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Abstract: We consider a Pfaffian system expressing isomonodromy of an irregular system of Okubo type,
depending on complex deformation parameters u “ pu1, ..., unq, which are eigenvalues of the leading matrix
at the irregular singularity. At the same time, we consider a Pfaffian system of non-normalized Schlesinger
type expressing isomonodromy of a Fuchsian system, whose poles are the deformation parameters u1, ..., un.
The parameters vary in a polydisc containing a coalescence locus for the eigenvalues of the leading matrix of the
irregular system, corresponding to confluence of the Fuchsian singularities. We construct isomonodromic selected
and singular vector solutions of the Fuchsian Pfaffian system together with their isomonodromic connection
coefficients, so extending a result of [4] and [23] to the isomonodromic case, including confluence of singularities.
Then, we introduce an isomonodromic Laplace transform of the selected and singular vector solutions, allowing
to obtain isomonodromic fundamental solutions for the irregular system, and their Stokes matrices expressed in
terms of connection coefficients. These facts, in addition to extending [4, 23] to the isomonodromic case (with
coalescences/confluences), allow to prove by means of Laplace transform the main result of [13], namely the
analytic theory of non-generic isomonodromic deformations of the irregular system with coalescing eigenvalues.
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1 Introduction
In this paper, I answer a question asked when I presented the results of [13] and the related paper
[25]. Paper [13] deals with the extension of the theory of isomonodromic deformations of the differential
system (1.1) below, in presence of a coalescence phenomenon involving the eigenvalues of the leading
matrix Λ. These eigenvalues are the deformation parameters. The question is if we can obtain some
results of [13] in terms of the Laplace transform relating system (1.1) to a Fuchsian one, such as system
(1.4) below. The latter has simple poles at the eigenvalues of Λ, so that the coalescence of the eigenvalues
will correspond to the confluence of the Fuchsian singularities. So the question is if combining integrable
deformations of Fuchsian systems, confluence of singularities and Laplace transform, we can obtain the
results of [13]. The positive answer is Theorem 7.1 of this paper. In order to achieve it, we extend to
the case depending on deformation parameters, including their coalescence, one main result of [4] and [23]
concerning the existence of selected and singular vector solutions of a Pfaffian Fuchsian system associated
with (1.4) (see the system (5.3) below), and their connection coefficients, which will be isomonodromic.
This will be obtained in Theorem 5.1 and Proposition 5.1.

In [13], the isomonodromy deformation theory of an n dimensional differential system with Fuchsian
singularity at z “ 0 and singularity of the second kind at z “ 8 of Poincaré rank 1

dY

dz
“

ˆ

Λpuq ` Apuq

z

˙

Y, Λpuq “ diagpu1, ..., unq, (1.1)

has been considered1. The deformation parameters u “ pu1, ..., unq vary in a polydisc where the matrix
Apuq is holomorphic. One of the main results of [13] is the extension of the theory of isomonodromic
deformations of (1.1) to the non-generic case when Λ has coalescing eigenvalues but remains diagonal-
izable. This means that the polydisc contains a locus of coalescence points such that ui “ uj for some
1 ď i ‰ j ď n. In this case, z “ 8 is sometimes called resonant irregular singularity. On a sufficiently
small domain in the polydisc, the well know theory of isomonodromy deformations applies and allows
to define constant monodromy data. Theorem 1.1 and corollary 1.1 of [13] say that the these data are
well defined and constant on the whole polydisc, including the coalescence locus, if the entries of Apuq
satisfy the vanishing conditions

pApuqqij Ñ 0 when u tends to a coalescence point such that ui ´ uj Ñ 0 at this point. (1.2)

More precisely, if conditions (1.2) are satisfied, the following results (reviewed in Theorem 2.2 of Section
2.1 below) hold.

(I) Fundamental matrix solutions in Levelt form at z “ 0 and solutions with prescribed “canonical”
asymptotic behaviour in Stokes sectors at z “ 8 are holomorphic of u in the polydisc. Also the
coefficients of the formal solution determining the asymptotics at 8 are holomorphic.

1With the notation pA1puq for Apuq.
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(II) Essential monodromy data, such as Stokes matrices, the central connection matrix, the formal
monodromy exponent at infinity and the Levelt exponents at z “ 0 are well defined and constant
on the whole polydisc, including coalescence points.

The Stokes matrices (labelled by ν P Z) satisfy the vanishing conditions

pSνqij “ pSνqji “ 0, i ‰ j, if there is a coalescence point such that ui “ uj .

(III) The constant essential monodromy data can be computed from the system “frozen” at a fixed
coalescence point. In particular, if the constant diagonal entries of A are partly non-resonant (see
Corollary 2.1), then there is no ambiguity in this computation, being the formal solution unique.

The results above have been established in [13] by direct analysis of system (1.1), of its Stokes
phenomenon and its isomonodromic deformations.

Remark 1.1. If Apuq is holomorphic on the polydisc and (1.1) is an isomonodromic family on the
polydisc minus the coalescence locus (in the sense of integrability of an associated Pfaffian system (2.14)
introduced later), then (1.2) are automatically satisfied and Theorem 1.1 of [13] holds. This is not
mentioned in [13]. I thank the referee for this observation. More details are in Remark 2.1.

For future use, we denote by λ11, . . . , λ1n the diagonal entries of Apuq, and

B :“ diagpApuqq “ diagpλ11, . . . , λ1nq.

We will see that these λ1k are constant in the isomonodromic case.

From another perspective, if u is fixed and ui ‰ uj for i ‰ j, namely for a system (1.1) not depending
on parameters with pairwise distinct eigenvalues of Λ, it is well known that columns of fundamental
matrix solutions with prescribed asymptotics in Stokes sectors at z “ 8 can be obtained by Laplace-
type integrals of certain selected column-vector solutions of an n-dimensional Fuchsian system of the
type

dΨ
dλ

“

n
ÿ

k“1

Bk
λ´ uk

Ψ, Bk :“ ´EkpA` Iq. (1.3)

Here, Ek is the elementary matrix whose entries are zero, except for pEkqkk “ 1. These facts are studied
in the seminal paper [4] in the generic case of non-integer diagonal entries λ1k of A. The results of [4]
have been extended in [23] to the general case, when the entries λ1k take any complex value.

The purpose of the present paper is to introduce an isomonodromic Laplace transform relating (1.1)
to an isomonodromic Fuchsian system

dΨ
dλ

“

n
ÿ

k“1

Bkpuq

λ´ uk
Ψ, Bk :“ ´EkpApuq ` Iq. (1.4)

when u1, ..., un vary in a polydisc containing a locus of coalescence points. More precisely, the Laplace
transform will relate solutions of the integrable Pfaffian systems (2.14) and (5.3) introduced later, asso-
ciated with (1.1) and (1.4) respectively. The two main goals will be:

• Theorem 5.1, which characterises selected vector solutions and singular vector solutions of (1.4)
and (5.3), so extending the results of [4] and [23] to the case depending on isomonodromic defor-
mation parameters, including coalescing Fuchsian singularities u1, ..., un.
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• Theorem 7.1, in which the Laplace transform of the vector solutions of Theorem 5.1 allows to
obtain the main results (I), (II) and (III) of [13] in presence of coalescing eigenvalues u1, ..., un of
Λpuq.

In details.

‚ In Proposition 3.1 we establish the equivalence between the “strong” isomonodromic deformations
(non-normalized Schlesinger deformations) of (1.4) and the ”strong” isomonodromic deformations of
(1.1).
‚ Then, we study isomonodromy deformations of (1.4) when u varies in a polydisc containing a coales-

cence locus. Theorem 5.1, provides selected and singular vector solutions, which are the isomonodromic
analogue of solutions introduced in [4, 23], respectively denoted by ~Ψkpλ, u |νq and ~Ψpsingqk pλ, u |νq,
k “ 1, ..., n, the latter being singular at λ “ uk. As will be explained later, ν P Z labels the direc-
tions of branch cuts in the punctured λ-plane at the poles u1, ..., un. These solutions allow to introduce
connection coefficients cpνqjk , defined by

~Ψkpλ, u |νq “ ~Ψpsingqj pλ, u |νqc
pνq
jk ` holomorphic part at λ “ uj , @ j ‰ k.

The above is the deformation parameters dependent analogue of the definition of connection coefficients
in [23].
‚ InProposition 5.1, we prove that the cpνqjk are isomonodromic connection coefficients, namely

independent of u. When there is a coalescence uj “ uk in the polydisc, they satisfy

c
pνq
jk “ 0, j ‰ k.

‚ In Theorem 7.1, the Laplace transform of the vectors ~Ψkpλ, u |νq or ~Ψpsingqk pλ, u |νq yields the
columns of the isomonodromic fundamental matrix solutions Yνpz, uq of (1.1), labelled by ν P Z, uniquely
determined by a prescribed asymptotic behaviour in certain u-independent sectors pSν , of central opening
angle greater than π. The analytic properties for the matrices Yνpz, uq will be proved, so re-obtaining the
result (I) above. In order to describe the Stokes phenomenon, only three solutions Yνpz, uq, Yν`µpz, uq
and Yν`2µpz, uq suffice. The labelling will be explained later. The Stokes matrices Sν`kµ, k “ 0, 1,
defined by a relation Yν`pk`1qµ “ Yν`kµSν`kµ, will be expressed in terms of the coefficients cpνqjk in
formula (7.9). This extends to the isomonodromic case, including coalescences, an analogous expression
appearing in [4, 23] and implies the results in (II) above.
‚ In Section 8, we re-obtain the result (III), that system (1.1), "frozen" by fixing u equal to the

most coalescence point uc in the polydisc (see Section 2.1 for uc), admits a unique formal solution
if and only if the (constant) diagonal entries λ1j of A satisfy λ1i ´ λ1j R Zzt0u for every i ‰ j such
that uci “ ucj . In this case we prove that the selected vector solutions of the Fuchsian system (1.4) at
u “ uc, needed to perform the Laplace transforms, are uniquely determined. On the other hand, if some
λ1i´λ

1
j P Zzt0u corresponding to uci “ ucj , then there is a family of solutions of the Fuchsian system (1.4)

at a coalescence point, depending on a finite number of parameters: this facts is responsible, through
the Laplace transform, of the existence of a family of formal solutions at the coalescence point.

In [19, 20], B. Dubrovin related system (1.1) to an isomonodromic system of type (1.4), in the specific
case when they respectively yield the flat sections of the deformed connection of a semisimple Dubrovin-
Frobenius manifold and the flat sections of the intersection form (extended Gauss-Manin system). In
[19, 20], the solutions of (1.1) are expressed by Laplace transform of the isomonodromic system (1.4), but
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the eigenvalues u1, ..., un are assumed to be pairwise distinct in a sufficiently small domain (analogous to
the polydisc Dpu0q to be introduced later). Moreover, A is skew-symmetric, so its diagonal elements are
zero (A is denoted by V and Λ by U in [19, 20]). By a Coxeter-type identity, the entries of the monodromy
matrices for the selected solutions of (1.4) (which are part of the monodromy of the Dubrovin-Frobenius
manifold) are expressed in terms of the entries of the Stokes matrices. See also [61, 21].

In proposition 2.5.1 of [22], the authors prove (I) when system (1.1) is associated with a Dubrovin-
Frobenius manifold with semisimple coalescence points, and A is skew-symmetric (in [22] the irregular
singularity is at z “ 0). Their proof contains the core idea that the analytic properties of a solution
Y pz, uq in (I) are obtainable, by a Laplace transform, from the analytic properties of a fundamental
matrix solution Ψpλ, uq of the Fuchsian Pfaffian system associated with (1.4) (see their lemma 2.5.3).
The latter is a particular case of the Pfaffian systems studied in [63]. On the other hand, the analysis of
selected and singular vector solutions of the Fuchsian Pfaffian system, required in our paper to cover all
possible cases (all possible A), is not necessary in [22], due to the skew-symmetry of A, and the specific
form of their Pfaffian system (see their equation (2.5.2); their discussion is equivalent our case λ1j “ ´1
for all j “ 1, ..., n). Moreover, points (II) and (III) are not discussed in [22] by means of the Laplace
transform.

In the present paper, by an isomonodromic Laplace transform, we prove (I), (II) and (III), and at
the same time we generalise the results of [4, 23] to the isomonodromic case with coalescences, with no
assumptions on the eigenvalues and the diagonal entries of A. This analytic construction, to the best of
our knowledge, cannot be found in the literature.

The approach of the present paper may also be used to extend the results of [19, 20] described above,
relating the deformed flat connection and the intersection form, namely Stokes matrices and monodromy
group of the Dubrovin-Frobenius manifold, in case of semisimple coalescent Frobenius structures studied
in [14, 17, 15, 10].

For further comments and reference on the use of the Laplace transform, the confluence of singularities
and related topics, see the introduction of [23] and [9, 39, 44, 49, 56, 57, 58, 59, 36, 37, 38, 29] .

Stickily related to ours are the important results of [52]. In [13] (and in the present paper by Laplace
transform), we have answered the question if the integrable deformation (2.14) of system (1.1) extends
from a polydisc (or a small open set) not containing coalescence points to a wider domain intersecting
(a stratum of) the coalescence locus, and we have characterized the monodromy data. The converse
question is answered in [52], namley if an integrable deformation (2.14) of pΛpucq ` Apucq{zqdz exists
and is unique, having formal normal form dpzΛpuqq ` B{z dz, where B is the diagonal of Apucq. More
broadly, the question of [52] is the existence and uniqueness of integrable deformations of meromorphic
connections on P1 with irregular singularity, when a prefixed restriction is given at a single point to in the
space of deformation parameters T , allowed to be a degenerate point, namely a coalescence point in our
case (in [52], deformation parameters are called t P T ). One asks if a connection ωpz, t0q given at to P T
can be deformed to ωpz, tq, and if this deformation is unique.2 Concerning uniqueness, for a fixed normal
form ω0pz, tq, the problem is to classify isomorphism pairs pω,Gq consisting of an integrable connection
ωpz, tq (with poles in T ˆ tz “ 0u, being z “ 0 used in [52], while z “ 8 is used in our works) and a
formal gauge transformation Gpz, tq (formal in z but holomorphic in t), transforming ωpz, tq to ω0pz, tq.
In a general context, a uniqueness theorem is proved in [60]: two pairs are isomorphic (meaning that
the composition of a gauge of one pair with the inverse gauge of the other pair is convergent w.r.t. z) if

2The notation ω and G is not taken from [52].

5



and only if their restriction to any specific value to are isomorphic. Thus, the t-extension of a pair in a
neighbourhood of t0 is unique up to isomorphism. The proof in [60] makes use of the results of Kedlaya
[34, 35] and Mochizuki [45, 46, 47, 48], which allows to blow up T ˆ t0u, and of the higher dimensional
asymptotic analysis in poli-sectors for the formal gauge transformations, that is Majima’s asympotic
analysis [40] for Pfaffian systems with irregular singularitues. In [52], the uniqueness result is proved for
a restricted class of integrable connections, in which our (2.14) is contained (with irregular singularity at
z “ 0 instead of8). So, given a block-diagonal normal form ω0pz, tq and a pair consisting of ωpto, zq and a
formal gauge Gpto, zq, it is proved that the pair can be deformed (existence) in a unique way (uniqueness)
to ωpz, tq, Gpz, tq, such that Grωs “ ω0. The strategy is to use a sequence of Kedlaya-Mochizuki blow-ups
to obtain a good normal form (see also [50, 51]). Then, Majima results on asymptic analysis can be
used and adapted. In our specific case, theorem 4.9 of [52] means the existence and uniqueness of the
integrable deformation (2.14) of pΛpucq ` Apucq{zqdz, formally equivalent to dpzΛpuqq ` B{zdz. These
facts generalize results of Malgrange [41, 42] for irregular singularities to the case of coalescence points.

Theorem 4.9, obtained in [52] in geometric terms, has been successively proved in [11] by analytic
methods. In [11], the integrable deformation is obtained from prefixed monodromy data at a coalescence
point, using the analytic Lp theory a Riemnann-Hilber boundary value problems. Both authors of [52]
and [11] apply their results to semisimpe Dubrovin-Frobenius manifolds. In particular, [11] proves that
any formal semisimple Frobenius manifold is the completion of a pointed germ of an analytic Dubrovin-
Frobenius manifold. The result is extended to F -manifolds in the recent work [12].

A geometric formulation of the Laplace transform we have used here, together with a synthetic proof
of part of Theorem 1.1 of [13], is the object of the recent work [53].
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2 Review of Background Material
This section contains known material to motivate and understand our paper. For X a topological space,
we denote by RpXq its universal covering. For α ă β P R, a sector is written as

Spα, βq :“ tz P RpCzt0uq such that α ă arg z ă βu.
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2.1 Background 1: Isomonodromy Deformations of (1.1) with coalescing
eigenvalues.

We review some results of [13, 25] (see also [16, 24, 26]). Consider a differential system (1.1) with an
nˆ n with matrix coefficient Apuq holomorphic in a polydisc

Dpucq :“ tu P Cn such that max
1ďjďn

|uj ´ u
c
j | ď ε0u, ε0 ą 0, (2.1)

centered at a coalescence point uc “ puc1, ..., ucnq, so called because

uci “ ucj for some i ‰ j.

The eigenvalues of Λpuq coalesce at uc and also along the following coalescence locus

∆ :“ Dpucq X
´

ď

i‰j

tui ´ uj “ 0u
¯

,

We assume that Dpucq is sufficiently small so that uc is the most coalescent point. Namely, if ucj ‰ uck
for some j ‰ k, then uj ‰ uk for all u P Dpucq. A more precise characterisation of the radius ε0 of the
polydisc will be given in Section 5. For u0 P Dpucqz∆, let

Dpu0q Ă pDpucqz∆q

be a (smaller) polydisc centered at u0, not containing coalescence points.

2.1.1 Deformations in Dpu0q

If Dpu0q is sufficiently small, the isomonodromic theory of Jimbo, Miwa and Ueno [33] assures that
the essential monodromy data of (1.1) (see Definition 2.1 below) are constant over Dpu0q and can be
computed fixing u “ u0.

In order to give fundamental solutions with “canonical” form at z “ 8, in RpCzt0uq we introduce
the Stokes rays of Λpu0q, defined by

<ppu0
j ´ u

0
kqzq “ 0, =ppu0

j ´ u
0
kqzq ă 0, 1 ď j ‰ k ď n.

Let
arg z “ τ p0q (2.2)

be a direction which does not coincide with any of the Stokes rays of Λpu0q, called admissible at u0.
Each sector of amplitude π, whose boundaries are not Stokes rays of Λpu0q, contains a certain number
µp0q ě 1 of Stokes rays of Λpu0q, with angular directions

arg z “ τ0, τ1, ... , τµp0q´1, with τ0,ă τ1 ă ... ă τµp0q´1

that we decide to label from 0 to µp0q ´ 1. They are basic rays, since they generate all the Stokes rays
in RpCzt0uq associated with Λpu0q by the formula

arg z “ τν :“ τν0 ` kπ, ν0 P t0, ..., µp0q ´ 1u, ν “ ν0 ` kµ
p0q, k P Z.

The choice to label a specific Stokes ray with 0, as τ0 above, is arbitrary, and it induces the labelling
ν P Z for all other rays. Suppose the labelling has been chosen. Then, for some ν P Z, we have

τν ă τ p0q ă τν`1. (2.3)
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⌧ (0)
<latexit sha1_base64="IVzNLf4uvhw4kVsk0iXltOni5g8=">AAAB9HicbZBLSwMxFIXv1FcdX1WXboJFqJsyUwVdFty4rGAf0I4lk6ZtaCYzJncKZSj4L9y4UMStP8ad/8aZtgttPRD4OOeG3Bw/ksKg43xbubX1jc2t/La9s7u3f1A4PGqYMNaM11koQ93yqeFSKF5HgZK3Is1p4Eve9Ec3Wd4cc21EqO5xEnEvoAMl+oJRTC2vgzR+SErO+dS27W6h6JSdmcgquAsowkK1buGr0wtZHHCFTFJj2q4ToZdQjYJJPrU7seERZSM64O0UFQ248ZLZ0lNyljo90g91ehSSmfv7RkIDYyaBn04GFIdmOcvM/7J2jP1rLxEqipErNn+oH0uCIckaID2hOUM5SYEyLdJdCRtSTRmmPWUluMtfXoVGpexelCt3l8Vq7WleRx5O4BRK4MIVVOEWalAHBo/wDK/wZo2tF+vd+piP5qxFhcfwR9bnD6n/kSk=</latexit>

S⌫(D(u0))
<latexit sha1_base64="WgMTUZdVvJCnu4hrCAscV3cdjDY=">AAACDHicbVC7TsMwFL0prxIKLTCyWFRI7VIlMMBYCQbGIuhDakvluG5r1XEi20GqQiVWFn6FhQGEWPkAxMLf4KQM0HIky8fnnivfe7yQM6Ud58vKLC2vrK5l1+2N3OZWvrC901BBJAmtk4AHsuVhRTkTtK6Z5rQVSop9j9OmNz5N6s0bKhULxJWehLTr46FgA0awNlKvUOz4WI8I5vHltNcRUSl9e158Ni1F1065bNu2cTkVJwVaJO4PKVadz1uUy2dqvcJHpx+QyKdCE46VartOqLsxlpoRTqd2J1I0xGSMh7RtqMA+Vd04XWaKDozSR4NAmiM0StXfHTH2lZr4nnEmo6r5WiL+V2tHenDSjZkII00FmX00iDjSAUqSQX0mKdF8YggmkplZERlhiYk2+SUhuPMrL5LGYcU9qhxemDRqd5AiC3uwDyVw4RiqcA41qAOBe3iEZ3ixHqwn69V6m1kz1uyGXfgD6/0bYtKcfA==</latexit>

S⌫+µ(D(u0))
<latexit sha1_base64="S2AEAR3zPqTNafwpZoGChXUcpy0=">AAACEnicbVDLSsNAFL3xbXxVXboJitAilERBXQq6cFnRtkJTy2Q6bQcnkzAPoYSAfyCC/+AXuFFQxK0LceffOEldaOuByz2cc4e59wQxo1K57pc1Nj4xOTU9M2vPzS8sLhWWV2oy0gKTKo5YJM4DJAmjnFQVVYycx4KgMGCkHlweZn79ighJI36m+jFphqjLaYdipIzUKpT8EKkeRiw5TVuJz/WWH+q0mKtBkBylRX3hlkq2bbcKG27ZzeGMEu+HbBzs7N7e+x9PlVbh029HWIeEK8yQlA3PjVUzQUJRzEhq+1qSGOFL1CUNQzkKiWwm+Umps2mUttOJhCmunFz9/SJBoZT9MDCT2apy2MvE/7yGVp39ZkJ5rBXhePBRRzNHRU6Wj9OmgmDF+oYgLKjZ1cE9JBBWJsUsBG/45FFS2y57O+XtE5NG5RpyzMAarEMRPNiDAziGClQBww08wDO8WHfWo/VqvQ1Gx6xBh1X4A+v9G5uqoOQ=</latexit>

Figure 1: Successive sectors SνpDpu0qq and Sν`µpDpu0qq. Their intersection (in the right part of the
figure) does not contain Stokes rays. It contains the admissible direction arg z “ τ p0q.

