

8
<

:
∂tu +r · F = �rp + nDu,

r · u = 0,
(2.48)

with the flux F given by

F = [F1, F2] =

"
u2 uv
uv v2

#
. (2.49)

From now on, in order to have a more compact notation, the advection term is
written as N (u) = r · F (u).

For each timestep the procedure is broken into three stages accordingly to the
algorithm proposed by Chorin and adapted for a DG framework by Hesthaven et
al. [113]: the solution of the advection dominated conservation law component,
the pressure correction weak divergence-free velocity projection, and the viscosity
update. The non-linear advection term is treated explicitly in time through a second
order Adams-Bashforth method [96], while the diffusion term implicitly. The Chorin
algorithm is reported in algorithm 6.

In order to recover the Discontinuos Galerkin formulation, the equations intro-
duced by the Chorin method are projected onto the solution space by introducing a
proper set of test functions and then the variables are approximated over each ele-
ment as a linear combination of local shape functions. The DG does not impose the
continuity of the solution between neighboring elements and therefore it requires
the adoption of methods for the evaluation of the flux exchange between neighbor-
ing elements. In the present work the convective fluxes are treated accordingly to
the Lax-Friedrichs splitting scheme, while the viscous ones are solved through the
Interior Penalty method [7, 246].

The aerodynamic quantities we are interested in are the lift and drag coefficients
in the incompressible case computed from the quantities u, p, n, Aref, and u0 with
a contour integral along the airfoil G as

f =
I

G
pn� n

⇣
ru +ru

T
⌘

n ds. (2.50)
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Algorithm 6 Chorin Algorithm.
Input:

state variables u and p at t = 0
mesh
boundary conditions

Output:
state variables u and p at t = tfinal

1: while t < tfinal do

2: Update state variables u
n�1 = u

n, u
n = u

n+1.
3: Find a guess value for the velocity ũ by solving:

g0ũ� a0u
n � a1u

n�1

Dt
= �b0N (u

n)� b1N (u
n�1).

4: Find the pressure at n + 1 solving:

�D p̄n+1 = �g0

Dt
r · ũ.

5: Find the intermediate velocity ˜̃u solving:

g0
˜̃u� ũ

Dt
= r p̄n+1.

6: Find the velocity at the n + 1 time instant solving:

g0

✓
u

n+1 � ˜̃u
Dt

◆
= nDu

n+1.

7: Update tn.
8: end while

The vector n is the outward normal along the airfoil surface. The circulation in
G is affected by both the pressure and stress distributions around the airfoil. The
projection of the force along the horizontal and vertical directions gives the drag
and lift coefficients respectively

CD =
f · e1

1
2 |u0|2Aref

, (2.51)

CL =
f · e2

1
2 |u0|2Aref

, (2.52)

where the reference area Aref is the chord of the airfoil times a length of 1 m. For
the aerodynamic analysis of the fluid flow past an airfoil see [146].

2.5.4 Numerical results

In this section a brief review of the procedure and some details about the numerical
method and the computational domain will be presented along the results obtained.
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For what concerns the DG the polynomial order chosen is 3. The total number of
degrees of freedom is 133350. Small variations on the mesh are present in each
of the 285 simulations due to the different configurations of the domain. Each
simulation is carried out until a periodic behaviour is reached and for this reason
the final times ranges between 3.5 and 5 s, depending on the specific configuration.
The integration time intervals are variable and they are updated at the end of
each step in order to satisfy the CFL condition. The 7 physical and geometrical
parameters of the simulation are sampled uniformly from the intervals in table 2.4.
In total we considered a dataset of 285 samples.

With the purpose of qualitatively visualizing the results, 4 different simulations
are reported in figure 2.10 for the module of the velocity field and the scalar
pressure field, respectively, both evaluated at the last time instant. These simulations
were chosen from the 285 collected in order to show significant differences in the
evolution of the fluid flow. In table 2.5 are reported the corresponding parameters.
Depending on the position of the airfoil and the other physical parameters, different
fluid flow patterns can be qualitatively observed.

Table 2.5: Parameters associated to the simulations plotted in figure 2.10.

# n U x0 y0 a y+ y�

1 0.000405 1.99 -0.096 -0.00207 0.00282 0.00784 0.0188

2 0.000541 0.763 -0.084 0.00279 0.0260 -0.0108 0.0195

3 0.000406 0.533 -0.0503 -0.0327 0.0604 -0.0193 0.0068

4 0.000430 1.11 -0.0897 -0.0279 0.0278 -0.00624 0.0197

The lift (CL) and drag (CD) coefficients are evaluated when stationary or periodic
regimes are reached, starting from the values of pressure and viscous stresses
evaluated on the nodes close to the airfoil. After this sensitivity analysis is carried
out. First the AS method is applied. The gradients necessary for the application of
the AS method are obtained from the Gaussian process regression of the model
functions CL and CD on the whole parameters domain. The eigenvalues of the
uncentered covariance matrix for the lift and drag coefficients suggest the presence
of a one-dimensional active subspace in both cases.

The plots of the first active eigenvector components are useful as sensitivity
measures, see figure 2.11. The greater the absolute value of a component is, the
greater is its influence on the model function. We observe that the lift coefficient
is influenced mainly by the vertical position of the airfoil and the angle of attack,
while the drag coefficient depends mainly on the initial velocity, and secondarily
on the viscosity and on the angle of attack.

As one could expect from physical considerations, the angle of attack affects
both drag and lift coefficients, while the viscosity, which governs the wall stresses,
is relevant for the evaluation of the CD. The vertical position of the airfoil with
respect to the symmetric axis of the section of the duct after the area expansion also
greatly affects both coefficients, and this is mainly due to the fact that the fluid flow
conditions change drastically between the core, where the speed is higher, and the
one close to the wall of the duct, where the speed tends to zero. On the other hand,
the horizontal translation has almost no impact on the results, given the regularity
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Figure 2.10: Module of the velocity fields (on the left) and pressure fields (on the right)
evaluated at the last time instant of 4 different simulations. The corresponding parameters
are reported in table 2.5.

of the fluid flow along the x-axis for the considered range of x0. Moreover, the
non-symmetric behaviour of the upper and lower parameters which determine the
opening of the channel is due to the non-symmetric choice of the range considered
for the angle of attack.

The KAS method was applied with 1500 features. In order to compare the AS and
KAS methods 5-fold cross validation was implemented. The score of cross validation
is the RRMSE defined in equation (2.31).

The Gaussian process regressions for the two methods are shown in figure 2.12
for the lift coefficient, and in figure 2.13 for the drag coefficient. They were obtained
as a single step of 5-fold cross validation with one fifth of the 285 samples used as
test set. The spectral distribution of the feature map is the Gaussian distribution
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Figure 2.11: Components of the first active eigenvector for the lift coefficient (on the left),
and for the drag coefficient (on the right). Values near 0 suggest little sensitivity for the
target function.
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Figure 2.12: Comparison between the sufficiency summary plots obtained from the applica-
tion of AS and KAS methods for the lift coefficient CL defined in equation (2.52). The left
plot refers to AS, the right plot to KAS. With the blue solid line we depict the posterior
mean of the GP, with the shadow area the confidence intervals, and with the blue dots the
testing points.

for the lift, and the Beta for the drag, respectively. The RRMSE mean and standard
deviation from 5-fold cross validation, are reported for different active dimensions
in table 2.6. The feature map in equation (2.28) was adopted. The hyperparameters
of the spectral distributions were tuned with logarithmic grid-search with 5-fold
cross validation as described in algorithm 5.

Regarding the drag coefficient, the relative gain using the KAS method reaches
the 19.2% on average when employing the Beta spectral measure for the definition
of the feature map. The relative gain of the one dimensional response surface built
with GPR from the KAS method is 7% on average for the lift coefficient. This result
could be due to the higher noise in the evaluation of the CL. In this case the relative
gain increases when the dimension of the response surface increases to 2 with a
gain of 14.6%. A slight reduction of the AS RRMSE relative to the drag coefficient is
ascertained when increasing the dimension of the response surface.
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Figure 2.13: Comparison between the sufficiency summary plots obtained from the applica-
tion of AS and KAS methods for the drag coefficient CD defined in equation (2.51). The
left plot refers to AS, the right plot to KAS. With the blue solid line we depict the posterior
mean of the GP, with the shadow area the confidence intervals, and with the blue dots the
testing points.

Table 2.6: Summary of the results for AS and KAS procedures. In bold the best results.

Method Dim Feature Lift spectral RRMSE Lift Drag spectral RRMSE Drag
space dim distribution distribution

AS 1 - - 0.37 ± 0.09 - 0.268 ± 0.032

KAS 1 1500 N (0, lId) 0.344 ± 0.048 Beta(a, b) 0.218 ± 0.045

AS 2 - - 0.384 ± 0.073 - 0.183 ± 0.027

KAS 2 1500 N (0, lId) 0.328 ± 0.071 Beta(a, b) 0.17 ± 0.02

2.6 conclusions and perspectives

In this chapter we presented a new nonlinear extension of the active subspaces prop-
erty called Kernel-based Active Subspaces. The method exploits random Fourier
features to find active subspaces on high-dimensional feature spaces. We tested the
new method over 5 different benchmarks of increasing complexity, and we provided
pseudo-codes for every aspects of the proposed kernel-extension. The tested model
functions range from scalar to vector-valued. We also provide a CFD application
discretized by the Discontinuous Galerkin method. We compared the kernel-based
active subspaces to the standard linear active subspaces and we observed in all the
cases an increment of the accuracy of the Gaussian response surfaces built over the
reduced parameter spaces. The most interesting results regard the possibility to
apply the KAS method when an active subspace cannot be found theoretically. This
was shown for radial symmetric model functions.

Future developments will involve the study of more efficient procedures for
tuning the hyperparameters of the spectral distribution. Other possible advances
could be done finding an effective back-mapping from the targets to the actual
parameters in the full original space. This could promote the implementation of
optimization algorithms or other parameter studies enhanced by the kernel-based
active subspaces extension.





3
L O C A L A C T I V E S U B S PA C E S

Frequently, the parameter space, chosen for shape design or other applications
that involve the definition of a surrogate model, present subdomains where the
objective function of interest is highly regular or well behaved. So, it could be
approximated more accurately if restricted to those subdomains and studied sep-
arately. The drawback of this approach is the possible scarsity of data in some
applications, but in those, where a quantity of data, moderately abundant consider-
ing the parameter space dimension and the complexity of the objective function, is
available, partitioned or local studies are beneficial. In this chapter we propose a
new method called Local Active Subspaces (LAS), which explores the synergies of
active subspaces with supervised clustering techniques in order to perform a more
efficient dimension reduction in the parameter space for the design of accurate
response surfaces. We also developed a procedure to exploit the local active sub-
space information for classification tasks. Using this technique as a preprocessing
step onto the parameter space, or output space in case of vectorial outputs, brings
remarkable results for the purpose of surrogate modelling. All the results presented
in this chapter appeared in [223]

43
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3.1 literature review

Parameter space reduction is a rapidly growing field of interest which plays a key
role in fighting the curse of dimensionality. The need of reducing the number of
design inputs is particularly important in engineering for advanced CFD simulations
to model complex phenomena, especially in the broader context of model order
reduction [226] and industrial numerical pipelines [227, 230, 268].

Active subspaces [54] is one of the most used techniques for linear reduction in
input spaces. It has been proved useful in many numerical tasks such as regression,
using a multi-fidelity data fusion approach with a surrogate model built on top of
the AS as low-fidelity model [224]; shape optimization [168] and a coupling with
the genetic algorithm to enhance its performance [69, 73]; or inverse problems [292].
It has also been used to enhance classical model order reduction techniques such
as POD-Galerkin [266], and Proper Orthogonal Decomposition with Interpolation
(PODI) [72]. Other attempts towards nonlinear parameter space reduction have
been proposed recently: kernel-based active subspaces [221], nonlinear level-set
learning [294], and active manifold [35] are the most promising.

In this work we propose a new local approach for parameter space dimensionality
reduction for both regression and classification tasks, called Local Active Subspaces.
Other methods have been developed in the last years exploiting the localization idea.
We mention localized slice inverse regression (LSIR) [289] which uses local informa-
tion of the slices for supervised regression and semi-supervised classification. LSIR
improves local discriminant information [109] and local Fischer discriminant anal-
ysis [264] with more efficient computations for classification problems. The main
difference between Slice Inverse Regression (SIR) [161] and AS is in the construction
of the projection matrix. While SIR needs the elliptic assumption, AS exploits the
gradients of the function of interest with respect to the input parameters.

From a wider point of view, there is an analogy between local parameter space
reduction and local model order reduction. With the latter, we mean both a spatial
domain decomposition approach for model order reduction of parametric PDEs in a
spatial domain W ⇢ R

d and a local reduction approach in the parameter space. As
representative method for the first paradigm we report the reduced basis element
method [167], which combines the reduced basis method in each subdomains
with a mortar type method at the interfaces. For the second approach we cite the
interpolation method in the Grassmann manifold of the reduced subspaces [6]; in
particular in [63] the K-medoids clustering algorithm with Grassmann metric is
applied to the discrete Grassmann manifold of the training snapshots as a step to
perform local model order reduction.

Similarly, in our work we do not simply apply a clustering technique to preprocess
the input data, we propose a supervised metric induced by the presence of a global
active subspace. The directions individuated by local active subspaces are locally
linear, and they better capture the latent manifold of the target function. Moreover
the effectiveness of the chosen metric is linked to the fact that normally we do not
employ the optimal profile (which is a conditioned random variable and in this sense
nonlinear) for the construction of response surfaces on the active subspace, and
with the use of clustering with AS-based metric we try to reduce this approximation
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error. Essentially, we are splitting the response surface design transversally with
respect to the active subspace, which, having in mind that the optimal profile is
obtained integrating out the inactive variable, means splitting the integral in a sum
of terms associated to the number of clusters.

This chapter is organized as follows: in section 3.2 we introduce the clustering
algorithms used and the supervised distance metric based on the presence of
a global active subspace, focusing on the construction of response surfaces and
providing theoretical results. In section 3.3 we present the algorithms to exploit LAS
for classification. We provide extensive numerical results in section 3.4 from simple
illustrative bidimensional dataset to high-dimensional scalar and vector-valued
functions. Finally in section 3.5 we draw some conclusions and future perspectives.

3.2 localized parameter space reduction

Sometimes we do not have a priori knowledge about the target function’s behaviour
in a particular parameter space region. So it is difficult to properly set the parameters
range. In these cases a preprocessing of the data using a clustering technique could
be highly beneficial. With a clustering of the input parameters we can treat each
subregion separately, and thus being able to better capture the target function’s
variability. This is always true for any function of interest, but for functions with
global lower intrinsic dimensionality we can exploit such structure to enhance
the clustering. To this end we propose a new distance metric for K-medoids and
hierarchical top-down clustering methods which exploits the global active subspace
of the target function.

By applying AS on each cluster we find the optimal rotation of the corresponding
subregion of the input domain, which aligns the data along the active subspace of a
given dimension.

In this section we review two of the main partitioning methods [108] such as
K-means, K-medoids, and the hierarchical top-down clustering technique [137, 188].
We are going to use K-means as the baseline since the input parameter space is
assumed to be an hyperrectangle — as is done in every practical case — and we do
not expect samples which are highly concentrated in a specific subregion.

3.2.1 K-means clustering

Let {xi}N
i=1 be a set of N samples in R

NF , where NF denotes the number of features.
The K-means algorithm divides this set into K disjoint clusters S = {Sj}K

j=1, with
Sl \ Sm = ∆ for 1  l, m  K and l 6= m. The partitioning quality is assessed by a
function which aims for high intracluster similarity and low intercluster similarity.
For K-means this is done by minimizing the total within-cluster sum-of-squares
criterion WT, which reads as

WT(S) :=
K

Â
j=1

W(Sj) =
K

Â
j=1

Â
xi2Sj

kxi � cjk2
L2 , (3.1)
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where cj is the centroid describing the cluster Sj. A centroid of a cluster is defined
as the mean of all the points included in that cluster. This means that the centroids
are, in general, different from the samples xi.

K-means is sensitive to outliers, since they can distort the mean value of a cluster
and thus affecting the assignment of the rest of the data. Algorithm 7 shows the
pseudo-code of the K-means algorithm, while in figure 3.1 there is a comparison
with K-medoids on a toy dataset — a complete description is provided after the
introduction of the K-medoids algorithm below.

Algorithm 7 K-means algorithm.
Input:

set of samples {xi}N
i=1 2 R

NF

number of clusters K
Output:

set of clusters S = {Sj}K
j=1

1: select initial cluster centroids
2: repeat

3: assign each sample to its closest centroid using the Euclidean distance
4: update the centroid of each cluster
5: until criterion WT of equation (3.1) is minimized

3.2.2 K-medoids clustering with active subspaces-based metric

In order to overcome some limitations of the K-means algorithm, such as sensitivity
to outliers, we can use K-medoids clustering technique [137, 173, 198, 239]. It uses
an actual sample as cluster representative (i.e. medoid) instead of the mean of the
samples within the cluster.

Following the notation introduced in the previous section, let mj be the medoid
describing the cluster Sj. The partitioning method is performed by minimizing
the sum of the dissimilarities between the samples within a cluster and the corre-
sponding medoid. To this end an absolute-error criterion E is used, which reads as

E(S) :=
K

Â
j=1

E(Sj) =
K

Â
j=1

Â
xi2Sj

kxi �mjk. (3.2)

By looking at the formula above it is clear that the use of a data point to represent
each cluster’s center allows the use of any distance metric for clustering. We remark
that the choice of the Euclidean distance does not produce the same results as
K-means because of the different references representing the clusters. In figure 3.1
we show the differences between the two methods. The position of the centroids,
emphasized in red, in regions with a small density of samples — especially for
cluster 1 — is due to the presence of outliers which force the centroid towards them.
This results also in the different classification of the samples in purple, which fall
in the cluster 1 using K-medoids and in cluster 2 using K-means.
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Figure 3.1: Comparison between K-means and K-medoids partitioning. The medoids (in
blue) correspond to actual samples, while the centroids (in red) are, in general, not an
element of the dataset. In purple two samples which are classified in different clusters
depending on the method used.

We propose a new supervised distance metric inspired by the global active
subspace of the function f we want to approximate. We define a scaled L2 norm
using the eigenpairs of the second moment matrix of r f , which is the matrix from
which we calculate the global active subspace:

kxi � xjkL =
q

(xi � xj)TWL2WT(xi � xj), (3.3)

where L stands for the diagonal matrix with entries the eigenvalues of equation (2.8),
and W is the eigenvectors matrix from from its eigendecomposition. As we are
going to show in section 3.4 this new metric allows a better partitioning both
for regression and classification tasks because of it exploits both global and local
informations. For stronger insights about the heuristic behind, see remark 17.

To actually find the medoids, the partitioning around medoids (PAM) algo-
rithm [137] is used. It uses a greedy approach after the initial selection of the
medoids, also called representative objects. They are changed with a non-represen-
tative object, i.e. one of the remaining samples, if it would improve the clustering
quality. This iterative process of replacing the medoids by other objects continues
until the quality of the resulting clustering cannot be improved by any replacement.
Algorithm 8 illustrates this approach with pseudo-code.

3.2.3 Hierarchical top-down clustering

In this section we present Hierarchical top-down clustering with Active Sub-
spaces (HAS), a variant of the previous methodologies with hierarchical top-down
clustering [137, 188], that exploits, as previously, the additional information from
the active subspace.
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Algorithm 8 K-medoids algorithm with AS metric.
Input:

set of samples {xi}N
i=1 2 R

NF

number of clusters K
distance metric d defined in equation (3.3)

Output:
set of clusters S = {Sj}K

j=1

1: select initial cluster medoids
2: repeat

3: assign each sample to its closest medoid using the distance metric d
4: randomly select K non-representative objects
5: swap the medoids with the new selected objects by minimizing equation (3.2)
6: until clustering quality converges

In top-down hierarchical clustering, at each iteration the considered clusters,
starting from the whole dataset, are split further and further based on some
refinement criterion, until convergence. A nice feature of hierarchical clustering
algorithms, with respect to K-means and K-medoids, is that the number of clusters
can be omitted. Moreover, stopping at the first refinement and forcing the total
number of clusters, HAS can be seen as a generalization of the previous methods: for
this reason we wanted to make the implementation consistent with K-means and
K-medoids with AS induced metric as close as possible, as shown in the numerical
results in section 3.4.

Pushing further the potential of clustering algorithms applied to local dimension
reduction in the parameter space, HAS is a versatile clustering method that takes into
account the variability of the AS dimension along the parameter space. The price
paid for this is the overhead represented by the tuning of some hyper-parameters
introduced later in section 3.2.3.2.

3.2.3.1 Ridge approximation with hierarchical clustering and active subspaces

Before presenting the algorithm and the numerical results, some straightforward
theoretical considerations linked to the theory of ridge approximation with active
subspaces [54, 291] are due. We will consider scalar outputs f but the following
statements can be extended to vector-valued outputs.

Definition 1 (Local ridge approximation with active subspaces). Given a partition of
the domain P := {Si}i2{1,...,d} and a map r : P ! {1, . . . , nr}, nr ⌧ n representing the
local reduced dimension, the local ridge approximation with active subspaces of ( f , µ) is the
function RAS(r, f , µ) : X ⇢ R

n ! R that is defined locally for every Si 2 P as

g|Si
= Eµi

[ f |Pr(Si),i] � Pr(Si),i (3.4)

where µi := (1/µ(Si)) · µ|Si
R

n, and Pr,i : Si ⇢ R
n ! is the orthogonal projector with

rank r that satisfies the minimization problem

Pr,i = argmin
P2=P,P=PT ,

rank(P)=r

Eµi
k(Id� P)r f k2 = argmin

P2=P,P=PT ,
rank(P)=r

tr((Id� P)Eµi
[r f ⌦r f ] (Id� P)).



3.2 localized parameter space reduction 49

The above minimization problem is an adaptation from Proposition 2.6 of [291].
With this definition we can state the problem of local ridge approximation with
active subspaces.

Problem 2 ((P , r) minimizers of ridge approximation error). Find the partition P of
the domain X ⇢ R

n and the local reduced dimension map r : P ! {1, . . . , nr}, nr ⌧ n,
such that the L2-error between the objective function f and its local ridge approximation
with active subspaces is minimized. Assuming that the subspace Poincaré inequality [197]
is valid also for ( f , µ) restricted to the elements of the partition P , a straightforward bound
is obtained applying the Poincaré inequality for every element of the partition

Eµ
⇥
k f � RAS(r, f )k2⇤ = Â

Si2P
Eµ

h
k f |Si

�Eµi
[ f |Pr(Si),Si

] � Pr(Si),Si
k2
i

. Â
Si2P

Eµ

h
k(Id� Pr(Si),Si

)Tr f k2
i

.

To state problem 2 we made an assumption about the Poincaré subspace inequal-
ity that in general is not satisfied by any probability measure µ chosen.

Remark 11 (Subspace Poincaré inequality). The probabilistic Poincaré inequality for
conditional probability densities or subspace Poincaré inequality [197] is valid at least for
the following classes of absolutely continuous probability densities µ with p.d.f. r.

Assumption 3. The p.d.f r : X ⇢ R
n ! R satisfies one of the following:

1. X is bounded connected open with Lipschitz boundary, r is the uniform density
distribution.

2. X is convex and bounded, 9d, D > 0 : 0 < d  kr(x)kL•  D < • , 8x 2 X ,

3. X = R
n, r(x) ⇠ exp(�V(x)) where V : R

n ! (�•, •] , V 2 C2 is a-uniformly
convex,

u
THess(V(x))u � akuk2

2, 8x, u 2 R
n, (3.5)

where Hess(V(x)) is the Hessian of V(x).

4. X = R
n, r(x) ⇠ exp(�V(x)) where V is a convex function. In this case we require

also f Lipschitz continuous.

The last class of p.d.f. provides a weaker bound (Lemma 4.3, [197]) on the ridge approxi-
mation error. For the previous classes i 2 {1, 2, 3, 4} of p.d.f. an upper bound of the Poincaré
constant CP,i is also provided:

CP,1 = CP,1(W), CP,2 =
Ddiam(X )

pd
, CP,3 =

1
a

, (3.6)

while the upper bound for CP,4 requires the definition of other quantities and is proved
in Lemma 4.4 [197]. These results are useful to asses what properties the elements of the
partition P = {Si}i2{1,...,d} should satisfy in order for the subspace Poincaré inequality
to be valid and thus for the bound in remark 12 to be applied recursively with respect to
the refinement levels. In the numerical experiments we are going to present, the partition
P = {Si}i2{1,...,d} is defined by the decision boundaries of the clustering algorithm chosen.
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For the moment we will consider the local reduced dimension map r constant
and in general the codomain of r is a subset of {1, . . . , nr}, nr ⌧ n.

The previous bound suggests that a good indicator for refinement could be
represented by the residual eigenvalues of the local correlation matrix. We also
have the following immediate result that hints to indefinitely many successive
refinements to lower the L2-error.

Remark 12 (Relationships between the upper bounds of consecutive refinements).
Considering the sum over the number of refined clusters cl 2 {1, . . . , d} we have that

Z

X
k(Id� PT

r )r f k2 dµ =
d

Â
cl=1

Z

Scl⇢X
k(Id� PT

r )r f k2 dµ

�
d

Â
cl=1

Z

Scl⇢X
k(Id� PT

r,cl)r f k2 dµ, (3.7)

since the projectors {Pr,cl}cl2{1,...,d} are the minimizers of

Pr,cl = argmin
P2=P,P=PT ,

rank(P)=r

Z

Scl⇢X
k(Id� PT)r f k2 dµ. (3.8)

The RHS of equation (3.7) can be used as indicator for refinement. We remark that since the
refinements increase the weight decay of the eigenvalues in the RHS of equation (3.7), the
choice of the dimension of the active subspace may be shifted towards lower values, as we
are going to show in the numerical experiments, in section 3.4.

Unfortunately, the minimizers of the ridge approximation error and of the upper
bound are not generally the same. There is a counterexample in [291]. We start
from this counterexample to show that in general the L2-error of the local ridge
approximation does not decrease between consequent refinements, even if the
indicator from the RHS of equation (3.7) does, as stated in the previous remark.

Corollary 1 (Counterexample for indefinite refinement as optimal clustering crite-
rion). Let P = {A, B, C} be a partition of X = [�1, 1]2 such that A = [�1, e]⇥ [�1, 1],
B = [�e, e]⇥ [�1, 1], and C = [e, 1]⇥ [�1, 1]. Let µ be the uniform probability distribu-
tion on X . The objective function we want to approximate is

f : X ⇢ R
2 ! R, f =

8
>>><

>>>:

x1 + e, x 2 A,

x1(x1 + e)(x1 � e) cos(wx2), x 2 B,

x1 � e, x 2 C,

(3.9)

with local reduced dimension map r(A) = r(B) = r(C) = 1. There exist e > 0, w > 0,
such that

Eµ
⇥
k f � RAS(r, f , µ)k2⇤ � Eµ

⇥
k f �Eµ [ f |P1,X ] � P1,X k2⇤ ,

where P1,X is the optimal projector on the whole domain X with one-dimensional active
subspace.
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Proof. Let us use the notation h1(x1) := x1(x1 + e)(x1� e), and h2(x2) := cos(wx2),
it can be shown that

Eµ [r f ⌦r f ] =
Z

B

 
(h01)

2(h2)2 h1h01h2h02
h1h01h2h02 (h1)2(h02)

2

!
dµ(x) + µ(A [ C) ·

 
1 0
0 0

!

=

0

@
2
5 e5
⇣

1 + sin(2w)
2w

⌘
0

0 4
105 w2e7

⇣
1� cos(2w)

2w

⌘

1

A+

+ µ(A [ C) ·
 

1 0
0 0

!
,

thus, since we are considering a one dimensional active subspace, the active eigen-
vector belongs to the set {(1, 0), (0, 1)}. Similarly we evaluate

EµB [r f |B ⌦r f |B] =

0

@
8
5 e4
⇣

1 + sin(2w)
2w

⌘
0

0 16
105 w2e6

⇣
1� cos(2w)

2w

⌘

1

A ,

EµA [r f |A ⌦r f |A] = EµC [r f |C ⌦r f |C] =

 
1 0
0 0

!
,

and conclude that there exist e > 0, w > 0 such that:

2
5

e5
✓

1 +
sin(2w)

2w

◆
+ 4(1� e) � 4

105
w2e7

✓
1� cos(2w)

2w

◆
, (3.10)

8
5

e4
✓

1 +
sin(2w)

2w

◆
 16

105
w2e6

✓
1� cos(2w)

2w

◆
, (3.11)

for example e ⇠ 10�2, w ⇠ 104 (approximately 10e�2  w2  10e�7). In this way,
using the notations of definition 1, we have

P1,X = e1 ⌦ e1, P1,A = P1,C = e1 ⌦ e1, P1,B = e2 ⌦ e2,

and it follows that

Eµ
⇥
k f � RAS(r, f )k2⇤ = Eµ

⇥
f 2��

B

⇤
= (1/µ(X ))kh1k2

L2(X ,l)kh2k2
L2(X ,l),

Eµ
⇥
k f �Eµ [ f |Pr] � Prk2⇤ =

1
µ(X )

kh1k2
L2(X ,l)

����h2 �
1

µ(X )

Z
h2dx2

����
2

L2(X ,l)

=
1

µ(X )
kh1k2

L2(X ,l)

 
kh2k2

L2(X ,l) �
7

16

✓Z
h2dx2

◆2
!

,

where l is the Lebesgue measure.

The heuristic behind the previous proof rests on the fact that ridge approximation
with active subspaces performs poorly when the objective function has a high
variation. The counterexample is valid whenever the global projector P1,X is the
minimizer of a local L2 ridge approximation error for which the minimizer of the
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gradient-based indicator in equation (3.7) does not coincide. This leaves us with an
indicator in equation (3.7) that does not guarantee a non increasing L2-error decay
for subsequent refinements.

We conclude the section with some remarks about the response surface design
through the ridge approximation with active subspaces.

Remark 13 (Approximation of the optimal profile). In practice we do not consider the
optimal profile h(y) = Eµ [ f |s(Pr)] (y) but we employ the approximation h(y) = f (Prx).
The reason lies on the fact that to approximate the optimal profile at the value {yi}i,
additional samples from the conditional distribution p(z|yi = Prx) must be obtained; even
if the accuracy of the ridge approximation could benefit from it, this is not always possible
in practice because of the difficulty to sample from the conditional distribution or because of
computational budget constraints.

If the data is split in training, validation, and test set, the local R2 score on the
validation set can be used as indicator for refinement.

Remark 14 (Estimator based on local R2 scores). The R2 score of a single cluster can be
written with respect to the R2 scores {R2

l }l2{1,...,d} relative to the clusters of the subsequent
refinement. Let the sum be over the refinement clusters l 2 {1, . . . , d}, we have

R2 = 1� E[k f �E[ f |Pr] � Prk2]
Var( f )

(3.12)

= 1�
d

Â
l=1

E[k f |Sl
�E[ f |Pr,l ] � Pr,lk2]

Var( f )

= 1�
d

Â
l=1

Var( f |Sl
)

Var( f )
·

E[k f |Sl
�E[ f |Pr,l ] � Pr,lk2]

Var( f |Sl
)

= 1�
d

Â
l=1

Var( f |Sl
)

Var( f )
· (1� R2

l ),

which, substituting with the empirical variance, becomes

R2
emp = 1�

d

Â
l=1

Varemp( f |Sl
)

Varemp( f )
· (1� R2

emp;l) · Nl � 1
N � 1

, (3.13)

where R2
emp;l is the empirical local R2 score relative to cluster number l. The definition can

be extended for component-wise vector-valued objective functions f . The numerical results
shown in section 3.4 consider the mean R2 score along the components when the output is
vectorial.

In practice every mean is approximated with simple Monte Carlo, and without
the number of training samples increasing, the confidence on the approximation is
lower and lower, the more the domain is refined. This is taken into consideration
while clustering: the procedure balances the error from the poor Monte Carlo
approximation with the generally (see corollary 1) higher accuracy of the subsequent
refinement.

The following remark clarifies the link between the number of Monte Carlo sam-
ples, the numerical method chosen for the discretization of the integral Eµ [r f ⌦r f ],
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and the approximation of the active subspace. For example for deterministic models,
one could employ the more efficient Sobol sequences or a Latin hypercube sampling;
if f is more regular and the parameter space dimension is not too high one could
employ tensor product Gauss quadrature rule. See for example [265].

Remark 15 (Generalization of the upper bound on the approximation of the active
subspace). We want to make some brief considerations about the accuracy of the active
subspace as eigen subspace of the correlation matrix approximated with Monte Carlo. If
we use the notation W1 2 R

n⇥r, W2 2 R
n⇥(n�r) for the active and inactive subspaces (i.e.

Pr = W1WT
1 , Id� Pr = W2WT

2 ) and Ŵ1 2 R
n⇥r, Ŵ2 2 R

n⇥(n�r) for the approximated
active and inactive subspaces), we can bound the approximation error as done by Constantine
in [54]: assuming f Lipschitz continuous, with high probability the following inequality is
valid,

dist(Im(W1), Im(Ŵ1)) .
4L
p

n(log(n))
1
2

N 1
2 l1(lr � lr+1)

, (3.14)

where L is the Lipschitz constant of f , {l1, . . . ln} are the non-negative eigenvalues of
Eµi

[r f ⌦r f ] ordered decreasingly, and N is the number of Monte Carlo samples.
The bound in equation (3.14) is obtained from Corollary 3.8 and Corollary 3.10 in [54].

It is founded on a matrix Bernstein inequality for a sequence of random uniformly bounded
matrices (Theorem 6.1, [276]) and on the Corollary 8.1.11 from [104] that holds a bound
on the sensitivity of perturbation of an invariant subspace. We report this last result for
completeness, stated as Lemma 3.9 from [54]:

Theorem 2 (Theorem 8.1.11 from [104], Lemma 3.9 from [54]). Let C and Ĉ = C + E
be symmetric n⇥ n matrices with respective eigenvalues l1, . . . , ln and l̂1, . . . , l̂n and
eigenvector matrices

W = [W1 W2] , Ŵ =
⇥
Ŵ1 Ŵ2

⇤
, (3.15)

as defined previously. If lr > lr + 1 and

kEkF 
lr � lr+1

5
, (3.16)

then

dist(Im(W1), Im(Ŵ1)) 
4kWT

2 EW1kF

lr � lr+1
 4kEkF

lr � lr+1
. (3.17)

From this result, a bound on the approximation error of the active subspace W1 can
be obtained expliciting kWT

2 EW1kF with respect to the chosen numerical method for the
discretization Ĉ of the integral C = Eµi

[r f ⌦r f ]: in [54] this has been done for the
Monte Carlo method. In practice we could use quasi Monte Carlo sampling methods with
Halton or Sobol sequences [265], since

kWT
2 EW1kF 

q
r(n� r)kWT

2 EW1kmax

.
q

r(n� r)D⇤({xi}i) · maxi,j2{1,...,n}(VHK(r fir f j))

. 2
q

r(n� r)D⇤({xi}i) · max(| f |) · maxi2{1,...,n}(VHK(r fi))

. 2
q

r(n� r) · maxi2{1,...,n}(VHK(r fi))
log(N)n

N
,
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where VHK is the Hardy–Krause variation and D⇤({xi}i) is the star discrepancy of the
quasi random sequence {xi}i. For the above result we have imposed X = [0, 1]n but it can
be extended to different domains [16]. Thus we obtain the bound

dist(Im(W1), Im(Ŵ1)) .
4kWT

2 EW1kF

lr � lr+1

.
8L
p

r(n� r) · maxi2{1,...,n}(VHK(r fi))

lr � lr+1
· log(N)n

N
.

(3.18)

Other numerical integration rules can be chosen so that different regularity conditions on
the objective function may appear on the upper bound of the error, as the Lipschitz constant
on equation (3.14) or the Hardy–Krause variation on equation (3.18). For example, for
tensor product quadrature formulae [265], if the regularity of f is Cs we have generally,

dist(Im(W1), Im(Ŵ1)) .
4kWT

2 EW1kF

lr � lr+1
. 4

p
r(n� r)

Ns/n(lr � lr+1)
, (3.19)

or for Smolyak’s sparse quadrature rule [265],

dist(Im(W1), Im(Ŵ1)) .
4kWT

2 EW1kF

lr � lr+1
. 4

p
r(n� r) (log N)(n�1)(r+1)

Ns(lr � lr+1)
. (3.20)

For high-dimensional datasets and f less regular, the estimate 3.14 is the sharpest.

3.2.3.2 Implementation of hierarchical clustering with active subspaces

A schematic representation of the procedure of top-down clustering is reported
in algorithm 9. The design is straightforward and it employs a tree data structure
that assigns at each node a possible clustering of the whole dataset: consequent
refinements are represented by children nodes down until the leaves of the tree,
that represent the final clusters.

Remark 16 (Normalization of the clusters at each refinement iteration). Each cluster,
at every refinement step, is normalized uniformly along dimensions onto the hyper-cube
domain [�1, 1]n. Another possible choice for normalization is standardization, centering
the samples with their mean and dividing them by their standard deviation.

The procedure depends on many parameters that have to be tuned for the specific
case or depend a priori on the application considered: the maximum number of
clusters, the minimum and maximum number of children nodes, the tolerance for
the score on the whole domain, the minimun and maximum dimension of the active
subspace, and the minimum number of elements (el) of each cluster (usually el > r,
where r is the local AS dimension).

