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Abstract

The problem of seakeeping consists, among other aspects, of studying how a ship
reacts to the environmental conditions during navigation, to establish operational
limits and verify the seaworthiness of the vessel. A classic approach is to model the
ship as a filter, with a set of Response Amplitude Operators (RAO) transforming
the wave elevation time series into the motions in the six degrees of freedom.
Thanks to the convolutional properties of the Fast Fourier Transform, a wave
elevation time series can then be converted to the prediction of ship motions in real
time. For different ship speeds, wave directions and wave frequencies, the RAOs
can be determined from the added masses, damping and hydrostatic coefficients,
and wave-induced forces and moments. These entities can be obtained from the
solutions of suitable complex-valued potential flow problems, in an offline phase.
This work, developed as part of the Winning a Sea State project in collaboration
with Cetena, illustrates the extension of the potential flow solver 𝜋-BEM to support
these formulations, in order to provide an efficient, scalable, open source basis for
a pipeline of this type. Results for the added mass and damping coefficients of a
semi-submerged sphere in the zero-speed case compare favorably with the theory.
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Introduction

A crucial problem during ship operations at sea is the prediction of the displacements
induced by the waves, due to the frequently tight safety margins to observe for
example in heavy loads movement or an helicopter take off. An efficient decision-
making support system should be able to inspect the current states of the sea and
the ship, predict their evolution for an appropriate time frame and highlight the
windows in which critical operations are either permitted or forbidden according
to safety conditions, in real time.
This is a multi-faceted problem, which requires the study of both the waves
behavior and the ship’s response.
Many tools have been established for the characterization of the sea waves, such as
the Airy wave theory [19] for modeling regular sinusoidal waves in a linear potential
flow framework, and statistical tool such as the Bretschneider and JONSWAP wave
energy spectra [4, 20]. The most recent trend in deterministic wave prediction is
the analysis of radar measurements, coupled with a wave propagation model in
order to obtain the time history of the wave elevation in the reference system of
the moving ship. An example is presented in [10].
The prediction of the ship motions, given the waves behavior, usually builds upon
a rigid body model with six degrees of freedom. Deterministic forecasting has
been approached with either direct integration of the equations of motion in the
time domain [21], or by modeling the interaction of ship and waves as a signal
processing problem with the ship acting as a filter, and the computations carried
out in the wave frequency domain.
Other approaches entail the full order model simulations of Reynolds Averaged
Navier Stokes Equations, but although they provide the highest fidelity of solutions,
for example in simulating waves breaking, their computational effort forbids their
application in real time systems. Model order reduction and Artificial Neural
Networks are modern tools that show promise in bridging this gap, but their
application to seakeeping remain limited [3, 18, 32].
Regarding direct integration of the equations of motion, this methodology is able to
accommodate for non linear effects, such as those involved in precise roll prediction,
but the required operations are expensive especially if the wave-induced forces and
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moments are to be computed on the exact wet portion of the hull.
The frequency domain approach can instead exploit the convolutional properties
of the Fast Fourier Transform [6], resulting in a much cheaper algorithm, at the
price of being restricted to linear interactions.
Both of these approaches build anyway on the availability of the equations of
motions coefficients: the added mass matrix, the damping coefficients matrix, the
hydrostatic coefficients matrix, and ability of deriving wave-induced forces and
moments from the time series of wave elevation. These entities are used directly
in time domain integration, while the signal processing approach derives a set of
linear transfer functions that convert the wave elevation to the motions in each
degree of freedom: the Response Amplitude Operators.
One of the first investigations in how these entities can be computed, is given by
Cummins in [8], where a set of complex-valued potential flow problems are derived
under the assumptions of regular waves and potential wave theory. Further works
such as [25, 26] expanded on the formulations and provided comparisons with
experimental results.
In time, the preferred solver for these type of problems shifted from strip theory
to the Finite Element Methods, to the Boundary Element Methods. Commercial
codes used during ships design, such as PRECAL by the Cooperative Ship Research
(RCS) [7], are frequently based on this latter approach, but scarce established open
source applications are available.
The 𝜋-BEM library [12] developed at SISSA MathLab provides an efficient, scalable,
free open source software (FOSS) implementation of a Boundary Element Method
solver and Fast Multipole Approximation. In the Winning a Sea State project,
in collaboration with Cetena [5], 𝜋-BEM was enhanced in order to support the
potential flow problems used in linear seakeeping theory and a code for the offline
phase of a full ship motions prediction pipeline was then initiated. Although the
effort on the project moved on to the online phase of the pipeline, the added mass
and damping coefficients computed with the new code, for a zero-speed semi-
submerged sphere, compared favorably to the theory by Havelock [15].
The first chapter of this thesis describes the formulation of the potential flow
problems.
The second chapter presents the 𝜋-BEM library.
The third chapter illustrates the implementation of the extensions to the library,
which are required to handle the formulations from the first chapter, as well as the
performance enhancements added.
The fourth chapter shows the results achieved for a submerged sphere and how
they compare favorably to the theory.
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Chapter 1

Formulation of the potential flow
problems

1.1 Introduction
This chapter will present the mathematical modeling for a ship advancing in
regular waves. A common coordinate system will be presented and the equations of
motions will be characterized in terms of encounter frequency, under the assumptions
of linearity and small regular waves.
The behavior of the fluid will be analyzed through a set of velocity potentials and
a suitable formulation of boundary value problems will be discussed.
The resulting potentials will be postprocessed in order to retrieve the coefficients
to be used in the equations of motion.
Finally, a discussion about the practical issues of this model will be discussed.

1.2 Equations of motion
Let us consider a ship advancing with mean forward speed 𝑈 ; on still water, the
trajectory would be a straight line, but in the presence of waves the ship undergoes
deviations and rotations.
To describe these motions, an orthogonal coordinate system is chosen so that the
origin is placed on the undisturbed free surface and is fixed according to the mean
position of the ship; the 𝑧 axis extends vertically through the center of gravity of
the ship and the 𝑥 axis is oriented towards the bow.
With the ship modeled as a rigid body, its six degrees of freedom are surge, sway
and heave along the 𝑥 , 𝑦 and 𝑧 axis respectively; roll, pitch and yaw denote the
rotations over the same axis. Let thus 𝑋 denote the vector of the six displacements
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𝑋𝑖 in each degree of freedom at a given time instant.
The equations of motion for the rigid body, in their general form, present nonlinear

Figure 1.1: Ship motions

terms in the expressions of the angular displacements; by restriction to linear
movements, these terms can be ignored in order to simply write

𝑀 ¥𝑋 = 𝐹 = 𝐹𝑅 + 𝐹𝐻 + 𝐹𝑊 + 𝐹𝐹 , (1.1)

where𝑀 is the generalized mass matrix having the ship’s mass on the top half of the
diagonal and the inertial moments as the bottom right quadrant; it is to be noted
that the inertial moments must be referred to the coordinates system’s origin. The
external forces and moments vector 𝐹 is the composition of four different effects:

• 𝐹𝑅 the restoring forces, containing the gravity force and the buoyancy response
of the fluid to the volume displaced by the wetted hull;

• 𝐹𝐻 the hydrodynamic forces, containing the inertial effects of the fluid’s
relative speed and the dissipation of energy due to the deformation of the
free surface (wave making);

• 𝐹𝑊 the wave exciting forces, due to the impacting waves;

• 𝐹𝐹 the frictional damping effects;

The fluid is assumed inviscid, so that 𝐹𝐹 is ignored.
Regarding 𝐹𝑅, linearization allows to express them as 𝐹𝑅 = −𝐶𝑋 with 𝐶 a matrix
representing the hydrostatic stiffness. Only the coefficients coupling with a substantial
variation of the buoyancy forces and moments are non zero, and they are computed
from the integration of the geometric positions of the hull at the equilibrium
position.
For 𝐹𝐻 , it can be written 𝐹𝐻 = −𝐴 ¥𝑋 −𝐵 ¤𝑋 where 𝐴 and 𝐵 are respectively the added
mass and damping coefficients matrices. Both matrices are symmetric and even
more equality relations between the coefficients can be applied in case the hull

4



present symmetries across the 𝑂𝑥𝑧 and/or the 𝑂𝑦𝑧 planes [22].
The study of 𝐹𝑊 requires a model for the wave system: let us assume a regular
wave of amplitude 𝑎𝑤 , whose direction forms an angle 𝛽 with axis 𝑥 , has frequency
𝜔0, wave number 𝑘0 and zero phase. For such a wave, elevation in a coordinate
system with the 𝑥0 axis aligned with the wave direction gives

𝜂0(𝑥0, 𝑡) = 𝑎𝑤 cos(𝑘0𝑥0 − 𝜔0𝑡). (1.2)

Transforming in the coordinate system defined at the beginning, elevation at the
origin becomes

𝜂 (𝑡) = 𝑎𝑤 cos(𝑘0𝑈 cos (𝛽)𝑡 − 𝜔0𝑡) = 𝑎𝑤 cos(−𝜔𝑒𝑡) (1.3)

𝜔𝑒 = 𝜔0 − 𝑘0𝑈 cos (𝛽) (1.4)
and 𝜔𝑒 is called the encounter frequency. From this we shall then assume that the
vector of wave induced forces and moments contains elements of sinusoidal form

𝐹𝑊𝑖 (𝑡) = 𝐹𝑊 0𝑖 cos(−𝜔𝑒𝑡 + 𝛾𝑖) . (1.5)

If 𝐹𝑊 0 and the 𝛾𝑖 are found for waves of unit amplitude 𝑎𝑤 = 1, then they constitute
a transfer function from the wave elevation to the induced forces and moments.
As the fundamental step for the characterization of the equations of motion for a
ship in regular waves, let us assume that the 𝐴, 𝐵, 𝐹𝑊 0 coefficients and 𝛾 phases
are constants for a given combination of encounter frequency, wave number, wave
direction and ship speed. Then, the motions 𝑋 will result in having sinusoidal
form, with frequency 𝜔𝑒 .
For a more compact treatment of the phases, let us rewrite 𝑋 = Re[𝑋𝑒− 𝑗𝜔𝑒𝑡 ] and
𝐹𝑊 = Re[𝐹𝑒− 𝑗𝜔𝑒𝑡 ], with 𝑋, 𝐹 ∈ C being the vectors of complex amplitudes and
𝑗 =

√
−1.