Equivalently, given τ p0q, one can choose a ν and decide to call τν and τν`1 the Stokes rays satisfying
(2.3). This induces the labelling of all other rays (notice that µp0q is not a choice!).

Similarly, we consider the Stokes rays <ppuj ´ ukqzq “ 0, =ppuj ´ ukqzq ă 0 of Λpuq. If Dpu0q is
sufficiently small, when u varies the Stokes rays of Λpuq rotate without crossing arg z “ τ p0q mod π. For
k P Z, we take the sector S

`

τ p0q ` pk ´ 1qπ, τ p0q ` kπ
˘

and extend it in angular amplitude up to the
nearest Stokes rays of Λpuq outside. The resulting (open) sector will be denoted by Sν`kµp0qpuq, and we
define

Sν`kµp0qpDpu0qq :“
č

uPDpu0q

Sν`kµp0qpuq.

The reason for the labelling is that S
`

τ p0q ` pk ´ 1qπ, τ p0q ` kπ
˘

Ă Spτν`kµp0q ´ π, τν`kµp0q`1q and
consequently

Sν`kµp0qpDpu0qq Ă Spτν`kµp0q ´ π, τν`kµp0q`1q ” Spτrν`kµp0qs´µp0q , τrν`kµp0qs`1q.

By construction, SνpDpu0qq has central angular opening greater than π. See figure 1.

Proposition 2.1 (Sibuya [55], [54], [30]; see also [33], [13], [25]). Let Dpu0q, not containing coalescence
points, be sufficiently small so that the Stokes rays of Λpuq do not cross3 the admissible rays arg z “
τ p0q ` hπ, h P Z, as u varies in Dpu0q. System (1.1) has a unique formal solution

YF pz, uq “ F pz, uqzBpuq exptzΛpuqu, Bpuq :“ diagpA11puq, ..., Annpuqq, (2.4)

where

F pz, uq “ I `
8
ÿ

k“1
Fkpuqz

´k (2.5)

is a formal series, with holomorphic matrix coefficients Fkpuq.For every ν P Z, there exist unique fun-
damental matrix solutions

Yνpz, uq “ pYνpz, uqz
Bpuq exptzΛpuqu (2.6)

3As u varies, arg z “ τ p0q ` h0π, for a h0 P Z, is not crossed by a Stokes ray if and only if arg z “ τ p0q ` hπ is not
crossed @ h P Z.
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of (1.1), holomorphic on R
`

Czt0u ˆ Dpu0q
˘

” RpCzt0uq ˆ Dpu0q, such that uniformly in u P Dpu0q the
following asymptotic behaviour holds

pYνpz, uq „ F pz, uq for z Ñ8 in SνpDpu0qq. (2.7)

The coefficients Fk are computed recursively [62, 13]

pF1qij “
Aij

uj ´ ui
, i ‰ j, pF1qii “ ´

ÿ

j‰i

AijpF1qji, (2.8)

pFkqij “
1

uj ´ ui

#

´

Aii ´Ajj ` k ´ 1
¯

pFk´1qij `
ÿ

p‰i

AippFk´1qpj

+

, i ‰ j; (2.9)

kpFkqii “ ´
ÿ

j‰i

AijpFkqji. (2.10)

Holomorphic Stokes matrices Sνpuq, ν P Z, are the connection matrices defined by

Yν`µp0qpz, uq “ Yνpz, uqSνpuq, z P SνpDpu0qq X Sν`µp0qpDpu0qq. (2.11)

Notice that SνpDpu0qq X Sν`µp0qpDpu0qq does not contain Stokes rays of Λpuq, for every u P Dpu0q.

At every fixed u P Dpu0q, system (1.1) admits a fundamental matrix solution in Levelt form

Y p0qpz, uq “ Gp0qpuq
´

I `
8
ÿ

j“1
Ψjpuqz

j
¯

zDzL, (2.12)

where the series is convergent absolutely in every ball |z| ă N , for every N ą 0. Here, D is diagonal with
integer entries (called valuations), L has eigenvalues with real part lying in r0, 1q, andD`limzÑ0 z

DLz´D

is a Jordan form of A. A central connection matrix Cνpuq is defined by

Yνpz, uq “ Y p0qpz, uqCνpuq. (2.13)

A pair of Stokes matrices Sν , Sν`µp0q , together with B, Cν and L are sufficient to calculate all the
other Sν1 and Cν1 , for all ν1 P Z (see [1, 13]). The monodromy matrices at z “ 0 are

M :“ e2πiL and e2πiBpSνSν`µp0qq´1 “ C´1
ν MCν

for Y p0q and Yν respectively. Hence, it makes sense to define strong isomonodromy deformations, as
follows.

Definition 2.1. Fixed a ν P Z, we call essential monodromy data the matrices

Sν , Sν`µp0q , B, Cν , L, D.

The deformation u is strongly isomonodromic on Dpu0q, if the essential monodromy data are constant
on Dpu0q.

We introduced the terminology strong in [25], to mean that all the essential monodromy data are
constant, contrary to the case of weak isomonodromic deformations, which only preserve monodromy
matrices of a certain fundamental matrix solution. For a deformation to be weakly isomonodromic
it is necessary and sufficient that (1.1) is the z-component of a certain Pfaffian system dY “ ωpz, uqY ,
Frobenius integrable (i.e. dω “ ω ^ ω). If ω is of very specific form, the defomation becomes strongly
isomonodromic, according to the following

9



Theorem 2.1. System (1.1) is strongly isomonodromic in Dpu0q if and only Yνpz, uq, for every ν, and
Y p0qpz, uq, satisfy the Frobenius integrable Pfaffian system

dY “ ωpz, uqY, ωpz, uq “

ˆ

Λpuq ` Apuq

z

˙

dz `
n
ÿ

k“1
ωkpz, uqduk, (2.14)

with the matrix coefficients (here F1 is in (2.8))

ωkpz, uq “ zEk ` ωkpuq, ωkpuq “ rF1puq, Eks. (2.15)

Equivalently, (1.1) is strongly isomonodromic if and only if 4 A satisfies

dA “
n
ÿ

j“1

”

ωkpuq, A
ı

duk. (2.16)

If the deformation is strongly isomonodromic, then Y p0qpz, uq in (2.12) is holomorphic on RpCzt0uq ˆ
Dpu0q, with holomorphic matrix coefficients Ψjpuq, and the series is convergent uniformly w.r.t. u P

Dpu0q. Moreover, Gp0qpuq is a holomorphic fundamental solution of the integrable Pfaffian system

dG “
´

n
ÿ

j“1
ωkpuqduk

¯

G, (2.17)

and Apuq is holomorphically similar to the Jordan form J “ Gp0qpuq´1ApuqGp0qpuq.

The above theorem is analogous to the characterisation of isomonodromic deformations in [33], but
includes also possible resonances in A (see [13] and Appendix B of [25]). Notice that ωpz, uq in (2.14)-
(2.15) has components

ωkpuq “

ˆ

Aijpδik ´ δjkq

ui ´ uj

˙n

i,j“1
“

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 0 ´A1k
u1´uk

0 0

0 0
... 0 0

Ak1
uk´u1

¨ ¨ ¨ 0 ¨ ¨ ¨
Akn
uk´un

0 0
... 0 0

0 0 ´Ank
un´uk

0 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

(2.18)

Notice that B “ diagpApuqq “ diagpλ11, ..., λ1nq is constant because (2.16) and (2.18) imply

BAii
Buj

“ 0, @i, j “ 1, ..., n.

2.1.2 Deformations in Dpucq with coalescences

When the polydisc contains a coalescence locus ∆, the analysis presents problematic issues.

• A fundamental matrix solution Y pz, uq holomorphic on R
`

pCzt0uqˆpDpucqqz∆q
˘

, may be singular
at ∆, namely the limit for u Ñ u˚ P ∆ along any direction may diverge, and ∆ is in general a
branching locus [43].

4Conditions (2.15) and (2.16) imply Frobenius integrability of (2.14), so that the deformation is strongly isomonodromic.
Conversely, given (2.14) with ωkpz, uq holomorphic in C ˆ Dpu0q, with z “ 8 at most a pole, then the integrability
dωpz, uq “ ωpz, uq^ωpz, uq, which is necessary condition for isomonodromicity, implies that ωkpz, uq “ zEk`ωkp0, uq and
(2.16). Computations give that ωkp0, uq “ rF1puq, Eks`Dkpuq, where Dkpuq is an arbitrary diagonal holomorphic matrix.
Imposing that Y p0qpz, uq and all the Yνpz, uq satisfy (2.14), then Dkpuq “ 0 and ωkp0, uq “ rF1puq, Eks.
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• The monodromy data associated with a fundamental matrix solution Y̊ pzq of

dY

dz
“

ˆ

Λpucq ` Apucq

z

˙

Y, (2.19)

differ from those of any fundamental solution Y pz, uq of (1.1) at u R ∆ ([2], [3], [13]).

In RpCzt0uq, we introduce the Stokes rays of Λpucq

<ppuci ´ uckqzq “ 0, =ppuci ´ uckqzq ă 0, ui ‰ uk,

and an admissible direction at uc

arg z “ τ, (2.20)

such that none of the Stokes rays at u “ uc take this direction. Notice that τ is associated with uc,
differently from τ p0q of Section 2.1.1. We choose µ basic Stokes rays of Λpucq. These are all and the only
Stokes rays lying in a sector of amplitude π, whose boundaries are not Stokes rays of Λpucq. Notice that
µ is different from µp0q used in Section 2.1.1. We label their directions argpzq as follows:

τ0 ă τ1 ă ... ă τµ´1.

The directions of all the other Stokes rays of Λpucq in RpCzt0uq are consequently labelled by an integer
ν P Z

arg z “ τν :“ τν0 ` kπ, with ν0 P t0, ..., µ´ 1u and ν :“ ν0 ` kµ. (2.21)

They satisfy τν ă τν`1.
Analogously, at any other u P Dpucq, we define Stokes rays <ppui ´ ujqzq “ 0, =ppui ´ ujqzq ă 0 of

Λpuq. They behave differently from the case of Dpu0q. Indeed, if u varies in Dpucq, some Stokes rays cross
the admissible directions arg z “ τ mod π, as follows. Let i, j, k be such that uci “ ucj ‰ uck. Then, as u
moves away from uc, a Stokes ray of Λpucq characterized by <ppuci ´uckqzq “ 0 generates three rays. Two
of them are <ppui´ukqzq “ 0 and <ppuj´ukqzq “ 0. If Dpucq is sufficiently small (as in (5.1) below), they
do not cross arg z “ τ mod π as u varies in Dpucq. The third ray is <ppui´ ujqzq “ 0. When u varies in
Dpucq making a complete loop pui´ujq ÞÑ pui´ujqe

2πi around the locus tu P Dpucq | ui´uj “ 0u Ă ∆,
the third ray crosses arg z “ τ mod 2π and arg z “ τ ´ π mod 2π. This identifies a crossing locus
Xpτq Ă Dpucq of points u such that there exists a Stokes ray of Λpuq (so infinitely many in RpCzt0uq)
with direction τ mod π.

Proposition 2.2 ([13]). Each connected component of Dpucqzp∆YXpτqq is simply connected and home-
omorphic to a ball, so it is a topological cell.

Thus, the choice of τ induces a cell decomposition of Dpucq. Each cell is called τ -cell. If u varies in
the interior of a τ -cell, no Stokes rays cross the admissible directions arg z “ τ ` hπ, h P Z, but if u
varies in the whole Dpucq, then Xpτq is crossed, and thus Proposition 2.1 does not hold.

To overcome this difficulty, we first take a point u0 in a τ -cell, and consider a polydisc Dpu0q contained
in the τ -cell, satisfying the assumptions of sub-section 2.1.1. Accordingly, we can define as before the
sectors Sν`kµpuq of angular amplitude greater than π, and

Sν`kµpDpu0qq “
č

uPDpu0q

Sν`kµpuq Ă tτν`kµ ´ π ă arg z ă τν`kµ`1u.

11



Notice that here we are using τ and µ in place of τ p0q and µp0q. With the above sectors, monodromy
data in (2.11)-(2.13) can be defined in Dpu0q.

Since Apuq is holomorphic in Dpu0q, then ωkpz, uq is holomorphic on Dpucqz∆. Thus, the funda-
mental matrix solutions Yνpz, uq, Y p0qpz, uq of sub-section 2.1.1 extend analytically on R

`

pCzt0uq ˆ
pDpucqqz∆q

˘

‰ RpCzzt0uq ˆ pDpucqqz∆q, and ∆ may be a branching locus for them.

Proposition 2.3 ([13]). ωpz, uq in (2.15) and (2.18) is holomorphic on the whole Dpucq if and only if

Aijpuq “ Opui ´ ujq Ñ 0 whenever pui ´ ujq Ñ 0 for u approaching ∆.

Apuq is holomorphically similar on Dpucq to a Jordan form J if and only if the above vanishing conditions
hold. Similarity is realized by a fundamental matrix solution of (2.17), which exists holomorphic on the
whole Dpucq.

The extension of the theory of isomonodromy deformations on the whole Dpucq is given in [13] by
the following theorem, which is a detailed exposition of the points (I) and (II) of the Introduction, while
point (III) is expressed by Corollary 2.1 below.

Theorem 2.2 ([13]). Let Apuq be holomorphic on Dpucq. Assume that system (1.1) is strongly isomon-
odromic on Dpu0q contained in a τ -cell of Dpucq, so that Theorem 2.1 holds. Moreover, assume that A
satisfies the vanishing conditions

Aijpuq “ Opui ´ ujq Ñ 0 whenever pui ´ ujq Ñ 0 for u approaching ∆. (2.22)

Then, the following statements hold.

Part I.

(I,1) Y p0qpz, uq and the Yνpz, uq, ν P Z admit analytic continuation as holomorphic functions on RpCzt0uqˆ
Dpucq. The coalescence locus ∆ is neither a singularity locus nor a branching locus.

(I,2) The coefficients Fkpuq of YF pz, uq, given in (2.8)-(2.9)-(2.10), are holomorphic of u P Dpucq.

(I,3) The fundamental matrix solutions Yνpz, uq have asymptotics Yνpz, uq „ YF pz, uq uniformly in u P
Dpucq, for z Ñ8 in a wide sector pSν containing SνpDpu0qq, to be defined later in (7.3).

Part II.

(II,1) the essential monodromy data Sν , Sν`µ, B “ diagpApucqq, Cν , L, D, initially defined on Dpu0q by
relations (2.11)-(2.13), are well defined and constant on the whole Dpucq. They satisfy

Sν “ S̊ν , Sν`µ “ S̊ν`µ, L “ L̊, Cν “ C̊ν , D “ D̊,

where

(II,2) S̊ν , S̊ν`µ are the Stokes matrices of fundamental solutions Y̊νpzq, Y̊ν`µpzq, Y̊ν`2µpzq of (2.19)
having asymptotic behaviour Y̊F pzq “ YF pz, u

cq, for z Ñ8 respectively on sectors τν´π ă arg z ă
τν`1, τν ă arg z ă τν`µ`1 and τν`µ ă arg z ă τν`2µ`1;

12



(II,3) L̊, D̊ are the exponents of a fundamental solution Y̊ pzq “ G̊
´

I `
ř8

j“1 Ψ̊jz
j
¯

zD̊zL̊ of (2.19) in
Levelt form;

(II,4) C̊ν connects Y̊νpzq “ Y̊ pzqC̊ν .

(II,5) The Stokes matrices satisfy the vanishing conditions

pSνqij “ pSνqji “ 0, pSν`µqij “ pSν`µqji “ 0 @ 1 ď i ‰ j ď n such that uci “ ucj .

Corollary 2.1 ([13]). If Aii ´ Ajj R Zzt0u for every i ‰ j such that uci “ ucj, then the formal solution
Y̊F pzq of (2.19) is unique and coincides with YF pz, ucq.

The assumption of Corollary 2.1 will be called partial non-resonance. If it holds, (II,1) says that
in order to obtain the essential monodromy data of (1.1) it suffices to compute S̊ν , S̊ν`µ, L̊, C̊ν and D̊
for (2.19), which is simper than (1.1), because Aijpucq “ 0 for i, j such that uci “ ucj . This allows in
some cases the explicit computation of monodromy data. An important example with algebro-geometric
implications can be found in [14].

Remark 2.1. The following statement, not mentioned in [13], holds.
If (1.1) is an isomonodromic family on the polydisc minus the coalescence locus, in the sense that

dY “ ωY in (2.14)-(2.15) is Frobenius integrable on Dpucqz∆, and if Apuq is holomorphic on Dpucq,
then the vanishing conditions (2.22) hold automatically and (1.1) is isomonodromic on Dpucq in the
strong sense, namely Theorem 2.2 holds.

I thank the referee for suggesting to write the above statement. The sketch of the proof is as follows:
integrability dω “ ω ^ ω on Dpucqz∆ implies (2.16), namely

BA

Buj
“ rωjpuq, As, j “ 1, ..., n; u P Dpucqz∆. (2.23)

We want to prove that Aijpuq Ñ 0 for ui´uj Ñ 0, for i ‰ j. From (2.23) and (2.18) we explicitly obtain

BAi`
Buj

“
pui ´ u`qAijAj`
pui ´ ujqpu` ´ ujq

, for j ‰ i, ` and i ‰ `.

The left hand-side is holomorphic everywhere on Dpucq by assumption on A, and so must be the right
hand-side. This implies that holomorphically Aij “ Opui ´ ujq for ui ´ uj Ñ 0. Then, Theorem 2.2
holds and we conclude. l

The difficulty in proving Theorem 2.2 is the analysis of the Stokes phenomenon at z “ 8. On the
other hand, coalescences does not affect the analysis at the Fuchsian singularity z “ 0, so it is not an
issue for the proof of the statements concerning Y p0qpz, uq, L , D and Cν (as far as the contribution of
Y p0q is concerned). See Proposition 17.1 of [13], and the proof of Theorem 4.9 in [25]. For this reason,
in the present paper we will not deal with Y p0qpz, uq, L , D, Cν and (II,3)-(II,4) above.

In Theorem 7.1 we introduce an isomonodromic Laplace transform in order to prove the statements
of Theorem 2.2 above, concerning the Stokes phenomenon, namely (I,1), (I,2), (I,3) and (II,1), (II,2),
(II,5).
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2.2 Background 2: Laplace Transform, Connection Coefficients and Stokes
Matrices

In this section, we fix u P Dpucqz∆. Accordingly, system (1.1) is to be considered as a system not
depending on deformation parameters, with leading matrix Λ having pairwise distinct eigenvalues, and
system (1.4) is equivalent to (1.3), which does not depend on parameters. For simplicity of notations,
let us fix for example

u “ u0, as in Section 2.1.1.

Solutions Yνpzq of (1.1) with canonical asymptotics YF pzq (u “ u0 fixed is not indicated) can be
expressed in terms of convergent Laplace-type integrals [5, 31], where the integrands are solutions of the
Fuchsian system5

pΛ´ λqdΨ
dλ

“ pA` IqΨ, I :“ identity matrix (2.24)

Indeed, let ~Ψpλq be a vector valued function and define

~Y pzq “

ż

γ

eλz~Ψpλqdλ,

where γ is a suitable path. Then, substituting into (1.1), we have

pzΛ`Aq
ż

γ

eλz~Ψpλqdλ “ z
d

dz

ż

γ

eλz~Ψpλqdλ “ z

ż

γ

λeλz~Ψpλqdλ.

This implies that

A

ż

γ

eλz~Ψpλqdλ “
ż

γ

dpeλzq

dλ
pλ´ Λq~Ψpλqdλ “

“ eλzpλ´ Λq~Ψpλq
ˇ

ˇ

ˇ

γ
´

ż

γ

eλz

«

pλ´ Λqd
~Ψpλq
dλ

` ~Ψpλq
ff

dλ. (2.25)

If γ is such that eλzpλ´ Λq~Ψpλq
ˇ

ˇ

ˇ

γ
“ 0, and if the function ~Ψpλq solves (2.24), then ~Y pzq solves (1.1).

Multiplying to the left by pΛ´ λq´1, system (2.24) becomes (1.3),

dΨ
dλ

“

n
ÿ

k“1

Bk
λ´ u0

k

Ψ, Bk :“ ´EkpA` Iq. (2.26)

In order to define matrix solutions of of (2.26) as single valued functions, we consider the λ-plane with
branch-cuts. Let ηp0q P R satisfy

ηp0q ‰ argpu0
j ´ u

0
kq mod π, for all 1 ď j, k ď n. (2.27)

We fix parallel cuts Lkpηp0qq, namely half-lines oriented from u0
k to 8 in direction argpλ ´ u0

kq “ ηp0q,
1 ď k ď n. See figure 2. Conditions (2.27) mean that a cut Lk does not contain another pole u0

j , j ‰ k.
5The notation A0 and A1 is used in [23] for Λ and A. In [4] the notation for Λ is the same, while A is denoted by A1.

The notation λ1, ..., λn is used in [4, 25] for u1, ..., un. There is a misprint in the first page of [23] where it is said that
A1 P GLpn,Cq; the correct statement is A1 PMatpn,Cq.
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For this reason ηp0q is called admissible direction at u0. Then, we choose a branch of the logarithms
lnpλ´ u0

kq “ ln |λ´ u0
k| ` i argpλ´ u0

kq by

ηp0q ´ 2π ă argpλ´ u0
kq ă ηp0q, k “ 1, ..., n. (2.28)

Following [4], the λ-plane with these cuts and choices of the logarithms is denoted by Pηp0q . Matrix
solutions of (2.26) are well defined as single-valued functions of λ P Pηp0q .

Remark 2.2. Pηp0q can be identified with one of the countably many components of

R1 :“ RpCztu0
1, ..., u

0
nuq ´ plift of all half-lines Lkq.

Each component is obtained by a deck transformation starting from one. Fix one component, for example
Pηp0q , and define 2n letters

lk :“ cross a lift of Lk from the right, l´1
k :“ cross a lift of Lk from the left, k “ 1, ..., n,

where “right” or “left” refers to the orientation of Lk. The other components are reached by crossing the
cuts, so that there is a one to one correspondence between finite sequences tl˘1

j1
, ..., l˘1

jm
u not containing

successively a l˘1
k and l¯1

k , and components of R1 (here j1, ..., jm P t1, ..., nu and m P N). The relations
(2.28) alone do not identify a component of R1 (as incorrectly written in [23], page 387). For example,
the word l1l2l

´1
1 l´1

2 leads to a new component of R1 where argpλ ´ u0
1q, ..., argpλ ´ u0

nq take the same
values of the starting component.6 I thank the referee for this remark.