More importantly the method is versatile for the choice of clustering criterion,
indicator for refinement, and regression method. In the following sections we will
consider K-means and K-medoids with the active subspaces distance as clustering
criterion (see section 3.2.2), but other clustering algorithms could in principle be
applied at each refinement.
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Algorithm 9 Hierarchical top-down algorithm.
Input:

set of samples S = {xi}N
i=1 2 R

NF

number of clusters per tree refinement level K

range of number of children {n
child

min
, n

child
max }

minimum number of elements in a cluster nel

indicator for refinement I

distance metric d

minimum and maximum dimension of the active subspace rmin, rmax

score tolerance e
Output:

refinement tree T
1: add the initial cluster S to FIFO queue q = {S}
2: while q 6= ? do

3: take Sj, the first element from queue q
4: apply the refinement function in algorithm 10 to Sj to get the outputs {Si}i
5: add {Si}i to the queue q
6: if the score tolerance e is reached or other constraints are violated then

7: break

8: end if

9: end while

Remark 17 (Heuristic behind the choice of the active subspaces metric for K-me-
doids). Having in mind that the optimal profile h(y) = Eµi

[ f |Pr(Si),i] from definition 1 is
approximated as h(y) = f (y) = f (Prx) as reported in remark 13, we can argue that clus-
tering with the AS metric from equation (3.3) is effective since, for this choice of the metric,
the clusters tend to form transversally with respect to the active subspace directions. This
is because the metric weights more the components with higher eigenvalues. So clustering
with this metric reduces heuristically also the approximation error induced by the choice of
the non-optimal profile.

Other clustering criterions employed must satisfy the subspace Poincaré inequal-
ity for each cluster. Regarding the regression method we employ Gaussian process
regression with RBF-ARD kernel [287]. The procedure for response surface design
with Gaussian processes and ridge approximation with active subspaces can be
found in [54, 221]. As for the indicator for refinement, the local R2 score in re-
mark 14 is employed to measure the accuracy of the ridge approximation against
a validation dataset and the estimator from the RHS of equation (3.7) is used to
determine the dimension of the active subspace of each cluster.

Regarding the complexity of the algorithm, for each refinement, considering an
intermediate cluster of K elements, the most expensive tasks are the active subspace
evaluation O(Knp2 + Kn2 p + n3) (the first two costs refer to matrix multiplications,
while the third for eigendecomposition), the clustering algorithm, for example
K-medoids with AS distance O(K(K�m)2), and the Gaussian process regression
O(K3 p3), where p is the dimension of the outputs and m is the minimum number of
children clusters. With M we denote the maximum number of children clusters. At
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Algorithm 10 Refinement function.
Input:

cluster S = {xi}N
i=1 2 R

NF

number of clusters per tree refinement level K

range of number of children {n
child

min
, n

child
max }

minmum number of elements in a cluster nel

indicator for refinement I

distance metric d

minimum and maximum dimension of the active subspace rmin, rmax

Output:
{Sj}n

child

j=1 , the children of cluster S

1: set best score to b = 0
2: for each n

child from n
child

min
to n

child
max do

3: apply the chosen clustering algorithm (e.g. K-medoids) with n
child clusters

and metric d to obtain the clusters {Sj}n
child

j
4: evaluate the estimator of the error I for the refinement {Sj}j, taking also

into account the minimum and maximum reduced dimensions rmin, rmax

5: if I > b and the minimum number of elements nel is not reached and the
maximum number of clusters K is not reached then

6: save the best refinement {Sj}j and update the best score b
7: end if

8: end for

each refinement level, the most costly operation is the Gaussian process regression.
In the worst case the height of the refinement tree is l = logm N/el where el
is the minimum number of elements per cluster. From table 3.1, assuming p =
1, it can be noticed that at the beginning the most expensive operation is the
clustering algorithm (especially when k ⌧ N, in general N > n), while near the
final refinement the most expensive operations are the GPR and the evaluation of
the AS when m is moderately greater than the minimum number of elements el (in
general it can happen to have m > el > r). In fact, at the i-th refinement level the
AS and GPR are computed (M�m)mi times, while the clustering is performed mi

times.

3.3 classification with local active subspace dimension

A poor design of the parameter space could add an avoidable complexity to the sur-
rogate modeling algorithms. Often, in practical applications, each parameter range
is chosen independently with respect to the others. Then, it is the responsibility of
the surrogate modelling procedure to disentangle the correlations among the pa-
rameters. However, in this way, looking at the response surface from parameters to
outputs, regions that present different degrees of correlation are treated indistinctly.
In this matter, a good practice is to study as a preprocessing step some sensitivity
measures, like the total Sobol indexes [265] among groups of parameters, and
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Table 3.1: Computational complexity of hierarchical top-down clustering.

Step Cost Description

Root O(Nnp2 + Nn2 p + n3) AS

O(N3 p3) GPR

First refinement: O(N(N � k)2) K-medoids

k from m to M O((N/k)np2 + (N/k)n2 p + n3) AS

O((N/k)3 p3) GPR

Intermediate refinements - -

Last refinement: O((N/kl�1)((N/kl�1)� k)2) K-medoids

k from m to M O((N/kl)np2 + (N/kl)n2 p + n3) AS

for each one of the ml�1 clusters O((N/kl)3 p3) GPR

split the parameter space accordingly in order to avoid the use of more expensive
surrogate modeling techniques later.

Of course Sobol indices or the global active subspace sensitivity scores give
summary statistics on the whole domain. So in general, one could study the
parameter space more in detail, classifying nonlinearly regions with respect to the
complexity of the response surface, if there are enough samples to perform such
studies.

We introduce an effective approach to tackle the problem of classification of the
parameter space with respect to a local active subspace information. With the latter
we mean two possible alternatives.

Definition 2 (Local active subspace dimension). Given a threshold e > 0, the pairs of
inputs and gradients {(Xi, dYi)}i associated to an objective function of interest f : X ⇢
R

n ! R, the size of the neighbour of sample points to consider N � n, and a subsampling
parameter p 2 N, p  N, the local active subspace dimension ri associated to a sample
point Xi 2 X is the positive integer

ri = argmin
1rp

⇢
tr

 
(Id� Pr)

 
1
p Â

i2J
dYi ⌦ dYi

!
(Id� Pr)

!
 e

���� J 2 C(N, p)

�
,

where C(N, p) is the set of combinations without repetition of the N elements of the
Euclidean neighbour of Xi with class p.

Definition 3 (Local active subspace). Given the pairs of inputs and gradients {(Xi, dYi)}i
associated to an objective function of interest f : X ⇢ R

n ! R, the size of the neighbour
of sample points to consider N � n, and a fixed dimension p 2 N, 1  p  N, the
local active subspace Wi associated to a sample point Xi 2 X is the matrix of the first p
eigenvectors of the spectral decomposition of

(Id� Pr)

 
1
p Â

i2U
dYi ⌦ dYi

!
(Id� Pr), (3.21)
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where U is the neighbour of sample points of Xi with respect to the Euclidean distance. In
practice we choose p close to the global active subspace dimension. The pairs {(Xi, Wi)}i
can be thought as a discrete vector bundle of rank p and {Wi}i can be thought as a subset
of points of the Grassmannian Gr(N, p).

Starting from the pairs of inputs-gradients {(Xi, dYi)}i, the procedure follows
the following steps:

1. Each parameter sample is enriched with the additional feature corresponding
to the local active subspace dimension from definition 2 or the local active
subspace from definition 3, represented by the variable Z.

2. Each sample Xi is labelled with an integer li that will be used as classification
label in the next step. To label the pairs {(Xi, Zi)}i we selected K-medoids
with Grassmanian metric

d((Xi, Zi), (Xj, Zj)) = kZi � ZjkF, (3.22)

where k·kF is the Frobenious distance, in case Zi represents the local active
subspace or spectral clustering in case Zi is the local active subspace dimen-
sion. In the last case, the labels correspond to the connected components of
the graph built on the nodes {(Xi, Zi)}i with adjacency list corresponding to
the nearest nodes with respect to the distance

d((Xi, Zi), (Xj, Zj)) =

8
<

:
•, Zi 6= Zj

kXi � Xjk, Zi = Zj

, (3.23)

where k·k is the Euclidean metric in R
n. The connected components are

obtained from the eigenvectors associated to the eigenvalue 0 of the discrete
Laplacian of the graph [188].

3. A classification method is applied to the inputs-labels pairs {(Xi, li)}i. Gener-
ally, for our relatively simple applications we apply a multilayer perceptron
with 1000 hidden nodes and 2 layers.

Remark 18 (Grassmann distance). In general regarding the definition 3, the dimension
p could be varying among samples Xi and one could use a more general distance with
respect to the one from equation (3.22) that can have as arguments two vectorial subspaces
of possibly different and arbitrary large dimensions.

Remark 19 (Gradient-free active subspace). In general both the response surface design
and the classification procedure above can be carried out from the pairs {(Xi, Yi)}i of inputs,
outputs instead of the sets {(Xi, dYi)}i of inputs, gradients. In fact, the gradients {dYi}
can be approximated in many different ways [54] from {(Xi, Yi)}i. In the numerical results
in section 3.4 when the gradients are not available they are approximated with the gradients
of the local one-dimensional polynomial regression built on top of the neighbouring samples.
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Algorithm 11 Classification with local features from the AS information.
Input:

inputs-gradients pairs {(Xi, dYi)}i2I as training dataset with index set I
local features based on AS information {Zi}i2I
labelling method based on the distance d from equation (3.22) or from

equation (3.23)
classification method taking as input the inputs-labels pairs {(Xi, li)}i2I

Output:
predictor for new test inputs and classes of the training dataset.

1: for each i 2 I do

2: evaluate the feature Zi from (Xi, dYi) and the neighbouring points of Xi
3: end for

4: initialize the|I|⇥ |I| distance matrix M associated to the pairs {(Xi, Zi)}i2I
5: for each i 2 I do

6: for each i  j 2 I do

7: M(i, j) = d((Xi, Zi), (Xj, Zj))
8: end for

9: end for

10: use the labelling method with input M, to assign a label li for each pair (Xi, Zi)
11: train the classification method with the inputs-labels training pairs {(Xi, li)}i2I

3.4 numerical results

In this section we are going to apply the proposed LAS method to some datasets
of increasing complexity. We compare the clustering techniques we presented in
section 3.2, and we show how the active subspaces-based distance metric outper-
forms the Euclidean one for those functions which present a global lower intrinsic
dimensionality. We remark that for hierarchical top-down clustering we can use
both metrics, and we always show the best case for the specific dataset.

We start from a bidimensional example for which we can actually plot the clusters
and the regressions, and compare the different techniques. Even if it is not a case
for which one should use parameter space dimensionality reduction we think it
could be very useful for the reader to understand also visually all the proposed
techniques. For the higher dimensional examples we compare the accuracy of the
methods in terms of R2 score and classification performance.

All the computations regarding AS are done with the open source Python pack-
age1 called ATHENA [222], for the classification algorithms we use the scikit-learn
package [42] and for the Gaussian process regression GPy [91].

3.4.1 Some illustrative bidimensional examples

We start by presenting two bidimensional test cases in order to be able to present
every aspect of the methodology together with illustrative plots. First we analyse a
case where a global active subspace, even if present, does not provide a regression

1 Available at https://github.com/mathLab/ATHENA/.

https://github.com/mathLab/ATHENA/
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accurate enough along the active direction in section 3.4.1.1. Then we consider
a radial symmetric function for which, by construction, an AS does not exist in
section 3.4.1.2 and the use of K-means is instead preferable since we cannot exploit
a privileged direction in the input domain.

3.4.1.1 Quartic function

Let us consider the following bidimensional quartic function:

f (x) = x4
1 � x4

2 , x = (x1, x2) 2 [0, 1]2. (3.24)

In figure 3.2 we can see the contour plot of the function, the active subspace direction
— translated for illustrative reasons — and the corresponding sufficient summary
plot of the global active subspace, computed using 400 uniformly distributed
samples. With sufficient summary plot we intend f (x) plotted against the input
parameters projected onto the active subspace, that is WT

1 x. It is clear how, in this
case, a univariate regression does not produce any useful prediction capability.

Figure 3.2: On the left panel the contour plot of the quartic function considered in equa-
tion (3.24) and in orange the global active subspace direction. On the right panel the
sufficient summary plot resulting projecting the data onto the global AS.

Let us apply the clustering techniques introduced in the previous sections fixing
the number of clusters to 4. In figure 3.3 we can clearly see how the supervised
distance metric in equation (3.3) acts in dividing the input parameters. On the left
panel we apply K-means which clusters the data into 4 uniform quadrants, while
in the middle and right panels we have K-medoids and hierarchical top-down,
respectively, with a subdivision aligned with the global AS. We notice that for this
simple case the new metric induces an identical clustering of the data. In figure 3.4
we plotted the sufficient summary plots for each of the clusters individuated by
K-medoids or hierarchical top-down in figure 3.3. It is clear how by using a single
univariate regression for each cluster the R2 score improves a lot with respect to a
global approach (see right panel of figure 3.2).

We can also compare the R2 scores for all the methods, using a test datasets of
600 samples. In figure 3.5 we report the scores for K-means, K-medoids and for
hierarchical top-down with AS-based distance metric. The score for the global AS,
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Figure 3.3: Comparison between the different clusters obtained by K-means (on the left),
K-medoids (middle panel), and hierarchical top-down (on the right) with AS induced
distance metric defined in equation (3.3) for the quartic test function. In orange the global
active subspace direction. Every cluster is depicted in a different color.

Figure 3.4: Local sufficient summary plots for the 4 clusters individuated by K-medoids or
hierarchical top-down in figure 3.3 (colors correspond).

which is 0.78, is not reported in figure 3.5 for illustrative reasons. The results are
very similar due to the relatively simple test case, but we can see that even with 2
clusters the gain in accuracy is around 23% using the metric in equation (3.3).

The hierarchical top-down clustering method was ran with the following hyper-
parameters: the total number of clusters is increasing from 2 to 10, the minimum
number of children equal to the maximum number of children equal to 3, uniform
normalization of the clusters, the minimum size of each cluster is 10 elements, the
clustering method is K-medoids with AS distance, the maximum active subspace
dimension is 1.

Then we want to increase the accuracy of the regression with 3 clusters, loosing
in some regions the reduction in the parameter space. Starting from the clustering
with hierarchical top-down and 3 clusters of dimension 1, the AS dimension of
each of the 3 clusters is increased if the threshold of 0.95 on the local R2 score is
not met. In general, the local R2 score is evaluated on a validation set, for which
predictions from the local response surfaces are obtained, after each valdidation
sample is classified into one of the 3 clusters.
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Figure 3.5: R2 scores comparison between local versions varying the number of clusters for
the quartic function in equation (3.24). Global AS has a score equal to 0.78.

Figure 3.6: On the left panel the hierarchical top-down clustering with heterogeneous AS
dimension and R2 score equal to 1. On the right panel the labels of the local AS dimension
from definition 2.

The 3 clusters are reported in figure 3.6 on the left. The R2 score on the test set is
1, instead of around 0.97 from figure 3.5. To obtain this result, the central cluster
AS dimension is increased from 1 to 2. We compare the clustering with respect to
the classification of the local AS dimension with algorithm 11 using as features the
local AS dimension as defined in definition 2, on the right of figure 3.6. Actually
algorithm 11 is stopped after the plotted labels are obtained as the connected
components of the underlying graph to which spectral clustering is applied: no
classification method is employed, yet. It can be seen that hierarchical top-down
clustering with heterogeneous AS dimension is more efficient with respect to the
classes of algorithm 11, regarding the number of samples associated to a response
surface of dimension 2.

3.4.1.2 Radial symmetric cosine

This example addresses the case for which an active subspace is not present. This is
due to the fact that there are no preferred directions in the input domain since the
function f has a radial symmetry. For this case the exploitation of the supervised
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distance metric does not provide any significant gain and K-means clustering works
better on average, since it does not use the global AS structure. The model function
we consider is the following

f (x) = cos(kxk2) , x 2 [�3, 3]2. (3.25)

In figure 3.7 we compare the R2 scores for K-means, K-medoids with AS-based
metric, and hierarchical top-down with Euclidean metric. We used 500 training
samples and 500 test samples. We see K-medoids has not a clear behaviour with
respect to the number of clusters, while the other methods present a monotonic
trend and better results on average, especially K-means. On the other hand local
models improve the accuracy considerably, even for a small number of clusters,
with respect to a global model.

Figure 3.7: R2 scores comparison between global AS and local versions varying the number
of clusters for the isotropic model function in equation (3.25). Global AS corresponds to no
clustering.

In this case the specifics of hierarchical top-down clustering are: the minimum
number of children is equal to the maximum, the minimum number of elements per
cluster is 10, the clustering method chosen is K-means, the normalization employed
it the uniform one, and the total number of clusters is increasing from 2 to 11.

3.4.2 High-dimensional datasets

In this section we consider some more interesting benchmarks, for which dimension
reduction in the parameter space is more useful since the starting dimension of the
parameter space is higher. We test the classification procedure in algorithm 11 with
an objective function with 6 parameters and defined piecewise as a paraboloid with
different AS dimensions. We also test the procedure of response surface design with
LAS, with a classical 8-dimensional epidemic benchmark model.

3.4.2.1 Multi-dimensional hyper-paraboloid

The objective function f : [�4, 4]6 ! R we consider is defined piecewise as follows
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f (x) =

8
>>>>>><

>>>>>>:

x2
1 if x1 > 0 and x2 > 0,

x2
1 + x2

2 if x1 < 0 and x2 > 0,

x2
1 + x2

2 + x2
3 if x1 > 0 and x2 < 0,

x2
1 + x2

2 + x2
3 + x2

4 if x1 < 0 and x2 < 0.

(3.26)

In the 4 domains in which f is defined differently, we expect an AS dimension
ranging from 1 to 4, respectively. We employed algorithm 11 using the local AS
dimensions as additional features, from definition 2: the values of the hyper-
parameters are the following: e = 0.999, N = 6, p = 4. In figure 3.8 we plot the
accuracy of the classification of the labels, associated to the connected components
of the graph built as described in algorithm 11, and also the accuracy of the
classification of the local active subspace dimension, that takes the values from 1 to
4. The test dataset for both the classification errors has size 1000. The score chosen
to asses the quality of the classification is the mean accuracy, that is the number of
correctly predicted labels over the total number of labels. For both the classification
tasks 100 train samples are enough to achieve a mean accuracy above 80%.

Figure 3.8: Mean accuracy study for a training dataset increasing in size from 50 to 500
samples. The test set is made of 1000 independent samples. The classification accuracy for
the procedures of connected component classification (in blue) and local AS dimension
classification (in orange) are both shown.

We remark that every step is applied to a dataset of samples in a parameter space
of dimension 6, even if, to get a qualitative idea of the performances of the method,
in figure 3.9 we show only the first two components of the decision boundaries of
the 4 classes for both the previously described classification problems.

3.4.2.2 Ebola epidemic model

In this section we examine the performance of the proposed methods over the
dataset created with the SEIR model for the spread of Ebola2. The output of interest

2 The dataset was taken from https://github.com/paulcon/as-data-sets.

https://github.com/paulcon/as-data-sets
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Figure 3.9: On the left panel the decision boundaries of the 4 classes associated to the
connected components of the graph built as described in algorithm 11. On the right panel
the decision boundaries of the 4 classes associated to the local AS dimension from 1 to 4.
The datasets has dimension 6, only the first two components of the decision boundaries
and of the test samples are plotted.

in this case is the basic reproduction number R0 of the SEIR model, described
in [74], which is computed using 8 parameters as follows

R0 =
b1 + b2r1g1

w + b3
g2

y

g1 + y
. (3.27)

As shown in previous works, this function has a lower intrinsic dimensionality,
and thus a meaningful active subspace, in particular of dimension 1. To evaluate
the performance of the local AS we compute the R2 score, as in equation (3.12),
varying the number of clusters from 2 to 10 for all the methods presented. The
test and training datasets are composed by 500 and 300, respectively, uniformly
distributed and independent samples. The results are reported in figure 3.10, where
as baseline we reported the R2 for the GPR over the global AS. We can see how
the use of the AS-based distance metric contributes the most with respect to the
actual clustering method (compare K-medoids and hierarchical top-down in the
plot). K-means, instead, does not guarantee an improved accuracy (for 4 and 9
clusters), and in general the gain is limited with respect to the other methods,
especially for a small number of clusters which is the most common case in practice,
since usually we work in a data scarcity regime. The results for K-medoids and
top-down are remarkable even for a small amount of clusters with an R2 above 0.9
and an improvement over 10% with respect to the global AS, which means that no
clustering have been used.

The hyper-parameters for the hierarchical top-down algorithm are the following:
the maximum local active subspace dimension is 1, the maximum number of
children is equal to the number of total clusters, the minimum number of children
is 2 at each refinement level, the minimum number of elements per cluster is 10,
and the clustering method for each refinement is K-medoids with AS distance.
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Figure 3.10: R2 scores comparison between global AS and local versions varying the number
of clusters for the Ebola spread model defined in equation (3.27). Global AS corresponds to
no clustering.

3.4.3 Datasets with vectorial outputs

In this section we want to show how hierarchical top-down clustering and the
classification procedure of algorithm 11 can be combined to improve the overall
reduction in the parameter space, for a fixed lower threshold in the R2 score. For
the response surface design with active subspaces for vectorial outputs we refer
to [221, 291].

3.4.3.1 Poisson equation with random diffusivity

Let us consider the stochastic Poisson problem on the square x = (x, y) 2 W :=
[0, 1]2, defined as:

8
>>>>>><

>>>>>>:

�r · (k ru) = 1, x 2 W,

u = 0, x 2 ∂Wtop [ ∂Wbottom,

u = 10y(1� y), x 2 ∂Wleft,

n ·ru = 0, x 2 ∂Wright,

(3.28)

with homogeneous Neumann boundary condition on ∂Wright, and Dirichlet bound-
ary conditions on the remaining part of ∂W. The diffusion coefficient k : (W, A, P)⇥
W ! R, with A denoting a s-algebra, is such that log(k) is a Gaussian random
field, with covariance function G(x, y) defined by

G(x, y) = exp
✓
�kx� yk2

b2

◆
, 8 x, y 2 W, (3.29)

where the correlation length is b = 0.03. We approximate this random field with
the truncated Karhunen–Loève decomposition as

k(s, x) ⇡ exp

 
m

Â
i=0

Xi(s)giyi(x)

!
, 8(s, x) 2 W⇥W, (3.30)
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where (Xi)i21,...,m are independent standard normal distributed random variables,
and the eigenpairs of the Karhunen–Loève decomposition of the zero-mean random
field k are denoted with (gi, yi)i21,...,d. The parameters (Xi)i21,...,m=10 sampled from
a standard normal distribution are the coefficients of the Karhunen-Loève expansion,
truncated at the first 10 modes, so the parameter space has dimension m = 10.

The domain W is discretized with a triangular unstructured mesh T with 3194
triangles. The simulations are carried out with the finite element method with
polynomial order 1. The solution u is evaluated at 1668 degrees of freedom, thus
the output is vectorial with dimension d = 1688. As done in [221, 291], the output
is enriched with the metric induced by the Sobolev space H1(W) on to the finite
element space of polynomial order 1: the metric is thus represented by a d ⇥ d
matrix M obtained as the sum of the mass and stiffness matrices of the numerical
scheme and it is involved in the AS procedure when computing the correlation
matrix E

⇥
D f M D f T⇤, where D f is the m ⇥ d Jacobian matrix of the objective

function f : R
10 ! R

d.
Since the output is high-dimensional we classified with algorithm 11 the output

space in 6 clusters, using the Grassmann distance from equation (3.22), as shown in
figure 3.11.

Figure 3.11: Subdivision of the spatial domain W in 6 clusters based on the Grassmann
distance from definition 3, i.e. the clusters correspond to the connected components of
the graph built on top of the degrees of freedom with adjacency list determined using as
distance definition 3.

Afterwards we applied hierarchical top-down clustering to every one of the
6 triples of inputs-outputs-gradients, obtained restricting the outputs and the
gradients to each one of the 6 clusters. The specifics of hierarchical top-down
clustering we employed are the following: the minimum and maximum number of
children for each refinement are equal to the total number of clusters, which is 4,
the minimum number of elements in each cluster is 10, and the clustering algorithm
chosen is K-medoids with the AS distance. The size of the training and test datasets
is respectively of 500 and 150. The gradients are evaluated with the adjoint method.
Since the output is vectorial we employed the mean R2 score, where the average is
made among the components of the vectorial output considered.
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Then for every lower threshold on the R2 score we increase one by one the
dimension of the 6⇥ 4 local clusters, until all the R2 scores of each of the 6 triples
are above the fixed threshold. The same procedure is applied to the whole dataset
of inputs-outputs-gradients but executing hierarchical top-down clustering just
once, for all the output’s components altogether.

Figure 3.12: In orange the local AS dimensions weighted on the number of elements of each
of the 4 clusters in the parameter space, obtained with hierarchical top-down clustering. In
blue the local AS dimensions weighted on the number of elements of each of the 4 clusters
in the parameter space, obtained with hierarchical top-down clustering, times 6 clustered
outputs (see figure 3.11) for a total of 24 terms in the weighted average.

The results are reported in figure 3.12. In the case of the clustered outputs, the
local dimension of each one of the 6 clustered outputs times 4 local clusters in the
parameter space, for a total of 24 local clusters, are weighted with the number of
elements of each cluster. In the same way the 4 clusters of the case with unclustered
outputs is weighted with the number of the elements of each one of the 4 clusters.
It can be seen that for every fixed threshold, there is an evident gain, with respect
to the dimension reduction in the parameter space, in clustering the outputs and
then performing hierarchical top-down clustering in the parameter space.

3.4.3.2 Shape design of an airfoil

For this vectorial test case we consider the temporal evolution of the lift coefficient
of a parametrized NACA airfoil. Here we briefly present the problem we solve to
create the dataset, we refer to [271] and to chapter 10 for a deeper description.

Let us consider the unsteady incompressible Navier-Stokes equations described
in an Eulerian framework on a parametrized space-time domain S(µ) = W(µ)⇥
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[0, T] ⇢ R
2⇥R

+. The vectorial velocity field u : S(µ)! R
2, and the scalar pressure

field p : S(µ)! R solve the following parametric PDE:
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ut +r · (u⌦ u)�r · 2nrs
u = �rp in S(µ),

r · u = 0 in S(µ),

u(t, x) = f(x) on Gin ⇥ [0, T],

u(t, x) = 0 on G0(µ)⇥ [0, T],

(nru� pI)n = 0 on Gout ⇥ [0, T],

u(0, x) = k(x) in S(µ)0

. (3.31)

Here, G = Gin [ Gout [ G0 denotes the boundary of W(µ) composed by inlet
boundary, outlet boundary, and physical walls, respectively. With f(x) we indicate
the stationary non-homogeneous boundary condition, and with k(x) the initial
condition for the velocity at t = 0. The geometrical deformation are applied to the
boundary G0(µ). The undeformed configuration corresponds to the NACA 4412
wing profile [1, 126]. To alter such geometry, we adopt the shape parametrization
and morphing technique proposed in [114], where 5 shape functions are added to
the airfoil profiles. Let yu and yl be the upper and lower ordinates of the profile,
respectively. The deformation of such coordinates is described as follows

yu = yu +
5

Â
i=1

ciri, yl = yl �
5

Â
i=1

diri, (3.32)

where the bar denotes the reference undeformed state. The parameters µ 2 D ⇢ R
10

are the weights coefficients, ci and di, associated with the shape functions ri. In
particular we set D := [0, 0.03]10. The explicit formulation of the shape functions
can be found in [114]. For this datasets, the Reynolds number is Re = 50000. The
time step is dt = 1e� 3s. For other specifics regarding the solver employed and the
numerical method adopted see [271].

As outputs we considered the values of the lift coefficient, every 15 time steps
from 100ms to 30000ms, for a total of 1994 components. Even in this case the output
is classified with algorithm 11 with distance defined in definition 2. The values of
the lift coefficient physically interesting are collected at last, after an initialization
phase. Nonetheless for the purpose of having a vectorial output we considered
its value from the time instant 100ms. The procedure finds two classes and splits
the ordered output components in two parts: from the component 0 to 996, the
local AS dimension is 1, for the remaining time steps it is higher. So we can expect
an improvement on the efficiency of the reduction in the parameter space when
considereing separately these two sets of outputs components as figure 3.13 shows.
The weighted local AS dimension is in fact lower when using clustering, for every
minimum R2 threshold.

3.5 conclusions and perspectives

In this chapter we present a new local approach for parameter space reduction
which exploits supevised clustering techniques, such as K-means, K-medoids, and
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Figure 3.13: In orange the local AS dimensions weighted on the number of elements of each
of the 2 clusters in the parameter space, obtained with hierarchical top-down clustering. In
blue the local AS dimensions weighted on the number of elements of each of the 2 clusters
in the parameter space, obtained with hierarchical top-down clustering, times 2 clustered
outputs for a total of 4 terms in the weighted average.

hierarchical top-down, with a distance metric based on active subspaces. We called
this method Local Active Subspaces.

The theoretical formulation provides error estimates for the contruction of re-
sponse surfaces over the local active subspaces. We also present a classification
approach to capture the optimal AS dimension for each cluster and can be used
as a preprocessing step, both for the inputs and the vectorial outputs, for the
construction of more accurate regressions and surrogate modeling. The proposed
approach is very versatile, especially the hierarchical top-down clustering which
can incorporate quite different criteria. The methodology has been validated over a
vast range of datasets, both scalar and vector-valued, showing all the strengths and
a possible weakness, in case of radial symmetric functions. In all the test cases LAS
achieved superior performance with respect to the classical global approach.

Possible future lines of research can focus on the study of the extension of this
methods to nonlinear parameter space reduction techniques, or on the use of more
advanced clustering criteria.



4
M U LT I - F I D E L I T Y D ATA F U S I O N T H R O U G H A C T I V E
S U B S PA C E S

In this chapter we present a multi-fidelity approach based on a nonlinear autoregres-
sive scheme involving Active Subspaces, which we called Nonlinear Autoregressive
Multi-fidelity Gaussian Process Regression with Active Subspaces (NARGPAS).

Gaussian processes are employed for non-parametric regression in a Bayesian
setting. They generalize linear regression embedding the inputs in a latent manifold
inside an infinite-dimensional reproducing kernel Hilbert space. We can augment
the inputs with the observations of low-fidelity models in order to learn a more
expressive latent manifold and thus increment the model’s accuracy. This can be
realized recursively with a chain of Gaussian processes with incrementally higher
fidelity. We would like to extend these multi-fidelity model realizations to case
studies affected by an high-dimensional input space but with a low intrinsic dimen-
sionality. In this cases physical supported or purely numerical low-order models
are still affected by the curse of dimensionality when queried for responses. When
the model’s gradients information is provided, the presence of an active subspace
can be exploited to design low-fidelity response surfaces and thus enable Gaussian
process multi-fidelity regression, without the need to perform new simulations. This
is particularly useful in the case of data scarcity. After presenting the multi-fidelity
scheme we test it on two different high-dimensional benchmarks. All the results
presented in this chapter appeared in [224].

71
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4.1 literature review

Every day more and more complex simulations are made possible thanks to the high
performance computing facilities spread and to the advancements in computational
methods. Still the study and the approximation of high-dimensional functions of
interest represent a problem due to the curse of dimensionality and the data scarcity
because of limited computation budgets.

Gaussian Processes (GP) [287] have been proved as a versatile and powerful
technique for regression GPR, classification, inverse problem resolution, and opti-
mization, among others. In the last years several studies and extensions have been
proposed in the context of non-parametric and interpretable Bayesian models. For
a review on Gaussian processes and kernel methods we suggest [135], while for
approximation methods in the framework of GP see [213]. Progress has also been
made to deal with big data and address some memory limitations of GPR, as for
example by sparsifying the spectral representation of the GP [154] or introducing
stochastic variational inference for GP models [164].

Multi-fidelity modelling has been proven effective in a heterogeneous set of
applications [29, 30, 87, 138, 143, 218], where expensive but accurate high-fidelity
measurements are coupled with cheaper to compute and less accurate low-fidelity
data. Recent advancements have been made for Nonlinear Autoregressive Multi-
fidelity Gaussian Process Regression (NARGP) as proposed in [203], and with physics
informed neural networks (PINNs) [217] in the context of multi-fidelity approxima-
tion in [176].

The increased expressiveness of these models is achieved thanks to some kind
of nonlinear approach that extend GP models to non-Gaussian processes with the
disadvantage of an additional computational cost. In this direction are focused
the following works which aim to obtain computationally efficient heteroscedastic
GP models with a variational inference approach [155] or employing a nonlinear
transformation [253]. This approach is extended to multi-fidelity models departing
from the linear formulation of Kennedy and O’Hagan [138] towards deep Gaussian
processes [62] and NARGP.

When the models depend on a high-dimensional input space even the low-fidelity
approximations supported by a physical interpretation or a purely numerical model
order reduction suffer from the curse of dimensionality especially for the design
of high-dimensional GP models. Active Subspaces [54, 291] can be used to build
a surrogate low-fidelity model with reduced input space taking advantage of
the correlations of the model’s gradients when available. Reduction in parameter
space through AS has been proven successful in a diverse range of applications
such as: shape optimization [73, 168], hydrologic models [129], naval and nautical
engineering [67, 184, 267, 270, 272], coupled with intrusive reduced order methods
in cardiovascular studies [266], in CFD problems in a data-driven setting [72, 271]. A
kernel-based extension of AS for both scalar and vectorial functions can be found
in [221].

The aim of the present contribution is to propose a multi-fidelity regression
model which exploits the intrinsic dimensionality of high-dimensional functions of
interest and the presence of an active subspace to reduce the approximation error of
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high-fidelity response surfaces. Our approach employs the design of a NARGP using
an AS response surface as low-fidelity model. In the literature the multi-fidelity
approximation paradigm has been adopted in a different way to search for an active
subspace from given high- and low-fidelity models [152].

The outline of this chapter is the following: in section 4.2 we present the general
framework of Gaussian process regression and in particular the NARGP multi-
fidelity approach; to recall Active Subspaces, which we exploit as low-fidelity
model, the reader can refer to section 2.2; section 4.3 is devoted to present how data
fusion with AS is performed with the aid of algorithms; in section 4.4 we apply
the proposed approach to the piston and Ebola benchmark models showing the
better performance achieved by the multi-fidelity regression; finally in section 4.5
we present our conclusions and we draw some future perspectives.

4.2 multi-fidelity gaussian process regression

In the next subsections we are going to present the GPR [287] technique which is
the building block of multi-fidelity GPR, and the NARGP [203] we are going to use
in this work. The numerical methods are presented for the general case of several
levels of fidelity.

4.2.1 Gaussian process regression

Gaussian process regression [287] is a supervised technique to approximate un-
known functions given a finite set of input/output pairs S = {xi, yi}N

i=1. Let
f : X ⇢ R

D ! R be the scalar function of interest. The set S is generated through
f with the following relation: yi = f (xi), which are the noise-free observations.
To f is assigned a prior with mean m(x) and covariance function k(x, x

0; q), that
is f (x) ⇠ GP(m(x), k(x, x

0; q)). The prior expresses our beliefs about the function
before looking at the observed values. From now on we consider zero mean GP ,
m(x) = 0, and we define the covariance matrix Ki,j = k(xi, xj; q), with K 2 R

N⇥N .
To use the Gaussian process to make prediction we still need to find the optimal val-
ues of the elements of the hyper-parameters vector q. We achieve this by maximizing
the log marginal likelihood:

log p(y|x, q) = �1
2

y
T

K
�1

y� 1
2

log |K|� N
2

log 2p. (4.1)

Let x⇤ be the test samples, and KN⇤ = k(x, x⇤; q) be the matrix of the covariances
evaluated at all pairs of training and test samples, and in a similar fashion K⇤N =
k(x⇤, x; q), and K⇤⇤ = k(x⇤, x⇤; q). By conditioning the joint Gaussian distribution
on the observed values we obtain the predictions f⇤ by sampling the posterior

f⇤|x⇤, x, y ⇠ N (K⇤NK
�1

y, K⇤⇤ �K⇤NK
�1

KN⇤). (4.2)
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4.2.1.1 A Gaussian process regression example

As an explanatory example we are going to approximate the function f : W ⇢ R !
R defined as

f (x) := sin((x� 2.5)2) + 0.6 cos(x2 + 0.5) x 2 W := [0, 5], (4.3)

using Gaussian process regression.
A Gaussian process provides a prior over some infinite-dimensional function,

defined by a mean function m and a covariance function k:

f (x) ⇠ GP(m(x), k(x, x⇤)). (4.4)

When we sample from the kernel k, to create a matrix over some sample space, we
are creating a matrix of values that describe the covariance between sample points.
Since it is not possible to sample every single point in an infinite dimensional
function, we have to sample a finite subset of the input domain. Let X denote some
inputs, and K the covariance matrix associated, that is Kij = k(Xi, Xj), then we
can describe the prior over f (X) as a (finite-dimensional) normal distribution with
covariance K. As such, we can easily create samples of f which are representative
of the true function.

We can also sample from the kernel prior by creating a covariance matrix over a
sample space and sampling from a zero-mean multivariate normal distribution with
covariance K. After the Gaussian process regression, the fitted posterior can also
be sampled in the same manner, to get samples of the fitted function. In figure 4.1
we show some sampling from the prior (top panel) and from the posterior (bottom
panel) of a Gaussian process resulting from an RBF kernel, that is a stationary
infinitely differentiable kernel parametrized by a legthscale and a variance. While
the kernel function controls the smoothness and the amplitude of the samples from
the GP, the prior mean represents a possible offset. In practice is set to a constant
value and then inferred from data, but in general it is a way to incorporate expert
knowledge using a problem dependent, possible non-linear, prior mean. We can see
how after 10 function evaluations the posterior mean is closer to the exact solution
and the confidence intervals are smaller.

4.2.2 Nonlinear multi-fidelity Gaussian process regression

We adopt the NARGP scheme proposed in [203]. It extends the concepts present
in [138, 158] to nonlinear correlations between the different fidelities available.