The coupled equations of motions become

(𝑀 +𝐴) ¥𝑋 + 𝐵 ¤𝑋 +𝐶𝑋 = 𝐹𝑊 (1.6)

(−𝜔2
𝑒 (𝑀 +𝐴) − 𝑗𝜔𝑒𝐵 +𝐶) Re[𝑋𝑒− 𝑗𝜔𝑒𝑡 ] = Re[𝐹𝑒− 𝑗𝜔𝑒𝑡 ] (1.7)

(−𝜔2
𝑒 (𝑀 +𝐴) − 𝑗𝜔𝑒𝐵 +𝐶)𝑋 = 𝐹 (1.8)

where we have gotten rid of the real part operator and the complex exponential.
With this model, it then become possible to retrieve the Response Amplitude
Operators for the given ship and waves conditions

𝑋 = (−𝜔2
𝑒 (𝑀 +𝐴) − 𝑗𝜔𝑒𝐵 +𝐶)−1𝐹 (1.9)

This model is valid for small regular waves, meaning that the amplitude 𝑎 is
small compared to the wavelength 𝜆 = 2𝜋/𝑘0, and small motions amplitude when
compared with the hull dimensions.
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1.3 Potential flow
The previous paragraph assumed the fluid to be inviscid; adding the assumptions
of it being also irrotational and incompressible, it is well known that the Navier
Stokes equations allow for the definition of a velocity potential Φ governed by the
Laplace equation ΔΦ = 0.
Let us decompose the potential Φ, enforcing the sinusoidal behavior described
before and relating each component to a role the fluid plays in the phenomenon:

Φ = 𝑈 (𝜙𝑆 − 𝑥) + Re[(𝜙𝐼 + 𝜙𝐷 +
6∑
𝑖=1

𝑋 𝑖𝜙𝑖)𝑒− 𝑗𝜔𝑒𝑡 ] (1.10)

The potential is composed of a steady part, due to the reference system moving
with mean speed 𝑈 , and an unsteady, time dependent part. The components are:

• 𝜙𝑆 the steady, trailing-wave making potential;

• 𝜙𝐼 the incident waves potential;

• 𝜙𝐷 the potential for the diffraction of the incident waves;

• 𝜙𝑖 the radiation potential of the fluid following the hull motion in the 𝑖-th
mode;

with all 𝜙 appearing in the unsteady part being complex amplitudes to the exponential
term.
A suitable characterization of 𝜙𝐼 can be found in Airy wave theory [19], which
provides expressions for regular sinusoidal waves under the same assumptions used
above.
Given a regular wave moving in water of depth 𝑑, the complex amplitude of the
potential for a point with coordinates (𝑥,𝑦, 𝑧) is

𝜙𝐼 = − 𝑗𝑔𝑎𝑤
𝜔0

cosh (𝑘0(𝑧 + 𝑑))
cosh (𝑘0𝑑)

𝑒 𝑗𝑘0 (𝑥 cos (𝛽)+𝑦 sin (𝛽)), (1.11)

where 𝑔 is the gravitational acceleration. A dispersion relation links the frequency
and wave number:

𝜔2
0 = 𝑔𝑘0 tanh (𝑘0𝑑). (1.12)

Together with the steady terms, the potentials 𝜙𝐼 and 𝜙𝐷 are responsible for
the values of 𝐹𝑊 ; similarly, the 𝜙𝑖 determine 𝐹𝐻 and characterize the 𝐴 and 𝐵
coefficients.
The unknowns are solved for the ship at hydrostatic equilibrium.
For all problems, the fluid domain Γ is enclosed by:
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• Γℎ𝑢𝑙𝑙 the mesh for the wetted surface of the hull;

• Γ𝑓 𝑟𝑒𝑒 the flat free surface at 𝑧 = 0, with a hole accommodating Γℎ𝑢𝑙𝑙 ;

• Γ𝑤𝑎𝑙𝑙 the vertical walls of the tank, usually placed at a large distance from
the hull;

• Γ𝑏𝑜𝑡𝑡𝑜𝑚 the flat bottom at depth 𝑧 = −𝑑.

The normals of each boundary are oriented as entering the fluid.
It can be shown that all the 𝜙 appearing in Φ are subject to the Laplace equation in
the fluid domain, which then constitutes the governing equation of each problem.

Figure 1.2: The mesh for the potential problems

1.4 Boundary conditions
On Γ𝑓 𝑟𝑒𝑒 , the conditions come by equating the fluid’s pressure to the atmospheric
pressure and linearizing:

𝑈 2 𝜕
2𝜙𝑆
𝜕𝑥2

+ 𝑔 𝜕𝜙𝑆
𝜕𝑧

= 0, (1.13)(
𝑗𝜔𝑒 +𝑈

𝜕

𝜕𝑥

)2
𝜙𝐷 + 𝑔 𝜕𝜙𝐷

𝜕𝑧
= 0, (1.14)(

𝑗𝜔𝑒 +𝑈
𝜕

𝜕𝑥

)2
𝜙𝑖 + 𝑔

𝜕𝜙𝑖
𝜕𝑧

= 0 for 𝑖 = 1, .., 6. (1.15)
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On Γℎ𝑢𝑙𝑙 , the conditions come from the application of non penetration criteria:

𝜕𝜙𝑆
𝜕𝑛

= 𝑈𝑛1, (1.16)

𝜕𝜙𝐷
𝜕𝑛

= −𝜕𝜙𝐼
𝜕𝑛
, (1.17)

𝜕𝜙𝑖
𝜕𝑛

= − 𝑗𝜔𝑒𝑛𝑖 +𝑈𝑚𝑖 for 𝑖 = 1, .., 6, (1.18)

where 𝑛 is the generalized normal vector, which for a point (𝑥,𝑦, 𝑧) ∈ Γℎ𝑢𝑙𝑙 is defined
in terms of the normal ⃗⃗

𝑛 and the vector from the origin to the point ⃗⃗
𝑟 = (𝑥,𝑦, 𝑧):

(𝑛1, 𝑛2, 𝑛3) =
⃗⃗
𝑛, (1.19)

(𝑛4, 𝑛5, 𝑛6) =
⃗⃗
𝑟 × ⃗⃗

𝑛 . (1.20)
The 𝑚 terms represent the gradients of steady velocities in the normal directions:

(𝑚1,𝑚2,𝑚3) = −( ⃗⃗𝑛 ·∇)∇(𝜙𝑆 − 𝑥), (1.21)

(𝑚4,𝑚5,𝑚6) = −( ⃗⃗𝑛 ·∇) [ ⃗⃗𝑟 ×∇(𝜙𝑆 − 𝑥)] . (1.22)
On Γ𝑤𝑎𝑙𝑙 , the steady potential must vanish and the unsteady components are
subjected to a radiation condition at infinity. A classic candidate is the Sommerfeld
radiation condition.

𝜙𝑆 = 0 ∧ 𝜕𝜙𝑆
𝜕𝑛

= 0, (1.23)

lim
𝑅→+∞

𝑅

(
𝜕𝜙𝐷
𝜕𝑅

− 𝑗𝑘0𝜙𝐷

)
= 0, (1.24)

lim
𝑅→+∞

𝑅

(
𝜕𝜙𝑖
𝜕𝑅

− 𝑗𝑘0𝜙𝑖

)
= 0 for 𝑖 = 1, .., 6, (1.25)

where 𝑅 = | ⃗⃗𝑟 |.
On Γ𝑏𝑜𝑡𝑡𝑜𝑚, all problems adopt a straightforward non-penetrating condition 𝜕𝜙

𝜕𝑛 = 0.