Stokes matrices for (1.1), for fixed and pairwise distinct u0
1, ..., u

0
n, can been expressed in terms of

connection coefficients of selected solutions of (2.26). The explicit relations have been obtained in [4] for
the generic case when all λ11, ..., λ1n R Z; and in [23] for the general case with no restrictions on λ11, ..., λ1n
and A.

Selected Vector Solutions

The Laplace transform involves three types of vector solutions of (2.26), denoted in [23] respectively by
~Ψkpλq, ~Ψ˚kpλq and ~Ψpsingqk pλq , for k “ 1, ..., n (in [4] the notation used is Yk and Y ˚k , while Y psingqk does
not appear, since it reduces to Yk in the generic case λ1k R Z). We will not describe here the ~Ψ˚kpλq,
which play mostly a technical role. Let

N “ t0, 1, 2, ...u integers, Z´ “ t´1,´2,´3, ...u negative integers,
~ek “ standard k-th unit column vector in Cn.

It is proved in [23] that for every k P t1, ..., nu there are at least n´ 1 independent vector solutions
holomorphic at λ “ u0

k. The remaining independent solution is singular at λ “ u0
k, except for some

exceptional cases possibly occurring when λ1k ď ´2 is integer. In such cases, there exist n holomorphic
solutions at λ “ u0

k (such cases never occur if none of the eigenvalues of A is a negative integer). The
selected vector solutions ~Ψk are obtained as follows.

6As well known, the analytic continuation, starting from the plane Pηp0q , of a fundamental matrix solution of (2.26)
defines a function Ψ on RpCztu0

1, ..., u
0
nuq. For example, if λ1 is the lift of λ P Pηp0q to the component of R1 identified by

the word l1l2l´1
1 l´1

2 , then Ψpλ1q “ ΨpλqM´1
2 M´1

1 M2M1, where Mj is the monodromy matrix associated with lj .
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• If λ1k ď ´2 is integer and we are in an exceptional case when there are no singular solutions at u0
k,

namely
~Ψpsingqk pλq ” 0,

then ~Ψk is the unique analytic solution with the following normalization:

~Ψkpλq “

˜

p´1qλ1k
p´λ1k ´ 1q!~ek `

ÿ

lě1

~b
pkq
l pλ´ u0

kq
l

¸

pλ´ u0
kq
´λ1k´1.

• In all other cases, there is a solution ~Ψpsingqk with singular behaviour at λ “ u0
k. This is determined

up to a multiplicative factor and the addition of an arbitrary linear combination of the remaining
n ´ 1 regular at λ “ u0

k solutions, denoted below with regpλ ´ u0
kq. In [23], it has the following

structure

~Ψpsingqk pλq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

~ψkpλqpλ´ u
0
kq
´λ1k´1 ` regpλ´ u0

kq, λ1k R Z,

~ψkpλq lnpλ´ u0
kq ` regpλ´ u0

kq, λ1k P Z´,

Pkpλq

pλ´ u0
kq
λ1
k
`1 `

~ψkpλq lnpλ´ u0
kq ` regpλ´ u0

kq, λ1k P N.

(2.29)

Here ~ψkpλq is analytic at u0
k and Pkpλq “

řλ1k
l“0

~b
pkq
l pλ ´ u0

kq
l is a polynomial of degree λ1k. We

choose the following normalization at λ “ u0
k

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

~ψkpλq “ Γpλ1k ` 1q~ek `
ř

lě1
~b
pkq
l pλ´ u0

kq
l, λ1k R Z,

~ψkpλq “

˜

p´1qλ1k
p´λ1k ´ 1q!~ek `

ř

lě1
~b
pkq
l pλ´ u0

kq
l

¸

pλ´ u0
kq
´λ1k´1 λ1k P Z´,

Pkpλq “ λ1k! ~ek `Opλ´ u0
kq λ1k P N,

The coefficients ~b pkql P Cn are uniquely determined by the normalization. Then the selected vector
solutions ~Ψk are uniquely defined by7

~Ψkpλq :“ ~ψkpλqpλ´ u
0
kq
´λ1k´1 for λ1k R Z; ~Ψkpλq :“ ~ψkpλq for λ1k P Z. (2.30)

In case λ1k P N, depending on the system, it may exceptionally happen that

~Ψk :“ ~ψk ” 0.

Remark 2.3. Suppose λ1k P Z. In particular, if λ1k ď ´2, suppose we are in the case when ~Ψpsingqk is
not identically zero. Then

~Ψkpλq “
1

2πi

´

~Ψpsingqk plkpλqq ´ ~Ψpsingqk pλq
¯

, λ P Pηp0q ,

is the difference of two singular solutions defined on Pηp0q . Here, in the notation of Remark 2.2, the
function ~Ψpsingqk plkpλqq is the value at λ P Pηp0q of the analytic continuation of ~Ψpsingqk pλq when passing
from a prefixed component of R1, in this case Pηp0q , to the component associated with the sequence tlku
of only one element. Namely, the analytic continuation for a small loop pλ´ up0qk q ÞÝÑ pλ´ u

p0q
k qe

2πi.
7The singular part of Ψpsingq is uniquely determined by the normalization, but not Ψpsingq itself, because the analytic

additive term regpλ´ u0
kq is an arbitrary linear combination of the remaining n´ 1 independent analytic solutions.

16



Ln
<latexit sha1_base64="pqodM0nmv9eb77pzwI2ECTMU1Bw=">AAAB7XicbVA9SwNBEJ2LX/H8ilraLAbBKtzFgJYBGwuLCOYDkiPsbfaSNXu7x+6eEI6AP8HGQhFb/4+d/8a9JIUmPhh4vDfDzLww4Uwbz/t2CmvrG5tbxW13Z3dv/6B0eNTSMlWENonkUnVCrClngjYNM5x2EkVxHHLaDsfXud9+pEozKe7NJKFBjIeCRYxgY6XWbV+4rtsvlb2KNwNaJf6ClGGBRr/01RtIksZUGMKx1l3fS0yQYWUY4XTq9lJNE0zGeEi7lgocUx1ks2un6MwqAxRJZUsYNFN/T2Q41noSh7Yzxmakl71c/M/rpia6CjImktRQQeaLopQjI1H+OhowRYnhE0swUczeisgIK0yMDSgPwV9+eZW0qhX/olK9q5Xrjad5HEU4gVM4Bx8uoQ430IAmEHiAZ3iFN0c6L8678zFvLTiLCI/hD5zPH/A/jn8=</latexit>

Li
<latexit sha1_base64="otg7VsWOgjbKUydFc5+OQjTdVLM=">AAAB7XicbVA9SwNBEJ2LX/H8ilraLAbBKtzFgJYBGwuLCOYDkiPsbfaSNXu7x+6eEI6AP8HGQhFb/4+d/8a9JIUmPhh4vDfDzLww4Uwbz/t2CmvrG5tbxW13Z3dv/6B0eNTSMlWENonkUnVCrClngjYNM5x2EkVxHHLaDsfXud9+pEozKe7NJKFBjIeCRYxgY6XWbZ+5rtsvlb2KNwNaJf6ClGGBRr/01RtIksZUGMKx1l3fS0yQYWUY4XTq9lJNE0zGeEi7lgocUx1ks2un6MwqAxRJZUsYNFN/T2Q41noSh7Yzxmakl71c/M/rpia6CjImktRQQeaLopQjI1H+OhowRYnhE0swUczeisgIK0yMDSgPwV9+eZW0qhX/olK9q5Xrjad5HEU4gVM4Bx8uoQ430IAmEHiAZ3iFN0c6L8678zFvLTiLCI/hD5zPH+icjno=</latexit>

Lj
<latexit sha1_base64="NKwwYoGIzrTvO+IepKOJmSd+Hu0=">AAAB7XicbVA9SwNBEJ2LX/H8ilraLAbBKtxFQcuAjYVFBPMByRH2NnvJJnu7x+6eEI6AP8HGQhFb/4+d/8a9JIUmPhh4vDfDzLww4Uwbz/t2CmvrG5tbxW13Z3dv/6B0eNTUMlWENojkUrVDrClngjYMM5y2E0VxHHLaCsc3ud96pEozKR7MJKFBjAeCRYxgY6XmXW/kum6vVPYq3gxolfgLUoYF6r3SV7cvSRpTYQjHWnd8LzFBhpVhhNOp2001TTAZ4wHtWCpwTHWQza6dojOr9FEklS1h0Ez9PZHhWOtJHNrOGJuhXvZy8T+vk5roOsiYSFJDBZkvilKOjET566jPFCWGTyzBRDF7KyJDrDAxNqA8BH/55VXSrFb8i0r1/rJcqz/N4yjCCZzCOfhwBTW4hTo0gMAInuEV3hzpvDjvzse8teAsIjyGP3A+fwDqI457</latexit>

Lk
<latexit sha1_base64="f6fd5AZHPb48Vs6Z6kx8ct80Qto=">AAAB7XicbVA9SwNBEJ2LX/H8ilraLAbBKtzFgJYBGwuLCOYDkiPsbfaSNXu7x+6eEI6AP8HGQhFb/4+d/8a9JIUmPhh4vDfDzLww4Uwbz/t2CmvrG5tbxW13Z3dv/6B0eNTSMlWENonkUnVCrClngjYNM5x2EkVxHHLaDsfXud9+pEozKe7NJKFBjIeCRYxgY6XWbX/sum6/VPYq3gxolfgLUoYFGv3SV28gSRpTYQjHWnd9LzFBhpVhhNOp20s1TTAZ4yHtWipwTHWQza6dojOrDFAklS1h0Ez9PZHhWOtJHNrOGJuRXvZy8T+vm5roKsiYSFJDBZkvilKOjET562jAFCWGTyzBRDF7KyIjrDAxNqA8BH/55VXSqlb8i0r1rlauN57mcRThBE7hHHy4hDrcQAOaQOABnuEV3hzpvDjvzse8teAsIjyGP3A+fwDrqo58</latexit>

u0
i

<latexit sha1_base64="UzEhgXa4GEYPfwcOu9B+rAkqkqs=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48VmrbQxrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777RQ2Nre2d4q7pb39g8Oj8vFJSyeZYuizRCSqE1KNgkv0DTcCO6lCGocC2+H4bu63n1BpnsimmaQYxHQoecQZNVbysz5/dPvlilt1FyDrxMtJBXI0+uWv3iBhWYzSMEG17npuaoIpVYYzgbNSL9OYUjamQ+xaKmmMOpgujp2RC6sMSJQoW9KQhfp7YkpjrSdxaDtjakZ61ZuL/3ndzES3wZTLNDMo2XJRlAliEjL/nAy4QmbExBLKFLe3EjaiijJj8ynZELzVl9dJq1b1rqq1h+tKvZnHUYQzOIdL8OAG6nAPDfCBAYdneIU3RzovzrvzsWwtOPnMKfyB8/kDhqeOjQ==</latexit>

u0
n

<latexit sha1_base64="T9nWRF6aB5NJxFU8q0QwkVJV4I4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48VmrbQxrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777RQ2Nre2d4q7pb39g8Oj8vFJSyeZYuizRCSqE1KNgkv0DTcCO6lCGocC2+H4bu63n1BpnsimmaQYxHQoecQZNVbys758dPvlilt1FyDrxMtJBXI0+uWv3iBhWYzSMEG17npuaoIpVYYzgbNSL9OYUjamQ+xaKmmMOpgujp2RC6sMSJQoW9KQhfp7YkpjrSdxaDtjakZ61ZuL/3ndzES3wZTLNDMo2XJRlAliEjL/nAy4QmbExBLKFLe3EjaiijJj8ynZELzVl9dJq1b1rqq1h+tKvZnHUYQzOIdL8OAG6nAPDfCBAYdneIU3RzovzrvzsWwtOPnMKfyB8/kDjkWOkg==</latexit>

u0
j

<latexit sha1_base64="FZhzvqHHWj8mrpz8xs1s1UhYyC4=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rFC0xbaWDbbTbt2swm7E6GU/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTKUw6Lrfztr6xubWdmGnuLu3f3BYOjpumiTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR7cxvPXFtRKIaOE55ENOBEpFgFK3kZ73HB7dXKrsVdw6ySryclCFHvVf66vYTlsVcIZPUmI7nphhMqEbBJJ8Wu5nhKWUjOuAdSxWNuQkm82On5NwqfRIl2pZCMld/T0xobMw4Dm1nTHFolr2Z+J/XyTC6CSZCpRlyxRaLokwSTMjsc9IXmjOUY0so08LeStiQasrQ5lO0IXjLL6+SZrXiXVaq91flWiOPowCncAYX4ME11OAO6uADAwHP8ApvjnJenHfnY9G65uQzJ/AHzucPiC2Ojg==</latexit>

u0
k

<latexit sha1_base64="SggE3bs7J0SnAuo5U6wCoIIq9Yo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48VmrbQxrLZTtulm03Y3Qgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJS8epYuizWMSqE1KNgkv0DTcCO4lCGoUC2+Hkbu63n1BpHsummSYYRHQk+ZAzaqzkp/3Jo9svV9yquwBZJ15OKpCj0S9/9QYxSyOUhgmqdddzExNkVBnOBM5KvVRjQtmEjrBrqaQR6iBbHDsjF1YZkGGsbElDFurviYxGWk+j0HZG1Iz1qjcX//O6qRneBhmXSWpQsuWiYSqIicn8czLgCpkRU0soU9zeStiYKsqMzadkQ/BWX14nrVrVu6rWHq4r9WYeRxHO4BwuwYMbqMM9NMAHBhye4RXeHOm8OO/Ox7K14OQzp/AHzucPibOOjw==</latexit>

P⌘(0)
<latexit sha1_base64="1D74Hx/Ma1PqxeexzZIOWdpnsxM=">AAACAnicbVBNS8NAEN34WetX1JN4CRahXkpSBT0WvHisYD+giWGz3bRLN5uwOxFKCHrwr3jxoIhXf4U3/42btgdtfTDweG+GmXlBwpkC2/42lpZXVtfWSxvlza3tnV1zb7+t4lQS2iIxj2U3wIpyJmgLGHDaTSTFUcBpJxhdFX7nnkrFYnEL44R6ER4IFjKCQUu+eehGGIYE86yZ+5lLAd9lVfs0z8u+WbFr9gTWInFmpIJmaPrml9uPSRpRAYRjpXqOnYCXYQmMcJqX3VTRBJMRHtCepgJHVHnZ5IXcOtFK3wpjqUuANVF/T2Q4UmocBbqzOFjNe4X4n9dLIbz0MiaSFKgg00Vhyi2IrSIPq88kJcDHmmAimb7VIkMsMQGdWhGCM//yImnXa85ZrX5zXmm0H6dxlNAROkZV5KAL1EDXqIlaiKAH9Ixe0ZvxZLwY78bHtHXJmEV4gP7A+PwB3dWXiQ==</latexit>

⌘(0)
<latexit sha1_base64="usX9VeXWtW+anE0vuOEjfSq70Fo=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2W3CnosePFYoV/QriWbZtvQbLIks0JZ+jO8eFDEq7/Gm//GbLsHbX0w8Hhvhpl5QSy4Adf9dgobm1vbO8Xd0t7+weFR+fikY1SiKWtTJZTuBcQwwSVrAwfBerFmJAoE6wbTu8zvPjFtuJItmMXMj8hY8pBTAlbqDxiQx7TqXs5Lw3LFrbkL4HXi5aSCcjSH5a/BSNEkYhKoIMb0PTcGPyUaOBVsXhokhsWETsmY9S2VJGLGTxcnz/GFVUY4VNqWBLxQf0+kJDJmFgW2MyIwMateJv7n9RMIb/2UyzgBJulyUZgIDApn/+MR14yCmFlCqOb2VkwnRBMKNqUsBG/15XXSqde8q1r94brSaOVxFNEZOkdV5KEb1ED3qInaiCKFntErenPAeXHenY9la8HJZ07RHzifP/0PkHU=</latexit>

Figure 2: The poles u0
j , 1 ď j ď n, of system (2.26) and plane Pηp0q with branch cuts Lj .

Connection Coefficients

Above, the behaviour of ~Ψkpλq has been described at λ “ u0
k. The behaviour at any point λ “ u0

j , for
j “ 1, ..., n, will be expressed by linear relations

~Ψkpλq “ ~Ψpsingqj pλqcjk ` regpλ´ u0
j q. (2.31)

cjk :“ 0, @k “ 1, ..., n, when ~Ψpsingqj pλq ” 0 (possible only if λ1j P ´N´ 2).

The above relations define the connection coefficients cjk. From the definition, we see that ckk “ 1
for λ1k R Z, while ckk “ 0 for λ1k P Z. In case λ1k P N, if it happens that ~Ψk ” 0, then cjk “ 0 for any
j “ 1, .., n.

Proposition 2.4 (see [4] and propositions 3, 4 of [23] ). If A has no integer eigenvalues, then

Ψpλq “
”

~Ψ1pλq | ¨ ¨ ¨ | ~Ψnpλq
ı

, λ P Pηp0q (2.32)

(each ~Ψk occupies a column) is a fundamental matrix solution of (2.26). Moreover, the matrix C :“
pcjkq is invertible if and only if A has no integer eigenvalues. If A has integer eigenvalues and Ψ is
fundamental, then some λ1k P Z.

Laplace transform and Stokes Matrices in terms of Connection Coefficients

If ηp0q is admissible in the λ-plane, with respect to the fixed and pairwise distinct u0
1, ..., u

0
n, then

arg z “ τ p0q :“ 3π{2´ ηp0q

is an admissible direction (2.2) in the z-plane for system (1.1) at the fixed u “ u0. We consider the
Stokes rays of Λpu0qq as before. For some ν P Z, a labelling (2.3) holds, so that

τν ă τ p0q ă τν`1 ðñ ην`1 ă ηp0q ă ην , ην :“ 3π
2 ´ τν . (2.33)

In order to keep track of (2.33), we label (2.32) with ν,

Ψνpλq “
”

~Ψ1pλ |νq | ¨ ¨ ¨ | ~Ψnpλ |νq
ı

, λ P Pηp0q . (2.34)
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The connection coefficients will be labelled accordingly as cpνqjk . Also the singular vector solutions will
be labelled ~Ψpsingqk pλ |νq, λ P Pηp0q as above.

The relation between solutions ~Ψkpλ |νq or ~Ψpsingqk pλ |νq and the columns of Yνpzq is established in
[23] for all values of λ11, ..., λ1n, and in [4] for non integer values only. It is given by Laplace-type integrals
(Proposition 8 of [23])

~Ykpz |νq “
1

2πi

ż

γkpηp0qq

ezλ~Ψpsingqk pλ |νqdλ, if λ1k R Z´; ~Ykpz |νq “

ż

Lkpηp0qq

ezλ~Ψkpλ |νqdλ, if λ1k P Z´.

Here, γkpηp0qq is the path coming from 8 along the left side of the oriented Lkpηp0qq, encircling u0
k with

a small loop excluding all the other poles, and going back to 8 along the right side of Lkpηp0qq.

The same as (2.34) can be defined for the cut-plane Pη1 , with an admissible direction η1 satisfying

ην`kµp0q`1 ă η1 ă ηµp0q`kµp0q , k P Z,

and will be denoted by Ψν`kµp0qpλq, and analogously for the vectors ~Ψkpλ |ν` kµ
p0qq and ~Ψpsingqk pλ |ν`

kµp0qq. From the Laplace transforms of ~Ψkpλ |ν ` kµp0qq or ~Ψpsingqk pλ |ν ` kµp0qq, with the paths of
integration γkpη1q or Lkpη1q, we receive Yν`kµp0qpzq.

Introduce in t1, 2, ..., nu the ordering ă given by

j ă k ðñ <pzpu0
j ´ u

0
kqq ă 0 for arg z “ τ p0q, i ‰ j, i, j P t1, ..., nu.

The following important results, proved in theorem 1 of [23] for all values of λ11, ..., λ1n, and in the
seminal paper [4] in the generic case λ11, ..., λ1n R Z, establishes the relation between Stokes matrices and
connection coefficients.8

Theorem 2.3. Let u “ u0 be fixed so that Λpu0q has pairwise distinct eigenvalues. Let ηp0q and
τ p0q “ 3π{2´ηp0q be admissible for u0 in the λ-plane and z-plane respectively. Suppose that the labelling
of Stokes rays is (2.3) and (2.33). Then, the Stokes matrices of system (1.1) at u “ u0 are given in
terms of the connection coefficients cpνqjk of system (2.26), according to the following formulae

`

Sν
˘

jk
“

$

’

’

’

’

&

’

’

’

’

%

e2πiλ1kαk c
pνq
jk for j ă k,

1 for j “ k,

0 for j ą k,

`

S´1
ν`µp0q

˘

jk
“

$

’

’

’

’

&

’

’

’

’

%

0 for j ă k,

1 for j “ k,

´e2πipλ1k´λ
1
jqαk c

pνq
jk for j ą k.

8The key point is the fact that ~Ψpsingq
k

in (7.4), or equivalently ~Ψk for λ11, ..., λ1n R Z, can be substituted by another
set of vector solutions, denoted in [23] by ~Ψ˚

k
pλ, u |νq and in [4] by Y ˚

k
. The effect of the change of the branch cut from

ην`1 ă η ă ην to ην`µ`1 ă η1 ă ην`µ, namely from η to η1 “ η ´ π, yields a linear relation

~Ψ˚k pλ, u |ν ` µq “ ~Ψ˚k pλ, u |νqC
`
ν , λ P Pη X Pη´π ,

where the connection matrix C`ν is expressed in terms of the connection coefficients cpνq
jk

“ c
pνq
jk
pηq associated with

~Ψpsingq
k

pλ, u |νq. The same can be done for the change of branch cut from ην`µ`1 ă η1 ă ην`µ to ην`2µ`1 ă η2 ă ην`2µ
(namely, η1 “ η ´ π and η2 “ η ´ 2π) yielding a relation

~Ψ˚k pλ, u |ν ` 2µq “ ~Ψ˚k pλ, u |ν ` µqC
´
ν , λ P Pη´π X Pη´2π .

Substituting these relations in the Laplace integrals, one proves Theorem 2.3, being Sν “ C`ν and S´1
ν`µ “ C´ν . See [4]

and [23]
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where,
αk :“ pe´2πiλ1k ´ 1q if λ1k R Z; αk :“ 2πi if λ1k P Z.

l

In the above discussion, the differential systems do not depend on parameters (u is fixed). The
purpose of the present paper is to extend the description of Background 2 to the case depending on de-
formation parameters and include coalescences in Dpucq, and then to obtain Theorem 2.2 of Background
1 in terms of an isomonodromic Laplace transform.

3 Equivalence of the Isomonodromy Deformation Equations for
(1.1) and (1.4)

The first step in our construction is Proposition 3.1 below, establishing the equivalence between strong
isomonodromy deformations of systems (1.1) and (1.4), for u varying in a τ -cell of Dpucq. In the specific
case of Frobenius manifolds, this fact can be deduced from Chapter 5 of [20]. Here we establish the
equivalence in general terms.

