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ABSTRACT

Twisted real structures are a generalisation of real structures for spec-
tral triples which are motivated as a way to implement the confor-
mal transformation of a Dirac operator without needing to twist the
noncommutative 1-forms. Taking inspiration from this example, in
this thesis, we study further applications of twisted real structures,
in particular those pertaining to commutative or almost-commutative
geometries.We investigate howa reality operator can implement a non-
commutative Clifford algebra Morita equivalence bimodule and find
that the corresponding real structure on a commutative spectral triple
must be twisted. We also investigate how the presence of a twisted
real structure affects the implementation of the C*-algebra self-Morita
equivalence bimodulewhich gives the gauge transformations of a spec-
tral triple and find that the twist operators must be tightly constrained
to yield meaningful physical action functionals. The form of the result-
ing action functionals suggests that the twist operator may implement
a Krein structure, which often appears in pseudo-Riemannian gen-
eralisations of spectral triples. Thus we further investigate if twisted
real structures can implement Wick rotations, and though we do not
find a fully satisfactory construction, our preliminary attempts are en-
couraging and suggest that the possibility cannot yet be ruled out.
Lastly we identify from the literature that the twisted spectral triple
for �-Minkowski space admits a reality operator which gives a twisted
real structure. This indicates that twisted real structures are compat-
ible with twisted spectral triples as had been previously conjectured,
opening up a whole new range of potential applications.
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1
INTRODUCT ION

1.1 noncommutative geometry

The language of classical physics is that of functions on smooth man-
ifolds, and represented the dominant mathematical paradigm within
physics until the establishment of modern quantum mechanics in
the 1920s and 1930s. This new quantum framework introduced non-
commuting observables which led to the famous Heisenberg uncer-
tainty relation

[-, %] = 8ℏ =⇒ �G�? ≥
ℏ

2 ,

which meant it was no longer possible (even in principle) to resolve
arbitrarily small regions in phase space.

Today, fundamental physics is almost entirely expressed within the
language of quantum mechanics and quantum field theory. However,
there remains the significant exception of gravity,which remains firmly
placed within the realm of classical mechanics, in particular, in the
description of (curved) Riemannian manifolds.
It is widely believed that for gravity in the most extreme circum-

stances (in regions of very high energy-momentum density, or at very
small length/timescales), quantum effects will dominate and it will be
necessary to supplant general relativity by a quantum theory of grav- A well-known

heuristic argument
goes that the energy
required to make
Planck-scale
measurements would
be great enough to in
turn create a
Planck-scale black
hole; of course, other
arguments have also
been made.

ity. As the spirit of general relativity is that gravity is only a fictitious
force, the effect of observers inhabiting a curved spacetime, a quan-
tum theory of gravity may necessitate the definition of a new kind of
quantum space(time) and correspondingly a new mathematical notion
of quantum geometry to describe it.

As such, ‘quantum geometry’ can be understood as a project span-
ning multiple fields of mathematics and physics to define in a rigor-
ous and meaningful way a suitable notion of ‘quantum space’. Within
quantum gravity, a wide variety of approaches have been made com-
ing from e.g. string theory and holography, loop quantum gravity and Noncommutative

geometry is not to be
confused with
‘algebraic geometry’,
which takes a similar
philosophy of
algebraicisation but
instead works with
polynomial rings
inspired by Hilbert’s
Nullstellensatz.

spin foams, causal dynamical triangulation, and causal sets, for a very
incomplete list. However, the challenge of developing new and exotic
kinds of spaces carries its own inherent mathematical interest, and so
attempts have also come from the realm of pure mathematics. Coming
from this side, arguably the biggest field working on quantum geom-
etry is noncommutative geometry introduced by A. Connes,1 which is

1 Alain Connes. “Non-commutative differential geometry.” In: Publications Mathéma-
tiques de l’IHÉS (1985).

1



2 introduction

characterised by the philosophy that geometry ought to be generalised
through algebraicisation inspired by Gelfand duality.

Gelfand duality2 (also known as Stone-Gelfand or Gelfand-Naimark
duality) is the statement that the category of locally compactHausdorff
topological spaces is dually equivalent to the category of commutative
C*-algebras. In less formal language, thismeans thatwe can forsake theDef. A C*-algebra

A is a Banach
∗-algebra satisfying
‖0∗0‖ = ‖0‖2 for all

0 ∈ A.

traditional language of topological spaces and instead talk about the
samemathematical objects in purely algebraic terms (algebraicisation).
Commutative C*-algebras, all of which are (hence) each an algebra
of continuous functions on some topological space, mesh neatly with
the language of classical physics. However, the study of C*-algebras
initially grew out of W. Heisenberg’s matrix mechanics formalism of
quantum physics, developed by P. Jordan and then J. von Neumann
into a full axiomatisation of quantummechanics, a programwhich has
also since been continued (incompletely) into quantum field theory.
We can (formally) extend Gelfand duality such that, by definition,

the dual of the category of noncommutative C*-algebras is the category
of “noncommutative topological spaces”.That quantum mechanics is
intimately connected with noncommutative C*-algebras makes for a
very compelling motivation to interpret these ’virtual’ noncommuta-
tive spaces as quantum spaces. However, topology alone is not suffi-
cient; in order to provide a meaningful notion of a quantum space, one
also needs geometry, so the question then becomes: what extra struc-
ture needs to be added into the mix (and how) to recover geometric
notions like distance?
The answer to the question of how is hinted at by considering the

Gelfand-Naimark theorem, which states that any C*-algebra is isomet-
rically ∗-isomorphic to a C*-subalgebra of the bounded operators on a
Hilbert space. It makes sense, then, that the missing ingredient should
also be a (possibly unbounded) operator on a Hilbert space. As for
what, the winding path to the answer will be sketched in §1.2, but
skipping ahead, what we are looking for is a generalised Dirac operator,
an operator which generalises the elliptic differential operator of the
Atiyah-Singer index theorem. Then the distance function on the state
space of a C*-algebraA can be given asDef. A state

) : A → ℂ is a
positive linear

functional with

)

 = 1.

3(), )′) = sup
{��)(0) − )′(0)�� : 0 ∈ A , ‖[�,�(0)]‖ ≤ 1

}
for ), )′ states onA, � : A → ℬ(ℋ), and � : ℋ →ℋ the generalised
Dirac operator [14]. This formula reduces to the ordinary distance func-
tion on a manifold whenA = �(") and so � encodes the information
of the metric. As the name suggests, the Dirac operator of physics is
an example of such an operator; the fact that � encodes distance can
be understood in physical terms by heuristically considering �−1 as
the fermion propagator, or more mathematically, as the (infinitesimal)

2 First shown in Israel Gelfand. “Normierte Ringe.” In: Recueil Mathématique (1941), only
later made categorical.



1.2 real structures for spectral triples 3

line element. The Dirac operator can also be used to give a smooth
structure and notions of calculus in similarly algebraic terms, and so
we arrive at a candidate quantum Riemannian manifold, the spectral
triple

(A ,ℋ , �).

It should be noted that the story of quantum spaces is far from over.
Spectral triples offer an excellent language for generalisingRiemannian
manifolds, but can at best be seen as only a first quantisation of geom-
etry. Indeed, the action functionals derived from spectral triples are
classical in nature, needing to be subsequently quantised in the usual
fashion; the matter of finding a suitable second quantisation, by which
one might obtain a true quantum space potentially suitable for un-
derstanding Planck-scale physics, is still very much an open question.
That said, interestingly and promisingly, spectral triples find fruitful
applications in settings far removed from physics as well, in particu-
lar to spaces which are badly behaved as point sets such as the space
of Penrose tilings, the space of leaves of a foliation, and the space of
irreducible unitary representations of a discrete group [14], and more
recently there have been strong hints of applications to number theory
as well.
Apart from spectral triples, as a field, ‘noncommutative geometry’

also encompasses a variety of related approaches. A second major re-
search program treats the question of quantum space as secondary
and takes as primary the perspective that what is more essential is
not the underlying space itself but its symmetry properties, and hence
presupposes that just as the symmetries of classical spaces are de-
scribed by finite and Lie groups, quantum spaces should likewise have
symmetries described by ‘quantum groups’ which generalise these no-
tions. To avoid confusion or conflation, wewill occasionally refer to the
framework of spectral triples as ‘spectral geometry’, and it is spectral
geometry which will be the focus and setting of this thesis. Even so,
there is considerable overlap between spectral geometry and quantum
groups and we will see an example of that overlap in Ch. 6.

1.2 real structures for spectral triples

To a spectral triple onemaybe able to addextra structure, dependingon
the specific example under consideration. One particularly important
kind of extra structure is a real structure. In this section, we go into
more mathematical depth to give a concise explanation of what a real
structure for a spectral triple is and where that definition comes from.
The presentation is primarily based on Ref. [41].



4 introduction

1.2.1 Spin geometry

The first andmain source of inspiration for (real) spectral triples comes
from the field of spin geometry, and in order to speak that languagewe
begin by introducing some important vector bundles over a (compact)
oriented manifold ". The first bundle of interest is the orthonormal
(tangent) frame bundle �SO(") ⊂ Hom(" ×ℝ= , )"), which is a prin-
cipal SO(=)-bundle over ".

An oriented Riemannian manifold is an oriented manifold " whose
orthonormal frame bundle �SO(") satisfies the vector bundle isomor-
phismTo fix notation, to

any principal
�-bundle

(% → ", �), for
� : �→ End(+),
one can define an

associated vector
bundle over "

which we denote by
%×�+ B (%×+)/�.

�SO(") ×SO(=) ℝ
= ' )".

The same recipe can be used for other groups. In particular, we
will be interested in the spin group Spin(=) which is the double cover
of SO(=), and the spin2 group which can be understood as the central
extension of SO(=) by (1, i.e. Spin2(=) ' Spin(=)×ℤ2 U(1). So, assuming
our manifold " is oriented and Riemannian, a spin(c) manifold is an
oriented Riemannian manifold " whose principal Spin(2)(=)-bundle
Spin(2)(") satisfies the vector bundle isomorphism

Spin(2)(") ×Spin(2)(=) ℝ
= ' )".

The main reason for considering spin2 manifolds in spectral geometry
is that a manifold being spin2 is sufficient for the (local) existence of a
Dirac operator, but they (and more so spin manifolds) have other very
nice properties.

In theprevious sectionwe sawhow the concept of a noncommutative
topological space was inspired by Gelfand duality. We now pursue a
similar notion of a noncommutative vector bundle, this time taking
inspiration from the (topological) Serre-Swan theorem:3 One has a
complex vector bundle � → " if and only if there exists a finitely-
generated projective �(")-module ℰ, i.e.

ℰ ' ?
( =⊕

�(")
)
, ? = ?† = ?2 ∈ "=(�(")).

One then has ℰ = Γ(�).
In order to make use of the notion of noncommutative spaces, we

need to make contact with Hilbert spaces. This is done by consider-
ing Hilbert C*-modules (see Def. 3.2) which provide a good notion of a
module over a C*-algebra coming from the theory of Hilbert spaces.
Special cases include Hilbert spaces themselves, C*-algebras, and her-
mitian vector bundles (vector bundles whose fibres are equipped with
an inner product).
A key role in going ahead will be played by Clifford algebras.

3 Richard Swan. “Vector bundles and projective modules,” In: Transactions of the Ameri-
can Mathematical Society (1962).



1.2 real structures for spectral triples 5

Definition 1.1 (Clifford algebra). A Clifford algebra is the algebra given
by �ℓ (+, 6) B )(+)/ℐ6 where )(+) B

⊕∞
8=0+

⊗8 and ℐ6 is the ideal
generated by E ⊗ F + F ⊗ E − 26(E, F) for 6 : + ×+ → � a symmetric
bilinear form. �

The most important Clifford algebras are the real Clifford algebras
and the complex Clifford algebras. Real Clifford algebras �ℓ?,@ have
+ = ℝ?+@ with 6(G, H) = ∑?

9=1 G8H 9 −
∑?+@
9=?+1 G 9H 9 . Complex Clifford

algebras ℂl= have+ = ℂ= with 6(I, I′) = ∑=
9=1 I 9I

′
9
. In particular, when

+ is real, one can obtain a complex Clifford algebra by complexifying
�ℓ (+ℂ , 6ℂ) ≡ �ℓ (+, 6) ⊗ℝ ℂ C ℂl(+). Complex Clifford algebras are
especially useful since they are C*-algebras.
One can define onℂl(+) = ℂl+(+)⊕ℂl−(+) aℤ2-grading " such that

"(E1E2 . . . E:) = (−1):E1E2 . . . E: , E 9 ∈ + . Combining " with complex
conjugation 0 ↦→ 0∗ gives the antilinear isomorphism

�(0) B "(0∗)

called charge conjugation. Another useful map is the product-reversal
map (E1E2 . . . E:)Ç = E: . . . E2E1 which can be used to define the involu-
tion 0† B (0∗)Ç.
Let 2 be an irreducible representation ofℂl(+)(+)onℋ .We candefine We write ℂl(+)(+) to

denote ℂl(+) when
dim+ is even and
ℂl+(+) when dim+

is odd.

an antiunitary operator � : ℋ →ℋ satisfying

〈�!, �#〉 = 〈#, !〉, �2 = ±1.

This charge conjugation operator implements charge conjugation as an
antilinear isomorphism

2(�(0)) = �2(0)�−1.

We can then consider (2, �) as a representation of (ℂl(+)(+), �), taken
as an involutive algebra. These representations can then be classified.
It is possible to determine the action of � on ℂl(ℝ=) by its restriction

to ℝ= ⊗ℝ ℂ using its antilinearity. Hence we represent on the space
ℝ? ⊕ 8ℝ@ , ? + @ = =, such that the representations of (ℂl(ℝ=), �) are
given by those of �ℓ?,@ . An important feature of �ℓ?,@ is that has the
periodicities

�ℓ?+1,@+1 ' �ℓ?,@ ⊗ℝ "2(ℝ), (1.1)
�ℓ?+8,@ ' �ℓ?,@ ⊗ℝ "16(ℝ) ' �ℓ?,@+8 , (1.2)

which will be important later. Note that this is considerably richer
than the complex case, since ℂl= has the much smaller periodicity
ℂl=+2 ' ℂl= ⊗ℂ ℂl2.

The unitary elements (D†D = DD† = 1) ofℂl(+) generate O(+) via the
mapΦD(0) = "(D)0D−1 (a reflection of 0 in the hyperplane D⊥), and the
subgroup SO(+) is formed by even compositions of Φ (rotations). The



6 introduction

group Spin2(+) is then generated by even products of unitaries acting
by the same map Φ, which produces the short exact sequence

1→ U(1) → Spin2(+) Φ→ SO(+) → 1.

If we denote by � : D ↦→ DÇD the map Spin2(+) → *(1), then we can
define the spin group by Spin(+) = ker(�) ⊂ Spin2(+), which in turn
gives the short exact sequence

1→ ℤ2 → Spin(+) Φ→ SO(+) → 1.

Note that this sequence demonstrates thewell-known fact that Spin(+)
is the double cover of SO(+).

Since the elements D of Spin(+) are unitary (D† = D−1) and sat-
isfy DÇD = 1, they also satisfy D∗ = D. Since, furthermore, they are
even ("(D) = D) by definition, Spin(+) can be viewed as the charge
conjugation-invariant subgroup of Spin2(+).

In order to understand under what conditions a manifold is spin(2),
we first define the Clifford bundle as the algebra bundle coming from
the associated vector bundleIn simpler terms, the

Clifford bundle over
(", 6) is the algebra
bundle generated by
)∗" equipped with

the bilinear form 6−1

on fibres.

ℂl(") ≡ ℂl=(", 6) B �SO(") ×SO(=) ℂl= .

This is a hermitian vector bundle, and sowe can employ the Serre-Swan
theorem to employ the language of modules. In particular, a (complex)
Clifford module over (", 6) is a finitely generated and projective Hilbert
Γ(ℂl("))-�(")-bimodule.
An interesting question to ask is, for a Cliffordmodulewhichwewill

suggestively call S2 = Γ((2), when ℂlG(") has an irreducible represen-
tation on the fibres ΣG of (2 → ". The answer is when S2 is a Morita
equivalence bimodule, or equivalently, when ℂl(+)(") ' End(S2).
When this happens, {ℂl(+)G (")} forms a locally trivial continuous fieldSpeaking roughly,

continuous fields of
C*-algebras can be

thought of as
generalised bundles

whose fibres are
C*-algebras.
Elementary

C*-algebras are those
isomorphic toK(ℋ)
for dimℋ finite or
dimℋ infinite and

ℋ separable.

of elementary C*-algebras
¯
ℂl(+)("). In that case, one finds

�(") ∼ Γ(ℂl(+)(")) if and only if �(
¯
ℂl(+)(")) = 0 in �3(",ℤ), (1.3)

where � gives the Dixmier-Douady class, which in this case is the third
integral Stiefel-Whitney class, the usual topological obstruction to a
manifold being spin2 .

The fibres Σ can be identified with the fermionic Fock space, and
the irreducible representation of ℂlG(") ' ℂl= restricts to the spin
representation 2 for the subgroups Spin(2)(=) ⊂ ℂl= . We have thus found
that the bundle corresponding to the module S2 is the charged spinor
bundle

(2= = Spin2(") ×Spin2(=) Σ= ,

and S2 , along with an orientation on ", give a spin2-structure, mak-
ing" a spin2-manifold. This presentation neatly motivates the reason
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spin(2) manifolds are so interesting: it is because they are especially
rich in structure precisely because one has access to the spin represen-
tations.

The natural next step is to understand how to recover the spinor
bundle

(= = Spin(") ×Spin(=) Σ= .

The way to do so is by recalling that Spin(+) can be viewed as the
�-invariant subgroup of Spin2(+) and applying this observation to the
bundle structure, whichwe can do using a charge conjugation operator
acting on the module S2 .

Let � : S2 → S2 be a bĳective antilinear map satisfying For
A B Γ(ℂl(+)(")),
denote S2∗ =
Hom�(")(S2 , �(")).
The invariant giving
the obstruction to "
being spin is given
by mod 2 reduction
on
[HomA(S2∗ ,S2)] ∈
�2(",ℤ2), cf. the
second
Stiefel-Whitney class
being the mod 2
reduction of the third
integral
Stiefel-Whitney class.
For details on how
this relates to �, see
e.g. the proof of [41,
Thm. 9.6].

�(# 5 ) = (�#) 5 ∗ , �(0#) = "(0∗)�#, 〈�!, �#〉 = 〈#, !〉,

for 5 ∈ �("), 0 ∈ Γ(ℂl(+)(")), and #, ! ∈ S2 . Then we have that "
is spin if and only if such a � : S2 → S2 exists. For clarity, we denote
by S a module S2 admitting such an antilinear map �. Then � along
with S and an orientation on " provide a spin structure, making " a
spin manifold, and the spinor bundle ( → " is hence obtained from
the module S.
We can now start to connect to spectral triples, which we will do via

Fredholm modules. A pre-Fredholm module over a pre-C*-algebra � is

Def. A
pre-C*-algebra is a
∗-algebra which
satisfies the
requirements to be a
C*-algebra but is not
norm-complete.

a representation � : �→ End(ℋ) forℋ a Hilbert space along with an
operator � : ℋ →ℋ such that

�(0)(� − �†) ∈ K(ℋ), �(0)(�2 − 1) ∈ K(ℋ), [�, �(0)] ∈ K(ℋ)

for all 0 ∈ �. Any pre-Fredholm module gives a K-cycle over � so that
[(�,ℋ , �)] is a class in K-homology which generates  0(�) or  1(�).
The reason there are only two possible K-homology groups is related
to the 2-periodicity of complex Clifford algebras.
If � is an unbounded, self-adjoint operator with compact resolvent

satisfying [�,�(0)] ∈ �(ℋ) for all 0 ∈ �, � : � → ℬ(ℋ) (i.e. a Dirac
operator), the bounded transform

�′ B �(1 + �2)−1/2

gives apre-Fredholmmodule (�,ℋ , �′). AllK-homology classes canbe
obtained in this way and thus the spectral triple (�,ℋ , �) is motivated
as an ‘unbounded K-cycle’.
Recall that the representations of (ℂl= , �) are given by those of �ℓ?,@ .

As such, if � carries an involution �, we can incorporate a compatible
action by �ℓ?,@ on an unbounded K-cycle to produce an unreduced KR-
cycle over (�, �).4 This is an unboundedK-cycle over�with an antilinear
isometry implementing �, a grading (if even) and a representation of Note that, if � is

equipped with the
standard involution
0 ↦→ 0∗, � need not
coincide with ∗.

4 First motivated by Michael Atiyah. “K-theory and reality,” In: The Quarterly Journal
of Mathematics (1966); this was extended to homology (in the context of KK-theory)
by Gennady Kasparov. “The operator  -functor and extensions of �∗-algebras,” In:
Mathematics of the USSR-Izvestiya (1981).
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�ℓ?,@ on the Hilbert space compatible with the other operators.
We would like Dirac operators on spin manifolds to give examples

of KR-cycles, but the supercommuting representation of �ℓ?,@ is incom-
patible with the irreducibility of spinormodules. Thankfully, any unre-
duced KR-cycle over (�, �) can be reduced using the (1,1)-periodicity
of real Clifford algebras (1.1) to a reduced  ' 9-cycle: a representation of
� on a Hilbert (sub)spaceℋ together with

1. � : ℋ → ℋ self-adjoint such that (�,ℋ , �) is an unbounded
K-cycle;

2. � : ℋ → ℋ an antilinear isometry implementing �, that is to say,
�(�(0)) = ��(0)�−1;

3. When 9 is even, a grading " ofℋ with "� = −�";

4. � obeying the algebraic relations

�2 = ±1, �� = ±��, �" = ±"�. (1.4)

The 8-periodicity of real Clifford algebras (1.2) dictates that there
should be at most 8 cases remaining, and indeed, these 8 cases are
encoded by the three signs (1.4) dictated by 9, which comes from the
real Clifford algebra as @ − ? (mod 8).
That a real spectral triple, with some additional axioms, is a fully

algebraic characterisation of a spin manifold when � = �∞(") [18],
commonlyknownasConnes’ reconstruction theorem, is the theoretical
cornerstone of spectral geometry.

1.2.2 Other ingredients and the real structure

Reduced KR-cycles provide a blueprint for a spectral triple equipped
with a real structure, but being closely modelled on the commutative
case, they are not quite powerful enough by themselves to handle all of
the cases where � is not commutative. For that, we turn for inspiration
to the setting of von Neumann algebras and, in particular, Tomita’sDef. For a Hilbert

spaceℋ , a von
Neumann algebra

is a unital
∗-subalgebra of
ℬ(ℋ) which is

closed in the weak
operator topology.

theorem.5
LetV be a von Neumann algebra on a Hilbert spaceℋ with � ∈ ℋ

a norm-1, cyclic and separating vector for V. Define an unbounded

Def. A vector
� ∈ ℋ is cyclic for
V ifV� is dense in
ℋ . It is separating

forV if +� = 0
implies + = 0 for all

+ ∈ V.

antilinear operator (0 onℋ such that (0+� = +†� for all + ∈ V. This
extends to an operator ( on a dense subset of ℋ admitting the polar
decomposition

( = �Δ1/2 = Δ−1/2�

5 Minoru Tomita. “On canonical forms of von Neumann algebras,” In: Fifth Functional
Analysis Symposium (1967) in Japanese, and Minoru Tomita. “Quasi-standard von
Neumann algebras,” unpublished. Thematerialwas explained andmuchmorewidely
disseminated in Masamichi Takesaki. Tomita’s Theory of Modular Hilbert Algebras and
Its Applications. Springer-Verlag, 1970.
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where � = �−1 = �† is an antilinear isometry often called the ‘modular
conjugation’. Then �V�−1 =V′.

It is not difficult to see how this can be applied to the setting of
spectral triples; all one needs to do is replace the vonNeumann algebra
V by the (representation of the) pre-C*-algebra � (noting that all von
Neumann algebras are C*-algebras) and require that the antilinear
operator of the reduced KR-cycle implements the commutation[

�(0), ��(1)�−1] = 0 (1.5)

for all 0, 1 ∈ �. This limited commutativity, often called the reality
or zeroth-order condition (the latter name comes only from the visual
similarity to the first-order condition below, and should not be taken
literally), has a number of advantages, but an important one is it allows
for the definition of the first-order condition.

In the commutative setting, the algebraic way to express that a dif-
ferential operator � has order : is that it satisfies Def. For vector

bundles � and �′
over ", the order of
a differential operator
� : Γ(�) → Γ(�′) is
the smallest integer :
such that � factors
through the jet
bundle �:(�).

[[[[�, 50], 51], . . .], 5:] = 0

for 50 , . . . , 5: ∈ �∞("). Unfortunately, this expression relies explicitly
on the commutatitvity of the functions.However, the axiom inspiredby
Tomita’s theorem (1.5) allows us to use the same technique to describe
differential operators up to first order in the noncommutative setting
as satisfying[

[�,�(00)], ��(01)�−1] = 0

for 00 , 01 ∈ �, which is called the first-order condition. This is ideal since
the Dirac operator is a differential operator which is (famously) first-
order by construction, but it is also sufficient to allow a spectral triple
to describe a noncommutative spin(2)manifold in a manner analogous
to (1.3), as will be explained in Ch. 3.
Having now collected all of the necessary ingredients, one finally

arrives at the definition of a spectral triple equipped with a real struc-
ture,Def. 2.2, first introduced inRef. [15], as a reducedKR9-cyclewhose
antilinear isometry implements the zeroth- and first-order conditions.
Examples of real spectral triples include some of the most important

and well-understood spectral triples: spin manifolds, the noncommu-
tative torus, and matrix geometries, to name a few. In particular, they
are essential for describing the spectral Standard Model, arguably the
crowning achievement of the field thus far.

1.3 twisted real structures and the structure of the thesis

Real structures as laid out in the previous section are powerful and
well-motivated auxiliary structures for spectral triples. However, they
have two main drawbacks: the conditions in their definition are very
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restrictive,meaningful there are relatively fewexamples of real spectral
triples, and related to this, not every spectral triple which we would
expect to be real actually is. As such, it is not out of the question to
consider weakening the definition of the real structure.

A proposal to do just this was made in Ref. [7], and the weakened
real structure proposed therein was called a twisted real structure. The
redefinition offered, Def. 2.3, implements the weakening by way of
an additional operator �, called a twist operator, which factors into the
conditions on the antilinear isometry � to provide additional freedom
in a relatively direct way.

The particular implementation of this ‘twist’ was inspired by two
examples, which each neatly illustrate the two problems mentioned
above. The first is the quantum cone,6 which is a special case of a
more general construction which we outline here. Let � be a group
and let � =

⊕
6∈� �6 be a �-graded ∗-algebra whose ∗-structure is

compatible with the grading in the sense that �∗6 ⊆ �6−1 such that �4
is a ∗-subalgebra of � for 4 the identity element of �.
Furthermore, let �+ ⊂ � and set �− B {6−1 : 6 ∈ �+}. Then

ℋ± =
⊕
6∈�±

�6 , ℋ = ℋ+ ⊕ ℋ− ,

noting that by construction ℋ ∗± ⊆ ℋ∓. The twist operator � is then
obtained from the degree-preserving algebra automorphism �̂ of �
which satisfies �̂ ◦ ∗ ◦ �̂ = ∗.

Let %± : �→ � be linear maps satisfying

%±(01) = %±(0)�̂2(1) + 0%±(1), �̂ ◦ %± ◦ �̂−1 = @±2%± ,

�̂(%±(0)∗) = �̂−1(%∓(0∗)), %±(ℋ∓) ⊂ ℋ±.

Then the Dirac operator � is given by the map

� : (�+ , �−) ↦→
(
− @−1%+(�−), @%−(�+)

)
for �± ∈ ℋ±. Then, for � : (�+ , �−) ↦→ (−�∗− , �∗+), ℋ viewed as a left
�4-module (with �(0)�± = �̂2(0)�±) equipped with � is a spectral
triple with the twisted real structure (� , �).
The other example,which is evenmore compelling, is that of a confor-

mal transformation. In the commutative case, by ‘conformal transfor-
mation’ we mean rescaling the metric by aWeyl factor 6 ↦→ 4−4ℎ 6 = 6′

for ℎ = ℎ∗ ∈ �∞("). Denoting by /% the Dirac operator associated to 6,
one can show that the Dirac operator associated to 6′ is

/%′ = 4 ℎ /%4 ℎ .

Generalising this to the noncommutative setting in the most straight-
forward way by taking

� ↦→ 4�(0)�4�(0) = �′ (1.6)
6 Tomasz Brzeziński. “Complex geometry of quantum cones,” In: Fortschritte der Physik
(2014).
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for 0 ∈ �, one finds that one no longer has a spectral triple since
[�′,�(1)] ∉ ℬ(ℋ) for 1 ∈ �. One way to approach this problem is to
weaken the axioms of the spectral triple to only require that twisted
commutators of the Dirac operator with the algebra are bounded [21],
which leads to one to the formalism of ‘twisted spectral triples’. How-
ever, it is perhaps troubling that such a simple transformation of the
metric should require such a dramatic change to the formalism to
accommodate it.

Twisted real structures offer a way to handle conformal transforma-
tions while remainingwithin the scope of spectral triples. In particular,
for �(:), : ∈ �×+, taking the role of 4�(0), provided the original spectral
triple (�,ℋ , �) is real with real structure �, the conformal transforma-
tion

� ↦→ ��(:)�−1���(:)�−1 = �′′

gives a spectral triple (�,ℋ , �′)with the twisted real structure (� , �) for
� = �(:)−1��(:)�−1. Note that �′′ works just as well as a conformally-
transformed Dirac operator as the �′ of (1.6) since in the commutative
case, �4 ℎ �−1 = 4 ℎ .
Since Ref. [7], excluding the works which contribute to this thesis,

publications on twisted real structures include Ref. [30], which shows
that the presence of a twisted real structure enriches even the otherwise
simple spectral triples coming from� = ℂ2 acting onℂ3 andℂ4, Ref. [8],
which draws a connection between certain kinds of twisted spectral
triples and spectral triples with twisted real structures (and which
directly or indirectly inspired much of the work in this thesis), and
Ref. [32], which generalises twisted real structures to permit multiple
twist operators associated to decompositions of the Dirac operator.

This thesis aims to continue the work investigating the potential ap-
plications of twisted real structures and the role theymight playwithin
noncommutative geometry. For what concerns the structure of the the-
sis, it is broken up into seven chapters based on theme, each of which
is further subdivided into several sections. The first chapter, of which
this is the third section, introduces and motivates noncommutative
geometry, spectral triples, real structures and twisted real structures.
Ch. 2 presents the key definitions and conventions that will be used
throughout the text as well as some minor preliminary results; Ch. 3
is largely based on Ref. [24] and describes an application of twisted
real structures to Hodge-de Rham spectral triples which describe Rie-
mannian manifolds; Ch. 4 is largely based on Ref. [50] and adapts
the construction of gauge transformations for real spectral triples to
twisted real structures; Ch. 5 investigates whether the twists selected
out as most relevant in Ch. 4 impart a Lorentzian structure; Ch. 6
discusses a twisted spectral triple from the literature which admits a
twisted real structure; and finally, Ch. 7 mentions ongoing work and
possible avenues of future research.
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As a point of wording, previous papers on twisted real structures
often refer to ‘twisted reality’ and ‘twisted real spectral triples’. We
will not use these terms, instead preferring the admittedly inelegant
‘twisted real structure’ and ‘spectral triple with twisted real structure’
instead, purely to be as clear as possible. We take special care to avoid
confusion with ‘real twisted spectral triples’, which are a related but
very separate concept which we will also encounter. And as a final
point on the format of the thesis, throughout, margins will be used
for small notes and comments, clarifications, and minor definitions,
whilst footnotes will be used (sparingly) for minor technical points
and informal or historical references.



2
PREL IM INAR IES

2.1 definitions

In this sectionwe collate all the definitions and notations whichwill be
used in multiple chapters of the thesis. All algebras will be assumed to
be unital unless otherwise noted, as will all Hilbert spaces be assumed
to be complex.

2.1.1 Notation

Whenworkingwith local expressions, wewill make use of the Einstein
summation convention, where there is an implied summation over
upstairs-downstairs pairs of indices. No summation is ever implied
for repeated indices which are all upstairs or all downstairs. When
considering spaces of dimension =where there is a time(like) direction,
Greek indices will run from 0 to = − 1 with 0 being associated with the
time(like) direction (even when the spaces are of Euclidean signature).

Throughout the thesis, {��} denotes the representatives of the gen-
erators of a Clifford algebra; in particular, in 4 dimensions they are the
familiar gamma (Dirac) matrices; {� 9} are the Pauli matrices

�1 =

(
0 1
1 0

)
, �2 =

(
0 −8
8 0

)
, �3 =

(
1 0
0 −1

)
,

where 8 =
√
−1 throughout, and �0 B 12 is the 2 × 2 identity matrix.

Exceptwhere otherwise noted,wewill follow thephysics convention
of describing the Hilbert space adjoint by (•)† with (•)∗ being complex
conjugation or the abstract involution of an involutive (∗-)algebra.
If Σ is any subset of ℬ(ℋ)we will denote by

Σ′ B
{
) ∈ ℬ(�) : [), (] = 0,∀( ∈ Σ

}
its commutant.
Involutive algebras are commonly known as ∗-algebras. We will use

the names interchangeably, typically preferring the latter except in
cases where the involution in question is not denoted by ∗, in which
case we will use the former to avoid confusion.

2.1.2 Real spectral triples

Definition 2.1. A spectral triple is the collection of data (�,ℋ , �) com-
prising

13
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1. a Hilbert spaceℋ ;

2. a real or complex ∗-algebra � along with a ∗-representation
� : �→ ℬ(ℋ);

3. a self-adjoint operator � onℋ with compact resolvent, i.e.Some definitions of
the Dirac operator
require that � be

essentially
self-adjoint, but
since essentially

self-adjoint operators
are those with a

unique self-adjoint
extension, in practice

this is a relatively
minor technical

distinction.

(� − I1)−1 ∈ K(ℋ), I ∈ ℂ \ℝ;

such that �(0)Dom(�) ⊂ Dom(�) for all 0 ∈ � and [�,�(0)] ∈ ℬ(ℋ)
for all 0 ∈ �. We call � a (generalised) Dirac operator. �

We call a spectral triple commutative if the algebra � is commutative
and finite if dimℋ < ∞. We implicitly assume that �(�) preserves the
domain of �.

If the Hilbert space admits a ℤ2-grading operator " : ℋ → ℋ sat-
isfying "2 = 1, "† = ", "� = −�" and "�(0) = �(0)" for all 0 ∈ �,
the spectral triple is called even. Spectral triples which are not even are
referred to as odd.

Notation. When necessary, the representation � will also be included
explicitly in a spectral triple as ((�,�,ℋ), �). However, wherever the
particular representation is clear from context or unimportant, it will
be omitted for brevity.

It is sometimes possible to supplement a spectral triple (�,ℋ , �)
with an antilinear map � : ℋ → ℋ satisfying a number of compati-
bility conditions with the algebra and Dirac operator. In this case, the
antilinear operator is known as a ‘real structure’ and the spectral triple
is called real:

Definition 2.2 ([15]). If (�,ℋ , �) is a spectral triple, we call � a real
structure for the spectral triple if

1. � is an antilinear map � : ℋ →ℋ such that �† = �−1 and

�2 = �1, � = ±1; (2.1)

2. with respect to theDirac operator�, the antilinearmap � satisfies

�� = �′��, �′ = ±1, (2.2)

assuming that � preserves the domain of �;

3. for all 0, 1 ∈ �, we have[
�(0), ��(1)�−1] = 0 (2.3)

and [
[�,�(0)], ��(1)�−1] = 0. (2.4)



2.1 definitions 15

If the spectral triple is even, we further require

"� = �′′�", �′′ = ±1. (2.5)

�

Commonly (2.3) is called the reality or zeroth-order condition and (2.4)
the first-order condition. Note that according to the above definition,
every real structure is an antilinear isometry.
The three signs �, �′, �′′ determine what is called the KO-dimension

of a real spectral triple according to Table 1. We will occasionally and
informally refer to them as ‘KO-signs’ for brevity. Note that (2.5) is only
relevant in the even case, and that in (2.2) we are implicitly assuming
that � preserves the domain of �.

Note that in the even
cases there are two
possible choices of
antilinear isometry �
related by the
grading " [27]. The
standard choice is the
one given on the left.

KO-dim 0 1 2 3 4 5 6 7

� ++ + −+ − −− − +− +
�′ +− − +− + +− − +− +
�′′ ++ −− ++ −−

Table 1: KO-dimensions of a spectral triple.

2.1.3 Spectral triples with twisted real structure

The above definitions encapsulate what can be considered the stan-
dard presentation of (real) (even) spectral triples. We now move on to
the definitions related to twisted real structures. We begin with the
definition of a spectral triple with twisted real structure introduced in
Ref. [7].

Let � be a bounded operator onℋ with bounded inverse such that
there exists an algebra automorphism �̂ : �→ � implemented by

�(�̂(0)) B ��(0)�−1 (2.6)

for all 0 ∈ �. We will call such an operator � a twist operator. In the
same vein, we define another algebra automorphism �̃ : �→ � using
� which is given by

�(�̃(0)) B �†�(0)
(
�†

)−1
. (2.7)

Note that we can express �̃ in terms of �̂ by �̃(0) = (�̂−1(0∗))∗ for any
0 ∈ A.
We then have the following definition of a spectral triple equipped

with a “twisted real structure”:

Definition2.3 ([7]). A spectral triplewith twisted real structure is a spectral
triple (�,ℋ , �) along with an antilinear operator � : ℋ →ℋ , �† = �−1,
and twist operator � such that (2.1), (2.3) and the following conditions
are satisfied:
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1. the ‘(�-)twisted first-order condition’

[�,�(0)]��(�̂2(1))�−1 = ��(1)�−1[�,�(0)], (2.8)

for all 0, 1 ∈ �;

2. the ‘(�-)twisted �′ condition’

��� = �′���, �′ = ±1, (2.9)

assuming that �� preserves the domain of �.

We will denote such spectral triples with twisted real structures by
(�,ℋ , �, (� , �)). �

It is clear from this definition that the familiar, ‘ordinary’ real spectral
triples (�,ℋ , �, �) can be considered as special cases of spectral triples
with twisted real structure with the trivial twist operator � = 1. In this
thesis, we will occasionally refer to these spectral triples as ‘trivially-
twisted’ to emphasise this point. In such cases, for the sake of ease,
we will retain the familiar notation omitting � rather than writing
(�,ℋ , �, (� , 1)) for these trivially-twisted spectral triples.

To clarify nomenclature, we will call � a reality operator and the com-
bination (� , �) the ‘twisted real structure’. When the twist is trivial, the
reality operator and the real structure become synonymous.
An additional condition, which is not strictly necessary but which

will be assumed to hold out of convenience unless otherwise specified,
is the regularity condition

��� = �. (2.10)

A twisted real structure satisfying the regularity condition will be
referred to as ‘regular’. Note that the conditions (2.8) and (2.9) have
clear analogues in the usual case of real spectral triples, namely (2.4)
and (2.2) respectively.
Because �̂ is an automorphism of �, we can equivalently express

(2.8) in the ‘balanced’ form

[�,�(0)]��(�̂(1))�−1 = ��(�̂−1(1))�−1[�,�(0)]. (2.11)

Compatibility of (2.8) with the ∗-structure forces one to also require

[�,�(0)]��(�̃(1))�−1 = ��(�̃−1(1))�−1[�,�(0)], (2.12)

which, as �̃ is also an automorphism, can also be expressed in the
‘unbalanced’ form of (2.8).We note that (2.12) follows as a consequence
of (2.8) (rather than being taken as an additional assumption) when
� = �†.
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Definition2.4. Aspectral triplewith twisted real structure (�,ℋ , �, (� , �))
is called even if it admits a grading operator " such that "� = −�"
and "�(0) = �(0)" for all 0 ∈ �. Furthermore, " is also required to
satisfy

"�� = �′′��", �′′ = ±1, (2.13)

whichwe refer to as the ‘(�-)twisted �′′ condition’, and the commutation
relation

"�2 = �2". (2.14)

�

Note that the condition (2.13) has a better-known analogue in the
trivially-twisted case, namely (2.5).
Remark 2.5. In fact, the literature on twisted real structures (e.g. Refs. [7,
8]) requires (2.5) in the even case rather than (2.13). The motivation for
using (2.13) in our definition comes from Prop. 4.7, and the fact that
(2.13) is theweaker choice of the two constraints. Thiswill be discussed
in more detail in §4.2.2.2. �

As a point of notation, such even spectral triples with twisted real
structure will be denoted by (�,ℋ , �, (� , �), "). To be consistent with
the convention established earlier, (trivially-twisted) even real spectral
triples will be denoted by (�,ℋ , �, � , ") as per the standard notation.

A generalisation of twisted real structures was proposed in Ref. [32],
motivated by anisotropic conformal rescalings and other complicated
conformal transformations beyond what Def. 2.3 can implement:

Definition 2.6 ([32]). If (�,ℋ , �) is a spectral triple, we call (� , {�:}) a
multitwisted real structure for the spectral triple if � is an antilinear map
� : ℋ →ℋ , �† = �−1, satisfying (2.1) and

1. the Dirac operator � can be decomposed into

� =
∑
:∈ 

�: ,

 = {1, 2, . . . , #}, where each �: is a densely defined operator
with Dom(�) ⊆ Dom(�:);

2. for each �: there exists an associated twist operator �: ∈ ℬ(ℋ)
with bounded inverse such that

�: ��: = �′�: ��: , �′ = ±1; (2.15)

3. conjugation by �: gives an automorphism of ℬ(ℋ) for all : ∈  ,
and for all 0, 1 ∈ �, we have[

�(0), ��:�(1)�−1
:
�−1] = 0 =

[
�(0), ��−1

:
�(1)�: �−1] (2.16)
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and

[�: ,�(0)]��:�(1)�−1
:
�−1 = ��−1

:
�(1)�: �−1[�: ,�(0)] (2.17)

for each : ∈  .