We introduce p levels of increasing fidelities and the corresponding sets of
input/output pairs Sq = {xq

i , yq
i }

Nq
i=1 ⇢ X ⇥R ⇢ R

n ⇥R for q 2 {1, . . . , p}, where
yq

i = fq(xq
i ). With p we indicate the highest fidelity. We also assume the design sets

to have a nested structure: Sp ⇢ Sp�1 ⇢ · · · ⇢ S1.
The NARGP formulation considers the following autoregressive multi-fidelity

scheme:

fq(x) = gq(x, f⇤q�1(x)), (4.5)
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Figure 4.1: Different samples from the prior and from the posterior of a Gaussian process
resulting from an RBF kernel. In the top panel 30 samples from the prior. In the bottom
panel 5 samples from the posterior after 10 data points evaluations. With the black dashed
line we show the exact solution.

where f⇤q�1(x) is the GP posterior from the previous inference level q� 1, and to gq
is assigned the following prior:

gq ⇠ GP( fq|0, kq; qq) (4.6)

kq = kr
q(x, x

0; q
r
q ) · k f

q( f⇤q�1(x), f⇤q�1(x
0); q

f
q ) + kd

q(x, x
0; qd

q), (4.7)

with kr
q, k f

q , and kd
q squared exponential kernel functions. With this scheme, through

gq we can infer the high-fidelity response by projecting the lower fidelity posterior
to a latent manifold of dimension D + 1. This structure allows for nonlinear and
more general cross-correlations between subsequent fidelities.

A part from the first level of fidelity q = 1 the posterior probability distribution
given the previous fidelity models is no longer Gaussian since the inputs are couples
((x, x⇤), (yq�1(x), f⇤q�1(x⇤)) where fq�1 is a Gaussian process gq ⇠ GP( fq|0, kq; qq),
the training set is (x, fq�1(x)) and x⇤ is the new input. So in order to evaluate the
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predictive mean and variance for a new input x⇤ we have to integrate the usual
Gaussian posterior p( f⇤q(x⇤, f⇤q�1(x?))| f⇤q�1, x⇤, xq, yq) explicited as

f⇤q(x⇤, f⇤q�1(x?))| f⇤q�1, x⇤, xq, yq ⇠ N (K
q
⇤N(K

q)�1yq, K
q
⇤⇤ �K

q
⇤N(K

q)�1
K

q
N⇤),
(4.8)

Kq
⇤N = kq((x⇤, f⇤q�1(x⇤), (xq�1, yq�1); q), (4.9)

Kq
N⇤ = kq((xq�1, yq�1), (x⇤, f⇤q�1(x⇤); q), (4.10)

Kq = kq((xq�1, yq�1), (xq�1, yq�1); q), (4.11)

over the Gaussian distribution of the prediction at the previous level f⇤q�1(x⇤) ⇠
N (µx⇤ , sx⇤). In practice the following integral is approximated with recursive Monte
Carlo in each fidelity level

p( f⇤q(x⇤, f⇤q�1(x⇤))) =
Z

X
p( f⇤q(x⇤, f⇤q�1(x⇤))| f⇤q�1, x⇤, xq, yq)p( f⇤q�1(x⇤))dx⇤.

(4.12)

4.3 multi-fidelity data fusion with active subspaces

Our study is based on the design of a NARGP [203] whose low-fidelity level is learnt
from a response surface built through the active subspaces methodology. In fact
we suppose that the model in consideration has indeed a high dimensional input
space but its intrinsic dimensionality is sufficiently lower. This is often the case as
shown by the numerous industrial applications [129, 168, 266, 272].

The whole procedure requires the knowledge of an input/output high-fidelity
training set {(x

H
i , yH

i )}NH
i=1 ⇢ R

m ⇥R, completed by the gradients {dyH
i }NH

i=1 ⇢ R
m

needed for the active subspace’s presence inquiry and a low-fidelity input set
{x

L
i }NL

i=1 ⇢ R
m. We represent with NH, NL the number of high-fidelity and low-

fidelity training set samples, respectively. Differently from the usual procedure the
low-fidelity outputs {yL

i }NL
i=1 are predicted with the response surface built thanks to

the knowledge of the active subspace through the dataset {(Ŵ1x
H
i , yH

i )}NH
i=1. At the

same time the response surface is also queried for the predictions {yH,train
i }NH

i=1 at the
high-fidelity inputs {x

H
i }NH

i=1 that will be used for the training of the multi-fidelity
model. Now all the ingredients for the same procedure described in [203] are ready:
the multi-fidelity model is trained at the low-fidelity level with {(xL

i , yL
i )}NL

i=1 and at
the high-fidelity level with {((xH

i , yH,train
i ), yH

i )}NH
i=1.

We remark that in this case the same high-fidelity outputs {yH
i }NH

i=1 ⇢ R are used
for the response surface training and the high-fidelity training of the multi-fidelity
model. In fact the outputs {yH,train

i }NH
i=1 predicted with the response surface are equal

to {yH
i }NH

i=1 ⇢ R since the response surface is a Gaussian process with no noise
trained on the dataset {(Ŵ1x

H
i , yH

i )}NH
i=1 and queried for the same inputs {Ŵ1x

H
i }NH

i=1
for the predictions, that is {yH,train

i }NH
i=1. This results in the training of the high-

fidelity level of the multi-fidelity model with the dataset {((xH
i , yH,train

i ), yH
i )}NH

i=1 =

{((xH
i , yH

i ), yH
i )}NH

i=1.
A second procedure is developed where part of the high-fidelity inputs is used

only to train the response surface such that in general {yH
i }NH

i=1 6= {yH,train
i }NH

i=1. The
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Algorithm 12 NARGP with the same high-fidelity samples for AS response surface
design.

Input:
high-fidelity inputs, outputs, gradients triplets:

{(x
H
i , yH

i , dyH
i )}NH

i=1 ⇢ R
m ⇥R⇥R

m

low-fidelity inputs {x
L
i }NL

i=1 ⇢ R
m

training dataset {(x
test
i , ytest

i )}Ntest
i=1

Output:
multi-fidelity model:

gM = (( fH |xH
i , yH,train

i ), ( fL|xL
i )) ⇠ (GP( fH |mH, sH), GP( fL|mL, sL))

1: Compute the active subspace Ŵ1 with the high-fidelity gradients {dyH
i }NH

i=1
2: Build the one-dimensional response surface R(Ŵ1X) with a GP regression from

{(Ŵ1x
H
i , yH

i )}NH
i=1

3: Predict the low-fidelity outputs {yL
i }NL

i=1 at {x
L
i }NL

i=1 and the training high-fidelity
inputs {yH,train

i }NH
i=1 at {x

H
i }NH

i=1 with the response surface
4: Train the multi-fidelity model at the low-fidelity level gL with the training

dataset {(xL
i , yL

i )}NL
i=1

5: Train the multi-fidelity model at the high-fidelity level gH with the training
dataset {((xH

i , yH,train
i ), yH

i )}NH
i=1

main difference is that the surrogate low-fidelity model is built independently from
the high-fidelity level of the multi-fidelity model.

We expect that with the multi-fidelity approach, thanks to the nonlinear fidelity
fusion realized by the method, not only the lower accuracy of the low-fidelity
model will be safeguarded against, but also a hint towards the presence of an
active subspace will be transferred from the low-fidelity to the high-fidelity level.
In fact the low-fidelity GPR model is built from the predictions obtained with the r-
dimensional response surface which expressiveness is guaranteed by the additional
assumption that the model under investigation has a r-dimensional active subspace.
So a part from the lower computational budget and the reduced accuracy, our
low-fidelity model should transfer to the high-fidelity level the knowledge of
the presence of an active subspace when learning correlations among the inputs
{xH

i }NH
i=1, the response surfaces predictions {yH,train

i }NH
i=1 and the high-fidelity targets

{yH
i }NH

i=1. The overhead with respect to the original procedure [203] is the evaluation
of the active subspace from the high-fidelity inputs.

The procedure is synthetically reviewed through algorithm 12 for the use of
the same high-fidelity samples in the training of the response surface and of the
second fidelity level of the multi-fidelity model, and algorithm 13 for the use of
independent samples. The main difference in the two procedures is the set of
samples with which the active subspace is computed.

Some finals remarks are due. As in [203] we assume that the observations {yq
i }

are noiseless for each level of fidelity q. We employ Radial Basis Functions kernels
with Automatic Relevance Determination (ARD). The hyperparameters tuning
is achieved maximizing the log-likelihood with the gradient descent optimizer
L-BFGD.
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Algorithm 13 NARGP with additional independent high-fidelity samples for AS
response surface design.

Input:
high-fidelity inputs, outputs, gradients triplets:

{(x
H
i , yH

i , dyH
i )}NH

i=1 ⇢ R
m ⇥R⇥R

m

low-fidelity inputs {x
L
i }NL

i=1 ⇢ R
m

training dataset {(x
test
i , ytest

i )}Ntest
i=1

AS procedure’s inputs, outputs, gradients triplets:
{(x

AS
i , yAS

i , dyAS
i )}NAS

i=1 ⇢ R
m ⇥R⇥R

m

Output:
multi-fidelity model:

gM = (( fH |xH
i , yH,train

i ), ( fL|xL
i )) ⇠ (GP( fH |mH, sH), GP( fL|mL, sL))

1: Compute the active subspace Ŵ1 with the active subspaces dataset’s gradients
{dyAS

i }NH
i=1

2: Build the one-dimensional response surface R(Ŵ1X) with a GP regression from
{(Ŵ1x

AS
i , yAS

i )}NAS
i=1

3: Predict the low-fidelity outputs {yL
i }NL

i=1 at {x
L
i }NL

i=1 and the training high-fidelity
inputs {yH,train

i }NH
i=1 at {x

H
i }NH

i=1 with the response surface
4: Train the multi-fidelity model at the low-fidelity level gL with the training

dataset {(xL
i , yL

i )}NL
i=1

5: Train the multi-fidelity model at the high-fidelity level gH with the training
dataset {((xH

i , yH,train
i ), yH

i )}NH
i=1

4.4 numerical results

We consider two different benchmark test problems for which a multi-fidelity
model will be built. The first is a 8-dimensional model for the spread of Ebola1

and the second is a 7-dimensional model to compute the time it takes a cylindrical
piston to complete a cycle2. The library employed to implement the NARGP model
is Emukit [195] while for the active subspace’s response surface design we have
chosen ATHENA3 [222] for the active subspaces presence study and GPy [91] for
the GPR.

These tests have already been analyzed for the presence of an active subspace
and they indeed present a low intrinsic dimensionality. For each model we show
the sufficient summary plot along the one-dimensional active subspace found, and
the correlation among the low-fidelity level and the high-fidelity level of the multi-
fidelity model. We also present a comparison of the prediction error with respect to
a low-fidelity model (LF) represented by a GPR on the low-fidelity input/output
dataset, an High-fidelity (HF) model represented by a GPR on the high-fidelity
input/output dataset, and the proposed Multi-fidelity (MF) model. In each test case
the number of low-fidelity samples is 200 and an error study over the number of
high-fidelity samples used is undergone. We apply both the algorithms presented

1 The Ebola dataset was taken from https://github.com/paulcon/as-data-sets.
2 The piston dataset was taken from https://github.com/paulcon/active_subspaces.
3 Available at https://github.com/mathLab/ATHENA.

https://github.com/paulcon/as-data-sets
https://github.com/paulcon/active_subspaces
https://github.com/mathLab/ATHENA
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in the previous section. In particular for algorithm 12, the number of samples used
to find the active subspace is one third of the total number of high-fidelity samples
rounded down.

the piston model The algebraic cylindrical piston model appeared as a test
for statistical screening in [20], while applications of AS to this model can be found
in [55]. The scalar target function of interest is the time it takes the piston to complete
a cycle, and its computation involves a chain of nonlinear functions. This quantity
depends on 7 input parameters uniformly distributed. The corresponding variation
ranges are taken from [55]. The 10000 test points are samples with Latin-Hypercube
sampling.
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Figure 4.2: Left: sufficient summary plot of the surrogate model built with active subspaces.
Right: correlation among the low-fidelity level and the high-fidelity level of the multi-fidelity
model.
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Figure 4.3: L1 discrete error of the posterior of the multi-fidelity (MF), high-fidelity (HF) and
low-fidelity (LF) models against the number of high-fidelity samples used to find the active
subspace and build the Gaussian process regressions of the MF, HF, LF models. The 10000
test samples are distributed with Latin-Hypercube sampling. Left: identical high-fidelity
samples for AS and NARGP. Right: independent high-fidelity samples for AS and NARGP.

It is qualitatively evident from the sufficient summary plot in the left panel of
figure 4.2 that a one-dimensional active subspace is enough to explain with a fairy
good accuracy the dependence of the output from the 7-dimensional inputs. This
statement could be supported looking at the ordered eigenvalues of the correlation
matrix of the gradients, which would show a spectral gap between the first and the
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second eigenvalues. We can also see in the right panel of figure 4.2 the correlations
scatter plot among the two different fidelity levels of the NARGP model. The low-
fidelity GPR built on the dataset {(xL

i , yL
i )}NL

i=1 performs already a good regression
without many outliers in the predictions evaluated at the test samples.

Figure 4.3 shows the errors of the MF models built with different procedures, as
described in section 4.3. It can be seen that using independent samples for the active
subspace evaluation does not improve the predictions obtained. Since in the right
panel one third of the high-fidelity samples are used to identify the active subspace,
to evaluate the differences between the two algorithms we have to compare the 150
samples on the right with the 100 samples on the left, for example. We can clearly
notice that the two approches perform almost the same.

seir model for ebola The SEIR model for the spread of Ebola depends on
8 parameters and the output of interest is the basic reproduction number R0. A
complete AS analysis was made in [74], while a kernel-based active subspaces
comparison can be found in [221]. The formulation is the following:

R0 =
b1 + b2r1g1

w + b3
g2

y

g1 + y
, (4.13)

where the parameters range are taken from [74].
Differently from the previous test case, the one-dimensional response function in

the left panel of figure 4.4 does not explain well the model: in this case kernel-based
active subspaces could be employed to reach a better expressiveness of the surrogate
model [221]. Even the scatter plot in the right panel of figure 4.4, which shows the
correlations between the low-fidelity and high-fidelity levels of the NARGP model,
exhibits a worse accuracy in the low-fidelity level with respect to the previous test
case. These results are quantified in figure 4.5 with the L1 discrete error for the
different fidelities models which are one order of magnitude higher than the piston
model, see figure 4.3.

From a comparison between the HF and MF models in figure 4.5 and the respective
models in figure 4.3 it can be seen that the nonlinear autoregressive fidelity fusion
approach learns relatively worse correlations of the low-/high-fidelity levels of the
NARGP Ebola model with respect to the piston model.

For both the test cases the multi-fidelity regression approach with active subspaces
results in better performance with a consistent reduction of the L1 discrete error
over a test dataset of 10000 points.

4.5 conclusions

In this chapter we proposed a nonlinear multi-fidelity approach for the approxi-
mation of scalar function with a low intrinsic dimensionality. Such dimension is
identified by searching for the existence of an active subspace for the function of
interest. With a regression along the active variable we build a low-fidelity model
over the full parameter space which is fast to evaluate and does not need any
new simulations. We just extract new informations from the high-fidelity data we
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Figure 4.4: Left: sufficient summary plot of the Ebola model, 150 samples were used to
build the AS surrogate model shown. Right: correlation among the low-fidelity level and
the high-fidelity level of the multi-fidelity model.
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Figure 4.5: L1 discrete error of the posterior of the multi-fidelity (MF), high-fidelity (HF) and
low-fidelity (LF) models against the number of high-fidelity samples used to find the active
subspace and build the Gaussian process regressions of the MF, HF, LF models. The 10000
test samples are distributed with Latin-Hypercube sampling. Left: identical high-fidelity
samples for AS and NARGP. Right: independent high-fidelity samples for AS and NARGP.

already have. This multi-fidelity approach results in a decreased regression error
and improved approximation capabilities over all the parameter space.

We apply the multi-fidelity with AS method to two different benchmark problems
involving high dimensional scalar functions with an active subspace. We achieve
promising results with a reduction of the L1 discrete error around 60–70% with
respect to the high-fidelity regression in one case (piston) and around 20–66% in
the other one (Ebola), depending on the number of high-fidelity samples used.

As we are going to see in chapter 7, the methodology presented in this chapter
has the potential to greatly improve data-driven non-intrusive reduced order meth-
ods [226, 227, 230, 268] through modal coefficients reconstruction and prediction for
parametric problems. We also mention the possible application to shape optimiza-
tion problems for the evaluation of both the target function and the constraints.

Further investigation will involve the use of more active subspaces based fidelities,
such as KAS [221], or AS with different dimensions.





5
N O N - I N T R U S I V E R E D U C E D O R D E R M E T H O D S

In this chapter we review two of the most spread techniques in the context of
data-driven non-intrusive model order reduction for parametric problems. We
first present a general abstract framework for POD-based ROMs which goes under
the name Proper Orthogonal Decomposition with Interpolation (PODI). In the
second part we focus on time-depenent problems where the considered parameter
is the time, showing how Dynamic Mode Decomposition (DMD) works. For a
survey of projection-based ROMs for parametrized dynamical systems, instead, we
suggest [21].

Applications of these two methods can be found in part iii for naval engineering
optimization tasks, and in part iv where we try to extend DMD in a parametric
setting for CFD predictions and we compare DMD and PODI for hydroacoustic
analysis.

83
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5.1 a general framework for non-intrusive parametric rom

In this section we are going to present a general framework for non-intrusive data-
driven reduced order models. We assume we do not know the equations behind
the computations of the solutions snapshots, or, even if we know the model been
used, we do not have access to the solver, so we cannot perform intrusive model
order reduction.

From an abstract point of view we can identify three main steps to construct such
kind of ROMs: the creation of the solutions database, the computation of a basis
of reduced dimension, and the choice of a regression method to reconstruct the
solution manifold. As we can already see there are multiple choices for every one
of these steps. We can use, for example, different sampling methods to collect the
snapshots, employ linear or nonlinear techniques for modes selection, and finally
exploit from polynomial interpolators to artificial neural networks to reconstruct
the parameters to modal coefficients map.

The framework described in this section with its modular structure can be found
in the open source Python package1 called EZyRB [70].

5.1.1 Database creation

Let us denote the parameters with µ and the state snapshots with x. The solutions
database is thus the set of parameter–snapshot pairs defined by {µi, xi}m

i=1, with
µi 2 P ⇢ R

p and xi 2 R
n. Here, n represents the number of degrees of freedom

of our system, while p is the number of input parameters. We remark that the
snapshots can represent data coming from experiments, from simulations, or even
sensors and acquired in real-time. We arrange the snapshots by column in X as

X =

2

664

| | |
x1 x2 . . . xm

| | |

3

775 . (5.1)

There are several possible initial sampling strategies to select the parameters
location, depending on the specific task for which we construct the reduced order
model. For example to cover as much as possible the parameter space the most used
approaches are latin hypercube sampling (LHS) [262], Sobol sequences [255], which
are quasi-random low-discrepancy sequences, or other space filling strategies such
as dynamic propagation sampling [141]. If the parameters represent data coming
from sensors or other components with an associated probability distribution a
weighted approach is suggested [273]. For optimization tasks any a priori knowl-
edge about the possible region of interest and/or the simulated process should be
incorporated within the sampling method. We remark that some of the aforemen-
tioned sampling schemes could not work in case the parameters can assume only a
finite set of possible values.

1 Available at https://github.com/mathLab/EZyRB/.

https://github.com/mathLab/EZyRB/
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5.1.2 Linear dimensionality reduction

Linear dimensionality reduction is the most widespread technique to unveil struc-
tures within a large dataset. The main assumption is that the data can be expressed
by a linear combination of few global basis functions, often called modes. Follow-
ing the notation introduced in the previous section, we seek to approximate the
snapshots xi as

xi =
m

Â
k=1

jkck
i ⇡

r

Â
k=1

jkck
i , 8i 2 [1, . . . , m], r ⌧ m, (5.2)

for some modes jk 2 R
n and for some modal coefficients ck

i 2 R. We can rewrite
equation (5.2) in matrix form arranging all the data by column as done in equa-
tion (5.1) obtaining:
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c1 c2 . . . cm
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775 , (5.3)

or equivalently X ⇡ FC, with X 2 R
n⇥m, F 2 R

n⇥r, and C 2 R
r⇥m.

As we can see there are many possible choices for the modes computation: from
the classical principal component analysis (PCA), also called proper orthogonal
decomposition (POD), to other nonlinear approaches such as kernel POD [237]
and autoencoders [159], to mention a few. In this chapter we are going to review
only POD which has been proven successful in a variety of different industrial
applications [227, 231, 268] and is both explainable and can be linked to energetic
considerations. Moreover many high-dimensional data can be approximated by
low-rank matrices [278]. In case of missing data or sensors providing partial in-
formations, a gappy POD [41, 286] approach can be used. We emphasize that the
basis identified by the POD can be also exploited in a Galerkin projection frame-
work [100, 112, 263], or in an hybrid framework combining data-driven methods
with projection [98, 116].

If the pair (F, C) minimizes the sum of the squares of the residuals X � FC,
that is in a least squares sense, we have that F is the matrix composed by the POD
modes. Using the l1 norm, instead of the least squares, leads to the so-called robust
PCA [44], which is very useful in case outliers are present. To actually compute the
modes F in the POD case, we can perform the SVD of the snapshots matrix X:

X = USV⇤, (5.4)

where ⇤ denotes the conjugate transpose, and retain only the first r components.
The columns of U are the so-called POD modes. They are orthogonal and they span
the optimal low-dimensional subspace in the least square sense. They can also be
computed as the eigenvectors (up to a normalization factor) of the Gram matrix
XTX. The diagonal matrix S = diag(l1, . . . , lr) is composed by the singular values,
arranged in descending order, which indicate the energetic contribution of the
corresponding modes. The error introduced by the truncation r can be measured
as [211]:

kX�USV⇤k2
2 = l2

r+1, (5.5)
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kX�USV⇤kF =

s
m

Â
i=r+1

l2
i , (5.6)

where the subscripts 2 and F refer to the Euclidean norm and to the Frobenius
norm, respectively. The singular values li are arranged in descending order. In
figure 5.1 we can see an example of POD modes for a flow past a cylinder modeled
with a parametrized Navier–Stokes problem.

Figure 5.1: First three POD modes obtained from the resolution of a parametrized Navier–
Stokes problem, describing the flow past a cylinder.

We remark that given the first r modes, we only need r coefficients ci to reconstruct
the whole state xi. To compute the modal coefficients we project the data onto the
POD subspace:

C = UTX. (5.7)

Given such coefficients we can only reconstruct the original snapshots which
comprise the initial database. To have a fast and accurate prediction of the state x⇤,
corresponding to an unseen parameter µ⇤, we need to reconstruct the parameters
to modal coefficients map. Then we need only to perform a matrix multiplication
with the POD modes to obtain the whole field of interest. In the next section we
show some possible choice to reconstruct such map.
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5.1.3 Solution manifold approximation

In this section we are going to present some possible choices to reconstruct the
solution manifold described by the modal coefficients corresponding to the initial
database. In particular we want to construct a regression s : P ! R

r which
approximates the map f : µ 2 P ! c 2 R

r, given a set of m input-output pairs
{µi, ci}m

i=1, where ci = UTxi(µi). The regression model s can then be used to predict
the state x⇤ for a new input parameter µ⇤ by computing

x⇤ = Us(µ⇤). (5.8)

To build the interpolant s we can use several techniques, such as linear interpo-
lation [95, 231], nonlinear Gaussian Process Regression [72, 106, 193, 287], Radial
Basis Functions interpolation [39, 268], inverse distance weighting (IDW) [14, 288],
and artificial neural networks [205, 282] to cite a few. Here we will not review all
the possibilities, some of them are presented in chapter 8 in the context of shape
morphing. For what concerns GPR we refer to chapter 4 where we also presented
a simple explanatory example. In chapter 8 can also be found an application of
Proper Orthogonal Decomposition with Gaussian Process Regression (POD-GPR)
used as surrogate model for shape optimization, while in chapter 9 we used a POD
with RBF approach. In chapter 7, instead, we show a comparison between POD-GPR
and POD-NARGPAS for structural problems in naval engineering.

From a computational point of view the the differences between the Full Order
Model (FOM) and the reduced order model are remarkable: whereas the FOM
requires the solution of a system of dimension n, the ROM only requires the query
of the interpolation function and a matrix multiplication with the modes. So the
computational cost of a ROM is mainly in the construction phase and not in the
prediction. Since we rely on the SVD the method shows an algorithmic complexity
of O(min(n, m)nm).

5.2 dynamic mode decomposition for time dependent problems

DMD is a powerful method to identify and approximate dynamical systems using
only few spatiotemporal coherent structures [37, 149, 235]. The method is equation-
free since it works using only high-dimensional snapshots data, and make almost no
assumptions regarding the underlying system to approximate. This technique has
been applied to a diverse range of fields, with a particular success in computational
fluid dynamics. We can highlight three main tasks which can be accomplished by
DMD: system identification, future-state prediction, and control.

Despite its versatility and performance DMD presents some limitations, mainly
inherited from the SVD at its core. DMD is thus incapable of efficiently handling trans-
lations or rotations, and transient phenomena are not well characterized. Moreover
the presence of an external input acting on the state results in a wrong identifica-
tion of the system. To overcome these issues many variants have been developed
and proposed in the past years, among them we mention DMD with control [209],
multi-resolution DMD [150], compressed DMD [83], higher order DMD [157], and
randomized DMD [25, 84].
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For an efficient implementation of all the algorithms presented in this section we
suggest to use the open source Python package2 called PyDMD [71].

5.2.1 Classical Dynamic Mode Decomposition algorithm

We start by collecting the snapshots {xi}m
i=1 representing the state of the system at

each time instant, with xi 2 R
n. We arrange them by column in two matrices, X

and X0, where X0 is the time-shifted version of X, that is

X =

2

664

| | |
x1 x2 . . . xm�1

| | |

3

775 , X0 =

2

664

| | |
x2 x3 . . . xm

| | |

3

775 . (5.9)

We seek a regression of the data onto locally linear dynamics such as xk+1 = Axk
for k = 1, . . . , m� 1. In matrix form this can be written as

X0 ⇡ AX. (5.10)

A can be found as the best-fit matrix using the Moore–Penrose pseudoinverse of X,
that is X†, as follows:

A = X0X†. (5.11)

This solution minimizes the error in Frobenius norm kX0 � AXkF. Since the usual
CFD problem is characterized by high-dimensional state snapshots with n � m,
we cannot solve this problem directly with a regression method. We, instead, rely
on a lower-dimensional operator Ã which evolves over the POD modes of the
snapshots matrix in order to approximate the eigenpairs of the full operator A. The
eigenvectors of A are called DMD modes.

The DMD algorithm starts with a SVD of the snapshots matrix X with a truncation
rank r:

X ⇡ USV⇤, (5.12)

where U 2 C
n⇥r, S 2 C

r⇥r, and V 2 C
m�1⇥r. With ⇤ we denote the conjugate

transpose. We emphasize that U and V are orthonormal, and the columns of U are
the so-called POD modes. Substituting X† in equation (5.11) with its SVD we obtain

A = X0VS�1U⇤. (5.13)

From a computational point of view it is more efficient to project the operator A
onto the POD modes obtaining its low-rank representation:

Ã = U⇤AU = U⇤X0VS�1. (5.14)

With this operator we can express the evolution of the low-dimensional projection
of the snapshots as x̃k+1 = Ãx̃k, with x̃k = U⇤xk. The final step it to compute the
eigenpairs of Ã with its eigendecomposition

ÃW = WL, (5.15)

2 Available at https://github.com/mathLab/PyDMD/.

https://github.com/mathLab/PyDMD/
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where L stands for the diagonal matrix of the eigenvalues, and the columns of W
are the eigenvectors. We remark that the eigenvalues of A are given by L, while the
eigenvectors F, also called exact DMD modes [277], are given by

F = X0VS�1W. (5.16)

In the literature we also be found the so-called projected DMD modes [235] ex-
pressed by F = UW, which tend to converge to the exact ones if the matrixes in
equation (5.9) share the column space.

The i-th eigenvalue li provides information about the frequency wi of the corre-
sponding mode, defined as

wi =
Im(log li)

2pDt
, (5.17)

and also about its stability. In figure 5.2 we can see the DMD modes corresponding
to different eigenvalues: if the eigenvalue is on the unit circle we have a stable
mode, if it is inside the unit circle is convergent, otherwise it diverges.

Figure 5.2: On the left column the eigenvalue position with respect to the unit circle, on
the right column the corresponding DMD mode. From top to bottom we have a stable, a
convergent, and a divergent mode, corresponding to an eigenvalue on the unit circle, inside
it, and outside it, respectively.

Finally, to compute the future state prediction for every time, we use

x(t) ⇡
r

Â
k=1

fkeyktbk = FeYtb, (5.18)
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where Y = diag(yk) = diag(ln(lk)/Dt), and bk denotes the initial amplitude of
the corresponding k-th DMD modes fk. To compute such amplitudes we use the
best-fit in the least-squares sense:

b = F†x1, (5.19)

where we use the first snapshot x1. We remark that this can be done with respect to
every snapshot, and of course it will improve the accuracy in the neighborhood of
that specific time instant. The amplitudes can also be computed by minimizing the
error over all the snapshots [134].
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6
G E N E T I C A L G O R I T H M E N H A N C E D B Y A C T I V E S U B S PA C E S

In this chapter we present an extension of the Genetic Algorithm (GA) which
exploits the active subspace of the function to minimize to evolve the individuals
on a lower dimensional space. In many cases, GA requires in fact more function
evaluations than other optimization methods to converge to the global optimum.
Thus, complex and high-dimensional functions can result extremely demanding
(from the computational point of view) to be optimized with the standard algorithm.
To address this issue, we propose to linearly map the input parameter space of the
original function onto its AS before the evolution, performing the mutation and mate
processes in a lower dimensional space. Here, we describe the novel method called
Active Subspaces Genetic Algorithm (ASGA), presenting differences and similarities
with the standard GA method. We test the proposed method over n-dimensional
benchmark functions — Rosenbrock, Ackley, Bohachevsky, Rastrigin, Schaffer N. 7, and
Zakharov — and finally we apply it to an aeronautical shape optimization problem.
All the results presented in this chapter appeared in [73]. An application of such
method in a naval engineering context can be found in chapter 8.

93



94 genetic algorithm enhanced by active subspaces

6.1 literature review

GA is a well-known and widespread methodology, mainly adopted in optimization
problems [120, 144]. It emulates the evolutive process of natural selection by fol-
lowing an iterative process where the individuals are selected by a given objective
function and subsequently they mutate and reproduce [5, 46, 82, 151]. This gradient-
free technique is particular effective when the objective function contains many
local minima: thanks to the stochastic component, GA explores the domain without
being blocked into local minima. The main disadvantages of such algorithm is the
(relative) high number of required evaluations of the objective function during the
evolution to explore the input space [190], that makes in several industrial and
engineering contexts this method unfeasible for the global computational cost.

In this work, we propose a novel extension of standard GA, exploiting the emerg-
ing Active Subspaces property [54, 57] for the dimensionality reduction. AS is a
supervised learning technique which allows the approximation of a scalar function
with a lower dimensional one, whose parameters are a linear combination of the
original inputs. AS has been successfully employed in naval engineering applica-
tions [267, 268, 270, 272], coupled with reduced order methods such as POD-Galerkin
in biomedical applications [226, 266], POD with interpolation [72] in structural and
CFD analysis, and Dynamic Mode Decomposition [271] in CFD contexts. Other appli-
cations include aerodynamic shape optimization [168], artificial neural networks to
reduce the number of neurons [60], non-linear structural analysis [106], and AS for
multivariate vector-valued model functions [291]. Several non-linear AS extension
have been proposed recently. We mention Active Manifold [35], Kernel-based Active
Subspaces [221] which exploits the random Fourier features to map the inputs in
a higher dimensional space. We also mention the application of artificial neural
networks for non-linear reduction in parameter spaces by learning isosurfaces [294].
Despite these new non-linear extensions of AS, in this work we exploit the classical
linear version because of the possibility to map points in the reduced space onto
the original parameter space.

The main idea of the proposed algorithm is to force the individuals of the
population to evolve along the AS, which has a lower dimension, avoiding evolution
along the meaningless directions. Further, the high number of function evaluations
that characterize the GA is exploited within this new approach for the construction
(and refinement) of the AS, making these techniques — GA produces a large dataset
of input-output pairs, whereas AS needs large datasets for an accurate subspace
identification — particularly suited together. This new method has the potential
to improve existing optimization pipeline involving both input and model order
reduction.

A similar approach has been proposed in [48], where an active subspace is
constructed in order to obtain an efficient and adaptive sampling strategy in a
evolution strategy framework. This approach shares with the one we are proposing
the idea of efficiently exploring the input space by constructing a subspace based on
the collected data. In contrast with our approach in [48] the subspace construction
is done with a singular value decomposition based method, and the optimization
technique is completely different, even if evolution strategy methods and genetic
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algorithm present some analogies. To the best of the authors knowledge, the current
contribution presents a novel approach, not yet explored in the literature. For
similar approach, we cite also random subspace embeddings for unconstrained
global optimization of functions with low effective dimensionality that can be found
in [45, 283], while for evolutionary methods and derivative-free optimization we
mention [210, 233], respectively. For a survey on linear dimensionality reduction in
the context of optimization programs over matrix manifolds we mention [61].

The outline of this chapter is the following: the proposed method is described in
section 6.3, while section 6.2 is devoted to recall the general family of genetic algo-
rithms. Section 6.4 presents the numerical results obtained applying the proposed
extension to some popular benchmark functions for optimization problems, then to
a typical engineering problem where the shape of a NACA airfoil is morphed to
maximize the lift-to-drag coefficient. Finally section 6.5 summarizes the benefits of
the method and proposes some extensions for future developments.

6.2 genetic algorithms

In this work we propose an extension of the standard GA. We start recalling the
general method in order to easily let the reader understand the differences. We
define GA as the family of computational methods that are inspired by Darwin’s
theory of evolution. The basic idea is to generate a population of individuals with
random genes, and make them evolve through mutations and crossovers, mimicking
the evolution of living beings. Iterating this process by selecting at each step the
best-fit individuals results in the optimization — according to a specific objective
function — of the original population. As such this method can be easily adopted
as a global optimization algorithm.

Initially proposed by Holland in [119], GA has had several modifications during
the years (see for example [78, 80, 81, 144, 251]), but it keeps its fundamental steps:
selection, mutation and mate.

Let us define formally the individuals: a population composed by N individuals
xi 2 R

P with P genes is defined as X = {x1, . . . , xN}. We express the fitnesses of
such individuals with the scalar function f : R

P ! R. The first generation X
1 is

randomly created — with possible constraints — and the fitness is evaluated for
all the individuals: yi = f (xi) for i = 1, . . . , N. Then the following iterative process
starts:

selection : The best individuals of the previous generation X
i are chosen accord-

ingly to their fitnesses to breed the new generation. For the selection, several
strategies can be adopted depending on the problem and on the cardinality
of the population N.

mate : The selected individuals are grouped into pairs and, according to a mate
probability, they combine their genes to create new individuals. The process,
also called crossover, emulates the species reproduction. These individuals
form the new generation X

i+1. An example of a crossover method is sketched
in figure 6.1.
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mutation : The individuals evolve by changing some of their genes. The mutation
of an individual is usually controlled by a mutation probability. In figure 6.2
we show an illustrative example where two genes have randomly mutated.

Figure 6.1: Graphical example of mate by crossover. x
i and y

i indicate two generic individu-
als of the i-th generation.

Figure 6.2: Graphical example of mutation. x
i indicates a generic individuals of the i-th

generation.

After the mutation step, the fitness of the new individuals is computed and the
algorithm restarts with the selection of the best-fit individuals. In this way, the
population evolves, generation after generation, towards the optimal individual,
avoiding getting blocked in a local minima thanks to the stochastic component
introduced by mutation and crossover. Thus, this method is very effective for global
optimization where the objective function is potentially non-linear, while standard
gradient-based methods can converge to local minima. However GA usually requires
an high number of evaluations to perform the optimization, making this procedure
very expensive in the case of computational costly objective functions.

6.3 the proposed asga optimization algorithm

In this section we are going to describe the proposed active subspaces extension of
the standard GA, named ASGA. Before starting, we emphasize that in what follows,
we will maintain the selection, mutation and mate procedures — presented in
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section 6.2 — as general as possible, without going into technical details, given the
large variety of different options for these steps. In fact the proposed extension
is independent on the chosen evolution strategies, and we only perform them
in a lower dimension exploiting AS. In algorithm 14 we summarize the standard
approach, while in algorithm 15 we highlight the differences introduced by ASGA.
We also present an illustration for both the methods in figure 6.3, where the yellow
boxes indicate the main steps peculiar to ASGA. In both cases, the first step is the
generation of the random individuals composing the initial population, and the
sequential evaluation of all of them. For ASGA these individuals and their fitness
are stored into two additional sets, X

AS for the individuals, and y
AS for the fitness.

We will exploit them as input-output pair for the construction of the AS. After the
selection of the best-fit individuals, the active subspace of dimension M is built and
the selected offspring is projected onto it. Let W1 be the eigenvectors defining the
active subspace of the current population, say X

i. We project its best individuals
onto the current active subspace with

x
i AS
k = W

T
1 x

i
k, 8k 2 [1, . . . , N], (6.1)

where x
i AS
k is the reduced individual of the i-th population.

The low-dimensional individuals mate and mutate in the active subspace. Thanks
to the reduced dimension and to the fact that we retain only the most important
dimensions, these operations are much more efficient. Thus, even if the AS of
dimension M does not provide an accurate approximation of the original full-
dimensional space, the active dimensions will provide preferential directions for
the evolution, making the iterative process smarter and faster.

After the evolution, the low-dimensional offspring is mapped back to the original
space. In section 2.2.1 we described how for any point in the active subspace we
can find several points in the original space which are mapped onto it. So we select,
for any individual in the offspring, B full-dimensional points which correspond to
the individual in the active subspace by sampling the inactive variable h, such that

x
i+1
k = W1x

i AS
k + W2h, with � 1  x

i+1
k  1, 8k 2 [1, . . . , N], (6.2)

where 1 denotes a vector with all components equal to 1 — the original parameters
are usually rescaled in [�1, 1]P before applying AS —. We emphasize that to preserve
the same dimensionality of the offspring between the original GA and the AS
extension, in the proposed algorithm we select the N

B best individuals, instead of
selecting N. In this way, after the back-mapping, the offspring has dimension N
in both versions. The number of back-mapped points B, and the active subspace
dimension M — that can be a fixed parameter or dynamically selected from the
spectral gap of the covariance matrix C — represent the new (hyper-)parameters of
the proposed method.