According to Theorem 2.1, system (1.1) is strongly isomonodromic in a polydisc Dpu0q contained in
a τ -cell of Dpucq if and only if 9

dA “
n
ÿ

j“1
rωjpuq, As duj , ωjpuq “ rF1puq, Ejs, given in (2.18). (3.1)

On the other hand, system (1.4) is strongly isomonodromic in Dpu0q by definition ([25], Appendix
A), when fundamental matrix solutions in Levelt form at each pole λ “ uj , j “ 1, ..., n, have constant
monodromy exponents and are related to each other by constant connection matrices (not to be con-
fused with the connection coefficients). From [7, 8, 25], the necessary and sufficient condition for the
deformation to be strongly isomonodromic (this can also be taken as the definition) is that (1.4) is the
λ-component of a Frobenius integrable Pfaffian system with the following structure

dΨ “ P pλ, uqΨ, P pλ, uq “
n
ÿ

k“1

Bkpuq

λ´ uk
dpλ´ ukq `

n
ÿ

k“1
γkpuqduk. (3.2)

The integrability condition dP “ P ^ P is the non-normalized Schlesinger system (see Appendix A and
[6, 7, 8, 25, 27, 63])

Biγk ´ Bkγi “ γiγk ´ γkγi, (3.3)

BiBk “
rBi, Bks

ui ´ uk
` rγi, Bks, i ‰ k (3.4)

BiBi “ ´
ÿ

k‰i

rBi, Bks

ui ´ uk
` rγi, Bis (3.5)

Proposition 3.1. The system (3.1) is equivalent to (3.3)-(3.5) if and only if

γjpuq ” ωjpuq as in (2.15) and (2.18), j “ 1, ..., n.

Namely, (1.1) is strongly isomonodromic in a polydisc on Dpu0q contained in a τ -cell if and only if (1.4)
is strongly isomonodromic.

9As already mentioned when stating Theorem 2.1, equations dA “ rωipuq, As and ωipuq “ rF1, Eis for i “ 1, ..., n are
exactly the the Frobenius integrability conditions of (2.14) when (1.1) is strongly isomomodromic [13].
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Proof. See Appendix B.

4 Schlesinger System on Dpucq and Vanishing Conditions
In this section, Proposition 4.1, we holomorphically extend to Dpucq the non-normalized Schlesinger
system associated with (1.4), when certain vanishing conditions (4.2) are satisfied. This is the second
step to obtain the results of [13] by Laplace transform.

Lemma 4.1. Let Apuq be holomorphic on Dpucq and Bjpuq :“ ´EjpApuq ` Iq, j “ 1, ..., n.
i) The vanishing relations

rBipuq, Bjpuqs ÝÑ 0, for ui ´ uj Ñ 0 in Dpucq. (4.1)

hold if and only if
`

Apuq
˘

ij
ÝÑ 0, for ui ´ uj Ñ 0 in Dpucq. (4.2)

ii) The matrices ωkpuq “ rF1puq, Eks are holomorphic on Dpucq if and only if (4.2) holds.

Proof. Let u˚ P ∆, so that for some i ‰ j it occurs that u˚i “ u˚j . Since

Bj “ ´EjpA` Iq “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0
...

...
...

´Aj1 ¨ ¨ ¨ ´Aj,j´1 ´λ1j ´ 1 ´Aj,j`1 ¨ ¨ ¨ ´Ajn
...

...
...

0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

. (4.3)

it is an elementary computation to check the equivalence between the relation rBipu˚q, Bjpu˚qs “ 0 and
the relation pApu˚qqij “ 0. Since rF1puq, Eks is (2.18), the statement on its analyticity is straightforward.

Proposition 4.1. Consider a Frobenius integrable Pfaffian system (3.2) on Dpu0q with

Bjpuq “ ´EjpApuq ` Iq and γjpuq ” ωjpuq “ rF1puq, Ejs in (2.18). (4.4)

Assume that Apuq is holomorphic on the whole Dpucq. Then, system (3.2) is Frobenius integrable on the
whole Dpucq with holomorphic matrix coefficients if and only if the vanishing conditions (4.2) hold.

Proof. If system (3.2) is integrable on Dpucq with holomorphic coefficients Bk and γk “ ωk, then an-
alyticity of ωk with structure (2.18) implies that (4.2) must hold, so that (4.1) holds. Notice that by
(4.1), the r.h.sides of (3.4)-(3.5) are holomorphic on Dpucq. Conversely, suppose that (4.1)-(4.2) hold.
By Proposition 3.1, (3.3)-(3.4)-(3.5) are equivalent in Dpu0q to

dA “
n
ÿ

j“1
rωjpuq, As duj , u P Dpu0q. (4.5)

Now, the l.h.s is well defined and holomorphic on Dpucq, because so is Apuq. The r.h.s. is also analytic
on Dpucq, because of (4.2). Hence, the first part of the proof of Proposition 3.1 in Appendix B works in
the whole Dpucq, and so the Pfaffian system (3.2) is integrable there.
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For completeness, we also state the following

Proposition 4.2. Let system (3.2) with coefficients (4.4) be integrable on Dpucqz∆ and let the Bkpuq
be holomorphic on Dpucq. Then the vanishing conditions (4.1)-(4.2), hold and the ωk are holomorphic
on Dpucq.

Proof. Analogously to the proof of Proposition 3.1, we see that (3.3)-(3.4)-(3.5) on Dpucqz∆ are equiv-
alent to

dA “
n
ÿ

j“1
rωjpuq, As duj , u P Dpucqz∆. (4.6)

By holomorphy of Apuq on Dpucq, the r.h.s is well defined, so that also the l.h.s. must be holomorphic on
Dpucq. From (4.6) we proceed as in Remark 2.1, concluding that Aij “ Opui ´ ujq Ñ 0 holomorphically
for ui ´ uj Ñ 0. The proof can be done also with an argument similar to Remark 6.1.

5 Selected Vector solutions depending on parameters u P Dpucq,
Theorem 5.1

In this section we state one main result of the paper, Theorem 5.1 below, introducing the isomonodromic
analogue of the selected and singular vector solutions (2.30) and (2.29). This is the third step required
to obtain the results of [13] by Laplace transform.

Preliminarily, we characterise the radius ε0 ą 0 of Dpucq in (2.1). The coalescence point uc “
puc1, ..., u

c
nq contains s ă n distinct values, say λ1, ..., λs, with algebraic multiplicities p1, ..., ps respectively

(p1 ` ¨ ¨ ¨ ` ps “ n). Suppose that arg z “ τ is a direction admissible at uc, as defined in (2.20), and let

η “ 3π{2´ τ

be the corresponding admissible direction in the λ-plane, where we draw parallel half lines L1 “ L1pηq,
..., Ls “ Lspηq issuing from λ1, ..., λs respectively, with direction η, as in figure 3. Let

2δαβ :“ distance between Lα and Lβ , for 1 ď α ‰ β ď s

In formulae, 2δαβ “ minρą0 |λα ´ λβ ` ρe
?
´1p3π{2´τq|. Then, we require that

ε0 ă min
1ďα‰βďn

δαβ . (5.1)

The bound (5.1) was introduced in [13] in order to prove Theorem 2.2 in Background 1. It implies
properties of the Stokes rays as u varies in Dpucq, described later in Section 7. Let

Dα :“ tλ P C | |λ´ λα| ď ε0u, α “ 1, ..., s,

be the disc centered a λα and radius ε0. If uj is such that ucj “ λα, the bound (5.1) implies that uj
remains in Dα as u varies in Dpucq. Clearly, Dα X Dβ “ H.

The Stokes rays of Λpucq can be labeled as in (2.21). For a certain ν P Z we have

ην`1 ă η ă ην ðñ τν ă τ ă τν`1, ην “
3π
2 ´ τν . (5.2)
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Figure 3: The figure represents the half lines Lα, Lβ , etc, for α, β, ... P t1, ..., su, in direction η “ 3π{2´τ ,
the discs centred at the coordinates λ1, . . . , λs of the coalescence point uc, and the distances δαβ . Also
two points ui, uj are represented, such that uci “ ucj “ λδ for some δ P t1, ..., su. Important: now η
refers to uc, differently from Section 2.2 and figure 2.

For each u P Dpucq, let Pη “ Pηpuq be the λ-plane with branch cuts L1 “ L1pηq, ..., Ln “ Lnpηq issuing
from u1, ..., un and the choice of the logarithms lnpλ´ ukq “ ln |λ´ uk| ` i argpλ´ ukq, given by

η ´ 2π ă argpλ´ ukq ă η, k “ 1, ..., n.

We define the domain (notation ˆ̂ inspired by [33])

Pηpuq ˆ̂Dpucq :“ tpλ, uq | u P Dpucq, λ P Pηpuqu.

According to Proposition 4.1, for a Pfaffian system (3.2) with coefficients (4.4), defined on a polydisc
Dpu0q contained in a τ -cell of Dpucq, if Apuq is holomorphic on Dpucq, then the vanishing conditions (4.2)

`

Apuq
˘

ij
ÝÑ 0, for ui ´ uj Ñ 0 in Dpucq.

are equivalent to Frobenius integrability on the whole Dpucq. With this in mind, we state the following

Theorem 5.1. Consider a Pfaffian system,

dΨ “ P pλ, uqΨ, P pz, uq “
n
ÿ

k“1

Bkpuq

λ´ uk
dpλ´ ukq `

n
ÿ

k“1
ωkpuqduk. (5.3)

Frobenius integrable on Dpucq, with matrix coefficients (2.18), and Apuq holomorphic on Dpucq. Let the
radius ε0 be as in (5.1). Then, two classes of vector solutions, holomorphic on Pηpuq ˆ̂Dpucq, exist as
follows.

The selected solution: ~Ψ1pλ, u |νq, ... , ~Ψnpλ, u |νq. Each ~Ψkpλ, u |νq is uniquely identified by the
local behaviour below for λ P Dα, where α is such that uck “ λα. The label ν keeps track of (5.2).
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• For λ1k P CzZ or λ1k P Z´ “ t´1,´2, ...u,

~Ψkpλ, u |νq “ ~ψkpλ, u |νqpλ´ ukq
´λ1k´1, k “ 1, ..., n, (5.4)

where ~ψkpλ, u |νq is holomorphic on Dα ˆ Dpucq and is represented by a uniformly convergent
Taylor expansion with holomorphic on Dpucq coefficients:

~ψkpλ, u |νq “ fk~ek `
8
ÿ

l“1

~b
pkq
l puqpλ´ ukq

l, for λÑ uk, (5.5)

The following normalization uniquely identifies ~Ψk.

fk “

$

’

&

’

%

Γpλ1k ` 1q, λ1k P CzZ,

p´1qλ1k
p´λ1k ´ 1q! , λ1k P Z´,

(5.6)

• For λ1k P N “ t0, 1, 2, ...u,

~Ψkpλ, u |νq “
8
ÿ

l“0

~d
pkq
l puqpλ´ ukq

l, for λÑ uk, (5.7)

is holomorphic on Dα ˆDpucq, the Taylor expansion being uniformly convergent with holomorphic
coefficients ~d pkql puq. It is uniquely identified by the normalization (5.11) of the singular solution
(5.10) below. Depending on the specific Pfaffian system 10, it may happen that identically

~Ψkpλ, u |νq ” 0.

The isolated singularities of ~Ψkpλ, u |νq, if any, are located at λ “ uj with ucj “ λβ, β ‰ α, and
at λ “ uk only in case λ1k P CzZ. For i ‰ j such that uci “ ucj, ~Ψipλ, u |νq and ~Ψjpλ, u |νq are either
linearly independent, or at least one of them is identically zero (identity to zero may occur only for λ1i
or λ1j belonging to N)

The singular solutions: ~Ψpsingq1 pλ, u |νq, ... , ~Ψpsingqn pλ, u |νq. Each ~Ψpsingqk pλ, u |νq is a solution
with an isolated singularity at λ “ uk, whose singular behaviour is uniquely characterized as follows.11

Let Dα be identified by λα “ uck.

• For λ1k P CzZ [algebraic or logarithmic branch-point],

~Ψpsingqk pλ, u |νq :“ ~Ψkpλ, u |νq “ ~ψkpλ, u |νqpλ´ ukq
´λ1k´1.

• For λ1k P Z´ [logarithmic branch-point],

~Ψpsingqk pλ, u |νq “ ~Ψkpλ, u |νq lnpλ´ ukq `
ÿ̊

m‰k

rm~Ψmpλ, u |νq lnpλ´ umq ` ~φkpλ, u |νq, (5.8)

“
λÑuk

~Ψkpλ, u |νq lnpλ´ ukq ` regpλ´ ukq, rm P C, (5.9)

10See the comment to (6.31) below.
11The solution here defined is not uniquely identified by the singular behaviour if λ1k P Z´, see Remark 5.2.
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where
ř˚

m‰k is over all m such that um P Dα and λ1m P Z´. The vector function ~φkpλ, u |νq is
holomorphic in Dα ˆ Dpucq.

In particular, for λ1k ď ´2, depending on the system, it may happen that there is no solution with
singularity in Dα, so that

~Ψpsingqk pλ, u |νq :“ 0.

• For λ1k P N [logarithmic branch-point and pole],

~Ψpsingqk pλ, u |νq “ ~Ψkpλ, u |νq lnpλ´ ukq `
~ψkpλ, u |νq

pλ´ ukq
λ1
k
`1 , (5.10)

where ~ψkpλ, u |νq is holomorphic in Dα ˆ Dpucq,

~ψkpλ, u |νq “ Γpλ1k ` 1q~ek `
8
ÿ

l“1

~b
pkq
l puqpλ´ ukq

l, for λÑ ui, (5.11)

the Taylor expansion being uniformly convergent and the coefficients ~b pkql puq holomorphic on Dpucq.

Let i, j be such that uci “ ucj. Then ~Ψ
psingq
i pλ, u |νq and ~Ψpsingqj pλ, u |νq are either linearly independent,

or at least one of them is identically zero (identity to zero can be realized only for λ1i ď ´2 or λ1j ď ´2.)

Proof. See Section 6.

Remark 5.1. Of the coefficients of (5.11), only bpiq0 puq, b
piq
1 puq, ..., b

pkq
λ1
k
puq will be useful later.

Remark 5.2. For λ1k R Z´, the singular solution ~Ψpsingqk is unique, identified by its singular behaviour
at λ “ uk and the normalization (5.5)-(5.6) when λ1k P CzZ, or by the normalization (5.11) when λ1k P N.
For λ1k P Z´, a singular solution in (5.8) is not unique, but its singular behaviour (5.9) at λ “ uk is
uniquely fixed by the normalization (5.5)-(5.6). There is a freedom due to the choice of the coefficients
rm and of ~φk in (5.8). See also Remark 6.3.

The singular behaviour of ~Ψk at λ “ uj is expressed by connection coefficients.

Definition 5.1. The connection coefficients are defined by

~Ψkpλ, u |νq “
λÑuj

~Ψpsingqj pλ, u |νq c
pνq
jk ` regpλ´ ujq, λ P Pη, (5.12)

and by
c
pνq
jk :“ 0, @k “ 1, ..., n, when ~Ψpsingqj ” 0, possibly occurring for λ1j P ´N´ 2. (5.13)

The uniqueness of the singular behaviour of ~Ψpsingqj at λ “ uj implies that the cjk are uniquely
defined. From the definition, we see that
‚ If λ1k R Z, c

pνq
kk “ 1.

‚ If λ1k P Z, c
pνq
kk “ 0.

‚ If λ1k P N and ~Ψkpλ, u |νq ” 0, then cpνq1k “ c
pνq
2k “ ¨ ¨ ¨ “ c

pνq
nk “ 0.

‚ If λ1j P ´N´ 2 and ~Ψpsingqj pλ, u |νq ” 0, then cpνqj1 “ c
pνq
j2 “ ¨ ¨ ¨ “ c

pνq
jn “ 0.

Proposition 5.1. The coefficients in (5.12)-(5.13) are isomonodromic connection coefficients,
namely they are independent of u P Dpucq. They satisfy the vanishing relations

c
pνq
jk “ 0 for j ‰ k such that ucj “ uck. (5.14)

Proof. See Section 6.6.
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6 Proof of Theorem 5.1
Remark on notations: Throughout this section, we work with functions f “ fpλ, u| νq defined on
Pηpuq ˆ̂Dpucq. For simplicity we omit ν and write f “ fpλ, uq. Similarly, we write cjk in place of cpνqjk .

6.1 Fundamental matrix solution of the Pfaffian System
Without loss of generality, we order the eigenvalues so that12

uc1 “ ¨ ¨ ¨ “ ucp1
“ λ1; ucp1`1 “ ¨ ¨ ¨ “ ucp1`p2

“ λ2; (6.1)

ucp1`p2`1 “ ¨ ¨ ¨ “ ucp1`p2`p3
“ λ3; ..... up to ucp1`¨¨¨`ps´1`1 “ ¨ ¨ ¨ “ ucp1`¨¨¨`ps´1`ps “ λs. (6.2)

We analyse first the coalescence of u1, ..., up1 to λ1. Other cases are analogous. We change variables
pu1, ..., un, λq ÞÑ px1, ..., xn`1q as follows

xn`1 “ λ´ λ1, xj “

#

λ´ uj , 1 ď j ď p1;

uj ´ λ1, p1 ` 1 ď j ď n.

The inverse transformation is

λ “ xn`1 ` λ1, uj “

#

xn`1 ´ xj ` λ1, 1 ď j ď p1,

xj ` λ1, p1 ` 1 ď j ď n.

Let
x :“ px1, ..., xp1

loooomoooon

p1

, xp1`1, ...., xn
loooooomoooooon

n´p1

, xn`1q ” px1, ..., xp1
loooomoooon

p1

,x1, xn`1q,

where x1 :“ pxp1`1, ...., xnq. We are interested in the behaviour of solutions for

x ÝÑ p0, 0, ..., 0
loooomoooon

p1

, x1, 0q,

corresponding to
u1 Ñ λ1, . . . , up1 Ñ λ1, and λÑ λ1

namely ui ´ uj Ñ 0 , i ‰ j and λ ´ ui Ñ 0, for i, j P t1, ..., p1u. The Pfaffian system (5.3) in variables
x, with Fuchsian singularities at x1 “ 0, . . . , xp1 “ 0, becomes

dΨ “ P pxqΨ, P pxq “
p1
ÿ

j“1

Pjpxq

xj
dxj `

n`1
ÿ

j“p1`1

pPjpxqdxj (6.3)

where
Pjpxq

xj
“
Bjpxq

xj
´ ωjpxq, 1 ď j ď p1, pPjpxq “

Bjpxq

xj ´ xn`1
` ωjpxq, p1 ` 1 ď j ď n,

pPn`1pxq “
n
ÿ

j“p1`1

Bjpxq

xn`1 ´ xj
`

p1
ÿ

j“1
ωjpxq

The Pfaffian system is assumed integrable with holomorphic in Dpucq coefficients, therefore P1pxq, ..., Pp1pxq

and pPp1`1pxq, ..., pPn`1pxq are holomorphic at p0, . . . , 0
loomoon

p1

, x1, 0q, for x1 varying as up1`1, . . . , un vary in

Dpucq.
12In this way, Dpucq “ Dˆp1

1 ˆ ¨ ¨ ¨ ˆ Dˆpss , where Dα “ tx P C | |x´ λα| ď ε0u, α “ 1, ..., s.
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Remark 6.1. The commutation relations (4.1) at u “ pλ1, . . . , λ1
loooomoooon

p1

,u1q, where u1 :“ pup1`1, . . . , unq, are

rBipλ1, . . . , λ1,u
1q, Bjpλ1, . . . , λ1,u

1qs “ 0, 1 ď i ‰ j ď p1. (6.4)

They also follow from the integrability condition dP pxq “ P pxq ^ P pxq of (6.3), which implies

B

Bxi

ˆ

Pj
xj

˙

´
B

Bxj

ˆ

Pi
xi

˙

´
PiPj ´ PjPi

xixj
“ 0, 1 ď i ‰ j ď p1.

Let k̂ “ pk1, ..., kp1q, and write l̂ ď k̂ if ki ď li for all i P t1, ..., p1u. The Taylor convergent series
Pipxq “

ř

k1`¨¨¨`kp1ě0 Pi,k̂px
1, xn`1qx

k1
1 ¨ ¨ ¨x

kp1
p1 , has coefficients Pi,pkpx

1, xn`1q holomorphic of x1, xn`1.
The integrability condition becomes [63]

kjPi,k̂ ´ kiPj,k̂ `
ÿ

0ďl̂ďk̂

rPi,̂l, Pj,k̂´l̂s “ 0, 1 ď i ‰ j ď p1. (6.5)

In particular, Pi,0̂px1, xn`1q “ Bipλ1, . . . , λ1
loooomoooon

p1

,u1q for k̂ “ 0̂, so that (6.5) reduces to (6.4). l

Let us define Jordan matrices

pT pjq “ diagp0, . . . , 0, ´1´ λ1j
looomooon

position j

, 0, . . . , 0q, for λ1j ‰ ´1. (6.6)

pT pjq :“ J pjq :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ 0 ¨ ¨ ¨ r
pjq
mj 0

...
. . .

...
0 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

ÐÝ row j, for λ1j “ ´1, (6.7)

rpjqmj :“ 1, is the only non-zero entry in position pj,mjq, with mj ě p1 ` 1.

Lemma 6.1. Under the assumptions of Theorem 5.1, for every j P t1, ..., nu there exists a holo-
morphically invertible matrix Gpjqpuq on Dpucq reducing Bjpuq to constant Jordan form. Moreover,
B1pu

cq, ..., Bp1pu
cq are simultaneously reducible to pT p1q, ..., pT pp1q respectively.

Proof. For every j P t1, ..., nu, the Schlesinger system (3.3)-(3.5) implies the Frobenius integrability (on
Dpucq) of the the linear Pfaffian system (see Corollary 9.1, Appendix A)

BGpjq

Buk
“

ˆ

Bk
uk ´ uj

` γk

˙

Gpjq, k ‰ j,
BGpjq

Buj
“ ´

ÿ

k‰j

ˆ

Bk
uk ´ uj

` γk

˙

Gpjq (6.8)

From (3.4)-(3.5) and the above we receive Bk
`

pGpjqq´1BjG
pjq
˘

“ 0, k “ 1, ..., n, for a holomorphic on
Dpucq fundamental matrix solution Gpjqpuq. Thus, up to Gpjq ÞÑ GpjqGpjq, Gpjq P GLpn,Cq, we can choose
Gpjqpuq which puts Bj in constant Jordan form. If we consider each Bj separately, now for j P t1, ..., p1u,
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it is straightforward that the Jordan forms are the matrices pT pjq.13 An elementary computation shows
that B1pu

cq, ..., Bp1pu
cq are actually reducible to pT p1q, ...., pT p1q simultaneously,14 because only the j-th

row of Bjpucq is non-zero, and by (4.1) the first p1 entries of this row are zero, except for the pj, jq-entry
equal to ´λ1j ´ 1. Namely,

Bjpu
cq “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0
...