If the spectral triple is even, we further assume

"�2
:
= �2

:
" (2.18)

and

�: �" = �′′"�: � , �′′ = ±1 (2.19)

for all : ∈  . We call the multitwisted real structure regular if

�: ��: = �

for all : ∈  . �

We call (2.16) the multitwisted zeroth-order condition and (2.17) the
multitwisted first-order condition. It should be noted that the relaxation of
the requirement that the twist operators implement an automorphism
of the algebra is a substantial difference. Not only does itmean that Def.
2.6 is weaker thanDef. 2.3 even in the# = 1 case, but one also (notably)
loses the ordinary zeroth-order condition, and (2.17) is forced to take
the ‘balanced’ form given; the twist can no longer be freely shifted
from one side of the equation to the other. We will call (2.16) and
(2.17) “multitwisted” even when # = 1 to avoid confusion with other
terminology (see §2.1.4). Note that, as for twisted real structures, it
is still the case that when the twist operator(s) �: are trivial, Def. 2.6
reduces to the standard Def. 2.2.

2.1.4 Real twisted spectral triples

Wewill denote by [-,.]�̄ the twisted commutator-.− �̄(.)- for-,. ∈
End(ℋ) and �̄ : End(ℋ) → End(ℋ).

Putting aside the matter of reality for a moment, we now turn to
‘twisted spectral triples’, a generalisation of spectral triples where com-
mutators of the Dirac operator and algebra are replaced by twisted
commutators. Twisted spectral triples were introduced in Ref. [21] to
describe ‘spectral triples’ arising from type III algebras, but the frame-Def. A C*-algebra

A is of type
I/II/III if

�(A)′′ ⊂ ℬ(ℋ) is a
type I/II/III factor. A

factor is a von
Neumann algebraV

with /(V) = ℂ1.

work has since been adapted to a wide variety of situations beyond
what ‘ordinary’ spectral triples encompass.

Definition 2.7 ([21]). A twisted spectral triple is the collection of spectral
data (�,ℋ , �)� comprising

1. a Hilbert spaceℋ ;
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2. a real or complex ∗-algebra � along with a ∗-representation
� : �→ ℬ(ℋ);

3. an automorphism � of�which is compatiblewith the ∗-structure
(called regular)

� ◦ ∗ = ∗ ◦ �−1 , (2.20)

and lifts to an automorphism of ℬ(ℋ),

�(�(0)) = �̄(�(0));

4. a self-adjoint operator � onℋ with compact resolvent (a gener-
alised Dirac operator);

such that �(�) preserves the domain of � and [�,�(0)]�̄ ∈ ℬ(ℋ) for
all 0 ∈ �. �

A notion of reality for twisted real structures mirroring Def. 2.2 was
given in Ref. [46]:

Definition 2.8 ([46]). If (�,ℋ , �)� is a twisted spectral triple, we call �
a real structure for the spectral triple if

1. � is an antilinear map � : ℋ →ℋ such that �† = �−1 and

�2 = �1, � = ±1; (2.21)

2. with respect to theDirac operator�, the antilinearmap � satisfies

�� = �′��, �′ = ±1, (2.22)

assuming that � preserves the domain of �;

3. we have an automorphism of the (representation of the) opposite
algebra �̄◦ implemented by Regularity for twist

automorphisms and
for twist operators
can be seen as very
roughly analogous in
the sense that
�̄◦(�◦(0)) =
�◦(�−1(0)) and
�̄(�� (0)) =
�� (�̂−1(0)).

�̄◦(��(2)�−1) B ��̄(�(2))�−1 , for all 2 ∈ �; (2.23)

4. for all 0, 1 ∈ �, we have[
�(0), ��(1)�−1] = 0 (2.24)

and [
[�,�(0)]�̄ , ��(1)�−1

]
�̄◦
= 0; (2.25)

are satisfied.
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If the twisted spectral triple is even (the meaning is the same as for
spectral triples), we further require

"� = �′′�", �′′ = ±1. (2.26)

�

Such a twisted spectral triple is called a real twisted spectral triple, and
is denoted by (�,ℋ , �, �)�. Equation (2.25) is referred to as the twisted
first-order condition, althoughwewill not do so here except where there
is no chance of confusion with (2.8). Where there is the possibility for
confusion, we will call (2.8) the twisted first-order condition and (2.25)
the fully-twisted first-order condition, since it involves a twist on both
commutators.
Remark 2.9. It is important to note that spectral triples with twisted
real structure are different to real twisted spectral triples, despite the
similar names, and one should take special care not confuse the two.
However, it is possible in many cases to draw equivalences between
the two frameworks, and some looser parallels can be drawn too, as
we shall see in subsequent chapters of the thesis. �

2.2 precursory results

In this section, we collect some results which are preliminary to the re-
sults of the remainder of the thesis, orwhich are relativelyminor or not
strongly connected to the material to follow. We begin by establishing
some notation and terminology.

Notation. It will frequently occur that we will take the twist operator
to be self-adjoint or involutive up to sign. When it is necessary to keep
track of these signs, we will consistently refer to them as 
1 and 
2
respectively, i.e., if � is self-adjoint up to sign we will say � = 
1�† and
if � is involutive up to sign, we will say that � = 
2�−1.

Regarding the case of � = ±�−1 in particular, we will refer to such
spectral triples with twisted real structures as being mildly-twisted, be-
cause these spectral triples satisfy the ordinary first-order condition
(2.4) since �2 = 1 (and �̂2 = id).

As a further point of notation, with respect to a ∗-algebra � we
additionally define the conjugate ∗-representation ��(0) B ��(0)�−1

for any 0 ∈ � and the ∗-antirepresentation �∗
�
(0) B ��(0)†�−1 ≡ �◦(0)

for any 0 ∈ �. These will make it more convenient to use the following
notation for twisted commutators:

[), 0]�� B )�(0) − �(�(0))),

for 0 ∈ �,) ∈ End(ℋ), � : �→ ℬ(ℋ) and � an algebra automorphism
of �. Of course, in this notation wemight write ordinary commutators
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of operators with algebra elements as [), 0]�id although in this thesis
we will favour the standard notation [),�(0)] for simplicity. With this
notation, we can make use of the following results from Ref. [8].

Lemma 2.10 ([8]). The �-twisted first-order condition (2.8) can be equiva-
lently written as

[[�,�(0)], 1]��
�̂−2 = 0

for any 0, 1 ∈ �.
Lemma 2.11 ([8]). Let ) be an operator on ℋ , with the algebra � repre-
sented on ℋ by � : � → ℬ(ℋ) and �� : � → ℬ(ℋ), with the algebra
automorphisms �, � ∈ Aut(�). Then if (2.3) holds, we have

[[), 0] �� , 1]
��
� = [[), 1] ��� , 0]

�

�

for all 0, 1 ∈ �.

2.2.1 Triviality and KO-dimension

At this point, we introduce another sign,

��� = �′′′�. (2.27)

When �′′′ = +1 this is nothing but the regularity condition (2.10), but
we will relax this condition in Ch. 5, so it is worthwhile to consider it
here now as well. Having done so, we present another result that will
be of some relevance later:

Proposition 2.12. Suppose that (�,ℋ , �, (� , �), ") is an even spectral triple
with twisted real structure with KO-signs (�, �′, �′′) whose twist operator
satisfies � = 
�† = 
�−1 for 
 ∈ {+1,−1}. Then (�,ℋ , �, �� , ") is an
even (trivially-twisted) real spectral triple with KO-signs (��′′′, 
�′�′′′, �′′)
provided that � is a linear operator. The question of what

happens when � is
an antilinear
operator, both in the
context of Prop. 2.12
and more broadly, is
an interesting one
which merits further
investigation but
which will not be
addressed in this
thesis.

Alternatively, suppose that (�,ℋ , �, (� , �), ") is an even spectral triple
with twisted real structure with KO-signs (�, �′, �′′) whose twist operator
satisfies � = 
2�−1 for 
2 ∈ {+1,−1} and �� = 
′��, �" = 
′′"� for

′, 
′′ ∈ {+1,−1}. Then this spectral triple with twisted real structure is
equivalent to the even (trivially-twisted) real spectral triple (�,ℋ , �, � , ")
with KO-signs (�, 
2
′�′�′′′, 
′′�′′).

Proof. We begin with the first claim. Let us call �� C J and require
that � = 
1�† = 
2�−1 for 
1 , 
2 ∈ {+1,−1}. We first check that J is a
valid real structure. First of all, as it is the product of a linear and an
antilinear operator, it is itself antilinear. It is straightforward to find

J† = �†�† = 
1�
−1� = 
1
2�

−1�−1 = 
1
2J−1

and so it is antiunitary provided 
1
2 = 1. This implies that 
1 = 
2,
and so we call 
 = 
1 = 
2. Furthermore,

J2 = ���� = �′′′�2 = ��′′′1
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by (2.27).
It is equally straightforward to see that

��� = �′���


�′′′��� = �′���

�J = 
�′�′′′J�

and so (2.9) reduces to (2.1) with the sign 
�′�′′′. Similar reasoning
shows that the �-twisted first-order condition (2.8) reduces to the first-
order condition (2.4), which is particularly clear if one considers the
‘balanced’ form

[�,�(0)]���(1)�−1�−1 = ��−1�(1)��−1[�,�(0)]

2(�′′′)2[�,�(0)]J�(1)J−1 = (�′′′)2J�(1)J−1[�,�(0)]

[�,�(0)]J�(1)J−1 = J�(1)J−1[�,�(0)].

In the even case, all of the above applies unchanged. The require-
ment that

[
", �2] = 0 is satisfied trivially as �2 ∝ 1 and "�� = �′′��"

immediately becomes "J = �′′J" by the definition ofJ , and so (2.13)
reduces to (2.5).
For the second claim, �2 ∝ 1 immediately reduces (2.8) to (2.4). The

reduction of (2.9) to (2.1) and (2.13) to (2.5) comes quite immediately
from the fact that (2.27) gives �� = 
2�′′′�� combined with the commu-
tation relations of � with � and " respectively. �

The results of Prop. 2.12 appear very strong, but they follow from
the equally strong assumptions that a given (even) spectral triple with
twisted real structure and (even) real spectral triple are related by hav-
ing the sameDirac operator and grading. As such, themost reasonable
interpretation is to take it as a kind of consistency result, since twisted
real structures are proposed to be a genuine generalisation of ordinary
real structures. In this light, it makes sense to consider KO-dimension
in a little more detail. KO-dimension is rigorously defined for ordinary
real structures, but there is no guarantee the concept still makes sense
in the same way when considering twisted real structures. Even so, ifWhile it would be

ideal to remedy this,
it is not clear that

KO-dimension even
should make sense

for twisted real
structures – the
connection to

Clifford algebras that
one has in the
ordinary case

becomes much more
tenuous, for example.

it is to have any significance, one would expect that it should reduce
to the standard situation in contexts such as Prop. 2.12.
So, regarding Prop. 2.12, in the first case, the requirement that the

spectral triple with twisted real structure and the real spectral triple
have the same KO-dimension is given by 
 = �′′′ = +1. The situation
appears not altogether different in the second case,where there are two
requirements, 
2
′�′′′ = +1 and 
′′ = +1. However, we should note
that there is a great deal more structure in the assumptions of the sec-
ond case, and an example may be helpful to tease out the implications
of this extra structure.

Example 2.13. Let us assume that the twist � is equal to the grading
operator " (while this seems an odd choice, it is not precluded by
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Def. 2.6). In that case, denoting theKO-signs of the real spectral triple by
(�0 , �′0 , �

′′
0 ), we have the commutation signs 
 = +1, �′′′ = �′′0 , 


′ = −1,

′′ = +1. In this case, the consistency relations simplify to �′′0 = −1,
which occurs only for KO-dimension 2 or 6 (mod 8). �

The grading-twist example makes clear that not every twist (even
when mild) will necessarily be fully consistent with the notion of
KO-dimension for every possible dimension. However, this is not nec-
essarily a fatal problem.

Example 2.14. Let us return to the case of � = ", noting that for this
choice, the first case of Prop. 2.12 is also applicable. In this case, the real
spectral triple (�,ℋ , �, "� , ") has KO-signs (��′′0 , �′�′′0 , �′′). Clearly the
same KO-dimension is maintained with �′′0 = +1, but this does not
mean �′′0 = −1 is excluded; on the contrary, this is precisely consistent
with the ‘alternative’ table of KO-dimensions1 given by taking � ↦→ "�,
and as such is, if anything, the more consistent choice. �

Clearly at least part of the cause of the (apparent) inconsistency in
KO-dimension came from the specific choice of " as the twist, not-
ing that " is already assumed to satisfy various axioms in the general
case. Even so, it may be interesting to consider the construction of an
even more general table of KO-dimensions which more naturally in-
cludes the grading-twist (perhaps according to some alternative choice
� ↦→ �� in analogy to what is done with the grading in the ordinary
case). However, we will not do so in this thesis, especially since we are
primarily interested in avoiding the application of Prop. 2.12, since in
those cases the real structure is trivialised.
Remark 2.15. Choosing to use the grading as a twist is an interesting
example for another reason unrelated to KO-dimension: even though
the twist is not trivial, it does correspond to a trivial automorphism on
the algebra because [",�(0)] = 0 for all 0 ∈ �, and thus "̂(0) = 0 for
all 0 ∈ �. Thus, given that twists which satisfy �2 = 1 are referred to as
‘mild’, we might consider such mild twists with trivial algebra action
as ‘ultra-mild’. �

2.2.2 Products for twisted real structures

Yet another preliminary consistency result comes from examining
products. In this subsection we consider the standard product of spec-
tral triples [27, 59], although in later sections we will allow for some
flexibility. In particular, here we will consider only the products be-
tween even spectral triples, and between even and odd spectral triples;
the case of products between odd spectral triples requires some extra
technical consideration but follows the standard treatment [27] – we
exclude it for brevity.

1 The map for an even real spectral triple is given by (�, �′, �′′) ↦→ (��′′,−�′, �′′).
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The simplest possible way to obtain a product structure for two spec-
tral triples with twisted real structures is to simply take the ‘standard’
product spectral triple with the simplest product twist operator �1 ⊗ �2
and enforce the conditions of Def. 2.3.

Lemma 2.16. Let (�1 ,ℋ1 , �1 , (�1 , �1), "1) be an even spectral triple with
twisted real structure, and (�2 ,ℋ2 , �2 , (�2 , �2), "2) be an even spectral triple
with twisted real structure, with respective KO-signs (�9 , �′9 , �

′′
9
), 9 = 1, 2.

Then the usual product of spectral triples(
�,ℋ , �, (� , �), "

)
=

(�1 ⊗ �2 ,ℋ1 ⊗ ℋ2 , �1 ⊗ 1 + "1 ⊗ �2 , (�1 ⊗ �2 , �1 ⊗ �2), "1 ⊗ "2)

is an even spectral triple with twisted real structure with KO-signs

(�1�2 , �
′
1
2 , �

′′
1 �
′′
2 )

if �9 = 
 9�−1
9

for 
 9 ∈ {+1,−1} and �′1
2 = 
1�′′1 �
′
2.

Proof. The proof consists of checking that the conditions of Def. 2.3 are
satisfied, which are straightforward computations. However, (2.9) is
not automatically satisfied, and so we give its computation explicitly:

��� = �1�1�1 ⊗ �2�2 + "1�1�1 ⊗ �2�2�2

= �′1�1�1�1 ⊗ �2�2 + �′′1 �′2�1�1"1 ⊗ �2�2�2 , (2.28)

making use of (2.9) and (2.13); likewise

�′��� = �′�1�1�1 ⊗ �2�2 + �′�1�1"1 ⊗ �2�2�2. (2.29)

Clearly, the right-hand sides of (2.28) and (2.29) can only be equal if �9
commutes with �9 up to sign for both 9 = 1, 2. Assuming the regularity
condition (2.10), this only happens when

�9 = 
 9�
−1
9

for 
 9 ∈ {−1,+1}, in which case �9 �9 = 
 9 �9�9 . Enforcing this require-
ment, we have from (2.28) and (2.29) that ��� = �′��� holds when
�′ = �′1
2 = 
−1

1 �′′1 �
′
2. �

Lem. 2.16 equally holds when the second initial spectral triple is
odd with the only change being that the product spectral triple is also
taken to be odd, and so there is no product grading operator. In the
even-even and odd-even cases, one can also use the alternative product
�′ = �1 ⊗ "2 + 1⊗�2 to obtain an analogous result, except in this caseWhen both initial

spectral triples are
even, the Dirac

operators � and �′
are related by the

unitary
transformation

�′ = *′�*′† for
*′ B 1

2 (1 ⊗ 1 + 1 ⊗
"2+"1⊗1−"1⊗"2).

the product KO-signs are (�1�2 , 
1�′2 , �
′′
1 �
′′
2 ) satisfying �′1
2�′′2 = 
1�′2.

In all cases, the product twist operator � is involutive (mild) up to the
sign 
 = 
1
2.
Remark 2.17. A very similar result to Lem. 2.16 was found in Ref. [8,
Lem. 3.4]. The difference is that said paper assumes (2.5) rather than
(2.13), and so additionally requires �" = 
′′"�, 
′′ ∈ {−1,+1} to be
satisfied. Hence, their result includes the additional sign 
′′. �
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It is important to note that Lem. 2.16 is fundamentally due to the
fact that the relationship between the twist operator and the antiuni-
tary operator in a twisted real structure is typically governed by the
regularity condition (unless stricter conditions are imposed). As such,
re-computing product spectral triples using graded tensor products,
or alternative definitions of the product twist operator and product
reality operator which include on a factor of the grading of a sign will
not be sufficient to alleviate the result that the twists must be mild.

An interesting observation is that �1 ⊗ �2 satisfies (2.9) with respect
to the product twist operator and reality operator with �′ = �′1, which
suggests that perhaps the form of the product Dirac operator could be
modified to something like

�1 ⊗ �2 + "′1 ⊗ �2

where "′1 is some operator chosen so that the whole Dirac operator
now satisfies (2.9). The trouble with this is that the square of the Dirac
operator should have the form �2

1 ⊗ 1 + 1 ⊗ �2
2 , which guarantees

that the KO-dimension of the product spectral triple is the sum of the
dimensions of the factors (mod 8).However, the square of the proposed
modification is

�2 = �2
1 ⊗ �2

2 + �1"
′
1 ⊗ �2�2 + "′1�1 ⊗ �2�2 + ("′1)2 ⊗ �2

2 ,

whose cross-terms are not easy to eliminate even under quite strong
assumptions on �2 and "′1, which suggests this idea is a non-starter.

Other alternative solutions are possible, of course. It could be that
it is necessary to (also) modify the product twist operator and/or an-
tiunitary operator, etc. It could also be possible that the tensor product
also picks up some kind of ‘twisting’, although this would be a rather
more radical proposal. These possibilities deserve further considera-
tion, but for the time being it seems best to accept that only mild twists
are compatible with products, especially since in all of the relevant ex-
amples we will come across later in the thesis, the twists will be mild
anyway.
When one considers the product of real (trivially-twisted) spectral

triples, there are similar limitations on the KO-signs in order for the
products to be well-defined when compared to Lem. 2.16. Indeed, for
the usual product one has the restriction �′1 = �′′1 �

′
2 and the restriction

for the ‘alternative’ product is �′1�
′′
2 = �′2. In both cases, these are

identical to when there is a non-trivial twist provided that 
1 = 
2,
in other words, this is when the table of KO-dimensions for twisted
real structures can be taken to be the same as for trivially-twisted real
structures, an interesting resultwith respect to the previous subsection.
An elegant explanation of the sign structure of products of real spec-

tral triples was given in Ref. [37] in terms of graded tensor products. In
brief, the initialHilbert spaces are explicitly considered in termsof their
(ℤ2 or trivial) grading, and the compatibility of the action of operators
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with the grading is interpreted in terms of (anti)commutation relations
with the grading operator. All of the sign restrictions on products then
come from the requirement that the (graded) tensor product respect
these gradings. If we choose to view the product in these terms, we
would expect that � should necessarily have some compatibility with
the grading, in which case we ultimately return to the result of Ref. [8,
Lem. 3.4].



3
TWISTED REAL ITY AND THE SECOND-ORDER
CONDIT ION

3.1 introduction

The material in this chapter is based on Ref. [24].
As was mentioned in §1.2.2, one of the great applications of real

spectral triples has been to the Standard Model of particle physics.
The spectral triple of the (spectral) Standard Model is the product of
the canonical real spectral triple (�" ,ℋ" , �" , �") of a spin mani-
fold " and a finite-dimensional noncommutative real spectral triple
(�� ,ℋ� , �� , ��) encoding the internal degrees of freedom of elemen-
tary particles. An interesting feature of the spectral model is that ��
also implements a “second-order” condition [38]: conjugation by ��
maps the Clifford algebra �ℓ�� (��) into its commutant. In fact an even
stronger property holds: the commutant of �ℓ�� (��) is isomorphic to
�ℓ�� (��) itself, withℋ� a self-Morita equivalence �ℓ�� (��)-bimodule
(we call this the Hodge property, cf. Def. 3.5). These features and their
consequences for the specific example of the Standard Model were
studied in Refs. [22, 26, 31] in the context of finite-dimensional spectral
triples.

Similar such �ℓ�(�)-bimodules were investigated in great detail in
the context of spectral triples of closed oriented Riemannian mani-
folds in Ref. [49]. These spectral triples, which we refer to as “Hodge-
de Rham” spectral triples, are built on the space of complex exterior
forms rather than spinors. The Dirac operator is built from the exterior
derivative either as 3 + 3† or −8(3 − 3†), and there is a natural reality
operator associated to the Hodge star operator that intertwines these
two Dirac operators, as observed already in Ref. [39] (see also Refs. [18,
41, 49]). Another natural antilinear involution is given by the modular
conjugation (Tomita-Takesaki) operator, and although it does not give
a real spectral triple sensu stricto (per Def. 2.2), it does implement a
�ℓ�(�) self-Morita equivalence (cf. [49]).
Motivated by the work in Ref. [38] and by the properties of the

spectral triple describing the internal degrees of freedom of particles
in the spectral geometry approach to the Standard Model of particle
physics,we are interested in spectral triples satisfying the second-order
condition. Such a condition should in some sense characterise the
difference between differential forms and Dirac spinors.

In §3.2, we recall some background material about spectral triples
and give a gentle review of the canonical spectral triple of a closed
oriented Riemannian manifold, built from differential forms. We are

27
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particularly interested in reality operators and observe that of the two
natural reality operators, the one coming from the Hodge star does
not satisfy the second-order condition, whilst the one coming from the
involution does not (anti)commute with the Dirac operator. The obser-
vation in Ref. [39] that the former real structure intertwines the two
natural Dirac operators is re-interpreted in the framework of twisted
real structures.

A natural question is then whether there exists an alternative an-
tilinear involution giving both a real spectral triple sensu stricto and
satisfying the second-order condition. In §3.3 we consider the simple
example of the 2-torus and prove that such an operator doesn’t exist
(cf. Thm. 3.19). The use of twisted real structures is the best one can
aim for if one is interested in the second-order condition.
In light of the fact that the spectral triple of the Standard Model is

a product of two factors, in §3.4 we study how the above mentioned
conditions behave under products of spectral triples. In particular we
will argue in §3.4.3 that, if one defines the tensor product of real struc-
tures in the correct way, then the Hodge property is preserved under
products of real spectral triples.

3.2 spectral triples and riemannian manifolds

3.2.1 Spectral triples

Here we collect some preliminary definitions needed for this chapter.
The presentation of real spectral triples in terms of 1-forms and the
Clifford algebra can be found in Ref. [39]. The Clifford algebra of a
spectral triplewas also introduced in Ref. [39] (see also Ref. [49]). Given
a unital spectral triple we define

• Ω1
�
(�) to be the complex vector subspace of ℬ(ℋ) spanned by

�(0)[�,�(1)], for 0, 1 ∈ �; and

• �ℓ�(�) to be the complex C*-subalgebra of ℬ(ℋ) generated by �
and Ω1

�
(�).

We think ofΩ1
�
(�) as the analogue of (smooth) differential 1-forms and

�ℓ�(�) as the analogue of (continuous) sections of the Clifford algebra
bundle on a compact Riemannian manifold.
Given an antilinear isometry � onℋ , for all) ∈ ℬ(ℋ) andΣ ⊂ ℬ(ℋ)

we will denote

)◦ B �)†�−1 and Σ◦ B
{
(◦ : ( ∈ Σ

}
.

By design, when the operator comes from the algebra, �(0)◦ ≡ �◦(0).
We also remark that�◦, which is an antirepresentation of�, can also be
viewed as a representation of �op, and so there is no confusion when
representations are omitted; themeanings of 0◦ and�◦ in this notation
are unambiguous.
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Notice that the map ) ↦→ )◦ is complex-linear and antimultiplica-
tive:

()()◦ = (◦)◦ ,

for all ), ( ∈ ℬ(ℋ). If Σ is a subalgebra of ℬ(ℋ), sometimes it will be
useful to think of the above map as defining a right action ⊳ of Σ onℋ
by

# ⊳ ( B (◦#, (3.1)

for all ( ∈ Σ and # ∈ ℋ .
Given a unital spectral triple and an antilinear isometry � we formu-

late the following set of conditions:

�◦ ⊂ �′, (3.2a)
Ω1
�(�)

◦ ⊂ �′, (3.2b)
Ω1
�(�)

◦ ⊂ Ω1
�(�)

′. (3.2c)

Remark 3.1. The above conditions can be recast in more familiar forms:
condition (3.2a) means that [0, �1�−1] = 0 for all 0, 1 ∈ �, i.e. the zeroth-
order condition (2.3); (3.2b) that

[
[�, 0], �1�−1] = 0 for all 0, 1 ∈ �, i.e.

the first-order condition (2.4); and (3.2c) that
[
[�, 0], �[�, 1]�−1] = 0

for all 0, 1 ∈ �, which is called the second-order condition in Ref. [38]. �

Notice that (3.2a) and (3.2b) are together equivalent to the condition

�ℓ�(�)◦ ⊂ �′, (3.3)

and the three conditions (3.2) are together equivalent to

�ℓ�(�)◦ ⊂ �ℓ�(�)′. (3.4)

In view of the above considerations, we can interpret (3.3) by saying
thatℋ is an �-�ℓ�(�)-bimodule, where the left action of � is given by
its inclusion as a subalgebra of ℬ(ℋ) and the right action of �ℓ�(�) is
given by (3.1). Since (3.3) is also equivalent to �◦ ⊂ �ℓ�(�)′, we can
also interpret it by saying thatℋ is a �ℓ�(�)-�-bimodule, where now
the left action of �ℓ�(�) is given by its inclusion as a subalgebra of
ℬ(ℋ) and the right action of � is given by (3.1). Finally, (3.4) can be
interpreted as saying thatℋ is a �ℓ�(�)-�ℓ�(�)-bimodule.
In this chapter, for what concerns the twisted real structures, the

twist operator � will satisfy � = �† = �−1 and will commute with both
� and �, and so will give an ultra-mild twist.

3.2.2 Morita equivalence

Before continuing, it will be useful to first describeHilbert C*-modules.
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Definition 3.2. Let A be a C*-algebra. A right pre-Hilbert A-module isLeft pre-Hilbert
C*-modules can also
be defined, making

the obvious
replacements.

a complex vector space + equipped with a right A-module structure
along with an inner product 〈•, •〉 : + × + → A satisfying, for all
E, F, F1 , F2 ∈ + , 0 ∈ � and �1 ,�2 ∈ ℂ,

1. 〈E, F1�1 + F2�2〉 = 〈E, F1〉�1 + 〈E, F2〉�2;

2. 〈E, F0〉 = 〈E, F〉0;

3. 〈E, F〉 = 〈F, E〉∗;

4. 〈E, E〉 ≥ 0;

5. 〈E, E〉 = 0 if and only if E = 0.

One can define a norm on the pre-Hilbert A-module + by taking
‖E‖ = ‖〈E, E〉‖

1
2 . One then obtains a Hilbert A-module by taking the

norm-completion of + with respect to this norm. �

We can further define a pre-Hilbert ℬ-A-bimodule by considering the
complex vector space+ as both a left pre-Hilbertℬ-module and a right
pre-HilbertA-module, such that the inner products are compatible:

E1〈E2 , E3〉A = 〈E1 , E2〉ℬ E3 for all E1 , E2 , E3 ∈ +.

The two norms coming from the two inner products coincide and so
we can obtain a Hilbert ℬ-A-bimodule by completing with respect to
the norm ‖E‖ =



〈E, E〉A

 1
2 =



 〈E, E〉ℬ


 1

2 .
Loosely speaking, two C*-algebras are Morita equivalent1 when

there exists a categorical equivalence of their (left or right) module
structures. Morita equivalence will play a central role both in this
chapter and the next. In this subsection, based on Ref. [55], we will
give a brief, high-level overview of Morita equivalence for C*-algebras
to understand its topological meaning. In §4.2.2, we will take a more
detailed, computational perspective to understand the interplay be-Def. A right or left

Hilbert C*-module ℰ
is (right- or left-)full
if span {〈41 , 42〉A :

41 , 42 ∈ ℰA } is
dense inA or

span { 〈41 , 42〉ℬ :
41 , 42 ∈ ℰℬ } is

dense in ℬ
respectively.

tween Morita equivalence and the Dirac operator in the context of
(real) spectral triples.

Given two (complex) C*-algebras A and ℬ, an A-ℬ Morita equiv-
alence bimodule (also known as an imprimitivity bimodule) is a pair
(ℰℬ ,Ψ) of a full right Hilbert ℬ-module ℰℬ and an isomorphism
Ψ : A → Kℬ(ℰ) of ℰℬ . Two C*-algebras A and ℬ are called Morita

Def. The C*-algebra
ofA-compact

operatorsKA(ℰ) is
the norm-closure of

the two-sided ideal of
finite sums of

A-linear ℰ-valued
ketbras inside

EndA(ℰ).

equivalent if such anA-ℬMorita equivalence bimodule exists. AnA-A
Morita equivalence bimodule is also called a self-Morita equivalence bi-
module.
For a more concrete example, if � → - is a complex hermitian vec-

tor bundle over a compact Hausdorff space -, �(-) is the C*-algebra

1 Initially, M.A. Rieffel used the name ‘strong Morita equivalence’ when considering
specifically C*-algebras, but it is now customary to omit theword ‘strong’. Indeed, ifA
andℬ are unital C*-algebras, it is now known that they are stronglyMorita equivalent
if and only if they are Morita equivalent as rings [2].
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of continuous functions on -, and Γ(End(�)) is the C*-algebra of con-
tinuous sections of the endomorphism bundle of �, then the set of
continuous sections of �, Γ(�), is a Γ(End(�))-�(-)Morita equivalence
bimodule.
Every C*-algebra ℬ is a self-Morita equivalence ℬ-bimodule. If ℬ is

unital, every finitely-generated and projective (hereafter, ‘finite projec-
tive’) right �-module is a full right Hilbertℬ-module (with a canonical
ℬ-valued inner product). IfA and ℬ are two unital C*-algebras, every
A-ℬ Morita equivalence bimodule is finite projective (both as a left
A-module and right ℬ-module) cf. [41, Ex. 4.20]. In particular, if ℬ is
unital, every self-Morita equivalence ℬ-bimodule is finite projective.

If ℬ is finite-dimensional (and therefore unital), every finite projec-
tive right ℬ-module is a finite-dimensional complex vector space. Us-
ing the structure theorem for finite-dimensional complex C*-algebras
it is easy to show that, conversely, every finite-dimensional complex
vector space + carrying a right action of ℬ is finite projective as a
right ℬ-module. If A and ℬ are finite-dimensional, an A-ℬ Morita
equivalence bimodule is then just a pair (+,Ψ) of a finite-dimensional
complex vector space + carrying a right action of ℬ and an isomor-
phism Ψ such that Ψ(A) commutes with the right action of ℬ (note
that every right ℬ-linear endomorphism is adjointable and also com-
pact in the finite-dimensional case).

Definition 3.3. Letℋ be a Hilbert space, and letA ,ℬ ⊂ ℬ(ℋ) be two Here we think ofA
and ℬ as concrete
C*-algebras of
bounded operators
onℋ and use � to
define a right action
of one of the two
algebras, while the
isomorphism
Ψ : A → Kℬ(ℰ) is
just the identity.
Notice thatA must
commute with the
right action of ℬ,
given by ℬ◦, and not
with the left action of
ℬ. We implicitly
assume thatA and
ℬ◦ preserve the
subspace ℰ.

C*-subalgebras, and � an antilinear isometry onℋ . Regardingℋ as a
right ℬ-module with right action given by (3.1),

# ⊳ 1 = 1◦# for all 1 ∈ ℬ ,# ∈ ℋ ,

we say that � implements a Morita equivalence betweenA and ℬ, and
write

A ∼� ℬ

if there exists a dense vector subspace ℰ ⊂ ℋ such that the pair
(ℰ ,Ψ = idA) is an A-ℬ Morita equivalence bimodule. Concretely,
this means thatA = Kℬ(ℰ). �

Remark 3.4. If ℋ is finite-dimensional, one has A ∼� ℬ if and only
if A = (ℬ◦)′. This can be equivalently rephrased as A′ = ℬ◦ (by the
double commutant theorem), as A◦ = ℬ′ (since [0, 1◦] = 0 if and only
if [0◦ , 1] = [1◦ , 0]◦ = 0), or as (A◦)′ = ℬ. �

We can now strengthen the conditions (3.3) and (3.4) by requiring
that the inclusions are equalities.

Definition 3.5. Let (�,ℋ , �, (� , �), ") be a unital, possibly even, spec-
tral triple with (possibly �-twisted) real structure, �̄ the norm-closure
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of �, �ℓ"
�
(�) the C*-algebra generated by �ℓ�(�) and " the grading (in

the even case). We will call the spectral triple:

spin ⇐⇒ �ℓ�(�) ∼� �̄, (3.5a)
even-spin ⇐⇒ �ℓ

"
�
(�) ∼� �̄, (3.5b)

Hodge ⇐⇒ �ℓ�(�) ∼� �ℓ�(�). (3.5c)

�

Notice that (3.5c) implies (3.4), while (3.5a) and (3.5b) both imply
(3.3). Less obvious is that (3.5a) implies (3.5b), as shown in the first
part of the next proposition.

Proposition 3.6. Let (�,ℋ , �, (� , �), ") be a unital even spectral triple with
(possibly �-twisted) real structure.

1. If (3.5a) is satisfied, then " ∈ �ℓ�(�) and (3.5b) is satisfied as well.

2. If (3.4) is satisfied and " ∈ �ℓ�(�), then Ω1
�
(�) = 0.

Proof. 1. Since " ∈ �′, one has "◦ ∈ (�◦)′. But "◦ = ±" due to (2.5),
hence the restriction of " to ℰ commutes with the right action of �̄.
If (3.5a) is satisfied, there must exist an element � ∈ �ℓ�(�) such that
" − � is zero on ℰ, but since it is a bounded operator, it must be zero
on the whole ofℋ .
2. If " ∈ �ℓ�(�) and (3.4) is satisfied, one has " = ±"◦ ∈ �ℓ�(�)′ as

well, and it follows that every 1-form $ commutes with ". However,
all 1-forms must also anticommute with ", since " commutes with �
and anticommutes with �. Therefore using $ = 1

2"
(
[", $] + {", $}

)
we hence find $ = 0. �

A special class of spectral triples with " ∈ �ℓ�(�) is given by the so-
called orientable spectral triples. Recall that a spectral triple (�,ℋ , �)
is called orientable if there is a Hochschild =-cycleAccording to the

original terminology
of Ref. [16]. 2 =

∑
00 ⊗ 01 ⊗ . . . ⊗ 0= ∈ /=(�, �)

for the sum finite and 00 , . . . , 0= ∈ � such that
∑
00[�, 01] · · · [�, 0=]

is equal to either 1 or, in the even case, to ". In particular, an even
orientable spectral triple has " ∈ �ℓ�(�). Prop. 3.6(2) shows that on
an orientable spectral triple satisfying the second-order (or Hodge)
condition, all 1-forms are zero.
For real spectral triples there is another notion of orientation. A real

spectral triple is called real-orientable if there is a Hochschild =-cycleIn Ref. [20, §18.1]
another version of

real-orientability is
presented where the
elements 01 , . . . , 0=

are required to
commute with �.

2 =
∑
(00 ⊗ 10) ⊗ 01 ⊗ . . . ⊗ 0= ∈ /=(�, � ⊗ �op)

for 00 , . . . , 0= ∈ � and 10 ∈ �op such that
∑
0010[�, 01] · · · [�, 0=] is

equal to either 1 or, in the even case, to " [60].
In general, real-orientability is a weaker notion than orientability.

In the example of the Hodge-de Rham spectral triple (which will be
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described in the subsections to follow), one has �0�−1 = 0∗ for all 0 ∈ �
so that � = �◦ and the two notions coincide. In particular, the Hodge-
de Rham spectral triple reviewed in §3.2.3 is orientable if one takes the
appropriate grading operator.

3.2.3 Closed oriented Riemannian manifolds

There are two main classes of spectral triples (�,ℋ , �) that one can
associate to a closed oriented Riemannian manifold ". For one, the
Hilbert space is given by ℋ = !2(∧•

ℂ
)∗"), the square-integrable

(complex-valued) forms on", and the Dirac operator � is the Hodge-
de Rham operator. If " is a spin manifold, the other is obtained by
using as the Hilbert space ℋ the space of square-integrable spinors
on ", and � = 8 /∇ is the Dirac operator corresponding to the spin
structure. In both cases, � = �∞(") is the algebra of smooth functions
on " acting onℋ by pointwise multiplication.
Any commutative unital spectral triple, satisfying a suitable addi-

tional set of axioms (listed for example in Ref. [18]), turns out to be of
one of these two types. More precisely, depending on the axioms, from
a commutative unital spectral triple one can reconstruct either a closed
oriented Riemannian manifold or a spin2 manifold (see Thms. 1.1 and
1.2 in Ref. [18]), and in the latter case the zeroth-order condition selects
spin manifolds among spin2 manifolds. This last step follows from an
algebraic characterisation of spin2 manifolds in terms ofMorita equiva-
lence, sketched in §1.2.1: such an equivalence is implemented by a real
structure � exactly when the manifold is spin. This characterisation is
recalled for example at the beginning of Ref. [22] andmotivates the first
part of Def. 3.5. In this subsection we spell out the construction of the
spectral triple given by the Hodge-de Rham operator on differential
forms and discuss some aspects related to the self-Morita equivalence
of the Clifford algebra and how to implement it bymeans of an antiuni-
tary operator. Wewill adopt the notations and conventions of Refs. [41,
48].

Let " be a closed oriented =-dimensional Riemannian manifold
with metric tensor 6. In the following, we let

� B �∞(") (3.6)

be the algebra of complex-valued smooth functions on ", �̄ = �(")
the algebra of continuous functions, Ω•

ℂ
(") the space of smooth sec-

tions of the complexified bundle of forms
∧•
ℂ
)∗" → ", and

ℰ B Γ(∧•
ℂ
)∗") (3.7)

the �(")-module of continuous sections. The Riemannian metric 6
induces a hermitian product on the fibres of the bundle

∧•
ℂ
)∗", and

a �(")-valued hermitian product on ℰ, given by (e.g. [41, §9.B])

(�, �) B det
(
6−1(�∗8 , �9)

)
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for all products of 1-forms � =
∧:
8=1�8 and � =

∧:
9=1�9 , which is ex-

tended to ℰ by linearity and by declaring that forms with different
degree are mutually orthogonal. With the above Hermitian structure,
ℰ becomes a full right Hilbert �̄-module (like any module of continu-
ous sections of a hermitian vector bundle on ").

We letℋ B !2(∧•
ℂ
)∗") be the Hilbert space completion of ℰ with

respect to the inner product

〈�, �〉 B
∫
"

(�, �)$6 ,

where $6 is the Riemannian volume form, given on any positively
oriented chart by $6 =

√
det(6) dG1 ∧ . . . ∧ dG= .

The Hodge star operator ★ on real-valued :-forms is implicitly de-
fined by the equality

� ∧ (★�) = (�, �)$6

for all real :-forms � and �, and satisfies the well-known relations

★2 = (−1):(=−:)

on :-forms, and

★ ◦ 3 ◦★ = (−1)=(:+1)+13† ,

where 3 is the exterior derivative on (smooth) forms and 3† is its formal
adjoint. The Hodge star operator can be extended to complex-valued
forms linearly, e.g. as in Ref. [61], or antilinearly, e.g. as in Ref. [57]. We
adopt the former convention.

Proposition 3.7 ([41, 48]). With � = �∞(") and ℋ = !2(∧•
ℂ
)∗") as

above, andwith the closure of the (essentially self-adjoint elliptic [48]) operatorDef. A linear
(pseudo-)differential
operator is elliptic if
its principal symbol

is invertible.

3 + 3† (the Hodge-de Rham operator of (", 6)), we get a unital even spectral
triple (�,ℋ , 3 + 3†).

Two natural gradings "deg and "★ are given on :-forms by

"deg B (−1):

and (see e.g. the proof of [18, Thm. 11.4])

"★ B 8−
=(=+1)

2 (−1):(=−:)+
:(:+1)

2 ★ .