1.5 Post-processing - coefficients retrieval
Pressure on the hull is can be found through Bernoulli’s equation:

𝑝 = −𝜌
(
𝜕Φ

𝜕𝑡
+ 1
2
|∇Φ|2 + 𝑔𝑧

)
, (1.26)
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𝑝 = −𝜌 Re
{
[− 𝑗𝜔𝑒𝜙𝑇 +𝑈∇(𝜙𝑆 − 𝑥) · ∇𝜙𝑇 ] 𝑒− 𝑗𝜔𝑒𝑡+1

2

(
∇𝜙𝑇𝑒− 𝑗𝜔𝑒𝑡

)2+1
2
𝑈 2 [∇(𝜙𝑆 − 𝑥)]2+𝑔𝑧

}
.

(1.27)
Integration of 𝑝 on Γℎ𝑢𝑙𝑙 gives the total force on the ship due to the fluid; decomposition
in each mode of motion is obtained by considering the contribution of each potential
in the 𝑖-th component of the generalized normal.
To retrieve the coefficients used in the equations of motion defined before, only
the terms presenting the complex exponential and influencing the 𝑧 coordinate are
relevant. The former will give the pulsating forces and moments, the latter will
participate in the buoyancy effect.
Focusing on the pulsating forces and moments, by neglecting higher order terms:

𝑝𝑇 = −𝜌 Re[( 𝑗𝜔𝑒 +𝑈
𝜕

𝜕𝑥
)𝜙𝑇𝑒− 𝑗𝜔𝑒𝑡 ] . (1.28)

Let us link the forces and moments 𝐹𝑊 and 𝐹𝐻 to the relevant components in the
potential:

𝐹𝑊𝑖 = −𝜌
∫
Γℎ𝑢𝑙𝑙

𝑛𝑖 Re[( 𝑗𝜔𝑒 +𝑈
𝜕

𝜕𝑥
)(𝜙𝐼 + 𝜙𝐷)𝑒− 𝑗𝜔𝑒𝑡 ]𝑑𝑠, (1.29)

𝐹𝐻𝑖 = −𝜌
∫
Γℎ𝑢𝑙𝑙

𝑛𝑖 Re[( 𝑗𝜔𝑒 +𝑈
𝜕

𝜕𝑥
)(

6∑
𝑘=1

𝑋𝑘𝜙𝑘)𝑒− 𝑗𝜔𝑒𝑡 ]𝑑𝑠, (1.30)

for 𝑖 = 1, .., 6.
It is then possible to write

𝐹 𝑖 = −𝜌
∫
Γℎ𝑢𝑙𝑙

𝑛𝑖 ( 𝑗𝜔𝑒 +𝑈
𝜕

𝜕𝑥
)(𝜙𝐼 + 𝜙𝐷)𝑑𝑠, (1.31)

6∑
𝑘=1

[−𝜔2
𝑒𝐴𝑖𝑘 − 𝑗𝜔𝑒𝐵𝑖𝑘]𝑋𝑘 = −𝜌

∫
Γℎ𝑢𝑙𝑙

𝑛𝑖 ( 𝑗𝜔𝑒 +𝑈
𝜕

𝜕𝑥
)(

6∑
𝑘=1

𝑋𝑘𝜙𝑘)𝑑𝑠, (1.32)

𝜔2
𝑒𝐴𝑖𝑘 + 𝑗𝜔𝑒𝐵𝑖𝑘 = 𝜌

∫
Γℎ𝑢𝑙𝑙

𝑛𝑖 ( 𝑗𝜔𝑒 +𝑈
𝜕

𝜕𝑥
)𝜙𝑘𝑑𝑠, (1.33)

thus
𝐴𝑖𝑘 =

𝜌

𝜔2
𝑒

∫
Γℎ𝑢𝑙𝑙

𝑛𝑖 Re[( 𝑗𝜔𝑒 +𝑈
𝜕

𝜕𝑥
)𝜙𝑘]𝑑𝑠, (1.34)

𝐵𝑖𝑘 =
𝜌

𝜔𝑒

∫
Γℎ𝑢𝑙𝑙

𝑛𝑖 Im[( 𝑗𝜔𝑒 +𝑈
𝜕

𝜕𝑥
)𝜙𝑘]𝑑𝑠, (1.35)

for 𝑖, 𝑘 = 1, .., 6.
The steady forces and moments only alter the equilibrium position of the ship and
do not participate in the ship’s oscillatory motions.
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1.6 Practical remarks
Solving the boundary value problems described in this chapter is a difficult task
[17].
The complications arise from the interaction of steady and unsteady potential
components: the second order derivative appearing in the free surface boundary
conditions increases both the computational effort and numerical instability, while
the𝑚 terms for the hull conditions extend negative effects on 𝜙𝑆 the other potentials.
When 𝑈 = 0, these difficulties disappear: the free surface boundary condition
simplifies to a Robin boundary condition and the 𝑚 terms vanish.
Conversely, 𝜙𝑆 has been studied in the absence of waves in [13], where the second
order derivative was obtained through the solution of a subproblem in weak form,
stabilized using the Streamline-Upwind-Petrov–Galerkin method.
A variety of approximations have been applied to retrieve one of the simpler
formulations: the free surface condition can neglect 𝑈 if small with respect to
the wave frequency, while under slender body assumption or uniform base flow it
results 𝑚5 = −𝑛3 and 𝑚6 = 𝑛2 as ∇𝜙𝑆 is concentrated along 𝑥 .
Regarding the mesh, [17] observes that when using panel methods, their dimension
influence the quality of the results and recommends, for Γ𝑓 𝑟𝑒𝑒 , that a wavelength
𝜆 = 2𝜋/𝑘0 is to be covered by at least 5 panels. This constraint leads to very fine
meshes when 𝜆 is small and conversely when 𝜔0 is large.
The Sommerfeld boundary conditions are translated to

𝜕𝜙

𝜕𝑛
− 𝑗𝑘0𝜙 = 0, (1.36)

ignoring the 𝑧 component of the radiation radius since the panels of Γ𝑤𝑎𝑙𝑙 are usually
vertical.
Comparisons of the predicted roll motions with experimental data are usually
unsatisfactory. This has been explained with the absence of friction and amplitude-
dependent terms in the linear theory. Time domain codes address the issue with
a correction of the damping coefficients.
Last, on the use of the RAOs, it must be stressed that their common representation
as being simply functions of 𝜔𝑒 is misleading: by effect of the dispersion relation
1.4, the transformation from absolute to encounter wave frequency is usually
rewritten as

𝜔𝑒 = 𝜔0 − 𝜔2
0
𝑈

𝑔
cos (𝛽), (1.37)

in deep water.
In case of following waves, that is for 𝛽 ∈ (−𝜋/2, 𝜋/2), a wave of encounter
frequency 𝜔𝑒 observed by the point of view of the moving ship might result from
the superposition of multiple regular waves with different absolute frequencies:
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actually three, since the encounter frequency is necessarily positive. Negative
values found from the relation correspond to waves that are slower than the ship
and are thus overtaken.
The respective RAO values might be very different, as the wave number 𝑘0 is
instead uniquely related to 𝜔0 and determines the distribution of the wave induced
forces and moments on the hull. Indeed, the potential 𝜙𝐼 uses 𝑘0 in its expression.
It is then of practical use to store the RAO samples with abscissas in the absolute
frequency domain. At runtime, prediction of motions in case of following waves is
currently an open problem, with efforts directed towards exploitation of theoretical
energy spectra in order to reconstruct the encountered wave components, such as
in [23, 24].
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Chapter 2

The 𝜋-BEM library

2.1 Introduction
The previous chapter introduced the mathematical tools exploited to describe the
motions of a ship moving in regular waves, according to a linear model. A set
of potential flow problems were given in order to compute the added mass and
damping coefficients matrices, and the wave-induced forces and moments complex
amplitudes.
This chapter presents 𝜋-BEM, a C++ library which provides a solver for the
potential flow problems using the Boundary Element Method.
After a description of the high-level features of the library, the actual implementation
of the Boundary Element Method will be discussed and the Fast Multipole Approximation
(FMA) will be presented.

2.2 High level features
𝜋-BEM: Parallel BEM Solver [12] is developed at SISSA MathLab and provides a
high-quality, high-performance implementation of the Boundary Element Method
for the solution of boundary value problems governed by the Laplace equation.
It is built on the deal.II library framework [1, 2], which collects a large number
of utilities for the numerical solution of Partial Differential Equations using Finite
Elements Methods.
The library handles mixed Dirichlet Neumann boundary value problems for real
scalar potential, with the possibility of using Elements of arbitrary order.
The starting domain mesh can be refined according to the CAD description of
the surfaces and curves, and 𝜋-BEM provides an iterative automatic refinement
process based on error estimation of the solution found.
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The linear algebra package used is Trilinos [16, 29], which implements both threaded
and distributed MPI parallelism.
Additionally, an implementation of the FMA of the matrix-vector product is
available for faster, albeit less precise, solution of larger problems.
The basic solution is given in terms of the potential and its normal derivative, but
𝜋-BEM also provides the retrieval of the full gradient through 𝐿2 projection, in
order to handle discontinuities in the normals.
Every aspect of the library can be configured through parameter files.