...

0 0 ´λ1j ´ 1 0 0 ´A
pjq
j,p1`1pu

cq ¨ ¨ ¨ ´Aj,npu
cq

...
0 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‚

ÐÝ row j.

Remark 6.2. As in Lemma 6.1, B1pu
cq, ..., Bp1pu

cq are reducible simultaneously to their respective
Jordan forms, Bp1`1pu

cq, ..., Bp1`p2pu
cq are reducible simultaneously to their respective Jordan forms,

and so on up to Bp1`...`ps´1`1pu
cq, ..., Bp1`...`pspu

cq.

For short, let p1 :“ p1, ..., p1q. Without loss of generality, we label u1, ..., up1 so that

λ1j P CzZ, for 1 ď j ď q1, λ1j P Z, for q1 ` 1 ď j ď p1.

If all λ1j P Z, then q1 “ 0, if all λ1j R Z, then q1 “ p1. The first and fundamental step to achieve Theorem
5.1 is the following

Theorem 6.1. In the assumptions of Theorem 5.1, the Pfaffian system (5.3) admits the fundamental
matrix solution

Ψpp1qpλ, uq “ Gpp1qU pp1qpλ, uq ¨
p1
ź

l“1
pλ´ ulq

pT plq ¨

p1
ź

j“q1`1
pλ´ ujq

pRpjq , pλ, uq P Ppuq ˆ̂Dpucq, (6.9)

where Gpp1q is a constant invertible matrix simultaneously reducing B1pu
cq, ..., Bp1pu

cq to pT p1q, ..., pT pp1q

as in (6.6)-(6.7). The matrix function U pp1qpλ, uq is holomorphic in D1ˆDpucq with convergent expansion

U pp1qpλ, uq “ I`

`
ÿ

ką0, k1`...`kp1ě0

”

U
pp1q
k ¨ pup1`1 ´ u

c
p1`1q

kp1`1 ¨ ¨ ¨ pun ´ u
c
nq
knpλ´ λ1q

kn`1
ı

pλ´ u1q
k1 ¨ ¨ ¨ pλ´ up1q

kp1 ,

and constant matrix coefficient U pp1q
k . Here k :“ pk1, ..., kn, kn`1q, kj ě 0, and k ą 0 means that at least

one kj ą 0 (j “ 1, ..., n` 1). The exponents pRpq1`1q, . . . , pRpp1q are constant nilpotent matrices.

• If λ1j “ ´1,
pRpjq “ 0. (6.10)

13It is also elementary to find a holomorphic Gpjq explicitly. For example, if all Bjpuq are diagonalizable (i.e λ1j ‰ ´1),
an elementary computation shows that pGpjqpuqq´1BjpuqGpjqpuq “ diagp0, . . . , 0,´1 ´ λ1j , 0, . . . , 0q, j “ 1, 2, ..., n,, where
the columns of Gpjq are as follows:

j-th column is multiple of ~ej P Cn; l-th column, l ‰ j, is multiple of ~el ´
Ajlpuq

λ1j ` 1
~ej .

14For example, in case of the previous footnote, the simultaneous reduction to Jordan form at u˚ “ pλ1, ..., λ1,u1q,
where u1 “ pup1`1, ..., unq), is realized by the product Gp1qpu˚q ¨ ¨ ¨Gpp1qpu˚q, which depends holomorphically on u1
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• If λ1j P N “ t0, 1, 2, ...u, only the entries pR
pjq
mj “: rpjqm , for m “ 1, ..., n and m ‰ j, are possibly non

zero, namely

pRpjq “

«

~0

ˇ

ˇ

ˇ

ˇ

ˇ

¨ ¨ ¨

ˇ

ˇ

ˇ

ˇ

ˇ

~0

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

m‰j,m“1
rpjqm ~em

ˇ

ˇ

ˇ

ˇ

ˇ

~0

ˇ

ˇ

ˇ

ˇ

ˇ

¨ ¨ ¨

ˇ

ˇ

ˇ

ˇ

ˇ

~0
ff

, (6.11)

where only the j-th column is possibly non-zero.

• If λ1j P ´N ´ 2 “ t´2,´3, ...u, only the entries pR
pjq
jm “: rpjqm , for m “ 1, ..., n and m ‰ j, are

possibly non zero, namely

pRpjq “

¨

˚

˚

˚

˚

˚

˚

˝

0 ¨ ¨ ¨ ¨ ¨ ¨ 0
...

...

r
pjq
1 ¨ ¨ ¨ r

pjq
j´1 0 r

pjq
j`1 ¨ ¨ ¨ r

pjq
n

...
...

0 ¨ ¨ ¨ ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‚

ÐÝ row j is possibly non zero . (6.12)

The exponents pT plq and Rpjq satisfy the following commutation relations

r pT piq, pT pjqs “ 0, i, j “ 1, ..., p1; (6.13)

r pRpjq, pRpkqs “ 0, r pT piq, pRpjqs “ 0, i “ 1, ..., p1, i ‰ j, j, k “ q1 ` 1, ..., p1. (6.14)

By analytic continuation, Ψpp1qpλ, uq defines an analyic function on the universal covering of Pηpuq ˆ̂Dpucq.
Another representation of (6.9) will be given in (6.24).

Proof. We apply the results of [63] at the point x “ xc :“ p0, 0, ..., 0
loooomoooon

p1

, x1c, 0q, with x1c :“ pxcp1`1, ...., x
c
nq,

corresponding to u “ uc and λ “ λ1, where xcj “ ucj ´ λ1, j “ p1 ` 1, ..., n. By Theorem 7 of [63], the
Pfaffian system (6.3) admits a fundamental matrix solution

Ψpp1qpλ, uq “ U0 Upxq Zpxq, Zpxq “
p1
ź

j“1
x
Aj
l

p1
ź

j“1
x
Qj
l , detU0 ‰ 0, (6.15)

for certain matrices Aj which are simultaneous triangular forms of B1pu
cq, ..., Bp1pu

cq. While in [63] a
lower triangular form is considered, we equivalently use the upper triangular one. The matrices Qj will
be described below. The matrix Upxq “ V pxq ¨W pxq has structure

V pxq “ I `
ÿ

ką0, kp1`1`...`kn`1ą0
Vk xk1

1 ¨ ¨ ¨ x
kp1
p1 pxp1`1 ´ x

c
p1`1q

kp1`1 ¨ ¨ ¨ pxn ´ x
c
nq
kn ¨ x

kn`1
n`1

W pxq “ I `
ÿ

k1`...`kp1ą0
Wk1,...,kp1

xk1
1 ¨ ¨ ¨ x

kp1
p1 .

The constant matrix coefficients Vk, Wk1,...,kp1
can be determined [63] from the constant matrix coeffi-

cients Pi,k in the Taylor expansion15 of the Pjpxq and pPjpxq. Recall that xj “ λ´ uj , 1 ď j ď p1, and
15

Pipxq “
ÿ

k1`¨¨¨`kn`1ě0
Pi,k xk1

1 ¨ ¨ ¨x
kp1
p1 ¨ pxp1`1 ´ x

c
p1`1q

kp1`1 ¨ ¨ ¨ pxn ´ x
c
nq
kn ¨ x

kn`1
n`1 .

and analogous for pPjpxq
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xn`1 “ λ´ λ1. Moreover, for p1 ` 1 ď j ď n, we have xj ´ xcj “ puj ´ λ1q ´ pu
c
j ´ λ1q “ uj ´ u

c
j . Thus,

restoring variables pλ, uq, we have

V pλ, uq “ I`

`
ÿ

kp1`1`...`kn`1ą0

”

Vkpup1`1 ´ u
c
p1`1q

kp1`1 ¨ ... ¨ pun ´ u
c
nq
kn ¨ pλ´ λ1q

kn`1
ı

pλ´ u1q
k1 ¨ ¨ ¨ pλ´ up1q

kp1 ,

W pλ, u1, ..., up1q “ I `
ÿ

k1`...`kp1ą0
Wk1,...,kp1

pλ´ u1q
k1 ¨ ... ¨ pλ´ up1q

kp1 .

Therefore, the matrices appearing in the statement are Gpp1q :“ U0 and U pp1qpλ, uq :“ V pλ, uqW pλ, uq,
which is holomorphic for pλ, uq P D1 ˆ Dpucq.

We show that the exponents Aj and Qj are respectively pT pjq in (6.6)-(6.7) and pRpjq in (6.10)-(6.11)-
(6.12). According to [63] (see theorems 2 and 5), the matrix function Gpp1q ¨U pp1qpλ, uq in (6.9) provides
the gauge transformation

Ψ “ Gpp1q ¨ U pp1qpλ, uqZ ”
in notation of [63]

U0UpxqZ,

which brings (6.3) to the reduced form (being "reduced" is defined in [63])

dZ “
p1
ÿ

j“1

Qjpxq

xj
Z, Qjpxq “ Aj `

ÿ

pką0

Q
pk,jx

k1
1 ¨ ¨ ¨x

kp1
p1 ,

where the notation pk “ pk1, ..., kp1q ą 0 means at least one kl ą 0. From [63], we have the following.
‚ The Aj are simultaneous triangular forms of B1pu

cq, ..., Bp1pu
cq. Thus, by Lemma 6.1, they can be

taken to be
Aj “ pT pjq as in (6.6)-(6.7), j “ 1, ..., p1.

‚ The Q
pk,j satisfy diagpQ

pk,jq “ 0, while the entry pα, βq for α ‰ β satisfies

pQ
pk,jqαβ ‰ 0 only if p pT pjqqαα ´ p pT

pjqqββ “ kj ě 0, for all j “ 1, ..., p1.

Taking into account the particular structure (6.6)-(6.7), the above condition can be satisfied only for

pk “ p0, ..., 0
loomoon

q1

, 0, ..., 0, kj , 0, ..., 0
looooooooomooooooooon

p1´q1

q, kj “ |λ
1
j ` 1| ě 1 in position j,

because

p pT pjqqαα ´ p pT
pjqqββ “ ´λ

1
j ´ 1 ě 1 when λ1j P ´N´ 2 and α “ j pβ ‰ jq, (6.16)

p pT pjqqαα ´ p pT
pjqqββ “ λ1j ` 1 ě 1 when λ1j P N and β “ j pα ‰ jq. (6.17)

This can occur only for j “ q1 ` 1, ..., p1. Thus

Q
pk,j “ 0, j “ 1, ..., q1, Q

pk,j “
pRpjq in (6.10)-(6.11)-(6.12), j “ q1 ` 1, ..., p1. (6.18)

In conclusion, the reduced form turns out to be

dZ “

«

p1
ÿ

j“1

˜

pT pjq ` pRpjqxkj

xj

¸ff

Z, pRp1q “ ¨ ¨ ¨ “ pRpq1q “ 0. (6.19)
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Its integrability implies the commutation relations. Indeed, the compatibility BiBjZ “ BjBiZ, i ‰ j,
holds if and only if

r pT pjq, pT piqs

xixj
` r pRpjq, pRpiqsxki´1

i x
kj´1
j ` r pT pjq, pRpiqsxki´2

i ` r pRpjq, pT piqsx
kj´2
j “ 0, 1 ď i ‰ j ď p1.

Keeping into account that pRp1q “ ¨ ¨ ¨ “ pRpq1q “ 0, the above holds if and only if (6.13)-(6.14) hold.

The last to be checked is that a fundamental matrix of (6.19) is Zpxq in (6.15), namely

Zpxq “
p1
ź

l“1
x
pT plq

l

p1
ź

j“q1`1
x

pRpjq

l .

It suffices to verify this by differentiating Zpxq, keeping into account the commutation relations (6.13)-
(6.14) and the formula BixMi “ pM{xiqx

M
i , for a constant matrix M . For i “ 1, ..., q1 we receive

B

Bxi
Zpxq “

pT piq

xi
Zpxq.

For i “ q1 ` 1, ..., p1 we receive

B

Bxi
Zpxq “

T piq

xi
Zpxq `

´

p1
ź

l“1
x
pT plq

l

¯

pRpiq

xi

´

p1
ź

j“q1`1
x

pRpjq

l

¯

“
pT piq

xi
Zpxq `

´

i´1
ź

l“1
x
pT plq

l

¯x
pT piq

i
pRpiq

xi

´

p1
ź

l“i`1
x
pT plq

l

¯´

p1
ź

j“q1`1
x

pRpjq

l

¯

“ p˚˚q.

Now, recalling that ki “ |λ1i ` 1| and (6.16)-(6.17), we see that x pT piq

i
pRpiqx´

pT piq

i “ pRpiqxkii . Therefore,

p˚˚q “
pT piq

xi
Zpxq `

pRpiqxkii
xi

´

p1
ź

l“1
x
pT plq

l

¯´

p1
ź

j“q1`1
x

pRpjq

l

¯

“
pT piq ` pRpiqxkii

xi
Zpxq,

as we wanted to prove.
Finally, the fact that Ψpp1qpλ, uq has analytic continuation on the universal covering of Pηpuq ˆ̂Dpucq

follows from general results in the theory of linear Pfaffian systems [28, 32, 63].

It is convenient to introduce a slight change of the exponents. Without loss in generality, we can
label u1, ..., up1 in such a way that, for some q1, c1 ě 0 integers, the following ordering of eigenvalues of
A holds:

λ11, . . . , λ
1
q1
P CzZ, λ1q1`1, . . . , λ

1
q1`c1

P Z´, λ1q1`c1`1, . . . , λ
1
p1
P N.

Clearly, 0 ď q1 ď p1, 0 ď c1 ď p1 and 0 ď q1 ` c1 ď p1. We define new exponents.

• For λ1j ‰ ´1,

T pjq :“ pT pjq, j “ 1, ..., p1; Rpjq :“ pRpjq, j “ q1 ` 1, ..., p1. (6.20)
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• For λ1j “ ´1 (so j P tq1 ` 1, ..., q1 ` c1u),

T pjq :“ 0, Rpjq :“ J pjq
loomoon

in (6.7)
“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ 0 ¨ ¨ ¨ r
pjq
mj 0

...
. . .

...
0 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

ÐÝ row j, rpjqmj “ 1. (6.21)

Recall that mj ě p1 ` 1.

This new definitions allow to treat together the case λ1j P ´N´ 2 and the case λ1j “ ´1.

Lemma 6.2. With the definition (6.20)-(6.21), the following relations hold.

rT piq, T pjqs “ 0, i, j “ 1, ..., p1; (6.22)

rRpjq, Rpkqs “ 0, rT piq, Rpjqs “ 0, i “ 1, ..., p1, i ‰ j, j, k “ q1 ` 1, ..., p1, (6.23)

Proof. The equivalence between (6.13)-(6.14) and (6.22)-(6.23) is straightforward.

Corollary 6.1. In Theorem 6.1, the fundamental matrix solution (6.9) is

Ψpp1qpλ, uq “ Gpp1q ¨ U pp1qpλ, uq ¨
p1
ź

l“1
pλ´ ulq

T plq ¨

p1
ź

j“q1`1
pλ´ ujq

Rpjq , (6.24)

where the exponents are defined in (6.20)-(6.21).

Proof. It is an immediate consequence of the commutation relations being satisfied, that the represen-
tation (6.9) for Ψpp1q still holds with the definition (6.20)-(6.21).

The commutation relations impose a simplification on the structure of the matrices Rpjq. Let the
new convention (6.20)-(6.21) be used. The relations rT piq, Rpjqs “ 0 for i “ 1, ..., p1 and j “ q1`1, ..., p1,
j ‰ i, imply the vanishing of the first p1 non-trivial entries of Rpjq, so that (by (6.11), (6.12) and (6.21)),

Rpjq “

«

~0

ˇ

ˇ

ˇ

ˇ

ˇ

¨ ¨ ¨

ˇ

ˇ

ˇ

ˇ

ˇ

~0

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

m“p1`1
rpjqm ~em

ˇ

ˇ

ˇ

ˇ

ˇ

~0

ˇ

ˇ

ˇ

ˇ

ˇ

¨ ¨ ¨

ˇ

ˇ

ˇ

ˇ

ˇ

~0
ff

, λ1j P N. (6.25)

Rpjq “

¨

˚

˚

˚

˚

˚

˚

˝

0 ¨ ¨ ¨ ¨ ¨ ¨ 0
...

...

0 ¨ ¨ ¨ 0 0 r
pjq
p1`1 ¨ ¨ ¨ r

pjq
n

...
...

0 ¨ ¨ ¨ ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‚

ÐÝ row j, λ1j P Z´; (6.26)

The relations rRpjq, Rpkqs “ 0 for either j, k P tq1 ` 1, . . . , q1 ` c1u or j, k P tq1 ` c1 ` 1, . . . , p1u are
automatically satisfied. On the other hand, the commutators rRpjq, Rpkqs “ 0 for j P tq1`1, . . . , q1` c1u

and k P tq1 ` c1 ` 1, . . . , p1u imply the further (quadratic) relations
n
ÿ

m“p1`1
rpjqm rpkqm “ 0. (6.27)

In particular, if λ1j “ ´1 and Rpjq is (6.21), all the above conditions can be satisfied, provided that we
take mj ě p1 ` 1, as we have agreed from the beginning.
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6.2 Selected Vector Solutions ~Ψi

Remark on notations. For the sake of the proof, it is convenient to use a slightly different notation
with respect to the statement of Theorem 5.1. The identifications between objects in the proof and
objects in the statement is ~ϕi ÞÝÑ ~ψi, rpmqi {r

piq
k ÞÝÑ rm and ~ϕk{r

piq
k ÞÝÑ φi.

We will construct selected vector solutions of Theorem 5.1 from suitable linear combinations of
columns of the fundamental matrix Ψpp1q in (6.24). The i-th column of an n ˆ n matrix M is M ¨ ~ei

(rows by columns multiplication), where ~ei is the standard unit basic vector in Cn. From (6.22)-(6.23),
and (6.26)-(6.25)-(6.27), we receive

p1
ź

l“1
pλ´ ulq

T plq ¨

p1
ź

j“q1`1
pλ´ ujq

Rpjq ¨ ~ei “

“

$

’

’

’

&

’

’

’

%

pλ´ uiq
´λ1i´1~ei, i “ 1, ..., q1 ` c1, λ1i P CzN;

pλ´ uiq
´λ1i´1~ei `

´

řn
m“p1`1 r

piq
m ~em

¯

lnpλ´ uiq, i “ q1 ` c1 ` 1, ..., p1, λ1i P N;

~ei `
řq1`c1
m“q1`1 ~emr

pmq
i pλ´ umq

´λ1m´1 lnpλ´ umq, i “ p1 ` 1, ..., n.

(6.28)

For i “ 1, ..., n, let
~ϕipλ, uq :“ Gpp1qUpλ, uq ¨ ~ei, i “ 1, ..., n, (6.29)

which is holomorphic for pλ, uq P D1 ˆ Dpucq. For i “ 1, ..., p1, we define vector valued functions

~Ψipλ, uq :“

$

&

%

~ϕipλ, uqpλ´ uiq
´λ1i´1, i “ 1, ..., q1 ` c1, λ1i P CzN;

řn
k“p1`1 r

piq
k ~ϕkpλ, uq, i “ q1 ` c1 ` 1, ..., p1, λ1i P N.

(6.30)

Notice that for i “ q1 ` c1 ` 1, ..., p1, if rpiqk “ 0 for all k “ p1 ` 1, ..., n, then ~Ψipλ, uq is identically zero

~Ψipλ, uq ” 0, λ1i P N, (6.31)

Hence, the i-th column of Ψpp1qpλ, uq is

Ψpp1qpλ, uq ¨ ~ei “ ~Ψipλ, uq, i “ 1, ..., q1 ` c1, (6.32)

“ ~Ψipλ, uq lnpλ´ uiq `
~ϕipλ, uq

pλ´ uiq
λ1
i
`1 , i “ q1 ` c1 ` 1, ..., p1, (6.33)

“ ϕipλ, uq `
q1`c1
ÿ

m“q1`1
r
pmq
i

~Ψmpλ, uq lnpλ´ umq, i “ p1 ` 1, ..., n. (6.34)

Proposition 6.1. The vector functions (6.30) coincide with the following linear combinations of columns
of Ψpp1qpλ, uq,

~Ψipλ, uq “

$

&

%

Ψpp1qpλ, uq ¨ ~ei, i “ 1, ..., q1 ` c1, namely λ1i P CzN;

Ψpp1qpλ, uq ¨
řn
k“p1`1 r

piq
k ~ek, i “ q1 ` c1 ` 1, ..., p1, namely λ1i P N.

(6.35)

As such, they are vector solutions (called selected) of the Pfaffian system (5.3). Those ~Ψipλ, uq which
are not identically zero are linearly independent.
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Proof. For i “ 1, ..., q1 ` c1, (6.35) is just (6.32), so it is a vector solution of (5.3). In case i “ q1 ` c1 `

1, ..., p1, we claim that ~Ψipλ, uq defined in (6.30) coincides with the following linear combination

~Ψipλ, uq “
n
ÿ

k“p1`1
r
piq
k

´

Ψpp1qpλ, uq ¨ ~ek

¯

, i “ q1 ` c1 ` 1, ..., p1,

of the vector solutions (6.34). Indeed,

n
ÿ

k“p1`1
r
piq
k

´

Ψpp1qpλ, uq ¨ ~ek

¯

“

n
ÿ

k“p1`1
r
piq
k

˜

ϕkpλ, uq `
q1`c1
ÿ

m“q1`1
r
pmq
k

~Ψmpλ, uq lnpλ´ umq
¸

“
p6.30q

~Ψipλ, uq `
q1`c1
ÿ

m“q1`1

˜

n
ÿ

k“p1`1
r
piq
k r

pmq
k

¸

~Ψmpλ, uq lnpλ´ umq.

Now, it follows from (6.27) that
řn
k“p1`1 r

piq
k r

pmq
k “ 0, so proving the claim and the expressions (6.35).

Linear independence follows from (6.35).

6.3 Singular Solutions ~Ψpsingq
i

Using the previous results, we define singular vector solutions of the Pfaffian system.

• For λ1i R Z, i.e. i “ 1, ..., q1,

~Ψpsingqi pλ, uq :“ ~Ψipλ, uq ” Ψpp1qpλ, uq ¨ ~ei

• For λ1i P N, i.e. i “ q1 ` c1 ` 1, ..., p1,

~Ψpsingqi pλ, uq :“ ~Ψipλ, uq lnpλ´ uiq `
~ϕipλ, uq

pλ´ uiq
λ1
i
`1 ” Ψpp1qpλ, uq ¨ ~ei.