Evidently 3 + 3† anticommutes with "deg and, since we have that
"★ ◦ 3 ◦ "★ = (−1)=+13†, if = is even "★ also anticommutes with 3 + 3†.
If = is odd, since 3 + 3† and "★ commute one can use this grading to

reduce the Hilbert space and build a spectral triple on the eigenspace
of "★ with eigenvalue +1 (which is what is done e.g. in Ref. [18]). We
will not follow this approach, since we wantℋ to be isomorphic to the
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space of sections of the Clifford algebra bundle (up to a completion) in
both the odd- and even-dimensional cases.

In order to talk about the Hodge condition, we must first recall the
(geometric) definition of the Clifford algebra bundle ℂl(", 6) → ".
The fibre at a point G ∈ " is the unital associative complex algebra
generated by E1 , E2 ∈ )∗G" satisfying E1E2 + E2E1 = 26−1(E1 , E2). Denot- We use a different

sign convention than
in §3.3 to adapt to
the convention in
Ref. [41]. The choice
of sign in front of 6
is in any case
irrelevant after
complexifying.

ing by y the interior product, which is the adjoint of the (left) exterior
product, a left action � and a right action � (an antirepresentation) of
the algebra Γ(ℂl(", 6)) on forms are given on each fibre by

�(E)F B E ∧ F + E y F and �(E)F B (−1):(E ∧ F − E y F)

for all E ∈ )∗G" and F ∈ ∧:
ℂ
)∗G". We will refer to � and � as left

and right Clifford multiplication. They turn the space ℰ in (3.7) into a
For � and � we
follow the
conventions of Ref.
[41, §5.1]. In
particular,
�(E)2 = +6−1(E, E)
in contrast to the −
sign in the proof of
[18, Thm. 11.4].

Γ(ℂl(", 6))-bimodule. One can show that (see Ref. [18] or Ref. [48])
the grading "★ is given at each point by

Globally, "★ is
proportional to left
Clifford
multiplication by the
Riemannian volume
form. Note also the
different phase in
(3.8) compared to
Ref. [18], due to our
different sign
conventions.

"★ = 8
− =(=−1)

2 �(4142 · · · 4=), (3.8)

where {4 8}, 8 = 1, . . . , = is a positively oriented orthonormal basis of
)∗G".

A vector bundle isomorphism ℂl(", 6) → ∧•
ℂ
)∗" is given on each

fibre by

4 81 4 82 · · · 4 8: ↦→ 4 81 ∧ 4 82 ∧ . . . ∧ 4 8: , (3.9)

for 1 ≤ 81 < 82 < . . . < 8: ≤ =, or more generally by

� : E1E2 · · · E: ↦→ �(E1)�(E2) · · ·�(E:)1

for all E1 , . . . , E: ∈ )∗G". The inverse map [41, Eqn. (5.4)]

&(E1 ∧ . . . ∧ E:) =
1
:!

∑
B∈(:

(−1)‖B‖EB(1) · · · EB(:) (3.10)

will be useful later on. The maps � and & are called the symbol map
and the quantisation map respectively in Ref. [41].

These maps give a vector space isomorphism Γ(ℂl(", 6)) → ℰ
on sections intertwining the left/right multiplication of the algebra
Γ(ℂl(", 6)) on itself with the left/right Clifford multiplication on ℰ.
The next proposition then follows.

Proposition 3.8. ℰ is a self-Morita equivalence Γ(ℂl(", 6))-bimodule.

An involution on sections of the Clifford algebra bundle is defined
as follows. At each point G, on products of real cotangent vectors we
have

(E1E2 · · · E:)Ç B E: · · · E2E1

for all E1 , . . . , E: ∈ )∗G". The map is then extended antilinearly to
the fibre of ℂl(", 6) at G, and pointwise to the algebra of continuous
sections. The left Clifford action then transforms this involution into
the adjoint operation †.
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Lemma 3.9. One has

�(�)† = �(�†)

for all � ∈ Γ(ℂl(", 6)).

Proof. Both sides of the equality are antilinear antihomomorphisms.
It is enough to prove the equality for generators, which means that
�(E)† = �(E) for all real cotangent vectors E ∈ )∗G" and all G ∈ ". This
immediately follows from the definition of the interior product as the
adjoint of the left wedge product: 〈E ∧ F1 , F2〉 = 〈F1 , E y F2〉 for all
E ∈ )∗G" and F1 ∈

∧:−1
ℂ
)∗G",F2 ∈

∧:
ℂ
)∗G". �

Let $ = $1∧$2∧ . . .∧$: be a product of : 1-forms. Two natural an-
tilinear isometries on forms �1 and �2 are given by pointwise complex
conjugation

�1$ = $∗ , (3.11)

and its composition with the canonical anti-involution, explicitly,

�2$ = $∗: ∧ $
∗
:−1 ∧ . . . ∧ $

∗
1

= (−1):(:−1)/2$∗. (3.12)

We will adopt the notation $† B �2($). We can define an antilinear
isomorphism � ↦→ �† on the Clifford algebra as well, by declaring it
to be the identity on real cotangent vectors [41, Ex. 5.5]. The symbol
map and quantisation map intertwine the complex conjugations as
&($∗) = &($)∗ for all forms $. One can also check on a basis (3.9) that
�(�†) = �(�)†, so that the symbolmapandquantisationmap intertwine
the main anti-involutions as well.
Remark 3.10. It is well-known and straightforward to check that, when
equipped with the antilinear isometry �1, (�,ℋ , �, �1) is a real spec-The closely related

charge conjugation
operator is obtained
from �1 by "deg�1

[41, Ex. 5.6].

tral triple. �

Lemma 3.11. Let � be the antilinear isometry onℋ given by

�$ B $†. (3.13)

Then

1. for all sections � of the Clifford algebra bundle,

��(�)�−1 = �(�);

2. � ◦ 3 ◦ �−1 = 3 ◦ "deg.

Proof. Note that �−1 = � and that � B � ◦ † ◦ &. Since the main anti-
involution on the Clifford algebra exchanges left and right multipli-
cation, the corresponding operator on forms intertwines the left and
right Clifford actions.
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Let $ be a :-form. Then

3�$ = (−1):(:−1)/23$∗ = (−1):(:−1)/2(3$)∗

= (−1):(:−1)/2(−1):(:+1)/2�(3$) = (−1):2
�(3$) = �(3("deg$)),

where last equality follows from the observation that :2 and : have the
same parity. �

Since 3 and "deg anticommute, it follows from previous lemma that

� ◦ 3† ◦ �−1 = (3 ◦ "deg)† = −3† ◦ "deg.

If we denote by � the closure of the operator −8(3 − 3†) (called the
Hodge-Dirac operator in Ref. [41, Def. 9.24]), then � and the Hodge-
de Rham operator 3 + 3† of Prop. 3.7 are related by the operator �:

�(3 + 3†)�−1 = 8�"deg.

Note that the definition of a noncommutative manifold in Ref. [39] is
motivated by a similar observation, see Ref. [39, p.102].
We now adopt � as our Dirac operator and relate the geometric

and algebraic definitions of Clifford algebras. We know that � is a
Dirac-type operator, given on smooth sections by [41, p.426]

Similarly,
(3+3†)"deg = �◦∇.

� = −8(3 − 3†) = −8� ◦ ∇,

where ∇ : Ω•
ℂ
(") → Ω•+1

ℂ
(") is the Levi-Civita connection. In partic-

ular, it follows from the Leibniz rule that

8[�, 5 ] = �(35 ) (3.14)

for all 5 ∈ �∞(").
Proposition 3.12. When � = �∞("), �ℓ�(�) = Γ(ℂl(", 6)), which acts
onℋ via �.

Proof. It follows from (3.14) that the (algebraic) Clifford algebra is the
C*-algebra of bounded operators onℋ generated by smooth functions
and Clifford multiplication by 1-forms. In other words, �ℓ�(�) is gen-
erated by smooth sections of the Clifford algebra bundle. The algebra
Γ(ℂl(", 6)) on the other hand is generated by continuous functions
and continuous sections of )∗" (as one can show by using a partition
of unity subordinated to a finite open cover of", which exists since"
is compact). Every continuous function is the norm limit of a sequence
of smooth functions. Also every continuous section � of )∗" is the
norm limit of a sequence of smooth sections, where the norm ‖�(�)‖
is the operator norm on ℋ composed with �. Indeed, for � ∈ Γ()∗")
one has �(�)†�(�) = 6−1(�, �) and then

‖�(�)‖2 =


�(�)†�(�)

 = sup

G∈"
|�(G)|2 , (3.15)
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where the norm on the right hand side is the one on )∗G" coming from
the Riemannian metric.

Now, any continuous � can be written as a finite sum of continuous
sections each supported on a chart (by using a partition of unity). To
conclude the proof it is then enough to show that continuous sections
supported on a chart are the norm limit of smooth sections supported
on a chart. But this follows trivially from (3.15) and the fact that in
a chart, sections of the Clifford algebra bundle look like matrices of
(continuous/smooth) functions. �

It follows fromProp. 3.12 that, for the spectral triple considered here,
the dense subspace ℰ ofℋ in (3.7) is a self-Morita equivalence �ℓ�(�)-
bimodule. By Lemma 3.11 the main anti-involution � exchanges the
left and right Clifford multiplication, so that we can finally make the
following claim.

Proposition 3.13. The data(
�,ℋ , �, (� , �), "

)
=

(
�∞("), !2(∧•

ℂ
)∗"),−8(3− 3†), (� , �), "deg

)
,

with � given by (3.13) and � given by (−1):(:+1)/2 times the identity operator
on :-forms, comprise an even spectral triple with twisted real structure satis-
fying the Hodge condition (3.5c). The KO-dimension of this spectral triple is
0 (mod 8).

Proof. The statement about the Hodge condition follows from the dis-
cussion above. Clearly �2 = 1, so that (2.1) is satisfied with sign � = +1.
Since � doesn’t change the degree of a form, (2.5) is also satisfied with
sign �′′ = +1. Finally, � anticommutes with �1 (since 3($∗) = (3$)∗ for
all forms $). If $ has degree :, then

���−1$ = (−1)
:(:−1)

2 ���1$ = (−1)
:(:−1)

2 + :(:+1)
2 �1��1$ = (−1):+1�$,

where we used the fact that :2 and : have the same parity. It follows
that

���$ = (−1)
(:+1)(:+2)

2 ��$ = (−1)
(:+1)(:+2)

2 +(:+1)��$

= (−1)2(:+1)2���$ = ���$.

Thus, (2.9) is satisfied with sign �′ = +1. �

It is worth mentioning that, although in the reconstruction theorem
(cf. [18]) the role of � is topass fromspin2 structures to spin, thepresence
of a reality operator is crucial even for spectral triples that are not built
fromDirac spinors. In the noncommutative case, it is necessary tomake
sense of the condition which makes the Dirac operator a first-order
differential operator, and in the spectral approach to gauge theories,
it is required in order to define the adjoint action of the gauge group,
the real part of the spectral triple, and more. Furthermore, differential
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forms can be constructed from spinors by the use of twisted modules
[60, §2.5]. It is therefore not unreasonable to investigate real structures
even in the absence of (explicit) spinors.
The interest in self-Morita equivalences of a Clifford algebra (which

we note are implemented by �) is mainly motivated by the fact that this
is what happens for the finite-dimensional part of the spectral triple of
the Standard Model [26, 31]. It is an interesting observation, coming
from SU(5) grand unified theories, that the Hilbert space of such a
spectral triple (when considering only one generation of particles) is
isomorphic to the exterior algebra

∧5ℂ (with the representation of the
gauge group the restriction of the natural representation of SU(5) on
such a space). It is tempting then to speculate that the Hilbert space
of the spectral triple of the Standard Model might have as much to
do with differential forms as it does Dirac spinors, though any further
investigation lies outside the scope of this thesis.

3.3 the hodge-de rham operator on the torus

In this section we will focus our discussion to the Hodge-de Rham
spectral triple on the 2-torus )2 B ℝ2/ℤ2. We use this example to
argue that, when considering the Hodge-de Rham spectral triple of a
closed oriented Riemannianmanifold, the second-order condition (3.4)
is incompatible with (2.2) and, if one wants to enforce (3.4), then (2.2)
must be replaced by (2.9).

We think of functions/forms on )2 asℤ2-invariant functions/forms
on ℝ2 respectively. Consider the complex vector space isomorphism
� : Ω•

ℂ
()2) → "2(�∞()2)) given by

50 + 51 dG + 52 dH + 53 dG ∧dH ↦→ �0 50 + 8�1 51 + 8�2 52 − 8�3 53 (3.16)

for 50 , . . . , 53 ∈ �∞()2). Under this isomorphism, the natural inner
product of forms (associated to the flat metric on )2) becomes the
natural inner product on matrices of functions

〈#, !〉 = 1
2

∫ 1

0
dG

∫ 1

0
dH tr

(
#†!

)
,

and the Hilbert space completion is ℋ B "2(!2()2)). The Hodge-
de Rham operator is mapped to the operator

� B � ◦ (3 + 3†) ◦ �−1 = 8!�1
%

%G
+ 8!�2

%

%H
,

where ! and ' denote respectively left and right pointwise matrix
multiplication:

!0# B 0# and '0# B #0,

for all 0 ∈ "2(!∞()2)) and # ∈ "2(!2()2)). If 5 is a scalar function,
we identify 5 with 5 �0 and ! 5 = ' 5 will be denoted simply by 5 . The
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natural grading given by the degree of forms is transformed by � into
the operator "deg onℋ given by

"deg# B �3#�3 ,

for all # ∈ ℋ . Lastly, we set � B �∞()2).
Remark 3.14. With the notation above, (�, �, �, "deg) is a spectral triple
unitarily equivalent to the Hodge-de Rham spectral triple of )2. The
equivalence is given by the !2-closure of the map � in (3.16). �

For all 5 we have

[�, 5 ] = !�(35 ) ,

so that under the isomorphism �, Clifford multiplication becomes left
matrix multiplication. One easily computes �ℓ�(�), which is given by
the full matrix algebra "2(�()2)) acting via left multiplication on ℋ .
Indeed, let us denote by

D(G, H) B 4 8G and E(G, H) B 4 8H (3.17)

the unitary generators of �. Since

−D∗[�, D] = !�1 and − E∗[�, E] = !�2 ,

the elements �1 and �2 belong to�ℓ�(�), and as iswell-known they gen-
erate "2(ℝ) as an algebra. Elements in the norm-closure of � belong
to �ℓ�(�) as well, which therefore contains the algebra generated by
�()2) and"2(ℝ), i.e. all of"2(�()2)). We therefore have the following
results.

Lemma 3.15. When � = �∞()2), �ℓ�(�) = "2(�()2)), which acts onℋ
by left matrix multiplication.

Proposition 3.16. When � = �∞()2), �ℓ�(�)′ = "2(!∞()2)), which acts
onℋ by right matrix multiplication.

Proof. Up to a natural identification, we haveℋ = !2()2) ⊗"2(ℝ) and
�ℓ�(�) = �()2)⊗"2(ℝ)where"2(ℝ) acts by leftmatrixmultiplication.
Continuous functions on)2 are dense (in the strong operator topology)
in the vonNeumannalgebra !∞()2)of essentially boundedmeasurable
functions (with respect to the Lebesgue measure), and !∞()2) is its
own commutant. Using the commutation theorem for tensor products
of vonNeumann algebras [56] one finds �ℓ�(�)′ = (!∞()2)⊗"2(ℝ))′ =
!∞()2)′ ⊗ "2(ℝ)′ and the thesis follows. �

Recall (3.11) and (3.12), the definitions of the the antilinear maps
�1 and �2 on forms, the former multiplicative and the latter antim-
ultiplicative, with �1($) = $∗ the pointwise complex conjugate of a
form and �2($) = (−1):(:−1)/2$∗ on forms of degree :. On ℋ two
corresponding antilinear isometries are given by �9 B "deg� ◦ � 9 ◦ �−1,
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9 = 1, 2 (where "deg is included to simplify the expressions). One easily
checks that, for all #8 9 ∈ !2()2)

�1

(
#11 #12

#21 #22

)
=

(
#∗22 #∗21
#∗12 #∗11

)
, and �2

(
#11 #12

#21 #22

)
=

(
#∗11 #∗21
#∗12 #∗22

)
.

(3.18)

Note that �2 = † is just matrix hermitian conjugation. It is useful in the
computations to recognise that �1 = !�1'�1 �0, where �0 = ∗ is entrywise
pointwise complex conjugation,

�0

(
#11 #12

#21 #22

)
=

(
#∗11 #∗12
#∗21 #∗22

)
. (3.19)

In particular, it follows that �1 ismultiplicative (since �0 ismultiplicative
and (�1)2 = 12):

�1(0#) = �1(0)�1(#)

for all 0 ∈ "2(!∞()2)) and # ∈ "2(!2()2)). By contrast, �2 is antimulti-
plicative:

�2(#0) = �2(0)�2(#)

for all# ∈ "2(!2()2)) and 0 ∈ "2(!∞()2)). In particular, one finds that
for all 0 ∈ "2(!∞()2))we have

�0!0 �0 = !0∗ , �1!0 �1 = !�1(0) , �2!0 �2 = '0† , (3.20)

along with the analogous relations with ! and ' interchanged.

Proposition 3.17. (�,ℋ , �, �1 , "deg) is a unital even real spectral triple.

The proof is given by a straightforward computation.

Proposition 3.18. (�,ℋ , �, (�2 , �), "deg) is a unital even spectral triple
with twisted real structure, where � = �1�2, or explicitly,

�

(
#11 #12

#21 #22

)
B

(
#22 #12

#21 #11

)
. (3.21)

Furthermore, this spectral triple satisfies the second-order condition and the
Hodge condition (3.5c).

Proof. The condition (3.4) follows from the fact that conjugation by
�2 transforms left into right matrix multiplication, cf. (3.20). Since
�1 satisfies (2.2), clearly �2 = ��1 = �1� satisfies (2.9). The subspace
ℰ B "2(�()2)) = �ℓ�(�) is dense inℋ and a self-Morita equivalence
�ℓ�(�)-bimodule, with the left/right action of �ℓ�(�) on ℰ given by
left/right multiplication, as requested. The map !0 ↦→ �2!0† �

−1
2 = '0

transforms the left into the right action and vice versa, cf. (3.20), so that
the self-Morita equivalence is implemented by �2. �
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The spectral triples inProps. 3.17 and3.18bothhave � = �′ = �′′ = +1,
i.e. KO-dimension 0 (mod 8). Notice that, firstly, � = � ◦ �1 ◦ �2 ◦ �−1,
and �1 ◦ �2 is the canonical anti-involution of the Clifford algebra,
given on :-forms by (−1):(:−1)/2 times the identity; secondly, the spec-
tral triple in Prop. 3.17 does not satisfy the second-order condition,
because, for example, �1!�1 �1 = !�1 does not commute with !�2 ; and
thirdly, the spectral triple in Prop. 3.18 does not satisfy condition (2.2),
since

−�2��2 = '�1 8
%

%G
+ '�2 8

%

%H
≠ ±�.

The next theorem shows that (2.2) and (3.4) are incompatible, so that
if one wants the second-order condition to be satisfied, one is forced
to introduce a twist.

Theorem 3.19. The spectral triple (�,ℋ , �) admits no antilinear isometry
� satisfying both (2.2) and (3.4).

Proof. Assume that both (2.2) and (3.4) are satisfied. Since conjugation
by � maps 0 ∈ �ℓ�(�) into its commutant, it follows from (3.4) that

�!0† �
−1 = '�(0) (3.22)

for some �(0) ∈ "2(!∞()2)). This defines a homomorphism

� : "2(�()2)) → "2(!∞()2)).

If 5 ∈ �∞()2) is a smooth scalar function, it follows from (2.2) that,
since both � and ! 5 † preserve the domain of �, '�( 5 ) preserves the
domain of � as well and[

�, '�( 5 )
]
= �′�

[
�, ! 5 †

]
�−1 (3.23)

extends to a bounded operator on ℋ . Moreover, if we apply '�( 5 )
to 1 ∈ ℋ we deduce that '�( 5 )(1) = �( 5 ) is in the domain of self-
adjointness of�, i.e. amatrix of functions in the Sobolev space,1,2()2).Def. The Sobolev

space, :,?(-) on
- ⊆ ℝ= , :, = ∈ ℕ,

1 ≤ ? ≤ ∞, is given
by, :,?(-) B
{ 5 ∈ !?(-) :
%�G 5 ∈ !?(-)

∀|� | ≤ :} where
� = (�1 , . . . , �=) is a

multi-index and
%�G = %�1

G1 . . . %
�=
G= are

weak derivatives.
Sobolev spaces can
be endowed with a

norm and when
? = 2 they are
Hilbert spaces.

Now let D be the unitary element in (3.17) and write

�(D) = 50�
0 + 51�1 + 52�2 + 53�3

for some 50 , . . . , 53 ∈,1,2()2). Then

0 (2.2)
=

[
!�1 , �[�, !D†]�−1] = �′

[
!�1 ,

[
�, '�(D)

] ]
= �′

3∑

=0
[!�1 , [�, 5
]]'�


= −�′
3∑


=0
!�3

% 5

%H

'�
 .
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From the independence of the linearmaps '�
 we get %H 5
 = 0 for all 

(where the derivative is in the sense of distributions), and in a similar
way one proves that %G 5
 = 0 for all 
. Thus, �(D) is a constant matrix
and

!�1 = [�, !D†] = �′
[
�, '�(D)

]
�−1 = 0,

which is a contradiction. �

One may wonder how unique the example in (3.17) is, and how
unique a � satisfying the second-order condition is. A partial answer
is provided by the following proposition.

Proposition 3.20. Let * ∈ "2(!∞()2)) be a unitary operator and let � be
given by (3.21). Then:

1. The operator

�* B !*'* �2

is an antilinear isometry satisfying �2
*
= 1 and the second-order condi-

tion.

2. If �(*) = *† almost everywhere, then �* satisfies (2.9) with �′ = +1 Def. A property
holds almost
everywhere if it
holds everywhere
except on a subset of
measure 0.

and twist given by

�* B !*'*�.

Moreover, in such a case �* and �* commute, and �2
*
= 1.

3. If �(*) = *† almost everywhere, then �* also commutes with "deg.

Thus if �(*) = *†, the data (�, �,ℋ , (�* , �* ), "deg) form a unital even
spectral triple with twisted real structure.

Proof. 1. From (3.20) we deduce that !*'* �2 = �2!*†'*† and from the
unitarity of* it follows that �2

*
= 1. It also follows that

�*!0 �* = �2!*†0* �2 = '*†0* ∈ �ℓ�(�)′

for all 0 ∈ "2(!∞()2)).
2. Consider some # ∈ ℋ . Notice that �(#) = �1#Ç�1, so that � is

antimultiplicative and

�!*'* (#) = �(*#*) = �(*)�(#)�(*)

for all # ∈ ℋ , which means that

�!*'* = !�(*)'�(*)�.

From the proof of part 1, we have �*�* = �2�. We now compute

�* �* = !*'*�!*'* �2 = !*�(*)'*�(*)��2.
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If �(*) = *† then �*�* = �2� = ��2 = �* �* and

�* �*� = ��2� = ��2� = ��*�* .

One similarly checks that �2
*
= 1. Since �*�* = �2�, the operator clearly

preserves the domain of �.This holds even if the
matrix entries of*

are not necessarily in
the domain of �.

3. For almost all G ∈ )2, *(G) is a constant unitary matrix and the
compatibility condition with � implies that

*(G) =
(
D11 D12

D∗12 D∗11

)
for some D8 9 ∈ ℂ. Such a matrix is unitary if and only if it is of the form

*(G) =
(
4 8� 0
0 4−8�

)
or *(G) =

(
0 4 8�

4−8� 0

)
(3.24)

for some � ∈ ℝ. In the first case *(G) commutes with �3, while in
the second they anticommute. In both cases !*(G)'*(G) commutes with
"deg. �

In Prop. 3.20(2) the condition �(*) = −*† would work as well, but
notice that it implies �(8*) = (8*)† and the rescaling * ↦→ 8* simply
changes �* and �* by a sign. The condition �(*) = *† implies that,
at almost every point G, * is of one of the two types in (3.24), though
both � and the type may depend on G (* being a constant matrix is a
special case).
Let us close this section with a comment on orientability. Note that

Ω1
�
(�) ≠ 0, since it is isomorphic to the�-module of de Rham forms on

the torus. The spectral triple in Prop. 3.18 is then not orientable, since it
satisfies the second-order condition (see the remark at the endof §3.2.2).
But the triple in Prop. 3.17 is also not orientable: "deg ∉ �ℓ�(�) since, for
example, it doesn’t commute with '�1 ∈ �ℓ�(�)′. To get an orientable
spectral triple we need to choose a different grading operator.

Proposition 3.21. The unital even real spectral triple (�, �, �, �1 , !�3) is
orientable.

Proof. Astraightforward computation.Apossible choice ofHochschild
2-cycle giving the orientation is

2 = −2−18D†E† ⊗ (D ⊗ E − E ⊗ D).

Clearly

−2−18D†E†
(
[�, D][�, E] − [�, E][�, D]

)
= !�3

is the grading, and one can check that the Hochschild boundary of 2
is zero with a simple computation. �
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One may wonder what this new grading is. Let " B �−1 ◦ !�3 ◦ �.
Then one finds

"(1) = 8 dG∧dH , "(dG) = 8 dH , "(dH) = −8dG, "(dG∧dH) = −8.

Evidently the map " is the grading coming from the Hodge star oper-
ator.

3.4 products of spectral triples

Let (�1 ,ℋ1 , �1 , �1 , "1) and (�2 ,ℋ2 , �2 , �2) be two unital real spectral
triples, the former even. Their product (�,ℋ , �, �) is given by

� = �1⊗�2 , ℋ = ℋ1⊗ℋ2 , � = �1⊗1+"1⊗�2 , � = �1⊗�2. (3.25)

Here we assume that �1 and �2 are both complex, so that ⊗ is ev-
erywhere the tensor product over ℂ (algebraic, minimal or of Hilbert
spaces depending on the type of object we are considering). If both
spectral triples are even, a grading on the product is given by:

" = "1 ⊗ "2.

We will not consider the case where both spectral triples are odd. It is
not very different, but for the sake of brevity we will always assume
that at least one of the spectral triples is even. Notice that the example
we are interested in, the Hodge-de Rham spectral triple of a closed
oriented Riemannian manifold, is always even.
If �1 and �2 satisfy (2.9) for twist operators �1 and �2, then � satisfies

(2.9) with twist operator � = �1 ⊗ �2. For suitable values of
the signs �, �′, �′′,
which will not be
discussed here. See
the comments in
§3.4.2.

Lemma 3.22. Ω1
�
(�) = Ω1

�1
(�1) ⊗ �2 + "1�1 ⊗ Ω1

�2
(�2).

Proof. Elements of the algebraic tensor product �1 ⊗�2 are finite sums
of decomposable tensors. From the fact that

(01 ⊗ 02)[�, 11 ⊗ 12] = 01[�1 , 11] ⊗ 0212+ "10111 ⊗ 02[�2 , 12] (3.26)

for all 01 , 11 ∈ �1 and 02 , 12 ∈ �2, we get the inclusion

Ω1
�(�) ⊂ Ω

1
�1
(�1) ⊗ �2 + "1�1 ⊗ Ω1

�2
(�2).

Since �1 and �2 are unital, if we choose 11 = 1 in (3.26) we find that
"1�1 ⊗ Ω1

�2
(�2) is a vector subspace of Ω1

�
(�); if we choose 12 = 1

(and 11 arbitrary), we find that Ω1
�1
(�1) ⊗ �2 is a vector subspace of

Ω1
�
(�). �

It then follows that

�ℓ�(�) ⊂ �ℓ"1
�1
(�1) ⊗ �ℓ�2(�2). (3.27)
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Lemma 3.23. If "1 ∈ �ℓ�1(�1), then

�ℓ�(�) = �ℓ�1(�1) ⊗ �ℓ�2(�2). (3.28)

Proof. Since �ℓ"1
�1
(�1) = �ℓ�1(�1), the inclusion “⊂” follows from (3.27).

We saw in the proof of Lemma 3.22 that both Ω1
�1
(�1) ⊗ �2 and

"1�1 ⊗ Ω1
�2
(�2) are contained in Ω1

�
(�), and therefore in �ℓ�(�).

Since �2 is unital, both Ω1
�1
(�1) ⊗ 1 and �1 ⊗ 1 ⊂ � are in �ℓ�(�).

Thus �ℓ�(�) ⊃ �ℓ�1(�1) ⊗ 1.
Since �1 is unital, both "1 ⊗ Ω1

�2
(�2) and 1 ⊗ �2 are in �ℓ�(�). But

"1 ⊗ 1 ∈ �ℓ�1(�1) ⊗ 1 ⊂ �ℓ�(�) as well. Therefore 1 ⊗ Ω1
�2
(�2) =

("1 ⊗ 1)
(
"1 ⊗Ω1

�2
(�2)

)
is contained in �ℓ�(�) as well. This proves that

�ℓ�(�) ⊃ 1 ⊗ �ℓ�2(�2) and hence �ℓ�(�) ⊃ �ℓ�1(�1) ⊗ �ℓ�2(�2). �

3.4.1 Products and the spin condition

Given two spectral triples satisfying one of the conditions in Def. 3.5,
one wonders if the product satisfies such a condition as well. The
answer is affirmative for condition (3.5a).

Proposition 3.24. If two unital real spectral triples satisfy (3.5a), then their
product satisfies (3.5a) as well.

Proof. Using the notation above, suppose ℰ1 ⊂ ℋ1 and ℰ2 ⊂ ℋ2 are
dense subspaces, with ℰ1 and ℰ2 full right Hilbert �̄1- and �̄2-modules
respectively, where the right action of 0 ∈ �̄8 is given by �90†�−1

9
, andDef. The exterior

tensor product is
the completion of the

algebraic tensor
product of Hilbert

A1- and
A2-modules to the
Hilbert C*-module
over the minimal

tensor product ofA1
andA2.

suppose for 9 = 1, 2 one has

�ℓ�9
(� 9) = K�̄9 (ℰ 9).

Let ℰ B ℰ1 ⊗ ℰ2 be the exterior tensor product of Hilbert C*-modules.
This is a full right Hilbert �̄1 ⊗ �̄2-module, where here the tensor prod-
uct is the minimal tensor product of C*-algebras. Note that therefore

Def. For
∗-representations

�9 : A 9 → ℬ(ℋ9),
denote by

˜
� the

unique rep’n of
A1 ⊗ A2 on

ℋ1 ⊗ ℋ2 such that

˜
�(∑9 01, 9 ⊗ 02, 9) =∑
9 �1(01, 9)�2(02, 9).
Then ‖0‖min B

sup{‖
˜
�(0)‖}.The

minimal tensor
product is the
completion of
A1 ⊗ A2 with

respect to ‖•‖min.

�̄1 ⊗ �̄2 = �̄. The right action of a decomposable tensor 0 = 01⊗ 02 ∈ �̄
is given by �0†�−1 = �10

†
1�
−1
1 ⊗ �20

†
2�
−1
2 , so by linearity and continuity

the right action of any element in �̄ is implemented by � = �1 ⊗ �2. One
also has

�ℓ�1(�1) ⊗ �ℓ�2(�2) = K�̄1
(ℰ1) ⊗ K�̄2

(ℰ2).

ButK�̄1
(ℰ1)⊗K�̄2

(ℰ2) = K�̄(ℰ) (see e.g. Ref. [44, p.45]). FromProp. 3.6(1)
it follows that "1 ∈ �ℓ�(�). From Lem. 3.23 it follows that �ℓ�1(�1) ⊗
�ℓ�2(�2) = �ℓ�(�). Hence �ℓ�(�) = K�̄(ℰ) as requested, and the prod-
uct spectral triple satisfies (3.5a). �

Recall that if an even spectral triple is spin then it is also even-spin.
In the next example we present two even-spin spectral triples whose
product is not even-spin (and then also not spin).
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Example 3.25. Let �1 = "2(ℂ) be represented on ℋ1 = "2(ℂ) ⊗ ℂ2

by left multiplication on the first factor (we think of elements of ℂ2 as
column vectors), and �1(< ⊗ E) B <† ⊗ E∗ where <† is the hermitian
conjugate and E∗ the componentwise conjugation. Also let

�1(< ⊗ E) B [�1 , <] ⊗ �1E, "1 B 1 ⊗ �3.

Since for 0 = −8�3 and 1 = �2 ∈ �1 one has

0[�1 , 1] = 12 ⊗ �1 C $, (3.29)

1-forms are freely generated (as an �1-module) by $. The Clifford
algebra �ℓ"1

�1
(�1) is then generated by "2(ℂ) ⊗ 1, $ = 1 ⊗ �1, and

"1 = 1 ⊗ �3. Hence

�ℓ
"1
�1
(�1) = "2(ℂ) ⊗ "2(ℂ)

with its action on ℋ1 given by left multiplication. The commutant is
�ℓ

"1
�1
(�1)′ = �1�1�

−1
1 and (3.5b) is satisfied. Note that "1 ∉ �ℓ�1(�1), so

(3.5a) is not satisfied.
Let (�, �, �, � , ") be a product of two copies of the above spectral

triple. �ℓ"
�
(�) is generated by �1, �2, "1 ⊗ "2 = 1⊗ �3 ⊗ 1⊗ �3, and the

1-forms

$ ⊗ 1 = 1 ⊗ �1 ⊗ 1 ⊗ 1, and "1 ⊗ $ = 1 ⊗ �3 ⊗ 1 ⊗ �1.

The element

1 ⊗ �1 ⊗ 1 ⊗ �2

is in the commutant of �ℓ"
�
(�), but does not belong to ���−1. �

Let us make note of this result.
Remark 3.26. There exist spectral triples satisfying (3.5b)whoseproduct
does not satisfy (3.5b) (nor (3.5a)). �

Finally, let us consider a mixed case. In the following we present an
even-spin spectral triple and a spin spectral triple (which is in fact also
Hodge), whose product is not even-spin (and indeed also not spin).
Example 3.27. Take the first spectral triple to be as in Example 3.25
and let the second one be given by �2 = ℋ2 = "2(ℂ), �2(0) =

[
�1 , 0

]
,

and �2(0) = 0† for all 0 ∈ �2. This spectral triple satisfies both (3.5a)
and (3.5c) (which is only possible in the finite-dimensional case when
1-forms are contained in the algebra, Ω1

�2
(�2) ⊂ �2, which implies

�2 = �ℓ�2(�)).
The Clifford algebra �ℓ"

�
(�) of the product triple is generated by

�1 ⊗ 1, 1⊗�2 and the 1-form $ ⊗ 1 = 1⊗ �1 ⊗ 1, where $ is as in (3.29);
$ ⊗ 1 belongs to the commutant of �ℓ"

�
(�), but not to �1 ⊗ �2, hence

the product spectral triple does not satisfy (3.5b). �

Mixed Hodge-spin cases are not particularly interesting. There is no
reason to expect that such a product is either Hodge or spin – there is
also no reason to expect in general that a product of twoHodge spectral
triples is spin, or that a product of two (even-)spin spectral triples is
Hodge – and in fact it is quite easy to produce counterexamples.
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3.4.2 Products and the second-order condition

Given two real spectral triples, onemaywonderhowtheKO-dimension
of their product is related to those of its two factors. It would be nice
if the KO-dimension were multiplicative, but unfortunately if the real
structure is defined by � = �1 ⊗ �2 this is not true. This was first noticed
in Ref. [59], where a modified definition of � was proposed in order to
fix this problem (taking either � = �1 ⊗ �2"2 or � = �1"1 ⊗ �2 depending
on the dimension of the factors). This studywas completed in Ref. [27],
where the odd-odd case was considered as well (in Ref. [59] one of
the spectral triples is always assumed to be even), along with several
possible choices of Dirac operators and real structures. The modified
definition of �, which perhaps seems somewhat artificial, was reinter-
preted in Ref. [37] as a graded tensor product.

Here we follow this idea in spirit, but we will find that the “correct”
definition of � is not the one in Refs. [27, 37, 59]. Our motivation here
is to have the second-order property (3.4) be preserved by products,
and this will lead to yet another different definition of �. Although the
natural way to study products of real spectral triples is in the category
of graded vector spaces, we will argue that in terms of “ungraded”
objects and operations this amounts to merely changing the reality
operator.
Wewill use the samenotation as theprevious subsection and assume

that we have two unital real spectral triples (� 9 ,ℋ9 , �9 , �9 , "9), 9 = 1, 2.
For simplicity we will also assume that both spectral triples are even.Recall that the

Hodge-de Rham
spectral triple of a

closed oriented
Riemannian

manifold is always
even, regardless of

the dimension of the
manifold, whether

even or odd.

If # ∈ ℋ1 is an eigenvector of "1 with eigenvalue (−1)|# | we will say
that # is homogeneous of degree |# |. Explicitly,

|# | =


0 if "1(#) = +#,

1 if "1(#) = −#.

A bounded operator ) ∈ ℬ(ℋ1) has degree 0 (called even) if it com-
mutes with "1, and degree 1 (called odd) if it anticommutes with it.
This notion extends to unbounded operators (such as �1), provided
that "1 preserves their domain.
The same definitions apply to the second spectral triple. According

to Koszul’s rule of signs, the graded tensor product )1 ⊗̂ )2 ∈ ℬ(ℋ) of
two (homogeneous) bounded operators is now defined by

()1 ⊗̂ )2)(#1 ⊗ #2) B (−1)|)2 | |#1 |)1#1 ⊗ )2#2

for all homogeneous vectors # 9 ∈ ℋ9 . This definition also makes sense
when one of the two operators is unbounded. For example, if )1 is
unbounded, then )1 ⊗̂ )2 will be unbounded with its domain given by
the algebraic tensor product of Dom()1) andℋ2.

If )2 is odd, )1 ⊗̂)2 = )1"1 ⊗)2. Thus, the Dirac operator in a product
of spectral triples can be written as (the closure of)

� = �1 ⊗̂ 1 + 1 ⊗̂ �2.
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Since we are considering unital spectral triples, the following lemma
now becomes evident.

Lemma 3.28. �ℓ�(�) = �ℓ�1(�1) ⊗̂ �ℓ�2(�2).
Here if ℬ1 ⊂ ℬ(ℋ1) and ℬ2 ⊂ ℬ(ℋ2) are C*-subalgebras, we define
ℬ1 ⊗̂ ℬ2 as the norm closure in ℬ(ℋ) of the vector subspace spanned
by elements )1 ⊗̂ )2, with )1 ∈ ℬ(ℋ1) and )2 ∈ ℬ(ℋ2).

Proof. The inclusion “⊂” is given by (3.27). The opposite inclusion is
analogous to the proof of Lemma 3.23: one shows that the elements
�1 ⊗ 1 = �1 ⊗̂ 1, 1 ⊗ �2 = 1 ⊗̂ �2, Ω1

�1
(�1) ⊗ 1 = Ω1

�1
(�1) ⊗̂ 1 and

"1 ⊗ Ω1
�2
(�2) = "1 ⊗̂ Ω1

�2
(�2) are contained in�ℓ�(�), hence the thesis.

�

The idea is now to modify the definition of the product reality op-
erator. Since this should in principle change the order of factors in a
(tensor) product, what is suggested again by Koszul’s rule of signs is
to define � by

Note that this is
exactly what
happens in a product
of Hodge-de Rham
spectral triples of a
manifold, if the real
structure is the one
coming from the
main anti-involution
of the Clifford
algebra.

�(#1 ⊗ #2) B (−1)|#1 | |#2 | �1(#1) ⊗ �2(#2) (3.30)

for all homogeneous #1 ∈ ℋ1 and #2 ∈ ℋ2. With this choice, we have
the following proposition.

Proposition 3.29. Consider two unital even spectral triples with (possibly
twisted) real structure, both satisfying the second-order condition. Then their
product (�,ℋ , �, "), equipped with the antilinear map in (3.30), satisfies
the second-order condition as well.

Proof. For 9 = 1, 2, let 0 9 ∈ � 9 and $ 9 ∈ Ω1
�9
(� 9). The algebra �ℓ�(�)

is generated by �1 ⊗ 1, 1 ⊗ �2 and elements of the form $1 ⊗ 1 and
"1 ⊗ $2. Thus �ℓ�(�)◦ is generated by

�(0†1 ⊗ 1)�−1 = 0◦1 ⊗ 1, �($†1 ⊗ 1)�−1 = $◦1 ⊗ "2 ,

�(1 ⊗ 02)�−1 = 1 ⊗ 0◦2 , �("1 ⊗ $2)�−1 = 1 ⊗ $◦2 .
(3.31)

Note the presence of "2, while "1 has disappeared. If the two factors
satisfy (3.4), then the above four elements commute with �ℓ�(�), and
in particular,

[$◦1 ⊗ "2 , "1 ⊗ $2] = 0

because $◦1 anticommuteswith "1 and "2 anticommuteswith $2. Thus
the product spectral triple satisfies �ℓ�(�)◦ ⊂ �ℓ�(�)′. �

Westress again that (3.30) isnot the product real structure inRefs. [27,
37, 59], and that Prop. 3.29 does not hold if the product real structure
is defined as in Refs. [27, 37, 59].
Notice that in Prop. 3.29 we do not claim that the product spectral

triple is real. If one checks the conditions for � one finds that there is
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a problem with (2.1) and (2.2). Since here we are mainly interested in
the second-order and Hodge condition, we will not investigate how to
modify (3.30) so that (2.1) and (2.2) are also satisfied. We will merely
make the following observation.