2.3 Boundary Element Method
The Boundary Element Methods are a family of techniques for the solution of
the Laplace equation in a closed domain, exploiting the properties of the Green
identity and the Rankine source.
Considering a boundary value problem governed by Δ𝜙 = 0, in a closed domain Ω
with boundary Γ = 𝜕Ω.
We consider 𝐺 (r) = 1

4𝜋 |r| which is the fundamental solution of the Laplace operator
Δ𝐺 (r) = 𝛿 (r) in R3 and is called free-space Green’s function or Rankine source.
Green’s third identity states that the value of 𝜙 in the domain Ω can be retrieved
knowing 𝜙 and 𝜕𝜙

𝜕𝑛 on Γ

𝜙 (x) =
∫
Γ

[
𝐺 (x − y) 𝜕𝜙

𝜕𝑛
(x) − 𝜙 (x) 𝜕𝐺

𝜕𝑛
(x − y)

]
𝑑𝑠y (2.1)

Restriction to the x ∈ Γ requires to handle the singularities of 𝐺 , which is still
integrable, and 𝜕𝐺

𝜕𝑛 , which requires a different approach. Using the Cauchy Principal
Value for the non-integrable singularity:

𝛼 (x)𝜙 (x) =
∫
Γ
𝐺 (x − y) 𝜕𝜙

𝜕𝑛
(x)𝑑𝑠y −

∫ 𝑃𝑉

Γ
𝜙 (x) 𝜕𝐺

𝜕𝑛
(x − y)𝑑𝑠y (2.2)

where the function 𝛼 (x) is the remaining part of the Cauchy Principal Value
integral and represents the fraction of solid angle with which the domain Ω is
seen from the boundary point x𝑖 .
Thus, from the original problem it has been possible to distill a relation which
only uses the values of 𝜙 and 𝜕𝜙

𝜕𝑛 on Γ, maintaining the ability to evaluate 𝜙 in each
internal point of Ω.
Indeed the main advantage of the Boundary Element Methods is the use of shell
meshes.
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2.4 Implementation
Both 𝜙 and 𝜕𝜙

𝜕𝑛 are discretized using the same Finite Elements, collocated on the
refined mesh.
The nodal values of the two functions can then be represented by a pair of vectors
𝜙𝑖 = 𝜙 (x𝑖) and 𝛾𝑖 = 𝜕𝜙

𝜕𝑛 (x𝑖), with x𝑖 being the coordinates of the 𝑖-th node.
The vectors must then respect the relation (𝛼 + 𝑁 )𝜙 = 𝐷𝛾 where 𝑁 and 𝐷 are
square matrices obtained by an appropriate quadrature scheme:

𝑁𝑖 𝑗 =
𝐾∑
𝑘

𝑄𝑘∑
𝑞

𝜕𝐺

𝜕𝑛
(𝑥𝑖 − 𝑥𝑞)𝜓 𝑗

𝑞 𝐽
𝑘 , (2.3)

𝐷𝑖 𝑗 =
𝐾∑
𝑘

𝑄𝑘∑
𝑞

𝐺 (𝑥𝑖 − 𝑥𝑞)𝜓 𝑗
𝑞 𝐽
𝑘 , (2.4)

and 𝛼 is the square matrix with the 𝛼 (x𝑖) =
∑𝑛
𝑗=1 𝑁𝑖 𝑗 values on the diagonal. For

every cell 𝑘, the quadrature basis function is evaluated for the reference cell 𝐾̂ on
x 𝑗 and weighted by 𝐽𝑘 , which is the determinant of the transformation from 𝐾̂ to 𝑘.
The resulting matrices are dense, non-symmetric, and the 𝑖 𝑗-th element represents
the contribution of the 𝑗-th nodal value to one of the integrals defined above, that
is, to the 𝑖-th node.
The kernel functions can become singular in the case that two distinct nodes share
the same coordinates, which is possible with complicated geometries. This ”double
nodes” case is handled with an ad hoc quadrature.
The 𝜙 and 𝛾 vectors can be solved when suitable boundary conditions constraint
part of their values. 𝜋-BEM supports mixed Dirichlet Neumann problems where
the boundary is partitioned Γ = Γ𝐷 ∪ Γ𝑁 , Γ𝐷 ∩ Γ𝑁 = ∅ and for each partition: 𝜙 = 𝑓𝐷
in Γ𝐷 and 𝜕𝜙

𝜕𝑛 = 𝑓𝑁 in Γ𝑁 .
Considering the partitioning of the elements, additional scaling vectors are introduced:

𝜙 =

{
𝜙𝑖 = 𝑓𝐷 (x𝑖) if x𝑖 ∈ Γ𝐷

0 if x𝑖 ∈ Γ𝑁

𝛾 =

{
0 if x𝑖 ∈ Γ𝐷

𝛾𝑖 = 𝑓𝑁 (x𝑖) if x𝑖 ∈ Γ𝑁

𝜙 =

{
0 if x𝑖 ∈ Γ𝐷

𝜙𝑖 if x𝑖 ∈ Γ𝑁

𝛾 =

{
𝛾𝑖 if x𝑖 ∈ Γ𝐷

0 if x𝑖 ∈ Γ𝑁
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Multiple boundary conditions of the same type are possible, with different boundary
values to be applied. This is handled by simply imposing the known values on the
elements of 𝜙 , 𝛾 based on the actual boundary, so that the vectors are initialized
from multiple 𝑓𝐷 , 𝑓𝑁 .
Then 𝜙 = 𝜙 +𝜙 and 𝛾 = 𝛾 +𝛾 and it becomes possible to collect known and unknown
terms from the original matricial relation:

(𝛼 + 𝑁 )𝜙 − 𝐷𝛾 = 𝐷𝛾 − (𝛼 + 𝑁 )𝜙 (2.5)

In order to find the unknown values using a Krylov solver, 𝜋-BEM adopts a single
vector 𝑡 = 𝜙 +𝛾 and constructs a right hand side vector (RHS) 𝑏 = 𝐷𝛾 − (𝛼 + 𝑁 )𝜙 .
The linear operator 𝐴 needed to solve 𝐴𝑡 = 𝑏 is implemented by partitioning 𝑡 back
into 𝜙 and 𝛾 and performing the full matrix-vector products. The solver of choice
for 𝜋-BEM is the Restarted Preconditioned Direct Generalized Minimal Residual
Method (GMRES).
The system matrix 𝐴 can be viewed as built from the columns of 𝑁 and 𝐷, with the
𝑗-th column taken from (𝛼 + 𝑁 ) if the 𝑗-th node is part of Γ𝑁 or by −𝐷 otherwise.
The default preconditioner uses the Incomplete LU factorization (ILU) of a banded
matrix built according to this structure.
In the presence of double nodes, the system must also apply linear constraints to
the unknowns. A delicate case is that of two nodes subject to different Dirichlet
boundary conditions: if the normals of the two nodes have a non negligible difference,
the two normal derivatives must satisfy | ®𝑛𝑖 |𝛾𝑖 = | ®𝑛 𝑗 |𝛾 𝑗 . Other cases simply condense
away the row.
All the vectors and matrices used in this workflow are instances of the
TrilinosWrappers::MPI classes provided by deal.II, which use the Trilinos package
Epetra [9] to distribute the data across MPI processes.
The partitioning operations are carried out through element-wise multiplication
with masking vectors:

𝜈𝐷 =

{
1 if x𝑖 ∈ Γ𝐷

0 if x𝑖 ∈ Γ𝑁

𝜈𝑁 =

{
0 if x𝑖 ∈ Γ𝐷

1 if x𝑖 ∈ Γ𝑁

For the sake of notation, the vectors intended for element wise scaling will be
written as square diagonal matrices whose diagonal is the vector itself, so that 𝜈𝐷
is really a shorthand for 𝜈𝐷𝐼 where 𝐼 is the identity matrix.
It is then possible to write

(𝜈𝐷 + 𝜈𝑁 )𝑖 = 1,

𝜈𝐷𝜙 = 𝜙,
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𝜈𝑁𝜙 = 𝜙,

𝜈𝐷𝛾 = 𝛾,

𝜈𝑁𝛾 = 𝛾

and the same principle is applied to 𝛼 .
The computational complexity of the matrix assemblage is 𝑂 (𝑛2) where 𝑛 is the
number of nodes, with a conspicuous constant factor due to the number of quadrature
points and the transformations of the weighting factors from the reference cell.
The GMRES solver has no guarantee on the number of iterations, but the linear
operator implementation performs two matrix-vector product with obvious 𝑂 (𝑛2)
complexity, which dominates the remaining linear complexity operations due to
masking and multiplication with 𝛼 .