• For λ1i P Z´, i.e. i “ q1 ` 1, ..., q1 ` c1, we distinguish three subcases.

i) If λ1i ď ´2 and rpiqk ‰ 0 for some k P tp1 ` 1, ..., nu, from (6.34) (change notation i ÞÑ k)

~Ψpsingqi pλ, uq :“ 1
r
piq
k

#

ϕkpλ, uq `
q1`c1
ÿ

m“q1`1
r
pmq
k

~Ψmpλ, uq lnpλ´ umq
+

”
1
r
piq
k

Ψpp1qpλ, uq ¨ ~ek.

ii) If λ1i ď ´2 and rpiqk “ 0 for all k P tp1 ` 1, ..., nu,

~Ψpsingqi pλ, uq :“ 0

iii) If λ1i “ ´1, then rpiqmi “ 1 and in i) above we take k “ mi, so that

~Ψpsingqi pλ, uq :“ ~ϕmipλ, uq `
~Ψipλ, uq lnpλ´ uiq `

q1`c1
ÿ

m‰i, m“q1`1
rpmqmi

~Ψmpλ, uq lnpλ´ umq.

“ Ψpp1qpλ, uq ¨ ~emi , mi ě p1 ` 1.
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The above ~Ψpsingqi pλ, uq in i) and iii) is singular at ui, but possibly also at uq1`1, . . . , uq1`c1 corre-
sponding to λ1m P Z´. By definition,

~Ψpsingqi pλ, uq “
λÑui

~Ψipλ, uq lnpλ´ uiq ` regpλ´ uiq, i “ q1 ` 1, ..., q1 ` c1, (6.36)

Remark 6.3. The definition in i) contains the freedom of choosing k P tp1`1, ..., nu, which changes
ϕkpλ, uq and the ratios rpmqk {r

piq
k (in formula (5.8), ϕk{rpiqk is denoted by φi and rpmqk {r

piq
k is rm).

Whatever is the choice of k, provided that rpiqk ‰ 0, the behaviour at λ “ ui of the corresponding
~Ψpsingqi is always (6.36), so it is uniquely fixed if we fix the normalization of ~Ψipλ, uq.

As a consequence of the above definitions and Section 6.2, we receive the following

Proposition 6.2. The ~Ψpsingqi pλ, uq defined above, i “ 1, ..., p1, when not identically zero, are linearly
independent. They are represented as follows

~Ψpsingqi pλ, uq “

$

’

’

’

&

’

’

’

%

Ψpp1qpλ, uq ¨ ~ei, λ1i P CzZ´,

Ψpp1qpλ, uq ¨
~ek

r
piq
k

, λ1i P Z´, for some k P tp1 ` 1, ..., nu such that rpiqk ‰ 0

0, λ1i P ´N´ 2, if rpiqk “ 0 for all k P tp1 ` 1, ..., nu.

6.4 Expansions at λ “ ui, i “ 1, ..., p1 and completion of the proof.
In order to proceed in the proof, and in view of the Laplace transform to come, we need local behaviour
at λ “ ui.

Lemma 6.3. The following Taylor expansion holds at λ “ ui, with coefficients ~d piql puq holomorphic on
Dpucq,

~Ψipλ, uq “
8
ÿ

l“0

~d
piq
l puqpλ´ uiq

l, λ1i P N, namely i “ q1 ` c1 ` 1, ..., p1.

Proof. By (6.30), ~Ψipλ, uq “ Gpp1qUpλ, uq ¨ p
řn
m“p1`1 r

piq
m ~emq, so it is holomorphic on D1 ˆDpucq. From

this we conclude.

The coefficients dpiql puq will be fixed by a chosen normalization for ~ϕi in (6.33), as in the following
lemma.

Lemma 6.4. The following Taylor expansions hold at λ “ ui, uniformly convergent for u P Dpucq.

λ1i R N, i.e. i “ 1, ..., q1 ` c1: ~Ψipλ, uq

λ1i P N, i.e. q1 ` c1 ` 1, ..., p1:
~ϕipλ, uq

pλ´ uiq
λ1
i
`1

,

/

/

.

/

/

-

“
λÑui

´

fi~ei `
8
ÿ

l“1

~b
piq
l puqpλ´ uiq

l
¯

pλ´ uiq
´λ1i´1,

with certain vector coefficients ~b piql puq holomorphic in Dpucq. In particular, the leading term is constant,
and will be chosen as follows

fi “

$

’

’

’

’

&

’

’

’

’

%

Γpλ1i ` 1q, λ1i P CzZ, i “ 1, ..., q1,

p´1qλ1i
p´λ1i ´ 1q! , λ1i P Z´, i “ q1 ` 1, ..., q1 ` c1,

λ1i! ” Γpλ1i ` 1q, λ1i P N, i “ q1 ` c1 ` 1, ..., p1.

(6.37)
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Proof. That the above convergent expansions must hold follows from the definitions. Work is required
to prove that the leading term is fi~ei, with fi P Czt0u.

From definitions (6.29)-(6.30), the leading term must coincide with the leading term of the expansion
at λ “ ui of the i-th column Gpp1qUpλ, uq ¨ ~ei, for i “ 1, ..., p1. To evaluate it, observe that the solution
Ψpp1qpλ, uq, restricted to a polydisc Dpu0q contained in a τ -cell of Dpucq, is a fundamental matrix solution
of the Fuchsian system (1.4) in the Levelt form (6.38) below at λ “ ui, i “ 1, ..., p1. Indeed, by (6.23) it
can be written as

Ψpp1qpλ, uq “
!

Gpp1qU pp1qpλ, uq
p1
ź

l “ 1
l ‰ i

pλ´ ulq
T plq

p1
ź

j “ q1 ` 1
j ‰ i

pλ´ ujq
Rpjq

)

¨ pλ´ uiq
T piqpλ´ uiq

Rpiq ,

where it is understood that Rpiq “ 0 if i “ 1, ..., q1. We have

U pp1qpλ, uq “ I ` Fipuq `Opλ´ uiq, λÑ ui, Fipuq :“ U pp1qpui, uq,

and Opλ´uiq represent vanishing terms at λ “ ui, holomorphic in D1ˆDpucq. The expansion at λ “ ui

of the factors pλ´ ulqT
piq and pλ´ ujqR

pjq , for l, j ‰ i, yields the Levelt form

Ψpp1qpλ, uq “
λÑui

Gpi;p1qpuq
´

I `Opλ´ uiq
¯

pλ´ uiq
T piqpλ´ uiq

Rpiq , i “ 1, ..., p1, (6.38)

where Opλ ´ uiq are higher order terms, provided that u P Dpu0q (they contain negative powers pui ´
ukq

´m), and

Gpi;p1qpuq :“ Gpp1qpI ` Fipuqq
p1
ź

l “ 1
l ‰ i

pui ´ ulq
T plq

p1
ź

j “ q1 ` 1
j ‰ i

pui ´ ujq
Rpjq , i “ 1, ..., p1.

The matrix Gpi;p1qpuq is holomorphically invertible if restricted to a polydisc Dpu0q contained in a τ -cell,
but it is branched at the coalescence locus ∆ on the whole Dpucq.

We reach our goal if we show that the i-th column Gpi;p1qpuq ¨~ei is constant in Dpucq. First, it follows
from (6.38) and the standard isomonodromic theory of [33] that Gpi;p1qpuq holomorphically in Dpu0q

reduces Bipuq to the diagonal form T piq, when λ1i ‰ ´1,
´

Gpi;p1qpuq
¯´1

Bipuq G
pi;p1qpuq “ T piq,

or to non-diagonal Jordan form (6.21) when λ1i “ ´1
´

Gpi;p1qpuq
¯´1

Bipuq G
pi;p1qpuq “ Rpiq ” J piq, λ1i “ ´1.

For this reason, the i-th row is proportional to the eigenvector ~ei of Bipuq relative to the eigenvalue
´λ1i ´ 1. Namely, for some scalar function fipuq,

Gpi;p1qpuq ¨ ~ei “ fipuq~ei.

This is obvious for λ1i ‰ ´1, namely for diagonalizable Bi. If λ1i “ ´1, the eigenvalue 0 of Bi appearing
in J piq at entry pi, iq is associated with the eigenvector fipuq~ei. Moreover, for every invertible matrix
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G “ r˚| ¨ ¨ ¨ | ˚ |~ei| ˚ | ¨ ¨ ¨ |˚s, where ~ei occupies the k-th column, then G´1BipuqG is zero eveywhere, except
for the k-th row. Now, since Rpiq “ J piq has only one non-zero entry on the i-th row, it follows that the
eigenvector fipuq~ei must occupy the i-th column of Gpi;p1qpuq.

‚ fipuq is holomorphic on Dpucq. Indeed, by (6.28),

p1
ź

l “ 1
l ‰ i

pui ´ ulq
T plq

p1
ź

j “ q1 ` 1
j ‰ i

pui ´ ujq
Rpjq ¨ ~ei “ ~ei.

Therefore fipuq~ei ” Gpi;p1qpuq ¨ ~ei “ Gpp1qpI ` Fipuqq~ei. We conclude, because Fipuq is holomorphic on
Dpucq.

‚ fi is constant on Dpucq. Indeed, since Ψpp1qpλ, uq is an isomonodromic solution in Dpu0q, the matrix
Gpi;p1qpuq must satisfy the Pfaffian system (see Appendix A, identify Gpi;p1q with Gpiq in Corollary 9.1)

BGpi;p1q

Buj
“

ˆ

Bj
uj ´ ui

` ωj

˙

Gpi;p1q, j ‰ i; BGpi;p1q

Bui
“

ÿ

j‰i

ˆ

Bj
ui ´ uj

` ωj

˙

Gpi;p1q. (6.39)

From (2.18) and (4.3), the i-th column of Bj
uj ´ ui

` ωj is null. Hence,

B

Buj

´

Gpi;p1q ¨ ~ei

¯

“ 0, @j ‰ i.

Moreover, summing the equations (6.39), we get
řn
j“1 BjG

pi;p1q “ 0. Thus, Gpi;p1q ¨ ~ei is constant on
Dpu0q, and being holomorphic on Dpucq, it is constant on Dpucq. The choice (6.37) will be made.

The above obtained expansions for the ~Ψi and ~Ψpsingqi and ~ϕi prove Theorem 5.1 for i “ 1, ..., p1,
with some obvious identifications between objects in the proof and objects in the statement, namely
~ϕi ÞÝÑ ~ψi, rpmqi {r

piq
k ÞÝÑ rm and ~ϕk{r

piq
k ÞÝÑ φi.

6.5 Analogous proof for all coalescences
With the labelling (6.1)-(6.2), the same strategy above holds for every coalescence

pup1`...`pα´1`1, ..., up1`...`pαq ÝÑ pλα, ..., λαq, α “ 1, ..., s.

We find corresponding isomondromic fundamental matrices for the Pfaffian system (with self-explaining
notations)

Ψppαqpλ, uq “ Gppαq ¨ U ppαqpλ, uq ¨
p1`...`pα

ź

l“p1`...`pα´1`1
pλ´ ulq

T plq
p1`...`pα

ź

j“pp1`...`pα´1`1q`qα

pλ´ ujq
Rpjq .

where pα “ pp1 ` ...` pα´1 ` 1, . . . , p1 ` ...` pαq. Then, we proceed in the same way, constructing the
solutions ~Ψi and ~Ψpsingqi , with p1 ` ...` pα´1 ` 1 ď i ď p1 ` ...` pα. l
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6.6 Proof of Proposition 5.1
Proof. For simplicity, we omit ν in the connection coefficients cpνqjk in (5.12)-(5.13). It follows from the
very definitions of the ~Ψk and ~Ψpsingqj that

cjk “ 0 if ucj “ uck.

In order to prove independence of u, we express the monodromy of

Ψpλ, uq :“ r~Ψ1pλ, uq | ¨ ¨ ¨ |~Ψnpλ, uqs,

in terms of the connection coefficients. From the definition, we have (using the notations in the statement
of Theorem 5.1)

~Ψkpλ, uq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

~Ψjpλ, uqcjk ` regpλ´ ujq, λ1j R Z

~Ψjpλ, uq lnpλ´ ujqcjk ` regpλ´ ujq, λ1j P Z´
˜

~Ψjpλ, uq lnpλ´ ujq `
ψjpλ, uq

pλ´ ujq
λ1
j
`1

¸

cjk ` regpλ´ ujq, λ1j P N

(6.40)

For u R ∆ and a small loop pλ´ ukq ÞÑ pλ´ ukqe
2πi we obtain from Theorem 5.1

~Ψkpλ, uq ÞÝÑ ~Ψkpλ, uqe
´2πiλ1k , which includes also the case λ1k P Z, with e´2πiλ1k “ 1.

For a small loop pλ´ ujq ÞÑ pλ´ ujqe
2πi, j ‰ k, from Theorem 5.1 and (6.40) we obtain

~Ψk ÞÝÑ ~Ψje
´2πiλ1jcjk ` regpλ´ ujq

looooomooooon

~Ψk´~Ψjcjk

“ ~Ψk ` pe
´2πiλ1j ´ 1qcjk~Ψj for λ1j R Z

~Ψk ÞÝÑ ~Ψj

´

lnpλ´ ujq ` 2πi
¯

cjk ` regpλ´ ujq “ ~Ψk ` 2πicjk~Ψj , for λ1j P Z´

~Ψk ÞÝÑ

˜

~Ψj

´

lnpλ´ ujq ` 2πi
¯

`
ψjpλ, uq

pλ´ ujq
λ1
j
`1

¸

cjk ` regpλ´ ujq “ ~Ψk ` 2πicjk~Ψj , for λ1j P N.

Therefore, for u R ∆ and a small loop γk : pλ ´ ukq ÞÑ pλ ´ ukqe
2πi not encircling other points uj (we

denote the loop by λ ÞÑ γkλ), we receive

Ψpλ, uq ÞÝÑ Ψpγkλ, uq “ Ψpλ, uqMkpuq,

where

pMkqjj “ 1 j ‰ k, pMkqkk “ e´2πiλ1k ; pMkqkj “ αkckj , j ‰ k; pMkqij “ 0 otherwise.

and
αk :“ pe´2πiλ1k ´ 1q, if λ1k R Z; αk :“ 2πi, if λ1k P Z.

We proceed by first analyzing the generic case, and then the general case.
Generic case. Suppose that Apuq has no integer eigenvalues (recall that eigenvalues do not depend

on u). Let us fix u in a τ -cell. By Proposition 2.4, Ψpλ, uq is a fundamental matrix solution of (1.4) for
the fixed u, and C “ pcjkq is invertible. Thus

Mkpuq “ Ψpγkλ, uqΨpλ, uq´1.
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The above makes sense for every u in the considered τ -cell, being Ψpλ, uq invertible at such an u. But
Ψpλ, uq and Ψpγkλ, uq are holomorphic on Pηpuq ˆ̂Dpucq, so that the matrix Mkpuq is holomorphic on
the τ -cell. Repeating the above argument for another τ -cell, we conclude that Mkpuq is holomorphic on
each τ -cell. Now, on a τ -cell, we have

dΨpγkλ, uq “ P pλ, uqΨpγkλ, uq “ P pλ, uqΨpλ, uqMk,

and at the same time

dΨpγkλ, uq “ d
´

Ψpλ, uqMk

¯

“ dΨpλ, uq Mk `Ψpλ, uq dMk “ P pλ, uqΨpλ, uqMk `Ψpλ, uq dMk.

The two expressions are equal if and only if dMk “ 0, because Ψpλ, uq is invertible on a τ -cell. Recall
that τ -cells are disconnected from each other, so that separately on each cell, Mk is constant, and so the
connection coefficients are constant separately on each cell.

We further suppose that none of the λ1j is integer. In this case, ~Ψpsingqj “ ~Ψj for all j “ 1, ..., n, so
that from (6.40) for uck ‰ ucj (otherwise cjk “ 0 and there is nothing to prove)

~Ψkpλ, uq “
λÑuj

~Ψjpλ, uqcjk ` regpλ´ ujq. (6.41)

Using the labelling (6.1)-(6.2), from the proof of Theorem 6.1 we have the fundamental matrix solution

Ψpp1qpλ, uq “
”

~Ψ1pλ, uq
ˇ

ˇ

ˇ
¨ ¨ ¨

ˇ

ˇ

ˇ

~Ψp1pλ, uq
ˇ

ˇ

ˇ
~ϕ
p1q
p1`1pλ, uq

ˇ

ˇ

ˇ
¨ ¨ ¨

ˇ

ˇ

ˇ
~ϕ p1q
n pλ, uq

ı

and in general at each λα, α “ 1, ..., s (with
řα´1
j“1 pj “ 0 for α “ 1) we have

Ψppαqpλ, uq “

“

”

~ϕ
pαq

1 pλ, uq
ˇ

ˇ

ˇ
¨ ¨ ¨

ˇ

ˇ

ˇ
~ϕ
pαq
řα´1
j“1 pj

pλ, uq
ˇ

ˇ

ˇ

~Ψřα´1
j“1 pj`1pλ, uq

ˇ

ˇ

ˇ

~Ψřα´1
j“1 pj`2pλ, uq

ˇ

ˇ

ˇ
¨ ¨ ¨

ˇ

ˇ

ˇ

~Ψřα
j“1 pj

pλ, uq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
~ϕ
pαq
řα
j“1 pj`1pλ, uq

ˇ

ˇ

ˇ
¨ ¨ ¨ | ~ϕ pαq

n pλ, uq
ı

where
~Ψmpλ, uq “ ~ψmpλ, uqpλ´ umq

´λ1m´1, m “

α´1
ÿ

j“1
pj ` 1, . . . ,

α
ÿ

j“1
pj ,

and the ~ψmpλ, uq and ~ϕ pαq
r pλ, uq are holomorphic functions in the corresponding DαˆDpucq. The above

allows us to explicitly rewrite (6.41), for j such that ucj “ λα, as

~Ψkpλ, uq “
p1`¨¨¨`pα

ÿ

m“p1`¨¨¨`pα´1`1
cmk ~Ψmpλ, uq `

ÿ

rRtp1`¨¨¨`pα´1`1,...,p1`¨¨¨`pαu

hr ~ϕ
pαq
r pλ, uq, (6.42)

for suitable constant coefficients hr. Here one of the cmk is cjk of (6.41).
Each um, with m “ p1 ` ¨ ¨ ¨ ` pα´1 ` 1, ..., p1 ` ¨ ¨ ¨ ` pα, varies in Dα. Firstly, we can fix λ “ λα

in (6.42), consider the branch cut Lα from λα to infinity in direction η (see Figure 3), and let u vary in
such a way that each up1`¨¨¨`pα´1`1, ..., up1`¨¨¨`pα varies in DαzLα, so that in the r.h.s. of (6.42) all the
~Ψmpλα, uq and ~ϕ

pαq
r pλα, uq are holomorphic with respect to u, provided that um ‰ λα. If u varies, with

the constraint that the um’s must remain in DαzLα, every τ -cell of Dpucq can be reached starting from
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an initial point in one specific cell. This proves, by u-analytic continuation of (6.42) with fixed λ “ λα,
that the coefficients cmk are constant16 in pDαzLαqˆpα ˆ

´

Ś

β‰α D
ˆpβ
β

¯

Ă Dpucq.
Now, we can slightly vary η in ην`1 ă η ă ην , so that the cut Lα is irrelevant17. Thus, the cmk are

constant on
 

u P Dpucq | up1`...`pα´1`1 ‰ λα, . . . , up1`...`pα ‰ λα
(

.
Finally, we fix another value λ “ λ˚ P Dα in (6.42), and repeat the above discussion with cuts Lα issu-

ing from λ˚, so that all the cmk are constant on
 

u P Dpucq | up1`...`pα´1`1 ‰ λ˚, . . . , up1`...`pα ‰ λ˚
(

.
This proves constancy of the cmk, m associated with λα, on the whole Dpucq. Then, we repeat this for
all α “ 1, .., s, proving constancy of the cjk for all j “ 1, ..., n. Hence, Proposition 5.1 is proved in the
generic case.

General case of any Apuq. If some of the diagonal entries λ11, ..., λ1n of A are integers, or some
eigenvalues are integers, there exists a sufficiently small γ0 ą 0 such that, for any 0 ă γ ă γ0, A ´ γI

has diagonal non-integer entries λ11 ´ γ, ..., λ1n ´ γ and no integer eigenvalues. Take such a γ0, and for
any 0 ă γ ă γ0 consider

pΛ´ λq d
dλ
p γΨq “

´

pApuq ´ γIq ` I
¯

γΨ. (6.43)

namely
d

dλ
pγΨq “

n
ÿ

k“1

Bkrγspuq

λ´ uk
γΨ, Bkrγspuq :“ ´Ek

´

Apuq ` p1´ γqI
¯

. (6.44)

Lemma 6.5. The above system (6.44) is strongly isomonodromic in Dpu0q contained in a τ -cell, and
λ-component of the integrable Pfaffian system

dγΨ “ Prγspλ, uqγΨ, Prγspλ, uq “
n
ÿ

k“1

Bkrγspuq

λ´ uk
dpλ´ ukq `

n
ÿ

j“1
rF1puq, Ejsduj . (6.45)

where F1puq is defined as in (2.8), pF1qij “
Aij
uj´ui

, i ‰ j, and rF1puq, Ejs is (2.18).

Proof. We do a gauge transformation

γY pzq :“ z´γY pzq, γ P C, (6.46)

which transforms (1.1) into
dpγY q

dz
“

ˆ

Λ` A´ γI

z

˙

γY (6.47)

For u P Dpu0q contained in a τ -cell, we write the unique formal solution

γYF pz, uq “ z´γYF pz, uq, (6.48)

where YF pz, uq is (2.4), so that

γYF pz, uq “ F pz, uqzB´γIeΛz, B ´ γI “ diagpA´ γq “ diagpλ11 ´ γ, ... , λ1n ´ γq.

The crucial point is that F pz, uq is the same as (2.5), so all the Fkpuq are independent of γ. The
fundamental matrix solutions

γYνpz, uq :“ z´γYνpz, uq,

16Recall that Dpucq “
Śs
β“1 Dˆpβ

β
.

17The crossing locus Xpτq, τ “ 3π{2´ η, is as arbitrary as is the choice of τ in the range τν ă τ ă τν`1.
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are uniquely defined by their asymptotics γYF pz, uq in SνpDpu0qq. Their Stokes matrices do not depend
on γ because

γYν`pk`1qµpz, uq “ γYν`kµpz, uqSν`kµ ðñ Yν`pk`1qµpz, uq “ Yν`kµpz, uqSν`kµ.

The system (6.47) is thus strongly isomonodromic. By Proposition 3.1 we conclude.

Corollary 6.2. Let the assumptions of Theorem 5.1 hold. Then Theorem 5.1 holds also for (6.45).

By Theorem 5.1 applied to (6.45), we receive independent vector solutions γ ~Ψkpλ, uq ” γ
~Ψpsingqk pλ, uq,

k “ 1, ..., n, which form a fundamental matrix

γΨpλ, uq :“ rγ ~Ψ1pλ, uq | ¨ ¨ ¨ |γ ~Ψnpλ, uqs.