Proposition 3.30. If the spectral triples (� 9 ,ℋ9 , �9 , �9 , "9), 9 = 1, 2, satisfy
(2.5) with signs �′′

9
, then their product – with the product reality operator

given by (3.30) – satisfies (2.5) with sign �′′ = �′′1 �
′′
2 .

If in addition the factors satisfy (2.1) with signs �9 and �′′1 = �′′2 = +1, then
their product will satisfy (2.1) with sign � = �1�2.Notice that this is the

case for
Hodge-de Rham

spectral triples. It
happens when the
KO-dimension is a

multiple of
4 (mod 8).

Proof. On decomposable homogeneous tensors

�"(#1 ⊗ #2) = (−1)|#1 | |#2 |+|#1 |+|#2 | �1(#1) ⊗ �2(#2),
"�(#1 ⊗ #2) = �′′1 �

′′
2 (−1)|#1 | |#2 |+|#1 |+|#2 | �1(#1) ⊗ �2(#2),

which proves the first part of the statement.
If �′′1 = �′′2 = +1, the operators �9 do not change the degree of a vector,

and one easily verifies that

�2(#1 ⊗ #2) = (−1)2|#1 | |#2 | �21 (#1) ⊗ �22 (#2)

on decomposable homogeneous tensors. Hence �2 = �21 ⊗ �22 and we get
the second part of the theorem. �

The problem with condition (2.2) is not surprising, since in the ex-
ample of a closed oriented Riemaniann manifold we are forced to
introduce a twist to make it work. Note that we can introduce another
graded product ⊗̂′ via the rule

()1 ⊗̂′ )2)(#1 ⊗ #2) = (−1)|)1 | |#2 |)1#1 ⊗ )2#2

for all homogeneous #1 ∈ ℋ1 and #2 ∈ ℋ2 and all homogeneous
operators )9 on ℋ9 . With this convention, )1 ⊗̂′ )2 = )1 ⊗ )2"2 for all
)1 of degree 1. This is the natural convention for right modules, i.e. if
we imagine that endomorphisms act from the right on vectors. This
graded product gives an alternative Dirac operator onℋ1 ⊗ ℋ2:

�′ B �1 ⊗̂′ 1 + 1 ⊗̂′ �2 = �1 ⊗ "2 + 1 ⊗ �2. (3.32)

It turns out that the modified real structure � transforms the ‘left’ into
the ‘right’ Dirac operator.

Proposition 3.31. If the spectral triples (� 9 ,ℋ9 , �9 , "9 , �9), 9 = 1, 2, satisfy
Def. 2.2 with signs (�9 , �′9 , �

′′
9
) and

�′1�
′′
1 = �′2

then their product – with � given by (3.30) – satisfies

�� = �′�′�

with �′ as in (3.32) and �′ = �′1.



3.4 products of spectral triples 51

The proof is given by a straightforward computation.
The following observation will be useful later on, and holds regard-

less of theKO-signs. Ifℬ1 ⊂ ℬ(ℋ1) andℬ2 ⊂ ℬ(ℋ2) areC*-subalgebras,
denote by ℬ1 ⊗̂′ ℬ2 the norm closure in ℬ(ℋ) of the vector subspace
spanned by elements )1 ⊗̂′ )2, with )1 ∈ ℬ(ℋ1) and )2 ∈ ℬ(ℋ2).
Lemma 3.32. In a product of unital real even spectral triples, and with �
given by (3.30), one has ��ℓ�(�)�−1 = �ℓ�1(�1) ⊗̂′ �ℓ�2(�2).

Proof. We see from (3.31) that conjugation by � sends generators of
�ℓ�(�) into generators of �ℓ�1(�1) ⊗̂′ �ℓ�2(�2). �

3.4.3 Products and the Hodge condition

The behaviour of the Hodge condition under products is more techni-
cal and to simplify the discussion we will study it only in the finite-
dimensional case. We want to prove the following proposition.

Proposition 3.33. Let (� 9 ,ℋ9 , �9 , "9 , �9) be two unital finite-dimensional
even real spectral triples satisfying theHodge condition (3.5c).Define (�,ℋ , �)
as in (3.25) and � as in (3.30). Then ��ℓ�(�)�−1 = �ℓ�(�)′.
That is, that the product spectral triple satisfies the Hodge condition

as well. In fact, in light of Lem. 3.28 and Lem. 3.32, Prop. 3.33 is a
corollary of the following theorem.

Theorem 3.34. Let � 9 ⊂ Endℂ(ℋ9) be two unital subalgebras, 9 = 1, 2.
Then

(�1 ⊗̂ �2)′ = �′1 ⊗̂
′
�′2.

Proof. For all homogeneous elements 11 ∈ �1, 12 ∈ �2, 21 ∈ �′1, 22 ∈ �′2,
#1 ∈ ℋ1, and #2 ∈ ℋ2 one has:

(11 ⊗̂ 12)(21 ⊗̂′ 22)(#1 ⊗ #2) = (−1)|12 | |#1 |+|21 | |#2 |+|12 | |21 |1121#1 ⊗ 1222#2

= (21 ⊗̂′ 22)(11 ⊗̂ 12)(#1 ⊗ #2).

This proves the inclusion �′1 ⊗̂
′
�′2 ⊆ (�1 ⊗̂ �2)′.

For the opposite inclusion, since all spaces are finite-dimensional
and "2 is invertible, every element ) ∈ Endℂ(ℋ) can be written as a
finite sum

) =
∑
9

('1, 9 ⊗ '2, 9 + (1, 9 ⊗ (2, 9"2)

=
∑
9

('1, 9 ⊗̂′ '2, 9 + (1, 9 ⊗̂′ (2, 9)

for some '1, 9 , (1, 9 ∈ Endℂ(ℋ1), '2, 9 , (2, 9 ∈ Endℂ(ℋ2), with '1, 9 even
and (1, 9 odd. The elements {'2, 9 , (2, 9} can be chosen to be linearly
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independent. Assume ) ∈ (�1 ⊗̂ �2)′. Since �2 is unital, for all 11 ∈ �1
one has 11 ⊗ 1 = 11 ⊗̂ 1 ∈ �1 ⊗̂ �2 and

[), 11 ⊗ 1] =
∑
9

(
['1, 9 , 11] ⊗ '2, 9 +

[
(1, 9 , 11

]
⊗ (2, 9"2

)
must be zero. From the linear independence of the elements in the
second factor, we deduce

[
'1, 9 , 11

]
=

[
(1, 9 , 11

]
= 0, and hence that

'1, 9 , (1, 9 ∈ �′1 and ) ∈ �′1 ⊗̂
′ Endℂ(ℋ2). It follows that ) can be written

as a finite sum ) =
∑
8('̃1, 9 ⊗̂′ '̃2, 9 + (̃1, 9 ⊗̂′ (̃2, 9) where '̃1, 9 , (̃1, 9 ∈ �′1

and '̃2, 9 , (̃2, 9 ∈ Endℂ(ℋ2), with '̃1, 9 even, (̃1, 9 odd and now {'̃1, 9 , (̃1, 9}
are chosen to be linearly independent. Since �1 is unital, for all even
12 ∈ �2 one has 1 ⊗̂ 12 = 1 ⊗ 12 ∈ �1 ⊗̂ �2 and for all even 12 ∈ �2 one
has 1 ⊗̂ 12 = "1 ⊗ 12 ∈ �1 ⊗̂ �2. If 12 is even,[

), 1 ⊗̂ 12
]
=

∑
9

(
'̃1, 9 ⊗

[
'̃2, 9 , 12

]
+ (̃1, 9 ⊗

[
(̃2, 9 , 12

]
"2

)
,

while if 12 is odd,[
), 1 ⊗̂ 12

]
=

∑
9

(
'̃1, 9"1 ⊗

[
'̃2, 9 , 12

]
− (̃1, 9"1 ⊗

[
(̃2, 9 , 12

]
"2

)
.

From the linear independence of the elements in the first factor we
deduce that in both cases

[
'̃2, 9 , 12

]
=

[
(̃2, 9 , 12

]
= 0, and hence that

'̃2, 9 , (̃2, 9 ∈ �′2 and ) ∈ �′1 ⊗̂
′
�′2. �



4
SPECTRAL GAUGE THEORY WITH TWISTED REAL
STRUCTURES

4.1 introduction

The material in this chapter is based on Ref. [50].
As has been previously hinted at, real spectral triples appear well-

suited to providing a natural mathematical framework for expressing
certain gauge theories, including that of the Standard Model of parti-
cle physics, which accurately describes the results of all current high
energy physics experiments.

A detailed treatment covering the noncommutative geometric for-
mulation of the Standard Model is provided in Ref. [20], but for our
purposes it is sufficient to say that the real even spectral triple describ-
ing the Standard Model comes from the product of the canonical spin
manifold spectral triple

(�∞("), !2(", (), 8 /∇, �" , ""),

which describes the spatial degrees of freedom, with the finite spectral
triple

(�SM ,ℂ
96 , �SM , �� , "�),

which describes the internal degrees of freedom of the theory. Here,
for a manifold ", �∞(") is the algebra of smooth complex functions
on ", !2(", () is the space of square-integrable spinors on ", 8 /∇ is In noncommutative

geometry, the
spinorial Dirac
operator is often
denoted by /� or 8 /�
according to
convention.

the Dirac operator associated to the spinor bundle (→ ", �SM is the
real ∗-algebra ℂ⊕ℍ⊕"3(ℂ)whereℍ denotes the quaternions, �SM is
the fermionic mass matrix, �" ⊗ �� is the charge conjugation operator,
and "" ⊗ "� is the chirality operator.

As was discussed in §§1.2 and 2.1, real spectral triples have a nat-
ural notion of dimension coming from K-theoretic concepts known
as KO-dimension, which coincides with the dimension of the mani-
fold (modulo 8) in the commutative case. It is well-known that the
KO-dimension of the finite part of the spectral triple for the Standard
Model must be 6 (mod 8) [1, 17]. Assuming that the Hilbert space
admits a symplectic structure,1 the smallest irreducible representation A more principled

justification for
considering algebras
of the form
":(ℍ) ⊕ "2:(ℂ)
for applications to
quantum physics is
offered in Ref. [10].

of a matrix algebra on a finite-dimensional Hilbert space, whose grad-
ing is compatible with the grading on the algebra, and which is of
KO-dimension 6 (mod 8), is"2(ℍ) ⊕"4(ℂ) [9]. The form of the grad-
ing breaks this algebra down to the ‘left-right symmetric algebra’2

1 In other words,ℋ can carry an irreducible representation of (�,�, �)with �2 = −1.
2 This name is sometimes given to the algebra ℂ ⊕ℍ! ⊕ℍ' ⊕ "3(ℂ).
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54 spectral gauge theory with twisted real structures

�LR = ℍ! ⊕ℍ' ⊕"4(ℂ), and the fulfilment of the first-order condition
breaks �LR down to �SM.

As the gauge group of a spectral triple comes from the choice of
finite algebra, and extensions of the Standard Model coming from
enlargements of the gauge group are of ongoing physical interest, it
is natural to ask if the first-order condition can be jettisoned such
that �LR can be taken as the algebra of the spectral triple, and if so,
what gauge theory this spectral triple would correspond to. The first
of these questions was answered in the affirmative by Ref. [12]. The
second question was answered by Refs. [11, 13], and it was found that
this spectral triple corresponds to a family of SU(2)! × SU(2)' × SU(4)
Pati-Salam-type models.
One should not be too hasty in discarding the first-order condition,

though. For one thing, it is the noncommutative equivalent of the re-
quirement that a generalised Dirac operator be a first-order differential
operator. Furthermore, it was introduced (alongwith the real structure
� which implements it) in Ref. [15] at least partly to better define the
notion of gauge theories in spectral geometry. It would seem advanta-
geous, then, to search for a less radical solution. A generalised notion
of real structure is given by twisted real structures, the range of appli-
cability of which was subsequently further extended by multitwisted
real structures. We hence investigate the possibility that such twisted
real structures might offer a route to implementing the left-right sym-
metric spectral triple with only a weakening, rather than a complete
discarding, of the first-order condition, or otherwise if the reduction
to the Standard Model is unavoidable, as occurs when imposing the
(untwisted) first-order condition.

In order to do so, in §4.2 (culminating in Thm. 4.10) we present in
great detail a construction of Morita (self-)equivalence bimodules for
spectral triples with twisted real structures that gives the expected
form of inner fluctuations of the Dirac operator (cf. [7, §2.2]). In §4.3
we use this construction to develop a notion of gauge transformations
for spectral triples with twisted real structure, given in Thm. 4.16.
The necessary alterations to the spectral action are then described in
§4.4 and finally, in §4.5 we attempt to apply the formalism to the toy
model based on the algebra ℂ! ⊕ ℂ' ⊕ "2(ℂ), which takes the role ofTo be precise, in Ref.

[12] it is argued that
the finite algebra

ℂ! ⊕ ℂ' ⊕ "2(ℂ)
gives rise to a

U(1)!×U(1)'×U(2)
gauge theory in the

absence of the
first-order condition.

a simplified version of the spectral Pati-Salam model. In the course of
doing so we discuss various issues and limitations we encounter both
for the toy model and for the full physical model.

4.2 morita equivalence with twisted real structures

Before we can talk about the applications of spectral triples with
twisted real structure to gauge theories, we should understand how
the changes to the usual definitions discussed in the previous subsec-
tion affect the definition of gauge transformations, and in order to do
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this we must discuss how the notion of Morita equivalence has been
changed.

4.2.1 Inner fluctuations

The space of noncommutative 1-forms associated to a spectral triple
(�,ℋ , �) is generated by (the representation of) the algebra � and the
derivation [�, •], and is denoted by

Ω1
�(�) B

{∑
8

�(08)[�,�(18)] : 08 , 18 ∈ �
}
.

For what follows, we would like to maintain this conventional 1-form
structure as much as possible.

If the spectral triple is equipped with a (trivially-twisted) real struc-
ture �, an inner fluctuation of the Dirac operator is given by

�$ = � + $ + �′�$�−1 (4.1)

for $† = $ ∈ Ω1
�
(�) a self-adjoint 1-form. However, if �$ is to satisfy

(2.9), it should instead be of the form

�$ = � + $ + �′��$�−1�. (4.2)

The relevant question is thenwhether or notwe can sensibly implement
such a fluctuation as (4.2).
Remark 4.1. Equation (4.2) is not the only possible inner fluctuation of
� which satisfies (2.9). One could also define

�′$ = � + �$� + �′�$�−1 ,

nowwith �$� ∈ Ω1
�
(�). The difficulty with this choice is that it would

necessitatemodifying the structure of noncommutative 1-forms,which
we would like to avoid, but instead requiring �[�,�(0)]� = [�,�(0′)]
for 0, 0′ ∈ � then places constraints on the Dirac operator and the
twist. �

4.2.2 Morita equivalence

Applying (self-)Morita equivalence to a C*-algebra which forms part
of a spectral triple necessarily impacts the geometric structure. In par-
ticular, when one considers a C*-algebra as Morita equivalent to itself,
the algebra and associated Hilbert C*-module are only ‘the same’ up
to isomorphism, and so the action of the Dirac operator on the Hilbert
space is only defined up to a connection 1-form. This is the ultimate
source of inner fluctuations.

Furthermore, as we saw in the previous chapter, when considering
real spectral triples, the left and right module structures are related
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by the real structure. Finding an inner fluctuation of the Dirac opera-
tor which is compatible with the real structure is a two-step process
which involves takingMorita self-equivalences of the left and the right
module structures, and imposing self-consistency.

As we will demonstrate in this subsection, this procedure is more
complicated in the case of twisted real structures, as the connection
will be an ordinary 1-form for the right module case and a twisted
1-form for the left module case. We will largely follow Refs. [45] and
[47] for the right and left module cases respectively, but the modifica-
tions necessary to combine the two approaches and adapt them to the
twisted real structure formalism are original.

Rather than following the approach of §3.2.2, where we under-
stood Morita equivalence bimodules as coming from a right Hilbert
C*-module equippedwith a commuting left actionof anotherC*-algebra,
we will instead (equivalently) consider Hilbert C*-bimodules from the
beginning; doing so, a ℬ-A Morita equivalence bimodule ℰℬ A is a
Hilbert ℬ-A-bimodule which is full as a bimodule, i.e. it is both left-
full with respect to 〈•, •〉ℬ and right-full with respect to 〈•, •〉A .

In this section, we will be primarily interested in the case of Morita
self-equivalence, where we take ℬ = A and consider ℰA A as the
bimodule ofA over itself. A standard result which we will later make
use of is that if ℰ is a full and finite projective (left or right) Hilbert
A-module, thenA is Morita equivalent to EndA(ℰ).
If two C*-algebras are Morita equivalent, they can be said to have

equivalent representation theories. To see this, suppose twoC*-algebras
A and ℬ are Morita equivalent via the bimodule ℰℬ A , with A repre-
sented on the Hilbert space ℋ as bounded operators by the map �A .
This allows us to define the new Hilbert space

ℋ ′ B ℰℬ A ⊗A ℋ

such that

40 ⊗ # = 4 ⊗ �A(0)#

for all 4 ∈ ℰℬ A , 0 ∈ A and # ∈ ℋ , equipped with the inner product

〈41 ⊗ #1 , 42 ⊗ #2〉ℋ ′ B
〈
#1 , 〈41 , 42〉A#2

〉
ℋ

for all 41 , 42 ∈ ℰℬ A and #1 ,#2 ∈ ℋ . One can then construct a repre-
sentation of ℬ onℋ ′ by

�ℬ(1)(4 ⊗ #) B (14) ⊗ #

for all 1 ∈ ℬ and 4⊗# ∈ ℋ ′. One thenfinds that the two representations
(A ,�A ,ℋ) and (ℬ ,�ℬ ,ℋ ′) are equivalent.

Since the above constructionproduces the representation (ℬ ,�ℬ ,ℋ ′)
using the fact that ℰℬ A is a right A-module, we refer to it as Morita
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equivalence by right module. Of course, ifA and ℬ are Morita equiva-
lent, then there also exists anA-ℬ-bimodule, the conjugate bimodule
ℰ̄A ℬ , which allows one to start with a representation of ℬ and con-

struct a unitarily equivalent representation ofA using the fact that the
conjugate bimodule is a left A-module. We refer to this construction
as Morita equivalence by left module.

4.2.2.1 Morita self-equivalence by right module

For this subsection, we will not need the real structure, and the twist
will play no role, so we simply summarise the standard construc-
tion. Consider a spectral triple ((A ,�,ℋ), �), and a representation
(ℬ ,�ℬ ,ℋ') equivalent to (A ,�,ℋ)byMorita self -equivalence by right
module. We begin by attempting to construct a Dirac operator onℋ'

in the simplest way, which is by just taking the naïve action of � given
by �A(0 ⊗ #) B 0 ⊗ �#. However, this does not respect the module
structure as �A(4 ⊗ �(0)#) ≠ �A(40 ⊗ #) for all 0 ∈ A , 4 ∈ ℰℬ A since
� is not assumed to commute with �(A). Instead we find

�A(40 ⊗ #) = 40 ⊗ �#
= 4 ⊗ �(0)�#
= 4 ⊗ (��(0) − [�,�(0)])#
= �A(4 ⊗ �(0)#) − 4 ⊗ [�,�(0)]#.

Therefore one instead considers a connection on the bimodule

∇ : ℰℬ A → ℰℬ A ⊗A Ω
1(A)

satisfying the Leibniz rule

∇(40) = (∇(4))0 + 4 ⊗ �(0),

where Der(A) 3 � : A → Ω1(A). When ℰℬ A is finite projective i.e.
ℰℬ A = ?A# for ? = ?† = ?2 ∈ "# (A), we can define any such

connection as the Grassmann connection ?� up to some $ = ?$ =

$? = ?$? ∈ EndA( ℰℬ A , ℰℬ A ⊗A Ω
1(A)).

We now impose the Morita self-equivalence by taking ℬ = A and
treating the Morita equivalence bimodule ℰ = ?A# as the module of
A over itself (i.e. take ? = 1 and# = 1).We have that theHilbert spaces
are isomorphicℋ' = A ⊗A ℋ

�' ℋ under the isomorphism

� : 0 ⊗ # ↦→ �(0)#

with inverse �−1 : # ↦→ 1 ⊗ #. Then the representation of the algebra
ℬ = A is simply given by

� ◦ �ℬ(1) ◦ �−1 = �(1)
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for all 1 ∈ A. Working in the Dirac calculus, the derivation � is given
by

�(0) B [�,�(0)]

for all 0 ∈ A, which generates the space of noncommutative 1-forms
Ω1
�
(A), which is anA-bimodule with bimodule product

0 · $ · 0′ B �(0)$�(0′)

for 0, 0′ ∈ A and $ ∈ Ω1
�
(A). We then have that any Ω1

�
(A)-valued

connection on the right moduleA reads

We understand
$ : A → Ω1

�
(A) to

act via the module
product, i.e. $(0) =
$ · 0 = $�(0) as an

operator.

∇ = � + $

for $ ∈ Ω1
�
(A).

This suggests that the appropriate construction for the Dirac oper-
ator comes from making �A compatible with the module structure.
Denoting the new candidate Dirac operator by �', we achieve this
with the addition of a connection like so:

�'(0 ⊗ #) B 0 ⊗ �# + ∇(0)#
= 0 ⊗ �# + 1 ⊗ �(0)# + 1 ⊗ ($ · 0)#
= 1 ⊗ ��(0)# + 1 ⊗ $�(0)#
= �'(1 ⊗ �(0)#),

where the last line comes from observing that ∇(1) = �(1) + ($ · 1) = $
as an operator. Lastly, via the isomorphism � we find the compatible
Dirac operator

�' = � + $

onℋ with $ ∈ Ω1
�
(A).

Thus we took the representation (A ,�,ℋ) with Dirac operator �
on ℋ and found the Morita self-equivalent representation (A ,�,ℋ)
with Dirac operator �' = � +$ onℋ for $ ∈ Ω1

�
(A). However, if our

original spectral triple is equipped with a twisted real structure (� , �),
then it should necessarily obey the twisted �′-condition (2.9). However,
(A ,ℋ , � + $, (� , �)) obeys (2.9) if and only if $ = �′��$�−1�. But it is
not difficult to show that, for $ =

∑
9 �(0 9)

[
�,�(1 9)

]
∈ Ω1

�
(A),

�′��$�−1� =
∑
9

���(0 9)�−1�−1(��−1��(1 9)�−1� − ���(1 9)�−1�−1�)

=
∑
9

��(�̂−1(0 9))
[
�, �̂(1 9)

]��
�̂−2 , (4.3)

which has no reason to be equal to $, which we will address in the
next subsection.
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4.2.2.2 Morita self-equivalence by left module

The significance of (4.3) is that if $ is a 1-form, then ��$�−1� is a
twisted 1-form. We have already seen that the standard Morita self-
equivalence by right module can obtain $, so we expect that some
changes should need to be made to the construction in the left module
case to obtain the twisted 1-form ��$�−1�. For said changes, we look
to the construction offered by Ref. [47] for obtaining inner fluctuations
of the Dirac operator for real twisted spectral triples in the spirit of
Ref. [21, Prop. 3.4].
As telegraphed, given an A-ℬ Morita equivalence bimodule ℰℬ A ,

there also exists a conjugate bimodule ℰ̄A ℬ which has the canonical
product 04̄1 = 1∗40∗ where ℰ̄ = {4̄ : 4 ∈ ℰ}. If we replace 0 9 ↦→ 0∗

9
and

1 9 ↦→ 1∗
9
in (4.3) then we find that we can write

�′��$�−1� =
∑
9

�∗�(�̃(0 9))
[
�, �̃−1(1 9)

]�∗
�

�̃2 .

Motivated by this equality, we define the space of “twisted-opposite”
1-forms as

Ω̃1
�(�

op) B
{∑

9

�∗�(�̃(0 9))
[
�, �̃−1(1 9)

]�∗
�

�̃2 : 0 9 , 1 9 ∈ �
}
. (4.4)

In light of this, itwill prove convenient to define two “twisted-opposite”
maps

0⊕ B �∗�
(
�̃(0)

)
= ��−1�(0)∗��−1 , (4.5a)

0	 B �∗�
(
�̃−1(0)

)
= ���(0)∗�−1�−1 , (4.5b)

noting that both 0⊕ and 0	 are (still) elements of�∗
�
(A) = A◦ for 0 ∈ A,

and that each twisted-opposite map separately preserves the algebra
product. This notation allows us to write twisted-opposite 1-forms in
a more compact fashion:

Lemma4.2. The operator �′��$�−1�, for$ =
∑
9 �(0∗9)

[
�,�(1∗

9
)
]
∈ Ω1

�
(A),

can be rewritten in the form
∑
9 0
⊕
9
(�1	

9
− 1⊕

9
�).

Proof. The proof is simply by computation. For the sake of simplic-
ity and without loss of generality, we will omit summations and the
representation �.

�′��$�−1� = �′��0∗[�, 1∗]�−1�

= �′��(0∗�1∗ − 0∗1∗�)�−1�

= �′(��0∗�1∗�−1� − ��0∗1∗��−1�)
= ��0∗����−1�1∗�−1� − ��−10∗1∗����−1��� by (2.9),
= ��−10∗��−1���1∗�−1�−1 − ��−10∗1∗��−1�

= 0⊕�1	 − 0⊕1⊕�.
�
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Thus the space of twisted-opposite 1-forms (4.4) could equivalently
be defined

Ω̃1
�(�

op) =
{∑

9

0⊕
9
(�1	

9
− 1⊕

9
�) : 0⊕

9
, 1	

9
, 1⊕

9
∈ �◦

}
,

which the reader may find easier to parse. We denote the elements of
this space by $� to contrast with the more familiar $◦ B �′�$�−1. This
space can be considered anA-bimodule with bimodule action defined
by

0 · $� · 1 B 1⊕$�0	

for all 0, 1 ∈ A and $� ∈ Ω̃1
�
(Aop), and is generated by the derivation

��(0) B �0	 − 0⊕� (4.6)

for 0 ∈ A. This is a derivation in the sense that:Of course, rather
than taking �� to be

a derivation with
respect to an unusual
bimodule action, one
could take it to be a
twisted derivation
with respect to the

usual bimodule
action, obeying the
twisted Leibniz rule

for �̃2 the twist:
��(01) = ��(1)0	+(
�̃(1)2

)	��(0). We
choose instead to
keep close to the

approach of Ref. [47],
as this also keeps us
in close contact with

the typical
construction of a
connection on a

Hilbert C*-module.

��(01) = �(01)	 − (01)⊕�
= �1	0	 − 1⊕0⊕�
= �1	0	 − 1⊕�0	 + 1⊕�0	 − 1⊕0⊕�
= ��(1)0	 + 1⊕��(0)
= 0 · ��(1) + ��(0) · 1.

Wenow return to thematter ofMorita equivalence. Finding aMorita
equivalent representation of (A ,ℋ) by left module (using now the
conjugate module) follows similarly to the right module construction
given above. We denote the resultant representation as (ℬ ,ℋ!), where

ℋ! B ℋ ⊗A ℰ̄A ℬ

is the Hilbert space with the inner product

〈#1 ⊗ 4̄1 ,#2 ⊗ 4̄2〉ℋ!
=

〈
#1 〈4̄1 , 4̄2〉A ,#2

〉
ℋ

for all #8 ∈ ℋ and 4̄8 ∈ ℰ̄A ℬ (as a left A-module), where 〈4̄1 , 4̄2〉A B

〈41 , 42〉A . Furthermore, the right action of ℬ ' EndA( ℰA ) on ℰA is
extended toℋ! by

(# ⊗ 4)1 B # ⊗ 41.

In the standard construction, we would use the standard algebra bĳec-
tion

0◦ B �∗�(0) = ��(0)
†�−1 (4.7)

for the right action ofA onℋ , such that # ⊗ 04̄ = #0 ⊗ 4̄ B �∗
�
(0)# ⊗ 4̄.

However, this is where we instead choose to start making changes.
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The first change we will make is to use the twisted-opposite maps to
require that the right action ofA on the original Hilbert space be now
given by

#0 B 0	# = ���(0)†�−1�−1# (4.8)

for all 0 ∈ A and # ∈ ℋ , which extends to the module structure in the
obvious way. This choice of right action is of course not unique, but its
motivation will soon become clear.

As in the right module case, the naïve implementation of the action
of the Dirac operator onℋ! given by

�ℓ (# ⊗ 4̄) B �# ⊗ 4̄

fails to be compatible with the module structure since � does not
commute with the algebra and we require the tensor product to be
balanced forA, not just ℂ.

Note that, as ℰ̄A is finite projective by assumption, we have that
ℰ̄A ' A#?, ? = ?† = ?2 ∈ "# (A). Thus we introduce an invertible

linear module map

�̃ℰ : ℰ̄A → ℰ̄A (4.9)

whose action is given elementwise by �̃ ∈ Aut(A), the twist automor-
phism of (2.7), and under which we assume ? is invariant. This allows
us to make our second change, which is to the construction of the
candidate Dirac operator(

(id⊗�̃2
ℰ) ◦ �ℓ

)
(# ⊗ 4̄) = �# ⊗ �̃2

ℰ(4̄)

for all# ∈ ℋ and 4̄ ∈ ℰ̄A . Of course, this operator is still not compatible
with the tensor product:(
(id⊗�̃2

ℰ)◦�ℓ
)
(#⊗04̄)−

(
(id⊗�̃2

ℰ)◦�ℓ
)
(#0⊗ 4̄) = −��(0)#⊗ �̃2

ℰ(4̄) ≠ 0.
(4.10)

However, just as in the right module case, the presence of a derivation
suggests that we try to introduce a connection.

Thus, working from the derivation (4.6), we give the following defi-
nition.

Definition 4.3. An Ω̃1
�
(Aop)-valued connection on the left A-module

ℰ̄A is a map ∇� : ℰ̄A → Ω̃1
�
(Aop) ⊗A ℰ̄A such that

∇�(04̄) − 0 · ∇�(4̄) = ��(0) ⊗ 4̄

for all 0 ∈ A and 4̄ ∈ ℰ̄A , with the left multiplication by A on
Ω̃1
�
(Aop) ⊗A ℰ̄A given by the left module structure of Ω̃1

�
(Aop). �
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Using the action of Ω̃1
�
(Aop) onℋ we can therefore define the map

∇� : ℋ ⊗ℂ ℰ̄A →ℋ ⊗ℂ ℰ̄A by

∇�(# ⊗ 4̄) B #∇�(4̄) (4.11)

for all 4̄ ∈ ℰ̄A and # ∈ ℋ . We cannot factorise this into a map on
ℋ ⊗A ℰ̄A because#∇�(04̄)− (#0)∇�(4̄) need not vanish. However, the
obstruction is captured by the derivation �� because the actions of A
and Ω̃1

�
(Aop) are compatible, i.e.

(0 · $�)# = $�0	# = $�(#0). (4.12)

In short, this means that

#∇�(04̄) − #0∇�(4̄) = ��(0)# ⊗ 4̄ . (4.13)

Remark 4.4. One notes that, though of course the meanings and rules
established are distinct, much of what we have stated (and will state)
for objects like∇�,$� and �� are analogous to equivalent statements in
the familiar casewith∇◦, $◦ and �◦ instead. Indeed,many proofs carry
over analogously with only the need to substitute different symbols,
though to some extent this comes as a result of deliberate choices of
notation. �

By (4.11) we therefore have(
(id⊗�̃2

ℰ) ◦ ∇
�)(# ⊗ 04̄) − (

(id⊗�̃2
ℰ) ◦ ∇

�)(#0 ⊗ 4̄)
= (id⊗�̃2

ℰ)(�
�(0)# ⊗ 4̄)

= ��(0)# ⊗ �̃2
ℰ(4̄), (4.14)

and so combining (4.10) and (4.14)we find that the correct construction
for the Dirac operator onℋ! is given by

�! B (id⊗�̃2
ℰ) ◦ (�ℓ + ∇

�),

which is compatible with the module structure since �!(# ⊗ 04̄) −
�!(#0 ⊗ 4̄) = 0 as desired.
As before, we take the left A-module ℰ̄A to be finite projective, we

know that ℰ̄A ' A#? with ? = ?† = ?2 ∈ "# (A). In these terms, the
connection decomposes as

∇� = ∇�0 + ®$
�

with ‘twisted’ Grassmann connection

∇�0 (4̄) = (�
�(41), . . . , ��(4# ))?

for all 4̄ = (41 , . . . , 4# ) ∈ ℰ̄A with 4 9 ∈ A. Meanwhile, ®$� is a map
ℰ̄A → Ω̃1

�
(Aop) ⊗A ℰ̄A which isA-linear in the sense that

®$�(04̄) = 0 · ®$�(4̄).

We can now impose the self-equivalence by taking ℬ = A and
ℰ̄A ℬ = A as a module (i.e. taking ? = 1, # = 1 considering ℰ̄A ℬ as

finite projective overA) such thatℋ! = ℋ ⊗A A ' ℋ .
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Proposition 4.5. In the case of Morita self-equivalence, with ℬ = A and
ℰ̄A ℬ = A, the form of the Dirac operator onℋ! is nothing but the bounded

perturbation

�! = � + $� = � + �′��$�−1�

for some $� = �′��$�−1� ∈ Ω̃1
�
(Aop) with $ ∈ Ω1

�
(A).

Proof. Because ℰ̄A ℬ ' A
#?with ? = 1and# = 1,wehave∇� : A → Ω̃1

�
(Aop) ⊗A A

such that ∇� = ∇�0 + ®$� with

∇�0 (0) = ��(0) ⊗ 1,
®$�(0) = ($�0	) ⊗ 1,

where $� ∈ Ω̃1
�
(Aop). We therefore find

�!(# ⊗ 0) = (id⊗�̃2
ℰ) ◦ (�ℓ + ∇

�)(# ⊗ 0)
=

(
(id⊗�̃2

ℰ) ◦ �ℓ
)
(# ⊗ 0) +

(
(id⊗�̃2

ℰ) ◦ �
�)(# ⊗ 0) + (

(id⊗�̃2
ℰ) ◦ $

�)(# ⊗ 0)
= �# ⊗ �̃2(0) + (id⊗�̃2

ℰ)(�
�(0)# ⊗ 1) + (id⊗�̃2

ℰ)($
�0	# ⊗ 1)

= (�#)�̃2(0) ⊗ 1 + ��(0)# ⊗ 1 + $�0	# ⊗ 1
= 0⊕�# ⊗ 1 + �0	# ⊗ 1 − 0⊕�# ⊗ 1 + $�0	# ⊗ 1
= �0	# ⊗ 1 + $�0	# ⊗ 1,

wherewehaveused the fact that (�̃2(0))	 = (�̃−1(�̃2(0)))◦ = (�̃(0))◦ = 0⊕.
By making the identification ℋ ⊗A A ' ℋ via the identification of
# ⊗ 0 = 0	# ⊗ 1 with #, one immediately finds that �! = � +$�. The
final result then follows as a consequence of Lem. 4.2. �

Something to take note of before moving on is what happens when
the original spectral triple (A ,ℋ , �) is even. In that case, we have the
following lemma.

Lemma 4.6. If a grading operator " anticommutes with the Dirac operator�
and commutes with (representations of) all 0 ∈ �, then " also anticommutes
with all $ ∈ Ω1

�
(�).

As a result of this lemma, the grading operator will automatically
anticommute with � + $ for $ ∈ Ω1

�
(�). We now show that it also

anticommutes with � + �′��$�−1� as well.

Proposition 4.7. Let " be a grading operator which anticommutes with the
Dirac operator � and commutes with (representations of) any 0 ∈ �. Then "
also anticommutes with � + �′��$�−1� for any $ ∈ Ω1

�
(�) provided

"�� = �′′��" (4.15)

for �′′ = ±1, and

"�2 = �2". (4.16)
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Proof. We first focus on the second term of the fluctuated Dirac opera-
tor. By (4.15), we have that

"(�′��$�−1�) = �′�′′��"$�−1� = −�′�′′��$"�−1�,

where the second equality is due to Lem. 4.6. We now have that

"�−1� = �"��

= �"���2 using (2.10),
= ��′′��"�2 by (4.15),
= ��′′���2" by (4.16),
= ��′′��"

= �′′�−1�",

and therefore

"(�′��$�−1�) = −�′�′′��$"�−1� = −�′�′′��$�′′�−1�" = −(�′��$�−1�)".

As "� = −�" by assumption, this is sufficient to establish the result.
�

Remark 4.8. Indeed, that �′��$�−1� should anticommutewith " is what
motivates Def. 2.4. Contrast this with what is taken in the literature,
"� = �′′�" [7, 8], which is insufficient to establish the anticommuta-
tion in general, even assuming "�2 = �2". Note that, alternatively to
"�� = �′′��", one could instead take "�� = �′′��". Both only hold
simultaneously if �� = ��, which assuming regularity (2.10) only hap-
pens when �2 = 1. �

Thuswefind that for a 1-form$, onehas that (A ,ℋ , �+�′��$�−1�, ")
is an even spectral triple. However, it fails to admit (� , �) as a twisted
real structure for more or less the same reason as in the right module
case. We will resolve this problem for both left and right module cases
in the next subsection.

4.2.2.3 Bimodule and twisted real structure

To ensure the compatibility of the Dirac operator constructed from
Morita self-equivalences with the twisted real structure, one needs to
combine the above two left and right module constructions. First, one
fluctuates the spectral triple (A ,ℋ , �) using the bimodule ℰℬ A = A,
and then one fluctuates the resulting triple by the conjugate bimodule
ℰ̄A ℬ = A. This yields the triple (A ,ℋ , �′)where

�′ = � + $' + �′��$!�−1� (4.17)

with $! and $' two a priori distinct elements of Ω1
�
(A). The compati-

bility of (4.17)with the twisted �′-condition (2.9) for the reality operator
� and twist operator � can then always be demanded, as the following
proposition guarantees.
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Proposition 4.9. The Dirac operator �′ satisfies (2.9) if and only if there
exists an element $ ∈ Ω1

�
(A) such that

�′ = � + $ + �′��$�−1�.

Proof. We have that �′ = � + $' + �′��$!�−1�. For �′ to satisfy (2.9),
we must have �′�� = �′���′, which is the case if and only if

($! − $') − �′��($! − $')�−1� = 0.

Adding half of the left hand side of this equation (which is still equal
to 0) to the right hand side of (4.17), one gets

�′ = � + 1
2 ($' + $!) + �

′��
1
2 ($' + $!)�

−1�.

This gives the claimed result for $ = 1
2 ($' + $!). �

The sum total of these past three subsections can thus be expressed
as follows.

Theorem4.10. For a spectral triplewith twisted real structure (A ,ℋ , �, (� , �)),
the inner-fluctuated Dirac operator

�$ B � + $ + �′��$�−1�

for $ = $† ∈ Ω1
�
(A) arises from � by implementing the bimodule Morita

self-equivalence of (A ,ℋ , �, (� , �)) and requiring that the resultingDirac op-
erator satisfies (2.9) with respect to � and �. Thus the data (A ,ℋ , �$ , (� , �))
form a spectral triple with twisted real structure.

Remark 4.11. As noted in Ref. [7], Dirac operators are closed with re-
spect to these inner fluctuations, in the sense that

(�$)$′ = �$′′

for �$ B � + $ + �′��$�−1� with $, $′′ ∈ Ω1
�
(A) and $′ ∈ Ω1

�$
(A).

Explicitly, if $ =
∑
8 �(08)[�,�(18)] and $′ =

∑
9 �(2 9)

[
�$ ,�(3 9)

]
for

08 , 18 , 28 , 38 ∈ A, then one finds (suppressing representations and sum-
mations/indices) that $′′ is given by

$′′ = (0 − 230)[�, 1] + (2 − 201)[�, 3] + 23[�, 13].

However, $′′ will not necessarily be self-adjoint, even if $ and $′

both are. This is no worse than in the standard trivially-twisted case,
though. �

All that remains is to verify that the inner-fluctuated Dirac operator
�$ satisfies the twisted first-order condition (assuming the original
Dirac operator � does as well).

Proposition 4.12. If (�,ℋ , �, (� , �)) is a spectral triple with twisted real
structure, then the fluctuated Dirac operator �$ = � + $ + �′��$�−1� for
$ ∈ Ω1

�
(�) satisfies the twisted �′-condition (2.8) with respect to the reality

operator � and twist operator �.
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Proof. In order for�$ to satisfy (2.8), it is sufficient for each of the three
summands to individually satisfy (2.8). As (�,ℋ , �, (� , �)) is a spectral
triple with twisted real structure, � satisfies (2.8) by assumption.

Since $ ∈ Ω1
�
(�), we can write it in the form $ =

∑
9 �(2 9)

[
�,�(3 9)

]
for 2 9 , 39 ∈ �. In that case, for 0 ∈ �we have (suppressing summations
and representations)

[$, 0] = [2[�, 3], 0]
= 2[�, 30] − 23[�, 0] − 02[�, 3].