2.5 Fast Multipole Approximation
𝜋-BEM implements an approximation algorithm for matrix-vector products, based
on the Fast Multipole Method [14].
The original algorithm has been developed in the context of molecular dynamics,
for the approximated evaluation of potentials due to a distribution of charges. The
method exploits the fact that the potential from a group of charges which is distant
from the evaluation point might be approximated with a suitable truncated series
expansion, of guaranteed error estimate.
By building an octree to quickly discern near and distant cells, interactions with
the distant charges can be approximated through the harmonic expansions of a
low number of cells. The resulting procedure uses pair-wise evaluation of the
potential only for close range interactions; depending on the spatial distribution of
the charges and the expansions computation, the final computational cost is much
lower than the full pair-wise procedure.
Translating this model to the Boundary Element Method’s matrices definitions 2.3
and 2.4 it can be seen that:

• the quadrature points act as charges, whose strength is given by the nodal
values through the shape functions evaluation

• the Rankine source or its normal derivative represent the potential function,
which can be approximated with a complex-valued harmonic series, truncated

• the nodes are the evaluation points
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Since the spatial distribution of the nodes is fixed once the mesh has been refined,
the octree itself and metadata such as the type of interaction between cells or the
list of directly interacting node-quadrature point pairs are computed only once
and stored.
Direct interactions are obtained through a sparse-matrix-vector product, assembled
with the same procedure as before, but where the elements that link non-interacting
nodes are left empty.
Evaluation of the remaining contributions can be divided in two phases: an ascending
phase in which every cell summarizes the effects of its children, and a descending
phase in which the leaf cells evaluate the distant interactions in its nodes.
During the ascending phase, the leaf cells compute the harmonic expansion of their
quadrature points, a task which is sped up by precomputing a set of translator
functions. The harmonic expansion coefficients resulting from the combination
with the nodal values are then collected by the cell’s parent, which can then build
its own harmonic expansion by a merge operation. The far field expansion of a
cell is to be used outside of it.
In the descending phase, each cell must instead merge the far field expansions
from distant cells of equal or greater size, into a local expansion. Bigger cells are
already accounted for by the parent cell local expansion, while the distant cells of
same size are traversed and their far field expansions merged one at a time. The
leaf cells can evaluate their local expansions at their nodes, to finally retrieve the
elements of the matrix-vector product output.
The harmonic series truncation exponent 𝑝 is a critical value for the algorithm, as
it guides both the error bound and the work required for merging and translating
the expansions. The error decreases exponentially and the series manipulations
require 𝑂 (𝑝4) work due to having 𝑝2 coefficients in the three dimensional case.
It can be shown that the total time due to expansion manipulation achieves𝑂 (𝑛𝑠 𝑝4)
complexity where 𝑠 represents the average number of evaluation points in a cell.
Thus, the full evaluation of the matrix-vector product approximation through
the Fast Multipole Method approaches linear time complexity, albeit with large
constant.
𝜋-BEM adopts 𝑠 = 𝑝 = 20 as discussed in [11]; the procedure is also scalable though
threads and MPI processes.
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Chapter 3

Implementation of the missing
features and performance
enhancement

3.1 Introduction
The goal is to extend 𝜋-BEM in order to support the complex-valued potential flow
formulation detailed in the first chapter. This chapter will illustrate the design
and implementation of the required features.
Following the analysis of the library from the previous chapter, the gaps are:

• support for Robin boundary conditions;

• support for the linearized free surface boundary condition;

• support for complex-valued potential and complex-valued coefficients in the
boundary conditions.

Moreover, many sections of the code were updated to use more modern idioms
and more performant functionalities of deal.II and the C++ Standard Template
Library (STL).

3.2 Boundary conditions
Building on the existing Dirichlet and Neumann boundary conditions implementation,
the new boundary condition types were added by extending the partitioning of the
boundary and the nodal values vectors.
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In these new boundary conditions, the values of the potential and its normal
derivative are constrained in a linear combination: it is then possible to express
one as a function of the other and this enabled the extension of the existing linear
operator.

3.2.1 Robin boundary conditions
Let us consider a new partitioning of the domain Γ = Γ𝐷 ∪ Γ𝑁 ∪ Γ𝑅, with Γ𝐷 ∩ Γ𝑁 =
Γ𝐷 ∩ Γ𝑅 = Γ𝑁 ∩ Γ𝑅 = ∅.
Recalling the discretization adopted by 𝜋-BEM, for a node in Γ𝑅 with coordinates
x𝑖 we have

𝑐0𝜙𝑖 + 𝑐1𝛾𝑖 = 𝑐2. (3.1)
First, a new masking vector 𝜈𝑅 was introduced:

𝜈𝑅 =

{
1 if x𝑖 ∈ Γ𝑅

0 otherwise

and the previous masking vectors 𝜈𝐷 and 𝜈𝑁 were adjusted accordingly.
Let us update the notation for the existing vectors of nodal values, still using the
overline for vector whose values are completely known and the tilde for vectors
containing unknowns:

𝜙 = 𝜙 + 𝜙 + 𝜙𝑅 (3.2)
𝛾 = 𝛾 + 𝛾 + 𝛾𝑅 (3.3)
𝜈𝑅𝜙 = 𝜙𝑅 (3.4)
𝜈𝑅𝛾 = 𝛾𝑅 (3.5)

The elements of 𝛾𝑅 can be retrieved by a linear transformation of 𝜙𝑅:

𝛾𝑅 = 𝑟 − 𝑅𝜙𝑅 (3.6)

where 𝑟 and 𝑅 are defined as

𝑟 =

{
𝑐2/𝑐1 if x𝑖 ∈ Γ𝑅

0 otherwise

𝑅 =

{
𝑐0/𝑐1 if x𝑖 ∈ Γ𝑅

0 otherwise
then the linear system’s governing relation become

(𝛼 + 𝑁 ) (𝜙 + 𝜙 + 𝜙𝑅) = 𝑁 (𝛾 + 𝛾 + 𝛾𝑅) (3.7)
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(𝛼 + 𝑁 )(𝜙 + 𝜙 + 𝜙𝑅) = 𝑁 (𝛾 + 𝛾 + 𝑟 − 𝑅𝜙𝑅) (3.8)
and by collecting unknown and known terms:

(𝛼 + 𝑁 ) (𝜙 + 𝜙𝑅) − 𝐷 (𝛾 − 𝑅𝜙𝑅) = 𝐷 (𝛾 + 𝑟 ) − (𝛼 + 𝑁 )𝜙 (3.9)

The only changes to the linear operator given to the GMRES solver consist of
four linear vector operations. The RHS and the preconditioner were updated
accordingly, as well as the final reconstruction of 𝜙 and 𝛾 .
The constraints for system condensation were updated by simply having the Robin
nodes be considered as being Neumann nodes, but enforcing that in case they
share the same coordinates with a proper Neumann node, the latter values from
the boundary condition is applied.

3.2.2 Free surface boundary condition
This kind of mixed Robin boundary conditions is much more involved, but follows
the same procedure: the partitioning was updated with a new element Γ𝐹𝑆 , with
the corresponding definition of vectors 𝜈𝐹𝑆 , 𝜙𝐹𝑆 and 𝛾𝐹𝑆 .
Although the proper expression would contain the value of 𝜕𝜙

𝜕𝑧 , in practice it is
always applied to flat surfaces for which it coincides with ± 𝜕𝜙

𝜕𝑛 .
Thus for a node in Γ𝐹𝑆 with coordinates x𝑖 we have

𝑐0𝜙𝐹𝑆𝑖 + 𝑐1
𝜕𝜙𝐹𝑆
𝜕𝑥

(x𝑖) + 𝑐2
𝜕2𝜙𝐹𝑆
𝜕𝑥2

(x𝑖) + 𝑐3𝛾𝐹𝑆𝑖 = 𝑐4 (3.10)

For a robust treatment of the partial derivatives along 𝑥 , we followed the procedure
in [13] which solves a subproblem in weak form, in order to express 𝛾𝐹𝑆 as a linear
transformation of 𝜙𝐹𝑆 :

𝛾𝐹𝑆 = 𝑟𝐹𝑆 − (𝑅𝐹𝑆0 + 𝑅𝐹𝑆1𝑀−1𝐵 + 𝑅𝐹𝑆2𝑀−1𝐵𝑀−1𝐵)𝜙𝐹𝑆 (3.11)

where the 𝑀 and 𝐵 are square matrices whose elements are defined as

𝑀𝑖 𝑗 =
𝐾∑
𝑘

𝑄𝑘∑
𝑞

𝜓 𝑖𝑞𝜓
𝑗
𝑞 𝐽
𝑘 (3.12)

𝐵𝑖 𝑗 =
𝐾∑
𝑘

𝑄𝑘∑
𝑞

𝜓 𝑖𝑞
𝜕𝜓 𝑗

𝑞

𝜕𝑥
𝐽𝑘 (3.13)
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Since the problem at hand is transport dominated, the basis function 𝜓 used in
the quadrature is modified according to the Streamline Upwind Petrov Galerkin
technique, that is:

𝜓 = 𝜓 + 𝛿ℎ∇𝑆𝜓 · (−1, 0, 0), (3.14)
where ∇𝑆𝜓 is the surface gradient on the current node, 𝛿ℎ represents the streamwise
cell extension and (−1, 0, 0) is the fluid velocity direction. The resulting matrices
are non-symmetric, but sparse.
The other vectors involved in the relation are defined as

𝑟𝐹𝑆 =

{
𝑐4/𝑐3 if x𝑖 ∈ Γ𝐹𝑆

0 otherwise

𝑅𝐹𝑆0 =

{
𝑐0/𝑐3 if x𝑖 ∈ Γ𝐹𝑆

0 otherwise

𝑅𝐹𝑆1 =

{
𝑐1/𝑐3 if x𝑖 ∈ Γ𝐹𝑆

0 otherwise

𝑅𝐹𝑆2 =

{
𝑐2/𝑐3 if x𝑖 ∈ Γ𝐹𝑆

0 otherwise

To integrate this new relation in the linear operator, it is necessary to invert 𝑀.
In order to find 𝑥 = 𝑀−1𝐵𝑦, our implementation solves the linear system 𝑀𝑥 = 𝐵𝑦
using GMRES, as explicit inversion is not available to the distributed Trilinos
matrices used.
For each invocation of the linear operator, two such systems are solved, with the
output from the first being recycled.
Modification of the RHS is trivial, but the preconditioner is much more involved
and requires the explicit extraction of the 𝑀−1𝐵 columns.
Condensation constraints were handled in the same fashion as for the Robin
conditions.
At the time of writing, the implementation is not yet mature and is not suitable for
production use. Initial results on the generation of Kelvin wakes are nonetheless
encouraging.