Finally the fitness of the new individuals, now in the full-dimensional space,
are evaluated. To make the AS more precise during the iterations, the evaluated
individuals and their fitness are added to X

AS and y
AS. The process restarts from

the selection of the offspring from the new generation, continuing as described
above until the stopping criteria are met.

We stress that the structure of the algorithm is similar to the original GA approach,
with the difference that the gradients at the sample points are approximated in
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Selection

Reproduction

Mutation

3 individuals
with N genesFirst generation

Crossover

Random
mutation

New  generation

Accordingly to
best fitness

Offsprings +
best individuals

AS Projection
From N genes

to M genes

AS back mapping
From M genes
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Figure 6.3: Active subspaces-based genetic algorithm scheme. The main step of the classical
GA are depicted from top to bottom. The yellow boxes represent projections onto and from
lower dimension active subspace, which are specific to ASGA.

order to identify the dimensions with highest variance. Even if such information
about the function gradient is used, the ASGA method is different from gradient-
based methods: numerically computing the gradient with a good accuracy at a
specific point — that is the fundamental step of gradient-based methods to move
on the solution manifold — is a very expensive procedure, especially in a high-
dimensional space. In ASGA we avoid such computation, exploiting instead the
already collected function evaluations. Further, gradient-based techniques converges
(relatively) fast to optimum, but they get blocked into local minima, contrarily to
the ASGA approach. It is important to remark that, for each generation, the AS is
rebuilt from scratch, losing efficiency but gaining more precision due to the growing
number of elements in the two sets X

AS and y
AS. We also remark the samples are

generated with a uniform distribution only at the first generation. After that, due to
the ASGA steps the distribution changes in a way which can not be known a priori.
For the computation of the expectation operator in equation (2.8) in this work we
assume a uniform distribution. Even if this may introduce an unknown error, the
numerical results achieved by ASGA seem to support such choice. Of course the
numerical estimates present in the literature for the uniform distribution do not
apply in such case. This method can be viewed as an active learning procedure in a
Bayesian integration context, where the maximized acquisition function is heuristic
and given by the application of AS and GA steps. Another interpretation is that
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we are enriching the local informations near the current minimum to feed the AS
algorithm, so it can be viewed as a weighted AS.

Algorithm 14 Standard GA.
Input:

initial population size N0
population size N

selection routine select
mutation routine mutate
mate routine mate
objective function fobj
stop criteria

Output:
final population X

end

1: procedure GeneticAlgorithm
2: g 0
3: X

g  random pop of size N0
4: y

g  fobj(Xg)

5: repeat

6: g g + 1
7: X

⇤  select(Xg�1, y
g�1, N)

8: X
⇤  mate(X⇤)

9: X
g  mutate(X⇤)

10: y
g  fobj(Xg)

11: until stop criteria reached
12: X

end  X
g

13: return X
end

14: end procedure

Algorithm 15 Proposed ASGA.
Input:

initial population size N0
population size N
active dimension M
number backward B
selection routine select
mutation routine mutate
mate routine mate
objective function fobj
stop criteria

Output:
final population X

end

1: procedure ASGA
2: g 0
3: X

g  random pop of size N0
4: y

g  fobj(Xg)
5: X

AS  X
g

6: y
AS  y

g

7: repeat

8: g g + 1
9: X

⇤  select(Xg�1, y
g�1, N

B )
10: build AS(XAS, y

AS, M)
11: X

⇤
M  forward(X⇤)

12: X
⇤
M  mate(X⇤M)

13: X
⇤
M  mutate(X⇤M)

14: for x in X
⇤
M do

15: for i 1 to B do

16: X
g  backward(x)

17: end for

18: end for

19: y
g  fobj(Xg)

20: X
AS  X

AS [ X
g

21: y
AS  y

AS [ y
g

22: until stop criteria reached
23: X

end  X
g

24: return X
end

25: end procedure

6.4 numerical results

In this section we are going to present the results obtained by applying the proposed
algorithm, firstly to some test functions that are usually used as benchmarks for op-
timization problems. Since this method is particularly suited for high-dimensional
functions, we analyze the optimization convergence for three different input dimen-
sion (2, 15, and 40), i.e. the number of genes of each individual. The second test case
we propose is instead a typical engineering problem, where we optimize the lift-to-
drag coefficient of a NACA airfoil which is deformed using a map M : R

10 ! R

defined in section 6.4.2. In this example we opted for the use of a surrogate model
only to evaluate the individuals’ fitness for computational considerations, since
we just want to compare ASGA with GA. We do not rely on the surrogate for the
gradients approximation. In [69], instead, we apply ASGA on a naval engineering
hydrodynamics problem, where we do not rely on a surrogate model of the target
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function, but instead we exploit data-driven model order reduction methods to
reconstruct the fields of interest and then compute the function to optimize. All the
details for this naval engineering application can be also found in chapter 8.

In both the test cases, in order to collect a fair comparison, we adopt the same
routines for the selection, the mutation and the crossover steps. In particular:

• for the mate we use the blend BLX-alpha crossover [85] with a = 1.0, with a
mate probability of 50%. With this method, the offspring results:

8
<

:
x

i
a = (1� g)x

i�1
a + gx

i�1
b

x
i
b = gx

i�1
a + (1� g)x

i�1
b

for a, b = 1, . . . , N, (6.3)

where x
i�1
a and x

i�1
b refer to the parent individuals (at the i� 1th generation),

x
i
a and x

i
b are the mated individuals, N is the cardinality of population, and

g is a random variable chosen in the interval [�a, 1 + a). We mention that
equation (6.3) can recover the graphical description of mating in figure 6.1 if
g is taken to be discrete, either 0 or 1, and applied component-wise.

• for the mutation, a Gaussian operator [117] has been used with a mutation
probability of 50%. This strategy changes genes by adding a normal noise.
Since we do not have any knowledge about the low-dimensional space, tuning
the variance of such mutation may result in a not trivial procedure. This
quantity has in fact to be set in order to explore the input space but, as the
same time, producing minimal differences between parents and offspring. A
fixed variance for both the spaces may cause a too big distance — in l2 sense
— between parents and offspring, inhibiting the convergence. To overcome
this potential problem, we correlate the Gaussian variance with the genes
theirselves, ensuring a reasonable mutation in both spaces. The adopted
mutation method is:

x
i
a = x

i�1
a + # x

i�1
a for a = 1, . . . , N, (6.4)

where # is a random variable with probability distribution N (µ, s2), that is
# ⇠ N (µ, s2), with µ = 0 and s2 = 0.1.

Regarding the selection, since the limited number of individuals per population, we
adopt one of the simplest criteria, by selecting the N best individuals in terms of
fitness.

We also keep fixed the additional parameters for the AS extension: the number
of active dimensions M is set to 1, while the number of back-mapped points is 2.
All the gradients computations are done using local linear models. For the actual
computation regarding AS we used the ATHENA1 Python package [222]. The only
varying parameters are the size of the initial population N0, the size of population
during the evolution N, and the number of generations in the evolutive loop, which
are chosen empirically based on the objective function. We emphasize that, due to
the stochastic nature of these methods, we repeated the tests 15 times, with different
initial configurations, presenting the mean value, the minimum and the maximum
over the 15 runs.

1 Freely available at https://github.com/mathLab/ATHENA.

https://github.com/mathLab/ATHENA
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Figure 6.4: Benchmark test functions representation in 2D. White dots indicate the global
minima. In the top row from left to right we have the following functions: Rosenbrock,
Ackley, and Bohachevsky. In the bottom row we have the Rastrigin, Schaffer N. 7, and
Zakharov functions.

6.4.1 Benchmark test functions

We applied the optimization algorithm to 6 different n-dimensional test functions,
which have been chosen to cover a large variety of possible shapes. For all the
functions, the results of the proposed method are compared to the results obtained
using the standard genetic approach. In detail, the functions we tested are the
so called: Rosenbrock, Ackley, Bohachevsky, Rastrigin, Schaffer N. 7 and Zakharov. In
figure 6.4 we depict the test functions, in their two-dimensional form. In the follow-
ing paragraphs we briefly introduce them before presenting the obtained results.
For a complete literature survey on benchmark functions for global optimization
problems we suggest [128].

6.4.1.1 (a) Rosenbrock function

The Rosenbrock function is a widespread test function in the context of global
optimization [18, 76, 204]. We choose it as representative of the valley-shaped test
functions. The general d-dimensional formulation is the following:

f (x) =
d�1

Â
i=1

[100(xi+1 � x2
i )

2 + (xi � 1)2]. (6.5)

Its global minimum is f (x⇤) = 0, at x⇤ = (1, 1, . . . , 1). As we can see from figure 6.4
(first in the top row) the minimum lies on a easy to find parabolic valley, but
the convergence to the actual minimum is notoriously difficult. We evaluated the
function in the hypercube [�5, 10]d.
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6.4.1.2 (b) Ackley function

The Ackley function is characterized by many local minima making it difficult to
find the global minimum, especially for hillclimbing algorithms [2, 9]. The general
d-dimensional formulation is the following:

f (x) = �a exp

0

@�b

vuut1
d

d

Â
i=1

x2
i

1

A� exp

0

@

vuut1
d

d

Â
i=1

cos(cxi)

1

A+ a + exp(1), (6.6)

where a, b, and c are set to 20, 0.2, and 2p, respectively. Its global minimum is
f (x⇤) = 0, at x⇤ = (0, 0, . . . , 0). As we can see from figure 6.4 (second in the top
row) the function is nearly flat in the outer region, with many local minima, and the
global minimum lies on a hole around the origin. The function has been evaluated
in the domain [�15, 30]d.

6.4.1.3 (c) Bohachevsky function

The Bohachevsky function is a representative of the bowl-shaped functions. There
are many variants and we chose the general d-dimensional formulation as the
following:

f (x) =
d�1

Â
i=1

(x2
i + 2x2

i+1 � 0.3 cos(3pxi)� 0.4 cos(4pxi+1) + 0.7). (6.7)

Its global minimum is f (x⇤) = 0, at x⇤ = (0, 0, . . . , 0). As we can see from figure 6.4
(third in the top row) the function has a clear bowl shape. This function has been
evaluated in the domain [�100, 100]d.

6.4.1.4 (d) Rastrigin function

The Rastrigin function is another difficult function to deal with for global opti-
mization with genetic algorithm due to the large search space and its many local
minima [186]. The general d-dimensional formulation is the following:

f (x) = 10d +
d

Â
i=1

[x2
i � 10 cos(2pxi)]. (6.8)

Its global minimum is f (x⇤) = 0, at x⇤ = (0, 0, . . . , 0). As we can see from figure 6.4
(first in the bottom row) the function is highly multimodal with local minima
regularly distributed. We evaluated this function in the input domain [�5.12, 5.12]d.

6.4.1.5 (e) Schaffer N. 7 function

The Schaffer N. 7 function [234] is a stretched V sine wave. The general d-dimensional
formulation is the following:

f (x) =
d�1

Â
i=1

(x2
i + x2

i+1)
0.25
h
sin2(50(x2

i + x2
i+1)

0.10) + 1
i

. (6.9)

Its global minimum is f (x⇤) = 0, at x⇤ = (0, 0, . . . , 0). As we can see from fig-
ure 6.4 (second in the bottom row) the function presents many local minima. The
optimization has been performed in the hypercube [�100, 100]d.
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6.4.1.6 (f) Zakharov function

The Zakharov function is a representative of the plate-shaped functions. It has
one global minimum and no additional local minima. The general d-dimensional
formulation is the following (after a shift):

f (x) =
d

Â
i=1

(xi + 10)2 +

 
d

Â
i=1

i
2
(xi + 10)

!2

+

 
d

Â
i=1

i
2
(xi + 10)

!4

. (6.10)

We emphasize that we used a shifted version with global minimum f (x⇤) = 0, at
x⇤ = (�10,�10, . . . ,�10). This choice is made to prove that the proposed method
is not biased towards minima around the origin. We can see from figure 6.4 (third
in the bottom row) the function for d = 2. We evaluated the Zakharov function in
the domain [�15, 0]d.
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Figure 6.5: Results of the optimization of the benchmark functions in a space of dimension
d = 2. We compare the standard GA (in blue square dots) with the proposed algorithm
ASGA (in red circle dots) using an initial population of size 30, while the dimension for
each generation is fixed to 10. The solid lines represent the mean, over 15 runs, of the
objective function corresponding to the best individual at each generation. The shaded
areas show the interval between minimum and maximum (blue with lines for GA, red for
ASGA).

6.4.1.7 Comments

All the test cases presented share the same hyper-parameters described at the
beginning of this section, except for the population size. For the 2-dimensional
benchmark functions, the two algorithms are tested creating N0 = 200 random
individuals for the initial population, then keeping an offspring of dimension
N = 100. Figure 6.5 shows the behaviour for all the test functions. For this space
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dimension, the two trends are very similar: the usage of the proposed algorithm
does not make the optimization faster, and adds the computational overhead for
the AS construction. Despite that, the results after 10 generations are very similar,
and we can consider this as a worst case scenario, where a clear reduction in the
parameter space is not possible.
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Figure 6.6: Results of the optimization of the benchmark functions in a space of dimension
d = 15. We compare the standard GA (in blue square dots) with the proposed algorithm
ASGA (in red circle dots) using an initial population of size 2000, while the dimension for
each generation is fixed to 200. The solid lines represent the mean, over 15 runs, of the
objective function corresponding to the best individual at each generation. The shaded
areas show the interval between minimum and maximum (blue with lines for GA, red for
ASGA).

The ASGA performance gain changes drastically increasing the number of di-
mension to d = 15, as demonstrated in figure 6.6. For such dimension, the two
parameters N0 and N are set to 2000 and 200, respectively. Starting from this dimen-
sion, it is possible to note a remarkable difference between the standard method and
the proposed one. The greater the input dimension, the greater the gain produced
by ASGA, due to the exploitation of the AS reduction. All the benchmarks show a
faster decay, but we can isolate two different patterns in the evolution: Rosenbrock
and Ackley show a very steep trend in the first generation gain, while for the next
generations the population is not able to decrease its fitness as much as before,
showing a quasi-constant behaviour. The difference with the standard genetic algo-
rithm is maximized in the first generation, but even if the evolution using ASGA is
not so effective after the first generation in these two cases, the proposed method is
able to achieve anyway a better result (on average) after 30 generations. The other
benchmarks instead show a much smoother decay, gradually converging to the
optimum. Despite the lack of the initial step, for these benchmarks the gain with
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respect to the standard approach becomes bigger, even if after several generations
the convergence rate decreases.
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Figure 6.7: Eigenvalues estimates of the matrix C in equation (2.8) for all the benchmarks,
at the first generation, for d = 15. The black dots in the plot indicate the eigenvalues, while
the grey area is defined by the bootstrap intervals.

In order to better understand these differences, we investigate the spectra of the
AS covariance matrices for all the benchmarks, which are reported in figure 6.7. The
patterns individuated in the optimizations are partially reflected in the eigenvalues:
Rosenbrock, Ackley and Zakharov have an evident gap between the first and the second
eigenvalues, which results in a better approximation (of the original function) in the
1-dimensional subspace. However, the order of magnitude of the first eigenvalue is
different between the three functions: for Rosenbrock and Ackley the magnitude is
greater than 0.1 whereas for Zakharov is around 0.05.

Since for all the tests, the ASGA approach performs better than its classical
counterpart despite the absence, in some cases, of an evident spectral gap in the
AS covariance matrix, we perform further investigations. In particular, we use the
same tests as before (15-dimensional functions) but with a different number of
active dimensions, i. e. M = {2, 5}, instead of M = 1. In figure 6.8 we show the
comparison between the classical GA and the ASGA outcomes. It is possible to note
that by increasing the active dimension, the differences between the performances
of the two methods become smaller. Only for the Rosenbrock and for the Ackley
functions we can see that ASGA with M = 5 is not able to reach the same order of
magnitude reached by GA (we remark the original space has dimension d = 15).

Increasing the input dimension to d = 40 shows a much clearer benefit in using
the proposed method, as we can see in figure 6.9. Here we set N0 = 5000 and
N = 1000. We specify that we set the active dimension M = 1. Also with this
dimensionality, we are able to isolate two main behaviours in the convergence of
the six benchmarks: a very steep trend in the first generation, and a more smooth
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Figure 6.8: Results of the optimization of the benchmark functions in a space of dimension
d = 15, with active dimension M = 2 (top) and M = 5 (bottom). We compare the standard
GA (in blue square dots) with the proposed algorithm ASGA (in red circle dots) using an
initial population of size 2000, while the dimension for each generation is fixed to 200. The
solid lines represent the mean, over 15 runs, of the objective function corresponding to the
best individual at each generation. The shaded areas show the interval between minimum
and maximum (blue with lines for GA, red for ASGA).
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Figure 6.9: Results of the optimization of the benchmark functions in a space of dimension
d = 40. We compare the standard GA (in blue square dots) with the proposed algorithm
ASGA (in red circle dots) using an initial population of size 5000, while the dimension for
each generation is fixed to 1000. The solid lines represent the mean, over 15 runs, of the
objective function corresponding to the best individual at each generation. The shaded
areas show the interval between minimum and maximum (blue with lines for GA, red for
ASGA).

one, but still equally effective. The interesting thing is that some benchmarks do not
reflect the behaviour collected with d = 15. While Rosenbrock, Rastrigin and Zakharov
show a similar convergence rate for ASGA, the other benchmarks present a change
in the slope. The different behaviours observed for the same benchmarks evaluated
at different input dimensional spaces is due to the fact that the method is sensitive
to the approximation accuracy of the gradients of the model function with respect
to the input data. This is an issue inherited by the application of AS. Moreover,
since we are keeping just one active variable, we are discarding several information,
thus the representation of the function along the active subspace could present
some noise. So the genetic procedure enhanced by AS is able to converge fast to the
optimum, but this optimum may be — for the space simplification — distant to
the true optimum. From the tests with higher active dimension, we note that the
improvement in the first iterations is not as rapid as by using a 1-dimensional AS.
Also, keeping more active dimensions, the performance of ASGA becomes similar to
the standard GA. We can conclude that with one (or few) active dimension, ASGA
reaches the global minimum with less function evaluations, but we get stuck with
the projection error introduced by AS, whereas by increasing the active dimension
we reduce the projection error but we lose the effectiveness of the evolution steps
in a reduced space. A possible solution for this problem can be a smarter (and
dynamical) strategy to select the number of active dimensions.
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Over all the three test cases, where we vary the input space dimension, the
performance of ASGA are better or equal than the standard GA. In table 6.1 we
summarize the relative gain on average achieved after the entire evolution and after
only one generation, divided by test function, both with the GA and ASGA methods.
The relative gain is computed as the mean over 15 runs of the ratio between
the objective function evaluated at the best-fit individual at the beginning of the
evolution ( f (x0

opt)) and the objective function evaluated at the best-fit individual
after k generations, with k = 1 and k = Ngen, where Ngen is the maximum number
of generations depending on the input dimension. This relative gain G(k) reads,

G(k) =
1
15

15

Â
i=1

f (x0
opti

)/ f (xk
opti

), (6.11)

where xk
opti

is the best-fit individual of the population at the i-th run and at k-th
generation. Highest values correspond to a more effective optimization, and for
dimensions 15 and 40 we can see from table 6.1 that ASGA performs better than
standard GA for all the benchmarks. Even the gain after just one evolutive iteration is
bigger in all the collected tests, reaching in some cases some order of magnitude of
difference with respect to GA. These results suggest that despite the computational
overhead for the construction of AS and the back-mapping, an application of the
ASGA over the standard GA produces usually better or at least comparable results
for a fixed generation.

Table 6.1: Summary comparison between GA and ASGA with respect to the gain G(k)
defined in equation (6.11). We compare the gain for the first and for the last generation.

Function Method
dim = 2 dim = 15 dim = 40

G(9) G(1) G(29) G(1) G(49) G(1)

GA 9.17 1.13 4.71 1.03 2.53 1.10Ackley
ASGA 2.93 1.29 5.81 3.89 20.91 3.00

GA 39.58 1.78 223.86 1.22 729.05 1.81Bohachevsky
ASGA 31.66 2.04 8608.41 130.72 75104.33 3548.70

GA 7.34 1.41 3.80 1.05 6.97 1.17Rastrigin
ASGA 3.24 1.39 1343.41 4.00 14738.40 71.77

GA 30.04 1.74 335.33 1.34 1723.89 2.42Rosenbrock
ASGA 39.68 2.66 2343.57 167.48 29747.56 1600.24

GA 3.64 1.21 4.83 1.11 5.66 1.18Schaffer
ASGA 2.16 1.17 16.41 3.61 32.57 10.38

GA 38.59 2.65 3.11 1.07 2148.39 26.50Zakharov
ASGA 51.14 3.88 417.86 24.46 37739.61 237.48

6.4.1.8 On the convergence of ASGA

The aim of this section is to provide further insights about the convergence of the
ASGA method. We perform a single run on all the benchmark functions presented
above, in a space of dimension d = 2. We kept unaltered all the ASGA numerical



6.4 numerical results 109

settings described above. We emphasize that we used the same hyper-parameters
of the 2-dimensional optimization test, except for the number of generations which
we increased to 100.

We summarize in figure 6.10 and figure 6.11 the spatial coordinates of the best
individual after each generation using the standard GA and ASGA. The proposed
method reaches the global minimum for all the testcases, performing better than
the standard counterpart for the Rosenbrock and Rastrigin functions.

Figure 6.10: Results of the single optimization run using GA for the 2-dimensional bench-
mark functions. The colored crosses indicate the spatial coordinates of the best individual
at each generation. Black lines indicate the isolines of the functions.

Figure 6.11: Results of the single optimization run using ASGA for the 2-dimensional
benchmark functions. The colored crosses indicate the spatial coordinates of the best
individual at each generation. Black lines indicate the isolines of the functions.

We also measure the convergence as the Euclidean distance between the best
individual fitness and the global optimum, and the spatial convergence as the Eu-
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clidean distance between the coordinates of the best individual and the coordinates
of the optimal point. We kept the same numerical settings, only raising the number
of generation to 1000. Figure 6.12 presents the plots where we compare the trend
using GA and ASGA: the proposed method shows a better performance, not only
thanks to the faster convergence but also because in all the cases ASGA is able to get
closer than the GA to the global optimum.
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Figure 6.12: Convergence of GA and ASGA for the 2-dimensional benchmark functions.

6.4.2 Shape design optimization of a NACA airfoil

Here we present the shape design optimization of a NACA 4412 airfoil [1]. Since
the purpose of this work is limited to the extension of the GA, we briefly present
the details of the complete model, with a quick overview of the application. To
reproduce the full order simulations please refer to [271] and to chapter 10.

Let be given the unsteady incompressible Navier-Stokes equations described in
an Eulerian framework on a parametrized space-time domain Q(µ) = W⇥ [0, T] ⇢
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R
d ⇥ R

+, d = 2, 3 with the velocity field denoted by u : Q(µ) ! R
d, and the

pressure field by p : Q(µ)! R, such that:
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ut +r · (u⌦ u)�r · 2nrs
u = �rp in Q(µ),

r · u = 0 in Q(µ),

u(t, x) = f(x) on Gin ⇥ [0, T],

u(t, x) = 0 on G0(µ)⇥ [0, T],

(nru� pI)n = 0 on Gout ⇥ [0, T],

u(0, x) = k(x) in Q(µ)0,

(6.12)

holds. Here, we have that G = Gin [ G0 [ Gout is the boundary of W and it is
composed by the inlet boundary Gin, the outlet boundary Gout and the physical
walls G0(µ). The term f(x) stands for the stationary non-homogeneous boundary
condition, whereas k(x) indicates the initial condition for the velocity at t = 0.
Shape changes are applied to the boundary G0(µ) corresponding to the airfoil wall,
which in the undeformed configuration corresponds to the 4-digits, NACA 4412
wing profile. Such shape modifications are associated to numerical parameters
contained in the vector µ 2 R

k with k = 10.
As geometrical deformation map M we adopt the shape morphing proposed

in [114], where 5 shape functions ri are added to the upper and lower part of the
airfoil profile denoted by y+ and y�, respectively. Each shape function is multiplied
by a possible different coefficient as in the following

y+ = y+ +
5

Â
i=1

airi, y� = y� �
5

Â
i=1

biri, (6.13)

where the bar denotes the reference undeformed profile. These 10 coefficients (ai
and bi) represent the input parameters µ 2 D := [0, 0.03]10. In figure 6.13 we depict
the NACA 4412 together with the 5 rescaled shape functions ri. The output function
we want to maximize is the lift-to-drag coefficient, one of the typical quantities of
interest in aeronautical problems. To recast the problem in a minimization setting,
we just minimize the opposite of the coefficient. To compute it, we model a turbulent
flow pasting around the 2D airfoil using the incompressible Reynolds Averaged
Navier–Stokes equations. Regarding the main numerical settings, we adopt a finite
volume approach with the Spalart–Allmaras model, with a computational grid of
46500 degrees of freedom. The flow velocity, at the inlet boundary, is set to 1 m/s,
while the Reynolds number is fixed to 50000. For the detailed problem formulation
we refer to the experiments conducted in [271].

Instead of running the high-fidelity solver for any new untested parameter, we
optimize a RBF response surface built using the initial dataset. Due to the stochastic
nature of the method, also in this test case we test the methods for several initial
settings — 25 different runs — making the total computational load very high. Thus,
we decided to build a response surface using a dataset of 333 samples, computed
with the numerical scheme described above, mimicking at the same time a typical
industrial workflow.
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Figure 6.13: NACA 4412 profile with the 5 shape functions ri rescaled by a factor equal
to 0.2.

The objective function fobj(µ) : D ⇢ R
10 ! R we are going to minimize is the

following:

fobj(µ) =

8
<

:
g(µ) if µ 2 D,

a if µ /2 D,
(6.14)

where g(µ) is the response surface built using the RBF interpolation technique [39]
over the samples, while a 2 R is a penalty constant. To prevent the evolution from
creating new individuals that do not belong to D, we impose a penalty factor
a = 10. We recall that we minimize the opposite of the lift-to-drag coefficient.

Figure 6.14 reports the evolution of the best-fit individual over 10 generations.
Also in this case, we apply the proposed algorithm and the standard GA to 25
different initial settings, using an initial population size N0 = 20 and selecting at
each generations the N = 10 best-fit individuals for the offspring. The plot depicts
the mean best-fit individual with solid lines, whereas the shaded areas show the
interval between the minimum and maximum (of the 25 runs) for each generation.
Even if the dimension of the parameter space is not very high (10), we can see
that on average the proposed algorithm is able to converge faster. The difference
between the two methods is not as remarkable as in a higher dimensional test case,
but we can see that the best run using standard GA is slightly worse than the mean
optimum achieved by ASGA. This again demonstrates the value in the proposed
method. Moreover, we emphasize that also in this case the decay of the objective
function in the first generations with ASGA is faster.

6.5 conclusions

In this chapter, we have presented a novel approach for optimization problems cou-
pling the supervised learning technique called Active Subspaces with the standard
genetic algorithm. We have demonstrated the benefits of such method by applying it
to some benchmark functions and to a realistic engineering problem. The proposed
method achieves faster convergence to the optimum, since the individuals evolve
only along few principal directions (discovered exploiting the AS property). Further,
from the results it emerges that the gain induced from the ASGA method is greater
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Figure 6.14: Results of the optimization of the NACA airfoil design in a 10-dimensional
space. We compare the standard GA (in blue square dots) with the proposed algorithm
ASGA (in red circle dots) using an initial population of size 20, while the dimension for
each generation is fixed to 10. The solid lines represent the mean, over 25 runs, of the
objective function corresponding to the best individual at each generation. The shaded
areas show the interval between minimum and maximum (blue with lines for GA, red for
ASGA).

for high-dimensionality functions, making it particularly suited for models with
many input parameters.

This new method can also be integrated in numerical pipelines involving model
order reduction and reduction in parameter space. Reducing the number of input
parameters is a key ingredient to improve the computational performance and to
allow the study of very complex systems.

Since the number of active dimensions is important for the accuracy of the AS,
future developments will focus on an efficient criterion to select dynamically the
number of AS dimensions, which in the presented results are kept fixed. Future
studies will also address the problem of incorporating non-linear extensions of
active subspaces into the ASGA, focusing on the construction of a proper back-
mapping from the reduced space to the original full parameter space.
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7
S T R U C T U R A L O P T I M I Z AT I O N O F PA S S E N G E R S H I P H U L L S

Nowadays the shipbuilding industry is facing a radical change towards solutions
with a smaller environmental impact. This can be achieved with low emissions
engines and by reducing the metal raw materials used during the manufacturing.
This chapter focus of this second aspect by presenting a complete structural opti-
mization pipeline for modern passenger ship hulls which exploits advanced model
order reduction techniques to reduce the dimensionality of both input parameters
and outputs of interest. We test the whole framework over the same hull but with
two different parameterizations, showing how we can deal with high-dimensional
optimization.

This chapter has been possible thanks to the collaboration with Fincantieri S.p.A.,
in particular with Matteo Sidari and Mauro Sicchiero.
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7.1 literature review

When considering optimization of complex systems in an industrial context we must
rely on surrogate models in order to alleviate the computational cost of this kind of
many query problems. Many studies have been conducted to access the structural
behaviour of passenger ship hulls [111, 199, 220, 254]. In [208] they compare
different surrogate models to improve the design process of complex thin-walled
ship structures, without using any POD-based model order reduction. For structural
behaviour and optimisation of passenger ships we cite [216], and [215] where they
used efficient finite element modelling, evolutionary optimisation algorithm and
indirect constraint relaxation. We used a similar idea for the stability constraints,
where local stress peaks are allowed to exceed the rule-based strength limits.

Scientific machine learning [11] is widely used in applied mathematics and in
engineering applications [38] such as inverse problems, optimization, and predic-
tion of the behaviour of parametrized systems, to cite a few. Structural analysis
of complex systems through reduced order modeling is not limited to naval engi-
neering. Recently a component-based data-driven approach has been proposed to
access the structural integrity of aircraft components [136] in the context of modern
digital twins incorporating not only data but also physics models, also referred
to as hybrid twins [47]. For multidisciplinary analysis and optimization involving
reduction in both input and output spaces we cite [27, 28], while for a specific naval
engineering application we suggest [142].

In this work we propose an optimization framework, to be used in the preliminary
design phase, involving many reduced order models to access the structural be-
haviour of modern passenger ship hulls under different parametric configurations
and loading conditions. We incorporate parameter space reduction by constructing
a multi-fidelity surrogate model, without the need of running simplified simula-
tions, exploiting the presence of an active subspace [54, 224]. This represents a new
data-driven non-intrusive ROM, more accurate with respect to a more classical inter-
polation method such as GPR. The optimization pipeline, thanks to its modularity,
allows for different target function to minimize, from the total mass of the hull, to
the manufacturing cost of the structure.

This chapter is organized as follows: in section 7.2 we present the entire pipeline;
in section 7.3 and section 7.4 we describe the full order model and the reduced
order one, respectively. We also compare the new proposed data fusion approach to
the more classical POD with Gaussian Process Regression. In section 7.5 we briefly
summarize the Bayesian optimization scheme we used for the numerical results in
section 7.6, where we tested the framework on two configurations of the same hull.
Finally in section 7.7 we draw the conclusions and show some future perspectives
on multi-objective optimization.



7.2 structural optimization pipeline 119

7.2 structural optimization pipeline

In this chapter we are going to use the Nested Analysis and Design (NAND) [8, 13]
approach. We consider the problem:

min
µ2P

f (w, µ), s.t. R(w, µ) = 0, (7.1)

where w represents the state vector, and R(w, µ) a general high-dimensional dis-
cretized parametric PDE, which we are going to characterized in section 7.3. Follow-
ing the NAND approach, where w is considered an implicit function of µ, we can
rewrite the optimization problem as

min
µ2P

f (w(µ), µ). (7.2)

So for every queried parameter point µ, we solve the PDE and evaluate the function
to minimize. For a fast and accurate solution of the PDE we use reduced order
models described in section 7.4.

The complete structural mono-objective optimization workflow is depicted in
figure 7.1, in which for every building block we emphasize the software used.

We start from the construction of the parametrized structural model with MSC
Patran, and we construct a database of full order solutions with MSC Nastran
corresponding to a given set of parameters for every loading condition. With
this database we construct different reduced order models depending on the
quantity of interest we want to approximate. We use PODI [40, 170] for the stress
tensor and buckling usage factor tensor field reconstruction, and GPR [287] for the
approximation of scalar functions. Moreover we exploit Active Subspaces [54] for
the reduction of the parameter space dimension to build low-fidelity models and
improve the PODI prediction capabilities in a multi-fidelity setting. These parameter
and model reduction methods are combined for a computational efficient and
reliable evaluation of the constraints regarding the stability of the whole hull: we
check how many elements are yielded, and how many elements are subjected to
buckling phenomena. We remark that we allow local stress peaks to exceed the
classification society rule limits, since we automatically incorporate within the
function to optimize the necessary interventions at the shipyard to stabilise such
elements. This is particularly important since the proposed pipeline is going to be
used in the preliminary design phase. The optimization is done with a Bayesian
approach. The approximated optimum is then validated with the full order model
and the snapshots database enriched accordingly.

We are going to present all the numerical methods employed and finally the
application of the whole pipeline to an actual passenger ship hull depicted in
figure 7.2 and built by Fincantieri S.p.A..

7.3 full order model

In this section we describe the PDE we need to solve and the high-fidelity solver
used to create the solutions database.
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SNAPSHOTS
DATABASE

PARAMETER SPACE
REDUCTION

AS, KAS, NLL with ATHENA
CONSTRAINTS
EVALUATION

Stress tensor field
Buckling usage factors

OPTIMIZATION

Mass/deflection with GPyOpt

APPROXIMATED OPTIMUM

REDUCED ORDER
MODEL

(vector fields)

PODI with EZyRB

MODEL FUNCTION
APPROXIMATION

GPR with GPy

FULL ORDER MODEL

Linear elasticity with 
MSC NASTRAN

STRUCTURAL MODEL
 

MSC PATRAN

Validation and enrichment

Figure 7.1: Structural optimization workflow, from the base structural model creation, to
the approximated optimum and validation. Each block of the pipeline reports the software
used.

Figure 7.2: A complete view on the hull on the left, and a longitudinal section on the right.

The equations governing the linear elastic isotropic problem are the equilibrium
equation, the linearised small-displacement strain-displacement relationship, and
the Hooke’s law, respectively:

8
>>><

>>>:

�r · s = f ,

e = 1
2 [ru +ruT],

s = C(E, n) : e,

(7.3)

where s is the Cauchy stress tensor, f is the body force, e is the infinitesimal
strain tensor, u is the displacement vector, and C is the fourth-order stiffness tensor
depending on E, the Young modulus, and on n, the Poisson’s ratio.

The finite element method employed uses 2-dimensional elements, commonly
referred to as plate and shell elements. They are used to represent areas in the
model where one of the dimensions is small in comparison to the other two. As
shown in figure 7.4, the height or thickness of the element is substantially less
than the width and the length. We are going to use MSC Nastran CQUAD4 and
CTRIA3 elements, which are general-purpose plate elements capable of carrying
inplane force, bending forces, and transverse shear force. The membrane stiffness
of the 2-dimensional elements is calculated using the plane stress theory. Most thin
structures constructed from common engineering material, such as aluminum and
steel, can be modeled effectively using plane stress. In figure 7.3 an example of
solution for a given loading condition.
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Figure 7.3: Possible deformation of the hull under the hogging loading condition. Displace-
ments are magnified. Colors refer to the von Mises criterion.

width
height

length

Figure 7.4: Sketch of a plate element.

7.4 reduced order model

In this section we describe and compare the new proposed non-intrusive data-
driven ROM exploiting the low-intrinsic dimensionality of the parameter to reduced
snapshots map.

In the entire chapter the parameters vector µ 2 P represent the thickness of
some selected macro areas of steel plates. In order to speed up the optimization
procedure we construct a reduced order model for every field of interest, and from
them we compute the derived quantities which describe the constraints and the
functions to optimize.

As reduced order model we use the approach presented in section 5.1 which uses
NARGPAS to approximate all the POD modal coefficients we retain. We can compare
the L2 relative error using this approach, called POD-NARGPAS, with POD-GPR, which
uses only a single fidelity. In the first case each modal coefficient is approximated,
using algorithm 12, with the following multi-fidelity model:

gM = (( fH |xH
i , yH

i ), ( fL|xL
i )) ⇠ (GP( fH |mH, sH), GP( fL|mL, sL)), (7.4)

where the H and L denote the high and low-fidelity, respectively. The low-fidelity
is built by extending on the whole parameter space a one-dimensional response
surface constructed over the AS of each POD coefficient. For the active subspace’s
response surface design we used ATHENA1 [222], while for the actual construction
of the reduced order models we used EZyRB2 [70].

We used 100 samples selected with a discrete space filling criterion for the
train and another 100 uniformly distributed samples for the test. We compare the

1 Available at https://github.com/mathLab/ATHENA.
2 Available at https://github.com/mathLab/EZyRB.

https://github.com/mathLab/ATHENA
https://github.com/mathLab/EZyRB
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prediction error for two quantities: the stress tensor field and the buckling usage
factors tensor field. For the first case, in figure 7.5 we can see how the autoregressive
scheme outperforms the POD-GPR with a gain around 20% without the necessity
of performing new simulations. We also notice how the single fidelity approach
becomes a little unstable with respect to the other, especially for higher truncation
ranks. For lower truncation ranks the performance are almost the same and we did
not include them in the plots to avoid too different scales in the y-axis.

Figure 7.5: Comparison between the stress tensor field prediction error using POD-GPR
and POD-NARGPAS varying the truncation rank.