Each three of these terms satisfies (2.8) because � does by assumption.
As an example calculation, � satisfying (2.8) and 0, 3 ∈ � implies
that [�, 30]��21�−2�−1 = �1�−1[�, 30]. Since (2.3) implies that 2�1�−1 =

�1�−12, we thus have that 2[�, 30]��21�−2�−1 = �1�−12[�, 30], i.e. that
2[�, 30] satisfies (2.8). The computation for the other terms is carried
out in the same way.
For the final term, we can simply make use of Lem. 4.2 to note that

��$�−1� ∈ Ω̃1
�
(�op) for $ ∈ Ω1

�
(�). By the definition of Ω̃1

�
(�op), any

element of Ω̃1
�
(�op) canbewritten in the form

∑
9 �
∗
�
(�̃(2 9))

[
�, �̃−1(3 9)

]�∗
�

�̃2

or, equivalently,
∑
9 ��(�̂−1(2 9))

[
�, �̂(3 9)

]��
�̂−2 for 2 9 , 39 ∈ �. We now com-

pute (again suppressing summations and representations) that[
� �̂−1(2)�−1[�, �̂(3)]��

�̂−2 , 0
]
= � �̂−1(2)�−1

[
[�, �̂(3)]��

�̂−2 , 0
]

by (2.3). However, from Lem. 2.11 we have that
[
[�, �̂(3)]��

�̂−2 , 0
]
=

[[�, 0], �̂(3)]��
�̂−2 and since � satisfies (2.8), we find [[�, 0], �̂(3)]��

�̂−2 = 0
by Lem. 2.10, and thus (2.8) is satisfied by ��$�−1� trivially. �

The general procedure described in this subsection relies on defin-
ing connections on projective modules. In the setting of Hopf-Galois
extensions (‘quantumprincipal bundles’), strong connections similarly
induce connections on associated projective modules [28]. It would be
interesting to investigate the link between fluctuations of the Dirac op-
erator in the various approaches to Connes’ noncommutative geome-
try (including spectral triples with (twisted) real structure, real twisted
spectral triples, real spectral triples without the first-order condition,
etc.) and strong connections for Hopf-Galois extensions in scenarios
where the formalisms are compatible. Such an investigation, being be-
yond the scope of this thesis, we leave for future research.

4.3 gauge transformations with twisted real structures

4.3.1 Gauge transformations as a Morita self-equivalence

In the context of spectral geometry, gauge transformations can be
viewed as a special case of Morita self-equivalences, which we will
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describe briefly as follows. Considering a Morita equivalence between
two algebras A (acting on ℋ ) and ℬ, we have a Morita equivalence
bimodule ℰℬ A and the conjugate bimodule ℰ̄A ℬ (such that ℬ acts on
ℰℬ A ⊗Aℋ ⊗A ℰ̄A ℬ as a Hilbert space). As mentioned in the previous

subsection, when ℰℬ A is finite projective as a rightA-module (which
we will assume it to be), we have ℬ ' EndA(ℰA ) (and similarly in
the left module case). Consider the group of unitary endomorphisms
U(ℰ) B {D ∈ EndA(ℰ) : DD∗ = D∗D = idℰ} (with U(ℰ̄) defined like-
wise). Then for D ∈ U(ℰ) ' U(ℰ̄) we call a gauge transformation the
action of D on ℰℬ A (D(4) = D4) and on ℰ̄A ℬ (D(4̄) = 4D∗).

In the case of self-equivalence, ℰℬ A = ℰ̄A ℬ = A and D ∈ U(A).
Then gauge transformations on the algebra can be interpreted as inner
automorphisms 0 ↦→ D0D∗ for all 0 ∈ A. This in turn gives gauge
transformations on theHilbert spaceA⊗Aℋ⊗AA ' ℋ as# ↦→ D#D∗

for all # ∈ ℋ . Here, we already see a divergence from the standard
construction due to the modified choice of right action (4.8), as

D#D∗ C Ad(D)# = �(D)(D∗)	# = �(D)���(D)�−1�−1# (4.18)

for all # ∈ ℋ , which contrasts with the usual case where D#D∗ =
�(D)��(D)�−1#. Note that in terms of the notation we have developed,
this has the inverse

Ad(D)−1# = D∗#D = �(D∗)D	# = �(D∗)���(D∗)�−1�−1#.

In addition to the adjoint action above, by Ãd(D) we denote the com-
plementary ‘twisted’ adjoint action

Ãd(D)# B D#�̃2(D∗) = �(D)(D∗)⊕# = �(D)��−1�(D)��−1# (4.19)

for all # ∈ ℋ , with inverse

Ãd(D)−1# = �(D∗)��−1�(D∗)��−1#.

A peculiarity of (4.18) (and (4.19)) is that in general, neither Ad(D)
nor Ãd(D) is a unitary operator despite being generated by a unitary
element, due to the presence of the twist. This means that in the con-
text of twisted real structures, Morita equivalences do not generally
give unitary equivalences of spectral triples (which will be established
explicitly in Prop. 4.18).

Gauge transformations are also defined on (right A-module) con-
nections ∇ : ℰ → ℰ ⊗A Ω1(A) as maps

∇ ↦→ ∇D B D∇D∗ (4.20)

for D ∈ U(ℰ), where U(ℰ) acts on ℰℬ A ⊗A Ω
1(A) by D ⊗ id. Note

that the gauge-transformed connection ∇D is itself a connection for any
D ∈ U(ℰ) and connection ∇.
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For the case of right module Morita self -equivalence, we have ℰA =

A and the connection is given by

∇ = � + $

for $ ∈ Ω1
�
(A) self-adjoint. In this context, the connection 1-form $ is

referred to as a gauge potential, and a gauge transformation maps the
connection to

For 0 ∈ A,
∇D(0) = D · �(D∗0) +
D · $(D∗0) =

(
� +

(D · $ · D∗) + (D ·
�(D∗))

)
(0) ≡ (� +

$D)(0).

∇D = � + $D

where the gauge transformation is fully encoded in the transformation
law for the gauge potential

$ ↦→ $D = �(D)$�(D∗) + �(D)[�,�(D∗)]. (4.21)

In the case of right module self-equivalence, the implementation of
gauge transformations on the Dirac operator amounts to substituting
the gauge transformed connection ∇ ↦→ ∇D into the definition of �'.
Thus for a gauge transformation by the unitary D ∈ A, �' = � + $ is
mapped to

�D
' = � + $

D = � + �(D)$�(D∗) + �(D)[�,�(D∗)].

Aswehave already seen inLem. 4.2, for a given twisted real structure
(� , �) it is possible to find a ‘twisted-opposite’ 1-form $� associated to
the 1-form $ using the map $ ↦→ �′��$�−1�. However, it is not clear
that this map is compatible with the gauge transformation of gauge
potentials (4.21), or in other words, it is not clear if ($�)D coming from
the action of D on the connection ∇� is actually equal to ($D)�. In what
follows, we show that this is indeed the case.

Proposition 4.13. Let $ ∈ Ω1
�
(A) be a gauge potential. Under the gauge

transformation $ ↦→ $D , given in (4.21) for D ∈ U(A), the corresponding
twisted 1-form under the map $D ↦→ ($D)� is given by

($D)� = (D∗)⊕$�D	 + (D∗)⊕��(D).

Proof. The proof is by a straightforward computation. We will omit
representations for brevity.

($D)� = �′��$D �−1�

= �′��D$D∗�−1� + �′��D[�, D∗]�−1�

= �′��−1(D∗)∗��−1��$�−1���D∗�−1�−1

+ �′��−1(D∗)∗��−1��[�, D∗]�−1�

= (D∗)⊕$�D	 + (D∗)⊕(�′��[�, D∗]�−1�)
= (D∗)⊕$�D	 + (D∗)⊕��(D),

where in going to the last line we have made use of (4.6) and Lem. 4.2
(there taking 0 = 1, 1 = D). �
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To compare with the result of Prop. 4.13, we now derive a transfor-
mation law from Morita self-equivalence as we did in the (standard)
right module case above. For the case of left module self-equivalence,
we have that the conjugate module is ℰ̄A ℬ = A with ℬ = A, and the
unitary endomorphisms are just the unitary elements of the algebra
acting by

D(0) B 0D∗ (4.22)

for 0 ∈ A, D ∈ U(A).
Given the derivation �� as defined in (4.6), the gauge transformation

for the connection ∇� = �� + $� on the module ℰ̄A ℬ = A, ℬ = A is
given by ∇� ↦→ (∇�)D B D∇�D∗, analogous to (4.20).

Lemma4.14. Let∇� be an Ω̃1
�
(Aop)-valued connection onA as anA-bimodule

with unitary endomorphisms D acting via (4.22). Then, for any D ∈ U(A)
we have

(id⊗�̃2
ℰ) ◦ (∇

�)D(0) = ��(0D) ⊗ �̃2(D∗) + $�(0D)	 ⊗ �̃2(D∗)

for all 0 ∈ A with (∇�)D the gauge transformation (∇�)D B D∇�D∗ and
�̃ℰ ∈ EndA(A) as given in (4.9).

Proof. First, we have ∇� = ∇�0 + ®$� given by ∇�0 (0) = ��(0) ⊗ 1 and
®$�(0) = ($�0	) ⊗ 1 for any 0 ∈ A. We also have D(0) = 0D∗, and thus
we find

(∇�)D(0) B (D∇�D∗)(0) = (D∇�)(0D) = D
(
∇�0 (0D) + ®$

�(0D)
)

= D
(
��(0D) ⊗ 1 + $�(0D)	 ⊗ 1

)
= ��(0D) · D∗ ⊗ 1 + ($�(0D)	) · D∗ ⊗ 1
= ��(0D) ⊗ D∗ + $�(0D)	 ⊗ D∗.

Therefore, we have

(id⊗�̃2
ℰ) ◦ (∇

�)D(0) = (id⊗�̃2
ℰ)(�

�(0D) ⊗ D∗ + $�(0D)	 ⊗ D∗)
= ��(0D) ⊗ �̃2(D∗) + $�(0D)	 ⊗ �̃2(D∗).

�

Just like in the right module case, we implement the gauge trans-
formation for the left module case by replacing ∇� with (∇�)D in the
definition of�!. In the case of self-equivalence,we obtain the following
explicit formula:

Proposition 4.15. For a gauge transformation with D ∈ U(A), the operator
�! = � + $� is mapped to �D

!
= � + ($�)D where the transformed 1-form

is given by

($�)D = (D∗)⊕$�D	 + (D∗)⊕��(D).



70 spectral gauge theory with twisted real structures

Proof. We have from the previous lemma

�D
! (# ⊗ 0) = ((id⊗�̃

2
ℰ) ◦ (�! + (∇�)D))(# ⊗ 0)

= �# ⊗ �̃2(0) + ��(0D)# ⊗ �̃2(D∗) + $�(0D)	# ⊗ �̃2(D∗)
=

(
0⊕� + (D∗)⊕�(0D)	 − (D∗)⊕(0D)⊕�

)
# ⊗ 1

+ (D∗)⊕$�D	0	# ⊗ 1
= (D∗)⊕�D	0	# ⊗ 1 + (D∗)⊕$�D	0	# ⊗ 1
=

(
� + (D∗)⊕(�D	 − D⊕�)

)
0	# ⊗ 1 + (D∗)⊕$�D	0	# ⊗ 1.

By definition, �D	 − D⊕� = ��(D). Identifying # ⊗ 0 = 0	# ⊗ 1 with
# ∈ ℋ ⊗A A ' ℋ therefore gives the proposition. �

Comparing the results of Prop. 4.13 and Prop. 4.15, we find that
indeed, ($D)� = ($�)D .

4.3.2 Gauge transformations for a spectral triple

The results of the previous subsection, along with Thm. 4.10, give the
following result:

Theorem 4.16. Let (�,ℋ , �$ , (� , �)) be a spectral triple with twisted real
structure obtained by bimoduleMorita self-equivalence from the spectral triple
with twisted real structure (�,ℋ , �, (� , �)), where �$ is the Dirac operator
fluctuated from � by the 1-form $ ∈ Ω1

�
(�).

Then the law for the gauge transformation of the Dirac operator �$ by
D ∈ U(�) is given by

�$ ↦→ �D
$ = � + $D + �′��$D �−1� ≡ �$D ,

where

$ ↦→ $D = �(D)$�(D∗) + �(D)[�,�(D∗)]

is the gauge transformation of a gauge potential.

The above expression is found by mapping $ ↦→ $D on the operator
�$ after $! and $' have been identified. For the sake of consistency,
one should check that the same result applies for gauge transforming
both left and right gauge potentials separately, and indeed this does
prove to be the case, though we will not give the proof here.

Similar to the standard case, the gauge transformation of the Dirac
operator can be implemented using the operator which implements
gauge transformations of the Hilbert space (4.18). The difference is
that we require not just the operator for the adjoint action, but also theDirac operators

obtained as the gauge
transformations of a
non-fluctuated Dirac

operator are often
referred to as being

pure gauge.

corresponding operator for the twisted adjoint action (4.19).

Lemma 4.17. Let (�,ℋ , �, (� , �)) be a spectral triple with twisted real
structure. For any D ∈ U(�) it holds that

Ãd(D)�Ad(D)−1 = � + �(D)[�,�(D∗)] + �′���(D)[�,�(D∗)]�−1�.
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Proof. The proof is given by a straightforward computation (we sup-
press representations for brevity):

Ãd(D)�Ad(D)−1 = D��−1D��−1���D∗�−1�−1D∗

= �′D��D�D∗�−1�D∗

= �′D��(� + D[�, D∗])�−1�D∗

= D�D∗ + �′D��D[�, D∗]�−1�D∗

= � + D[�, D∗] + �′D��D[�, D∗]�−1�D∗.

Now all that remains is to massage the final term on the right hand
side:

�′D��D[�, D∗]�−1�D∗ = �′����−1D��D[�, D∗]�−1�D∗���−1�

= �′��(��−1D��−1)D[�, D∗](��D∗�−1�−1)�−1�

= �′��D[�, D∗](��D�−1�−1)(��D∗�−1�−1)�−1�

= �′��D[�, D∗]�−1�,

thus giving the claimed result. Note that on the third line, we have
used (2.3) and (2.8). �

Proposition 4.18. Let (�,ℋ , �, (� , �)) be a spectral triple with twisted real
structure, and consider a fluctuated Dirac operator�$ = �+$+�′��$�−1�.
Then for any D ∈ U(�), one has

Ãd(D)�$ Ad(D)−1 = � + $D + �′��$D �−1�,

with the gauge transformed $D given as above.

Proof. Without loss of generality, we can take $ = 0[�, 1], where we
are again suppressing representations for brevity. In that case, we have

Ãd(D)$Ad(D)−1 = D��−1D��−10[�, 1]��D∗�−1�−1D∗

= D0[�, 1](��D�−1�−1)(��D∗�−1�−1)D∗

= D0[�, 1]D∗ = D$D∗ ,

anda slightlymore involved (but not qualitativelydifferent) calculation
gives

Ãd(D)(�′��$�−1�)Ad(D)−1 = �′D��−1D��−1��0[�, 1]�−1���D∗�−1�−1D∗

= �′D��D0[�, 1]D∗�−1�D∗

= �′����−1D��D0[�, 1]D∗�−1�D∗���−1�

= �′��(��−1D��−1)D0[�, 1]D∗(��D∗�−1�−1)�−1�

= �′��D0[�, 1]D∗(��D�−1�−1)(��D∗�−1�−1)�−1�

= �′��D0[�, 1]D∗�−1� = �′��D$D∗�−1�.

Collecting these results and combining with Lem. 4.17, one finds the
claimed result. �
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Proposition 4.19. Let (�,ℋ , �, (� , �), ") be an even spectral triple with
twisted real structure. Then for any D ∈ U(�), the gauge transformation of
the spectral triple by D is characterised by the following operator actions:

+̃�(0)+̃−1 = +�(0)+−1 = �(D0D∗), (4.23)
+# = #D (4.24)

+̃�+−1 = �D , (4.25)
+̃"+̃−1 = +"+−1 = ", (4.26)

+̃��+̃−1 = �� , (4.27)
+��+−1 = ��, (4.28)

for all 0 ∈ � and +̃ B Ãd(D) = �(D)��−1�(D)��−1 and + B Ad(D) =
�(D)���(D)�−1�−1.

Proof. We have that +# = #D from the definition of gauge transforma-
tions. This is also true of �(0)D = �(D0D∗), which one checks is given
by conjugation by both+ and +̃ by computation. That +̃�+−1 = �D is
given by Prop. 4.18. All of the other relations are obtained by straight-
forward computations. �

The invariance of " under both + and +̃ nicely dovetails with
the gauge transformations of � and �, which follows from the ear-
lier constructions (specifically, " must commute with � and anticom-
mute with �). However, it is curious that the Dirac operator does
not generally respect gauge transformations on the Hilbert space, e.g.
�D#D = +̃�+−1+# = +̃�# ≠ (�#)D when +̃ ≠ + . The meaning of
this is not entirely clear, although given that the choice of right�-action
(4.8) was not unique (we could equally have chosen #0 B 0⊕#), it may
be a hint that our construction of Morita equivalence is in some way
half-complete, and that we should have two gauge transformations,
one for each twist (or perhaps even for an infinite number of twists
coming from �̃= , = ∈ ℤ). However, as the construction presented in
this thesis is sufficient for our purposes, we leave this possibility for
further investigation.
Another interesting point is that the reality operator � (and hence

the twist operator �) does not individually obey any invariance with
respect to + , +̃ , or their inverses, as we might hope. However, the pair
of equations (4.27) and (4.28) do make sense as the weakest way of
ensuring (4.25) is compatible with (2.9). The most natural inference
from the pair (4.27) and (4.28) is to accept that there is a covariance
instead of an invariance, in which case we should define �D = +�+̃−1

and �D = +̃�+−1. But in that case �D can only possibly be a reality
operator if � is both self-adjoint and unitary (up to sign). This should
be borne in mind for the following subsections.
It is of course also important to note that, for * B �(D)��(D)�−1,

when � = 1 (the trivially-twisted case) or ��(D)�−1 = �(D) for all
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D ∈ U(�), we have that +̃ = + = * and +−1 = +̃−1 = *† and all of the
above relations reduce to the familiar ones for unitary equivalences of
spectral triples.
Remark 4.20. A curious observation is that when D is permitted to re-
main invariant under �̂, or equivalently, we request that [�,�(D)] = 0,
we see that +̃ reduces to�(D)��(D)�−1 and+−1 to�(D∗)��(D∗)�−1, which
are simply the familiar unitary operatorswhich implement gauge trans-
formations in the trivially-twisted case. This is interesting because in
principle the remainder of the twisted real structure remains intact,
unlike in the case of Prop. 2.12, for example. That said, it is likely In the case of Prop.

2.12, the spectral
triple with twisted
real structure
(� , � = ±�∗ = ±�−1)
is equivalent to the
trivially-twisted
spectral triple with
real structure
J = ��. Unitary
equivalence would
then be restored
automatically with
+ =U forU =

�(D)J�(D)J−1.

not practical to impose such invariance, as it would almost surely be
far too restrictive on either the available twists or the usable unitary
elements. �

4.3.3 Self-adjointness of the Dirac operator

In the trivially-twisted case, for* B �(D)��(D)�−1, a gauge transforma-
tion preserves the self-adjointness of the Dirac operator automatically.
The transformed operator �$D = *�$*

† is self-adjoint if and only if
�$ is, since * is unitary, and so a gauge transformation yields a spec-
tral triple which is unitarily equivalent to the former. This is no longer
necessarily true when the real structure is twisted. We now investigate
the cases in which it is.
Lemma 4.21. If (�,ℋ , �, (� , �)) is a spectral triple with twisted real struc-
ture, and�D is the Dirac operator obtained from� by a gauge transformation
by the unitary element D ∈ U(�) then

� = ±�†

is a sufficient condition for �D = (�D)†.

Proof. FromLem. 4.17weknowthat�D = +̃�+−1 for +̃ = �(D)��−1�(D)��−1

and+−1 = �(D∗)���(D∗)�−1�−1. Since � is self-adjoint by the definition
of a Dirac operator, we therefore have that �D = (�D)† is given by
+̃�+−1 = (+−1)†�+̃† or, expressed more fully,

D��−1D��−1���D∗�−1�−1D∗ = D�(�−1)†D�†�−1���†D∗(�−1)†�−1D∗.

It is clear from simple substitution that � = ±�† satisfies this equation.
�

Note that when � = ±�†, one has that +̃† = +−1 and +† = +̃−1.
Remark 4.22. The requirement that the twist operator be self-adjoint Recall that

�̃(0∗) = (�̂−1(0))∗
and �̃ ≡ �̂ exactly
when �† = � (up to
sign), see also the
comment on p.19 for
a different
interpretation.

(up to sign) is well-motivated by comparison to the literature on (real)
twisted spectral triples, where it is equivalent to the common require-
ment (going back to Ref. [21]) that �(0∗) = (�−1(0))∗, where � is the
twisting algebra automorphism (� can be seen as very roughly analo-
gous to �̂2 or �̃2 in the twisted real structure context, though of course
the frameworks differ). �
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Proposition 4.23. Let (�,ℋ , �, (� , �)) be a spectral triple with twisted
real structure, with �$ the Dirac operator obtained by fluctuating � by a
1-form $ ∈ Ω1

�
(�) and �D

$ the Dirac operator obtained from �$ by a gauge
transformation by the unitary element D ∈ U(�). Then, for � = ±�†,

$ = $†

is a sufficient condition for �D
$ = (�D

$)†.

Proof. We begin by considering the Dirac operator �$ = � + $ +
�′��$�−1�. As � is self-adjoint by assumption, the self-adjointness of
�$ is guaranteed by the condition that

$ + �′��$�−1� = $† + �′�†�$†�−1�†.

Taking � = ±�†, this can be rewritten

($ − $†) + �′��($ − $†)�−1� = 0,

which is clearly satisfied when $ = $†.
By Thm. 4.16, �D

$ = �$D where $D = �(D)$�(D∗) + �(D)[�,�(D∗)].
The same reasoning therefore applies with $D replacing $, and so �D

$

will be self-adjoint when � = ±�† and $D = ($D)†. However, $ = $†

immediately implies $D = ($D)†. �

Strictly speaking, it is not necessary to take � = ±�† for the twisted
real structure formulation to be fully self-consistent. For example, in
the case of the trivial Dirac operator � = 0, which also has trivial
fluctuations, one is free to take a non-self-adjoint twist operator. How-
ever, as we are interested in the general case, assuming self-adjointness
(up to sign) proves to be the only really practical option to guarantee
everything will work.

4.4 the fermionic and bosonic action functionals

In light of the results of the previous subsection, from here on we
will take � = 
1�† for 
1 ∈ {−1,+1}. When considering twisted real
structures, we have no reason to expect that the standard bilinear
form which gives the fermionic action A�(#, !) B 〈�#, �!〉, where
#, ! ∈ Dom(�), should still hold unchanged. Indeed, in the setting of
twisted real structures, this bilinear form fails to be suitably symmetric
or antisymmetric; we find

A�(#, !) = 〈�#, �!〉
= �

〈
�#, �2�!

〉
= �〈��!,#〉
= ��′

〈
�−1���!,#

〉
= ��′

〈
�!, �−1†�†�−1†#

〉
(4.29)
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which is not equal to A�(!,#) (up to sign) unless � = ±�−1�†�−1,
which is not true in general.

Therefore our first task is to see if we can construct an alternative
bilinear form which is gauge-covariant, and indeed, this can be done:

Lemma 4.24. Let � be a linear operator. Then the bilinear form

Ã�(#, !) B 〈��#, �!〉, (4.30)

where 〈•, •〉 is the inner product on the Hilbert spaceℋ , is gauge-covariant
and is correctly (anti)symmetric for the appropriate KO-dimension. The (anti)symmetry

of the form is
important when
interpreting the
bracket in the
physical context of
the Grassmann
nature of fermion
fields.

Proof. That the bilinear form be gauge-covariant is equivalent to re-
quiring that it satisfies

Ã�(#, !) = Ã�D

(
Ad(D)(#),Ad(D)(!)

)
.

Using the notation + B Ad(D) = �(D)���(D)�−1�−1 and +̃ B Ãd(D) =
�(D)��−1�(D)��−1, one finds this is equivalent to the requirement that

〈��#, �!〉 = 〈��+#, �D+!〉
=

〈
��+#, +̃�+−1+!

〉
=

〈
�+#, +̃�!

〉
,

which in turn is equivalent to requiring that

+̃†��+ = ��,

which one can easily compute to be true. The (anti)symmetry of the
bilinear form can also be verified by computation. Assuming that � is
self-adjoint, we have

Ã�(#, !) = 〈��#, �!〉
= �

〈
��#, �2�!

〉
= �〈��!, �#〉
= 
1�〈���!,#〉
= 
1��

′〈���!,#〉
= 
1��

′〈��!, �#〉
= 
1��

′Ã�(!,#),

which can always be made to have the same sign as in the untwisted
case (for example, by setting 
1 = +1). �

Remark 4.25. Equation (4.30) can be written in the form Ã�(#, !) =

1

〈
�#, �−1�!

〉
, which allows one to draw an analogy to the work pre-

sented in Ref. [33], wherein the authors define the sesquilinear form
〈#, !〉� B 〈#, '!〉 for a linear operator ' = '† = '−1 implementing
the algebra automorphism �(•) B '(•)'†. However, for present pur-
poses it is preferable to keep the reality operator and twist together, so
we choose not to use a similarly modified bracket in this chapter. �
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The main consequence of Lem. 4.24 is the following:

Proposition 4.26. The appropriate form for the fermionic action functional
for spectral triples with twisted real structure is

(�[�,#] B
〈
��#̃, �#̃

〉
, (4.31)

where #̃ is the Grassmann variable corresponding to# ∈ {! ∈ ℋ : "! = !},
which is well-defined and gauge-covariant when � = �† and � = 
1�† and
is antisymmetric in KO-dimension 2 (mod 8) when 
1 = +1.

The case for the bosonic action

(�[�] = Tr
(
5

(
�

Λ

))
for Λ ∈ ℝ is less neat. The action should be invariant with respect to
gauge transformations of the Dirac operator, but it is not difficult to
see that �D need not have the same spectrum as � in general, whichIf �# = �#, we

have �D#D =
+̃�+−1+# =

�+̃# ≠ �#D (see
Prop. 4.19).

is a problem. The simplest fix for this is to require � = ±�−1, which
ensures � and �D have the same spectrum (as then +̃ = +), but one
must be careful not to run afoul of Prop. 2.12. This also means that,
unfortunately, we cannot in general take the gauge transformation of
a conformally transformed real spectral triple if we wish to compute a
meaningful bosonic action.

4.5 the standard model and beyond

Having gone to the effort of constructing a consistent formulation of
gauge transformations using twisted real structures, the natural thing
is to try to put it to work. As we found in §4.3.3, we require � = ±�†
to ensure that fluctuations of the Dirac operator are self-adjoint, and
doing so then means we require � = ±�† to ensure the bosonic action
is well defined. Unfortunately, the requirement that � = 
1�† = 
2�−1

for 
1 , 
2 ∈ {−1,+1} is very restrictive. Certainly, at the very least, it
forces the twist to be mild, such that (2.8) simplifies to (2.4). Even so, it
is worth exploring the realm of applicability.
The first place to look for something new is the Standard Model,

or at least, the finite part of its spectral triple. We would like to keep
the spectral data (�SM ,ℂ

96 , �SM , �� , "�) unchanged, as they all carry
quite neat physical interpretations, but it is not difficult to see that this
does not leave much room for adding a twist that does anything. For
one thing, consider how one should simultaneously satisfy ����SM =

�SM��� and ���SM = �SM�� for a nontrivial �.
The next place to look, as suggested in §4.1, is the Pati-Salam model

of Ref. [11], which takes for its spectral data

(�LR ,ℂ
96 , �SM , �� , "�). (4.32)
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It is well known that �LR does not respect the first-order condition
with respect to �SM and ��, so there might be room for a twisted first-
order condition to hold instead. But first we will briefly summarise the
approach of Ref. [11].

4.5.1 Discarding the first-order condition

The solution to theproblem that thefirst-order condition is not satisfied
which is offered by Ref. [11] is to discard the first-order condition
altogether. This can be done, as explained in Ref. [12], by changing the
way the Dirac operator fluctuates, so that if one wants to fluctuate a
Dirac operator � by a 1-form $ =

∑
8 �(08)[�,�(18)], 08 , 18 ∈ A, rather

than use (4.1), one instead takes

�$ =
∑
8

�(08)[�,�(18)] +
∑
8

��(08)�−1 [�, ��(18)�−1]
+

∑
8 , 9

��(08)�−1�(0 9)
[ [
�,�(1 9)

]
, ��(18)�−1] , (4.33)

the substantial difference being the inclusion of the final non-linear
‘quadratic’ correction term, which of course goes to 0 when one as-
sumes (2.4) holds.
This quadratic term, which we will denote $(2), then gauge trans-

forms under the rule

$D
(2) = ��(D)�

−1$(2)��(D∗)�−1+ ��(D)�−1 [�(D)[�,�(D∗)], ��(D∗)�−1] .
Though Ref. [11] demonstrates that the presence of the quadratic term
does not lead to anything radical in terms of the particle content of the
theory, that is not to say that we should not tread carefully; the sacrifice
of the first-order condition means the Dirac operator can no longer be
considereda (noncommutative) first-orderdifferential operator. This in
particularmay be considered too high aprice to pay to push the bounds
of applicability of the noncommutative approach to gauge theory, and
so we investigate as an alternative if the above described weakening of
the first-order condition provided by a twisted real structure might
serve to obtain some alternative noncommutative description of the
Pati-Salam model.

4.5.2 Spectral triples with multitwisted real structure

The trouble with this approach is that, as we have seen, for the bosonic
spectral action to make sense, we need � = ±�−1 which reduces
the twisted first-order condition to the ordinary first-order condition,
which we already know does not hold for (4.32). A loophole is pro-
vided by the proposed spectral triples with multitwisted real structure
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of Ref. [32]. To briefly recapitulate, one decomposes the Dirac operator
such that

� =
∑
ℓ

�ℓ , ℓ ∈ {1, 2, . . . , #},

and to each component �ℓ one associates a twist operator �ℓ . There-
fore, practically speaking, one replaces � in all of the definitions for a
twisted real structure with �ℓ and � with �ℓ , additionally replacing
the zeroth-order condition (2.3) with the multitwisted zeroth-order
condition (2.16)[

�(0), ��ℓ�(1)�−1
ℓ �−1] = 0 =

[
�(0), ��−1

ℓ �(1)�ℓ �−1] (4.34)

for all ℓ , and replacing the twisted first-order condition (2.8) with the
multitwisted first-order condition (2.17)

[�ℓ ,�(0)]��ℓ�(1)�−1
ℓ �−1 = ��−1

ℓ �(1)�ℓ �−1[�ℓ ,�(0)] (4.35)

for all ℓ . These last two changes are not trivial (even when # = 1)
becausewe also nowno longer require that �ℓ�(�)�−1

ℓ
' �, and instead

only require that conjugation by �ℓ is an automorphism of ℬ(ℋ).
It is clear that one cannot start from the multitwisted perspective

and proceed via the path we have carved out above. For one thing, the
formulation of Morita equivalences provided in §4.2 clearly will not
carry over directly, as this would require some abstract decomposition
of connections which would be hard to account for, amongst other
difficulties. However, for our purposes, Morita equivalence is only
necessary for developing a framework of gauge transformations for
spectral triples as given in §§4.3–4.4, which can be expressed wholly
in terms of operators. Once these definitions have been laid out, they
can be extended in an entirely analogous fashion to that of extending
spectral triples with twisted real structures to spectral triples with
multitwisted real structures described above, i.e. everywhere replacing
� ↦→ �ℓ and � ↦→ �ℓ .
While it is reasonably straightforward to write down new gauge

transformations for the multitwist, it should be remarked upon that
this process is not always trivial. For example, suppose

Ω1
�(A) 3 $ = �(0)[�,�(1)] = �(0)

[∑
ℓ

�ℓ ,�(1)
]
=

∑
ℓ

�(0)[�ℓ ,�(1)].

The only way to make sense of an equivalent version of the map
$ ↦→ $� is by defining

$� B
∑
ℓ

�ℓ ��(0)[�ℓ ,�(1)]�−1�ℓ ,

but unlike $, this $� cannot be derived from any object built from
the complete Dirac operator �; for example, the fluctuation � ↦→
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�′ =
∑
ℓ (�ℓ + 0[�ℓ , 1]±

∑
: �: �0[�ℓ , 1]�−1�:)would not satisfy �ℓ ��′ℓ =

±�′
ℓ
��ℓ except when : = ℓ .

Thus there are two ways in which the spectral Pati-Salam model
might be (re)constructed using multitwisted real structures: one is
that even for a single twist (# = 1), we have a broader selection of
twists to work with than earlier assumed, and of course the other is
the possibility to try to use multiple twists (# > 1).

4.5.3 The Pati-Salam case (shown with a toy model)

Thematrices involved in the (finite part of the) spectral Pati-Salam case
are quite large and unwieldy, and thus difficult to express written out
in full. However, many of the issues that come up when working with
them also arise in the simpler toy model given in Ref. [12], and so for
demonstrative purposes we will largely present that case instead. We
take for the algebra �toy = ℂ! ⊕ ℂ' ⊕ "2(ℂ), represented as matrices
acting on the Hilbert space ℂ8 by

� : (�! ,�' , ") ↦→ (diag(�! ,�') ⊗ 12) ⊕ (12 ⊗ ").

The real structure is then given by � =
(

0 14
14 0

)
◦ ∗. Next we consider the

Dirac operator �, which is given by

� =

(
( )†

) (∗

)
where ( =

(
0 :G
:∗G 0

)
⊗ 12 and ) = diag(:H , 0, 0, 0). With respect to this

Dirac operator, the ordinary first-order condition (2.4) is only satisfied
for the ‘symmetry-broken’ subalgebraℂ!⊕ℂ'⊕ℂ0 ⊂ �toy. Firstwewill
briefly investigate if it is possible to satisfy the multitwisted first-order
condition (2.17) for the unbroken algebra �toy instead.
We start by considering matrices which, for the sake of notational

ease, we call �+
ℓ
B ��ℓ�(1)�−1

ℓ
�−1 and �−

ℓ
B ��−1

ℓ
�(1)�ℓ �−1 for 1 ∈ �toy,

all of which must be elements of �(�toy)′ in order to satisfy (2.16). As
such,�±

ℓ
must take the form<⊕=⊕diag(�1 , �1 , �2 , �2) for<, = ∈ "2(ℂ),

�1 , �2 ∈ ℂ. The question then is whether we can identify some oper-
ator(s) �ℓ which would allow us to obtain �±

ℓ
from a given 1 ∈ �toy.

Assuming we have # = 1 twists, it is not difficult to compute the
1-forms [�,�(0)], 0 ∈ �toy, and it is with respect to such 1-forms we
can try to impose the usual twisted first-order condition (2.8), i.e. we
demand that [�,�(0)]�+ = �−[�,�(0)]. Doing so further restricts �±
to be of the form

�+ =

(
<+11 0
<+21 <+22

)
⊕

(
�+1 =+12
0 =+22

)
⊕ diag(�+1 , �

+
1 , �

+
2 , �

+
2 ),

�− =

(
�+1 =+12
0 =+22

)
⊕

(
<+11 0
<+21 <+22

)
⊕ diag(<+11 , <

+
11 , �

−
2 , �

−
2 ),

(4.36)
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where we have tried to express everything in terms of elements of �+.
Even relaxing the requirement that �2 = 1 (in which case �− = �+),

reading off (4.36) there is a strong suggestion that �2 be given by a pair
of blockwise flips (on the first and last pairs of 2×2 blocks respectively),
but in that case one must still make the identifications �+2 = <+11 and
�−2 = �+1 , which necessarily breaks the algebra �toy down to a subal-
gebra. Not imposing those identifications, it is not at all clear what (or
if any) � can be found to relate �− to �+. When �2 = 1 however, it is
immediately clear that �toy breaks to ℂ3.

The ultimate reason for this breaking of the algebra is ) being
nonzero; thus, if multitwists are to be applicable, it would make sense
to decompose � into �1 = ( ⊕ (∗ and either

�2 =

(
0 )†

0 0

)
and �3 =

(
0 0
) 0

)
,

or �23 B �2 + �3. Using the same method as before we find that, as
expected, the ℓ = 1 case is well behaved, but the same cannot be said
for the other components.

Proposition 4.27. The requirement that (�toy ,ℂ
8 , �1+�23 , (� , {�1 , �23})),

with twist operators satisfying �2
1 = �2

23 = 1, be a multitwisted spectral triple
breaks the algebra �toy to ℂ3.

Proof. Since we are taking �2
1 = �2

23 = 1, all twisted commutators be-
come ordinary commutators. This means we can directly apply [22,
Prop. 4.1] to each component of the Dirac operator (with the associated
twist), but instead taking themap (•)◦ of Ref. [22] tomean �ℓ ��(•)�−1�ℓ
for a given ℓ ∈ {1, 23} (which takes the algebra to its commutant thanks
to the twisted zeroth-order condition (2.16)).
Thus, focusing on the second component, we have that �23 satisfies

the twisted first-order condition if and only if it decomposes into

�23 = �23,0 + �23,1

for�23,0 ∈ (�23��(�toy)�−1�23)′ and�23,1 ∈ �(�toy)′. However,we know
the shape of �23, and so we know that no nonzero part of it lies within
�(�toy)′, and so we must have �23,1 = 0. This means we must have[

�23 , �23��(0)�−1�23
]
= 0 (4.37)

for all 0 ∈ �toy.
Now, by the definition of a spectral triple with multitwisted real

structure we should have �23��23 = �′�23��23. However, we know that
��23 = �23�, which implies that �23 = ±�23�23�23. Substituting this
into (4.37) gives

�23
[
�23 , ��(0)�−1]�23 = 0,

but this is only true when 0 lies within the symmetry-broken subalge-
bra ℂ3. �
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Indeed, the above argument carries over in exactly the samemanner
for the full Pati-Salam case, making the appropriate replacements, i.e.
replacing �23 by the block off-diagonal part of �SM, �toy by �LR (the
symmetry-broken subalgebra of �LR being �SM), and the other data
by their higher-dimensional equivalents.
While this doesn’t in principle rule out the 2-twisted case (since the

decomposition of the Dirac operator is not unique), it does eliminate
the most promising candidate. For the 3-twisted case with the decom-
position we described before, Prop. 4.27 carries over with only minor
modifications.

Proposition4.28. The requirement that (�toy ,ℂ
8 , �1+�2+�3 , � , {�1 , �2 , �3}),

with twist operators satisfying �2
1 = �2

2 = �2
3 = 1, be a spectral triple with

multitwisted real structure breaks the algebra �toy to ℂ3.

Proof. The preliminaries carry over exactly as in Prop. 4.27. Now, we
focus on�2 and�3, beginningwith�2. By [22, Prop. 4.1], we have that
�2 satisfies the twistedfirst-order condition if andonly if it decomposes
into

�2 = �2,0 + �2,1

for �2,0 ∈ (�2��(�toy)�−1�2)′ and �2,1 ∈ �(�toy)′. However, as before
we know that �2,1 = 0. This means we must have[

�2 , �2��(0)�−1�2
]
= 0 (4.38)

for all 0 ∈ �toy.
Now, by the definition of a multitwisted real structure, we should

have �2��2 = �′�2��2. However, we know that ��2�
−1 = �3, which

implies that �2 = ±�2�3�2. Substituting this into (4.38) gives

�2
[
�3 , ��(0)�−1]�2 = 0. (4.39)

Going through the same procedure for �3 yields

�3
[
�2 , ��(0)�−1]�3 = 0, (4.40)

and the pair of equations (4.39) and (4.40) can only be satisfied when
0 lies within the symmetry-broken subalgebra ℂ3 as before. �

One further point which is worth remarking upon is that the Dirac
operator for this toy example is not simpler than theStandardModel/Pati-
Salamcaseonlydue to the lowerdimensionality.With respect to agiven

choice of basis, one has �SM =

(
(SM )†SM
)SM (∗SM

)
where

(SM =

©­­­­­«
0 0 :†� 0
0 0 0 :†4
:� 0 0 0
0 :4 0 0

ª®®®®®¬
⊕

3⊕
8=1

©­­­­­«
0 0 :†D 0
0 0 0 :†

3

:D 0 0 0
0 :3 0 0

ª®®®®®¬
, )SM =

(
:�' 01×15

015×1 015×15

)
,
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and all entries are in "3(ℂ). Taking :� = :D and :4 = :3 is calledNote that the
matrices :8

(8 = �, 4 , D, 3, �')
are not arbitrary

elements of "3(ℂ),
but are subject to

further constraints
which we will not go

into here. See Ref.
[20] for more.

quark-lepton coupling unification, and this simplifies the mathematics
significantly. For example, if one takes )SM = 0 and assumes quark-
lepton coupling unification, then it is not particularly difficult to find
twists (not dissimilar to the toy model case). However, even taking
)SM = 0, without quark-lepton coupling unification this task becomes
much more difficult. This is unfortunate because the model is defined
at the gauge couplingunification scale, and somaking such simplifying
assumptions is likely to impose strong constraints on the physics up to
that scale, and so ought to be avoided unless absolutely necessary.

4.5.4 Other issues and future directions

It is worth mentioning here that even apart from the above discussion,
there are other issues worth mentioning in this context. Even if we
had found twist(s) which recovered some twisted first-order condition,
such twists would likely not be of much physical interest. The reason
comes from (4.31) and the fact that �SM is the fermionic mass matrix.
Ordinarily, the Dirac/Majorana mass terms in the action come from
the fermionic spectral action of the unfluctuated Dirac operator

〈��#, �SM#〉,

but now in the multitwisted case it seems that this should be replaced
by ∑

ℓ

〈���ℓ#, �ℓ#〉,

where here
∑
ℓ �ℓ = �SM specifically.