For system (6.45) the results already proved in the generic case hold. Therefore, the connection coeffi-
cients cpνqjk rγs defined by

γ
~Ψkpλ, u |νq “ γ

~Ψjpλ, u |νq c
pνq
jk rγs ` regpλ´ ujq, λ P Pη, (6.49)

are constant on Dpucq. They depend on γ, but not on u P Dpucq.

Remark 6.4. It is explained in section 8 of [23] what is the relation between ~Ψpsingqk and γ
~Ψk, by means

of their primitives, and that in general both limγÑ0 γ ~Ψk and limγÑ0 c
pνq
jk rγs are divergent.

Now, we invoke Proposition 10 of [23], which holds with no assumptions on eigenvalues and diagonal
entries of Apuq.18 This result, adapted to our case, reads as follows.

Proposition 6.3. Let u be fixed in a τ -cell. Let γ0 ą 0 be small enough such that for any 0 ă γ ă γ0

the matrix A´ γI has no integer eigenvalues, and its diagonal part has no integer entries.19 Let cpνqjk be
the connection coefficients of the Fuchsian system (1.4) at the fixed u, as in Definition 5.1. Let cpνqjk rγs
be the connection coefficients in (6.49). Let

αk :“
#

e´2πiλ1k ´ 1, λ1k R Z

2πi, λ1k P Z
; αkrγs :“ e´2πipλ1k´γq ´ 1

Then, the following equalities hold

αkc
pνq
jk “ e´2πiγαkrγs c

pνq
jk rγs, if k ą j; αkc

pνq
jk “ αkrγs c

pνq
jk rγs, if k ă j; (6.50)

where the ordering relation j ă k means, for the fixed u, that <pzpuj´ukqq ă 0 for arg z “ τ “ 3π{2´η
satisfying (5.2).

We use Proposition 6.3 to conclude the proof of Proposition 5.1 in the general case. Indeed, the
proposition is already proved in the generic case, so it holds for the cpνqjk rγs. Therefore, they are constant
on the whole Dpucq. Equalities (6.50) hold at any fixed u in τ -cell, so that each c

pνq
jk is constant on a

τ -cell, and such consta nt is the same in each τ -cell. With a slight variation of η in pην`1, ηνq, equalities
(6.50) hold also at the crossing locus Xpτq. They analytically extend at ∆.

18The proof in [23] is laborious, because it is necessary to take into account all possible values of the diagonal entries λ1k
of A, including integer values. In [4] the proof is given only for non-integer values.

19Recall that eigenvalues and diagonal entries do not depend on u, in the isomonodromic case.
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7 Laplace Transform in Dpucq, Theorem 7.1
By means of the Laplace transform with deformation parameters, we prove points (I1),(I2), (I3), (II1),
(II2) and (II5) of Theorem 2.2. Stokes matrices will be expressed in terms of the isomonodromic
connection coefficients satisfying Proposition 5.1. The result is in Theorem 7.1 below, which is the last
step of our construction.

Let τ be the chosen direction in the z-plane admissible at uc, and η “ 3π{2´ τ in the λ-plane. The
Stokes rays of Λpucq will be labelled as in (2.21), so that (5.2) holds for a certain ν P Z. We define the
sectors

Sν “ tz P RpCzt0uq such that τν ´ π ă arg z ă τν`1u. (7.1)

If u only varies in Dpu0q contained in a τ -cell, then none of the Stokes rays associated with Λpuq
crosses arg z “ τ mod π. If u varies in Dpucq, some Stokes rays associated with Λpuq necessarily
cross arg z “ τ mod π (see Section 2.1.2). Consider the subset of the set of Stokes rays satisfying
<pzpuj ´ ukqq “ 0, z P R, associated with pairs puj , ukq such that uj P Dα and uk P Dβ , α ‰ β, namely
ucj ‰ uck. Following [13], we denote this subset by Rpuq. If u varies in Dpucq and ε0 satisfies (5.1), the
rays in Rpuq continuously rotate, but never cross the admissible rays arg z “ τ ` hπ, where

τν`hµ ă τ ` hπ ă τν`hµ`1, h P Z, (7.2)

The above allows to define pSν`hµpuq to be the unique sector containing S
`

τ ` ph ´ 1qπ, τ ` hπ
˘

and
extending up to the nearest Stokes rays in Rpuq. Then, let

pSν`hµ :“
č

uPDpucq

pSν`hµpuq. (7.3)

It has angular amplitude greater than π. The reason for the labeling is that pSν`hµpucq “ Sν`hµ in (7.1).
Suppose that u is fixed in a τ -cell. Let

Yν`hµpz, uq :“
”

~Y1pz, u |ν ` hµq
ˇ

ˇ

ˇ
. . .

ˇ

ˇ

ˇ

~Ynpz, u |ν ` hµq
ı

,

be defined by

~Ykpz, u |ν ` hµq :“ 1
2πi

ż

γkpη´hπq

ezλ~Ψpsingqk pλ, u |ν ` hµqdλ, for λ1k R Z´, (7.4)

~Ykpz, u |ν ` hµq :“
ż

Lkpη´hπq

ezλ~Ψkpλ, u |ν ` hµqdλ, for λ1k P Z´. (7.5)

In the λ-plane, the admissible directions η ´ hπ correspond to τ ` hπ, with

ην`hµ`1 ă η ´ hπ ă ην`hµ. (7.6)

Here, ~Ψkpλ, u |ν ` hµq, ~Ψpsingqk pλ, u |ν ` hµq are the vector solutions of Theorem 5.1 for λ P Pη´hπpuq,
with u fixed in a τ -cell. Lkpη ´ hπq is the cut in direction η ´ hπ, issuing from uk and oriented from
uk to 8, and γkpη ´ hπq is the path coming from 8 along the left side of Lkpη ´ hπq, encircling uk
with a small loop excluding all the other poles, and going back to 8 along the right side of Lkpη ´ hπq.
Here “right” and “left” refer to the orientation of Lkpη´ hπq. The label ν ` hµ keeps track of (5.2) and
(7.2)-(7.6).
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Theorem 7.1. Let the assumptions of Theorem 5.1 hold.

1) The matrices Yν`hµpz, uq, obtained by Laplace transform (7.4)-(7.5) at a fixed u P Dpu0q contained
in a τ -cell, define holomorphic matrix valued functions of pλ, uq P RpCzt0uq ˆ Dpucq, which are
fundamental matrix solutions of (1.1).

2) They have structure

Yν`hµpz, uq “ pYν`hµpz, uqz
BezΛ, B “ diagpλ11, ..., λ1nq,

with asymptotic behaviour, uniform in u P Dpucq,

pYν`hµpz, uq „ F pz, uq “ I `
8
ÿ

l“1

Flpuq

zl
, z Ñ8 in pSν`hµ,

given by the formal solution YF pz, uq “ F pz, uqzBezΛ. The coefficients Flpuq are holomorphic in
Dpucq. The explicit expression of their columns is (7.12), (7.13), (7.15) (or (7.16)) and (7.17).

3) Stokes matrices defined by

Yν`ph`1qµpz, uq “ Yν`hµpz, uqSν`hµ, z P pSν`hµ X pSν`ph`1qµ, (7.7)

are constant in the whole Dpucq and satisfy

pSν`hµqab “ pSν`hµqba “ 0 for a ‰ b such that uca “ ucb. (7.8)

4) The following representation in terms of the constant connection coefficients cpνqjk of Proposition
5.1 holds on Dpucq:

pSνqjk “

$

’

’

’

’

’

&

’

’

’

’

’

%

e2πiλ1kαk c
pνq
jk , j ă k, ucj ‰ uck,

1 j “ k,

0 j ą k, ucj ‰ uck,

0 j ‰ k , ucj “ uck,

;

pS´1
ν`µqjk “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 j ‰ k, ucj “ uck,

0 j ă k, ucj ‰ uck,

1 j “ k,

´e2πipλ1k´λ
1
jqαk c

pνq
jk j ą k, ucj ‰ uck,

(7.9)

where the relation j ă k is defined for j ‰ k such that ucj ‰ uck and means that <pzpucj ´ uckqq ă 0 when
arg z “ τ .

Remark 7.1. The above (7.9) generalises Theorem 2.3 in presence of isomonodromic deformation
parameters, including coalescences. Notice that the ordering relation ă here is referred to uc, while in
Theorem 2.3 it refers to u0.

Proof. We use the labelling (6.1)-(6.2) for uc.

a) Case λ1k R Z.
‚ Construction of ~Ykpz, u |νq. We have ~Ψpsingqk pλ, u| νq “ ~Ψkpλ, u| νq and (7.4) is

~Ykpz, u |νq :“ 1
2πi

ż

γkpηq

ezλ~Ψkpλ, u |νqdλ (7.10)
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Since ~Ψkpλ, u |νq grows at infinity no faster than some power of λ, the integral converges in a sector of
amplitude at most π. Now, ~Ψkpλ, u |νq satisfies Theorem 5.1, hence if u varies in Dpucq the following
facts hold.

1. ~Ψkpλ, u |νq is branched at λ “ uk and possibly at other poles ul such that ucl ‰ uck.

2. ~Ψkpλ, u |νq is holomorphic at all λ “ uj such that ucj “ uck, j ‰ k.

It follows from 1. and 2. that the path of integration can be modified: for α such that uck “ λα, we have

~Ykpz, u |νq “
1

2πi

ż

Γαpηq
ezλ~Ψkpλ, u |νqdλ, (7.11)

where Γαpηq is the path which comes from 8 in direction η ´ π, encircles λα along BDα anti-clockwise
and goes to 8 in direction η. This path encloses all the uj such that ucj “ λα, end excludes the others.
See figure 4. We conclude that u can vary in Dpucq and the integral (7.11) converges for z in the sector

Spηq :“
!

z P RpCzt0uq such that π2 ´ η ă arg z ă 3π
2 ´ η

)

,

defining ~Ykpz, u |νq as a holomorphic function of pz, uq P Spηq ˆ Dpucq. Now, if u varies in Dpucq and
ε0 satisfies (5.1) none of the vectors ui ´ uj such that uci “ λα and ucj “ λβ , 1 ď α ‰ β ď s, cross a
direction η mod π, for every ην`1 ă η ă ην . Due to 1. and 2. above, a vector function ~Ψkpλ, u |νq is
well defined in Pη and Pη̃ for any ην`1 ă η ă η̃ ă ην , and so on Pη Y Pη̃. Therefore, the integral in
(7.11) satisfies

1
2πi

ż

Γαpηq
ezλ~Ψkpλ, u |νqdλ “

1
2πi

ż

Γαpη̃q
ezλ~Ψkpλ, u |νqdλ, z P Spηq X Spη̃q,

namely one is the analytic continuation of the other, so defining the function ~Ykpz, u |νq as analytic on
pSν ˆ Dpucq, where

pSν :“
ď

ην`1ăηăην

Spηq

coincides with (7.3) (with h “ 0). Finally, notice that eλzpλ ´ Λq~Ψkpλ, u |νq
ˇ

ˇ

ˇ

Γpαq
“ 0, due to the

exponential factor. By (2.25), the vector solutions ~Ykpz, u |νq satisfy system (1.1).

‚ Asymptotic behaviour. From (5.4)-(5.5), we write (7.11) as

~Ykpz, u |νq “
1

2πi

ż

Γαpηq
ezλ

´

Γpλ1j ` 1q~ej `
ÿ

lě1

~b
pkq
l puqpλ´ ukq

l
¯

pλ´ ukq
´λ1k´1, dλ.

with holomorphic ~bpkql puq on Dpucq. We split the series as
ř

lě1 “
řN
l“1`

ř

lěN`1, and recall the
standard formula (see [18])

ż

Γαpηq
pλ´ λkq

aezλdλ “

ż

γkpηq

pλ´ λkq
aezλdλ “

z´a´1eλkz

Γp´aq

so that
~Ykpz, u |νq “

˜

~ek `
N
ÿ

l“1

~b
pkq
l puq

Γpλ1k ` 1´ lqz
´l `RN pzq

¸

zλ
1
keλkz,
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Figure 4: The paths of integration Γα, Γβ , etc α, β, ... P t1, ..., su.

with remainder

RN pzq “

¿

Γ0pηq

ÿ

lěN

~b
pkq
l puq

zl
exxl´λ

1
k´1 dx “ Opz´N`1q.

The integral is along a path Γ0pηq, coming from 8 along the left part of the half line oriented from 0 to
8 in direction η ` arg z, going around 0, and back to 8 along the right part. The estimate Opz´N`1q

is standard. We conclude that

~Ykpz, u |νq
´

zλ
1
keukz

¯´1
„ ~ek `

8
ÿ

l“1

~b
pkq
l puq

Γpλ1k ` 1´ lqz
´l ” ~ek `

8
ÿ

l“1

~f
pkq
l puqz´l, z Ñ8 in pSν

with
~f
pkq
l puq :“

~b
pkq
l puq

Γpλ1k ` 1´ lq . (7.12)

b) Case λ1k P N “ t0, 1, 2, ...u.
‚ Construction of ~Ykpz, u |νq. Definition (7.4) is

~Ykpz, u |νq :“ 1
2πi

ż

γkpηq

ezλ~Ψpsingqk pλ, u |νqdλ

“
p5.10q

1
2πi

ż

γkpηq

ezλ

˜

~ψkpλ, u |νq

pλ´ ukq
λ1
k
`1 `

~Ψkpλ, u |νq lnpλ´ ukq
¸

dλ.

The same facts 1. and 2. of the previous case apply to ~Ψkpλ, u |νq and ~ψkpλ, u |νq and allow to rewrite

~Ykpz, u |νq “
1

2πi

ż

Γαpηq
ezλ

˜

~ψkpλ, u |νq

pλ´ ukq
λ1
k
`1 `

~Ψkpλ, u |νq lnpλ´ ukq
¸

dλ

“
1

2πi

ż

Γαpηq
ezλ~Ψpsingqk pλ, u |νqdλ.
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We conclude that ~Ykpz, u |νq is analytic on pSν ˆ Dpucq. Moreover, eλzpλ ´ Λq~Ψpsingqk pλ, u |νq
ˇ

ˇ

ˇ

Γpαq
“ 0,

due to the exponential factor. By (2.25), the vector solution ~Ykpz, u |νq satisfies the system (1.1).

‚ Asymptotic behaviour. By (5.7) and (5.11), and the fact that ~ψk has no singularities at uj P Dα,
j ‰ k, so that the terms

ř

lě1`λ1
k

~b
pkq
l puqpλ ´ ukq

l in ~ψkpλ, u |νq do not contribute to the integration,
we can write

~Ykpz, u |νq “
1

2πi

ż

Γαpηq

˜

λ1k!~ek `
řλ1k
l“1

~b
pkq
l puqpλ´ ukq

l

pλ´ ukq
λ1
k
`1 `

8
ÿ

l“0

~d
pkq
l puqpλ´ ukq

l lnpλ´ ukq
¸

ezλ dλ.

By Cauchy formula

1
2πi

ż

Γαpηq

˜

λ1k!~ek `
řλ1k
l“1

~b
pkq
l puqpλ´ ukq

l

pλ´ ukq
λ1
k
`1

¸

ezλ dλ “
1
λ1k!

dλ
1
k

dλλ
1
k

»

–

¨

˝λ1k!~ek `
λ1k
ÿ

l“1

~b
pkq
l puqpλ´ ukq

l

˛

‚ezλ

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ“uk

“ zλ
1
keukz

¨

˝~ek `

λ1k
ÿ

l“1

~f
pkq
l puq

1
zl

˛

‚,

where
~f
pkq
l puq :“

~b
pkq
l puq

pλ1k ´ lq!
, l “ 1, ..., λ1k. (7.13)

In order to evaluate the terms with logarithm, we observe that for any function gpλq holomorphic along
Lkpηq, including λ “ uk, we have

ż

γkpηq

gpλq lnpλ´ ukqdλ “
ż

Lkpηq´
gpλq lnpλ´ ukq´dλ´

ż

Lkpηq`
gpλq lnpλ´ ukq`dλ,

where Lkpηq` and Lkpηq´ respectively are the left and right parts of Lkpηq, oriented from 0 to 8. Since
lnpλ´ ukq` “ lnpλ´ ukq` ´ 2πi, we conclude that

ż

γkpηq

gpλq lnpλ´ ukqdλ “ 2πi
ż

Lkpηq

gpλqdλ. (7.14)

Keeping into account that the integral along Γα can be interchanged with that along γk, it follows that

1
2πi

ż

Γαpηq
~Ψkpλ, u |νq lnpλ´ ukqezλ dλ “

ż

Lkpηq

~Ψkpλ, u |νqe
zλ dλ

“

ż

Lkpηq

8
ÿ

l“0

~d
pkq
l puqpλ´ ukq

l ezλ dλ.

We conclude, by the standard evaluation of the remainder analogous to RN pzq considered before, and
the variation of η in the range pην`1, ηνq, that20

ż

Lkpηq

~Ψkpλ, u |νqe
zλ dλ „ eukz

˜

8
ÿ

l“0
p´1ql`1l! ~dpkql puq z´l´1

¸

, z Ñ8 in pSν .

“ zλ
1
keukz

¨

˝

8
ÿ

l“λ1
k
`1

~f
pkq
l puq z´l

˛

‚,

20Notice that, by abuse of notation, if fpλqe´ukλ „
ř8

0 clz
´l we write fpλq „ eukλ

ř8
0 clz

´l.
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where
~f
pkq
l puq :“ p´1ql´λ

1
kpl ´ λ1k ´ 1q! ~d pkql´λ1

k
´1puq, l ě λ1k ` 1. (7.15)

In conclusion, we have the expansion

~Ykpz, u |νq „ zλ
1
keukz

˜

~ek `
8
ÿ

l“1

~f
pkq
l puq z´l

¸

, z Ñ8 in pSν ,

with coefficients ~f pkq
l puq holomorphic in Dpucq defined in (7.13)-(7.15). Notice that, in exceptional cases,

~Ψk may be identically zero, so that
~f
pkq
l “ 0 for l ě λ1k ` 1. (7.16)

c) Case λ1k P Z´ “ t´1,´2, ...u

‚ Construction of ~Ykpz, u |νq. Definition (7.5) is

~Ykpz, u |νq :“
ż

Lkpηq

eλz~Ψkpλ, u |νqdλ ”

ż

Lαpηq
eλz~Ψkpλ, u |νqdλ.

In the last equality, we have used the fact that ~Ψkpλ, u |νq is analytic in Dα ˆ Dpucq, where λα “ uck.
We conclude analogously to previous cases that ~Ykpz, u |νq is analytic in pSν ˆDpucq. It is a solution

of (1.1), by (2.25), because ~Ψkpλ, u |νq is analytic at λ “ uk and behaves as in (5.4)-(5.5), so that

eλzpλI ´ Λpuqq~Ψkpλ, u |νq
ˇ

ˇ

ˇ

Lα
“ eλzpλI ´ Λpuqq~Ψkpλ, u |νq

ˇ

ˇ

ˇ

Lk
“ 0´ pukI ´ Λpuqq~Ψkpλ, uk |νq “ 0.

‚ Asymptotic behaviour. We have, from (5.4)-(5.5),

~Ykpz, u |νq “

ż

Lαpηq
eλz

˜

p´1qλ1k ~ek
p´λ1k ´ 1q! pλ´ ukq

´λ1k´1 `
ÿ

lě1

~b
pkq
l puqpλ´ ukq

l´λ1k´1

¸

dλ

We integrate term by term in order to obtain the asymptotic expansion (the remainder for the truncated
series is evaluate in standard way, as RN pzq above). For the integration, we use

ż

Lkpηq

pλ´ ukq
meλzdλ “

eukz

zm`1

ż 0

`8eiφ
xmexdx “

eukz

zm`1m! p´1qm`1,
π

2 ă φ ă
3π
2 .

We obtain, analogously to previous cases,

~Ykpz, u |νq „ zλ
1
keukz

˜

~ek `
8
ÿ

l“1

~f
pkq
l puqz´l

¸

, z Ñ8 in pSν ,

where the holomorphic in Dpucq coefficients are
~f
pkq
l puq :“ p´1ql´λ

1
kpl ´ λ1k ´ 1q! ~bpkql puq. (7.17)

Remark 7.2. We cannot use ~Ψpsingqk pλ, u |νq in (5.8) to define ~Ykpz, u |νq if u varies in the whole Dpucq.
On the other hand, if u is restricted to a τ -cell, so that the eigenvalues uj are all distinct, by (7.14) we
can write

~Ykpz, u |νq “

ż

Lkpηq

eλz~Ψkpλ, u |νqdλ “
p7.14q

1
2πi

ż

γkpuq

eλz~Ψkpλ, u |νq lnpλ´ ukqdλ.

Then, we can use the local expansion (5.9) and the fact that
ş

γkpuq
regpλ´ ukqdλ “ 0, receiving

~Ykpz, u |νq “
1

2πi

ż

γkpuq

eλz~Ψpsingqk pλ, u |νqdλ
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Fundamental matrix solutions

The vector solutions ~Ykpz, u |νq constructed above can be arranged as columns of the matrix

Yνpz, uq :“
”

~Ykpz, u |νq
ˇ

ˇ

ˇ
¨ ¨ ¨

ˇ

ˇ

ˇ

~Ynpz, u |νq
ı

,

which thus solves system (1.1). From the general theory of differential systems, it admits analytic con-
tinuation as analytic matrix valued function on RpCzt0uqˆDpucq. Letting B “ diagA “ diagpλ11, ..., λ1nq,
the asymptotic expansions obtained above are summarized as

Yνpz, u |νq z
´Be´Λpuqz „ F pz, uq “ I `

8
ÿ

l“1
Flpuqz

´l, z Ñ8 in pSν ,

Flpuq “
”

~f
p1q
l puq | ¨ ¨ ¨ | ~f

pnq
l puq

ı

.

Therefore, the coefficients Flpuq of the formal solution YF pz, uq “ F pz, uqzBeΛpuqz are holomorphic in
Dpucq. Moreover, the leading term is the identity I, which implies that Yνpz, uq is a fundamental matrix
solution.

Consider now another direction η, satisfying ην`µ`1 ă η ă ην`µ. The above discussion can be
repeated. We obtain a fundamental matrix solution Yν`µpz, uq with canonical asymptotics YF pz, uq in
pSν`µ. Again, for η satisfying ην`2µ`1 ă η ă ην`2µ we obtain the analogous result for Yν`2µpz, uq

with canonical asymptotics in pSν`2µ. This can be repeated for every ν ` hµ, h P Z, obtaining the
fundamental matrix solutions Yν`hµpz, uq with canonical asymptotics YF pz, uq in pSν`hµ. So, Points 1)
and 2) of Theorem 7.1 are proved.