3.2.3 Complex-valued potential
The Epetra package does not support complex numbers and this constraint is
reflected on the TrilinosWrappers classes that 𝜋-BEM uses. To bypass this
limitations, while maintaining the ability to efficiently handle real-valued problems,
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the library was modified in order to handle multiple problems defined on the same
mesh.
Solving a complex problem then reduces to processing a pair of problems together,
where the first defines the real parts of the boundary conditions and the second
problem defines the imaginary parts.
Exploiting the decomposition of 𝐴𝑥 = 𝑏 with 𝑥, 𝑏 ∈ C we can write:

Re[𝐴] Re[𝑥] − Im[𝐴] Im[𝑥] + 𝑗 (Im[𝐴] Re[𝑥] +Re[𝐴] Im[𝑥]) = Re[𝑏] + 𝑗 Im[𝑏] (3.15)

This required to split the implementation of the solve procedure, but since the 𝑁 ,
𝐷, 𝑀 and 𝐵 matrices are purely real, the only contribution to the imaginary part of
the system linear operator comes from the coefficients of the boundary conditions,
which are implemented as scaling operations. The actual increase in the operator
computational cost is then only slightly over a factor of 2, as it is governed by the
matrix-vector products of quadratic complexity. The existing implementations can
be reused as-is in the new methods, which only handle the combination of inputs
and outputs. The object fed to GMRES is just a BlockVector, which allows to
efficiently reference the original Vector objects without unnecessary copies.
Due to the treatment of the new boundary conditions, where the subjected nodes
are used as if being of Neumann type, the constraints for system condensation are
applied separately to the real and imaginary parts of the unknowns with no need
to account for their pairing.
On the other hand, the original preconditioner based on the ILU loses some of its
strength, as for non-trivial problems the band size required to include the elements
outside the top left and bottom right quadrants would defeat its purpose.
Finally, the adoption of an arbitrary number of problems for the same mesh, and
thus the same 𝑁 and 𝐷 matrices, gives a great advantage in the solutions of
problems such as those presented in the first chapter, as the assemblage of the
matrices or the octree needs not be repeated anymore.

3.3 Code optimization
Much of the existing code was simplified in order to gain readability and exploit
library code from either the STL, or the deal.II and Trilinos functions. Notable
examples were the conversion of initializations originally performed with explicit
for loops, to use iterator-based methods: this was common during copy of STL
containers like vector and map, but had dramatic effects for the SparsityPattern
and SparseMatrix objects where the adoption of library functions resulted in
conspicuous speedups.
Being distributed, the nodes indices were iterated on with for loops which tested
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membership to a local IndexSet object. These loops were reimplemented by
proper range-based iteration on the IndexSet itself, which could exploit the inner
workings of the data structure.
Vector operations were reorganized in order to reduce temporary variables and, in
some cases, merge together linear traversals such as with the method sadd, which
scales and merges two vectors at once.
Regarding the FMA, the very large number of metadata structures which stored
interaction lists, neighbor cells, far field and local expansions was frequently accessed
with copy construction. The read-only accesses were converted to use constant
references.
In the procedure implementing the merge of harmonic series, extremely good
results were obtained by caching the evaluations of the complex roots of unity
or the basis of the expansion, and refactoring the loops in order to reduce the
number of complex products.
Finally, the 𝑁 and 𝐷 matrix assemblage was given a threaded implementation
using deal.II WorkStream pattern [30], based on Intel’s Thread Building Blocks
[27]. Unfortunately, the vectorized methods which were so efficient in single thread
execution, could not be used without locking accesses by row. This meant that
implementation of single-threaded and multi-threaded assemblage had to be split,
and whether to use one or the other was decided at runtime.

3.4 Optimization benchmarks
𝜋-BEM provides a good number of Teuchos [28] timers to build a basic profiling
of its executions.
In order to validate the performance improvement from the code update, a simple
benchmark problem was defined by applying Dirichlet and Neumann boundary
conditions to a sphere of unit radius. The coarse, initial mesh was a cube whose
faces were divided among the boundary conditions, three each. The refinement
of the faces was guided by supplying a CAD sphere and the edges followed CAD
curves on the sphere. The final refined mesh consisted of 15746 nodes and 15360
cells.
The boundary conditions applied on a point (𝑥,𝑦, 𝑧) on the sphere are:

𝜙 (𝑥,𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧 if (𝑥,𝑦, 𝑧) ∈ Γ𝐷 , (3.16)

∇𝜙 (𝑥,𝑦, 𝑧) = (1, 1, 1) if (𝑥,𝑦, 𝑧) ∈ Γ𝑁 , (3.17)

so that on the surface of the sphere, with the normal being ⃗⃗
𝑛 = (𝑥,𝑦, 𝑧), 𝜙 and 𝜕𝜙

𝜕𝑛
coincide.
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Figure 3.1: On the left, the initial coarse mesh with Γ𝐷 in blue and Γ𝑁 in red; on
the right, the resulting 𝜙 on the refined mesh

Only a strong scaling on a single node was studied, as the code updates were
mostly directed towards single core optimization and multithreading. The results
on weak scalability from [11] would still hold qualitatively, albeit with changes
following the comparison shown here. Scaling was then obtained in three scenarios:

• increasing MPI processes;

• increasing threads on a single MPI process;

• increasing threads on two MPI process, bound to different sockets.

The code was compiled against deal.II version 9.2, built from source linking against
the modules available on the SISSA cluster Ulysses. The compiler was GCC 8.3.0,
the MPI provider is OpenMPI 3.1.4, the thread library is Intel Thread Building
Blocks in the version packaged by deal.II. Executions were carried out on a node
of the gpu1 queue, scaling from one to twenty cores, without Hyper-Threading.
The measurements were split in two cases: solution through the matrix-based
”algebraic” solver and through the FMA.
It must be noted that loading and refining the mesh are inherently serial operations
which are replicated in all processes. This not only degrades the scalability due
to having a fixed overhead, but also implies a barrier to synchronize different MPI
processes. Indeed, MPI scaling shows a steady increase of the time spent processing
the mesh from 59s in the serial case to 72s at 20 processes.
All results shown are taken from the mean measurement of three runs. Scalability
values are taken with the smallest of the average serial times as reference value, in
order to compare against the fastest implementation.
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3.4.1 Algebraic solve
For the algebraic solve process, the main activities are the assemblage of 𝑁 , 𝐷
matrices and the solve process through GMRES.
Of these, the assemble phase takes a prominent role and accounts for the greater
portion of the total execution time. The results show the effects of the code
optimization on serial execution, lowering the average time spent from 471s to
388s. Scalability through multithreading was absent in the original version and the
program even shows a degradation of performance when only scaling on threads.
Considering the pure MPI scaling, the revised code outperforms the original and
comes close to optimal scalability. The multithreaded implementation, as discussed
in the previous section, does not manage to achieve the same performance due to
the impossibility of fully exploiting the vectorized initialization of matrix rows.

The actual GMRES execution only accounts for 30s of the serial time and its

Figure 3.2: Strong scaling of the algebraic solver assemble phase

scaling behavior, aside from being underwhelming, is of limited use other than
considering the importance of the preconditioner. This is due to it being heavily
dependent on the node partitioning, since the banded matrix used in the ILU
varies wildly unless the band size is very big.
The original implementation, scaling threads by socket, actually outperforms the
revised code up to 8 cores used, but by the point when the experiment uses the full
computing node, the difference between execution with at least two MPI processes
is negligible.
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Considering the total execution time, thus including the overhead due to mesh

Figure 3.3: Strong scaling of the algebraic solver GMRES phase

processing, the revised code achieves the best results. However, even though the
MPI executions obtained better scaling in the assemble phase, the increase in
mesh processing time due to synchronization determines that the hybrid setup
outperforms them on the full node.