The same behaviour is present for the buckling usage factors for which, in
figure 7.6, we see a plateau for both the methods. The gain is again around 20%.
The higher relative error is due to the fact that to compute this tensor field we
used classification society rules, which, in general, are nonlinear and present
discontinuities due to the presence of different safety factors for different cases. For
the hull showed in figure 7.2 the prediction accuracy is better when considering the
elastic buckling stress for plate panels in uni-axial compression with respect to the
bi-axial compression, and to the bi-axial compression and in-plane shear stresses.

Figure 7.6: Comparison between the buckling usage factors tensor field prediction error
using POD-GPR and POD-NARGPAS varying the truncation rank.
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The new proposed data-driven approach outperforms the more classical single-
fidelity, without the need of any additional simulation. We remark that POD-GPR, for
naval engineering problems, has proven better than RBF and linear interpolation [65].

7.5 bayesian optimization

To minimize the model functions of interest we use Bayesian optimization [90,
202, 247], which we are going to briefly present in this section. It is a class of
machine-learning-based derivative-free global optimization methods, which is
suited for input parameters domain with less than 20 dimensions. One of the main
assumptions is that we do not have any information about the structure of the
function to optimize, so it is intended as a black-box. Bayesian optimization was
first introduced in [148, 181, 296], and successively made popular in [132] in the
context of efficient global optimization.

Mathematically, we are considering the problem of finding a global minimizer of
an unknown function f : W ⇢ R

n ! R, that is

xopt = argmin
x2W

f (x), (7.5)

where W ⇢ R
n is the design space of interest, which in our case is the parameter

space P . More general settings can include design spaces with less regularity due to
the presence of possible nonlinear constraints. Here we consider a sequential search
algorithm which selects the next location where to query f . The Bayesian posterior
represent the best current knowledge of the function to optimize. The locations
are selected by evaluating an acquisition function a : W ! R which leverages
the uncertainty of the posterior to guide the exploration of the design space. In
algorithm 16 we sketch a pseudo-code to highlight the main steps of the whole
process.

As acquisition function we use the expected improvement (EI), which is one of
the most commonly used. Let

f ⇤n (x) := min
ln

f (xl), (7.6)

be the value of the smallest observed values. We want to perform a new evaluation,
say y = f (x), which has the highest expected improvement defined as:

a(x) := EIn(x) := En [( f ⇤n (x)� f (x))+] . (7.7)

With En we denote the expectation taken under the posterior distribution given
the first n evaluations, that is En[·] = En[·|x1, . . . , xn, y1, . . . , yn]. This acquisition
function can be computed in closed form [132]. The actual next point xn+1 to
evaluate is then given by

xn+1 = argmax
x

EIn(x). (7.8)

To find it we exploit the simpler structure of a with respect to the target function f ,
which allows for inexpensive evaluations and also easy computation of first and
second derivatives.
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Algorithm 16 Bayesian optimization pseudo-code.
Input:

model function f to minimize
acquisition function a
initial number of evaluation points n0
maximum number of iterations N

Output:
smallest value for f (x)

1: Compute the Gaussian process prior on f .
2: Evaluate f at the initial n0 points.
3: Set n = n0.
4: while n  N do

5: Update the posterior probability distribution on f with all the available
evaluations.

6: Using the current posterior distribution find xn = argmaxx a(x).
7: Evaluate yn = f (xn).
8: Increment n: n = n + 1.
9: end while

10: return either the point with the smallest f (x), or the one with the smallest
posterior mean.

In figure 7.7 we show 2 iterations of a Bayesian optimization procedure for a test
function, highlighting both the prediction and the value of the acquisition function.
We notice that the acquisition is high where the model predicts a low objective
(so-called exploitation) and where the prediction uncertainty is high (so-called
exploration). Note that the area on the far left remains unsampled, as while it
has high uncertainty, it is predicted to offer a smaller improvement over the best
observation.

Figure 7.7: Illustration fo the Bayesian optimization procedure over 2 intermediate iterations.
The top part of the plots shows the estimated mean and confidence intervals of the unknown
objective function (in dashed line). In the bottom part of the plots we show the acquisition
function in green and its maximum.
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7.6 numerical results

In this section we are going to apply the optimization pipeline described in sec-
tion 7.2 to the parametric hull depicted in figure 7.2. We analyse two different
parameterization of the same reference hull, starting from a 6 parameters test case,
and then showing the results for the 16 parameters case. We perform a discrete
mono-objective optimization of the mass of the parametric part of the hull, with
stability contraints. Even if we are going to minimize a single scalar function of in-
terest we provide some insights regarding multi-objective optimization considering
also the deflection at a prescribed node.

7.6.1 Objective function definition

The target function we are going to minimize is the total mass m of the parametrized
regions of the hull plus the mass of the buckling stiffeners needed to stabilise the
buckled elements of the entire hull. Other possibility are available within the
optimization framework such as the deflection for a given loading condition, and
the total cost related to the parametrized decks which considers both the acquisition
cost of the metal raw materials and the manufacturing cost for the installation of the
steel plates and buckling stiffeners, specific for each shipyard. For industrial reasons
in this chapter we are not going to present the results for the cost optimization, but
we want to emphasize that the framework if very versatile and allows the use of
different target functions.

As for the stability constraints we set some thresholds for the Cauchy stress
tensor components in order to count how many plate elements are yielded for a
prescribed set of loading conditions, which are hogging and sagging. See figure 7.3
for an example of hogging condition. Given the symmetric Cauchy stress tensor in
the global reference frame, whose components for a single element are

s =

2

664

sx txy txz

txy sy tyz

txz tyz sz,

3

775 , (7.9)

we define an element yielded if at least one of the following conditions is not
satisfied:

�245 < si < 245, for i 2 {x, y, z}, (7.10)
�153 < ti < 153, for i 2 {xy, xz, yz}, (7.11)

sVM :=
q

s2
x + s2

y � sxsy + 3t2
xy < 307, (7.12)

where sVM stands for the von Mises yield criterion. The actual constraint for the
optimization is the maximum number Ny

max of elements that can yield. Exactly the
same is done for the buckling usage factors associated to each element. An element
is considered buckled, based on the DNV GL classification rules3, if at least one
of the 11 components of the buckling usage factors tensor is greater than 1, for at

3 Det Norske Veritas (DNV) Rules for Ships, part 3, chapter 1, section 13: Buckling control.



126 structural optimization of passenger ship hulls

least one loading condition. The maximum number of allowed buckled elements is
Nb

max. To incorporate these stability constraints we penalize the objective function
fobj with a parabolic function depending on the the violated constraint, that is

fobj(µ) := m(µ) + mbsNb(µ) + cy(Ny(µ)� Ny
max)

2
+ + cb(Nb(µ)� Nb

max)
2
+, (7.13)

where m(µ) is the mass of the parametric decks, Ny(·) and Nb(·) denote the number
of yielded and buckled elements, respectively, mbs is the mass of a single buckling
stiffener, cy = 1, cb = 0.001, and (·)+ = max(·, 0) stands for the positive part. The
coefficients cy and cb can be changed in case the user wants a particular constraint
to weight more with respect to the other.

7.6.2 First test case: 6 parameters

For the first test case we assign a parametric thickness to 6 different regions of the
hull. In particular we choose the ones highlighted with solid colors in the left panel
of figure 7.8. Each parameter correspond to a different deck. Table 7.1 summarizes
the parameters, the corresponding deck, the default thickness associated to the
reference hull, and the ranges of variation.

Figure 7.8: View of the hull parametric decks. In solid colors the regions of the hull affected
by the parameters described in table 7.1 (left panel), and in table 7.2 (right panel).

Table 7.1: Parameters description of the hull for the first test case. All data are in mm.

Parameter Region Default thickness Lower bound Upper bound

µ1 Deck 17 9.0 5.0 12.0

µ2 Deck 16 8.0 5.0 12.0

µ3 Deck 15 7.5 5.0 12.0

µ4 Deck 09 8.0 5.0 15.0

µ5 Deck 01 16.0 12.0 25.0

µ6 Deck 00 20.0 12.0 25.0

Since the steel plates can have only a finite set of possible thickness, the input
parameter space is discrete. In order to cover the domain in the most uniform
way, we generate many random uniform sampling Si := {µi

j}M
j=1 composed by M

samples each. We compute the minimum pairwise distance di associated to each
Si and we retain the samples with maximum d. Let us call the chosen samples
S := {µj}M

j=1.
To have a better idea on how to set the stability constraints for a given type of

hull, we can plot the distribution of the parametric hulls with respect to the number
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of yielded elements (left panel of figure 7.9). We see that if we set Ny
max = 200, the

valid samples will be roughly 82% of all the manufacturable hulls. In the right
panel of figure 7.9 we plot the distribution of the hulls with respect to the number
of buckled elements and we set Nb

max accordingly.

Figure 7.9: Distribution of the hulls with respect to the stability constraints. In the left
panel we consider the number of yielded elements, while in the right panel we have the
distribution of the parametric hulls satisfying the first constraint with respect to the number
of buckled elements.

After constructing a reduced order model for every component of the stress
tensor and the buckling usage factors tensor field we can perform the Bayesian
optimization described above. The truncation rank for the stress components is 10,
while for the buckling usage factors is 20. We emphasize that every parametric term
in equation (7.13), except m(µ), is predicted using the precomputed reduced order
models. In this way a single parameter evaluation takes approximately 1 second.
The term m(µ) is computed exactly. We can access the prediction error for the stress
tensor components and for the von Mises criterion using 5-fold cross validation. In
figure 7.10 we see the mean L2 relative error when using 80% of the snapshots as
train dataset and the rest as test dataset. We see that the error is always below 0.7%.

Figure 7.10: L2 relative error for the prediction of the stress tensor components for the
hogging loading condition. The solid line identifies the mean error over a 5-fold cross
validation.

We set the computational budget for the Bayesian optimization to 300 iterations.
We remark that at every iteration the GPR for the target function has to be recom-
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puted. This means that the GPR construction time increases at every iteration. In
figure 7.11 the results for all the successive optimization runs. After an optimization
cycle is completed, the high-fidelity solution corresponding to the approximated
optimum is added to the snapshots database and the reduced order models are
recreated. Thus the accuracy in the neighborhood of the current optimum is in-
creased and the successive runs will exploit such information by focusing in that
specific region, or will explore different areas if the error committed at the current
optimum is too high. In this case one run is sufficient to find the optimum. In
fact, when we add that solution to the database the optimizer is not able to find a
better hull, and the small discrepancy we see in the plot is due to the prediction
error in counting the buckling stiffeners needed to stabilise the buckled elements.
Even if the mass reduction seems not as remarkable we have to remember that the
parametrized regions are only a portion of the entire hull, thus a small amount of
tons corresponds to a relative high percentage. Absolute values are not present for
industrial reasons.

Figure 7.11: Different optimizations runs for the first test case. The relative reduction is
with respect to the best sample among the initial solutions database.

7.6.3 Second test case: 16 parameters

For the second test case we increased the number of input design parameters to
16. The parametric regions are depicted with solid colors in the right panel of
figure 7.8, while a deeper description of the range of variations of each parameter
µi, i = 1, . . . , 16, can be found in table 7.2. We used the same sampling strategy
described above to generate 300 samples.

Given the higher dimensional input space the solution manifold is much difficult
to approximate, so we expect higher prediction error, especially for the buckling
usage factors. This will result in a greater number of optimization runs before
arriving at convergence, as we can see from figure 7.12, where the first runs produce
a greater reduction polluted by the prediction error. The truncation rank for the
stress components is 30, while for the buckling usage factors is 60. We increased the
computational budget for the Baysian optimization to 600 evaluations. The fourth
run does not produce any new improvement with respect to the snapshots database,
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Table 7.2: Parameters description of the hull for the second test case. All data are in mm.

Parameter Region Default thickness Lower bound Upper bound

µ1 Deck 15 7.5 5.0 15.0

µ2 Deck 16 8.0 5.0 20.0

µ3 Deck 17 9.0 5.0 20.0

µ4 Deck 14 7.5 5.0 15.0

µ5 Deck 13 7.0 5.0 15.0

µ6 Deck 12 6.5 5.0 15.0

µ7 Deck 11 6.0 5.0 15.0

µ8 Deck 10 5.5 5.0 15.0

µ9 Deck 17 6.0 5.0 20.0

µ10 Deck 17 15.0 5.0 20.0

µ11 Deck 17 6.0 5.0 20.0

µ12 Deck 16 6.0 5.0 20.0

µ13 Deck 16 6.0 5.0 20.0

µ14 Deck 09 8.0 5.0 15.0

µ15 Deck 01 16.0 12.0 25.0

µ16 Deck 00 20.0 12.0 25.0

so we can confirm we converged to the global optimum in the approximated
solution manifold. In particular from the figure we conclude that the third run
produces the actual optimum. The slight difference is due to the approximation
error in the computation of the number of buckled elements, which is not present
in the successive run since that snapshot has been added to the database.

Figure 7.12: Different optimizations runs for the second test case. The relative reduction is
with respect to the best sample among the initial solutions database.

7.7 conclusions and future perspectives

In this chapter we proposed a modular data-driven structural optimization frame-
work for modern passenger ships. We exploit several reduced order models coupled
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with parameter space reduction in a multi-fidelity setting. This new approach
is called POD-NARGPAS. We demonstrated its performance against the classical
POD-GPR.

Our efficient numerical pipeline allows for different discrete mono-objective
optimization given a precomputed set of high-fidelity simulations. We parametrized
the thickness of various regions of the reference hull and we perform a mass
minimization considering stability constraints such as the total number of yielded
and buckled elements.

Future works will focus on improving the accuracy of constraints evaluations, for
example with a multi-fidelity approximation of the scalar output and not only for
the reconstruction of the entire field [224]. Another possibility is the exploitation
of local information with Local Active Subspaces [223], presented in chapter 3, to
further improve the regression performance.

Regarding the optimization procedure a natural evolution is the implementation
of a multi-objective optimization which considers at the same time both mass and
deflection at a given point, for example. This can be done in a Bayesian setting, but
if we want to increase the number of input parameters other approaches should be
considered, such as genetic algorithms [73]. In figure 7.13 we show the distribution
of the hulls in terms of mass and deflection at a given point, emphasizing the valid
samples from the one violating the stability constraints. This is just the first step in
order to provide the user useful insight towards the multi-objective optimization
which we will study in the near future.

Figure 7.13: Parametric hulls distribution in terms of mass and deflection at a given node.
In red the hulls violating the buckling constraint, in green the ones violating the yielding
constraint, and in blue the admissible samples.
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H U L L S H A P E D E S I G N O P T I M I Z AT I O N W I T H S E L F - L E A R N I N G
M E S H M O R P H I N G

In the field of parametric partial differential equations, shape optimization rep-
resents a challenging problem due to the required computational resources. In
this chapter, a data-driven framework involving multiple reduction techniques
is proposed to reduce such computational burden. POD and ASGA (introduced in
chapter 6) are applied for a dimensional reduction of the original (high-fidelity)
model and for an efficient genetic optimization based on active subspace property.
The parameterization of the shape is applied directly to the computational mesh,
propagating the generic deformation map applied to the surface (of the object to
optimize) to the mesh nodes using RBF interpolation. Thus, topology and quality
of the original mesh are preserved, enabling application of POD-based reduced
order modeling techniques, and avoiding the necessity of additional meshing steps.
Model order reduction is performed coupling POD and GPR in a data-driven fashion.
The framework is validated on a benchmark ship. All the results presented in this
chapter appeared in [69].

131
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8.1 literature review

In the framework of parameterized PDE problems for engineering, ROMs and opti-
mization algorithms are two instruments that particularly benefit a synergic use. In
several cases of engineering interest in which PDEs solution require considerable
computational effort, ROMs enable in fact a remarkable reduction in the resources
required for each calculation. There are of course several ways to reduce the dimen-
sionality of discretized PDEs. The most naive approaches, such as coarsening the
computational grids clearly have negative effects on the quality of the solutions. This
is particularly true for problems characterized by complex physics and geometrical
features, which in most cases require a very high number of degrees of freedom,
ultimately resulting in expensive computations. In the context of an optimization
algorithm execution, where many discretized PDE solutions must be computed, the
overall computational load often becomes unaffordable. With only modest negative
effects on the PDE solution accuracy, ROMs can be conveniently exploited to reduce
the high dimensionality of the original discrete problem — to which we will herein
refer to as FOM or high fidelity model. ROM algorithms can be employed in several
industrial design processes, and in particular to shape optimization, in which the
objective of the computations is to find the best shape of a particular product or
artifact. Such problems are in fact typically modeled through parametric PDEs, in
which input parameters control the geometric features of the object at hand. ROMs
efficiently approximate the numerical solution of the full order PDE with a suitable
reduced surrogate, enabling drastic reduction in the computational burden of the
overall optimization procedure.

There are of course several different algorithms which allow for an efficient
reduction of the dimensionality of parametric problem. In the present contribution,
we make use of a data-driven approach based on POD [227, 230]. The equation-
free nature of such method is often an essential feature in the industrial sector,
where modularity and solvers encapsulation play a fundamental role. Indeed, the
data-driven POD based ROM employed in the present optimization framework
can be coupled with any PDE solver, as the data integration is enforced through
the output of interest of the full order problem. Similar reduced methods have
been proposed in [65, 66] for the shape optimization of a benchmark hull, while
additional improvements have been made coupling the ROM with active subspace
analysis and different shape parameterization algorithms in [67, 68, 270, 272]. We
refer the readers interested in parametric hull shape variations using ROMs to [279],
while we mention [75, 244] for design-space dimensionality reduction in shape
optimization with POD. Moving from hulls to propellers, data-driven POD has also
been successfully incorporated in the study of marine propellers efficiency [94, 184]
as well as hydroacoustics performance [92].

A further aspect of novelty of the optimization framework proposed is related
to the parameterization of the geometry. In typical shape optimization cycles, the
surface of the object under study is deformed before the domain discretization
takes place. Thus, the meshing phase is repeated for any deformed entity. Such
approach has the clear advantage of allowing for good control of the quality of
the computational grid produced for each geometry tested. Yet, it suffers of two
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REDUCED ORDER MODEL
CONSTRUCTION

From a solutions database to
modal coefficients regression

POD-GPR with EZyRB

OPTIMIZATION
PROCEDURE

Genetic algorithm enhanced by
parameter space reduction

ASGA with DEAP and ATHENA

APPROXIMATED OPTIMUM
HULL
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SELF-LEARNING 
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From surface to mesh
deformation propagation
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FULL ORDER SIMULATION

Computation of the fields of
interest given a morphed hull

Incompressible RANS
and VOF with OpenFOAM

Figure 8.1: Illustration of the key steps of the proposed optimization pipeline with the
methods and the softwares used.

main problems: i) the meshing step may be expensive, both because its CPU time
might be comparable to the resolution of the problem itself, and because mesh
generation is specially intensive in terms of human operator hours required; ii)
a different mesh for each geometry does not allow for the application of POD or
several other ROM approaches, which require that the mesh topology, as well as
the number of degrees of freedom of the discretized problem, are conserved across
all the shapes tested. Thus, assuming a generic deformation map is available, which
morphs the initial object surface — not the grid —, we exploit such deformation to
train a RBF interpolation that will extend the surface deformation to the nodes of the
PDE volumetric mesh. In this sense, the method is capable to learn and propagate
any deformation to a given mesh. Properly selecting the RBF kernel, we can then
obtain a smooth deformation in all the discretized domain, not only ensuring that
the overall parameterization map preserves the initial mesh quality but also its
topology. We remark that in this work, Free Form Deformation (FFD) is used to
deform the surface of the object under study. Yet, we stress that the RBF extension
methodology is completely independent from the parameterization method chosen
for the object geometry. A similar approach has been recently investigated in [130].

The optimization algorithm used in this chapter is the recently developed active
subspaces extension of the classical genetic algorithm called ASGA [73], which
performs the mutation and cross-over steps on a reduced dimensional space for a
faster convergence.

All the algorithms used in this chapter are implemented in open source software
libraries [70, 91, 222, 269], which we will briefly introduce in the discussions of
the corresponding numerical methods. In figure 8.1 we depicted an outline of the
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whole numerical pipeline we are going to present, emphasizing the methods and
the softwares used. One of the main goals of this contribution it that of testing
the full pipeline composed by data-driven POD ROM, combined FFD-RBF shape
parameterization algorithm and ASGA optimizer on a problem that can be both
meaningful to the ship hydrodynamics community and easily reproducible. For
such reason, the test case considered is that of the DTC hull [182], for which online
tutorials are available to run fairly accurate flow simulations in fixed sink and
trim conditions. Since in such set up, the hull optimizing resistance is a trivial,
zero volume hull, the DTC benchmark hull is here optimized based on the total
resistance coefficient Ct. The chapter is organized as follows: section 8.2 presents a
deeper discussion about the parameterization of the object and of the computational
grid; section 8.3 describes the full order model and the reduced order one. The
final sections, section 8.4 and section 8.5, show the numerical results obtained and
present the conclusive summary, respectively.

8.2 shape and grid parameterization

Whenever industrial design processes as the ones discussed in this work are aimed
at improving, among other aspects, the geometric features of a particular artifact,
a shape parameterization algorithm is a cornerstone of the whole optimization
pipeline. Optimization tools, as well as the non-intrusive model reduction tech-
niques employed in the present investigation, are in fact based on the parame-
terized PDEs paradigm introduced in the previous section. In such framework, a
set of geometric input parameters affects the output of a parametric PDE through
the deformation of its domain geometry. Thus, the shape parameterization algo-
rithm role is that of mapping the variation of a set of numerical parameters, to
the corresponding deformation of the PDE domain geometry. In other words, since
optimization tools are mathematical algorithms which must be fed with numbers,
the shape parameterization algorithms translate shape deformations into variations
of the numeric quantities they need.

8.2.1 How to combine different shape parametrization strategies

In this work, we make combined use of two general purpose shape parameterization
algorithms to deform the three dimensional geometry of a ship hull, and accordingly
update the volumetric grid used for ship hydrodynamics simulations in a fully
automated fashion. More specifically, FFD is first used to generate a family of
deformations of the surface of a base hull. In a second step, RBF interpolation is
used to propagate the hull surface deformation to the internal nodes of the fluid
dynamic simulation computational grid. For visual reference, figure 8.2 depicts the
side view (on the left) and front view (on the right) of a container ship hull bow
region. In the picture, several sections perpendicular to the hull longitudinal axis
are indicated by red lines.

Despite an extensive discussion of FFD and RBF theoretical foundations is clearly
beyond the scope of the present contribution, this section will introduce the key
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Figure 8.2: Side view (left) and front view (right) of a typical container ship hull bow region.

concept upon which both algorithms are based and describe their combined de-
ployment in the framework of our optimization pipeline.

The first shape parameterization algorithm applied in this work is the free form
deformation [153, 240, 249]. As mentioned, it is a general purpose algorithm,
designed to be applied to arbitrarily shaped geometries. FFD is fundamentally made
up of three different geometrical transformations, as illustrated in figure 8.3. The
first transformation y maps the physical domain W into a reference domain bW. In
such domain, a lattice of points is generated, and are used as the control points
of a set of smooth shape functions such as the Bernstein polynomials used in this
work. Thus, once a displacement is prescribed to one or more of the control points
in the lattice, the shape functions are used to propagate such displacement to all
the points in the reference domain W. The smooth displacement field obtained, is
the second and most important transformation bT in the FFD process. In the third,
final step, the deformed reference domain is mapped back into the physical one by
means of y�1 to obtain the resulting morphed geometry.

y y�1

W(µ)W

bT(·, µ)

T(·, µ)

bW bW(µ)

Figure 8.3: A two dimensional sketch of the FFD procedure applied to the surface of a
container ship hull, including the three transformations y, bT(·, µ) and y�1 composing the
process.

The current description suggests that the parameters µ of the final FFD map T(·, µ)
are the displacements prescribed to one or more of the lattice control points. The
procedure can account for both a variable number of lattice points and of displaced
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control points. For such reason, FFD deformations can be built with an arbitrary
number of parameters.

We point out that the FFD algorithm results in a displacement law for each 3D
space point within the control points lattice. Thus, it can be readily deployed to
deform shapes specified through surface triangulations (such as STL geometries)
and surface grids in general. In addition, it can be also used to directly deform
volumetric grids used for fluid dynamic simulations. Yet, mainly for practical rea-
sons, in this work we only make use of FFD to deform the STL surface triangulation
describing the hull geometry. In fact, we must point out that if FFD has to be used
to modify the volumetric mesh used for CFD simulations, the control points lattice
dimensions must be much bigger than those needed when only deforming the
hull surface, leading to infeasible optimization procedures. This is due to the fact
that when deforming volumetric meshes, it is often convenient to distribute the
deformations over a high number of cells, rather than concentrating all the displace-
ments in a very confined region in which cells can get distorted or even inverted.
But because FFD only affects points located within the control points lattice, this
means that the latter must extend for a bigger volume. In addition, to maximize the
volumetric mesh quality, the user must include more control points in the lattice to
make sure that different deformation magnitudes are imposed in regions close to
the hull and far from it. Such manual control over the local mesh deformation can
often become quite cumbersome.

For such reasons, after the hull surface mesh has been modified by means
of FFD, we resort to RBF to propagate the hull boundary displacements to the
internal nodes of the volumetric mesh for CFD simulations. In a broader sense,
RBF is an interpolation algorithm, in which linear combinations of radial bases are
used to approximate a function with values prescribed only in a finite number
of points, in every point of a domain. In the case of interest, the displacement
field function prescribed on the points of the hull surface must be interpolated
in the positions corresponding to every node of the volumetric mesh. Thus, the
displacement obtained from the m surface nodes original position {s1, . . . , sm}
and the corresponding displaced position {s01, . . . , s0m} must be interpolated at the
positions {v1, . . . , vn} of the n volumetric mesh nodes. Such interpolation reads

d(x) =
m

Â
j=1

wj jj(x), (8.1)

where the radial bases jj(x) = jj(||x� xj||) are functions that only depend on
the distance between evaluation point x and control point xj. The weights wj are
computed by imposing the interpolation constraints d(si) = s0i � si, after a radial
basis has been centered at every constrained point (xj = sj). This results in the
linear system

AX = B, (8.2)

where
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a) b)

c) d)

Figure 8.4: A section view example illustrating the RBF morphing steps carried out to
propagate the hull surface deformations to a volumetric mesh for ship hydrodynamics
simulations.

Linear system equation (8.2) is solved in a pre-processing phase, and the weights
computed are then used to compute the displacement of every node of the volu-
metric mesh by means of equation (8.1). The latter operation can be conveniently
carried out in a parallel fashion, and is highly efficient. On the other hand, A is a
full m⇥m matrix which can make the solution of system equation (8.2) quite time
and memory demanding when a large number of RBF control points are considered.
That is why, in some cases only a portion of the surface mesh nodes are used as
RBF control points, which limits the computational cost more than linearly, and in
most cases has only modest effect on the morphing accuracy.

Both the FFD and RBF algorithms briefly described in this section have been
implemented in the Python library for geometrical morphing PyGeM [269], which
has been used to produce all the deformed geometries and computational grids
used in this work. An example of the RBF application to volumetric mesh morphing
described in this paragraph is presented in figure 8.4. The figure illustrates all the
steps involved in the procedure, which starts with a) a first volumetric mesh around
the hull, and b) a surface mesh on the hull surface. In step c) the latter mesh is
then deformed and d) the surface mesh displacement field is finally used to feed
the RBF algorithm and propagate the boundary motion to the internal volumetric
mesh nodes. As it can be appreciated in the illustration, to avoid distortion of the
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volumetric mesh symmetry plane, the surface mesh must include both sides of the
hull. In the present work, the deformation of the surface mesh has been carried
out by means of FFD. Yet, we remark that any deformation law which results in a
one to one correspondence between original and deformed surface grids can be
propagated to the nodes of the volumetric mesh with RBF interpolation.

8.3 the mathematical model for incompressible fluids

The computational gain of the proposed pipeline is obtained by using a model
order reduction based on POD to approximate the solution of the parametric PDEs
describing the studied phenomenon. This technique assumes an initial solutions
database produced by solving the FOM, for some values of the parameters. We
refer to such solutions as high-fidelity solutions, or snapshots. Depending on the
intrusiveness of the reduced order method, also the discrete operators of the
numerical problem can be required. In this contribution, we propose a non-intrusive
approach, constructing a ROM within a data driven setting using the FOM snapshots
and the corresponding parameter values (described in section 8.2). This allows a
modular structure where any numerical solver, also commercial, can be adopted,
since the ROM relies only on input and output couples.

The following paragraphs present the full order model used in this work and
the ROM constructed with it. We briefly describe the incompressible Reynolds
Averaged Navier–Stokes (RANS) equations and its numerical solution in a finite
volume framework, then we proceed with an algorithmic analysis of the POD-GPR.

8.3.1 The full order model: incompressible RANS

The FOM used in this work is the RANS model complemented by a Volume of
Fluid (VOF) front capturing method to deal with the multi phase nature of the
fluid surrounding the hull. The resulting govern equations are discretized by
means of a Finite Volumes (FV) strategy implemented in the open source library
openFOAM [284]. Such mathematical and numerical setup is nowadays adopted in
many industrial naval contexts thanks to its robustness and accuracy. The test case
considered is one of the tutorials of the library, which is designed to reproduce the
DTC experiments reported in reference [182]. We here provide a minimal overall
description of the model. We refer to the original documentation of the library for
all the numerical and technical details.

The RANS equations model the turbulent incompressible flow, while the VOF
technique [118] is applied to handle the biphase nature of the fluid (water and air).
The equations governing our system are the following

8
>>><

>>>:

∂ū
∂t + (ū ·r)ū�r · (ũ⌦ ũ) = � 1

rr p̄ +r · nrū + g,

r · ū = 0,
∂a
∂t +r · (ūa) = 0,

(8.4)

where ū and ũ refer to the mean and fluctuating velocity after the RANS decompo-
sition, respectively, p̄ denotes the mean pressure, r is the density, n the kinematic
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viscosity, and a is the discontinuous variable belonging to interval [0, 1] represent-
ing the fraction of the second flow in the infinitesimal volume. Finally, vector g
represents the body accelerations associated with gravity.

The first two equations are the continuity and momentum conservation, where the
new term, the Reynolds stresses tensor ũ⌦ ũ, have to be modeled with additional
equations in order to close the system. Among all the turbulence models available
in literature, we use the SSTk � w turbulence model [177]. The third equation
represents the transport of the VOF variable a. Such variable controls also the
density r and the kinematic viscosity n, since they are defined using an algebraic
formula expressing them as a convex combination of the corresponding properties
of the two flows such that

r = arair + (1� a)rwater, n = anair + (1� a)nwater. (8.5)

To compute the steady solution in a discrete environment, we apply the finite
volume (FV) approach. We set a pseudo–transient simulation, applying a first order
implicit local scheme for the temporal discretization, while for the spatial scheme we
apply the linear upwind one. Regarding the software, as mentioned the simulation
is carried out using the C++ library OpenFOAM [284].

8.3.2 The reduced order model: POD-GPR

In this section we briefly present the POD-GPR approach, and we refer to section 5.1
for a more general presentation of POD-based data-driven model order reduction.

POD is a linear dimensional reduction technique capable to construct a reduced
order model from a set of high-fidelity snapshots. Such space is spanned by (typi-
cally few) basis functions, that are computed by minimizing the error between the
original snapshots and their orthogonal projection [281]. In a parametric context,
it enables — provided a proper set of parameter samples — the possibility to ap-
proximate the solution manifold in a very efficient way. Formally, we define the set
of parameters {µi}M

i=1 such that µi 2 P ⇢ R
p for i = 1, . . . , M. For each parameter,

the solution is computed using the FOM. Let N be number of degrees of freedom
of the full simulation, we obtain the solutions xi 2 X

N
i for i = 1, . . . , M. Since the

finite volume space is created only once and then it is deformed, all the geometric
configurations have the same dimensionality even if they belong to different spaces.
The vectorial solutions are arranged as columns of the snapshots matrix, such that

X =

2

664

| . . . |
x1 . . . xM

| . . . |

3

775 2 R
N⇥M. (8.6)

The basis of the POD space, composed by the so called POD modes, is computed
using the SVD of the snapshots matrix X = USV

⇤. The unitary matrix U 2 R
N⇥M

contains the left-singular vectors of X, which are the POD modes. Moreover the
diagonal matrix S = diag(l1, . . . , lM), where l1 � l2 � . . . � lM, contains the
singular values, which indicate the energetic contribution of the corresponding
modes. By looking at the spectral decay we can retain the first N most energetic
modes, which span the optimal space of dimension N.
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Such basis can be exploited to project onto the reduced space the initial snapshots.
Thus we can approximate the snapshots xj as a linear combination of the modes as

xj =
M

Â
i=1

c
i
jyi ⇡

N

Â
i=1

c
i
jyi for j = 1, . . . , M, (8.7)

where yi refers to the i-th POD mode. The coefficients c
i
j of the linear combination

represent the low-dimensional solution and are usually called modal coefficients.
Using the matrix notation, to compute such coefficients it is sufficient a matrix
multiplication C = U

T
NX, where the columns of C are the vectors c

j 2 R
N for

j = 1, . . . , N, the matrix UN 2 R
N⇥N contains the first N POD basis and the

superscript T indicates the matrix transpose.
The new pairs (µi, ci), for i = 1, . . . , M, can be exploited in order to find a function

f : P! R
N capable to predict the modal coefficients for untested parameters. As

anticipated, in this work we apply a GPR [287], fitting the distribution of the modal
coefficients with a multivariate Gaussian distribution, such that

f (µ) ⇠ GP(m(µ), K(µ, µ)), (8.8)

where m(·) and K(·, ·) indicate the mean and the covariance of the distribution,
respectively. Given a covariance function, an optimization step is required to set
the corresponding hyperparameters. In this contribution we use the squared ex-

ponential covariance defined as K(xi, xj) = s2 exp
⇣
�kxi�xjk2

2l

⌘
. Once the hyperpa-

rameters (s and l) of the covariance kernel have been fit to the input dataset, we
can query such distribution to predict the new modal coefficients . Finally the
modal coefficients are projected back to the high-dimensional vector space R

N

using equation (8.7).
On the technical side, we construct and use the POD-GPR model using EZyRB [70],

an open source Python package which deals with several data-driven model order
reduction techniques, exploiting the library GPy [91] for the GPR implementation.

8.4 numerical results

In this section, we describe the application of the proposed optimization pipeline to
the DTC hull surface. The reader can refer to chapter 6 for all the details regarding
the ASGA optimization algorithm. Table 8.1 shows the main particulars in the design
loading condition at model scale (which is set to 1 : 59.407). This will provide a test
case which closely simulates a typical workflow for industrial hull design problems.
Figure 8.5 shows the original CAD geometry of the hull used in this work, where we
marked 21 longitudinal sections which divide the ship into 20 equispaced chunks.
Such 21 slices will be referred to as sections during the results discussion, and are
numbered from 1 to 21 going from the ship stern to its bow.

The structure of this section mirrors that of the whole article, reporting the
intermediate results of all the methods employed throughout the optimization
pipeline.
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Figure 8.5: The surface of the DTC hull. The highlighted sections divide the ship into 20
equispaced chunks at the free-surface level.

8.4.1 Self-learning mesh morphing parameters

To set up the FFD hull surface deformation, we position the control points lattice in
order to control the immersed part of the ship prow region. The equispaced control
points are positioned as follows:

• x axis: 7 points layers located on sections 10, 12, 14, 16, 18, 20, 22;

• y axis: 11 points layers that cover the whole hull beam, with the second and
the second-to-last positioned on the lateral walls of the ship;

• z axis: 7 points layers that cover the whole hull draft, aligning the 2nd and the
5th of them to the hull bottom and to the waterline, respectively.

As can be appreciated by the values reported, to distribute the FFD control points,
we have made use of an additional 22nd virtual section located ahead of the bow.
The motion of the 7⇥ 11⇥ 7 = 539 points is governed by only 10 parameters, which
are described in table 8.2. We point out that the displacement of all the boundary
points in the x and z direction is set to zero so as to enforce surface continuity.
In addition, the displacement of the points on the internal x and z layers closest
to the boundary ones is also set to zero so as to enforce continuity of all surface
derivatives. Finally, the hull symmetry along y direction is ensured by selecting
symmetric values for parameters associated to x and z displacements, as well as
antisymmetric values for parameters associated to y displacements (the latter points
are also indicated in the table by the corresponding footnote).

Once defined the geometric parameters µ = [µ0, . . . , µ9], we set the parametric
space to P = [�0.2, 0.2]10. The parameter space boundary values are selected so as
to obtain feasible deformations from an engineering point of view and, at same time,
to explore a large variety of possible shapes. Figure 8.6 shows the two “extreme”
hull deformations, obtained setting all the parameters equal to the lower and upper
bound of the space, respectively.

Table 8.1: Main quantities of the DTC at scale model.

Quantity Value

Length between perpendiculars Lpp [m] 5.976

Waterline breadth Bwl [m] 0.859

Draught midships Tm [m] 0.244

Volume displacement V [m3] 0.827

Block coefficient CB 0.661
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Table 8.2: FFD control points displacement. The indices refer to the relative position of the
points within the lattice.The layers order, which starts from 0, is maintained consistent with
the reference system. The intervals indicated by the – symbol are inclusive.

Lattice Points Parameter Displacement direction
index x index y index z

2 0 2–4 µ0 x
2 10 2–4 µ0 x
3 0 2–4 µ1 x
3 10 2–4 µ1 x
4 0 2–4 µ2 x
4 10 2–4 µ2 x
4 2–4 2 µ3 y
4 6–8 2 �µ3

1 y
4 2–4 3 µ4 y
4 6–8 3 �µ4

1 y
4 2–4 4 µ5 y
4 6–8 4 �µ5

1 y
3 2–4 2 µ6 y
3 6–8 2 �µ6

1 y
5 2–4 3 µ7 y
5 6–8 3 �µ7

1 y
4 0–1 2 µ8 z
4 9–10 2 µ8 z
5 0 3 µ9 z
5 10 3 µ9 z

The FFD deformation of the hull points has been extended to the nodes of the
volumetric grid for the CFD simulations making use of the Beckert-Wendland radial
basis function kernel [17], defined as follows

jj(||x� xj||) =

✓
1�

||x� xj||
R

◆4

+

✓
1 + 4

||x� xj||
R

◆
, (8.9)

where R > 0 is a prescribed finite radius and the (·)+ symbol indicates the positive
part.