If we would like to maintain the physical relevance of the model, it
would likely be necessary to instead use some

�′ℓ B �ℓ �� or �′ℓ B 
1�ℓ�ℓ

instead of �� or �ℓ respectively (where �ℓ = 
1�†ℓ for all ℓ ). These bothNote that Prop. 2.12
does not hold in the

multitwisted
formalism, but it is
worth keeping track
of signs nevertheless.

have problems though.
The choice of �′

ℓ
seems initially preferable to �′

ℓ
, as �ℓ �′ℓ�ℓ = �ℓ �

′
ℓ
�ℓ

automatically gives ���SM = �SM�� provided that �ℓ = �−1
ℓ

(for all ℓ ).
However, this neatness is telling, and indeed one finds that using �′

ℓ

reduces the multitwisted first-order condition (2.17) to the first-order
condition (2.4) with �� in this case, andwe already know that (2.4) does
not hold for �LR.
If we use �′

ℓ
instead, we run into the different issue that we already

require (by definition) that
∑
ℓ �ℓ = �SM, but in order to have the

correct action we would also need
∑
ℓ �
′
ℓ
= 
1

∑
ℓ �ℓ�ℓ = �SM, which

needless to say also makes it difficult to have nontrivial twists.
The above investigation seems to leave little space for the application

of twisted real structures to the spectral formulation of the left-right
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symmetric extension to the Standard Model, as they simply result in
a reduction to the Standard Model. Is there any more that could be
done? We suggest two possible avenues.

One approach could be to try to marry the (multi)twisted real struc-
ture formalism to the twisted spectral triple approach to the Standard
Model and its extensions, which is an active area of research (see e.g.
Refs. [35, 51] and subsequent papers). While the cited papers focus
on twisting the (doubled) commutative part of the spectral triple, it
might be worthwhile in this possible ‘hybrid twisted’ setting to investi-
gate twists on the finite part, or even on both. We leave this long-term
endeavour for future investigation.
Another ideawhich shifts perspective away from thefinite part of the

spectral triple and towards the commutative part instead is to attempt
to follow more closely in the direction of Ref. [33] and investigate if
twisted real structures could have any applications to Lorentzian spec-
tral triples, for example, by using the ‘untwisting’ procedure described
in Ref. [8]. This is a line of inquiry which we will follow in the next
chapter.





5
KRE IN STRUCTURE FROM TWISTED REAL
STRUCTURES

5.1 introduction

Pseudo-Riemannian manifolds, also known as semi-Riemannian man-
ifolds, are smooth manifolds whose metric is nondegenerate but not
necessarily positive-definite, as is the case for Riemannian manifolds.
A useful concept in this context is metric signature, the number of pos-
itive and negative eigenvalues of the metric tensor with respect to
an orthonormal basis. For an =-dimensional manifold, the most inter-
esting signatures are Euclidean (=, 0) ≡ (0, =) (when the manifold is The metric

signatures (?, @) and
(@, ?) are not always
strictly equivalent,
but they typically are
for practical
purposes and so the
choice comes down to
convention.

Riemannian) and Lorentzian (1, =−1) ≡ (=−1, 1), especially in physical
contexts. As such, we will focus exclusively on these two cases, and
hence use “pseudo-Riemannian” and “Lorentzian” (and “Riemannian”
and “Euclidean”) interchangeably, with the understanding that this is
just a synecdoche.
In quantum mechanics and quantum field theory, one often finds

that the equations of motion are much more tractable (or even only
well-defined) in Euclidean space compared to Minkowski space (ℝ= ,
usually = = 4, equippedwith ametric ofLorentzian signature). In order
to solve the equations of motion, then, one analytically continues the
time coordinate to ‘imaginary time’ C ↦→ 8Cℑ and solves the equations
in the Euclidean space (Cℑ , G 9) before substituting real time back in to
return to the Minkowski space setting. This procedure is known as
Wick rotation.

It was explained in Ch. 4 that with the framework of spectral triples,
a physically relevant class of gauge theories (which includes the Stan-
dard Model) is expressed very naturally as a kind of generalised
Kaluza-Klein theory, where the (classical) gauge theory on curved
space is expressed as a gravitational theory on the product of a Rie-
mannian manifold and a discrete space in a certain sense [21]. As
described, the mathematical object for this product is known as an
almost-commutative spectral triple.
This provides a strong motivation for broadening the noncommu-

tative geometric framework to include not merely Riemannian but
pseudo-Riemannian geometry, as since the advent of relativity, sepa-
rate notions of (Euclidean) space and time have been superseded by
spacetimes, modelled as pseudo-Riemannian manifolds of Lorentzian
signature which are essential for describing gravity. However, there
are a number of barriers to making this leap, both technical and philo-
sophical – for example, should one treat Euclidean signature as funda-

85
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mental and try to obtain Lorentzian equations of motion emergently
from spectral triples, or instead attempt to generalise the notion of a
spectral triple to describe pseudo-Riemannian geometries?

We will not give a comprehensive overview of the literature, butA good sketch of the
many different

approaches that have
been made towards
pseudo-Riemannian

noncommutative
geometry can be

found in the
references of

Ref. [64].

there have been a number of attempts made at the latter approach,
beginning with Ref. [58] which proposed a systematic approach to
Lorentzian spectral geometry based on replacing Hilbert spaces with
Krein spaces, that is, inner product spaceswith nondegenerate (but not
necessarily positive-definite) inner product. Other attempts have since
been made, with varying degrees of difference to Connes’ spectral
triples, but the general schema based on Krein spaces remains the
same.

Since no proposal for pseudo-Riemannian spectral geometry has
reached universal consensus, a number of attempts have been made
to link Krein space-based approaches to the mathematically sound
footing of spectral triples by performing a kind of algebraic Wick rota-
tion, typically by starting with the pseudo-Riemannian generalisation
although occasionally going the other way (sometimes called ‘reverse
Wick rotation’, although more commonly just referred to as Wick rota-
tion for brevity, which we will also do here). This has been attempted
at the very abstract level of KK-theory [65, 66], the very concrete level
of vielbeins [25], and at the level of operators in between.Vielbeins are more

commonly known in
geometry as ‘solder
forms’. In the = = 4

case, they are usually
called vierbeins or

tetrads.

This context is is why the results of §4.4 are especially interesting
when considering pseudo-Riemannian geometry; if one considers an
almost-commutative spectral triple equipped with a twisted real struc-
ture whose twist operator is self-adjoint and unitary up to sign, the
requirement that its Hilbert space’s inner product is suitable for giv-
ing the fermionic action for a gauge theory is the Krein-self-adjointness
of the Dirac operator, and if the Dirac operator is self-adjoint, then the
inner product needs to be changed into a Krein space inner product.
Since the initial data are Euclidean by assumption, there is a hint that
it may be possible to obtain some notion of Wick rotation to a pseudo-
Riemannian spectral triple of some description automatically.

Such a possibility is not outlandish to consider; one of the original
motivations behind twisted real structures is in being a way to imple-
ment conformal transformations of the metric in a way that could be
extended to the noncommutative case [7]. In that context, one starts
with a spectral triple (�,ℋ , �) equipped with a real structure �, and
defines its conformal transformation to be the spectral triple(

�,ℋ , � :�−1��:�−1 , (� , :−1�:�−1)
)

for : ∈ � positive and invertible, equipped with the twisted real struc-
ture (� , :−1�:�−1). Thus, twisting the real structure allows one to trans-
late into the noncommutative setting a transformation which corre-
sponds to a particular modification of the metric in the commutative
setting. Wick rotations, which change the metric signature, are not
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transformations of the metric in the same way that conformal transfor-
mations are, but given they both modify the metric in some way, it is
not unreasonable to consider that twisted real structures may likewise
provide a pathway to implementing noncommutative Wick rotations.

We hypothesise that the right starting point is to consider a twist
operator based on a fundamental symmetry, a self-adjoint and unitary
operator which can be used to turn a Hilbert space into a Krein space;
themathematical preliminarieswill be introduced in §5.2, andan initial
discussion will follow in §5.3. In §5.4 we take a different tack and
attempt to obtain a twisted real structure from the minimally-twisted
spectral triple before reverting in §5.5 to attempting to work from first
principles.

5.2 definitions

In this section we collect the various definitions and notations we will
need for this chapter.
Where there is a distinction between the Euclidean and Lorentzian

version of certain objects, we will distinguish them by ‘�’ and ‘"’
subscripts respectively. The choice of ‘"’ (from ‘Minkowski’) for the
Lorentzian case is to match the literature, where an ‘!’ subscript could
be confused with e.g. ‘left parity’. We will use the convention that the
zeroth gamma matrix �0 is identical in the Euclidean and Lorentzian
cases and so will not decorate it with a subscript.

5.2.1 Spectral triples with multitwisted real structure

In the commutative case, the algebra of coordinate functions being uni-
tal implies that themanifoldgivenby the spectral triple is compact. This
should generally be avoidedwhen considering pseudo-Riemannian ge-
ometries on physical grounds to avoid the presence of closed timelike
curves. However, as the work presented here is only a preliminary in-
vestigation focussing primarily on algebraic aspects, we overlook this
complication, and work with unital algebras to keep the presentation
as tractable as possible.
A major point of departure from the previous chapters of the thesis

is that we will no longer assume that (multi)twisted real structures
will be regular. Rather, we will require a weaker ‘signed’ version of We express signed

regularity in the
language of
multitwisted real
structures since
when there is only a
single twist the
relevant equations
are equally suitable
for twisted real
structures.

regularity which we here introduce,

�: ��: = �′′′: � , �′′′: = ±1. (5.1)

In this case, (2.15) implies that

�: = �′�′′′: �: ��: �
−1�: (5.2)
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which means that fluctuations of the Dirac operator will take the form

� ↦→ � + $ + �′
#∑
:=1

�′′′: �: �$: �
−1�: (5.3)

for $: =
∑
9 0 9

[
�: , 1 9

]
and $ =

∑
:∈� $: . Note that, when �: = 
:�−1

:
,


: = ±1, itmaybemore convenient toworkwith the equivalent relation
�: � = �̃′′′

:
��: where �̃′′′

:
B 
:�′′′: .

As we will focus on twist operators satisfying �: = �−1
:
= �†

:
(up to

sign), there is scope to consider other generalisations, such as (for ex-
ample) �: ��†: = ±�, whichwould remain compatiblewith the literature,
but we leave this possibility for future investigation.

5.2.2 Krein spaces

For more details, the
standard text on
Krein spaces is

Ref. [6].

Definition 5.1. Let K be a complex inner product space with nonde-
generate inner product (•, •). SupposeK admits a decomposition into
orthogonal subspacesK = K+ ⊕K− such that (•, •) is positive-definite
on K+ and negative-definite on K−. If K+ and K− are complete with
respect to the respective norms coming from the inner product on each
subspace, thenK is called a Krein space. �

Krein spaces are closely related to Hilbert spaces. For one, any Krein
spaceK withK− = 0 is aHilbert space, and soKrein spaces can be seen
as a generalisation of Hilbert spaces. However, the connection between
the two objects is better elucidated using the fundamental symmetry.

Definition 5.2. LetK be a Krein space decomposing intoK+ ⊕ K−. For
%+ and %− projectors onto the respective subspaces, we call

� = %+ − %−

the fundamental symmetry associated to the given decomposition. �

The fundamental symmetry is involutive, symmetric, and isometric
with respect to the inner product (•, •) on K . Because of this, the
fundamental symmetry can be used to define a new inner product
(•, •)� B (•, �•), and when equipped with this new inner product K
becomes a Hilbert space. Furthermore, if (•)+ denotes the Krein space
adjoint associated to (•, •), then the Hilbert space adjoint associated to
(•, •)� can be expressed as (•)† = �(•)+�.

Thedescription given above is theusual presentation ofKrein spaces,
but it is also possible to ‘go in the other direction’ (see e.g. Ref. [33]).
Consider a Hilbert space ℋ with inner product 〈•, •〉. If there exists
a selfadjoint unitary operator � on ℋ , it can be used to decompose
ℋ into positive and negative eigenspaces ℋ = ℋ+ ⊕ ℋ−. On these
eigenspaces, the inner product

〈•, •〉� B 〈•, �•〉
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is positive-definite andnegative-definite on each respective eigenspace,
and so equipping ℋ with the inner product 〈•, •〉� turns it into a
Krein space. We likewise denote the adjoint associated to 〈•, •〉� by
(•)+ = �(•)†� for (•)† the adjoint from 〈•, •〉.

Example 5.3. One of the key motivating examples for Krein spaces
comes from the inner product of spinors. On 4-dimensional Euclidean
space, one has the inner product

〈#,#′〉 =
∫

d4G #†#′,

but this inner product is not invariant under Lorentz transforma-
tions and so is unsuitable for describing spinors on 3 + 1-dimensional
Minkowski spacetime. The ‘fix’ is to instead use∫

d4G #̄#′ C

∫
d4G #†�0#′ =

〈
#, �0#′

〉
,

where the bar #̄ = #†�0 denotes the Dirac adjoint and �0 is the zeroth
gamma matrix. It is immediate to see that �0 plays the role of the
fundamental symmetry � described above, and does indeed meet all
the requirements. �

5.3 krein structures from twisted real structures

5.3.1 Twisted real structures and gauge theories

The primary motivation for this work comes from the results of the
previous chapter of the thesis, and so as such we will briefly recall
them here. From Def. 2.6, condition (2.15) combined with signed reg-
ularity demands that fluctuations of the Dirac operator take the form
of (5.3). In the context of gauge theory in spectral geometry, when
the spectral triple is almost-commutative and real, fluctuations of the
Dirac operator are generated by ‘gauge transformations’, that is, via
an action ofU(� ⊗ �op) on �. Since the representation of �op is con-
structed using the real structure, generalising to the setting of twisted
real structures modifies this gauge transformation procedure in such
a way as to incorporate the twist operator(s).
To be more precise, the gauge transformation of the Dirac operator

� by D ∈ U(�) for the multitwisted real structure (� , {�:}) is given by

� ↦→ �D B
∑
:∈�

D��−1
:
D�: �

−1�: ��:D
†�−1
:
�−1D†.

For the case of a single twist, the self-adjointness of �D can be ensured
by requiring that the twist operator is also self-adjoint (up to sign).
Following the physical requirement that � has the same spectrum as
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�D then imposes that the twist operator be unitary (up to sign), i.e. the
twist operator must satisfy

� = 
�−1 = 
′�†

where 
, 
′ = ±1 and the two signs may be distinct.
Continuing on from this, it was found that the quadratic formwhich

gives the fermionic action must be modified when one has a twist to
incorporate the twist operator, specifically taking the form

A(#, )) B
〈
��#, �)

〉
,

where 〈•, •〉 is the Hilbert space inner product. When 
 = 
′ = +1, the
twist operator can be used to define an alternative inner product

〈•, •〉� = 〈� •, •〉

such that the quadratic formgiving the fermionic action is equivalently
given by

A(#, )) =
〈
�#, �)

〉
�
. (5.4)

One can see from the discussion in §5.2.2 that the Hilbert space ℋ
equipped with the inner product 〈•, •〉� is a Krein space, with the
twist operator taking on the role of fundamental symmetry.

5.3.2 Wick rotation

In light of Ex. 5.3, there is a tantalising interpretation of the above result,
which is that one can take an ordinary Riemannian (real) spectral triple,In this chapter of the

thesis, we use the
term ‘Riemannian’

to contrast
‘pseudo-Riemannian’

qua relating to
signature. This
should not be

confused with the
use of ‘Riemannian
spectral triples’ to

refer to spectral
triples of

Riemannian
manifolds as opposed
to spin manifolds, as
was done in Ch. 3,

and which is
common in the

literature. Of course,
in that case the

signature is
generally Euclidean

regardless.

twist the real structure, and get a pseudo-Riemannian spectral triple
as a result. Thus the twisting of the real structure would act like a
‘noncommutative’ version of Wick rotation.

We start with the canonical spectral triple for a closed 4-dimensional
spin manifold ":(

�∞("), !2(", (), 8 /∇� , �5
�

)
, (5.5)

where �∞(") is the ∗-algebra of complex smooth functions on ",
!2(", () is the Hilbert space of square-integrable spinors on ", and
8 /∇� is the Dirac operator associated to the spinor bundle (. TheHilbert
space !2(", () is equipped with the canonical inner product denoted
by 〈•, •〉. In 4 dimensions this spectral triple is even and its grading
is given by �5

�
, the chirality operator, so-called because the (Euclidean)

left/right-handed chirality projection operators are given by

%! B
1
2 (1 − �

5
�) and %' B

1
2 (1 + �

5
�).

The grading is explicitly given in terms of the gammamatrices by their
ordered product

�5
� = �0�1

��
2
��

3
� .
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In Euclidean signature, the real structure is given by the charge
conjugation operator

�� = 8�
0�2

� ◦ ∗. (5.6)

For the most naïve attempt at using a twisted real structure to imple-
ment a Wick rotation, we take the charge conjugation unchanged as
the reality operator (as happens in conformal transformations) and
�0 as the twist operator. This clearly cannot work since �0�� 8 /∇� ≠
±8 /∇����0. The simplest ‘fix’ is to take the reality operator � = 8�2

�
◦ ∗

which will (by construction) satisfy

�0� 8 /∇� = −8 /∇���0.

This does not really accomplish anything, though, since �0� = �� and
so A(#, )) only gives the usual Euclidean signature fermionic action;
clearly implementing a true Wick rotation requires something more
sophisticated.
It is apparent that there is only so much that can be achieved by

taking the canonical spectral triple and modifying the real structure
alone, but this is not surprising. In the conformal case, the real struc-
ture is twisted but the Dirac operator is also modified, and so we
expect something else will have to be changed as well. We will pursue
two approaches to finding a working method: using an ‘untwisting’
procedure in §5.4 and from first principles in §5.5.

5.4 untwisting the minimally twisted spectral triple

Putting aside twisted real structures for amoment, a different approach
to modifying the canonical spectral triple in the context of twisted
spectral triples is given in Ref. [33] using a ‘minimal twist’. We describe
this minimal twist as it applies to our interests below.
For the canonical spectral triple (5.5), the algebra of smooth functions

�∞("), represented by �0 on the space of square integrable spinors
!2(", (), acts by pointwise multiplication of functions (�0( 5 )#)(G) =
5 (G)#(G). To implement theminimal twist, onefirst doubles the algebra
to �∞(") ⊗ ℂ2 ' �∞(") ⊕ �∞("), which one then represents on
!2(", () by

�( 5 , 6) = �0( 5 )%' + �0(6)%!

for 5 , 6 ∈ �∞("). For the twist automorphism, one takes the flip
automorphism

�( 5 , 6) = (6, 5 )

for all ( 5 , 6) ∈ �∞(") ⊕ �∞("). With these choices, the spectral data(
�∞(") ⊗ ℂ2 , !2(", (), 8 /∇� , �� , �5

�

)
�
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give an even real twisted spectral triple (per Def. 2.8). Intriguingly,
there is evidence to suggest [33, 34, 52] that the canonical spectral triple,
when twisted by the minimal twist, leads to Lorentzian equations of
motion, which is what motivates our consideration of it here.

The approach of doubling the algebra cannot be translateddirectly to
the setting of twisted real structures, because

[
8 /∇� ,�( 5 , 6)

]
for ( 5 , 6) ∈

�∞(") ⊕ �∞(") is not bounded and Ch. 4 deals strictly with spectral
triples which are not twisted (in the sense of Def. 2.8). However, in Ref.
[8] the authors present a method of ‘untwisting’ real twisted spectral
triples, essentially a procedure for turning a real twisted spectral triple
into a spectral triple with twisted real structure. We present the part
of the theorem in question which is relevant to this thesis as follows.

Theorem 5.4 ([8]). Let � be a ∗-algebra and let � : � → ℬ(ℋ) be a
∗-representation of � on a Hilbert space ℋ . Let � : ℋ → ℋ be an anti-
linear isometry such that �2 = ±1 and such that the zeroth-order condition is
satisfied. Let � be an algebra automorphism satisfying (2.20) and let * be a
bounded operator onℋ with bounded inverse such that * is a unitary operator
implementing � via

�(�(0)) = *−2�(0)*2

for all 0 ∈ �.
Furthermore, let

�* : �→ ℬ(ℋ), 0 ↦→ *−1�(0)*

be the induced representation of � and further assume that * �* = �. For an
operator � onℋ , set

�* = *�* .

Then ((�,�* ,ℋ), �* , (� , *2)) is a spectral triple with *2-twisted real struc-
ture per Def. 2.6 if and only if ((�,�,ℋ), �, �)� is a real �-twisted spectral
triple per Def. 2.8.

Given the twisted real structure given by the theorem has twist
operator *2, the requirement that * �* = � is quite strict, even stricter
than regularity. Indeed, as mentioned in §5.2.1, we are interested in
weakening regularity to signed regularity (5.2), and sowemust replace
this assumption with something weaker.

Proposition5.5. Let� be a ∗-algebra and� : �→ ℬ(ℋ) be a ∗-representation
of� on aHilbert spaceℋ . Let � , �* : ℋ →ℋ be a pair of antilinear isometries
with �2 = ±1 and � implementing the zeroth-order condition (2.3). Let � be
an algebra automorphism satisfying regularity (2.20) and let * be a bounded
operator onℋ with bounded inverse such that * is a unitary operator imple-
menting � via

�(�(0)) = *−2�(0)*2
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for all 0 ∈ �.
Furthermore, let

�* : �→ ℬ(ℋ), 0 ↦→ *−1�(0)* (5.7)

be the induced (∗-)representation of � and further assume that

* �* = �* and * �** = �′′′* � , (5.8)

where �′′′* = ±1 is determined by the choice of * and �. For an operator � on
ℋ , set

�* = *�* .

Then ((�,�* ,ℋ), �* , (�* , *2)) satisfy the conditions for a spectral triple with
*-twisted real structure if and only if ((�,�,ℋ), �, �)� satisfy the conditions
for a real �-twisted spectral triple.

Proof. By assumption,

�̄(�(0)) = *−2�(0)*2

for all 0 ∈ �. Then for �* = *�* , a straightforward calculation gives[
�* ,�* (0)

]
= *[�,�(0)]�̄* , (5.9)

and since * and *−1 are bounded,
[
�* ,�* (0)

]
is bounded whenever

[�,�(0)]�̄ is bounded. Furthermore,

[�,�(0)]�̄��(1)�−1 = *−1 [�* ,�* (0)
]
*−1��(1)�−1**−1

= *−1 [�* ,�* (0)
]
*−1�*�* (1)*−1�−1**−1

= �′′′* *
−1

( [
�* ,�* (0)

]
�**

2�* (1)*−2�−1
*

)
*−1 ,

where we have used (5.7), (5.8) and (5.9). However, we also have

�̄◦(��(1)�−1)[�,�(0)]�̄ = �*−2�(1)*2�−1*−1 [�* ,�* (0)
]
*−1

= *−1* �*−1�* (1)* �−1*−1 [�* ,�* (0)
]
*−1

= �′′′* *
−1

(
�**
−2�* (1)*2�−1

* )
[
�* ,�* (0)

] )
*−1

where we have used (2.23), (5.7), (5.8) and (5.9). Thus � satisfies (2.25)
with respect to � if and only if �* satisfies (2.17) with respect to *2.

If �� = �′��, then

�* �**
2 = *�* �**

2 = �′′′* *��* = �′�′′′* * ��* = �′*2�**�* = �′*2�*�* ,

where we have used (5.8). By the same reasoning, assuming �* �**2 =

�′*2�*�* , one can show that �� = �′��.



94 krein structure from twisted real structures

If �2 = �1, then one has as a straightforward consequence of (5.8)
that �2* = ��′′′* 1. Then lastly, assuming ��(1)�−1�(0) = �(0)��(1)�−1 for
0, 1 ∈ �, we have

�*�* (1)�−1
* �* (0) = * ��(1)�−1�(�(0))*−1

= *�(�(0))��(1)�−1*−1 = �* (0)�*�* (1)�−1
*

such that �* implements the zeroth-order condition, where we have
used (5.7), (5.8) and the fact that � ∈ Aut(�). As above, one can use
the same reasoning to show that �* implementing the zeroth-order
condition implies that so does �. �

Note that (5.8) implies the twist *2 is regular or anti-regular depend-
ing on the sign �′′′* . If one has �* = �, then �′′′* = +1 necessarily, and one
recovers Thm. 5.4.
When * is unitary, there is no guarantee that *�* is self-adjoint.

The solution offered in Ref. [8] is, provided *†
2
= *2, to use the

following ‘doubling procedure’. Rather than take the spectral triple
((�,�* ,ℋ), �* , (�* , *2)), one instead takes the ‘doubled’ spectral triple
((�,π,ℋ ⊕ ℋ),D, (J, %),χ) where π is the diagonal extension of �*

and

D =

(
0 �*

�†* 0

)
, % =

(
*2 0
0 *2

)
, χ =

(
1 0
0 −1

)
.

Note that regardless of whether the initial spectral triple was odd or
even, the new one is even with a natural choice of grading coming
from the doubling.
The argument for the form of % can be summarised as follows: if the

original spectral triple admitted the twisted real structure (�* , *2)with
respect to�* , by taking “conjugate” conditions and using that �†* = ±�* ,
one can find that �†* will admit the twisted real structure (�* , (*2)†).
Clearly these twisted real structures will coincide when *2 = (*2)†, and
so therefore the new (doubled) spectral triple can be equipped with
the twist diag(*2 , *2).

The third KO-sign is determined by the choice of J to be block-
diagonal

J =

(
�* 0
0 �*

)
(�′′ = +1) (5.10)

or block-anti-diagonal

J =

(
0 �*

�* 0

)
(�′′ = −1). (5.11)

Again, because the new grading does not come from any old one, the
sign �′′ here is not related to that of the original spectral triple.
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Remark 5.6. In order for the doubled spectral triple to have a valid
twisted real structure, it should hold that %JD = ±DJ%. This is always
true if one takes (5.10) (in which case the sign is �′ coming from the
original spectral data), but is not always true if one takes (5.11). In that
case, %JD = ±DJ% requires *2�*�* = ±�†* �**2 (and likewise for �* and
�†* interchanged), which is not necessarily true. It may be incidentally
true depending on the choice of �, � and * , but does not follow for
arbitrary choices. �

As noted, the use of the doubling procedure renders the original
choice of grading irrelevant. However, since we are interested in what
Wick rotation means in the context of spectral triples in any case, it is
worth discussing what the untwisting procedure has to say about the
grading for the sake of completeness.

Lemma 5.7. Assuming that * is unitary, and " is the grading for the even
real twisted spectral triple ((�,�,ℋ), �, � , ")�, then the spectral triple with
twisted real structure ((�,�* ,ℋ), �* , (�* , *2)) is even with the grading
"* B *−1"* provided *2" = "*2.

Proof. The grading "* should satisfy the conditions of Def. 2.1 along
with (2.18) and (2.19). For what concerns (2.19), using �" = �′′"� we
find

*2�*"* = *3�"* = �′′*3"�* = �′′*4"**
−2�* = �′′"**

2�* .

Equation (2.18) is satisfied trivially, and "2
* = 1 and "†* = "* are straight-

forward to check. It is also not hard to see that �* (�) commutes with
"* if �(�) commutes with ". For the final requirement, we have

�*"* = *�"* = −*"�* = −*2"**
−2�* = −"*�* .

�

The choice of "* = *−1"* is not unique, but seems a natural choice.
Taking something like "* = *−1"*−1 won’t satisfy the correct anti-
commutation with �* unless some addition commutation relation is
imposed between *2 and �* , which would be very restrictive. A simi-
lar issue occurs if "* = ", since anticommutation with �* will require
(anti)commutation between " and * , in which case one basically lands
in a special case of Lem. 5.7, just without needing the unitarity require-
ment.

5.4.1 Application to the minimally twisted spectral triple

Let us now apply the untwisting procedure to the minimally twisted
spectral triple. In four dimensions, theminimal twist � is implemented
by the zeroth gamma matrix, i.e.

�̄(�( 5 , 6)) = �0�( 5 , 6)�0 = �(6, 5 ) = �(�( 5 , 6)).
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From here, we will work in the chiral (Weyl) representation on spinor
space, in which case one has

�0 =

(
0 12

12 0

)
.

In order to pass to spectral triples via the untwisting procedure, it is
necessary to take a square root of �0; in line with Ref. [8], we will take

� =
1
2
(
(1 + 8)14 + (1 − 8)�0) ,

which will play the role of * in the previous subsection and which we
note is appropriately a unitary operator.

The forms of

��( 5 , 6) =
1
2

(
( 5 + 6)12 −8( 5 − 6)12

8( 5 − 6)12 ( 5 + 6)12)

)
and

�� =
1
2

(
�− + �+ 8(�− − �+)
−8(�− − �+) �− + �+

)
for 8 /∇� =

(
0 �−

�+ 0

)
likewise follow Ref. [8]. The point of deviation for us is the real struc-
ture, given by the (Euclidean) charge conjugation operator

� = 8�0�2
� ◦ ∗,

whose form is prohibited in Ref. [8] by the regularity requirement. The
antiunitary � is in fact antiregular with respect to the twist, �2��2 = −�,
which is easily established by the anticommutation of gammamatrices.
The untwisted antiunitary is thus given by

�� =

(
0 8�2

−8�2 0

)
◦ ∗ = �2

� ◦ ∗.

For what concerns the grading, we have " = �5
�
coming from the

minimally twisted spectral triple. This means that Lem. 5.7 does not
apply, since �2 = �0 by construction and �5

�
�0 = −�0�5

�
. Indeed, no

suitable choice of "� based on � and " is apparent, and so since the
grading is not essential for the untwisting, we will ignore it for the
remainder of this subsection.
The untwisted spectral triple(
(�∞(") ⊗ ℂ2 ,�� , !

2(", ()), �� , (�� , �2)
)

is not immediately recognisable. However, it is unitarily equivalent
(via conjugation by 4 8�/4�) to(

(�∞(") ⊗ ℂ2 ,�, !2(", ()), 8�0 /∇� , (8�0�� , �
0)
)
. (5.12)
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The geometrical interpretation of these data is far from straightfor-
ward. For one thing, the antiunitary is precisely the Lorentzian charge
conjugation operator

Different sources use
different conventions
for the Lorentzian
charge conjugation
operator in the chiral
basis, in particular
�" = ±8�2

"
◦ ∗.

The particular choice
of sign is
unimportant, but for
consistency we will
choose −.

8�0�� = −8�2
" ◦ ∗ ≡ �" . (5.13)

Interestingly, the “Dirac operator” 8�0 /∇� is Krein-self-adjoint with re-
spect to �0 as the fundamental symmetry, but is unrelated to the true
Lorentzian Dirac operator 8 /∇" . The situation is not as trivial as that of
§5.3.2, but from the perspective of the action, things remain confused:〈

�2��#, ��!
〉
=

〈
�08�0��#, 8�

0 /∇�!
〉
=

〈
8��#

��8 /∇�!〉
,

i.e. we have the Krein structure for the inner product, but the operators
remain the same as in the Euclidean case.
Remark 5.8. The Dirac operator 8�0 /∇� can be understood as the so-
called ‘Krein-shift’ of 8 /∇�, introduced in Ref. [5]. However, in that
paper the set-up is rather different to here, though the motivations
are similar; in said paper the Krein-shift is defined for the Lorentzian
Dirac operator rather than the Euclidean one, in order to express the
Lorentzian fermionic action in terms of #† instead of #̄. �

In order to attempt to resolve this situation, wewill aim to followRef.
[8] andutilise thedoublingprocedure toproduce agenuine (Euclidean)
spectral triple with twisted real structure in the hope that, much like
in the twisted spectral triple case, some Lorentzian structure emerges
at the level of the action.

5.4.2 Doubling

Before examining the doubled spectral triple, we note that we have the
following result:

Lemma 5.9 ([50]). A spectral triple with twisted real structure (� , �) and
with KO-signs (�, �′, �′′), whose twist operator satisfies � = 
�† = 
�−1 for

 = ±1, is equivalent to a real spectral triple with real structure �� and
KO-signs (��′′′, 
�′�′′′, �′′).

The proof follows that of Prop. 2.12, but modified as appropriate
to take signed regularity into account (as the original proposition as-
sumed only regularity), i.e. inserting signs where appropriate.

Applying the doubling procedure to (5.12), we obtain a well-defined
spectral triple with twisted real structure. However, the twist for the
doubled spectral triple satisfies % = %† = %−1, and so Lem. 5.9 applies.
In other words, we are really dealing with the even real spectral triple( (

�∞(") ⊗ ℂ2 ,π, !2(", () ⊗ ℂ2) ,D, %J,χ
)

(5.14)

with KO-signs (−�,−�′, �′′). The fact that we have �∞(") ⊗ ℂ2 acting
on !2(", () ⊗ ℂ2 suggests the possibility that this spectral triple could
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be understood as the product of a manifold spectral triple with a two-
point space, a possibility which was also investigated in Ref. [8].

We first note that the doubling is built around making the “Dirac
operator” self-adjoint, and so that provides a fixed point for our inves-
tigation. The simplest Dirac operator for the 2-point space is simply 0,
which means that, if D is equivalent to a product Dirac operator, the
simplest form the product Dirac operator can take is 8 /∇� ⊗ 12.

Lemma 5.10. The Dirac operator

D =

(
0 8�0 /∇�

8 /∇��0 0

)
is unitarily equivalent to the operator 8 /∇� ⊗ 12.

Proof. The unitary which implements the transformation (from the
product to the doubled operator) is the permutation matrix

(13 =

©­­­­­«
0 0 12 0
0 12 0 0
12 0 0 0
0 0 0 12

ª®®®®®¬
, (5.15)

acting on !2(", () ⊗ ℂ2, still working with !2(", () in the chiral ba-
sis. Confirming that (13(8 /∇� ⊗ 12)(−1

13 = D is then a straightforward
computation. �

It is not difficult to show that, regardless of whether one takes J to
have the form of (5.10) or (5.11), it is not possible to find any �1 or �2
such that (−1

13 %J(13 = �1 ⊗ �2. This result differs from that of Ref. [8],
precisely because we have relaxed the regularity condition.

It is tempting to read into this that even the “ordinary” real struc-
ture is not so trivial for the doubled spectral triple when originally
arising from a twisted real structure. However, drawing conclusions is
premature, because the doubling procedure described in Ref. [8] and
recapitulated above is not the unique process by which can produce
a genuine spectral triple by doubling. Most relevant to the current
discussion, one can also take

%′ =

(
0 *2

−*2 0

)
,

noting that *2 = (*2)† remains a sufficient assumption as the sign plays
no part in the “conjugate” conditions; since the twist always appears
in pairs, the sign will always cancel with itself.
As for the antiunitary, one can still take (5.10) or (5.11), the choice

of which will still affect the �′′-sign in the same way, although the
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situation with respect to Rmk. 5.6 is reversed; now (5.11) is always
permissible, whilst (5.10) will only be viable in certain special cases.

Applying this alternative doubling procedure to (5.12), and taking
(5.11) for the form of J to maintain the greatest generality, one has

%′J =

(
8�� 0
0 −8��

)
.

Now applying the unitary (13, one finds

(−1
13 %
′J(13 =

©­­­­­«
−8�2 0 0 0

0 −8�2 0 0
0 0 8�2 0
0 0 0 8�2

ª®®®®®¬
◦ ∗ = −8�� ⊗ 12 ◦ ∗,

and so one is able to recover the product structure. Applying (13 to the
grading, one thus ultimately recovers

(�∞(") ⊗ ℂ2 , !2(", () ⊗ ℂ2 ,D, %′J,χ) =(
�∞("), !2(", (), 8 /∇� , 8�� ,

(
−12 0
0 12

))
×
(
ℂ2 ,ℂ2 , 0,

( ∗ 0
0 ∗

)
,
( 1 0

0 −1
) )
,

i.e. the doubled spectral triple is equivalent to the product of the
canonical spectral triple (the factor of 8 in the real structure and −1
in the grading make no practical difference) with the two-point space
of KO-dimension 0. Since all the structures here are the familiar Eu-
clidean ones, there is no hope of recovering Lorentzian structure at the
level of the action, as the minimally twisted spectral triple does.

5.5 the bottom-up approach

We saw in §5.3 is that it is not sufficient to modify the real structure
alone to recover Lorentzian metric structure. The approach of the min-
imally twisted spectral triple was to enlarge the algebra in order to
accommodate a nontrivial twist automorphism which gives the Krein
structure, but as we saw in the previous subsection, when translated
into the language of spectral triples with twisted real structure, the
result was poorly defined (pre-doubling) or trivial (post-doubling). As
such, one must take a different approach.

In the approaches we have looked at thus far, the Dirac operator has
been a recurring issue, and so it is natural to begin there. A sensible
option in the commutative case is to to implement the Wick rotation
at the level of the gamma matrices, i.e. to implement the Wick rotation
for the Dirac operator by replacing �

�
�
with �

�
"
. To do so, we take

inspiration from e.g. Ref. [63] and define the Wick rotation of a Dirac
operator � by

�, B
1
2 (� + �

+) − 82 (� − �
+), (5.16)
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where (•)+ = �(•)†� is theKrein adjoint as described in §5.2.2.Anatural
advantage of this option is that, as the implementation is algebraic, it
is also applicable in noncommutative cases. Note that, by definition,
� = �†, and that consequently �+

,
= �, by construction, i.e. it is

Krein-self-adjoint (but not self-adjoint, in the sense that �†
,
≠ �, ).

It is not hard to verify that, for example, taking � = 8�
�
�
%� = 8 /%�,

the Wick rotation given above yields �, = 8�
�
"
%� = /%" as expected,

where as mentioned, �0
"
= �0

�
and �

9

"
= −8� 9

�
.

Remark 5.11. Apart from the form given in (5.16), we could also have
chosen

�, B
1
2 (� + �

+) + 82 (� − �
+).

The reason for this comes from the choice of implementing the Wick
rotation at the level of the gamma matrices. By definition, (� 9

�
)2 = 1

whilst (� 9
"
)2 = −1, and this can be obtained by setting �

9

"
= ±8� 9

�
.

Neither choice of sign is a priori preferable, so taking + or − is simply
a matter of convention. �

In some sense, we are free to define the other key operators as we
wish, but as much as possible we would like to avoid tailoring our
choices to adesiredoutcomeaspossible.As such, sincewehave already
made use of a map in obtaining the Wick rotated Dirac operator (5.16),
it seems reasonable as a first attempt to apply the same map to the
other relevant operators in the same way. We make an exception only
for the algebra, sincewemaywish to consider real algebras. Regardless,
if we think of the algebra as being related to topology, Wick rotation
should not make any difference, as it should be a purely geometric
transformation.
For the sake of ease, let us call the Wick rotation map, . Beginning

with the grading operator, taking ", = 1
2 (" + "+) − 8

2 (" − "+), we find
that,(�5

�
) = −8�5

�
, which is perhaps a rather undesirable result given

the Lorentzian chirality operator is �5
"
= −�5

�
(in the convention we

are using). We will return to this point in the next subsection.
In the same way we define �, using the map, , and subsequently,

for �2 = �1 and �� = �′′′� ��, we find

�, =


� if ��′′′� = +1,

−8� if ��′′′� = −1.
(5.17)

In order for the conditions �+
,
= �−1

,
and �2

,
= ±1 to be simultaneously

satisfied, one requires that �′′′� = +1. However, �†
,
= �−1

,
and �2

,
= ±1

are always compatible. This means that we can always take �, to be
unitary but we can only take it to be Krein-unitary when �′′′� = +1.
As such, when �′′′� = −1, �, can only make sense as a (twisted) real
structure with respect to the Hilbert inner product 〈•, •〉 and not the
Krein inner product 〈•, •〉�.
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For simplicity, we assume that the representation of the algebra
commutes with the fundamental symmetry. This is not a necessary It should not be lost

that this is quite a
strong assumption,
and even if it is
satisfied in examples,
many of the abstract
results obtained in
this section would
not be true
otherwise.

assumption on mathematical grounds, but happens to be true for the
4-dimensional commutative case as well as proposed Lorentzian finite
spectral triples in the literature [4, 63].
An important point to make is that, if we work takingℋ as a Hilbert

space (and not a Krein space), then �, will not be a self-adjoint op-
erator on our space, leaving us in a similar spot to the pre-doubled
untwisting of the minimally twisted spectral triple (5.12). Even so,
apart from losing touch with the strict definition of a spectral triple, if
we assume �, forms part of a twisted real structure (�, , �), the non-
self-adjointness of �, means we no longer require � to be self-adjoint,
and imposing Krein-self-adjointness on �, only requires � = ±�+. Re-
call that the twist operator being self-adjoint and unitary in order to
make sense of the action in Ch. 4 was a large part of the motivation for
treating � as a fundamental symmetry and this now appears to be lost.

The situation is not as grim as it would appear, though. For one,
�, �, ≠ �,�, but rather

�, �,� = �′,��,�, (5.18)

assuming �� = �′�� and where �′
,
= �′�′′′� . In other words, the fun-

damental symmetry automatically takes the role of a twist operator
independent of other considerations. In the case of four dimensions,
where � = ��, � = �0 and the two anticommute, it is straightforward
to see that all the other requirements for a twisted real structure are
satisfied since −8�0�� = −�" .

Recalling the results of §4.4, the fact that �, is not self-adjoint
means that Lem. 4.24 does not hold and so there is no justification
for introducing the Krein inner product 〈•, •〉� coming from the twist
in order to get the correct fermionic action functional. However, as
noted earlier in §4.4, there is no need to change the bilinear formwhen
� = �−1†�†�−1†, and that is precisely the regime we are in; this is
just the requirement that � = �+ with respect to the fundamental
symmetry �. To formulate this result precisely:

Proposition 5.12. Let � = �† = �−1 be a linear operator, and �, = ��†
,
�.