3.4.2 Fast Multipole Approximation
The FMA solve process is composed of more tasks. Broadly speaking, we can
isolate a setup phase in which the octree is constructed, the partial 𝑁 , 𝐷 matrices
for direct interactions are assembled, the coefficients for the far field expansions
are stored and the preconditioner is generated.
This is followed by the actual solve through GMRES, in which a number of FMA
are executed with their direct interactions, ascending and descending phases.
All tasks benefit from both multithreading and distribution of the nodes across
MPI processes, albeit with different results: since the octree structure is replicated
and there is no inter-process communication of the expansion objects, scaling on
the number of MPI processes can only be exploited with regard to the distribution
of the partial 𝑁 , 𝐷 matrices and in reducing the local expansions evaluation at the
nodes.
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Figure 3.4: Strong scaling of the algebraic solver total execution

Let us now review in detail the behavior of the different phases.
Construction of the octree constitutes a negligible part of the total execution
time, as it roughly takes 2s for both the original and revised codes, with limited
scalability. The assemblage of the partial matrices takes around 38s of the serial
execution, for both codes. Scalability is better when increasing the number of MPI
processes, as was expected due to the analogy with the algebraic solver assemble
phase. The revised code performs slightly better than the original version.

Initialization of the far field expansion coefficients has limited impact on the
total execution time, with the original serial execution taking on average 10s, and
even more so for the revised code, where it was lowered to 4s. Interestingly, MPI
scaling results in a constant degradation of performance. The pure multithread
executions for 2 and 4 cores perform even better than the ideal case, possibly due
to increased memory bandwidth.
Initialization of the preconditioner is the more expensive of the setup operations,

taking 52s in the serial executions. The scalability is not influenced by the execution
setup, nor by the code revisions.
Moving to the actual ascending and descending phases, we consider the total time

spent performing the matrix-vector products, which depends on the quality of the
preconditioner. As was the case for the algebraic solve process, this varies when
scaling on MPI processes. The results for the ascending phase follow necessarily
the behavior found for the setup of the far field expansions coefficients discussed
before. This process however has little impact on the final performance, as the
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Figure 3.5: Strong scaling of the FMA solver assemble

Figure 3.6: Strong scaling of the FMA solver expansion coefficients computation

serial execution only accounts for a fraction of the serial execution: 10s for the
original code, 4 in the revised version.

What really defines the FMA performance is the time spent in the descending
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Figure 3.7: Strong scaling of the FMA solver assemble preconditioner

Figure 3.8: Strong scaling of the FMA solver ascending phase

phase, and more specifically the local expansions merge: in the serial executions,
this phase takes 842s and 221s for the original and revised code, respectively. The
large performance gain is due to the changes in the translation primitive of the
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merge routine, which achieved a great reduction of the number of complex number
products.
It must be observed that this optimization of the serial code does not translate
to a better scaling per se, and indeed the plot is unfair to the original code: the
scaling curves that would be obtained by using the original code serial execution
as reference would closely follow the ones presented here for the revised code, if
not even overcoming them.
Considering the scaling of the total execution time, scalability is worse than the

Figure 3.9: Strong scaling of the FMA solver local expansions merge and evaluation

algebraic solver case due to mesh processing representing a larger portion of the
total time. As was expected following the results on the descending phase, the
best setup for the FMA solver procedure is obtained from the pure multithread
execution.
Overall, the benchmark problem shows that the revised code consistently improves

on the original in all configurations. For the problem at hand, for the revised code
the FMA solver outperforms the algebraic one both in serial execution and using
the maximum threads on the node. However, the algebraic solver shows a better
scaling profile and can exploit more efficiently the MPI communications. On the
full node, full MPI configuration, the algebraic solver completes in 130s while
the FMA solver takes 190s; while using only threads, the timings are 142s and
99s respectively. In the hybrid scaling configuration, the two solvers performed
similarly with 119s and 118s respectively.
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Figure 3.10: Strong scaling of the FMA solver total execution

3.5 Complex-valued problem benchmarks
The behavior of the revised code was investigated on a complex-valued problem
involving a Robin boundary condition. The same mesh as the previous experiment
was used, but the Neumann boundary condition was switched to a Robin one with
complex-valued coefficients.
The boundary conditions applied on a point (𝑥,𝑦, 𝑧) on the sphere are:

𝜙 (𝑥,𝑦, 𝑧) = (1 − 𝑗)(𝑥 + 𝑦 + 𝑧 + 2) if (𝑥,𝑦, 𝑧) ∈ Γ𝐷 , (3.18)

𝜙 (𝑥,𝑦, 𝑧) 1 + 𝑗
2(𝑥 + 𝑦 + 𝑧 + 2) +

𝜕𝜙

𝜕𝑛
(𝑥,𝑦, 𝑧) = (1 − 𝑗) (𝑥 +𝑦 + 𝑧) + 1 if (𝑥,𝑦, 𝑧) ∈ Γ𝑅, (3.19)

so that the solution for imposes

𝜙 (𝑥,𝑦, 𝑧) = (1 − 𝑗)(𝑥 + 𝑦 + 𝑧 + 2) (𝑥,𝑦, 𝑧) ∈ Γ, (3.20)
𝜕𝜙

𝜕𝑛
= (1 − 𝑗) (𝑥 + 𝑦 + 𝑧) (𝑥,𝑦, 𝑧) ∈ Γ. (3.21)

Executions were carried out on the same setup as the previous benchmarks.
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Figure 3.11: On the left, the solution Re[𝜙] on the refined mesh; on the left, Im[𝜙]

3.5.1 Algebraic solve
For the algebraic solve process, the assemble phase had no change in implementation
and performed the same as the previous benchmark. The linear operator changes
show directly in the GMRES solve phase, where the expected slowdown by a
factor of around 2 is manifest; the extra linear vector operations are shadowed
by the quadratic matrix-vector product cost. There is a slight increase in the
number of iterations of the solver, from 50 to 55, and variability due to the
preconditioner sensitivity to the node partitioning. Overall, the scalability of the
previous benchmark is retained well.

Considering the total execution time, thus including the overhead from the
additional data structures, the slowdown behavior trends again to a flat value,
slightly above 1. While some variability is still present at the extremes of the
cluster node utilization, since the larger part of the execution is spent in the
assemble phase, the total execution time is very close to the purely real case, with
the same scalability.

3.5.2 Fast Multipole Approximation
The main difference we expect between the FMA and the algebraic solve is that
the most time consuming procedure lies in the assemble phase for the former, and
in the local expansion evaluations for the latter. The changes to the unknown
vectors, as induced by the Robin boundary condition implementation chosen, are
not expected to reflect on the algebraic matrix-vector products, since the matrices
are full. Instead, the harmonic series expansion manipulations are sensitive to the
value patterns of the operand vectors, as the expansions of a cell which contains
no charges have no effect on other cells, and are thus skipped. In the benchmark
problem chosen, half the nodes are subjected to a Dirichlet boundary condition,
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Figure 3.12: Strong scaling of the algebraic solver GMRES phase slowdown, for a
complex-valued mixed Dirichlet Robin problem

Figure 3.13: Strong scaling of the algebraic solver total execution slowdown, for a
complex-valued mixed Dirichlet Robin problem
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the other half to the Robin boundary condition: then, the unknown 𝜙 does not
contain any element fixed to zero and the term 𝐷 (𝛾 − 𝑅𝜙𝑅) effectively requires a
matrix-vector product where the vector is half full.
In light of this, it is expected that the cost of approximating the 𝑁 matrix-vector
product is double that of the purely real, mixed Dirichlet Neumann case. Moreover,
since the operation is repeated for the real and imaginary parts of the unknown
vectors, the far field and local expansions evaluation cost will triplicates in the
worst case. Indeed this appears to hold: on average, the current benchmark
registers a cumulative time of 648s for the descending phase, in line with triplicating
the corresponding time of 221s from the purely real case. The ascending phase
instead registers a larger slowdown in the distributed executions, which is to be
imputed to the interprocess communications of the nodal values vectors; the effecto
on the total execution, however is very limited, as the time spent in this phase was
still under 5s at worst.
The increase in GMRES iterations is slim, from 32 to 34, and appears to be
absorbed by the actual expansions configuration.
As for the other procedures, no appreciable changes in execution time are observed,
since the overhead from the additional vector operations in the GMRES solve,
due to the complex-valued implementation, are dominated by the ascending and
descending phases anyway.
Scalability results are in line with the previous benchmark. The slowdown is
maximum for the serial execution, at slightly above 2, and shows a decreasing
trend. This is due to the mesh processing time not scaling, and having a larger
effect as the machine utilization increases.
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Figure 3.14: Strong scaling of the FMA solver ascending phase slowdown, for a
complex-valued mixed Dirichlet Robin problem

Figure 3.15: Strong scaling of the FMA solver local expansions merge and
evaluation slowdown, for a complex-valued mixed Dirichlet Robin problem
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Figure 3.16: Strong scaling of the FMA solver total execution slowdown, for a
complex-valued mixed Dirichlet Robin problem
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Chapter 4

Case study

4.1 Introduction
With the general problem formulations from the first chapter and thanks to the
extensions to the 𝜋-BEM library, it is now possible to implement a procedure for
the retrieval of the coefficients to use in the equations of motion.
This chapter will present the application of the methodology to a simple semi-
submerged sphere in the zero-speed case, and the resulting heave added mass and
damping coefficients will be compared with the theory from Havelock.
After a discussion of the preliminary results and the issues encountered, an alternative
treatment is proposed in order to overcome the limitations found.