The output of the OpenFOAM library checkMesh utility has been used to assess
the quality of the grids obtained with the combined FFD-RBF methodology. Figure 8.7
presents some of the main quality indicators of the 200 meshes generated for
the present campaign, as computed by checkMesh. In particular, the indicators
considered are minimum face area (top left plot), minimum cell volume (top right
plot), maximum mesh non-orthogonality (bottom left plot) and average mesh non-
orthogonality (bottom right plot). In all the diagrams, the vertical axis refers to the
mesh quality indicator considered, while the variable associated with the horizontal
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Figure 8.6: Visual examples of hull deformation with µ = [�0.2]10 (on left) and µ = [0.2]10

(on right). The red surface refers to the deformed ships, while the blue one is the original
hull.

axis is the index corresponding to each of the 200 volumetric meshes produced for
the simulation campaign.

The minimum face area and minimum cell volume results indicate that the mor-
phing procedure does not produce negative cells or faces which would impair the
simulations. In fact, the average of both indicators across the 200 grids produced is
extremely close to the corresponding value of the original grid. The lowest value of
minimum face area observed in the 200 grids generated is less than 0.1% off the
original value, while the lowest value of minimum cell volume observed is merely
0.01% off the original mesh minimum cell volume. Such trend is confirmed by the
maximum non-orthogonality values reported in the bottom left diagram. In the
plot, is possible to appreciate that the average over the 200 grids produced falls
exactly on value of the original mesh, and the highest difference with respect to
the original mesh non-orthogonality is merely 0.05%. These values ensured that all
the simulations in the present campaign could be completed in fully automated
fashion without crashes were reported or significant issues were observed. The
results reported in the bottom right plot indicate that the effect of the mesh mor-
phing algorithm proposed is that of increasing the grid average non-orthogonality
values. This is somewhat expected, as the original volumetric grid in this work
was generated making use of the snappyHexMesh tool of the OpenFOAM library.
In such framework, most of the cells in the internal regions of the domain are
substantially the result of an octree refinement of an original block mesh aligned
with the coordinate axes. It is clear that the RBF procedure described in section 8.2
does quite clearly alter in a non negligible way the orthogonal angles of a portion
of the hexahedral cells produced by snappyHexMesh. Yet, the average increase
in the average mesh non-orthogonality index is 2%, while the maximum increase
observed is 7.2%, which are values that should not significantly affect the results of
the simulations.

8.4.2 Reduced order model construction

We set the full order model in scale 1 : 59.407, keeping it unaltered from the
original work mainly for validation purpose. The computational domain, that
is a parallelepiped of dimension [�26, 16] ⇥ [�19, 0] ⇥ [�16, 4] along x, y and z

1 Imposed for y symmetry conservation.
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Figure 8.7: Values of the main mesh quality indicators as reported by checkMesh utility of
OpenFOAM library, as a function of the index corresponding to each of the 200 volumetric
meshes produced for the simulation campaign.

directions is discretized in 8.5⇥ 105 cells, with anisotropic vertical refinements
located particular in the free-surface region, in order to avoid a too diffusive
treatment of the VOF variable. Boundaries of such domain are imposed as follows:

• at the inlet we set constant velocity, fixed flux condition for the pressure and a
fixed profile for the VOF variable;

• at the outlet we set constant average velocity, zero-gradient condition for the
pressure and variable height flow rate condition for VOF variable;

• at the bottom and lateral planes, we impose symmetric conditions for all the
quantities;

• at the top plane, we set a pressure inlet outlet velocity condition for the
velocity and nil pressure; VOF variable is fixed to 1 (air);

• at the hull surface, we impose no-slip condition for velocity, fixed flux condi-
tion for the pressure and zero-gradient condition for VOF variable.

The adopted solver is interFoam, which is able to solve the Navier–Stokes equations
for two incompressible, isothermal immiscible fluids. Time discretization uses a first
order implicit scheme with local-step, since we are interested to the steady solution.
For the spatial discretization, we apply a Gaussian integration using second order
upwind scheme for divergence operators and linear interpolation for gradient and
laplacian operator. By imposing a inlet velocity of 1.668 m/s, the Froude number
is around 0.22. The time required to converge to the steady solution within such
setting on a parallel machine (32 processors) is approximately 2 hours.

For the construction of the reduced order model, we randomly sample the para-
metric space with uniform distribution. We performed 203 simulations with the full



8.4 numerical results 145

Figure 8.8: ASGA runs. The reduction of the Ct is to be intended with respect to the
undeformed reference hull.

order model, collecting the corresponding pressure and shear stress distributions
(the latter implicitly containing the distribution of the VOF variable) over the hull
surface. Thus, only the surface fields are considered at the reduced level. We then
flatten the shear stress vector field in order to construct two snapshots matrices,
one for the pressure and one for the stress. Both are then decomposed using POD
technique. The number of modes considered is fixed to 20. Approximating the
manifold with the GPR method, we obtain two different POD-GPR model that ap-
proximate the pressure field and the shear stress field. Such quantities are used for
the computation of the objective function during the optimization procedure.

Even if the difference of hardware used for full order model simulations and
for reduced order approximation limits the possible speedup obtained — a HPC
facilities versus an ordinary personal computer —, we achieve satisfactory com-
putational gain. In fact, whereas the FOM lasts approximately two hours, the ROM
approximation only consisting in two distribution queries and two matrix multipli-
cations, takes less than 1 second in a single-processor environment. Such results are
very effective in the framework of an iterative process, as the optimization pipeline
here proposed. The overall time is in fact mainly constituted by the initial FOM
simulations needed for the offline database, while the ROM approximation can be
considered negligible from the computational point of view. Moreover, it can be
performed on significantly less powerful machines.

Adopting data-driven methodologies rather than projection-based ones has differ-
ent advantages which we have already discussed, but shows also some drawback in
the error bounding. For an a posteriori quantification of the ROM accuracy we need
then to validate the approximated optimal result by carrying out a FOM simulation.
We remark that we consider the output of such simulation as truth solution. This
requires an additional computational cost, but allow also for an effective refine-
ment of the ROM. Once a geometrical configuration is validated in such fashion,
depending on the error observed we can add this last snapshot to the database and
re-build the ROMs.
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Figure 8.9: The sections (from 10 to 20) of the original ship in blue and of the optimized
one in red.

8.4.3 Optimization procedure

We first define the objective function we applied to the optimization procedure. The
quantity to minimize is the total resistance coefficient Ct, which is defined as

min
µ

Ct ⌘ min
µ

Z

W(µ)

txr� pnx
1
2 rV2S

, (8.10)

where tx is the x-component of the shear stress, r is the fluid density, p indicates
the pressure, nx the x-component of the surface normal, V and S = D2/3 the
reference fluid velocity and the reference surface, respectively. As reported, the
CFD simulations have been carried out in fixed sink and trim conditions. Thus,
the specific reference surface used to obtain Ct has been selected to penalize hulls
obtaining resistance gains through immersed volume reduction. All the geometrical
quantities, as well as the normals and the reference surface depend by the imposed
deformation. Thus, to evaluate the Ct for any design, we deform the hull surface
using the FFD map, then project the ROM approximated fields — pressure and shear
stress — on it to numerically compute the integral defined in equation (8.10).

Regarding the ASGA hyperparameters, we set the probability of crossover and
mutation as PC = PM = 0.5. For each solutions database we perform an optimization
run with ASGA composed by 150 generations, with an initial random population of
100 individuals and an offspring of 20 individuals. The number of points returned
by the AS back mapping is B = 2, while the dimension of the AS is set to 1 for
every population. The covariance matrix for the active subspace computation is
approximated using local linear models [54].

For each optimum found by ASGA we run a new high-fidelity simulation for
validating the approximated Ct, adding the high-fidelity snapshots to the database
in order to refine the POD-GPR model. In figure 8.8 we show the comparison of all
the runs. The third and last optimization reached a reduction of ⇠ 1.4% of the Ct
coefficient compared to the original shape.

Figure 8.9 presents the frontal sections of the optimal shape compared to the
undeformed one, showing a volumetric increment in the frontal part which balances
the reduction near the central zone. The a posteriori validation confirmed the
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positive trend: the Ct coefficient of the optimal shape is 1.2% less, with a relative
error of the ROM model of 0.18%. As is appreciable in figure 8.9, the optimal
hull has a wider section in the region immediately downstream with respect to
the bulbous bow, while it appears slightly narrower in the middle ship sections.
The immersed volume of the optimized hull is only 0.08% different from that of
the original hull, which suggests that the Ct reduction obtained is the result of a
total resistance reduction. A possible interpretation of such a resistance decrease is
that having a more streamlined hull along the longitudinal direction, is likely able
to reduce the extent and dimension of the separation bubble located on the side
of the bulbous bow, and corresponding to the dark blue strip visible in the wall
shear stress contours presented in figure 8.10 and figure 8.11. As a consequence, the
optimal hull presents slightly lower pressures with respect to the original hull, in the
region located downstream of the bulbous bow. Such a minimal reduction is hardly
noticeable in the pressure contour plots presented in figure 8.12 and figure 8.13.
More appreciable differences are visible instead in the free surface elevation plot
presented in figure 8.14. Reducing the extent of the aforementioned detachment
bubble, the shape modification leading to the optimal hull has the effect of moving
forward the trough which follows the bow. This indicates that the pressures in the
bow region are reduced, which results in a net decrease of the resistance pressure
component. In fact, this leads to a 4.92% reduction in the pressure component of
the resistance, against a more modest 0.55% reduction of viscous resistance. Yet,
considering that the latter component accounts for approximately 83% of the total
resistance, this translates into the 1.2% reduction reported. Finally, to exclude the
possibility that the differences observed in the total resistance coefficient values
are a result of possible discretization error due to the mesh morphing procedure,
we report that the average and maximum values of wall y+ of the optimized hull
do not significantly differ from those obtained with the original one. The average
and maximum wall y+ values for the original hull simulation are 6.18426 and
99.5631, respectively, while the corresponding average and maximum values for
the optimized hull are 6.19071 and 99.6255, respectively. We point out that the y+

maxima here reported for the DTC tutorial appear outside of the range prescribed
for the turbulence model here used. Yet, the accuracy of the DTC tutorial results
suggests that maxima y+ is likely located outside the water. In fact, considering the
small density of air with respect to water, the impact of the resulting inaccurate
estimation of surface derivatives is minimal.

We remark that the POD-GPR model approximates the distribution of the output
of interest, not the objective function — which is computed using the predicted
fields. For this reason, we can also compare the pressure and shear stresses over
the optimal hull with respect to the undeformed one. Figure 8.10 and figure 8.12
present the graphical investigations about the ROM approximation error distribution
over the undeformed hull, both for pressure and stresses distributions. For a more
realistic comparison, we specify that the FOM snapshots referring to the undeformed
geometry has been removed from the database, emulating the approximation
any untested parameter. We proceed in the same way also for the optimal shape
(figure 8.11 and figure 8.13), not only to measure the accuracy of the POD-GPR model,
but also for investigating the reasons of the Ct reduction from a physical perspective.
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Figure 8.10: Distribution of the shear stresses measured in Pascal over the undeformed
hull: the FOM validation (top) is compared to the ROM approximation (middle) and the
absolute error is shown (bottom).

Figure 8.11: Distribution of the shear stresses measured in Pascal over the optimal hull: the
FOM validation (top) is compared to the ROM approximation (middle) and the absolute
error is shown (bottom).

The absolute error is quite small, but it is possible to note that for both the fields it
is mainly concentrated along the free-surface.

Comparing the original hull with the optimal one we emphasize that the optimal
shape seems to be able to slightly reduce the height of the wave created by its body,
inducing a reduction of the wet surface. The friction resistance computed as the
integral of the x component of shear stresses over the two hulls shows in fact this
marginal gain: the 12.76 N of the original ship becomes 12.69 N in the optimal
configuration. However, the main contribution of the resistance reduction comes
from the pressure resistance. While in the original shape we measure 2.64 N, in the
optimized such quantity decreases to 2.51 N.
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Figure 8.12: Distribution of pressure measured in Pascal over the undeformed hull: the
FOM validation (left) is compared to the ROM approximation (center) and the absolute
error is shown (right).

Figure 8.13: Distribution of the pressure measured in Pascal over the optimal hull: the FOM
validation (left) is compared to the ROM approximation (center) and the absolute error is
shown (right).

8.5 conclusions

In this chapter we presented a complete numerical pipeline for the hull shape design
optimization of the DTC benchmark hull. We proposed a self-learning geometrical
deformation technique, where different morphing methods are coupled together to
propagate surface deformations to volumetric meshes. Though in this work we used
a FFD approach for the CAD modifications, we emphasize that our methodology
can exploit any surface deformation. The optimization procedure is based on the
coupling between active subspaces and genetic algorithm, called ASGA. This also
present an actual application of the new optimization algorithm in an industrial
context. For the evaluation of the total resistance coefficient for new untested
parameters we exploits the non-intrusive data driven reduced order method called
POD-GPR. This results in a great computational saving for the computation of the
pressure and viscous forces fields, while preserving a good accuracy. We performed
3 optimization runs, with high-fidelity validation of the approximated optimum
and enrichment of the solutions database to increase the accuracy of the ROM in its
neighborhood. We obtained a reduction of the total resistance coefficient equal to
1.2% with respect to the original reference hull.
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Figure 8.14: Contours of free surface elevation field around the original hull (top half) and
optimal (bottom half).

In the future, further investigations will be carried out to study a dynamic selec-
tion of the active subspace dimension, and a varying number of points returned by
the back mapping procedure. Further improvements in the shape parameterization
algorithms could be obtained improving the efficiency of the RBF weights computa-
tion. This could be obtained with a smarter selection of the RBF control points or, in
a more invasive fashion, by resorting to fast algorithms — such as Fast Multipole
Method [64] — for the computation of the control points mutual distances.
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O N T H E C O M PA R I S O N O F L E S D ATA - D R I V E N R E D U C E D
O R D E R A P P R O A C H E S F O R H Y D R O A C O U S T I C A N A LY S I S

In this work, DMD and POD methodologies are applied to hydroacoustic dataset
computed using Large Eddy Simulation (LES) coupled with Ffowcs Williams and
Hawkings analogy. First, a low-dimensional description of the flow fields is pre-
sented with modal decomposition analysis. Sensitivity towards the DMD and POD
bases truncation rank is discussed, and extensive dataset is provided to demon-
strate the ability of both algorithms to reconstruct the flow fields with all the spatial
and temporal frequencies necessary to support accurate noise evaluation. Results
show that while DMD is capable to capture finer coherent structures in the wake
region for the same amount of employed modes, reconstructed flow fields using
POD exhibit smaller magnitudes of global spatiotemporal errors compared with
DMD counterparts. Second, a separate set of DMD and POD modes generated using
half the snapshots is employed into two data-driven reduced models respectively,
based on DMD mid cast and PODI. In that regard, results confirm that the predictive
character of both reduced approaches on the flow fields is sufficiently accurate, with
a relative superiority of PODI results over DMD ones. This infers that, discrepancies
induced due to interpolation errors in PODI is relatively low compared with errors
induced by integration and linear regression operations in DMD, for the present
setup. Finally, a post processing analysis on the evaluation of Ffowcs Williams
and Hawkings acoustic signals utilizing reduced fluid dynamic fields as input
demonstrates that both DMD and PODI data-driven reduced models are efficient and
sufficiently accurate in predicting acoustic noises. All the results presented in this
chapter appeared in [92].

153
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9.1 literature review

In several engineering fields, there has been recently a growing need to include
fluid dynamic performance evaluation criteria associated with acoustic emissions.
This is, for example, the case in aircraft engine design, car manufacturing, and ship
design optimization. A particular motivation behind the present research article
is to investigate and propose a methodology that can be successively used for the
noise level prediction of naval propellers since the early design process [52, 123].

The need for a reduction of the acoustic emissions through ship design optimiza-
tion usually involves virtual prototyping and parametric high fidelity simulations.
Thanks to the increase of the available computational resources, a deeper insight
towards the complex physics associated with hydroacoustic phenomena has be-
come nowadays affordable with unprecedented spatial and temporal scales (see, for
example, wall-resolving LES [145, 207]). However, the enormous data sizes resulting
from such simulations pose several challenges on the input/output operations,
post-processing, or the long-term data storage. On the other hand, hybrid tech-
niques such as, among others, Detached-Eddy Simulation or wall-layer model LES
(WLES), have allowed obtaining eddy resolving field data with a reasonable use
of computational resources. These techniques are, however, still expensive for an
early stage design process, when a number of different geometric configurations
has to be rapidly analysed to restrict the range of variation of the principal design
parameters. Therefore, seeking a suitable data compression strategy that allows
extracting the most relevant and revealing information in a reduced order manner,
hence providing quick access as well as efficient data storage, becomes a crucial
asset.

Through multidisciplinary scale, efforts have been made to realize optimal shape
design for underwater noise sources, including ship hulls [43, 267, 272] and pro-
pellers [184], using efficient geometrical parameterization techniques [93, 269]. On
the acoustic side, the development of new generation noise prediction tools was
considered a major focus in this work. Particularly, based on the Ffowcs Williams
and Hawkings (FWH) analogy [86], several improvements have been developed.
For example, in [50] they compared several implementations of the non-linear
quadrupole term, highlighting its significant contribution to the overall hydrody-
namic noise emissions in wide range of frequencies. In a companion paper [49],
they showed the effect of shape deformation on the radiated noise for elementary
geometries. On a more engineering level, the generated hydrodynamic noise from a
benchmark marine propeller was evaluated in open sea conditions [51, 52] using
FWH coupled with LES.

The aforementioned hydroacoustic models are typically described by a system
of non-linear PDEs, the resolution of which results in the fluid dynamic fields
necessary to reproduce the noise source for an acoustic predictions. In fact, a reliable
reconstruction of the noise source is crucially dependent on the flow structures and
the resolved spatial and temporal scales of the fluid dynamic fields (for a discussion,
see [34]).

Besides LES works [12, 49–51, 145, 192, 245], several fluid dynamic models have
been employed in marine hydroacoustics. To name a few, we mention the potential
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flow theory [139], boundary element method [243], RANS [10, 102, 123], DES [174],
and Direct Numerical Simulation (DNS) [196, 232, 242]. Being regarded as an
optimal advance between RANS and DNS, recent literature has reported LES to
be the most suitable model which reproduces the noise source with high level of
realism [12, 122, 192]. The resolution of the described system of PDEs using standard
discretization methods (finite elements, finite volumes, finite differences), which we
will refer hereafter as the FOM, allows for high fidelity acoustic evaluation.

Although hybrid fluid dynamic techniques constitute a good compromise be-
tween accuracy and computational cost for engineering purposes, they are still
expensive in the case of parametric analysis and shape optimization. To overcome
this issue, the development of a ROM [112, 226, 227, 230] — which alleviates both
the computational complexity and data capacity — becomes essential. Moreover,
several ROM developments have been realized to account for various effects in-
cluding subgrid scales [116], heat transfer [98] and stabilization of the Galerkin
projection [259].

One of the necessary assumptions to construct an efficient ROM is that, the
solution manifold of the underlying problem lies in a low dimensional space and,
therefore, can be expressed in terms of a linear combination of a few number of
global basis functions (reduced basis functions). Among various techniques to
generate such reduced basis set, the POD and the DMD have been widely exploited
due to their versatile properties [261]. POD provides a set of orthogonal and optimal
basis functions [147], whereas DMD computes a set of modes with an intrinsic
temporal behavior, hence it is particularly suited for time advancing problems [235].
One of the main goals of this work is to understand whether these two established
techniques are able to generate global basis functions which include all the wide
range of frequencies associated with hydroacoustic phenomena, and therefore
allow for accurate noise predictions. In addition, the interest is in assessing the
efficiency of the modal decompositions algorithms, evaluating the amount of modal
shapes required to accurately reproduce all high frequencies relevant to acoustic
analysis. This investigation is of course a first, fundamental step towards developing
efficient reduced order models for hydroacoustic applications. As will be thoroughly
discussed, in the present work we only considered data-driven ROMs, but the POD
and DMD efficiency assessment reported provides valuable information also for the
development of projection based ROMs.

In literature, POD has been widely used for the past few decades to identify
the coherent structures of turbulent flows (see, among others, [22, 250]), and has
been applied towards various flow conditions [178, 225]. Correspondingly, DMD
has been also exploited [235, 241]. An intuitive question may arise considering the
comparative performance. In that regard, several works have carried out both DMD
and POD on various flow configurations. For instance, Liu et al. [295] conducted
comprehensive analysis, concluding that DMD has the ability to clearly separate
the flow coherent structure in both spatial and spectral senses, whereas POD was
contaminated by other uncorrelated structures. Consistent to the previous, in [24] it
was noted that DMD is useful when the main interest is to capture the dominant
frequency of the phenomenon, while the optimality of the POD modes prevails
for coherent structure identification that are energetically ranked. In high-speed
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train DES, Muld et al. [187] examined the convergence and reported that the most
dominant DMD mode requires a longer sample time to converge when compared to
the POD counterpart.

As discussed earlier, parametric studies such as shape optimization can result in
extremely high computational costs. Possible ways to circumvent such issue could
be degrading the high fidelity model, or restricting the design parameter space
sampling. Since the only analysed parameter in the unsteady fluid dynamic problem
is the time, in this work we decided to rely on data-driven ROMs. A significant
source of error in data-driven ROMs is in fact associated with the interpolation of
modal coefficients based on the problem parameters. Thus, such methods are an
extremely valid alternative in presence of a one dimensional parameter space, in
which interpolation errors are rather modest. In particular, PODI can be an adequate
solution in such scenarios [170]. The basic idea is to exploit POD on selected ensemble
of high fidelity solutions in the design space to identify the set of optimal basis
functions and associated projection coefficients representing the solution dynamics.
Such finite set of scalar coefficients are then utilized to train a response surface
that allows predictions at parameter values that are not in the original high-fidelity
ensemble. It was demonstrated that PODI can be efficiently utilized in various
events: 1) enhancing the temporal resolution of experimental measurements [33], 2)
optimal control [170], 3) reconstruction of incomplete data [79], 4) multi-dimensional
parametric analysis [88, 290], 5) inverse design [40], 6) variable fidelity models [179],
and more.

Both DMD and PODI are regarded as data-driven reduced models [37] since they
operate on the snapshots produced from the FOM, and predict the system dynamics
in a non-intrusive manner. In shape optimization context, DMD and PODI have been
successively applied as in [66–68, 89, 267, 270] in naval engineering, [77, 105, 231]
in automotive engineering, or [125, 219] in aeronautics. For acoustic analysis, only
very few studies have been reported in literature. This can possibly include the
DMD application as in [36, 133] or POD as in [101, 171, 248].

As previously demonstrated, there are very limited examples of ROMs specifically
tailored for acoustic analysis. To the best of authors’ knowledge, the literature is
presently devoid of documents which characterize, in a thorough and systematic
fashion, the performance of DMD and PODI techniques on the hydroacoustic flow
fields reconstruction or prediction.

The overarching goal of this study is to investigate the use of DMD and PODI on a
hydroacoustic dataset corresponding to turbulent incompressible flow past sphere
at Re = 5000, and computed using wall-resolving LES for the fluid dynamic fields,
and FWH analogy with direct integration of the nonlinear quadrupole terms for
the acoustic fields. In particular, the objectives of this work are 1) to understand
the effect of DMD/POD modal truncation on the local and global reconstruction
accuracy of the fluid dynamic fields, 2) to compare the efficiency of DMD and PODI
on recovering the flow and spectral information when half the dataset are utilized,
3) to evaluate the performance of DMD and PODI in terms of data compression and
dipole/quadrupole acoustic prediction.

The chapter is organized as follows: first, a brief overview on the full order
models (LES and FWH) and respective specific works are presented in section 9.2. In
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Data acquisition

High fidelity fluid dynamic FOM in parameter space.

Basis functions

Modal decomposition using SVD.

Construct ROM

DMD/POD + continuous modal coefficients.

Mid cast

Interrogate intermediate snapshots in time as parameter.

Acoustic evaluation

Analyse acoustic performance from prediction data.

Figure 9.1: Flow chart of the FOM/ROM procedure

section 9.3.1, the FOM results are presented and then followed by modal analysis
with DMD and POD in section 9.3.2. For a review of the reduced order methods we
refer to chapter 5. The reconstructed and predicted fluid dynamic data obtained
from both ROMs are discussed in section 9.3.3 and section 9.3.4, while their spectral
and acoustic performances are addressed in section 9.3.5. Conclusions are drawn in
section 9.5.

9.2 methodology

First, the high fidelity data are generated and uniformly sampled in time using
high fidelity simulations with LES turbulence modelling. The resulting matrix of
snapshots is then factorized using SVD which is then used to construct both the
DMD and POD spaces. The scalar coefficients resulting from the projection of the
FOM data onto the POD space are used to train a continuous representation of the
system temporal dynamics, i.e. PODI approach. In this context, both DMD and PODI
are considered as linear approximation of the dynamical system of the snapshot
matrix and, therefore, are used to predict the data at intermediate timesteps. The
predicted snapshots are finally exploited to run a post-processing acoustic analogy
and validate the accuracy of the noise generation compared to the FOM data. A
summary of the procedure is presented in the flow chart in figure 9.1. This section
is organized as follows: in section 9.2.1 the FOM is introduced recalling also the
utilized LES turbulence model, while in section 9.2.2 the acoustic model used to
perform the hydro-acoustic analysis is introduced. The non-intrusive pipeline used
to perform model order reduction using DMD and PODI can be found in chapter 5.

9.2.1 Full order model

The full order model, adopted to provide the snapshots dataset as input for the
reduced order model, is a Large Eddy Simulation. In LES, the large anisotropic and
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energy-carrying scales of motion are directly resolved through an unsteady three
dimensional (3D) simulation, whereas the more isotropic and dissipative small
scales of motion are confined in the sub-grid space. Scale separation is carried out
through a filtering operation of the flow variables. In literature, the contribution
of the Sub-Grid Scales (SGS) of motion on noise generation and propagation has
been found negligible [206, 245]. This means that the LES model can be considered
accurate enough to provide a noise-source flow field, when compared to DNS. At
the same time, the unsteady vortex and coherent structures can be of extreme impor-
tance when computing the noise signature. Indeed, it has been shown (see among
others [123]) that, in case of complex configurations (e.g. marine propellers), the
RANS methodology may be unsatisfactory in reproducing the flow fields, adopted
as input for the acoustic analysis.

The detailed numerical simulation of the flow around sphere was described in
a previous work [49], where three different bluff bodies (a sphere, a cube and
a prolate spheroid) were investigated concerning their noise signature. In the
mentioned work, validations of the LES solver against experimental and DNS data
were presented. In particular, the flow fields resulting from the employed framework
reproduce the thin boundary layer developing along the wall-normal direction, the
leading edge, and in the wake. Moreover, they were able to reproduce distributions
of the friction coefficients, as well as capturing the underlying flow dynamics with
a wide coverage of the spectral content.

The filtered Navier-Stokes equations in the incompressible regime are considered.
Within this setting, the SGS stress tensor t

sgs
ij = uiuj � ūiūj, which represents the

effect of the unresolved fluctuations on the resolved motion, is modeled considering
the Smagorinsky eddy-viscosity closure:
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and dij is the isotropic second order tensor, while the overbar denotes the filtering
operator. The SGS eddy viscosity nt is expressed as:

nt = (CsD)2 |S̄ij|, (9.2)

where D = 3
p

Vc is the filter width which is defined as the cubic root of the
cell volume Vc, and the Smagorinsky constant Cs is computed dynamically using
the Lagrangian procedure of [175], averaging over the fluid-particle Lagrangian
trajectories.

9.2.2 Acoustic model

The acoustic model herein considered is the one proposed by Ffowcs Williams and
Hawkings [86], which is an extension of the Lighthill theory.

The basic idea behind the acoustic analogies is that pressure perturbation origi-
nates in the flow field and propagates in the far-field where the medium is assumed
quiescent and uniform. The integral solution of the acoustic wave equation pre-
sented by Ffowcs Williams and Hawkings consists of surface and volume integrals,
meaning that the sources of fluid-dynamic noise can be found as pressure-velocity
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fluctuations developing in the fluid region or as reflected pressure on an immersed
solid surface.

We consider the original formulation presented in [86], and modified according
to the works of Najafi et al. [189] and Cianferra et al. [49]. The modification of
the original FWH equation takes into account the advection of acoustic waves. To
account for the surrounding fluid moving at a constant speed (along the x axis),
the advective form of the Green’s function must be considered. A derivation of the
advective FWH equation is reported in [189], where the authors developed an integral
solving formulation for the linear (surface) terms. The advective formulation of the
volume term for the particular case of the wind tunnel flow is reported in [49].

In the present work, as done for the fluid dynamic part, we describe the formula-
tion without dwelling into details, for which we refer to the previous works [49,
50].

The acoustic pressure p̂, at any point x and time t, is represented by the sum of
surface (p̂2D) and volume (p̂3D) integrals, respectively:
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The pressure perturbation with respect to the reference value p0 is denoted with
p̃ = p� p0, n̂ is the (outward) unit normal vector to the surface element dS, and
c0 is the sound speed. r̂ and r̂⇤ are unit radiation vectors, r and r⇤ are the module
of the radiation vectors r and r

⇤ respectively. Their description is given in detail
in [49].

Equation (9.4) contains two second–order tensors: R⇤ij and the Lighthill stress
tensor Tij, the latter characterizing the FWH quadrupole term. Under the assumption
of negligible viscous effects and iso-entropic transformations for the fluid in the
acoustic field, the Lighthill tensor reads as:

Tij = r0uiuj +
�

p̃� c2
0r̃
�

dij, (9.5)

where r̃ is the density perturbation of the flow which, in our case, is equal to
zero. The surface integrals in equation (9.3) are referred to as linear terms of
the FWH equation and represent the loading noise term. The volume integrals
in equation (9.4) are slightly different from the standard FWH (non-advective)
equation. For their derivation we consider a uniform flow with velocity U0 along
the streamwise direction.

Obviously, the direct integration of the volume terms gives accurate results,
however, this method can be used if the calculation of the time delays can be
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Figure 9.2: Sketch of the computational domain used for the FOM. The sphere diameter
is D = 0.01 m. Successive mesh refinement layers (R2, R3, R4) are performed through cell
splitting approach until reaching the finest grid spacing 0.001D in the region R5.

omitted, otherwise the computational burden makes it unfeasible. In fact, the
calculation of the time delays requires storing at each time step the pressure and
velocity data related to the entire (noise-source) volume, in order to perform an
interpolation over all the data.

However, for the case herein investigated, the evaluation of the non-dimensional
Maximum Frequency Parameter [50] (which is greater than unity for every mi-
crophone considered) allows to adopt the assumption of compact noise source.
This means that, in the investigated case, the time delay is very small and the
composition of the signals is not expected to contribute to the radiated noise. Since
the evaluation of the time delays may be reasonably omitted, a remarkable saving
of the CPU time is achieved, and the direct computation of the quadrupole volume
terms becomes feasible.

In the two previous works [49, 50], as to perform a validation test for the acoustic
model, the solution of the advective FWH equation was compared with the pressure
signal provided by LES, considered as reference data. This comparison is useful
to verify the ability of the acoustic post processing to accurately reconstruct the
pressure field. Also, it points out the frequency range which is important to consider.

9.3 numerical results

9.3.1 Full order CFD

The fluid dynamic fields are solved in the framework of the OpenFOAM li-
brary [284] which is based on the Finite Volume Method (FVM). The filtered
Navier-Stokes equations are solved using the PISO pressure-velocity coupling algo-
rithm implemented in the pisoFoam solver. The spatial derivatives are discretized
through second-order central differences. Implicit time advancement runs according
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to the Euler scheme. The numerical algorithm, including the SGS closure, has been
customized at the laboratory of Industrial and Environmental Fluid Mechanics
(IE-Fluids) of the University of Trieste, and more details can be found in [53].

The fluid dynamic full order model simulates a sphere of diameter D = 0.01 m,
immersed in a water stream with constant streamwise velocity U0 = 1 m/s. The
kinematic viscosity is n = 2.0⇥ 10�6 m2/s, so that the Reynolds number based on
the sphere diameter is ReD = 5000.

The computational domain, depicted in figure 9.2, is a box with dimensions
16D⇥ 16D⇥ 16D along the x, y and z axes respectively. The sphere is located such
that a distance of 12D is attained downstream, along the x-axis, while it is centered
with respect to the other axes. A zero-gradient condition is set for the pressure at
the domain boundaries, except for the outlet where pressure is set to zero. The
velocity is set to U0 at the inlet, stress-free condition is set at the lateral boundaries,
and zero-gradient condition is set for the velocity components at the outlet.

The grid, unstructured, and body-fitted, consists of about 5 millions of cells. It
is created using the OpenFOAM snappyHexMesh utility. The grid spacing normal
to the wall for the densest layer of cells (indicated as R5) is such to have first cell
center within a wall unit y+ (y+ = uty/n with ut =

p
tw/r0 and tw the mean

shear stress). An A posteriori analysis showed that about 5 grid points are placed
within 10 wall units off the wall. The grid spacing is obtained through successive
transition refinements (indicated as R3 and R4 in figure 9.2). A refinement box
around the body (named R2 in figure 9.2) is considered so as to obtain, in the
wake region, a grid size of less than 0.1D at a distance of 8D. Out of the region of
interest, a coarser grid (indicated as R1) allows for possible extension of the domain
dimensions, and reducing possible disturbance effects coming from the boundaries.

For the time integration, a constant time step is set to Dt = 10�5 sec in order to
keep the Courant number under the threshold of 0.5. The flow around the sphere is
completely developed after about 80 characteristic times D/U0.

9.3.2 Modal decomposition

In this section, we report the numerical results concerning the modal decomposition
of the full order snapshots. This phase is particularly useful in order to have an
insight onto the dominant structures and on the frequencies hidden in the full
order dynamical system. We report both an analysis on the eigenvalue decay which
is associated with the Kolmogorov width, and the modal representation which
permits to visualize the turbulent structures associated with each mode. Moreover,
we analyse the time evolution of the temporal coefficients in order to identify the
time frequencies associated with each mode. All the computations have been carried
out using the PyDMD Python package [71] and the ITHACA-FV library [258, 260].

9.3.2.1 Singular values decay

Figure 9.3 depicts the first step of the modal analysis applied to the Navier–Stokes
fluid dynamic problem considered. The plot shows the magnitude of the normalized
Singular Values (SV) obtained from the SVD factorization of the snapshot matrix,
obtained both for the streamwise velocity field component and for the pressure field.
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Figure 9.3: Normalized singular values (SV) for streamwise velocity and pressure snapshots.
SV are arranged in descending order. The absence of any gaps in the plots suggests no
specific truncation rank for the SV-based reduced models.

In the diagram — and in all the following discussion — the modes are arranged
in descending order according to the corresponding SV magnitude. Typically, a
presence of SV magnitude gaps in such plot provides an indication of a convenient
truncation rank for the modal analysis. In the present case, a steady and continuous
decay is observed after a steep slope corresponding to the first 15 to 20 modes.
Thus, the absence of SV magnitude gaps in the higher frequencies region suggests
that, for both fluid dynamic fields considered, there is no specific truncation rank
for the modal analysis.

9.3.2.2 Modal representation

As shown, the SV magnitude observation is not resulting in an obvious indication
of the modal truncation rank. To start understanding the effect of modal truncation
rank on the fluid dynamic solution accuracy, we then resort to considerations
based on the spatial and time frequencies which need to be reproduced in the
hydro-acoustic simulations.

Figure 9.4 depicts a set of three dimensional modal shapes resulting from the
longitudinal velocity field DMD and POD modal decomposition, respectively. The
purple diagrams represent isosurfaces passing through the field data points of the
DMD modes at value �15⇥ 10�5 m/s, while the olive color plots refer to isosurfaces
of POD modes at value 6.5 m/s. For each modal decomposition methodology, the
images in the Figure are arranged in tabular fashion and refer to modes 1, 2, 4 on
the first row, and 8, 36, 128 on the second one. The plots suggest that the DMD modal
shapes present a more pronounced tendency to be organized according to spatial
frequencies with respect to the POD modes. In fact wider turbulent structures are
only found in the very first DMD modes, while in the case of POD modes they can be
identified also in higher rank modes, among higher frequency patterns. Along with
this tendency, the turbulent structures associated with the low rank DMD modes also
appear organized in longitudinal streaks, and gradually become more isotropic for
higher rank modes. It should be pointed out though that despite the fact that POD
modes are in general not designed to separate the contributes of single harmonic
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Figure 9.4: Isosurfaces of the DMD modes (purple color) at value of �15⇥ 10�5 m/s versus
the isosurfaces of POD modes (olive color) at value of 6.5 m/s for the streamwise velocity
field. Modes: 1, 2, 4, 8, 36, and 128.

components, the modal shapes obtained for the longitudinal velocity do appear to
be at least qualitatively correlated to spatial frequencies. In fact, by a qualitative
standpoint, the spatial frequencies appearing in the plots corresponding to higher
modes are in general higher with respect to those associated to the first modes.

Similar considerations can been drawn from the observation of similar plots
corresponding to the modal decomposition of the pressure fields, presented in
figure 9.5. Also in this case, the purple plots refer to isosurfaces passing through
all data points of value �5⇥ 10�4 m2/s2 of DMD modal shape functions, while the
olive diagrams refer to isosurfaces of POD modes at the value 300 m2/s2. The plots
are again arranged, for each decomposition methodology considered, in tabular
fashion portraying modes 1, 2, 4 on the first row, and 8, 36, 128 on the second
one. The pressure modes associated with both methods seem again qualitatively
arranged according to spatial frequency content. As previously observed for the
longitudinal velocity modes, the DMD modes appear more closely correlated to
spatial frequencies, and present a less isotropic appearance with respect to their
POD counterparts.