Then the bilinear form

A�(#, )) B
〈
�,#, �,)

〉
, (5.19)

where 〈•, •〉 is the inner product on the Hilbert spaceℋ , is gauge-covariant
and is correctly (anti)symmetric for the appropriate KO-dimension.
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Proof. Proving the symmetry of the bracket is a straightforward com-
putation, cf. (4.29):

〈�,#, �,!〉 = �, 〈�,�,!,#〉
= �,

〈
�,��†,�!,#

〉
= �,�′′′�

〈
��,�

†
,�!,#

〉
= �,�′′′� �

′
,

〈
�†, �,!,#

〉
= �,�′′′� �

′
, 〈�,!, �,#〉,

where we have used �2
,
= �,1, the unitarity of �, , �� = �′′′� �� which

implies ��, = �′′′� �,�, and (5.18) which implies �†
,
�,� = �′

,
��,�†, .

The proof of gauge-invariance largely follows the proof of Lem 4.24;
the gauge-invariance of the bilinear form is expressed as

A�(#, !) = A�D

(
Ad(D)()),Ad(D)(!)

)
,

noting that the form of the gauge transformations does not rely on
the self-adjointness of � and so remains the same as in the previous
chapter. This is equivalent to

〈�,#, �,!〉 =
〈
�,+#, �

D
,+!

〉
=

〈
�,+#, +̃�,+

−1+!
〉

=
〈
�,+#, +̃�,!

〉
which is equivalent to requiring +̃†�,+ = �, . Provided that � com-
mutes with the algebra, as was earlier assumed, then this can easily be
computed to be true for both cases of (5.17). �

Remark 5.13. The Krein-self-adjointness of � does not pose serious is-
sues with respect to the results of §4.3; in particular, 1-forms $ should
now be Krein-self-adjoint rather than self-adjoint, but as they should
also be generated by commutators of the Dirac operator with the alge-
bra, and as the algebra is assumed to commute with the fundamental
symmetry, this is automatically satisfied, and something similar can
be said for the opposite-1-forms as well. Gauge transformations are
unaffected for the same reason; moreover, the operators +̃ and + both
reduce to the standard unitary* = �(D)��(D)�−1. �

Given that �, ∝ �, itmight appear that the bilinear form 〈�,#, �,!〉
is physically meaningless, since �, is Euclidean but �, is Lorentzian,
not tomention that the inner product is theHilbert space inner product.
However, all these issues can be resolved simultaneously by noting that

〈�,#, �,!〉 =
〈
�2�,#, �,!

〉
= 〈��,#, �,!〉� .

This might seem like a meaningless change, but 〈•, •〉� = 〈•|•〉 fixes
the issue of the inner product, and for what concerns the antiunitary
operator, in the commutative case with �, = −8�, then

��, = �0(−8)�� = �0(−8)8�0�2
� ◦ ∗ = 8�

2
" ◦ ∗ = −�" , (5.20)
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and we recover the Lorentzian charge conjugation. What’s more, for
either possibility of �, , we have

(�, )$ = �, + $ + �′,�′′′� ��,$�−1
, � = �, + $ + �"$�−1

" ,

which is precisely the fluctuation of theDirac operatorwhichwewould
expect.

The trouble here is that in 4 dimensions, � = �′′′� = −1 for � = ��

and � = �0, which means �, = � and not −8�, meaning the bilinear
form would have an extra factor of 8 compared to what we expect the
Lorentzian fermionic action to give. A possible resolution to this dis-
crepancy comes from recognising that in the noncommutative frame-
work, what is physically important is not the commutative geometry
by itself but the almost-commutative geometry which includes the
internal degrees of freedom.

5.5.1 The almost-commutative case

We hence expand our focus to almost-commutative spectral triples qua
products of commutative and finite spectral triples.We therefore begin
by considering the almost-commutative spectral triple

(�,ℋ , �) B
(
�∞(") ⊗̂ �� , !2(", () ⊗̂ ℋ� , 8 /∇� ⊗̂ 1 + 1 ⊗̂ ��

)
,

where (�� ,ℋ� , ��) is a (Riemannian) finite spectral triple. We assume
both commutative and finite spectral triples are even and the product
grading operator is given by " = �5

�
⊗̂ "�.

Regarding the products themselves, in Ref. [4] the authors advocate
for the use of graded tensor products (cf. [37]). We used graded tensor
products in §3.4, but to briefly recapitulate, the graded tensor product
of operators can be given in terms of the ungraded one by The graded tensor

product could
alternatively be
given by )1 ⊗̂′ )2 =

)1 ⊗ )2"
|)1 |
2 , but for

the sake of
consistency we will
strictly use the
convention of (5.21)
in this chapter.

)1 ⊗̂ )2 = )1"
|)2 |
1 ⊗ )2. (5.21)

Here |) | ∈ ℤ2 denotes the degree of an operator ) with respect to the
relevant grading; for example, considering (5.21), |)2 | = 0 if)2"2 = "2)2
and |)2 | = 1 if )2"2 = −"2)2.
The authors of Ref. [4] further propose the following definitions for

product operators, obtained from the consideration of Clifford alge-
bras:

� = �1"
|�2 |
1 ⊗̂ �2"

|�1 |
2 = �1 ⊗ �2" |�1 |2 , (5.22)

� = 8 |�1 | |�2 |�1"
|�2 |
1 ⊗̂ �2"

|�1 |
2 = 8 |�1 | |�2 |�1 ⊗ �2"

|�1 |
2 . (5.23)

The question of how to implement Wick rotations on the product is
delicate. The simpler solution is to take the product first and thenWick
rotate; itmight be possible tomake this equivalent toWick rotating first
and then taking the product, but even if one is able to tame the various
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signs and phase factors, one must then deal with the tensor product
being gradedwith respect to theWick-rotated grading operator, which
sacrifices some conceptual clarity.

The Wick rotated form of the product reality operator is similar to
(5.17), albeit involving rather more complicated signs due to the added
number of operators involved. To be precise,

�, =
1
2

(
� + ��†�

)
− 82

(
� − ��†�

)
where � is given by (5.22) and

��†� = (−1)|�1 | |�2 |+|�1 | |�2 |+|�1 | |�2 |�1�
′′′
�1
�2�
′′
2
|�1 |�′′′�2

� (5.24)

where �2
9
= �91, � 9 �9 = �′′′� 9 �9� 9 , and "9 �9 = �′′

9
�9"9 , 9 = 1, 2, since the

initial data are assumed to be Euclidean (i.e. from an ordinary spectral
triple). Note that the grading is assumed to commute or anticommute
with the fundamental symmetry and indeed, in obtaining the above
result we have used that " |) |

9
� 9 = (−1)|) | |� 9 |� 9" |) |9 . Since the sequence of

signs on the right-hand side of (5.24) is rather unwieldy, we denote it
by ��+ B (−1)|�1 | |�2 |+|�1 | |�2 |+|�1 | |�2 |�1�′′′�1

�2�′′2
|�1 |�′′′�2

such that the end result
of this computation is then

�, =


� if ��+ = +1,

−8� if ��+ = −1.
(5.25)

As a sanity check, we now examine the case starting with an almost-
commutative spectral triple and Wick rotating only the commutative
part, i.e. setting �2 = 1. Assuming the commutative spectral triple is of
dimension 4, taking �1 = �0, �1 = �� and "1 = �5

�
, we find

��+ = �2�
′′
2 .

With an eye towards the action and the discussion around the bilinear
form in the previous subsection, it is not difficult to show that

��, = −8�′′2 �0�� ⊗ �2"2 = −�′′2�" ⊗ �2"2

if ��+ = −1. This can only occur if �2 = −1, �′′2 = +1 (the finite spectral
triple has KO-dimension 4) or if �2 = +1, �′′2 = −1 (the finite spectral
triple has KO-dimension 6), and indeed, the literature around almost-
commutative spectral triples as applied to physics generally identifies
theKO-dimension of thefinite spectral triple to be 6 bothwhen the com-
mutative spectral triple is Euclidean (see e.g. Refs. [21, 62] for standard
texts) and when it is Lorentzian (e.g. [1, 33]), although the meaning of
KO-dimension is generally less clear in the latter case, cf. [3].
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5.5.2 The fermionic action

Continuing the example of the previous subsection, where the commu-
tative spectral triple has KO-dimension 4 and the finite spectral triple
has KO-dimension 6, taking � = �0 ⊗ "� and hence �, = −8�� ⊗ ��,
with � = 8 /∇� ⊗ 1 + �5

�
⊗ ��, we compute the Wick rotated product

Dirac operator to be

�, = 8 /∇" ⊗ 1 − �5
" ⊗ �� ,

where the − sign comes from �5
�
= −�5

"
. This sign is a minor discrep-

ancy with the literature, but should not affect the model physically as
it can always be absorbed into ��.
The bilinear form giving the full fermionic action can then be given

by

A(�, )$ (#, !) = 〈�,#, (�, )$!〉 = 〈��,# |(�, )$!〉 .

The overcounting of degrees of freedom inherent in this approach
(the so-called ‘fermion doubling problem’) means that we would like
to reduce the size of the Hilbert space. Using Ref. [1] as a reference,
J.W. Barrett suggests imposing Majorana and Weyl conditions �# = #
and "# = 8#.

As far as the grading is concerned, the peculiar factor of 8 which
appeared in the previous subsection here fits perfectly; we find that
", = −8" = −�5

�
⊗ 8"� = �5

"
⊗ 8"�, which is exactly the grading used

by Barrett. This is especially interesting because the grading used in
Ref. [1] is somewhat non-standard; it is much more common to choose
a grading on the finite space with eigenvalues ±1 rather than ±8.

The situation with the Majorana condition is less straightforward.
Barrett’s almost-commutative spectral triple consists of a commutative
spectral triple which is initially Lorentzian, such that � = �" ⊗ �� and
whose real structure is, needless to say, not twisted. The natural choice
in the framework of this section in order to get as close to Barrett’s
Majorana condition as possible is to impose ��,# = #, noting that
��, = �" ⊗ ��"�. We hence define the ‘physical subspace’ to be It makes sense to

define the Majorana
and Weyl conditions
like so since
(��, )2 = 1 and
[��, , ", ] = 0, at
least in the cases we
look at.

ℋphys B {# ∈ ℋ : ",# = 8#, ��,# = #}.

The bilinear form then reduces to

A(�, )$ (#, !) = 〈# |(�, )$!〉 , #, ! ∈ ℋphys ,

which is the same fermionic action as in Ref. [1] and which is in good
agreement with physical models for appropriate choices of finite spec-
tral triple.
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5.5.3 A fully Lorentzian model

These results are very encouraging, but the charge can be made that
this approach to Wick rotation simply exploits the coincidence that
�0�� ∝ �" in the 4-dimensional commutative setting. To investigate
if there is more to it, it is worthwhile to compare the schema outlined
in this section to proposed models from the literature which include a
Lorentzian finite spectral triple, since such spectral triples do not come
from classical Clifford algebras and so the efficacy of our approachwill
come down to the algebraic implementation, rather than by playing
with gamma matrices.

To do this, we will consider the standard Euclidean formulation of
electrodynamics in terms of spectral triples [67], Wick rotate it accord-
ing to the procedure proposed in this section, and compare it to the
fully Lorentzian proposal of Ref. [4] (a so-called ‘indefinite spectral
triple’). The advantage of this comparison is that we already use the
same definition of products as Ref. [4], and their proposal also includesTake care when

comparing products
though; the graded
tensor products of

Ref. [4] use a
different grading to

the Euclidean,
pre-Wick rotation

ones we use.

a real structure, making drawing comparisons relatively simple.
We first recapitulate the Euclidean model. For the finite spectral

triple, we take �� = ℂ⊕ℂ acting onℋ� = ℂ
4 with basis {4' , 4! , 4 2' , 4

2
!
}.

We use the notation
of 4 for electrons and
42 for positrons, with
subscripts denoting
parity. The notation
4̄ is more common

for positrons, but we
avoid it to prevent
confusion with the

Dirac adjoint.

We will not need the explicit representation, but for completeness,
for �� 3 0 = (I, F), I, F ∈ ℂ, the representation �� is given by
��(0) =

(
I12 0
0 F12

)
.

Since the grading should be related to chirality, it is chosen to be the
operator with eigenvalues of +1 on left-handed particles and −1 on
right-handed particles, or explicitly,

"� =

(
−�3 0

0 �3

)
.

Since �� should be related to charge conjugation such that ��4% = 4 2
%

and ��4 2% = 4% , % = !, ', it takes the form

�� =

(
0 12

12 0

)
◦ ∗.

For the Dirac operator, anticommutation with "�, commutation with
��, and the first-order condition force it to have the form

�� =

©­­­­­«
0 3 0 0
3∗ 0 0 0
0 0 0 3∗

0 0 3 0

ª®®®®®¬
,

where 3 ∈ ℂ is a complex parameter which is taken to be 3 = −8< to
obtain the correct Euclidean action.
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The fundamental symmetry used in Ref. [4] is It should be noted
that Ref. [4] uses a
differently ordered
basis ofℋ� ; the
matrices we present
here have been
adjusted to match the
basis of Ref. [67].

�� =

(
�3 0
0 �3

)
,

and we will likewise use it here. The product fundamental symmetry
is then

� = �0 ⊗ ��"� ,

and for the reality operator, the sign ��+ = −1 means that

�, = −8� = −8�� ⊗ �� .

The Dirac operator is Wick rotated to

�, = 8 /∇" ⊗ 1 + 1
2�

5
� ⊗ (�� + ������) −

8

2�
5
� ⊗ (�� − ������)

= 8 /∇" ⊗ 1 + �5
" ⊗ 8��

= 8 /∇" ⊗ 1 + �5
" ⊗

©­­­­­«
0 < 0 0
−< 0 0 0
0 0 0 −<
0 0 < 0

ª®®®®®¬
.

Comparing this to the Dirac operator of Ref. [4],

��," =

©­­­­­«
0 < 0 0
−< 0 0 0
0 0 0 <

0 0 −< 0

ª®®®®®¬
,

we see that even though we did obtain the needed factor of 8, the
placement of the signs is slightly off.

There are other differences, but they are relatively minor. The grad-
ings differ by a factor of −8, but theWeyl conditions are equivalent and
the grading doesn’t otherwise impact the action. The real structure of
Ref. [4] differs from ��, by a factor of −1 ⊗ ��, but this difference does
not account for the difference in Dirac operators. We are thus forced
to conclude that the fermionic action obtained by Wick rotating the
Euclidean formulation of electrodynamics does not yield the correct
Lorentzian fermionic action.
Another example in the literature of a Lorentzian finite space comes

from the Lorentzian electroweak model with Majorana particles of
Ref. [63, §6.1], but the ‘Krein spectral triples’ formulation therein is
another step further removed from Connes’ spectral triples compared
to the ‘indefinite spectral triples’ of Ref. [4]. Even though a comparison
can still be drawn, it is perhaps unsurprising that the Wick rotation
procedure also does not recover the equivalent action in that case. We
will not present the working here, but the main impediment was once
again the finite Dirac operator.
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5.6 discussion

It is interesting that theWick rotationprocedure failed to reproduce the
finite Dirac operator. The map, was constructed to give,(��

�
) = �

�
"
,

which is why it makes sense when applied to the commutative Dirac
operator, which consists of sums of gamma matrices. One would ex-
pect that applying it to the charge conjugation and chirality operators,
which consist of products of gamma matrices, would be therefore con-
siderably less well-motivated and so less successful, and yet in the
finite setting the opposite was the case.
That said, the fact that the procedure as described worked as well

as it did largely relied on the fact that the operators being transformed
(�, �, ". . . ) had their own prior commutation relations, and the fact
that the fundamental symmetry commuted or anticommuted with all
the operators in question; in that context, applying the same trans-
formation to the operators in question is sensible. Indeed, even if the
end result for the reality operator and grading was to only pick up
a factor of −8, it is still interesting that this change was geometrically
meaningful in the almost-commutative case, to the extent that several
signs worked out in the correct way. Indeed, the simplicity of the at-
tempt should not be considered a count against it; if anything, it is an
encouraging starting point for further investigation.
One direction such further investigationmight go is the use of multi-

twists. A compelling reason to consider this possibility is that theWick
rotated Dirac operator (5.16) naturally decomposes into two pieces,

�C =
1
2 (� + ���) and �B = −

8

2 (� − ���), (5.26)

these two pieces being self-adjoint and skew-self-adjoint respectively.
We use subscripts C and B because, for � = 8 /∇�, one finds �C = 8�0∇0

and �B = 8�
9

"
∇9 , splitting the Wick-rotated Dirac operator into time

and space components. This decomposition suggests the use of a mul-The names ‘C’ (time)
and ‘B’ (space)

should not be taken
overly literally, at

least from a physical
perspective; when �
is trivial, �C = �

and �B = 0.

titwist instead of only a single twist. In that case, we expect the multi-
twisted real structure to satisfy

�: �,�: = ±�: �,�: , : = C , B , (5.27)

where one of the �: should be �. The choice is arbitrary, and so, for
example, we might select �C = � for which we have �C�C = �C�C and
�C�B = −�B�C by construction. This gives the sign of (5.27) as �′�′′′� for
: = C, where �� = �′�� and �� = �′′′� ��. What remains is the question
of what to choose for �B .
Remark 5.14. It is not difficult to see that for almost-commutative spec-
tral triples, for the different choices of finite space fundamental sym-
metry, the Wick rotation is able to place the �� term wholly within �̂C ,
for example, or break it into block-diagonal and block-anti-diagonal
parts which are split between �̂C and �̂B . This leaves the door open
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to inferring metric signature from the finite space Dirac operator, an
intriguing possibility. �

If we use the same naïve Wick rotation map, to obtain �, , a con-
servative but promising approach would be to construct �B from �. For
example, one ansatz might be, assuming the spectral triple in question
is even, �B = ±�".In that case, the sign of (5.27) is −�′�′′�′′′� for : = B, Incidentally, in the

commutative case
one can use �0�5

"
to

define a
Lorentz-invariant
inner product
〈•, �0�5

"
•〉 .

However, unlike
〈•, �0•〉 , said inner
product is
pseudoscalar, i.e. it
picks up a sign
under parity
transformations.

where "� = �′′�". This means the two signs would be consistent when
�′′ = −1, i.e. when the original Euclidean product spectral triple was of
KO-dimension 2 or 6. While this is an intriguing idea, it is unlikely to
be enough by itself to recover the finite Dirac operators of the examples
we looked at.

Staying with this conservative multitwist approach where �B is as-
sumed to contain �, one could also generalise the Wick rotation map
slightly to take advantage of the multiple twist operators, for example,

, ′ : ) ↦→ 1
2 () + �C)

†�−1
C ) −

8

2 () − �B)
†�−1
B ),

assuming �B is still self-adjoint and unitary, although, ′ could easily
be modified if �B is only self-adjoint (or unitary) up to sign. One would
need to take care to ensure that Prop. 5.12 still held, perhapswith signs
incorporated as necessary, but this should not be difficult.

Another idea, perhaps to be employed in concert with a multitwist,
and somewhat less ambitious than the above, is to simply choose a
different fundamental symmetryon thefinite space, onewhichmaynot
commute or anticommute with the finite Dirac operator, which would
allow for more complicated Wick rotations, although this by itself
would not been enough to recover the examples from §5.5.3. Similarly,
one could also choose different Wick rotation maps for the different
operators, perhaps one which by itself obtained the Lorentzian charge
conjugation from the Euclidean one without reference to the twist, or
which did not introduce the factor of 8 into the grading, more in line
with the conventions common in the literature. Again, this would not
solve all (or perhaps any) problems by itself, but could eventually be a
worthy refinement regardless.

In addition to the practical issues around the specific implementa-
tion of Wick rotations using twisted real structures, there are various
more conceptual issues which should ultimately be addressed as well.
It was already mentioned in 5.2.1 that the ideal setting for physical ap-
plications of pseudo-Riemannian geometry is non-compact manifolds,
and so it would be desirable to extend the formalism to non-unital
algebras. On the topic of algebras, it should also be investigated how
essential the assumption that ��(0) = �(0)� is, and if (or to what ex-
tent) it can be avoided in greater generality. Another technical point to
consider is that in §5.5 we relied upon the definition of the product of
fundamental symmetries (5.23) to describe the twist operator in order
to retain all the necessary properties, this definition is not the same as
the one supposed in §3.4.
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Andof course, there are the ever-present analytic issues surrounding
theDirac operator and the (bosonic) spectral action,which remainopenIn brief, the

Lorentzian Dirac
operator 8 /∇" is

neither symmetric
nor elliptic, and so
the smooth domain

may be singular, the
spectrum is more
complicated, . . .

questions more broadly within the study of Lorentzian noncommuta-
tive geometry. This also touches on a point we have danced around
so far, namely that abandoning self-adjointness of the Dirac operator
means any spectral triple with twisted real structure we obtain will not
be a true spectral triple; it will no longer satisfy Def. 2.1. This is not an
inherently negative thing; almost all approaches to spectral geometry
use some more general framework than spectral triples to accommo-
date non-self-adjoint Dirac operators, Krein spaces, etc. Even so, one
should take special care in arriving at this destination using twisted
real structures, since they were originally motivated to stay as close to
true spectral triples as possible, in direct opposition to the philosophy
of approaches which begin by assuming a more general framework
on first principles. And lastly, if one embraces the notion of twisted
real structures for generalised spectral triples (of whatever flavour),
does it make sense to have twists which are totally unrelated to the
fundamental symmetry? What results still hold and which need to be
changed or abandoned? These are interesting questions, but to be clear,
a very long way from being answered – there are still many unknowns
about generalisations of spectral triples that should be settled before
speculating on such things.



6
TWISTED REAL STRUCTURES FOR TWISTED
SPECTRAL TR IPLES

6.1 introduction

Just as it is true that not all spectral triples admit a real structure, so
it is true that not all twisted spectral triples admit a real structure (in
the sense of Ref. [46]). Apart from the fact that this means that not
all twisted spectral triples can be untwisted (in the sense of Ref. [8])
into spectral triples, it also suggests the possibility that twisted spec-
tral triples could admit twisted real structures, just as weakening the
conditions for a spectral triple to be real to expand the domain of ap-
plicability of ‘real structures’ motivates the consideration of twisted
real structures for spectral triples. Indeed, the possibility of just such
a twisted spectral triple with twisted real structure was briefly spec-
ulated upon in Ref. [8]. Their suggested definition can be formally
expressed as follows:

Definition 6.1. A twisted spectral triple with twisted real structure is a
twisted spectral triple (�,ℋ , �)� alongwith a reality operator � : ℋ →ℋ ,
�† = �−1, and twist operator � such that (2.1), (2.3), (2.9), (2.10) and the
following ‘(�, �)-twisted first-order condition’[

[�, 0]�� , 1
]�◦
�−1◦�̂2

= 0,

for all 0, 1 ∈ �, are satisfied. �

By ‘modular spectral
triple’, we take the
same loose attitude
as the papers cited,
namely, broadly
taking the framework
of Ref. [43] – that a
modular spectral
triple is effectively a
twisted spectral
triple where the
growth of the
resolvent of the Dirac
operator is measured
with respect to a
weight instead of a
trace – sufficiently
relaxed to
incorporate the
(non-unital)
examples of interest.

This chapter of the thesis describes an example of just such a twisted
spectral triple with twisted real structure found in the pre-existing
literature, though not previously identified as such, with the notable
difference to Def. 6.1 that the twist operator is unbounded. To be more
precise, the example found is the modular spectral triple describing
�-Minkowski space found in Ref. [54], whichwill be described in some
detail in §6.3, as well as an alternative construction which will be de-
scribed in §6.6.1. §6.4 will show that the example cannot be untwisted,
and §6.5 will show that the unorthodox “real structure” described in
Ref. [54] is in fact a twisted real structure.

The constructions of �-Minkowski space described in Refs. [42, 54]
are especially interesting in the context of this thesis because the con-
structions are very different from the (twisted) spectral triples dis-
cussed up to this point. To be specific, Ref. [54] uses Hopf algebras
acting on a ∗-algebra represented on a Hilbert space to construct a
modular spectral triple, which also touches on interesting aspects of
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modular theory, whilst Ref. [42] arrives at the same end by taking a
crossed product extension of a spectral triple, that is to say, by building
the twisted spectral triple from the action of a C*-dynamical system
on a spectral triple. That a twisted real structure is found to arise from
such disparate techniques is itself a notable fact which suggests the
concept may be quite widely applicable.

6.2 definitions

In contrast to the previous chapters, we will take �-Minkowski space
to be non-compact, which, from the algebraic perspective, means that
the algebra of the associated (twisted) spectral triple � should be non-
unital. One necessary change to the definition Def. 2.1 to take account
of the algebra being non-unital is that instead of requiring that the
Dirac operator � have a compact resolvent, we instead impose the
weaker requirement

�(0)(�2 + 1)−1/2 ∈ K(ℋ)

for all 0 ∈ �. Further, to be clear, whilst �-Minkowski space can be
defined in arbitrarily many dimensions, for simplicity we will follow
Ref. [54] and work in only two dimensions (one space and one time).
As a point of notation, in this chapter we will be working with a

noncommutative algebra of functions endowedwith a nonstandard in-
volution. The Hilbert space will also be obtained from this algebra and
involution. As such, the Hilbert space adjoint will still be denoted by
†, but ∗ will not represent complex conjugation. To avoid overloading
notation causing confusion, we will switch to the mathematics con-
vention and denote the complex conjugate of a function 5 by 5̄ , and
denote the complex conjugation map by c.c., or in other words, we
write 5̄ ≡ c.c.( 5 ).

As was mentioned in the previous section, �-Minkowski space is
understood as the noncommutative spacewhose symmetries are given
by the �-Poincaré quantum group (Hopf algebra). Since a minimal
understanding of Hopf algebras is necessary for this chapter, we give
the definition here, beginning first with the definition of a coalgebra.

Definition 6.2. A coalgebra � is a vector space over a field� endowed
with a coproduct map Δ : � → � ⊗ � which is coassociative, i.e. it
satisfies (Δ⊗ id)◦Δ = (id⊗Δ)◦Δ, and a counit map & : � → � obeying
(& ⊗ id) ◦ Δ = id = (id⊗&) ◦ Δ. �

For 2 ∈ �, the coproduct can be expressed as Δ2 =
∑
9 2
(1)
9
⊗ 2(2)

9
, for

2
(:)
9
∈ �. For what follows, we will use sumless Sweedler notation,

where instead, for brevity, we write Δ2 = 2(1) ⊗ 2(2). For what concerns
the field, in this chapter we will always take� = ℂ.
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Having introduced coalgebras,we can nowdefineHopf algebras as a
particular kind of bialgebra equipped with an additional ‘invertibility’
structure.

Definition 6.3. A bialgebra � is a unital algebra which is also a coal-
gebra, such that Δ and & are algebra homomorphisms and � ⊗ �
has the tensor product structure (ℎ ⊗ 6)(ℎ′ ⊗ 6′) = ℎℎ′ ⊗ 66′ for all
ℎ, ℎ′, 6, 6′ ∈ �. �

Definition 6.4. A Hopf algebra � is a bialgebra equipped with an an-
tipode map ( : � → � satisfying ((ℎ(1))ℎ(2) = &(ℎ) = ℎ(1)((ℎ(2)) for all
ℎ ∈ �. �

A Hopf algebra � can be endowed with a ∗-structure, making it a
Hopf ∗-algebra, if � is a ∗-algebra and

Δ(ℎ∗) = (ℎ(1))∗ ⊗ (ℎ(2))∗ , &(ℎ∗) = &(ℎ), (( ◦ ∗)2 = id

for all ℎ ∈ �. Furthermore, two Hopf ∗-algebras �, � are dual if they
are dual as Hopf algebras and 〈6∗ , ℎ〉 = 〈6, ((ℎ)∗〉 for all ℎ ∈ �, 6 ∈ �.

6.3 constructing the twisted spectral triple

In this section we give a summary of the construction of a twisted
spectral triple (�,ℋ , /�)� for �-Minkowski space following the pre-
sentation given in Ref. [54], along with the associated grading " and
antiunitary operator �. None of the material in this section is original.

6.3.1 The ∗-algebra

The construction of the ∗-algebra � can be divided into roughly three
parts. The first part is to define the �-PoincaréHopf algebraP�, identify
the (extended) momentum Hopf subalgebra T�, and then define �-
Minkowski spaceℳ� as the Hopf algebra obtained via duality with
T�.
Firstwegive the standardpresentation.Wedefine the two-dimensional

�-Poincaré Hopf algebra P� in terms of the generators %0, %1 and #

satisfying the commutation relations

[%0 , %1] = 0, [#, %0] = %1 , [#, %1] =
�
2 (1 − 4

−2%0/�) − 1
2�%

2
1 ;

at the physical level, these generators are associated to time translation
(energy), space translation (momentum) and the Lorentz boost respec-
tively. The coproduct Δ : P� → P� ⊗ P� is given on the generators
by

Δ(%0) = %0⊗1+1⊗%0 , Δ(%1) = %1⊗1+4−%0/�⊗%1 , Δ(#) = #⊗1+4−%0/�⊗#,
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and the counit & : P� → ℂ and antipode ( : P� → P� are given by

&(%0) = &(%1) = &(#) = 0, and

((%0) = −%0 , ((%1) = −4%0/�%1 , ((#) = −4%0/�#.

In order to make sense of terms like 4%0/� as power series, �−1 should
be understood as a formal parameter such that the tensor product is
defined over the ring of formal power series ℂ[[�−1]].
We denote by T� the Hopf subalgebra which is generated by the

translation generators %0 and %1. Then �-Minkowski space is a Hopf
algebraℳ� in a non-degenerate dual pairing with T�. Denoting this
pairing by 〈•, •〉 : T� ×ℳ� → ℂ, the structure ofℳ� is then given by
the relations

〈C , GH〉 = 〈C(1) , G〉 〈C(2) , H〉 , 〈CB, G〉 = 〈C , G(1)〉 〈B, G(2)〉 ,

for C , B ∈ T� and G, H ∈ ℳ�. We see from this pairing that ℳ� is
noncommutative and cocommutative (contrary to T�, which is com-
mutative and noncocommutative). Thus we have that the algebraic
relations forℳ� are given by

[-0 , -1] = −�−1-1 and Δ(-�) = -� ⊗ 1 + 1 ⊗ -�.

There is an alternative formulation, however, which treats �−1 as a
number [36] such that the tensor product is the usual one over ℂ. In
this case, one can reconsider 4−%0/� not as a formal power series but an
invertible element in its own right ℰ, in terms of which the defining
relations can be rewritten like so:

[%0 , %1] = 0, [%0 , &] = [%1 , &] = 0;

Δ(%0) = %0 ⊗ 1+1⊗ %0 , Δ(%1) = %1 ⊗ 1+& ⊗ %1 , Δ(&) = & ⊗&;

&(%0) = &(%1) = 0, &(&) = 1;

((%0) = −%0 , ((%1) = −&−1%1 , ((&) = &−1.

The role of T� is then played by the so-called extended momentum
algebra, the Hopf subalgebra generated by %� and & which is also
denoted by T�. One once again then obtainsℳ� by a pairing with T�,
and one further obtains a ∗-structure on T� by defining %∗� = %� and
&∗ = &.
Technically, the computations to follow are carried out in Euclidean

signature, inwhich case the “�-Poincaré algebra” is really the quantum
Euclidean group, but since we will soon discard the boost generator
# , this is not such an important distinction here. Another point is that
we will work with � B �−1 rather than � directly, since this allows
us to define the classical limit as � → 0, analogous to the situation in
physics with ℏ→ 0.
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The second part of the construction identifies the Lie algebra under-
pinningℳ�, from which one obtains the associated Lie group �, and
hence the convolution algebra !1(�).

There is only one
nonabelian Lie
algebra of dimension
2 up to isomorphism.

The underlying algebra ofℳ� is the enveloping algebra of the Lie
algebra generated by 8-0 , 8-1 with [-0 , -1] = 8�-1, which has the
faithful representation

)(8-0) =
(
−� 0
0 0

)
, )(8-1) =

(
0 1
0 0

)
.

This Lie algebra exponentiates to a Lie group � with elements of the
form

"(0) = "(00 , 01) =
(
4−�00 01

0 1

)
,

with group multiplication

"(00 , 01)"(10 , 11) = "(00 + 10 , 01 + 4−�0011)

and inverse

"(00 , 01)−1 = "(−00 ,−4�0001).

The group� is not unimodular because the Lebesguemeasure d20 is
right-invariant but not left-invariant. We denote by !1(�) the convolu-
tion algebra of�with respect to the right-invariantmeasure. Functions
on � are identified with functions on ℝ2 using the parametrisation in
terms of (00 , 01). Then !1(�) is an involutive Banach algebra of inte-
grable functions on ℝ2 with product ★̂ and involution ∗̂ given by

( 5 ★̂6)(0) =
∫

d21 5 (00 − 10 , 01 − 4−�(00−10)11)6(10 , 11),

5 ∗̂(0) = 4�00 5̄ (−00 ,−4�0001).

Any unitary representation�D of� gives a representation �̃ of !1(�)

�̃( 5 ) =
∫

d20 5 (0)�D("(0)),

which is a ∗̂-representation since �̃( 5 ★̂6) = �̃( 5 )�̃(6) and �̃( 5 ∗̂) = �̃( 5 )†.
The final part of the construction comes from applying Weyl quanti-

sation to !1(ℝ2) ' !1(�) to obtain the algebra �.
We now introduce the Fourier transform ℱ onℝ2 (using the unitary

convention) and Weyl-quantise. The Weyl transform is given by

,�̃( 5 ) B �̃(ℱ 5 )

where 5 ∈ !1(ℝ2)∩ℱ −1(!1(ℝ2)).With thiswe introduce a newproduct
★ (a Moyal product) and involution ∗ given by

5★6 = ℱ −1(ℱ 5 ★̂ℱ 6), 5 ∗ = ℱ −1(ℱ 5 )∗̂
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such that,�̃( 5 ★ 6) =,�̃( 5 ),�̃(6) and,�̃( 5 ∗) =,�̃( 5 )†.
Now denote by �2 the Schwartz functions on ℝ2 with compact sup-Def. Schwartz

space is defined as
the space of rapidly

decreasing functions
�(ℝ= ,ℂ) B
{�∞(ℝ= ,ℂ) :

supG∈ℝ=

���G� (%�G 5 )(G)���
< ∞∀� , � ∈ ℕ=}

where � , � are
multi-indices and
%�G = %�1

G1 . . . %
�=
G= .

port in the first variable (i.e. for 5 ∈ �2 , we have supp( 5 ) ⊆  × ℝ for
 ⊂ ℝ compact). We restrict ourselves to �2 to ensure that ★ and ∗ are
well defined. We then define � as the involutive algebra given by the
set ℱ (�2) equipped with the product★ and involution ∗. To be explicit,

( 5 ★ 6)(G) =
∫ d?0

2� 4 8?0G0(ℱ0 5 )(?0 , G1)6(G0 , 4
−�?0G1),

5 ∗(G) =
∫ d?0

2� 4−?0G0(ℱ0 5̄ )(?0 , 4
−�?0G1),

where ℱ0 is the Fourier transform on the first variable, given explicitly
by (ℱ0 5 )(?0 , G1) =

∫
dH0 4

−8?0H0 5 (H0 , G1).

6.3.1.1 Action of the momentum Hopf algebra on �

The extended momentum algebra T� has a natural action on �. To
understand this, consider that a Hopf algebra � and ∗-algebra � can
be considered compatible if � is an �-module ∗-algebra. By definition,
� is a left �-module ∗-algebra if

1. � is a left �-module such that the representation respects the
algebra structure of �, i.e. ℎ ⊲ (01) = (ℎ(1) ⊲ 0)(ℎ(2) ⊲ 1);

2. the representation respects the ∗-structure of �, i.e. (ℎ ⊲ 0)∗ =
((ℎ)∗ ⊲ 0∗.

One finds that indeed, � is a left T�-module ∗-algebra, with the repre-
sentation given by

(%� ⊲ 5 )(G) = −8(%� 5 )(G), (& ⊲ 5 )(G) = 5 (G0 + 8�, G1).

6.3.2 The Hilbert space

To obtain the Hilbert space, we use the GNS construction coming from
�. Since � is non-unital, we begin by choosing a finite weight $ andDef. Aweight on a

∗-algebra � is a
linear map

$ : �+ → [0,∞]. A
weight is finite if
$(0) < ∞ for all

0 ∈ �+.

taking the ideal ℐ = { 5 ∈ � : $( 5 ∗ ★ 5 ) = 0}. We take the quotient
�/ℐ and define the inner product ( 5 , 6) B $( 5 ∗ ★ 6). We then have
that ℌ B �/ℐ is a Hilbert space, completing with respect to the norm
coming from the inner product.

A natural choice of weight is

$( 5 ) B
∫

d2G 5 (G),

where d2G is the Lebesgue measure, chosen because this weight is
invariant under the action of P�, i.e. $(ℎ ⊲ 5 ) = &(ℎ)$( 5 ). This weight
also satisfies the twisted-trace property,

$( 5 ★ 6) = $((& ⊲ 6)★ 5 ),
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and in particular, one has

$( 5 ∗ ★ 6) =
∫

d2G 5 ∗(G)6∗(G). (6.1)

The Hilbert space obtained using (6.1) for the inner product and com-
pleting with respect to the norm is unitarily equivalent to !2(ℝ2) via
the map

(* 5 )(G) =
∫ d?0

2� 4 8?0G0(ℱ0 5 )(?0 , 4
�?0G1).

The unitary * passes to an antiunitary isometry � B c.c. ◦* which
gives �# = #∗ for ∗ the involution on �.
For the purposes of constructing the spectral triple, we define the
∗-representation �( 5 )# = 5 ★# for 5 ∈ � and # ∈ ℌ. The operator �( 5 )
is bounded for any 5 ∈ �.

6.3.2.1 The representation of T�

In §6.3.1.1, T� was given an action on �. We want this action to extend
to a representation on ℌ as unbounded operators. Let ℋ be a dense
linear subspace of ℌ with the inner product (•, •), and � a Hopf alge-
bra. An unbounded ∗-representation of � on ℋ is a homomorphism
� : � → End(ℋ) such that

(�(ℎ)#, )) = (#, �(ℎ∗)))

for all #, ) ∈ℋ and ℎ ∈ �. Further, let � be a left �-module ∗-algebra
with ∗-representation �. Then � on ℋ is �-equivariant/covariant if
there exists a � such that

�(ℎ)�(0)# = �(ℎ(1) ⊲ 0)�(ℎ(2))#.

Hence one defines equivariance for operators ) on ℌ more generally
as )�(ℎ)# = �(ℎ))# for all ℎ ∈ � and # ∈ℋ.

A natural choice of the dense subspace ℋ is �, which is dense in
ℌ by construction. Since � is a left T�-module ∗-algebra, we obtain
� from the action of T� on � via �(ℎ)# B ℎ ⊲ # for every ℎ ∈ T�
and # ∈ �. Note that � is invariant under the action of T� and �
is automatically equivariant. Note that �(%�) and �(&) are essentially
self-adjoint on ℌ, and we will use the same symbols to refer to their
closures. Furthermore, as a point of notation we will write

%̂� B �(%�).

6.3.2.2 Modular theory

At this point, it will be useful to state a useful result relating tomodular
theory. For any C ∈ ℝ and 5 ∈ �, define (�$C 5 )(G) B 5 (G0 − �C , G1).
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Then �$ is a one-parameter group of ∗-automorphisms of �. Since $
satisfies the KMS condition at inverse temperature � = 1 with respect
to �$, �$ is the modular automorphism group which is implemented
by the modular operator Δ$ = 4

−�%̂0 , i.e. for 5 ∈ � we have �(�$C ( 5 )) =
Δ8C$�( 5 )Δ−8C$ .

6.3.3 The Dirac operator

For some background, we review the classical case of the Dirac op-
erator /� on ℝ2. Let � = �(ℝ2) be represented on the Hilbert space
!2(ℝ2) C ℋA by pointwise multiplication and let the representation of
the Clifford algebra given by

�0 B �1 and �1 B �2 ,

where �1 , �2 are Paulimatrices. TheHilbert space corresponding to the
trivial spinor bundle is given byℋA ⊗ ℂ2 C ℋ and the representation
is extended onto the doubling diagonally. The inner product on ℋ is
given by〈

#, )
〉
ℋ =

∫
d2G

(
#̄1(G))1(G) + #̄2(G))2(G)

)
,

where #8 and ) 9 are the spinor components of # and ) respectively.
The Dirac operator is built from �� and %̂� = −8%� as

/� = ��%̂� = −
(

0 8%0 + %1

8%0 − %1 0

)
.

Note that theDirac operator anticommuteswith thegrading" = −8�0�1

as required.
We now move on to the deformed case following the same tem-

plate as the classical case. We now denote by ℋA the Hilbert space ℌ
described in §6.3.2, constructed with respect to the algebra � = �(ℝ2),
which is representedonℋA by themultiplication (�( 5 )#)(G) = ( 5 ★#)(G).
We again use the Hilbert space coming from the trivial spinor bundle
ℋ = ℋA ⊗ ℂ2 with the ∗-representation � extended diagonally. The
inner product on the doubled Hilbert spaceℋ is〈

#, )
〉
ℋ =

∫
d2G

(
(#∗1 ★ )1)(G) + (#∗2 ★ )2)(G)

)
.

Using the classical Dirac operator, we run into troubles with the left
multiplication:

%̂1�( 5 )# = �(%1)�( 5 )# = �(%1 ⊲ 5 )# + �(& ⊲ 5 )�(%1)#.