Stokes matrices are defined by (7.7). Thus, Sν`hµpuq “ Yν`hµpz, uq
´1Yν`ph`1qµpz, uq is holomorphic

in Dpucq. Let us consider the relations for h “ 0, 1:

Yν`µpz, uq “ Yνpz, uqSνpuq, Yν`2µpz, uq “ Yν`µpz, uqSν`µpuq. (7.18)

Let u be fixed in a τ -cell, so that Λ has distinct eigenvalues. From Theorem 2.3 at the fixed u we receive

`

Sνpuq
˘

jk
“

$

’

’

’

’

&

’

’

’

’

%

e2πiλ1kαk c
pνq
jk for j ă k,

1 for j “ k,

0 for j ą k,

`

S´1
ν`µpuq

˘

jk
“

$

’

’

’

’

&

’

’

’

’

%

0 for j ă k,

1 for j “ k,

´e2πipλ1k´λ
1
jqαk c

pνq
jk for j ą k.

Here, for j ‰ k the ordering relation j ă k ðñ <pzpuj ´ ukqq|arg z“τ ă 0 is well defined for every u in
the τ -cell, because no Stokes rays <pzpuj ´ ukqq “ 0 cross arg z “ τ as u varies in the τ -cell.

The relation j ă k may change to j ą k when passing from one τ -cell to another only for a pair uj ,
uk such that ucj “ uck. This is due to the choice of ε0 as in (5.1). On the other hand, cpνqjk “ 0 whenever
ucj “ uck. This means that (7.9) is true at every fixed u in every τ -cell, with ordering relation j ă k

defined for j ‰ k such that ucj ‰ uck, namely <pzpucj ´ uckqq ă 0 when arg z “ τ .
Since the Sν`hµ are holomorphic in Dpucq and the cpνqjk are constant in Dpucq, we conclude that Stokes

matrices are constant in Dpucq and hence (7.9) holds in Dpucq. The vanishing conditions (7.8) follow
from the vanishing conditions (5.14) for the connection coefficients, plus the fact that we can generate
all the Sν`hµ from the formula Sν`2µ “ e´2πiBSνe2πiB .
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8 Non-Uniqueness at u “ uc of the Formal Solution
By Laplace transform we prove Corollary 2.1 in Background 1, asserting that system (2.19) has unique
formal solution if and only if the constant diagonal entries of Apuq satisfy the partial non-resonance

λ1i ´ λ
1
j R Zzt0u for every i ‰ j such that uci “ ucj .

Otherwise, the Laplace transform will be proved to generate a family of formal solutions

Y̊F pzq “
´

I `
8
ÿ

l“1
F̊lz

´l
¯

zBeΛpucqz,

whose coefficients F̊l depend on a finite number of arbitrary parameters.

Due to the strategy of Section 6.6, it will suffice to consider the generic case when all λ11, ..., λ1n R Z
and A has no integer eigenvalues. Indeed, if this is not the case, the gauge transformation (6.46) relates a
formal solution γYF to YF at any point u, through (6.48), so that the coefficients Fl of a formal expansion
do not depend on γ. We are interested in these coefficients.

Consider system (1.4) under the assumptions that it is (strongly) isomonodormic in Dpucq, so that
pAqijpu

cq “ 0 for uci “ ucj . For simplicity, we order the eigenvalues as in (6.1)-(6.2). Since B1puq, ...,
Bnpuq are holomorphic at uc, system (1.4) at u “ uc is

dΨ
dλ

“

˜

řp1
j“1Bjpu

cq

λ´ λ1
`

řp1`p2
j“p1`1Bjpu

cq

λ´ λ2
` ¨ ¨ ¨ `

řn
j“p1`...`ps´1`1Bjpu

cq

λ´ λs

¸

Ψ (8.1)

Let Gpp1q be as in (6.24). The gauge transformation Ψpλq “ Gpp1qrΨpλq yields

drΨ
dλ

“

˜

T pp1q

λ´ λ1
`

s
ÿ

α“2

D
pp1q
α

λ´ λα

¸

rΨ, (8.2)

where
T pp1q :“ T p1q ` ...` T pp1q “ diagp´λ11 ´ 1, ..., ´ λ1p1

´ 1, 0, ... , 0
looomooon

n´p1

q.

and D
pp1q
α :“ Gpp1q

´1
¨
řp1`...`pα
j“p1`...`pα´1`1Bjpu

cq ¨ Gpp1q. The matrix coefficient in system (8.2) has
convergent Taylor series at λ “ λ1

drΨ
dλ

“
1

λ´ λ1

˜

T pp1q `

8
ÿ

m“1
Dmpλ´ λ1q

m

¸

rΨ, Dm “

s
ÿ

α“2

p´1qm`1

pλ1 ´ λαqm
Dpp1q
α .

We consider ην`1 ă η ă ην and λ in the plane with branch cuts Lα “ Lαpηq issuing from λ1, ..., λs

to infinity in direction η, as in (5.2). Close to the Fuchsian singularity λ “ λ1 a fundamental matrix
solution to (8.1) has Levelt form

Ψ̊pp1qpλq “ Gpp1q
´

I `
8
ÿ

l“1
Glpλ´ λ1q

l
¯

pλ´ λ1q
T pp1q

, (8.3)

where the matrix entries pGlqij , 1 ď i ď j ď n, are recursively computed by the following formulae (see
Appendix C for an explanation of (8.3), or [27, 62]).
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• If T pp1q
ii ´ T

pp1q
jj “ l positive integer, pGlqij is arbitrary.

• If T pp1q
ii ´ T

pp1q
jj ‰ l (positive integer)

pGlqij “
1

T
pp1q
jj ´ T

pp1q
ii ` l

˜

l´1
ÿ

p“1
Dl´pGl `Dl

¸

ij

(sum is zero for l “ 1).

Since we have assumed that all the λ1k are not integers, the only possibility to have T pp1q
ii ´ T

pp1q
jj “ l

occurs for 1 ď i, j ď p1, precisely

T
pp1q
ii ´ T

pp1q
jj “ λ1j ´ λ

1
i “ l. (8.4)

In this case, (8.3) is a family depending on a finite number of parameters due to the arbitrary pGlqij .
Thus, in the first p1 columns of a solution of type (8.3)

~̊Ψjpλ |νq “
´

Γpλ1k ` 1q~ek `
8
ÿ

l“1
b̊
pjq
l pλ´ λ1q

¯

pλ´ λ1q
´λ1j´1, j “ 1, ..., p1.

the vectors b̊pjql contain a finite number of parameters. The Laplace transform

~̊
Yjpz |νq “

ż

Γ1pηq

ezλ
~̊Ψjpλ |νqdλ, j “ 1, ..., p1,

yields the first p1 columns of a fundamental matrix solution of (2.19). Repeating the same computations
of Section 7, we obtain, for j “ 1, ..., p1,

~̊
Yjpz |νq z

´λ1je´λ1z „ ~ej `
8
ÿ

l“1

b̊
pjq
l

Γpλ1j ` 1´ lq
1
zl
, z Ñ8 in Sν ,

where Sν is given in (7.1). We repeat the same construction at all λ1, ..., λs. This yields a family of
fundamental matrix solutions of (2.19)

Y̊νpzq “
”

~̊
Y1pz |νq | ¨ ¨ ¨ |

~̊
Ynpz |νq

ı

,

depending on a finite number of parameters, with the behaviour for z Ñ8 in Sν

Y̊νpzq „ Y̊F pzq “
´

I `
8
ÿ

l“1
F̊lz

´l
¯

zBeΛpucqz; F̊l “
”

~̊
f
plq

1 | ¨ ¨ ¨ |
~̊
f plq
n

ı

,
~̊
f
plq
j “

~̊
b
plq
j

Γpλ1j ` 1´ lq .

We conclude that the formal solution is not unique whenever a condition (8.4) occurs. Only one element
in the family satisfies Y̊F pzq “ YF pz, u

cq.

Remark 8.1. If we choose one formal solution Y̊F pzq, then the corresponding Y̊νpzq with asymptotic
expansion Y̊F pzq in Sν is unique. For more details on the Stokes phenomenon at u “ uc see [13].

9 Appendix A. Non-normalized Schlesinger System
Lemma 9.1. The integrability condition dP “ P ^P of the Pfaffian system (3.2) defined on a polydisc
Dpu0q contained in a τ -cell is the non-normalized Schlesinger system (3.3)-(3.5).
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Proof. For every i P t1, ..., nu, the Pfaffian system (3.2) can be rewritten as

P “

˜

Bi
λ´ ui

`
ÿ

j‰i

Bj
λ´ uj

¸

dpλ´ uiq `
ÿ

j‰i

ˆ

γj ´
Bj

λ´ uj

˙

dpuj ´ uiq `
n
ÿ

j“1
γjpuqdλ.

We study λ´ ui Ñ 0, while uj ´ ui ‰ 0 for j ‰ i in Dpu0q. In new variables

λ “ λ, yi “ λ´ ui, yj “ uj ´ ui, j ‰ i,

P is rewritten in the following way (which defines the matrices Ajpyq)

P “

˜

Bi
yi
`

ÿ

j‰i

Bj
yi ´ yj

¸

dyi `
ÿ

j‰i

ˆ

γj ´
Bj

yi ´ yj

˙

dyj `
n
ÿ

j“1
γjpyqdλ

“: Aipyqdyi `
ÿ

j‰i

Ajpyqdyj `
n
ÿ

j“1
γjpyqdλ.

The only singular term at yi “ 0 is Bi{yi in Aipyq. The components relative to dy1, ..., dyn of dP “ P^P

are
BAl
Byk

`AlAk “
BAk
Byl

`AkAl, k ‰ l, (9.1)

For k ‰ i and l “ i, from (9.1) we receive

B

Byk

ˆ

Bi
yi
` regpyiq

˙

`

ˆ

Bi
yi
` regpyiq

˙

Ak “
BAk
Byi

`Ak
ˆ

Bi
yi
` regpyiq

˙

,

where regpyiq stands for an analytic term at yi “ 0. We expand the above in Taylor series at yi “ 0.
The singular term (the residue at yi “ 0) is

BBi
Byk

“
“

Ak|yi“0, Bi
‰

“
rBk, Bis

uk ´ ui
` rγk, Bis, k ‰ i. (9.2)

The above gives the non-normalized Schlesinger equations (3.4)-(3.5), because

BBi
Byk

“
BBi

Bpuk ´ uiq
“

Buk
Bpuk ´ uiq

BBi
Buk

“
BBi
Buk

, (9.3)

BBi
Bui

“
ÿ

k‰i

Bpuk ´ uiq

Bui

BBi
Bpuk ´ uiq

“ ´
ÿ

k‰i

BBi
Buk

ùñ

n
ÿ

k“1

BBi
Buk

“ 0. (9.4)

If we write the components of dP “ P^P referring to dyl ad dλ, and we substitute into them (9.3)-(9.4),
we receive (3.3), namely Blγk ´ Bkγl “ γlγk ´ γkγl.

Corollary 9.1. A solution Bipuq, i “ 1, ..., n, of (3.3)-(3.5) is holomorphically similar to a constant
Jordan form on Dpu0q. The similarity is realized by a fundamental matrix solution Gpiqpuq of the Pfaffian
system (9.6) below.

Proof. Wemust show that there exists a holomorphically invertibleGpiqpuq on Dpu0q such that pGpiqq´1BiG
piq

is a constant Jordan form. The conditions (9.1) for k, l ‰ i can be evaluated at yi “ 0, and become

BAl|yi“0

Byk
`Al|yi“0Ak|yi“0 “

BAk|yi“0

Byl
`Ak|yi“0Al|yi“0, k ‰ i, l ‰ i, k ‰ l.
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Hence, the following Pfaffian system is Frobenius integrable

BG

Byk
“ Ak|yi“0 G ”

ˆ

Bk
uk ´ ui

` γk

˙

G, k ‰ i. (9.5)

Using the chain rule as in (9.3), we receive (6.8)

BG

Buk
“

ˆ

Bk
uk ´ ui

` γk

˙

G, k ‰ i,
BG

Bui
“ ´

ÿ

k‰i

ˆ

Bk
uk ´ ui

` γk

˙

G (9.6)

Notice that for both ϕpuq “ Bipuq and ϕpuq “ Gpuq we have

n
ÿ

k“1

Bϕ

Buk
“ 0 ùñ ϕpuq “ ϕpu1 ´ ui, . . . , un ´ uiq. (9.7)

We can take a solution Gpuq which holomorphically reduces Bi to Jordan form. Indeed

for k ‰ i, B

Byk
pG´1BiGq “ ´G

´1 BG

Byk
G´1BiG`G

´1 BBi
Byk

G`G´1Bi
BG

Byk

“
p9.2q,p9.5q

´G´1Ak|yi“0BiG`G
´1“Ak|yi“0, Bi

‰

G`G´1BiAk|yi“0G

“ 0.

Therefore, keeping into account (9.7), we see that Bi :“ G´1puqBipuqGpuqq is independent of u. Thus,
there exists a constant matrix G such that G´1BiG is a constant Jordan form, and Gpiqpuq :“ GpuqG
realises the holomorphic "Jordanization" . The above arguments are standard, see for example [28].

If the Bipuq are holomorphic on Dpucq and the vanishing conditions (4.1) hold, the coefficients of
the Pfaffian system (6.39) are holomorphic on Dpucq, so that Gpiqpuq extends holomorphically there, and
Corollary 9.1 holds on Dpucq.

10 Appendix B. Proof of Proposition 3.1
According to Theorem 2.1, system (1.1) is strongly isomonodromic in Dpu0q contained in a τ -cell of
Dpucq if and only if (3.1) holds. In this case Gp0q in (2.12) holomorphically reduces Apuq to constant
Jordan form and satisfies

dGp0q “
n
ÿ

j“1
ωjpuqduj G

p0q. (10.1)

Proof of Proposition 3.1. Suppose that (1.1) is strongly isomonodromic, so that (3.1) holds. Let A :“
´A´ I, so that EkA “ Bk, and (3.1) are rewritten as BiA “ rωipuq,As. We multiply these equations to
the left by Ek, with k ‰ i. We receive

EkBiA “ Ekrωipuq,As.

The l.h.s. is EkBiA “ BiBk. The r.h.s. is

Ekrωi,As “ EkωiA´ EkAωi “ EkωiA´Bkωi “
`

EkωiA´ ωiBk
˘

` rωi, Bks.
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In conclusion
BiBk “

`

EkωiA´ ωiBk
˘

` rωi, Bks, i ‰ k.

The only terms we need to evaluate are

EkωiA´ ωiBk “ EkrF1, EisA´ rF1, EisBk “

“ EkF1EiA` EiF1Bk “ EkF1EiBi ` EiF1EkBk.

In the second line we have used EiEk “ EkEi “ EiBk “ 0, for i ‰ k, and E2
i “ Ei. Now, observe that

EkF1Ei has zero entries, except for the entry pk, iq, which is pF1qki “ pAqki{pui´ukq. This implies that

EkF1EiBi ` EiF1EkBk “
rBi, Bks

ui ´ uk
.

In conclusion, we have proved that (3.1) implies (3.4). On the other hand (3.4)-(3.5) are equivalent to
the system given by (3.4) and the equations

Bi

ÿ

k

Bk “ rωi,
ÿ

k

Bks, i “ 1, ..., n.

which are exactly (3.1) if Bk “ EkA. Finally, notice that (3.3), here with γj “ ωj , is the integrability
condition on Dpu0q of dG “

řn
j“1 ωjpuqduj G. On the other hand, it is a computation to see that (3.1)

implies the the same conditions.

Conversely, let system (1.4) be strongly isomonodromic, so that the integrability conditions (3.3)-
(3.5) hold. Firstly, we show that (3.4)-(3.5) imply a Pfaffian system for A of type (3.1). To this end, we
sum (3.4) and (3.5):

n
ÿ

k“1
BiBk “

ÿ

k‰i

rBi, Bks

ui ´ uk
´

ÿ

k‰i

rBi, Bks

ui ´ uk
` rγi,

n
ÿ

k“1
Bks “ rγi,

n
ÿ

k“1
Bks.

Using Bk “ ´EkpA` Iq and
ř

k Ek “ I, the above becomes

BiA “ rγi, As, i “ 1, ..., n. (10.2)

Since γ1, ..., γn satisfy (3.3), it is directly verified that (10.2) is Frobenius integrable. Secondly, we must
show that we can choose

γj :“ ωj “

ˆ

Aabpδaj ´ δbjq

ua ´ ub

˙n

a,b“1
as in (2.18).

Substituting this choice into (3.3), we see that if (10.2) holds, in the form BiA “ rωi, As, then (3.3) are
satisfied.21 Now, since (10.2) follows from (3.4)-(3.5) with matrices Bk “ ´EkpA` Iq, we conclude that
(3.4)-(3.5) and the choice γj “ ωj guarantee that both (3.3) and (3.1) are satisfied.

The Schlesinger system can be used to show that there is a fundamental matrix solution Gp0q of
(10.1) that holomorphically reduces A to constant Jordan form on Dpu0q. Since (3.3) is the integrability
condition on Dpu0q of the linear Pfaffian system

dG “
n
ÿ

j“1
ωjpuqduj G. (10.3)

21This is exactly what has been said before: (3.1) implies by computation the integrability conditions of (10.1), namely
exactly equations (3.3) with γj “ ωj .
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the latter admits holomorphic fundamental matrix solutions in Dpu0q. Let Gpuq be one of them and
define

pBk :“ Gpuq´1BkGpuq. (10.4)

By direct computation, using (10.3) and its integrability (3.3), it is verified that (3.4)-(3.5) (with γj “ ωj)
are equivalent to the normalized Schlesinger equations for the matrices pBk,

Bi pBk “
r pBi, pBks

ui ´ uk
, i ‰ k; Bi pBi “ ´

ÿ

k‰i

r pBi, pBks

ui ´ uk
.

The above equations imply that

@ i “ 1, ..., n, Bi pB8 “ 0, where pB8 :“ ´
řn
k“1

pBk

Being pB8 constant, it can be put in constant Jordan form by a constant invertible matrix P , say
´J “ P´1

pB8P . Since also GpuqP solves (10.3), we can choose from the beginning Gpuq such that

G´1puq

˜

n
ÿ

k“1
Bkpuq

¸

Gpuq “ J constant Jordan form. (10.5)

Now, observe that
řn
k“1Ek “ I, so that

n
ÿ

k“1
Bk “ ´

n
ÿ

k“1
EkpA` Iq “ ´A´ I.

Thus, Gpuq also puts A in constant Jordan form, so that22

Gpuq “ Gp0qpuq, where Gp0q is in (2.12).

In particular, Gp0q satisfies (10.1).

The second part of the statement of Proposition 2.3 (Prop. 19.2 of [13]) is now easily proved. Indeed,
if Apuq “ Gp0qpuqJpGp0qq´1 holomorphically on Dpucq, where J is Jordan, then Gp0q satisfies (10.1) on
Dpu0q (and J is constant). Since Gp0qpuq is holomorphic on Dpucq, the ωj must be as well, so that the
vanishing conditions (2.22) must hold. Conversely, if A is holomorphic on on Dpu0q and satisfies the
vanishing conditions (2.22) (or, more weakly, if dA “

ř

jrωj , Asduj on Dz∆, which automatically implies
(2.22) – see Remark 2.1), then dG “

ř

j ωjduj G is integrable with holomorphic coefficients on Dpu0q,
and admits a fundamental matrix solution that can be chosen so that pGp0qq´1AGp0qpuq “ J (the proof
is as done before on Dpu0q).

11 Appendix C. The normal form (8.3)
We prove the expression (8.3) of Section 8, where it was sufficient to only consider the generic case of all
λ11, ..., λ

1
n R Z and no integer eigenvalues of A. A fundamental matrix solution in Levelt form at λ “ λ1

for system (8.1) has structure

Ψ̊pλq “ Gpp1q
´

I `
8
ÿ

l“1
Glpλ´ λ1q

l
¯

pλ´ λ1q
T pp1q

pλ´ λ1q
R, (11.1)

22Up to the freedom G ÞÑ GG˚ where G˚ commutes with the Jordan form.
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with
R “ R1 `R2 ` . . . Rκ, κ :“ maxtT pp1q

ii ´ T
pp1q
jj integeru.

where R is a nilpotent matrix with Rij ‰ 0 only if T pp1q
ii ´ T

pp1q
jj is a positive integer. We prove that

R “ 0 in our case. The formulae for pGlqij and pRlqij are obtained recursively by substituting the series
into the differential system, and are as follows.

• If T pp1q
ii ´ T

pp1q
jj “ l (positive integer), pGlqij is arbitrary, and

pRlqij “

˜

l´1
ÿ

p“1
pDl´pGl ´GlRl´pq `Dl

¸

ij

,

• If T pp1q
ii ´ T

pp1q
jj ‰ l (positive integer)

pGlqij “
1

T
pp1q
jj ´ T

pp1q
ii ` l

˜

l´1
ÿ

p“1
pDl´pGl ´GlRl´pq `Dl

¸

ij

The claim that R “ 0 follows from two facts. First, if we evaluate at u “ uc the isomonodromic
fundamental matrix solution (6.24), we receive a fundamental matrix solution of (1.4) at u “ uc,

Ψpp1qpλ, ucq “ Gpp1q ¨ U pp1qpλ, ucq ¨ pλ´ λ1q
T pp1q

, (11.2)

which has R “ 0, because in the generic case here considered all Rpjq “ 0 in (6.24). The expression
(11.2) belongs to the class of solutions (11.1).

The second fact is that other solutions in the class (11.1) may have different matrix-exponents (see
[27] and [13]; see also [20, 14] for the case of Frobenius manifolds), but if R corresponds to one solution,
all the other solutions in the class can only have exponent

rR “ D´1RD, (11.3)

where D is an invertible matrix explained below. Now, since R “ 0 in (11.2), then by (11.3) all the other
rR “ 0. This proves that (8.3) is the correct form.

Finally, we explain (11.3). System (1.4) at u “ uc is holomorphically equivalent to "Birkhoff-normal
forms"

dΨ
dλ

“

˜

T pp1q

λ´ λ1
`

κ
ÿ

l“1
Rlpλ´ λ1q

l

¸

Ψ and drΨ
dλ

“

˜

T pp1q

λ´ λ1
`

κ
ÿ

l“1

rRlpλ´ λ1q
l

¸

rΨ,

which are related to each other by a gauge transformations Ψ “ DpλqrΨ, with Dpλq “ D0pI ` D0pλ ´

λ1q ` ¨ ¨ ¨ `Dκpλ´ λ1q
κq, where detpD0q ‰ 0 and rD0, T

pp1qs “ 0. Then, D :“ D0pI `D0 ` ¨ ¨ ¨ `Dκq.

Remark 11.1. In our case, the equations Rl “ 0, l “ 1, 2, ..., κ are conditions on the entries of Apucq.
The above discussion shows that, in the isomonodromic case, such conditions turn out to be automatically
satisfied with the only vanishing assumption pApucqqab “ 0 for uca “ ucb. These conditions are equivalent
to the conditions (4.24)-(4.25) of Proposition 4.2 in [13], and probably more conveninent. We will not
enter into the tedious verification of the equivalence.
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