9.3.2.3 Associated coefficients

After having characterized the spatial frequency content of different POD and DMD
modes, we now want to analyse the time frequencies associated to each mode. To do
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Figure 9.5: Isosurfaces of the DMD modes (purple color) at value of �5⇥ 10�4 Pa versus
the isosurfaces of POD modes (olive color) at value of 300 Pa for the pressure field. Modes:
1, 2, 4, 8, 36, and 128.

this, we decompose each snapshot into its modal components and observe the time
evolution of the modal coefficients. In fact, as the POD and DMD modes generated
from the snapshots are constant in time, the corresponding modal coefficients must
depend on time to allow for the reconstructed solution to reproduce the correct
time variation.

The four plots presented in figure 9.6 show, the temporal evolution of the modal
coefficients associated, respectively, to the DMD of the longitudinal velocity field
(top left), to the POD of the longitudinal velocity field (top right), to the DMD of the
pressure field (bottom left) and to the POD of the pressure field (bottom right). Each
diagram reports four lines referring to the coefficients of modes 2, 4, 8, 36.

By a qualitative perspective, the diagrams in figure 9.6 suggest that DMD and
POD modal coefficients are strongly correlated with the time frequencies. In fact,
higher frequency harmonics appear in the time evolution of higher order modal
coefficients, which are not observed in lower ones. As expected, also in this case
the frequency-mode association is definitely stronger for DMD modes, in which a
single dominant harmonic can be identified in correspondence with each modal
coefficient. As for POD, the respective frequency content seems to cover wider set of
harmonics, associated with higher frequencies as higher modes are utilized.

9.3.3 Flow fields reconstruction

A first aim of this work is to assess whether the proposed DMD and POD algorithms,
are able to accurately reproduce the full order model solutions. A first step in such
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Figure 9.6: Temporal coefficients associated to the DMD and POD (left to right) modes
number 2, 4, 8, and 36 of the streamwise velocity and pressure data (top to bottom).

assessment will be that of checking the effectiveness of the SVD based modal decom-
position strategies of the model reduction algorithm considered. In particular, the
reconstructed solution convergence to the snapshots considered will be discussed
both through the visualization of single snapshots flow fields and by presenting
convergence plots of error averaged among snapshots. Finally, we will present
similar plots for the solution predicted by means of both DMD and PODI.

Figure 9.7 presents a first evaluation of the effectiveness of the DMD and POD
modal decomposition algorithm in reducing the number of degrees of freedom of
the fluid dynamic problem. The results refer to a reconstruction exercise in which
the LES solutions at all the time steps have been used for the modal decomposition.
The curves in the plots indicate the relative reconstruction error at each time
step for both velocity (top plots) and pressure (bottom plots) when a growing
number of modes are considered. Such relative reconstruction error is computed
as the Frobenius norm of the difference between the LES solution vector and the
reconstructed one, divided by the Frobenius norm of the LES solution. We here
remark that to make the velocity and pressure fields error values comparable,
the gauge atmospheric pressure value in the simulations has been set to one. A
null value would in fact result in lower LES solution norm, leading in turn to
large pressure relative errors compared to the velocity ones, even in presence of
comparable absolute errors. In figure 9.7, the two plots on the left refer to DMD
reconstruction results, while the ones on the right present the POD reconstruction
error. As can be appreciated, for both modal decomposition methods the errors
presented follow the expected behavior, and reduce as a growing number of modes
is used in the reconstruction, until machine precision error is obtained when all the
200 modes available are used to reconstruct the 200 snapshots. More interestingly,
the data indicate that both for DMD and POD, a number of modes between 80 and 120



166 les data-driven roms for hydroacoustic analysis

50 100 150 200

Snapshot index

0

1

2

3

4

5

6

� �
b U
�

U
� � F

/
� �
b U
� � F

%

Velocity
(DMD)

50 100 150 200
0

1

2

3
Velocity
(POD)

50 100 150 200
0

1

2

3

� �b P
�

P
� � F

/
� �b P

� � F
%

Pressure
(DMD)

r=20
r=40
r=80

r=120
r=160
r=200

50 100 150 200
0.00

0.25

0.50

0.75

1.00

1.25

Pressure
(POD)

r=20
r=40
r=80

r=120
r=160
r=200

Figure 9.7: Relative error percentage in the Frobenius norm for the velocity and pressure
(top and bottom, resp.) reconstructed fields using the DMD and POD (left and right, resp.)
modes. As expected, reconstruction accuracy converges with higher SVD truncation rank
(r).

leads to velocity and pressure reconstruction errors which fall under 1% across all
the time interval considered. It is worth pointing out that, compared to most typical
low Reynolds and RANS flows applications of DMD and POD methodologies, such
convergence rate is rather slow, as higher number of modes are needed to obtain
comparable accuracy. This should not surprise, as LES resolves more turbulent
structures than the aforementioned models, resulting in higher spatial frequencies
which in turn require a higher number of modal shapes to be accurately reproduced.
The peak we see for smaller rank truncations around the 40-th snapshot for the DMD
reconstruction is justified by the fact that those snapshots present a wider range of
frequencies thus we need more DMD modes to properly reconstruct them. Finally,
the plots suggest that the reconstruction with POD modes leads to errors that are
slightly lower to the corresponding DMD errors. In fact, the results consistently show
that for both the pressure and the velocity fields, the POD reconstruction error is
approximately half of the DMD error obtained with the same amount of modes.

9.3.3.1 Global error

Figure 9.8 presents further verification of the modal reconstruction accuracy. The
curves in the plot represent the percentage modal reconstruction error — computed
in Frobenius norm and averaged among all snapshots — as a function of the
number of modes considered in the reconstruction. The black and red curves
confirm that the reconstructed velocity and pressure fields, respectively, converge
to the corresponding LES fields as the number of modes is gradually increased.
Moreover, these results indicate that an efficient reconstruction, characterized for
instance by a 1% relative error, would require more than 80 modes for the velocity
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Figure 9.8: Global error of the reconstructed velocity and pressure fields versus SVD
truncation rank. The error denotes spatio-temporal averaging of the flow field data, first by
evaluating relative error in the Frobenius norm, then by averaging over all the snapshots.

fields, and more than 30 for the pressure fields. These values are higher than those
typically observed for RANS and low Reynolds simulations, probably due to the
higher spatial frequencies typically found in eddy-resolving solution fields.

9.3.3.2 Fields visualization

The error indicators considered in the previous sections are extremely useful in
confirming that the reconstructed solution is globally converging to the LES one
as the number of modes is increased. Yet, they offer little information on the error
distribution in the flow field, and the impact of the reconstruction on local flow
characteristics of possible interest. In particular, for the test case considered in the
present work, it is quite important to assess whether the reconstruction error does
not alter the flow in proximity and in the wake of the sphere, as such regions
are crucial both to the evaluation of the fluid dynamic forces on the sphere and
to the acoustic analysis. To this end, in the present section we present a series
of visualization of the reconstructed flow fields, which are compared to their LES
counterparts.

Making use of the Q-criterion, defined as Q = 0.5(kWk2 � kSk2) with W and S

denoting the vorticity and strain rate tensors respectively, figure 9.9 depicts the
turbulent structures characterizing the flow in the wake region past the sphere.
By definition, a positive value of Q implies relative dominance of the vorticity
magnitude over the strain rate [107]. Here, a positive value of 104 1/s2 is chosen to
generate isosurfaces which pass through all data points holding this value. In the
figure, the top plot refers to the original LES solution obtained at the last snapshot
of the dataset, while the centered and bottom plots refer to the corresponding DMD
and POD reconstructions, respectively, utilizing 160 modes. The images show that
both POD and DMD reconstruction algorithms lead to fairly accurate representation
of the turbulent structures shape past the sphere. In fact, the configuration of
the wider vortical structures detaching from the sphere appears to be correctly
reproduced in the reconstructed solution. As for finer details associated with
the smaller turbulent scales, the DMD reconstruction is observed to be in closer
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Figure 9.9: Coherent structures represented by the iso-contours of the Q-criterion at non-
dimensional value QD2/U2

0 = 4 for the last snapshot (top), compared with corresponding
ones obtained from modal reconstruction with DMD (centered) and POD (bottom) using
160 modes.

agreement with the original LES solution than the POD reconstructed field. Such
observation is consistent with findings from [24, 295] in which they demonstrated
the superiority of DMD to accurately determine spectral and convective information
of the vortical structures in wake regions.

For a more significant and quantitative assessment, figure 9.10 includes a series
of of contour plots representing the instantaneous flow field at time instance
corresponding to a maximized relative error, cf. figure 9.7. The three plots in
the first row represent contours of the LES streamwise velocity component field,
and of its DMD and POD reconstructed counterparts, respectively, utilizing 160
modes. At a first glance, the reconstructed fields seem to reproduce the main
features of the LES flow. In particular, both the stagnation region ahead of the
sphere and the flow detachment past it appear to be correctly reproduced by
both modal reconstruction strategies. In addition, the detached vortex, located
downstream with respect to the sphere in this particular time instant, is also
correctly reproduced. For a better assessment, the two images of the second row
represent contours of the local error for the DMD and POD streamwise velocity
reconstruction, respectively. Both for the DMD and POD reconstruction, higher local
error values are found in the wake region downstream with respect to the sphere.
In particular, it observed that the local error peaks in the DMD reconstruction is
larger than that for POD. Additionally, the high frequency error pattern and the
elevated local error values located in the wake region seem to indicate that, as
expected, the modes disregarded in the reconstruction are associated with high
spatial frequencies. A similar comparison is presented for the pressure field in
the following rows of the figure. The three plots in the third row represent the
instantaneous pressure field obtained with LES, and its reconstructions computed
with DMD and POD, respectively, for the same snapshot. Again, the full order
field appears well reproduced by both DMD and POD reconstruction algorithms, as
features like the peak pressure in the stagnation region and the pressure minimum
within the vortex detaching past the sphere are correctly reproduced. The plots of
pressure reconstruction error for DMD and POD, respectively, presented in the last
row confirm that both methods are capable to adequately represent the LES solution.
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Figure 9.10: Left to right: LES, DMD and POD reconstructions with N = 160 modes. Top
to bottom: streamwise velocity, corresponding error fields, pressure, corresponding error
fields. Instantaneous snapshot is selected based on errors peak.

Also here, the disregarded high spatial frequency modes are likely responsible for
the high frequency error pattern observed.

9.3.3.3 Error statistics in the wake region

As figure 9.10 shows, the highest reconstruction errors in the velocity and pressure
fields reconstruction are mostly located in the wake region. Therefore, a follow up
analysis is required to quantify the spatial error distribution within such region
and to assess the local convergence behavior of both the DMD and POD modal
decomposition methodologies. Figure 9.11 presents a normalized density function
plot based on the reconstruction error of both the velocity and pressure fields
corresponding to the snapshot illustrated in figure 9.10. To generate the plot, the
following steps are performed. First, the computational cells in the wake region are
identified according to the condition kwxk = krx ⇥Uk > 1.0 with wx denoting the
streamwise vorticity component. Second, the arrays corresponding to the velocity
and pressure error fields in the wake region are computed, i.e. eU

w = (Ûw �Uw)
and eP

w = (P̂w � Pw) wherein the subscript denotes the wake cells. Third, to account
for variations in the grid resolution, the mentioned error fields within the wake
region are weighted by the corresponding normalized cell volumes Vnorm

c , i.e.
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Figure 9.11: Error statistics of velocity and pressure field data of selected snapshot
corresponding to maximized relative error. Sampled data points are conditioned by
kwxk = krx ⇥Uk > 1.0 to identify the wake region. Resulting density function is weighted
by normalized cell volumes. Presented plots correspond to various modal truncation
ranks (r).

ēw = (Ân
i=1 Vnorm

c,i ew,i/ Ân
i=1 Vnorm

c,i ) wherein n is the cell count in the wake. Finally,
the error interval for both the velocity and pressure data are uniformly divided into
equal-width bins and the density function (normalized histogram) is plotted for
each bin.

The scattered plots highlight differences in the behavior of the two modal re-
construction strategies considered. The diagrams on the left, which refer to the
DMD results for velocity (top) and pressure (bottom), show in fact a clear error
reduction as the modal truncation order is increased. The curves corresponding
to growing truncation orders tend to get closer to the vertical axis as the error,
displayed on the horizontal axis, is progressively reduced. The same convergence
rate cannot be observed in the POD plots on the right, as both the velocity (top)
and pressure (bottom) reconstruction error statistical distribution curves appear
less affected by an increase of the modal truncation order. Again, this observation
can be explained in the light of the DMD theory and the ability of its modes to be
organized according to the field spatial frequencies, unlike POD ones which can
instead become contaminated by uncorrelated structures, according to the claim
reported in [295].

It is worth pointing out that for image definition purposes, the left and right
tails of figure 9.11 have not been reported. Yet, a cross comparison with figure 9.10
readily suggests that POD results showed lower error margin — hence narrower
tails — in this regard. Therefore, we could infer that higher DMD modes are capable
to capture more frequencies in the wake, resulting in lower mean error but higher
peak errors compared to POD modes.
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Table 9.1: ROM performance at various modal truncation rank. Data compression level is
defined as (GBFOM/GBROM) with GBFOM=74. Speedup is defined as (CPUFOM/CPUROM)
with CPUFOM = 2.4⇥ 105sec. Compression level is averaged between DMD and PODI.

Rank POD cumulative energy Speedup Compress.

(r) U P DMD PODI level

10 0.999992 0.994093 29.29 35.67 19.995

20 0.999996 0.997076 28.46 32.46 9.9973

40 0.999998 0.998735 26.41 27.93 4.9986

60 0.999999 0.999295 25.41 24.68 3.3324

80 0.999999 0.999571 23.58 22.48 2.4993

100 1.000000 1.000000 23.18 20.46 1.9995

9.3.4 Fields mid cast using DMD and PODI

The previous sections are focused on assessing the accuracy of the POD and DMD
modal decomposition strategies. The reconstruction results confirmed that both
methods can be considered effective tools for the reduction of the degrees of freedom
of the fluid dynamic problem. We now want to analyse the ability of the data-driven
DMD and PODI reduced order models considered in this work, in predicting the LES
solution at time steps that are not included in the original snapshot set. In particular,
throughout the remaining analysis of this work, the original 200 LES snapshots are
decomposed into two sets, one set comprises the 100 odd snapshots from which
they are used to train the ROMs and are called the train dataset hereafter, while
the remaining even snapshots within the temporal interval of the train dataset are
contained in a test dataset, and are used to compare the full order solution with the
DMD and PODI model prediction results (i.e. ROM prediction dataset).

Before progressing with analysis, a summary on the POD energetic content, as well
as the data compression level and computational speedup for the considered DMD
and PODI data-driven models at various modal truncation ranks is listed in table 9.1.
Here, the kinetic energy content within a ROM is described by cumulative sum of
the POD eigenvalues. The compression level, taken as the arithmetic mean between
DMD and PODI in the table, considers the size ratio of the FOM data (train and test
datasets, totalling 74 GB) to the ROM data (spatial modes of the train dataset, and
continuous representation of the temporal dynamics computed via time integration
or cubic spline interpolation for DMD or PODI, respectively). Speedup is defined
as (CPUFOM/CPUROM) with CPUFOM = 2.4⇥ 105sec corresponding to the time
required to solve for the 200 snapshots and to write out the train dataset, while
CPUROM is the time needed to 1) perform modal decomposition on the train dataset,
2) extract the associated dynamics with a continuous representation, and 3) write
out the prediction dataset in OpenFOAM format.

It is worth noting that, since time is the considered parameter in the present ROM
procedure, an offline phase still requires solving for the same temporal window as in
the FOM solution, in order to obtain the train dataset. Nevertheless, a computational
gain in the generated ROM can be still attained, since the less amount of stored
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data (i.e. few modes and associated dynamics) compared with FOM are utilized
for a swift construction of the fluid dynamic fields at arbitrary sample points.
Such procedure is considered a lot faster and more economic than recomputing
the simulation to write out the fluid dynamic field data at those sample points.
Indeed, an extension of the present procedure to consider additional parameters
while performing, for instance, multiparameter interpolation using PODI, would
result in a further speedup since the offline phase would solve a full order solution
only for a subset of the parameter combinations in the parameter space, hence
saving up complete FOM computations from being performed. Such multiparameter
investigation is considered a follow up study of this work. To this end, now we
progress the analysis by considering the temporal evolution of the error due to
ROMs prediction.

9.3.4.1 Prediction error analysis

The first test presented is designed to assess the predictive accuracy of the DMD and
PODI methodologies described in this work. figure 9.12 depicts the results obtained
with the ROM methodologies applied in such alternate snapshots arrangements
as previously described. The top plots report the percentage Frobenius norm
error between the DMD and PODI predictions with respect to the LES solution for
the longitudinal component of the velocity, while the bottom diagrams present
similar error norms corresponding to the pressure field. The left plots refer to the
DMD results, while the right ones depict the PODI errors. We point out that, the —
significantly lower — error values corresponding to the train dataset have been
omitted for clarity. Finally, the different colors in the plots indicate growing number
of modes considered in the DMD and PODI prediction, up to a maximum of 100.

The results show a substantial convergence of the data-driven reduced model
solutions to the full order one. In particular, selecting a number of modes between
80 and 90 results in errors lower than 2% on the velocity field for most time steps
in both DMD and PODI methods. As for the pressure field, the bottom left diagram
in figure 9.12 shows that 1% error goal can be obtained with an even slightly lower
amount of DMD modes. It must be pointed out though, that the DMD solution in
the very first time steps is not converging to the LES one, and the error grows as
the number of modes is increased. This behavior, which could be related to the
high frequencies introduced by the higher DMD modes added to the solution, is
currently under further investigation. Aside from the first few time steps, it is
generally observed that PODI errors are consistently lower by a factor two with
respect to the DMD ones, especially in the cases utilizing fewer modes. It is worth
pointing out that a direct comparison between the PODI plots in figure 9.8 and those
in figure 9.12 can indirectly result in a possible estimate of the interpolation error
associated with the PODI strategy. The plots suggest that the effect of interpolation
on the global spatial error at each time step is rather low, as the errors in figure 9.12
present the same behavior and are not significantly higher than the ones obtained
with pure reconstruction.

Now, to summarize the performance of each ROM with respect to the modal
truncation level, a global spatio-temporal error is measured against growing number
of modes, as depicted in figure 9.13. In particular, similar to the previous analysis
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Figure 9.12: Relative error percentage in the Frobenius norm for velocity and pressure
(top and bottom, resp.) fields, where half sample rate snapshots are used to train the
reduced model, DMD (left) or PODI (right), for particular truncation (r) while predicting
the intermediate snapshots. Plots show only the snapshot-wise prediction error, while
disregarding errors in the training set, which is almost null.
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Figure 9.13: Global error of the prediction dataset versus SVD truncation rank. The error
denotes spatio-temporal averaging of the flow field data, first by evaluating relative error in
the Frobenius norm, then by averaging over all the snapshots.
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Figure 9.14: Coherent structures of the last snapshot in the prediction dataset, represented
by the iso-contours of the Q-criterion at non-dimensional value of QD2/U2

0 = 4, compared
with corresponding ones obtained from DMD-100 (centered), and PODI-100 (bottom).

in figure 9.8, the mean absolute error is evaluated for the percentage Frobenius
norm spatial error for all the prediction dataset, cf. figure 9.12. Here, it is observed
that, for both the velocity and pressure predictions, a significant reduction in the
global error is achieved in the PODI models with respect to DMD up to a utilization
of 60 modes, after which the global error becomes comparable between both ROMs.
Additionally, a finite global error is noted in the figure even when a full modal rank
is utilized. Indeed, such observation should not be surprising since half the dataset
is only employed to train both ROMs while interrogating the remaining sample
points. This is not the case in pure field reconstructions, cf. figure 9.8, where the
global error vanishes with a full modal rank since dynamic and spectral information
become entirely recovered.

9.3.4.2 Coherent structures

The prediction error indicators considered in the previous section indicate whether
the reduced models solution is globally converging to the LES one as the number of
modes is increased. We now resort to flow visualizations to obtain better information
on the error distribution in the flow field and on the reduced models performance
in reproducing local flow characteristics of possible interest.

Again, making use of the Q-criterion isosurfaces at value QD2/U2
0 = 4, figure 9.14

portrays the turbulent structures characterizing the wake flow past the sphere. The
top plot refers to the original LES solution obtained at the last snapshot of the
prediction dataset, while the centered and bottom plots refer to the respective DMD
and PODI predicted solution utilizing 100 modes. Also in this case, the images
show that both DMD and PODI reduced order models allow for rather accurate
reproduction of the turbulent structures past the sphere. For both ROM solutions,
the main vortical structures detaching from the sphere appear in fact very similar to
those of the original LES flow field. Finer details associated with smaller turbulent
scales are also in good agreement, hence suggesting that errors in the PODI time
interpolation and DMD time integration are not significantly higher with respect to
the reconstruction error analysed earlier.
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9.3.4.3 Drag and lift coefficients

Besides coherent structures, it is important to assess the performance of data-driven
ROMs in capturing hydrodynamic phenomena that could find particular interest
in the engineering community. One of these phenomena is the drag and lift forces
on the sphere surface. First, pressure-induced drag and lift forces are evaluated
by integrating the pressure in the streamwise and the flow-normal directions,
respectively, over the sphere surface. Then, the pressure forces are normalized by
the dynamic pressure acting on the sphere, with a sphere projected cross-sectional
area being considered for the reference area, to compute coefficients of drag (CD)
and lift (CL). The temporal evolution of both coefficients on the sphere surface is
depicted in figure 9.15 for various ROM predictions compared with the FOM. The
presented plots show that both CD and CL are accurately predicted while only half
the dataset is employed. It is noted that the accuracy of CD predictions is higher
in comparison to CL predictions, and that employing as low as 40 modes are able
to predict the forces coefficients with a sufficient accuracy. More importantly, the
predictive character of PODI models are observed to be superior over DMD models
for a particular modal truncation level. The observed discrepancies in the early
temporal window of CL predictions via DMD at r = 80 are related to the poor
DMD predictions of the flow fields at early snapshots, as previously noted in the
relative error plots, cf. figure 9.12. On a general note, the presented data-driven
ROMs are able to predict the pressure dynamics on the surface of the immersed
sphere while employing considerably lower levels for modal truncation. We would
like to highlight that the framework that we are proposing is solely based on input
and output quantities. Therefore, instead of computing engineering quantities from
the reconstructed flow fields, one could also construct a reduced order model to
directly approximate them. In such a case we would expect that the so generated
ROM would produce even more accurate results.

9.3.5 Spectral analysis

9.3.5.1 Data probes inside and outside the wake region

A first necessary step in order to evaluate how the frequency content of the FOM
solution is reproduced at the ROM level, consists in observing the time dependency
of the solution at fixed points in the computational domain. To this end, figure 9.16
presents the reduced models results for the time evolution of the streamwise velocity
component in correspondence with two different locations of the flow field. In the
2⇥ 2 tabular arrangement of the figure, the top plots correspond to a point located
outside of the sphere turbulent wake, while the bottom plots refer to a point inside
the turbulent wake. In addition, the two diagrams on the left refer to the DMD
results, and the ones on the right report the PODI result. In the plots, the red filled
circles refer to the LES result at prediction sample points, while the dash-dotted lines
represent the ROM results, which have been drawn for a growing number of modes.
Finally, the black continuous line represents the pure DMD and PODI reconstruction
result utilizing 160 modes.
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Figure 9.15: Temporal evolution of the drag and lift coefficients corresponding to pressure
forces on the immersed sphere surface. The force coefficients are computed for various
DMD and PODI models in comparison to FOM data. Presented plots show the predictive
performance of both data-driven ROMs on estimating the sphere pressure forces, with
noted superiority of PODI predictions over DMD.

As expected, the plots show that the velocity variation over time becomes more
chaotic in the wake region, due to the high frequency fluctuations associated with
the turbulent structures typically observed in such part of the flow domain. All
the plots show that, as the number of DMD and PODI modes used is increased,
the reduced solution approaches the full order model one. At a first glance, the
PODI convergence at the point located outside of the wake appears faster than
that obtained with DMD. The reduced PODI solution obtained with 20 modes is, in
fact, already rather close to the original time signal, while the corresponding DMD
solution is still far from the LES one. The behavior of both DMD and PODI reduced
models is clearly more accurate when a higher number of modes is selected. The
80 modes curve obtained with both ROMs is practically indistinguishable from the
LES one. Given the small estimate of the time interpolation error, as discussed in
section 9.3.4.1, the faster PODI convergence observed should depend on the fact that
single PODI modes are richer in spatial frequency content than the DMD ones. The
low order PODI modes might then already include higher frequencies not contained
in the corresponding DMD modes. Such spatial frequency content should finally
reverberate in the time evolution of the solution including some higher frequencies
also when the only lower order PODI modes are used. Despite these favorable
characteristics, when the full order model solution presents even higher frequencies,
also the PODI solution requires a higher number of modes to obtain satisfactory
accuracy. This is clear by the plots of the time history of the velocity at the point
within the wake region. Here, both PODI and DMD reduced result curves become
sufficiently close to the original solution one only when 80 modes are considered.
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Figure 9.16: Time history of streamwise velocity signals at fixed points located outside
the wake at xA = {2D, 0, 2D} (top) and inside the wake at xB = {2D, 0, 0} (bottom) for
DMD (left) and PODI (right) models. Red symbols represent LES results, while dashed
lines represent the ROM results for different SVD truncation ranks (r). Black continuous
line represents the reconstructed field utilizing 160 modes.

This should not come as a surprise, as the in-wake signal presents higher frequency
fluctuations due to the wake turbulent structures, which can be fully represented
only by including high order modes.

The reduced pressure local time evolution prediction results presented in fig-
ure 9.17 exhibit the same behavior observed for the reduced velocity field. Also
this Figure, in which the plots and the curve colors are arranged as described in
figure 9.16, suggests in fact that both inside and outside the wake region, employing
80 modes allows for both ROMs to obtain pressure predictions that are sufficiently
close to the corresponding LES time signals. Again, the plots also suggest that PODI
in the region outside the wake is able to obtain viable pressure predictions with
fewer modes. Thus, these results indicate that in presence of fully attached flows,
in which wake effects are less dominant, the choice of POD as modal decomposition
methodology could result in more economic reduced models.

9.3.5.2 Fast Fourier transform

The plots in figure 9.16 and figure 9.17 seem to indicate that, on a qualitative level,
the PODI and DMD solutions are able to recover a growing portion of the full order
model frequency content as the number of modes is gradually increased. This
aspect should be, of course, investigated in a more accurate way, as the presence
of high frequency components in the ROM solution results in their ability to be
effective surrogates in acoustic analysis. Thus, we make use of the Fast Fourier
Transform (FFT) spectra with the aim of obtaining a quantitative assessment of the
impact of the POD and DMD modes considered on the frequency content of the



178 les data-driven roms for hydroacoustic analysis

1.0 1.1 1.2 1.3 1.4

Time [s]

�0.010

�0.008

�0.006

�0.004

P
re
ss
u
re

[N
/m

2
]

out-wake
(DMD)

LES

r=160 (recon)

r=20

r=80

1.0 1.1 1.2 1.3 1.4

out-wake
(PODI)

1.0 1.1 1.2 1.3 1.4
�0.3

�0.2

�0.1

0.0

0.1

0.2

0.3
in-wake
(DMD)

1.0 1.1 1.2 1.3 1.4

in-wake
(PODI)

Figure 9.17: Time history of pressure signals at fixed points located outside the wake at
xA = {2D, 0, 2D} (top) and inside the wake at xB = {2D, 0, 0} (bottom) for DMD (left) and
PODI (right) models. Red symbols represent LES results, while dashed lines represent the
ROM results for different SVD truncation ranks (r). Black continuous line represents the
reconstructed field utilizing 160 modes.
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Figure 9.18: Normalized amplitude spectrum of the streamwise velocity component, com-
puted as (|fft(U�U)|/Nfreq) with U denoting mean velocity, in a fixed point located outside
the wake (top) and inside the wake (bottom) for DMD (left) and PODI (right) at different
truncation ranks (r). Black continuous and red dash-dotted lines refer to LES results of
the full dataset and train dataset, respectively. Green and yellow dashed lines mark ROM
surrogates employing 20 and 80 modes, respectively.
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Figure 9.19: Normalized amplitude spectrum of the pressure signal, computed as (|fft(p�
p)|/Nfreq) with p denoting the mean pressure, in a fixed point located outside the wake
(top) and inside the wake (bottom) for DMD (left) and PODI (right) at different truncation
ranks (r). Color arrangements are same as in figure 9.18.

solution. Figure 9.18 presents the magnitude of the FFT of the local streamwise
velocity signals previously presented. Also in this case, the top plot refers to the
point located outside of the wake, while the bottom plot refers to the in-wake point
spectrum. The black, continuous lines refer to the FFT of the local velocity signal
obtained with the LES full order model. The red dash-dotted lines represent the
spectrum of the signal composed only by the train dataset which, of course, is
characterized by half the sampling frequency with respect to the full LES signal.
Finally, the green and yellow dashed lines respectively denote the corresponding
plots obtained by means of truncated DMD (left panel) and PODI (right panel) models
employing 20 and 80 modes each. figure 9.19 — which also employs the line color
arrangement just described — displays analogous spectral results obtained when
the pressure field is considered. We point out that, based on experimental results
presented in [229], a Re = 5000 flow past a sphere results in the Strouhal number
St = 0.2 associated with vortex shedding. This corresponds to f = StU/D = 20 Hz
being U = 1.0 m/s and D = 0.01 m. In figure 9.18 and figure 9.19, it is clearly visible
that a 20 Hz peak appears in the LES signal spectra when the velocity and pressure
probe is located within the cylinder wake (lower plots). Such peak is accurately
reproduced by both PODI and DMD results.

The top plots in both figure 9.18 and figure 9.19 show that all the reduced models
considered allow for a sufficiently good reconstruction of the solution spectra for a
point outside of the wake. In fact, all the yellow dashed curves appear very close to
the black continuous one representing the LES solution spectrum. Thus, this confirms
that considering 80 modes or more leads to a spectrum that is indistinguishable
from the original, especially for the PODI results in which a relative superiority
is again noted in comparison with the spectra from DMD models. Yet, the higher
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frequency turbulent structures occur in the wake. In such region, as suggested
by the bottom plots in figure 9.18 and figure 9.19, the frequency content of the
streamwise velocity and the pressure solutions is definitely richer, and the accuracy
of the reduced PODI and DMD solutions is clearly lower when higher frequencies are
considered. Here, for velocity signals, the plot suggests that considering 80 modes
both PODI and DMD algorithms lead to good quantitative spectral reconstructions
of the velocity signal for frequencies up to approximately 110 Hz. Interestingly,
being based on the train signal yellow dashed line, in this case the PODI and DMD
algorithms seem able to improve the behavior of the signal interpolated at half the
sampling frequency, and somewhat extend its accuracy at frequencies very close to
the Nyquist one.

It is worth commenting on the ROM sensitivity against grid resolution. When a
coarser grid is utilized, larger length scales are modeled. As it is expected to note
deviations in the corresponding FOM performance with respect to DNS data, it is also
doubtful to expect recovering these missing details via a ROM. Furthermore, ROM
predictions closely correlate with the energetic content and the induced frequencies
from the employed dataset and respective modes. This implies that, while shifting
from LES towards RANS grid resolutions, the underlying field dynamics are expected
to be sufficiently recovered with less snapshots and less modes for the ROM.

9.3.6 Acoustic analysis

The acoustic analysis carried out in this work is aimed at comparing FWH signal
obtained using the full order model data and the corresponding signal obtained
with both the PODI and the DMD reduced order models. By a practical standpoint,
the FWH post processing described in section 9.2.2 is applied to the pressure and
velocity fields obtained from the LES full order simulation, and from both the
PODI and DMD reduced models. The FWH integrals are here computed considering
two microphones located at xmic A = {0, 2D, 0} (microphone A) and xmic B =
{2D, 2D, 0} (microphone B). As mentioned, the sphere is centered at the origin
O = {0, 0, 0} and has diameter D. The acoustic pressure time-history is converted
to sound Spectrum Level SpL = 20 log(p/pref), considering pref = 1 ¯Pa.

We will first focus on the results of the PODI model. The corresponding SpL
from both microphones is reported in figure 9.20 and figure 9.21, right panels. In
the figures, the different FWH signal curves denote the different number of modes
employed in the PODI reconstruction. Also, as seen in previous works where the
FWH formulation is used, it is convenient to separate the linear contribution to
the acoustic pressure, obtained from the surface integrals in equation (9.3), from
the nonlinear part obtained from the volume integrals in equation (9.4). Such
contributions are referred to as dipole and quadrupole terms, respectively. This
distinction is particularly relevant, as the former contribution only requires the
knowledge of the pressure field on the body surface, while the latter component
takes into consideration the evolution of the pressure and velocity field in the wake
region. More specifically, we emphasize that to obtain an adequate reconstruction
of the non-linear acoustic signal, an accurate reconstruction of the vorticity field is
necessary.
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Figure 9.20: Linear dipole (top) and nonlinear quadrupole (bottom) terms of FWH equation
evaluated from LES data and compared to corresponding DMD (left) and PODI (right)
reduced models at different truncation ranks (r). Microphone A.

In general, the PODI results seem satisfactory especially for what concerns utilizing
80 modes. Figure 9.20 and figure 9.21 (right top plots) show in fact good agreement
between the linear acoustic pressure contribution based on the LES pressure field
and the corresponding linear contribution computed with PODI employing 80 modes
(yellow lines in the plots). As the plots suggest, this trend is appreciable both at
microphones A and B. As for the nonlinear contribution, figure 9.20 and figure 9.21
(right bottom panels) also show a satisfactory agreement between the acoustic
pressure signals obtained from the LES flow fields and those computed based on
PODI. In this case, in the plots referring to both microphones, the blue and yellow
lines (40 and 80 modes respectively) on the right bottom panels are sufficiently
close to their reference FOM counterpart, represented by the continuous black line.

At a closer look, close agreement between PODI and FOM acoustic pressures,
both for the linear and non-linear contributions, can be established at least up
to frequencies in the range 80–100 Hz, which may be considered the meaningful
frequency interval related to the considered test case. In fact, we point out that,
since the reference pressure is set to 1 ¯Pa, the ambient noise may be considered in
the range of 60–100 dB. At higher frequencies though, we note that some spurious
oscillations appear in the PODI results, especially in the nonlinear noise terms
corresponding to microphone B (figure 9.21), at which the value of the integrals
in the FWH formulation are strongly conditioned by the presence of the wake.
The observed spurious oscillations could be due to an imperfect reconstruction of
the vorticity field, although it must be emphasized that the sampling frequency of
the original dataset is not very high, fs = 500 Hz, thereby for the train dataset it
becomes fs = 250 Hz for such an alternative arrangement. Therefore, it is reasonable
to obtain less accurate results at frequencies higher than 125 Hz. Further work will
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Figure 9.21: Linear dipole (top) and nonlinear quadrupole (bottom) terms of FWH equation
evaluated from LES data and compared to corresponding DMD (left) and PODI (right)
reduced models at different truncation ranks (r). Microphone B.

be devoted to investigating whether longer temporal records or higher sampling
frequencies will eliminate or mitigate the problem.

However, considering the 80 modes PODI reconstruction, the maximum error is
of the order of 5 dB, observed at microphone B, for the non linear terms (figure 9.21
bottom right panel). In addition, the main peaks observed at very low frequencies,
up to 20 Hz, are well captured by the PODI signal. In such case, the agreement is also
verified for the 40 modes signals. As these low frequency peaks describe the main
and most energetic features of the acoustic signal, this indicates that a moderate
amount of modes might still be a good compromise when the acoustic analysis is
only aiming at a general characterization of the principal noise features. Finally, we
must point out that the errors observed in the non-linear noise contributions are
not in general higher than those introduced in the linear contributions, as might be
expected given the interpolation procedure involved in PODI. In some occurrence
(figure 9.20 top right plot), the linear contribution errors are even quite surprisingly
higher than their nonlinear counterparts. This might be related to the fact that
the linear noise contributions are only based on pressure evaluations on the body
surface, while the non-linear contributions are based on volume integrals. The POD
procedure used selects the modal shapes so as to minimize the error in a norm
based on the whole volumetric solution, rather than only on a surface restriction.
For such reason the modal shape selected might result in non optimal results in the
computation of surface integrals. Possible gains might then be obtained, if needed,
adding a separate PODI only built on the body surface degrees of freedom, which
would result in a modest increase of the computational cost.

As regards the acoustic signals provided by the DMD method, a good agreement
is observed with respect to the FOM spectrum, up to about 80 Hz, for both micro-
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Figure 9.22: Top: FFT spectrum of the pressure signal at points located out of wake (left) and
inside the wake (right). Bottom: dipole and quadrupole acoustic noise spectrum measured
at mic-A (left) and mic-B (right) locations. PODI spectra ( ) demonstrate better agreement
with LES data ( ) compared with DMD ( ) ones. Both PODI and DMD results in the
graphs have been obtained employing r = 40 modes.

phones, and both linear and non-linear terms, see figure 9.20 and figure 9.21 (left
panels). The most accurate signals are obtained using 40 and 80 modes, while for
the signal related to 10 modes we observe, as expected, a considerable discrepancy.
In general, the reconstruction of the vorticity field, obtained by both POD and DMD,
is found to provide an adequate input field for the acoustic model. Particularly, the
volume integral of the FWH equation involves both the velocity and the pressure
field in the wake region. Having observed a good match of the ROM signals with
respect to the FOM reference signals, we may conclude that the entire spectrum
associated with the vortex wake has been adequately reconstructed.

9.4 roms cross-comparison

For additional clarity, the spectral and acoustic analyses discussed in the previous
sections, cf. figure 9.18, figure 9.19, figure 9.20, and figure 9.21, are here reported in
single graphs directly comparing both DMD and PODI results against LES data. In
particular, we are considering both ROMs truncated at r = 40. The aim is to provide
an easier comparison of the ROMs performance. Figure 9.22 depicts FFT spectrum
of the pressure signal (inside and outside the wake, top plots) and the dipole and
quadrupole acoustic noises (microphones A and B, bottom plots). In all plots DMD
( ) and PODI ( ) results are reported alongside LES ( ) results. The plots
clearly indicate that, given equal modal truncation level, PODI models appear to
accurately recover a wider range of frequencies compared to DMD models.
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9.5 conclusions and perspectives

This chapter discussed the application of data-driven dimensionality reduction
algorithms on a hydroacoustic dataset which was numerically measured using
Large Eddy Simulation fluid dynamic turbulence model and the Ffowcs Williams
and Hawkings acoustic analogy. An extensive set of data was presented to fully
characterize the ability of both DMD and POD to reconstruct the flow fields, based
on their spectral and energetic contents, with all spatial and temporal frequencies
needed to support accurate noise predictions.