%1 does not obey the Leibniz rule due to the nontrivial coproduct of
P�, and the commutator is not bounded since �(%1) is unbounded.
Explicitly,[

/�,�( 5 )
]
= ���(%� ⊲ 5 ) + �1�((& − 1) ⊲ 5 )�(%1).
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It is necessary then to modify the Dirac operator and instead look
for the boundedness of the twisted commutator with respect to some
automorphism.
We want the new Dirac operator to be self-adjoint and anticommute

with the grading, so it must be of the form

/� = ���̂�

where the �̂� are self-adjoint on ℋA . It should reduce to the classical
Dirac operator in the classical limit � → 0 and from symmetry argu-
ments we assume that �̂� = �(��) for some �� ∈ T�, with the twisting
automorphism � having the action �( 5 ) = � ⊲ 5 , for � ∈ T� (note that �
giving an automorphism requires that Δ(�) = � ⊗ �). As no topology
has been specified on T�, any element can be written as a finite sum of
products of generators, and since T� is commutative, that means any
such element is a sum of terms of the form % 80%

9

1&
: with 8 , 9 ∈ ℕ0 and

: ∈ ℤ.
If ), � ∈ T�, then [�()),�( 5 )]� = �())�( 5 ) −�(� ⊲ 5 )�()) is bounded

if and only if Δ()) = )′ ⊗ 1 + � ⊗ ) for some )′ ∈ T�. The question
then is which elements of T� have a coproduct of this form. In short,
the answer is that we must have � = &< for < ∈ ℤ and for coefficients
28 ∈ ℂwe have

) =



211 + 22&
< if < < 0,

211 + 22%0 if < = 0,

211 + 22& + 23%1 if < = 1,

211 + 22&
< if < > 1.

Now, we consider /� to reduce to the classical case in the classical
limit if the length-dimension of /� is −1 (as in the classical case) and Recall that � is a

physical parameter
with
length-dimension 1,
and that coordinates
G� also have
length-dimension 1.

lim�→0 �̂�# = %̂�#. Satisfying this requirement while ensuring the
boundedness of the twisted commutator (with /� = ���(��) and � the
twisting automorphism) imposes that

�0 =
1
�
(1 −&), �1 = %1 , � = &.

To be explicit, we therefore have

/�#(G) = 1
�
�0 ((1 ⊲ #)(G) − (& ⊲ #)(G)

)
+ �1(%1 ⊲ #)(G)

=
1
�
�0 (#(G) − #(G0 + 8�, G1)

)
− 8�1(%1#)(G),

with the slight abuse of notation that # stands in for the spinor com-
ponents #8 . Note that this does indeed reduce to the classical Dirac
operator in the classical limit �→ 0, since

lim
�→0
−8�0 1

(8�)
(
#(G0+ 8�, G1)−#(G0 , G1)

)
= −8�0%0#(G) = �0%̂0#(G).
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Note further that

�(&)#(G) = Δ$#(G) = 4−�%̂0#(G)

=

∞∑
:=0

1
:! (−�)

:(−8):(%:0#)(G)

= #(G0 + 8�, G1) = (& ⊲ #)(G).

There is a nice connection between the twisting automorphism of
the commutator, �, and the modular theory of §6.3.2.2. In particular,

�(�( 5 )) = Δ$�( 5 )Δ−1
$ , (6.2)

that is to say that � is implemented by the modular operator. In fact,
� is the analytic continuation at C = −8 of the modular group �$C (see
Ref. [21, §3.4]).

6.3.4 Antiunitary operator

The real structure in the classical case is given by

� = 8�0 ◦ c.c.

acting on ℋ = !2(ℝ2) ⊗ ℂ2. This operator is not suitable for the de-
formed case without some changes, however.
First, we define

�̃ 5 B �$
8/2( 5

∗)

for 5 ∈ �. Because $ satisfies the KMS condition with respect to �$,
the �$

8/2 term compensates for the lack of a trace, which allows �̃ to
be an antilinear isometry with respect to the inner product on ℋA . To
extend �̃ fromℋA toℋ = ℋA ⊗ ℂ2, we define

� = 8�0 �̃ = 8�0�$
8/2 ◦ ∗.

This antiunitary operator satisfies some modified properties withRef. [54] refers to �
as a ‘real structure’,

but to avoid
confusion we will

not do so here.

respect to a typical real structure, in particular,

�2 = 1 (6.3a)
� /� = −Δ−1

$ /�� (6.3b)[
�( 5 ), ��(6∗)�−1] = 0 (6.3c)
�" = −"� (6.3d)[ [
/�,�( 5 )

]
�
, ��(6)�−1] = 0 (6.3e)

where" = −8�0�1 is thegradingand theKO-signs are chosenbyassum-
ing the classical case has KO-dimension 2. What is interesting about
(6.3) is that the conditions are very reminiscent of those of a twisted
real structure, though (6.3b) and (6.3e) are slightly off compared to
what one would expect. The motivating question of this chapter is
then: Is this similarity coincidental, or is � a twisted real structure ‘in
disguise’?
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6.4 resistance to untwisting

In order to answer the question at the end of the preceding section, we
must first reckon with the fact that �-Minkowski space, as constructed
above, is a twisted spectral triple. In particular, it is essential to know
whether the untwisting procedure of [8] can be used to ‘shift’ the twist
from the commutator with the Dirac operator onto the real structure.
Strictly speaking, this possibility is precluded prima facie since the

modular spectral triple presented above does not satisfy either of (2.10)
or (2.11) in [8], which are requirements of [8, Thm. 4.1]. That is to say,
�-Minkowski space is a twisted spectral triple with an antiunitary
operator �, but not a real twisted spectral triple in the sense of [46].

Of course, this fact is what makes the example interesting in the
first place, so we will proceed unabated. The key to untwisting is to
turn a twisted commutator into a product of operators, at least one
of which is a bounded commutator, and the natural starting point
is commutator identities. Ref. [54] briefly looks at the commutator
identity [�,�(0)]�̂2 = �

[
�−1�,�(0)

]
�̂
, but this does not completely

remove the twist on the commutator. The untwisting of Ref. [8] is
based on the commutator identity

[�,�(0)]�̂2 = �
[
�−1��−1 , ��(0)�−1]�,

which seems the most promising lead, identifying the twist as �2 = Δ$. There is no problem
defining � = Δ1/2

$
since �(&) is
self-adjoint, so we
can define a unique
positive square root
via the spectral
theorem.

We then have that the (ordinary) commutator on the right-hand side
is [

Δ
−1/2
$ /�Δ−1/2

$ ,Δ
1/2
$ �( 5 )Δ−1/2

$

]
. (6.4)

There are no complications coming from the requirement that con-
jugation by Δ1/2

$ should implement an isomorphism since, using the
(analytic continuation of the) modular automorphism group �$C , we
find that �̂ is an automorphism by identifying �̂ = �$C |C=−8/2.

We note that one can simplify Δ−1/2
$ /�Δ−1/2

$ :

Δ
−1/2
$ /�Δ−1/2

$ = �0 1
�
�(&)−1/2 (�(1) − �(&)) �(&)−1/2 + �1�(&)−1/2�(%1)�(&)−1/2

= �0 1
�

(
�(&)−1 − 1

)
+ �1�(&)−1�(%1)

= �0 1
�
�(&)−1 (�(1) − �(&)) + �1�(&)−1�(%1)

= Δ−1
$ /� (6.5)

This motivates consideration of the alternative commutator identity

[�,�(0)]�̂ = �
[
�−1�,�(0)

]
.

If we then identify � = Δ$, we have that the (ordinary) commutator on
the right-hand side is simply[

Δ−1
$ /�,�( 5 )

]
. (6.6)
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The most important question to answer for the putative untwisting
procedure is, however, whether (6.4) (or (6.6)) is bounded, which is
absolutely necessary to recover an ordinary spectral triple. The easiest
way to answer this question is to defer to [54, Lem. 22],which states that
[�()),�( 5 )]�, ), � ∈ T�, is bounded if and only if Δ()) = )′ ⊗ 1+ � ⊗ )
for some )′ ∈ T�. Here we have the case of � = 1, and the commutator
in question (taking (6.6) for simplicity, as there is no practical difference
between the two) is[

Δ−1
$ /�,�( 5 )

]
= �0 1

�

[
�(&−1 − 1),�( 5 )

]
+ �1 [�(&−1%1),�( 5 )

]
.

We have that Δ(&−1 − 1) = &−1 ⊗&−1 − 1 ⊗ 1 and Δ(&−1%1) = &−1%1 ⊗
&−1 + 1⊗&−1%1, neither of which is of the correct form, and so neither
commutator is bounded, and thus neither is the sum.
The commutator identities we have looked at are the most obvious

choices, and are instructive, but we can generalise. In general, the
‘untwisting’ commutator identity is given by

[�,�(0)]�̂= = �<[�−<��<−= ,�(�̂=−<(0))]�=−<

for some =, < ∈ ℝ. When � commutes with �, this simplifies to

[�,�(0)]�̂= = �<[�−=�,�(�̂=−<(0))]�=−< ,

and we assume �−=� is a valid Dirac operator. It is straightforward
to see that neither Δ(&−= − &1−=) nor Δ(&−=%1) will have the form
)′ ⊗ 1 + 1 ⊗ ) for any = ∈ ℝ regardless of any other considerations,
and thus we find that the twisted spectral triple of �-Minkowski space
cannot be untwisted into a spectral triple with twisted real structure.

6.5 reconciling formalisms

The main result of the previous section forces us to concede that the
twisted spectral triple cannot be untwisted, and so we must take said
twist seriously. With that in mind, it is argued in Ref. [46] that the
definition of a real twisted spectral triple, that is, a twisted spectral
triple equipped with a real structure, ought to be as per Def. 2.8
However, as previously noted, if we compare Def. 2.8 to (6.3), the

relations satisfied by (�,ℋ , /�)� with the antiunitary �, we notice two
important differences. Firstly, the commutation relation (6.3b) between
� and /� involves the operatorΔ−1

$ , and secondly, rather than the twisted
first-order condition (2.25), we have a kind of ‘semi-twisted’ first-order
condition (6.3e). These alterations call to mind what happens when
one twists the real structure of a real spectral triple, and so it is natural
to ask if twisting the real structure of a twisted real structure can obtain
the same result.
This kind of twisted spectral triple with twisted real structure was

briefly speculated about in Ref. [8]. Therein, the authors proposed, for



6.5 reconciling formalisms 123

a real twisted spectral triple (�,ℋ , �, �)�, the real structure � could
be replaced by a twisted real structure (� , �) satisfying ��� = � with
�(�̂(0)) B ��(0)�−1, �̂ ∈ Aut(�). Then the commutation between �
and � would be replaced by

��� = �′��� (6.7)

whilst the twisted first-order condition would be replaced by

To be precise, Ref. [8]
proposes
[[�, 0]�� , 1]

��
�◦�̂−2 = 0

rather than (6.8).
The difference is not
a problem, since if
the condition holds
for 1∗ ∈ � it must
also hold for (1∗)∗.
For simplicity we
have chosen to match
Ref. [46] as closely as
possible using �◦
instead of �� , for
which it is reasonable
to replace �̂−2 with
�̂2 assuming that
�∗ = �.

[
[�, 0]�� , 1

]�◦
�−1◦�̂2

= 0, (6.8)

for all 0, 1 ∈ �.
Following this template, clearly we require that � be chosen such

that �̂2 = �. From (6.2), we can see fairly immediately that this means
we require � = Δ1/2

$ . With this inmind, we note that (6.3b) is equivalent
to

Δ
1/2
$ � /� = −Δ−1/2

$ /��,

and the question of if (6.3b) is equivalent to (6.7) reduces to a question
of the commutation of Δ−1/2

$ with /� and �. We have already explicitly
shown in (6.5) that Δ−1/2

$ commutes with /�. For what concerns �, since
� is diagonal onℋ we need only consider the action onℋA . Mirroring
a similar calculation from Ref. [54], we have

�̃Δ
1/2
$ �̃# = �$

8/2

(
�(4−�%0/2)�$

8/2(#
∗)
)∗
=

(
�$−8/2�(4

−�%0/2)�$
8/2(#

∗)
)∗
.

Since �$
8/2 commutes with �(%0), this simplifies to

(
�(4−�%0/2)#∗

)∗
. As

for any ) ∈ T� we have �())# = ) ⊲ # and compatibility with the
∗-structure requires ) ⊲ #∗ = ((())∗ ⊲ #)∗, this further simplifies to(

�(4−�%0/2)#∗
)∗
=

(
4−�%0/2 ⊲ #∗

)∗
= ((4−�%0/2)∗⊲# = �

(
((4−�%0/2)∗

)
#.

It is not hard to see that ((4−�%0/2) = 4�%0/2, which is self-adjoint since
%0 is self-adjoint, and therefore

�̃Δ
1/2
$ �̃ = Δ

−1/2
$ .

Using the fact that �̃2 = 1 and passing toℋ , we find

�� = ��−1 ,

which not only gives us that

Δ
1/2
$ � /� = − /��Δ1/2

$ ,

which has the form of (6.7), but also shows that the twist operator
satisfies the regularity condition ��� = �, as we would expect given
that � is a regular twist automorphism in the sense of (2.20). Thus we
conclude that (� ,Δ1/2

$ ) is a twisted real structure for the twisted spectral
triple (�,ℋ , /�)�.
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Remark 6.5. In Ref. [8] and other literature on twisted real structures
(including the previous chapters of this thesis), the twist is typically
taken to the bounded. That is not the case here. However, for practi-
cal purposes, this is not a problem, since � ◦ �̂ still gives a bounded
representation of � on account of � being defined on � ⊂ ℋ . �

6.6 future directions

6.6.1 Crossed product extensions

It was shown in Ref. [42] that the example of Ref. [54] fits into a more
general framework. The idea is that a twisted spectral triple (�,ℋ , �)�
can be constructed as the crossed product extension of a spectral triple
(�,ℌ,�) by a C*-dynamical system1 (A , �, 
). We give an extremely
compressed summary of the construction below; see Ref. [42] for a
much more detailed exposition. None of the material in this section is
original and we caution the reader that the notation does not necessar-
ily align with that used in the previous sections.

We first take � to be a dense ∗-subalgebra of the C*-algebra A. We
take � to be a second-countable locally compact Hausdorff groupwith
Haar measure �� and modular function Δ�. Then 
 : � → Aut(A)
is a continuous homomorphism and the ∗-automorphisms 
6 , 6 ∈ �,
are assumed to preserve �. If � is represented on ℌ by a faithful
nondegeneratemap�, then (�, *) is a faithful nondegenerate covariant
representation of (A , �, 
) on ℌ, i.e. � 3 6 ↦→ *6 ∈ ℬ(ℌ) is a strongly
continuous unitary representation of � and

*6�(0)*∗6 = �(
6(0))

for all 0 ∈ �. Then �̂ is the integrated form of (�, *) of � n
,A A onDef. The integrated
form �̂ of a
covariant

representation
(�, *) of � n
,A A

is given by �̂ B∫
�
�( 5 (6))*6 d��(6)

for any
5 ∈ !1(�, �).

ℌ̂ = !2(�, d��) ⊗ ℌ.

We take � ⊂ �2(�, �) to be a (not uniquely determined) dense
∗-subalgebra of the C*-algebra � n
,A A. We further suppose there
exists a map I : �→ ℬ(ℌ) such that

*6�*
∗
6 = I(6)∗−1

�I(6)−1 ,

and that there exists a positive continuous /(�)×-valued 
-1-cocycle
6 ↦→ ?(6) such that

�(?(6)) = I(6)I(6)∗

and � 3 6 ↦→ ?(6)±1 5 (6) ∈ � is in � for any 5 ∈ �.

1 Standard references for C*-dynamical systems, covariant representations and (re-
duced) crossed products include Ola Bratteli and Derek W. Robinson. Operator Al-
gebras and Quantum Statistical Mechanics 1. Springer Science+Business Media, 1979,
and Bruce Blackadar.  -Theory for Operator Algebras. Springer-Verlag, 1986.
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The unbounded operator �̂ : ℌ̂→ ℌ̂ defined by

(�̂#̂)(6) B *∗6�(?(6))*6#̂(6)

implements the map � ∈ Aut(�2(�,A)) in the sense that

�̂(�( 5 ))#̂ = �̂�̂( 5 )�̂−1#̂

for all #̂ ∈ �2(�,ℌ) ⊂ ℌ̂ and 5 ∈ �2(�,A). One can show that � is also
an automorphism of �.

We now define the unbounded operator

(�̂#̂)(6) B *∗6�*6#̂(6),

which gives that
[
�̂, �̂( 5 )

]
�
is bounded for any 5 ∈ �. In addition to

this, we define another unbounded operator

�11 + �2�̂

for �1 ,�2 ∈ ℝ real parameters with �2 ≠ 0. This operator also has
bounded twisted commutator with �̂(�) for the twist automorphism
�.
Having defined on ℌ̂ all the necessary operators, we can now de-

scribe the desired twisted spectral triple. The Hilbert space is given by
the doubling

ℋ = ℌ̂ ⊗ ℂ2 ,

on which the ∗-algebra � is represented by Π = �̂ ⊗ 1, i.e. �̂ acting
diagonally. The Dirac operator is given by

� B �̂ ⊗ �1 + (�11 + �2�̂) ⊗ �2

for �1 , �2 Pauli matrices. Similarly to the representation, the twist au-
tomorphism � is simply implemented by Θ = �̂ ⊗ 1, i.e. by �̂ acting
diagonally.
In the case of I(6) = I61 for I6 ∈ ℂ×, Ref. [42] defines an antiunitary Note that when

I(6) = I61 we have
(�̂#̂)(6) =��I6 ��2�#̂(6) and
(�̂#̂)(6) =��I6 ��2#̂(6).

operator modelled on that of Ref. [54]. That is, we suppose (�,ℌ,�)
is equipped with a real structure �̃ of KO-dimension (�, �′) (not con-
sidering any grading). Then, assuming �̃*6 = *6 �̃ for all 6 ∈ � and
�1 = �′�2, one defines the antilinear isometry

(�̂#̂)(6) B Δ�(6)−1/2*6−1 �̃#̂(6−1)

for #̂ ∈ �2(�,ℌ). This is then taken to act diagonally � = �̂ ⊗ 1 such that
� satisfies

�2 = �, �� = �′Θ−1��, (6.9)[
Π( 51),Π�( 52)

]
= 0,

[
[�,Π( 51)]� ,Π�( 52)

]
= 0 (6.10)
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for all 51 , 52 ∈ �, where Π�( 5 ) B �Π( 5 )�.
The specific example of Ref. [54] can be obtained by starting from

the spectral triple � = �2(ℝ) represented on � = !2(ℝ, d?1) by the left
regular representation of ℝ, with Dirac operator (�#)(?1) B ?1#(?1)As is clear from Ch.

6.3, in this case the
left regular

representation
coincides with the

GNS representation.

for any # ∈ �2(ℝ) ⊂ ℌ. Identifying the Hilbert space with !2(ℝ̂, d?̂1)
via the Fourier transform (where ℝ̂ is the Pontryagin dual of ℝ), �
then becomes −8%?̂1 .
For the C*-dynamical system, one takesA = �∗(ℝ) and � = ℝwith

the action


?0( 5ℝ)(?1) B 4?
0
5ℝ(4?

0
?1)

for ?0 , ?1 ∈ ℝ and 5ℝ ∈ �. Then� should bedense inside theC*-algebra
ℝn
,A�∗(ℝ) ' �∗(ℝnℝ), and inorder tomatchRef. [54] it is chosen tobe
�2(ℝ2). For theHilbert space,wehave ℌ̂ = !2(ℝ, d?0)⊗ℌ ' !2(ℝ2 , d2?).
On this, we have the unitary rep given by

(*?0#)(?1) = 4?0/2#(4?0
?1)

for # ∈ �2(ℝ) ⊂ ℌ, and so I(?0) = 4−?0/21. Thus

(�̂#̂)(?0)(?1) = 4−?0
?1#̂(?0)(?1).

We have (�̂#̂)(?0) = 4−?
0
#̂(?0), and for the other part of the Dirac

operator �, the assumed existence of a suitable operator �̂ restricts
�1 = −�2 so that it takes the form (�11 + �2�̂)#̂(?0)(?1) = �1(1 −
4−?

0)#̂(?0)(?1).
In order to obtain the presentation given in Ref. [54], one takes the

Hilbert space !2(ℝ2 , d2G)⊗ℂ2, which is obtained fromℋ by taking the
Fourier transform (with the representation obtained by intertwining
Π with the Fourier transform map). This also recovers the correct
expression for the Dirac operator from �.

6.6.2 Open questions

Interestingly, Ref. [42] also considers the case of conformal transfor-
mations of a spin manifold, though not with respect to an antiunitary
operator. This construction differs slightly from that of Ref. [21] (in par-
ticular it uses a different Hilbert space) and so it could be interesting
to see what the antiunitary operator built in the mould of � looks like.
Irrespective of this particular example, though, it is also of interest
to know how generally this construction of the antiunitary operator
presented in Ref. [42] takes the form of a twisted real structure. In
particular: is Θ1/2 always well defined, and if so, does it always satisfy
the regularity condition Θ1/2� = �Θ−1/2?

Apart from these questions, another potential point of interest is the
source of �̂. It was not stressed in the above summary, but this operator
is by definition intimately related to cocycles (perhaps unsurprisingly
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given the construction relies on a group action). Another aspect not
stressed in the above summary is connections to the GNS construction,
which provide an alternative perspective to the hypotheses listed in
the above summary; these could also give some insight into Θ and �.

However, these are fairly subtle points. Indeed, though the construc-
tion of Ref. [42] is quite broad, and interesting in its own right from an
abstractmathematical perspective, it is perhaps not broad enoughwith
respect to the existence and form of the reality structure to say much
about twisted real structures in general, that is to say, it perhaps leans
too heavily on the model of Ref. [54] to provide additional insights.
Unrelated to Ref. [42], it was noted in Rem. 6.5 that the twist operator

considered in this chapter is unbounded, in contrast to the literature
which typically takes the twist operator to be bounded. This was pos-
sible for the example in question because of the way the twist was
obtained, but it is a worthwhile question to ask under what general
conditions the twist can be taken to be unbounded.
Lastly, it should not gowithout note that even though the example of

�-Minkowski space can be understood as a twisted spectral triple with
twisted real structure which is neither a spectral triple with twisted
real structure nor a real twisted spectral triple, it is nevertheless a very
simple example. In particular, the twist on the commutator and the
twist operator undo one another, in the sense that �−1 ◦ �̂2 = id. It
would be extremely desirable to find an example where this was not
the case, especially one where � and �̂ were unrelated, in which case
one would expect to find very rich mathematical structures.





7
F INAL COMMENTS

7.1 ongoing work

7.1.1 Composition of conformal transformations

One of the initial motivating examples for twisted real structures is
the translation of the conformal transformation of the metric into the
language of spectral triples [7]. However, there is an issue at the core
of this transformation, and that is that it does not compose with itself.
To be more precise, for

� ↦→ ��(:)�−1��−1�(:)�−1 C ��:�−1

the conformal transformation of the Dirac operator by an element
: ∈ �×+ outlined in §1.3, we can imagine conformally transforming
��:�−1 by another element :′ ∈ �×+ such that

��:�−1 ↦→ ��(:′)�−1�: �
−1�(:′)�−1 = ��(:′:)�−1��−1�(::′)�−1.

The problem is that when � is not commutative, :′: ≠ ::′, which
means ��(:′)�−1�: �

−1�(:′)�−1 is not a conformal transformation of �.
Of course, one could choose to accept that conformal transformations

may simply not be defined in such away that compositionmakes sense
when � is not commutative, but this is, of course, a rather unsatisfying
tack to take. Much more interesting is to attempt to reformulate what
it means to perform a conformal transformation in such a way that the
transformations compose. This is not at all a simple task, which can be
demonstrated by a simple example (from here onwards we suppress
�).

Lemma 7.1. Let (�,ℋ , �, (� , �)) be a spectral triple with twisted real struc-
ture. Then the conformal transformation by : ∈ �×+ can be defined as

� ↦→ �:�−1��:�−1 , � ↦→ �� , � ↦→ �̂(:−1)�:�−1;

or alternatively,

� ↦→ � �̂(:)�−1�� �̂(:)�−1 , � ↦→ �� , � ↦→ :−1� �̂(:)�−1 ,

where in both cases � = �−1.

We do not claim that these proposed transformations are unique
(or definitive), but it is difficult to imagine other possibilities since in
any case they must give the original transformation of Ref. [7] when
� = 1. Indeed, even between the two possibilities described, the former

129
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seems conceptually preferable, since otherwise the transformation be-
ing conformal might be lost unless one imposes that, for example, �̂
leaves �×+ invariant, which is even more restrictive. And of course, the
main thrust of this example is that even without demanding that �
be related to conformal transformations itself, we are still forced to
assume � = �−1 (which, of course, conformal transformations do not
themselves satisfy).
Furthermore, it is worthwhile to point out that even in the commu-

tative case, where (�:):′ = (�:′): = �::′ holds, conformal transforma-
tions do not lend themselves to being expressed as fluctuations. We
have, for example,

�::′ = :
2�:′ + :[�:′ , :],

which does not have the desired form unless :2 = 1, which does not
rescale the metric. This problem can be partially resolved, even in the
noncommutative case, by using a twisted fluctuation with the auto-
morphism �(0) = (0∗)−1. This resolves the issue of the pre-factor, sinceThe twist

automorphism
�:(0) B :20:−2

which gives a
bounded twisted

commutator with �:
does not arise from a

fluctuation.

(�:′): = �:′ + :[�:′ , :]� ,

but comes at the cost that the twisted commutator is not bounded, and
so is not a (twisted) 1-form as is usually understood. Understanding if
this fluctuation is well-defined in any meaningful sense is a matter of
ongoing investigation.1

In any case, as should be clear, this is predicated on working within
the (extended) framework of twisted spectral triples, but supposing a
real structure � is reintroduced and we have the map � ↦→ ��:�−1 , we
should expect some simplifications to come from using the framework
of twisted real structures coming from the conformal parts. While
this will likely not be sufficient to banish all twisted commutators,
we might instead end up with something like (generalised) twisted
spectral triples with twisted real structures à la Ch. 6.

7.1.2 Twisted real structures without the twisted first-order condition

As was discussed in §4.5.1, it is possible to talk about fluctuations of
theDirac operatorwithout reference to anyfirst-order condition. There-
after, we offered the twisted first-order condition as a possible way to
weaken the first-order condition without abandoning it altogether. Of
course, one should be precise here: whilst the twisted first-order condi-
tion doesweaken the first-order condition, it is not true that the twisted
first-order condition can then be thought of as a strengthening of the
the case ‘no first-order condition’ case presented in Ref. [12].
The reason for this is that Ref. [12] employs an ordinary (trivially-

twisted) real structure, or, in the language of Ch. 4, the fluctuations are

1 Joint work with L. Dąbrowski, A. Sitarz and Y. Liu.
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build from the derivations � and �◦, rather than � and ��, which are
the appropriate choices for a twisted real structure. This means that
the fluctuations in the absence of any first-order condition ought to
be different when one is using a twisted real structure, which is not
difficult to check.
Some alteration to the form of the fluctuation is to be expected due

to the twisted �′-condition (2.9). The fact that we should recover the
fluctuation (4.2) when the twisted first-order condition is imposed
means we can take the ansatz

$(2,�) =
∑
9 ,:

��
(
�̂−1(0 9)

)
�(0:)

[
[�,�(1:)], �̂(1 9)

]��
�̂−2

for the quadratic term,using that the twistedfirst-order condition (2.11)
can be written as [[�,�(0)], �̂(1)]��

�̂−2 = 0 for all 0, 1 ∈ �. A lengthy but
straightforward computation then confirms that

�′��$(2,�)�
−1� =

∑
8 , 9

�(0 9)��
(
�̂−1(0:)

) [
[�, �̂(1:)]

��
�̂−2 ,�(1 9)

]
= $(2,�) ,

where the second equality is obtained using Lem. 2.11 and the zeroth-
order condition, and relabelling the summation indices. This result
makes sense since it includes an ordinary commutator (as in �) and
a �̂−2-twisted commutator (as in �◦). As such, in the absence of the
twisted first-order condition, we expect fluctuations (in the presence
of a twisted real structure) to have the form

� ↦→ � + $ + �′��$�−1� + $(2,�) = �$ .

It is possible to compute the transformation of �$ in terms of the
operators Ãd(D) and Ad(D)−1 as in Prop. 4.18. Term by term, this yields
(suppressing �)

� ↦→ � + D[�, D∗] + �′��D[�, D∗]�−1�

+ ��
(
�̂−1(D)

)
D[[�, D∗], �̂(D∗)]��

�̂−2 ,

$ ↦→ D$D∗ + ��
(
�̂−1(D)

)
[D$D∗ , �̂(D∗)]��

�̂−2 ,

�′��$�−1� ↦→ �′��D$D∗�−1� + �′D
[
��D$D∗�−1�, D∗

]
,

$(2,�) ↦→ D$(2,�)D
∗ + ��

(
�̂−1(D)

) [
D$(2,�)D

∗ , �̂(D)
]��
�̂−2 .

Supposing that �D
$ = Ãd(D)�$ Ad(D)−1, we obtain

�D
$ = � + $D + �′��$D �−1� + D$(2,�)D∗

+ ��
(
�̂−1(D)

) [
D$(2,�)D

∗ , �̂(D)
]��
�̂−2

+ ��
(
�̂−1(D)

)
[D$D∗ , �̂(D∗)]��

�̂−2 + �′D
[
��D$D∗�−1�, D∗

]
+ ��

(
�̂−1(D)

)
D[[�, D∗], �̂(D∗)]��

�̂−2 .
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This is equivalent to

$D
(2,�) = ��

(
�̂−1(D)

)
[$D , �̂(D∗)]��

�̂−2

+ ��
(
�̂−1(D)

) (∑
9

��
(
�̂−1(0 9)

) [
$D , �̂(1 9)

]��
�̂−2

)
��

(
�̂(D∗)

)
,

which is precisely the result one would expect working in analogy to
Ref. [12]. The proof of an equivalent to Ref. [12, Lem. 3] has not yet
been fully and rigorously worked out, but this result strongly suggests
the result can be obtained by the strategic replacement of certain com-
mutators with twisted commutators, following the schema for gauge
transformations described in §4.3.
The purpose of abandoning the first-order condition in Ref. [12] is

that it allows the fluctuations of the Dirac operator to form a semi-
group, which is not ordinarily the case (cf. Rmk. 4.11). This extends
fluctuations beyond being produced by gauge transformations or oth-
erwise inserted by hand, and assuming this result can be extended to
the twisted setting (for twisted real structures, or possibly even fur-
ther to twisted spectral triple with twisted real structures building on
Ref. [53]), they could be not only interesting in the abstract but useful
for practical application to theproject of the subsection above, although
in that case the normalisation of the algebra action would surely need
to be abandoned.

7.2 concluding remarks

In this thesis, we have presented novel advancements on the theory of
twisted real structures for spectral triples in noncommutative geome-
try. Our approach has been primarily based in the search for applica-
tions, and in particular, we have examined applications of twisted real
structures to Hodge-de Rham (Riemannian) spectral triples in Ch. 3,
and generalised the approach to gauge theory for spectral triples with
real structures to those with twisted real structures in Ch. 4. The twist
operators which emerged as most meaningful in the context of gauge
theory hinted at a possible implementation of Wick rotation, which
was investigated in Ch. 5, and in Ch. 6 we explored an example of a
twisted spectral triple equippedwith a twisted real structure. These re-
sults, combined with the existing literature, demonstrate that twisted
real structures show potential and may yet play an important role in
the broader theory of spectral triples and related topics in noncommu-
tative geometry. This potential is underpinned by the promise of the
ongoing work described in the previous section, and to further punc-
tuate the point, in the remainder of this final section, we will present
open questions, loose ends, and various other possible directions for
future work which have not yet already been mentioned.
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7.2.1 (Almost-)commutative spectral geometry

The main contention of Ch. 3 is that twisted real structures allow one
to extend the notion of ‘reality’ to Riemannian spectral triples, but we
stopped short of attempting to interpret this result. As was mentioned,
there are alreadyhints fromspectral approaches toparticle physics that
there may be some connection between differential forms and Dirac
spinors on the finite side, so understanding the (noncommutative) al-
gebraic equivalents of de Rham forms and spinors on the commutative
side may help clarify matters, since there we have classical de Rham
forms and spinors to compare against.

On the topic of the second-order/Hodge condition, it is interesting to
ponder if this should also be appropriately twisted when considering
twisted real structures, just as the first-order condition may be twisted.
If not, it would be interested to know why not, and if so, it would
be interesting to know how, since this is itself not necessarily obvious:
the simplest approach is to replace

[
[�,�(0)],

[
�, ��(1)�−1] ] = 0 with[

[�,�(0)], [�, 1]��
�̂−2

]
= 0, but preliminary computations suggest[

[�,�(0)], [�, 1]��
�̂−2

]
�̄2
= 0

may be more appropriate. In either case, how a twisted second-order
condition should relate to e.g. the Hodge condition would need to be
determined.
Taking inspiration from Ch. 4, another possibility worth investigat-

ing (closely related to the earlier matter of noncommutative de Rham
forms and spinors) is that if one equips the Hodge-de Rham spectral
triple with a twisted real structure, then the twisted real structure may
allow for nontrivial inner fluctuations of the Dirac operator −8(3 − 3†),
which cannot happen for the canonical real spectral triple of a spin
manifold.2 This could in turn lead to some interesting geometrical
features (in isolation or when coupled with a finite spectral triple).
One final idea related to Riemannian spectral triples3 comes from

the observation that, as was duly noted in Ch. 3, the Hodge-de Rham
spectral triple can be equipped with a real structure �1 or a twisted
real structure (�2 , �). Both of these spectral triples are even with re-
spect to the grading "deg, but both reality operators exhibit a strange
commutation relation with "★. For example,

�1"★ = (−1)=/2"★�1

for = the dimension of the manifold. As a result, whether the spec-
tral triple has KO-dimension 0 or 6 (mod 8) depends on whether or
not =/2 is even or odd, which is intriguing behaviour. It would be
interesting to know if this behaviour could be regulated by a twist

2 A similar result holds for real twisted spectral triples, cf. [46, Prop. 5.3].
3 We thank A. Rubin for this suggestion.
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operator, i.e. if there exists a twisted real structure which satisfies the
twisted �′-condition (2.9) and the twisted �′′-condition (2.13) (and if
not, whether this points towards a refinement of twists).

For what concerns the material of Ch. 4, it would be interesting to
see if the construction of the twisted-opposite 1-forms could be done
abstractly (perhaps in terms of twisted derivations), only introducing
the representation in terms of operators at the end, similar to the con-
struction of the noncommutative 1-forms from the universal 1-forms,
although this is contrary to the approach needed formultitwists,which
we only treated very lightly and is especially deserving of a more de-
tailed analysis.

Regarding gauge transformations specifically, we attempted to use
twist operators satisfying � = �† = �−1 to maintain the maximum com-
patibility with the fermionic and bosonic action functionals. However,
ifwedisregard the bosonic action functional,what is really essential for
all other purposes is � = �†. This is much less restrictive on what twist
operators can be selected; indeed, a natural example to investigate in
this case would be the gauge transformation of a conformal transfor-
mation. It may even be possible to recover a workable bosonic action
functional using the Connes-Lott action [19] instead of the spectral
action, although this is just speculation.

The main suggestion at the end of Ch. 4 was that the twist may
play the role of a Krein structure, a possibility which was interrogated
in Ch. 5. This investigation was only very preliminary, and though
the formalism developed did not recover something which one could
reliably identify as ‘noncommutative pseudo-Riemannian geometry’,
some tantalising hints were found that merit a more systematic investi-
gation. For example, one thing which we did not fully investigate was
the more indirect approach of attempting to recover a Lorentzian ac-
tionwhilst remainingwithin the formalism of (notionally Riemannian)
spectral triples, which is the spirit of the approach taken in Ref. [33],
the paper which inspired §5.4. An immediate advantage of taking this
approach is that it neatly circumvents the problem that the adoption of
the Wick-rotated Dirac operator left us no longer working with a true
spectral triple.

7.2.2 Products

On a somewhat more technical point nevertheless closely related to
the above is the matter of products. Firstly, one issue left open from
Ch. 3 was the (re)definition of the product reality operator in such
a way as to preserve the second-order condition. As was noted, in
general this product reality operator does not satisfy �2 = ±1 (except
for certain KO-dimensions) or �� = ±��. This latter failure is strongly
suggestive that the ‘real structure’ may need to be twisted, especially
since a twisted real structure was already used to ensure the Hodge-
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de Rham spectral triple satisfied the Hodge condition. Given that the
product reality operator appears to relate the product Dirac operators
� and �′ (given respectively by the graded products ⊗̂ and ⊗̂′), this
twist could be related to the unitary operator *′ in the comment on
p.24. That there could be a twist connecting the second-order/Hodge
condition and the implementation of the (graded) tensor product is an
especially intriguing possibility.

Indeed, the precise relationship between twisted real structures and
products has remained messy throughout. As mentioned, a proposal
to redefine the product of the reality operator was put forward in Ch. 3,
although its precise relationship to twists or the product of twists was
not investigated. The standard product was used in Chs. 2 and 4, with
the simplest (naïve) product of twist operators used, and in both cases
this placed strong limits on the form of the twist operator. Ch. 5 then
employed graded tensor products coming from Clifford algebraic con-
siderations. Even where these products coincide with the graded ten-
sor product interpretation of the standard product for spectral triples,
the product used for the twist operators was that of the fundamental
symmetry, which differs from the naïve product, even when graded. It
would be worthwhile to investigate the relationship between products
and twisted real structures in a deliberate and systematic way to un-
derstand if all of these disparate threads can be brought together into
a single unified framework.

7.2.3 New directions

Apart from the questions and problems branching off directly from
what was covered in this thesis, it is worthwhile to take a step back
and identify other, totally newdirections that research into twisted real
structures could go into, which we ourselves have not yet been able to
pursue. We present two suggestions here.

Firstly, it was mentioned in §1.3 that the two examples which in-
spired twisted real structures were conformal transformations and
quantum cones. Our research has primarily built upon the former
example, and we have focused almost entirely on commutative and
almost-commutative spectral triples. However, There are compelling
reasons to believe that a wealth of research could be undertaken on
so-called ‘quantum spaces’, those spaces which are obtained by @-
deformations. In particular, a number of such spaces which admit a
description as spectral triples, when equipped with a reality operator,
do not satisfy the first-order condition, but instead, satisfy something
weaker like[

[�,�(0)], ��(1)�−1] ∈ K(ℋ).
Especially well-known quantum groups with this behaviour include
SU@(2) [29] and the Podleś spheres [23]. It is well known that this is
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a somewhat generic feature of quantum groups, and so they should
provide a wealth of new examples of spectral triples with twisted real
structures. This would also provide another connection to Hopf alge-
bras and perhaps Hopf-Galois extensions, which would be especially
interesting in light of the link to strong connections mentioned at the
end of §4.2.2.3.

Totally unrelated to @-deformations, in this thesis, a number of times
we used (or took inspiration from) the untwisting procedure of Ref. [8],
where a spectral triple with twisted real structure could be obtained
from a real twisted spectral triple, loosely suggesting some notion of
‘equivalence’, where we are careful to speak in imprecise terms. A very
different notionof ‘untwisting’ is presented inRef. [40],wherein certain
types of twisted spectral triples are found to correspond to spectral
triples of the same K-homology class via a logarithmic dampening
procedure. The motivation for this work comes primarily from index-
theoretic considerations, and while the result in no way relates to
the real structure (which not considered at all), it is curious that a
second, totally unrelated method of translating twisted spectral triples
into spectral triples exists, and it would be interesting to know if a
meaningful comparison could be drawn by extending the result to
KR-homology.

7.2.4 Origins and interpretation

Lastly, as was mentioned at the beginning of this section, our ap-
proach to the research presented in this thesis has been very practically-
minded, mostly focussing on finding examples and applications. How-
ever, this has left certain philosophical questions about the research
program open, questionswhich, though not addressed in our research,
we still feel are deeply interesting and worthy of consideration.

First and foremost, the ultimate (theoretical) source of twisted real
structures – and explanations for where they come from, why and
when they work, what their geometric meaning is, etc. – is still not
clear. Consider, for example, the Clifford/von Neumann algebraic con-
struction for reality operators which was presented in §1.2; we lack
any sort of parallel construction for twist operators. Indeed, the rea-
son we presented the results of Refs. [42, 54] in Ch. 6 is that in using
Hopf algebras and crossed product extensions respectively, they both
touch on areas of noncommutative geometry which the literature on
twisted real structures has not yet brushed up against, which produces
novel perspectives like the already mentioned connection to cocycles.
By examining a wealth of different approaches which each yield simi-
lar structures, our hope is that we may yet gain some insight into the
answers to these questions, or at least a meaningful starting point to
further prosecute the issue.
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Finally, ifwemaybegranted the luxuryofwild speculation, itmaybe
that the concept of twisted real structures is not quite the ‘correct’ one,
and that some slightly different perspective is the better way forward.
For one idea, it could be that we are over-emphasising the role of
twists, and taking the fact that �� and �� appear so frequently as a hint,
it could be that what we are really looking for is some notion of ‘bi-
reality’,where instead of replacing the real structurewith a twisted real
structure, it should insteadbe replacedwith apair of generalised reality
operators, taking the roles of �� and �� respectively and coinciding in
the trivial case. Alternatively, at the other end of the spectrum, it could
be that our focus on mild twists thus far has hidden the importance
of the twist operator, and focussing more on unbounded or antilinear
twists, or on multitwists which aggressively depart from the nearest
single-twist case, would yield a deeper understanding.
Whatever the casemay be,wedearly hope that thework presented in

this thesis has helped to sow the fertile ground of this subject and that
we in the future reap fruit rich in mathematical structure and physical
applications, fulfilling the exciting promise we have described.
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