First, SVD analysis did not indicate the presence of significant constraints on
the modal truncation rank for such flows. In fact, no significant singular value
energy gaps were observed. SVD was then used to extract DMD and POD modes
with associated coefficients, and to employ them for flow fields reconstruction. In
general, both DMD and POD algorithms showed efficient reconstruction accuracy.
Spatial and temporal error analyses indicated relatively lower error magnitudes in
POD-based reconstructed fields. On the other hand, statistical analysis and vortical
structures identification methods demonstrated the ability of DMD to capture finest
wake scales by employing higher modes, compared with POD.

Second, two data-driven reduced models based on DMD mid cast and on PODI
were created utilizing half the LES original dataset. Both DMD and POD based reduced
models showed good efficiency and accurate flow reconstruction. In addition, the
spectral analysis of the reduced flow solutions at selected points inside and outside
vortical wake regions indicated that both models were able to recover most of
the model flow frequencies in the ranges of interest for the acoustic analysis. In
particular, PODI showed notable capability to capture additional frequencies which
were present in the original dataset, but not in the subset employed to train the
model. As a consequence, both data-driven reduced models developed proved
efficient and sufficiently accurate in predicting acoustic noises.

Given the results obtained, introducing bluff body geometrical parameterization
as additional dimension for the PODI analysis is an interesting possibility for future
works. A further future perspective which is currently being explored, is represented
by the development of a reduced model employing the POD modal decomposition
for the Galerkin projection of the continuity and momentum equations for the fluid
dynamic variables. Other studies could be devoted to better understand how the
choice of the interpolator for PODI affects the results.
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A S T E P T O WA R D S PA R A M E T R I C D M D F O R C F D P R E D I C T I O N S

In this chapter we present an advanced computational pipeline for the approxi-
mation and prediction of the lift coefficient of a parametrized airfoil profile. The
non-intrusive reduced order method is based on DMD and it is coupled with
Dynamic Active Subspaces (DyAS) to enhance the future state prediction of the
target function and reduce the parameter space dimensionality. The pipeline is
based on high-fidelity simulations carried out by the application of finite volume
method for turbulent flows, and automatic mesh morphing through radial basis
functions interpolation technique. The proposed pipeline is able to save 1/3 of
the overall computational resources thanks to the application of DMD. Moreover
exploiting DyAS and performing the regression on a lower dimensional space results
in the reduction of the relative error in the approximation of the time-varying lift
coefficient by a factor 2 with respect to using only the DMD. All the results presented
in this chapter appeared in [271].

185
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10.1 literature review

Model Order Reduction is nowadays a quite popular and consolidated technique,
applied to several fields of engineering and computational science thanks to the
remarkable computational gain granted for the solution of the governing equations.
The Model Order Reduction (MOR) goal is in fact that of reducing the dimension
of the studied system without altering some important properties of the original
problem. This typically results in more efficient, time saving computations. Among
other fields, ROMs are frequently and successfully applied to problems governed
by parametric PDEs, for which many solutions of the same PDE in correspondence
with different parameters are required. This paradigm is for example encountered
in the context of parametric optimal control problems, uncertainty quantification,
and shape optimization.

Model reduction for PDEs has been historically obtained in different ways. In
some cases, very successful reduced models have been obtained at the level of
the governing equations, based on physical considerations. This is for instance the
case of the potential flow theory in the fluid dynamics field. In other cases, the
reduction can be introduced at the discretization level, as is the case, for instance,
for the Boundary Element Method used in structural analysis, fluid mechanics,
electro-magnetism and acoustics studies. In the case in which parametric PDEs
are considered, a possible approach to obtain efficient reduced order models is
to sample the solution manifold by creating a solutions database corresponding
to different parameters, using a high-dimensional discretization, then combine
the latter to identify the intrinsic lower dimension of the problem. For parametric
reduced order models see [112, 212, 226], while for a more applications oriented
overview we suggest [227, 230, 268].

For parametric time-dependent problems, a proper orthogonal decomposition
approach can be applied to reduce the dimensionality of the system, as in [97, 116].
In this chapter we propose a novel data-driven approach for parametric dynamical
systems, combining DMD with AS property. These two relatively new methodologies
provide a simplification of the dynamical system, and an analysis of the input
parameter space of a given target function, respectively. Exploiting AS property
we are able to obtain an estimation of the importance of the parameters of such
function, as well as a reduction in the number of parameters. Moreover the methods
are equation-free, being based only on input/output couples and do not make
assumptions on the underlying governing equations.

We define a generic scalar output v(µ, t) 2 R that depends both on time t and
on the parameters of the model µ 2 D ⇢ R

k, with k denoting the dimension of
the parameter space. We denote the state of the parametric system at time t with
vt(µ) 2 R. The solution manifold in time is approximated using the DMD in order
to obtain an approximation of the linear map A defined as:

vt+1(µ) = A(vt(µ)). (10.1)

It is easy to note that using equation (10.1) we have the possibility to forecast a
generic future state of the parametric system.

To numerically compute the linear operator A, we need to sample the parameter
space D, and for each time store the quantity of interest for each parametric
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configuration. Formally, considering a set of parameter samples with dimension
Ns, the discrete vector referring to the system state at time t results:

vt =
h
vt(µ1) . . . vt(µNs)

iT
2 R

Ns. (10.2)

Collecting several time states vi(µ) for i = 1, . . . , m, we compute the operator A

with a best-fit approach such that vt+1 ⇡ Avt. Once computed the future prevision,
we are able to exploit the relation between the input parameters µi and the related
outputs vfuture(µi) to approximate the output for any new parameter. In this work
we use a GPR [106, 287], but any regression or interpolation method can be used.
We underline that the chosen regression model has to be fitted for any forecasted
time we want to analyse.

The high dimensionality in the parameter space may incur on the inability to solve
many-query problems with sufficiently high fidelity, thus causing a decrease in the
accuracy of the solution approximation. For this reason we couple the regression
with the AS property in order to perform a sensitivity analysis of function vt(µ).
AS indeed is able to provide an approximation g of a scalar function f , where the
input parameters of g are a linear combination of the original parameters of f .
The coefficients of such combination give information about the importance of the
original parameters. In this work, we use this information to reduce the dimension
of the parameter space — in which we build the regression — by not considering
the parameters whose AS coefficients are smaller than a certain threshold, that is
they are almost zero.

The developed methodology is tested on an aeronautics application given by the
flow past an airfoil profile. As output of interest we considered the lift coefficient
and the parameters vector µ describes geometrical transformations according to the
morphing technique proposed in [114]. The fluid dynamics problem is described
using the incompressible Navier–Stokes equations with turbulence modeling. These
are discretized using a finite volume approximation. The deformed meshes corre-
sponding to different input parameters are automatically obtained exploiting a RBF
mesh morphing technique.

This chapter is structured as follows: in section 10.2 we present the general para-
metric problem over which we apply the proposed numerical pipeline, providing
some information about the geometrical deformation. In section 10.3 we briefly
present the AS extension to time-dependent scalar functions, while to recall the
DMD method we refer to section 5.2. Finally in section 10.4 we show the numerical
setting of the problem and the results obtained, while in section 10.5 we propose
some final remarks and highlight possible future developments.

10.2 the parametric problem

Let be given the unsteady incompressible Navier-Stokes equations described in an
Eulerian framework on a parametrized space-time domain Q(µ) = W(µ)⇥ [0, T] ⇢
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R
d ⇥R

+, d = 2, 3 with the vectorial velocity field u : Q(µ) ! R
d, and the scalar

pressure field p : Q(µ)! R such that:
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ut +r · (u⌦ u)�r · 2nrs
u = �rp in Q(µ),

r · u = 0 in Q(µ),

u(t, x) = f(x) on Gin ⇥ [0, T],

u(t, x) = 0 on G0(µ)⇥ [0, T],

(nru� pI)n = 0 on Gout ⇥ [0, T],

u(0, x) = k(x) in Q(µ)0,

(10.3)

holds. Here, G = Gin [ G0 [ Gout is the boundary of W(µ) and it is composed by
three different parts Gin, Gout and G0(µ) that indicate, respectively, inlet boundary,
outlet boundary, and physical walls. The term f(x) depicts the stationary non-
homogeneous boundary condition, whereas k(x) denotes the initial condition for
the velocity at t = 0. Shape changes are applied to the domain W, and in particular
to its boundary G0(µ) corresponding to the airfoil wall. Such shape modifications
are associated to numerical parameters contained in the vector µ 2 R

k which, in the
numerical examples shown in this work has dimension k = 10. As said, the only
portion of the domain boundary subject to shape parametrization is the physical
wall of the airfoil G0(µ), which in the undeformed configuration corresponds to
the 4-digits, NACA 4412 wing profile [1, 126]. To alter such geometry, we adopt
the shape parametrization and morphing technique proposed in [114], where k
shape functions are added to the airfoil profiles. Let yu, and yl be the upper and
lower ordinates of a NACA profile, respectively. We express the deformation of
such coordinates as

yu = yu +
5

Â
i=1

ciri, (10.4)

yl = yl �
5

Â
i=1

diri, (10.5)

where the bar denotes the reference undeformed state, which is the NACA 4412
profile.

The parameters µ 2 D ⇢ R
10 are the weights coefficients, ci and di, associated

with the shape functions ri. The range of each parameter will be specified in
section 10.4. The explicit formulation of the shape functions can be found in [114],
we report them in figure 10.1.

After the reference profile is deformed, we also apply the same morphing to
the mesh coordinates by using a RBF interpolation method [39, 172, 185]. With this
approach the movement s of all the points which do not belong to the moving
boundaries is approximated by an interpolatory radial basis function:

s(x) =
Nb

Â
i=1

bix(||x� xbi ||) + q(x), (10.6)
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Figure 10.1: Airfoil shape functions with respect to the profile abscissa. The leading edge
corresponds to x = 0. The functions ri are rescaled by a factor equal to 0.2 for illustrative
reasons.

where xbi are the coordinates of points for which we know the boundary displace-
ments, for this particular case the points located on the wing surface. Nb is the
number of control points on the boundary, x is a given basis function, q(x) is a poly-
nomial. The coefficients bi and the polynomial q(x) are obtained by the imposition
of interpolation conditions

s(xbi) = dbi , (10.7)

where dbi is the displacement value at the boundary points and by the additional
requirement:

Nb

Â
i=1

biq(xbi) = 0. (10.8)

In the present case, we select basis functions for which it is possible to use linear
polynomials q(x). For more informations concerning the selection of the order of
polynomials see [17]. Finally the values of the coefficients bi and the coefficients di
of the linear polynomials q can be obtained by solving the linear problem:

"
db

0

#
=

"
Mb,b Pb

PT
b 0

# "
b

d

#
, (10.9)

where Mb,b 2 R
Nb⇥Nb is a matrix containing the evaluation of the basis functions

xbibj = x(kxbi � xbjk), and Pb 2 R
Nb⇥(d+1) is a matrix where d is the spatial dimen-

sion. Each row of this matrix, that contains the coordinates of the boundary points,
is given by rowi(Pb) =

h
1 xbi

i
. Once the system of equation (10.9) is solved one

can obtain the displacement of all the internal points using the RBF interpolation:

dini = s(xini), (10.10)

where xini are the coordinates of the internal grid points. The computation of the
displacement of the grid points entails the resolution of a dense system of equations
that has dimension Nb + d + 1. Usually, the number of boundary points Nb is much
smaller than the number of grid points Nh.
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10.3 global sensitivity analysis through active subspaces

In this chapter we want to study the behaviour of a target function f (µ, t) : R
k ⇥

R
+ ! R that depends on the parameters µ and on time t as well. This results in

extending the active subspaces property to dynamical systems, that means having
to deal with time-dependent uncentered covariance matrix C(t), and corresponding
eigenvectors wi(t). Efforts in this direction has been done in [56] for a lithium ion
battery model, in [165] for long term model of HIV infection dynamics, and more
recently an application of dynamic mode decomposition and sparse identification
to approximate one-dimensional active subspaces in [3]. In these works they refer
to DyAS as the time evolution of the active subspaces of a time-dependent quantity
of interest.

DyAS are useful to assess the importance of each input parameter at given times
and to study how the weights associated to the inputs evolve. In the following
we are going to compute the AS for a set of equispaced times ti. If some of the
parameters are almost zero in the entire time window we can safely ignore them in
the construction of the Gaussian process regression.

10.4 computational pipeline

In the present section we will discuss the numerical experiments carried out to test
the DyAS analysis and present the results obtained. As reported in section 10.2, each
high fidelity simulation is based on a parametric fluid dynamic model governed
by the RANS equations. Thus, a number of flow simulations have been carried out
selecting different samples in the parametric space to test the performance — in
terms of lift coefficient — of different airfoil shapes. The simulations made use
of both the RANS solver provided in the OpenFOAM [284] finite volumes library,
and of the DMD acceleration methodology described in section 5.2. Once the lift
coefficients output were available for all the samples tested in the input parameters
space, the DyAS analysis was applied to assess possible parameter redundancy. The
elimination of the redundant parameters detected in the DyAS analysis allowed for
the generation of a surface response model based on a lower dimensional space,
which has been finally tested against the original RANS model accelerated through
DMD, and against the surface response model based on the original input parameter
space. Figure 10.2 graphically summarizes the proposed pipeline, clarifying how
the methods (and the software) are integrated together, while the following sections
will further detail each part of the computational pipeline just outlined.

10.4.1 Parametric shape deformation

The fluid dynamics problem is resolved using the finite volume method. The wing
is immersed in a rectangular domain according to figure 10.3. The reference mesh
counts 46500 hexahedral cells and is constructed using the blockMesh utility of the
OpenFOAM library. Figure 10.3 depicts a detail of the grid in proximity of the wing.
The meshes in the deformed configuration have been obtained starting from the
reference configuration using a radial basis function smoothing algorithm similar to



10.4 computational pipeline 191

OpenFOAM
ITHACA-FV

Input	Dataset

ATHENA

	

PyDMD

Reduced

Parameters

Future	State

GPy Output

Approximation

Figure 10.2: Flowchart representing the proposed computational pipeline.

the one implemented in [31]. A single deformation corresponds to a sample µ in the
parameter space D := [0, 0.03]10 ⇢ R

10. Therefore all the deformed meshes share
the same number of cells and the same mesh topology. In particular Wendland [285]
second order kernel functions with radius rRBF = 0.1 m have been used. The control
points of the RBF procedure have been placed on each mesh boundary point located
onto the wing surface. Since the outer boundary points are fixed we decided to
neglect them from the RBF computation using a smoothing function defined in
such a way that the RBF contribution reduces to zero after a certain distance from
a focal point [127]. Particularly, the focal point has been placed in the geometric
center of the airfoil chord segment and the distance from the focal point after which
the RBF contribution is neglected is set to rout = 7 m. In figure 10.4 we depict the
envelope of all the tested configurations, and the flow velocity streamlines for a
particular sample in the parameter space. A uniform and constant velocity equal to
uin = 1 m/s is set at the inlet boundary, while the constant value of the kinematic
viscosity is set to n = 2e�5 m2/s. This configuration, considering a chord length
D = 1 m, corresponds to Reynolds number Re = 50000. As well known, a flow
characterized by Reynolds number of such magnitude requires turbulence modeling
to be numerically simulated with reasonable computational effort. In the present
work, turbulence has been modeled using a RANS approach with a Spalart-Allmaras
turbulence model [256]. The pressure velocity coupling is resolved in a segregated
manner making use of the PIMPLE algorithm which merges the PISO [124] and the
SIMPLE [200] algorithm. The time step used to advance the simulation in time is
set constant and equal to Dt = 1e� 3 s. The convective terms have been discretized
using a second-order upwinding scheme, while the diffusion terms are discretized
using a linear approximation scheme with non-orthogonal correction. The time
discretization is resolved using a second order backward differentiation formula.
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Figure 10.3: Sketch of the computational domain used to solve the fluid dynamics problem
in its reference configuration. The left picture reports a schematic view on the domain
with the main geometrical dimensions. The right plot reports a zoom on the mesh in the
proximity of the wing.
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Figure 10.4: The left picture reports in light blue the envelope of all the tested
configurations used during the training stage. The right picture depicts the
flow velocity streamlines for one particular sample inside the training set µ =
[0.0071, 0.0229, 0.0015, 0.0015, 0.0087, 0.0107, 0.0033, 0.0130, 0.0247, 0.0280].

The simulation is advanced in time until the flow has reached stationary behavior.
For the present problem, setting a total simulation time Ts = 30 s is sufficient to
reach a solution which is reasonably close to the steady state one. In order to check
the consistency of the numerical results, the stationary lift coefficient computed for
the reference configuration, which corresponds to a standard NACA 4412 profile
with a 0� angle of attack, has been compared with data from literature [4]. The
computed lift coefficient for such setting is equal to CL = 0.355 and the available
reference value varies between CL = 0.1804 and CL = 0.3708 depending on the
value of Ncrit (which is used to model the turbulence of the fluid or roughness
of the airfoil). Therefore, our numerical results are in line with available data in
existing literature1.

10.4.2 Parameter space reduction

The present section will discuss the application of DyAS to the problem of the two
dimensional turbulent flow simulation past airfoil sections with parameterized
shape. Such a fluid dynamic problem is relevant in several engineering fields, as
it is encountered in a number of industrial applications, ranging from aircraft
and automotive design, to turbo machinery and propeller modeling. We must

1 Such comparison is not exhaustive to completely verify the accuracy and the reliability of the full
order model numerical simulations. It is however beyond the scope of this work to perfectly match
experimental activities or previous numerical results with the full order simulations. More accurate
FOM results would of course result in more accurate ROM results but would not affect the presented
methodology.
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Figure 10.5: The temporal evolution of the lift coefficient from 1 s to 30 s for 9 different
parameters, together with the mean (dashed). The angle of attack is fixed for all the airfoil
profiles and it is equal to 0�.

here point out that in this work, the DMD method is used for faster evaluation of
the parameterized airfoils lift towards a steady state regime solution. We remark
that, since DMD is designed for time evolutionary problems, the same procedure
can be used in the same fashion, to speed up convergence to periodic regime
solutions [156]. Indeed, recent work on hydroacoustic computations based on LES
suggested that DMD modal decomposition can successfully be employed in the
reconstruction of complex and turbulent flow fields [92] provided that the snapshots
used are enough to characterize all the relevant time and space frequencies in the
flow. In addition, we observed that complex full order flows characterized by
richer spectra require a higher amount of modes to obtain accurate flow fields
reconstruction. Thus, our experience suggests that the ROMs used in this work are
indeed effective when employed with more complex physics. For such reason, given
our experience, we infer that the design pipeline here presented can also be used to
study the unsteady dynamics of bubbles and vortices past the airfoil. Obviously
one requirement of such type of problems would be a suitable FOM able to capture
transition phenomena occurring in the stall region. For example, we believe that
the underlying high fidelity URANS solver would not be appropriate and that a
transition to a LES approach would be required. For projection-based ROMs in a
turbulent setting see [115, 116, 259].

A few plots describing the DyAS results for the lift coefficient output are presented
in figure 10.6, figure 10.7, figure 10.8, and figure 10.9. The plots in the figures
are aimed at representing the evolution of the active subspace effectiveness and
composition over the time dependent flow simulations. More specifically, the left
diagram in each figure plots the lift coefficient at each sample point tested, as
a function of the first active variable obtained through a linear combination of
the sample point coordinates in the parameter space, that is f (µ, t) against W

T
1 µ.

Presenting the components of the first eigenvector of the uncentered covariance
matrix, the right plot in each figure indicates the weights used in such linear
combination to obtain the first active variable. In summary, the right diagram in
each Figure suggests the impact of each of the original parameters on the first
active variable, while the left diagram is an indicator of how well a one dimensional
active subspace is able to represent the input to output relationship. Following
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Figure 10.6: On the left the sufficiency summary plot for the lift coefficient at time t = 6.0
seconds. On the right the first eigenvector components at the corresponding parameters.

the evolution of these two indicators it is possible, at each time instant, to assess
how effective the one dimensional parameter dimension reduction is, and what
is the sensitivity of the reduced lift coefficient output to variations of the original
parameters. The plots in figure 10.6, figure 10.7, figure 10.8, and figure 10.9 show
the results of the DyAS at the fixed time instants t = 6 s, 10 s, 14 s, 18 s, respectively.
We here remark that, given the aforementioned considerations about the solution
build up in the first 12 seconds of the simulations, the solutions at t = 6 s and
t = 10 s are not entirely relevant by a physical perspective. Yet, presenting such
cases is still helpful in illustrating how the DyAS evolves over time and can be
used to evaluate the system behavior and the output sensitivities with respect to
the input parameters. For completeness in figure 10.5 we depicted the temporal
evolution of 9 different morphed airfoils, and the mean among all the airfoils. A
first look at the right plots for each time steps, suggests that the contribution of the
parameters corresponding to the bump shape functions r1, and r5, for both the top
and the bottom part of the airfoil profile are almost negligible. This means the lift
coefficient is almost insensitive to variations of these 4 parameters. Alternatively,
it can be said that the output function is on average almost flat along directions
corresponding to the axes corresponding to parameters c1, c5, d1, and d5.

Figure 10.6 and figure 10.7 present the characterization of the one dimensional
active subspace at time t = 6 s and t = 10 s, respectively. We can clearly see
that the lift coefficient is perfectly approximated along the identified direction,
and such direction (the eigenvector elements) is almost the same at t = 6 s and
t = 10 s. This should not completely surprise as both time instants are included in
an initial acceleration phase during which the air coming from the inflow boundary
is reaching the airfoil. Given the domain arrangement described in figure 10.3, the
flow velocity around the impulsively started airfoil leading edge is expected to reach
the inflow value at time t = 10 s. For such reason, we will focus the description on
the plots for t = 10 s, although the considerations can be immediately reproduced
for previous time steps. The left plot in figure 10.7 suggests that at this meaningful
instant, the first active subspace represents the input to output relationship with
remarkably good accuracy. In fact, only a single output value corresponds to each
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Figure 10.7: On the left the sufficiency summary plot for the lift coefficient at time t = 10.0
seconds. On the right the first eigenvector components at the corresponding parameters.

Figure 10.8: On the left the sufficiency summary plot for the lift coefficient at time t = 14.0
seconds. On the right the first eigenvector components at the corresponding parameters.

Figure 10.9: On the left the sufficiency summary plot for the lift coefficient at time t = 18.0
seconds. On the right the first eigenvector components at the corresponding parameters.
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active variable value. In other words, when plotted against the first variable, the
output appears like a curve — a line in the present case. A look at the right diagram
suggests that the shape parameters having the most impact on the lift generated
by the airfoil are c3, c4, d3 and d4, which are the ones associated to shape functions
with peaks located around the middle of the airfoil chord. The positive values of
the eigenvector components associated to c3, c4, d3 and d4, along with the positive
slope of the curve in the left plot in figure 10.7 suggest that, at this particular time
instant, higher values of lift can be obtained by increasing the airfoil thickness in
the mid-chord region.

Similar considerations can be drawn from figure 10.8, which refers the the DyAS
analysis carried out at t = 14 s. Here, the points in the left diagram do not
completely cluster on top of a single valued curve as was the case for the previous
time step considered. Compared to what has been observed at t = 10 s, the data
clearly indicate that at t = 14 s an input to output relationship obtained using
only a one dimensional active subspace will lead to less accurate lift coefficient
predictions. Yet, the points in the plot are still all located within a rather narrow band
surrounding a regression line having positive slope. Thus, all the considerations
on the lift coefficient sensitivity with respect to variations of the shape parameters
that can be inferred from the right plot, will still hold at least by a qualitative
standpoint. Here, the eigenvector components suggest that the most influential
parameters on the lift coefficient are c3, d3 and d4, while c2 and d2 affect the output
in lesser but not negligible fashion. Compared to the previous case the importance
of coefficient c4 on the output is significantly reduced. We recall that c4 is associated
with increased y coordinates of the airfoil suction side past the mid-chord region.
Thus, we might infer that in the acceleration phase higher lift values are obtained
not only increasing the front thickness, but also lowering the camber line in the
region past mid-chord.

Figure 10.9 shows the results of the DyAS analysis at t = 18 s, when the flow
approaches the final regime solution. Following the trend observed for t = 14 s,
the left plot in the figure indicates that a one dimensional active subspace is not
completely able to represent the input to output relationship in a satisfactory
fashion. With respect to the previous plots, the output values are here located in an
even wider band around a regression line with positive slope. Again, on one hand
this increasingly blurred picture suggests that higher dimensional active subspaces
are required to reproduce the steady state solution with sufficient accuracy; on
the other hand, the diagram still suggests a quite definite trend in the output,
which can be exploited for qualitative considerations. Quite interestingly, at the
present time step the eigenvector component corresponding to the c4 coefficient
has negative sign. Given the positive slope of the input to output relationship
in the left plot of figure 10.9, this implies that increases in the airfoil ordinates
on the top side in the region past the mid-chord result in lift loss. Thus, this
seems to suggest that an airfoil with a higher camber line curvature, combined
with a thicker leading edge region might result in increased lift. This should not
surprise, as a similar kind of airfoil would result in a higher downwash due to
the increased camber line curvature, yet being able to avoid stall by means of a
thicker and rounder leading edge. Thus, the DyAS analysis at different time steps
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Figure 10.10: Sensitivity analysis of the dimension of the training set for the DMD (left)
and for the response surface using GPR (right). For the DMD, we use 70 samples (of the
parametric space) evolving in time in [12, 20] s and we measure the mean relative error at
time 30 s varying the sampling frequency; for the GPR, we build the response surface using
up to 70 sampling lift coefficients at time 20 s and computing the mean relative error over
the test dataset composed by 100 test deformations.

shows that as the impulsively started airfoil moves from an acceleration phase to a
steady state regime solution, the shape modifications leading to increased lift transit
from a purely symmetric increase of the thickness in the mid-chord region, to a
non-symmetric modification of the camber line united with a symmetric leading
edge thickness increase, respectively. Such behavior is indicated by the sign of c4
coefficient in the eigenvector characterizing the one dimensional active subspace,
which is likely detecting that at steady state, regime solution, airfoils with higher
camber line curvature and thicker leading edges produced higher downwash.

We underline that the eigenvector components of all the time instants presented
corresponding to the coefficients c1, c5, d1, and d5 are almost zero. This means that
on average the lift coefficient is almost flat along these directions. We are going to
exploit this fact by freezing these parameters and constructing a GPR on a reduced
parameter space.

10.4.3 GPR approximation and prediction of the lift coefficient

The previous analysis pointed out the presence of several input parameters with
minimal average influence on the target function. Making use of such consideration
we construct a response surface which only depends on the remaining parameters.
Both for the full parameter space and the reduced one, we use a Gaussian process
regression with a RBF kernel implemented in the open source Python package
GPy [91]. We then compare the performance of the two regression strategies by
computing the relative error over a test data set composed by 100 samples. The
error is computed as the Euclidean norm of the difference between the exact and
the approximated solution over the norm of the exact solution. The training set is
composed by the same 70 samples, in 10 dimensions for the GPR over the original
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Figure 10.11: The relative error of the approximated outputs at different times. The relative
error is computed on 100 test samples, using the high-fidelity lift coefficient to train the
regression for t  20 s, while for t > 20 s the DMD forecasted states are used for the
training.

parameter spaces, and in 6 dimensions for the reduced one. Up to t = 20 s the
training is done using the high-fidelity simulations.

To speed up the convergence to the regime state (t = 30 s) we applied the DMD to
get the future-state prediction of the lift. In particular, due to the initial propagation
of the boundary conditions, for all the 70 training deformations we use the trend
of lift coefficients within the temporal interval [12, 20] s to fit the DMD model, that
means 8000 temporal information (Dt = 0.001 s). Since we used 10 POD modes —
selected using the energetic criterion — for the projection of the DMD operator, our
low-rank operator results of dimension 10. Despite in this case the dimensional
reduction is not huge, this approach allows to predict the future state in a very fast
fashion. In the high-fidelity model, we need in fact 1508 CPU seconds (on average)
to simulate 1 second of the physical model, instead using DMD we can approximate
a future state in less than 0.1 CPU seconds. In practices, this means that, to reach the
regime state with the standard approach, the simulation lasts 1508 s⇥ 30 ⇡ 45000 s,
while with the DMD we have 1508 s⇥ 20 + 0.1 s ⇡ 30000 s, guaranteeing to save
1
3 of the overall computational load. All the simulations, both at the FOM and at
the ROM level have been run serially on an Intel Xeon E5-2640, 2.50GHz CPU. We
highlight that this is only a part of the computational saving of the pipeline that
we are proposing and is related to the training stage. The DMD allows in fact for
1/3 reduction of the simulation time required to the FOM as the remaining time is
simulated by an approximated model. On the other side, once the reduced order
model has been constructed, exploiting the combination of the Gaussian Process
approximation and the DMD, it is possible to test new geometries in real time, with
a negligible computational cost. Regarding the accuracy, we present in figure 10.10
a sensitivity analysis on the number of training snapshots, varying the temporal
sampling period DtDMD from 1e � 3 s to 0.2 s and measuring the error on the
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predicted state at t = 30 s. Similarly, we propose an analysis on the GPR accuracy:
using a varying number of lift coefficients at t = 20 s, we build the response surface
and measure the error for untried parameters, both in the full dimensional space
and in the reduced one. In figure 10.11 we compare the two GPR performance at
each of the time steps analyzed in the simulations. Until 12 s, the regressions behave
in a very similar fashion, while from 15 s the accuracy gain obtained by distributing
the 70 samples in a lower dimensional space becomes significant. The error gap
between the 6 and 10 dimensional response surface in fact, consistently increases
from 0.016 at 15 s to 0.045 at steady state. This corresponds to a decrement of the
error by a factor 2.

The proposed method achieves better results because it exploits the DyAS to
discard the directions of the input parameter space along which the target function
does not vary.

10.5 conclusions and perspectives

In this chapter we presented a computational pipeline to improve the approximation
of the time-varying lift coefficient of a parametrized NACA airfoil. The pipeline
comprises automatic mesh deformation through RBF interpolation, high-fidelity
simulation with finite volume method of turbulent flow past the airfoil, global
sensitivity analysis exploiting AS, and future state prediction via DMD reduced
order method. This resulted in more accurate Gaussian process regression of the
lift coefficient even if in a reduced parameter space. Despite the turbulent nature of
the flow, the selected testcase does not show highly nonlinear phenomena — e.g.
stall, reattachment — that usually occur in several fluid dynamics problems. The
proposed framework can be extended to address also more complex applications,
provided that a suitable number of snapshots is given to characterize the parameter
space and frequencies required by the DMD training. Of course such more demand-
ing training requirements would likely result in reduced ROMs speed up and would
require case-specific treatments.

After the creation of the high-fidelity solutions database the application of AS
highlighted a possible reduction of the parameter space due to negligible contri-
butions of 4 different parameters. We exploit this reduction to construct a GPR
over a smaller parameter space, thus improving its performance. Since the training
of the regression model is done over 6 dimension instead of 10, given the same
high-fidelity database dimension, the GPR is able to better approximate the solution
manifold. This results in better lift coefficient predictions for new untried parame-
ters. We also applied DMD to have future-state prediction of the target function up
to 30 seconds and proved that the effective gain of the new GPR is preserved also for
any time after the 20 seconds simulated with FV! (FV!). In particular from 13 seconds
the actual gain is significant, at 15 seconds we have an increased performance by
a factor 2 in the relative error, which means that performing the regression in the
reduced parameter space produces a relative error equal to 0.02, instead of 0.036.
Evolving in the future the error drop increases up to 0.045 at regime (0.042 instead
of 0.087, keeping the factor 2).
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This computational pipeline can be seen as a parametric dynamic mode de-
composition for some extent. Moreover, the sensitivity analysis has a negligible
computational cost with respect to the creation of the offline high-fidelity database.

Future developments can be the study of adaptive sampling strategies exploiting
a generic n-dimensional active subspace, and the coupling of different model order
reduction methods. Another possible extension of the presented method regards
the possibility to apply the framework to a flow field — e.g. pressure, velocity —
rather than to a scalar output. It would be interesting to use this non-intrusive
setting as a preprocessing tool to reduce the number of simulations required to
build a reduced basis space which is later used in an intrusive manner [258]. We
think this new computational pipeline can be of much interest in the context of
shape optimization and dynamical systems.



11
C O N C L U S I O N S A N D F I N A L R E M A R K S

In this thesis we developed and analysed several data-driven non-intrusive re-
duced order models for both input and output spaces. Inspired by the industrial
challenges we faced, we proposed more accurate methods for parameter space
reduction, such as Kernel-based Active Subspaces and Local Active Subspaces.
We also investigate nonlinear data fusion exploiting Active Subspaces to improve
the regression performance for scalar functions with low-intrinsic dimensionality.
This has been coupled with a general non-intrusive POD-based ROM to improve
the solution manifold approximation. Finally we proposed a new algorithm for
high-dimensional optimization called Active Subspaces Genetic Algorithm and test
it in different contexts.

We applied these new methods to several engineering applications with a par-
ticular focus on naval engineering. We presented structural optimization of cruise
ships, shape optimization of a combatant hull and a NACA airfoil profile, and the
prediction of hydroacoustic noises.

Let us recap some conclusions:

• We studied a nonlinear extension of AS, where we map the input parameters
onto a reproducing kernel Hilbert space and then we apply the classical linear
AS in this higher dimensional space. We showed how this allows to deal with
radial symmetric functions, which do not have an AS by definition, and we
applied it to both scalar and vector-valued output functions.

• Using a different approach, we also proposed a local version of parameter
space reduction, in which we exploit the existence of a global AS to divide
the inputs into clusters aligned with the active direction, and then use Local
Active Subspaces. We extensively studied this method for both regression and
classification tasks.

• In the multi-fidelity context we investigated the integration of low-fidelity
models built through AS without running any additional simulation, within
a nonlinear autoregressive scheme. We showed the improved accuracy of
NARGPAS with respect to the use of a single high-fidelity in the approximation
of functions with a low-intrinsic dimensionality. This represents a cornerstone
for the coupling of model and parameter space reduction since we can use
this scheme to better approximate each modal coefficient.

• We reviewed classical data-driven ROMs such a Proper Orthogonal Decompo-
sition with Interpolation and Dynamic Mode Decomposition, for parametric
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and time-dependent problems, respectively. We present the PODI method
within a general non-intrusive framework where every abstract component
can be changed and adapted for the specific task of interest.

• We extended the classical Genetic Algorithm by exploiting the AS of every
generation, and perform the mating and mutation steps within a reduced in-
put space. This greatly accelerate the convergence of the algorithm, especially
for high dimensional target functions. We called this method ASGA.

• The main and most challenging application has been the structural optimiza-
tion of modern cruise ships in collaboration with Fincantieri S.p.A., both
for the high dimensionality of the problem and for the integration within
the existing software used in the preliminary design phase. We successfully
incorporated a data-driven pipeline with reduction in parameter space and
PODI. We presented the results obtained in the optimization of a single hull
with two different parameterizations.

• Another application in naval engineering has been the shape optimization of
a benchmark combatant hull, where we used advanced geometrical morphing
techniques to propagate surface modifications of the hull to the actual volu-
metric mesh used to perform the simulations campaign. This allowed to use
non-intrusive ROMs without remeshing the deformed hull. We also used ASGA
in an engineering context.

• Regarding more academic applications, we compared PODI and DMD for the
approximation and prediction of the flow past a sphere using Large Eddy
Simulation simulations. We also used both ROMs to predict the hydroacoustic
noise.

• Finally, we made a first step towards a parametric extension of DMD for the
approximation of the lift coefficient of a NACA airfoil profile. We also coupled
this methodology with a time-dependent AS analysis.

11.1 future perspectives

During the investigation of the different methodologies presented in this thesis, we
have identified several research lines that should be further studied and developed.

Parameter space reduction is an active area of research both from the method-
ological and the applications point of view. The localization method LAS presented
in chapter 3 has a great potential also for nonlinear techniques. Moreover the
hierarchical top-down clustering developed is very versatile and allows for more
sophisticated criteria. Active subspaces could also be more integrated in various op-
timization algorithms to further accelerate convergence and in general to reduce the
time needed to properly explore the design space. The ASGA algorithm proposed in
this thesis goes in that direction but it could be extended in many ways. A dynamic
selection of the optimal AS dimension at every generation is a possible line of study.
On the other side, its mono-objective nature could be a limitation in an industrial
context. More work has to be done to extend it for multi-objective optimization
tasks, possibly exploiting a shared AS among all the functions to minimize.
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For what concerns non-intrusive ROMs, we could investigate the potentialities
of NARGP when more fidelities are available, maybe combining linear and nonlin-
ear parameter space reduction. Furthermore NARGPAS can be exploited to design
better sampling criteria for ROMs construction. When dealing with parametric
time-dependent problem the application of DMD is not straightforward. Further
studies to extend DMD to a full parametric setting are necessary, perhaps using POD
and Grassmannian geodesics to interpolate the DMD operator between different
parameters.

Regarding the applications side, even if the ones presented in this thesis are
specific to a particular field such as naval engineering, thanks to the modularity of
all the numerical pipelines introduced, they can be applied to different optimization
tasks. The data-driven nature of the formulation allows to handle a vast and
general class of problems in engineering. So, future lines of research can involve
the integration of real-time data coming from sensors installed on the artifact to
optimize. This has the potential to better tune the ROMs built through simulations,
and adapt the digital twin to different operational scenarios.

Finally, more effort is needed to better couple parameter space and model or-
der reduction in order to fight the curse of dimensionality for modern higher
dimensional optimization problems.
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