4.2 Initial problem setup
The problem studies the behavior of a sphere of unit radius, semi-submerged so
that its baricenter is placed on the still surface of the fluid, with zero speed.
In order to retrieve the coefficients of the equations of motion for a single wave
frequency, a single parameter file is generated, specifying the full set of 7 complex-
valued potential problems.
The parameter file is fed to a modified version of the 𝜋-BEM Driver class, which
after the solution of the individual potentials, performs integration on the hull and
outputs the added mass and damping coefficients matrices.
After repeating the process for multiple wave frequencies, the outputs are collected
and analysed in order to express the coefficients as functions of the frequency, using
nondimensionalized quantities.
The fluid is contained in a cylinder of large dimension with respect to the sphere’s
radius, according to the figure 1.2. Our initial mesh will have height 40 and radius
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20.
The coarse mesh is refined according to a set of CAD surfaces and curves, taking
care that at least 5 cells are cover a length 𝜆 extending from the body. The basic,
uniform refinment of 𝜋-BEM was extended in order to specify different refinement
levels on each boundary, in order to be able to increase the Γ𝑓 𝑟𝑒𝑒 panel count
without the same increase Γ𝑏𝑜𝑡𝑡𝑜𝑚 or Γ𝑤𝑎𝑙𝑙 .
All potentials are subject to the Laplace equation in the fluid domain, with the

Figure 4.1: On the left, the initial coarse mesh; on the right, a possible result of
non-uniform refinement

boundary conditions being determined by the environment: we have 𝑈 = 0, 𝛽 = 0
since the sphere is symmetric, the 𝜔𝑒 = 𝜔0 changes for each set of problems and
sets in turn 𝑘0 due to the dispersion relation 1.12.
The steady wave-making potential can be ignored and the boundary conditions
assume the simpler form: On Γ𝑓 𝑟𝑒𝑒 , due to the normal pointing towards the fluid:

𝜔2
𝑒𝜙𝐷 + 𝑔 𝜕𝜙𝐷

𝜕𝑛
= 0, (4.1)

𝜔2
𝑒𝜙𝑖 + 𝑔

𝜕𝜙𝑖
𝜕𝑛

= 0 for 𝑖 = 1, .., 6. (4.2)

On Γℎ𝑢𝑙𝑙 :
𝜕𝜙𝐷
𝜕𝑛

= −𝜕𝜙𝐼
𝜕𝑛
, (4.3)

𝜕𝜙𝑖
𝜕𝑛

= − 𝑗𝜔𝑒𝑛𝑖 for 𝑖 = 1, .., 6, (4.4)

where 𝜙𝐼 is defined as in 1.11 with unit amplitude 𝑎𝑤 = 1, and 𝑛 is the generalized
normal vector defined as in 1.19, 1.20.
On Γ𝑤𝑎𝑙𝑙 , the Sommerfeld radiation conditions are:

𝜕𝜙𝐷
𝜕𝑛

− 𝑗𝑘0𝜙𝐷 = 0, (4.5)

38



𝜕𝜙𝑖
𝜕𝑛

− 𝑗𝑘0𝜙𝑖 = 0 for 𝑖 = 1, .., 6. (4.6)

On Γ𝑏𝑜𝑡𝑡𝑜𝑚, the non-penetrating conditions give:

𝜕𝜙𝐷
𝜕𝑛

= 0, (4.7)

𝜕𝜙𝑖
𝜕𝑛

= 0 for 𝑖 = 1, .., 6. (4.8)

Once all the 𝜙𝑖 have been found, integration on Γℎ𝑢𝑙𝑙 will give the wave-induced
forces and moments amplitudes and added mass and damping coefficients, which
after simplification result in:

𝐹 𝑖 = −𝜌
∫
Γℎ𝑢𝑙𝑙

𝑛𝑖 𝑗𝜔𝑒 (𝜙𝐼 + 𝜙𝐷)𝑑𝑠, (4.9)

𝐴𝑖𝑘 =
𝜌

𝜔𝑒

∫
Γℎ𝑢𝑙𝑙

𝑛𝑖 Im[𝜙𝑘]𝑑𝑠, (4.10)

𝐵𝑖𝑘 = −𝜌
∫
Γℎ𝑢𝑙𝑙

𝑛𝑖 Re[𝜙𝑘]𝑑𝑠 (4.11)

for 𝑖, 𝑘 = 1, .., 6.
Only the results on 𝐴 and 𝐵 will be analysed here; nondimensionalized measures
are taken by considering the volume of the displaced fluid ∇ = 4

3𝜋𝑟
3 and for the

damping, dividing also by the frequency 𝜔𝑒 . Moreover, the nondimensionalized
coefficients are plotted against the nondimensionalized frequency 𝜔 = 𝜔2

𝑒 2𝑟/𝑔.

𝐴′
𝑖𝑘 =

𝐴𝑖𝑘
𝜌∇ , (4.12)

𝐵′𝑖𝑘 =
𝐵𝑖𝑘
𝜌∇𝜔𝑒

, (4.13)

for 𝑖, 𝑘 = 1, .., 6. The problem sets are generated so that the sampling on 𝜔 is evenly
spaced; we also note that, from a practical standpoint,
The coefficients in position 3, 3, which couple vertical wave-induced forces and
vertical motion, are common benchmarks for the correctness of these codes. Analytically
approximated results were given in [15] through truncated series.
The nondimensionalized added mass coefficient has a limiting value of 0.828 at
𝜔𝑒 = 0 and increasing the frequency, grows to 0.88, decreases to a minimum of
0.38 and slowly rises to an asymptotic value, which Havelock speculates to be 0.5 .
The damping coefficient starts instead at 0, reaches a maximum of 0.35 and finally
descends to 0.

39



Figure 4.2: The nondimensionalized added mass and damping coefficients for a
semi-submerged sphere as determines by Havelock

4.3 Experiments and reworks
The results from our solver, which used the algebraic solve process, present heavy
oscillations, but nonetheless follow the trend of Havelock’s curves. The tolerance
used for GMRES was 10−10.
The experiment was stopped before reaching 𝜔 = 2, as the refinements required to
have a sufficiently small panels on Γ𝑓 𝑟𝑒𝑒 brought the nodes count to 10442 and the
problem set solve time to 2112s on the development machine. Increasing 𝜔 would
have almost quadrupled the dofs and increased by a factor of 16 the matrix-vector
product cost. It could have warranted for a switch to the FMA, but the real issue
would have been with the GMRES not converging in a timely manner due to the
degradation of the condition number for the linear operator.
With regard to the individual problems difficulty, as is somehow expected due
to the symmetries of the sphere, the surge, sway and heave potentials take more
iterations to converge, about double those required by the problems for the roll,
pitch and yaw potentials. Solution of the diffraction potential takes only slightly
more than the first three problems.

Moreover, we speculate that the oscillations are due to a combination of the
Sommerfeld boundary condition on Γ𝑤𝑎𝑙𝑙 and a poor organization of the Γ𝑓 𝑟𝑒𝑒
tessellation.
Reducing the radius of the tank allows to increase the limit on 𝜔, albeit with
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Figure 4.3: The nondimensionalized added mass and damping coefficients for a
semi-submerged sphere computed on a cylinder of radius 20

limited success: the mesh now requires a lower number of refinements in order to
accommodate the radiation 𝜆 in the tessellation. Since in this investigation the
steady wave-making potential 𝜙𝑆 is ignored, the mesh is not required to have Γ𝑤𝑎𝑙𝑙
at a large distance from the hull.
Indeed, halving the tank radius moves the computational limit to around 𝜔 = 3.25.
The behavior of the solution near 𝜔 = 0 is worse than with the larger mesh,
suggesting that the very long radiation wavelength induced by a small frequency is
not captured well enough by the nodes of Γ𝑓 𝑟𝑒𝑒 . We also observe that the oscillation
appear to have a larger period compared to those from the larger tank.
Following the consideration on the tessellation of Γ𝑓 𝑟𝑒𝑒 , we experimented with a

different refinement strategy: instead of halving both dimensions of the cells, we
only cut along the radii from the hull center. This procedure allows to maintain a
sufficiently high number of panels covering the radiated wavelength, but does not
waste resources along the radiated isolines.

Indeed, this new strategy proves extremely effective: the largest mesh only
contains 3546 nodes and maintains the same solution quality found previously,
with a problem set solve time of only 295.6s.
The underwhelming behavior on the smaller tank for low frequency persists, so

we abandon it. We rather investigate a naive smoothing strategy: by interpolating
the results from 𝜋-BEM with the CubicSpline class from SciPy [31], we find the
average oscillation period and apply a moving average using the window.
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Figure 4.4: The nondimensionalized added mass and damping coefficients for a
semi-submerged sphere computed on a cylinder of radius 10

Figure 4.5: A mesh with the free surface refined along the radii
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Figure 4.6: The nondimensionalized added mass and damping coefficients
computed on a cylinder of radius 20, radial refinement

Indeed the smoothed curves are close to Havelock’s results, but irregularities are
still present on a large part of the sampled interval.
We now investigate the effect of increasing the order of elements: this determines

a setback on the benefits of the radial refinement, as even though one refinement
step can now be omitted, the placement of nodes dictates that the non-radial edges
are effectively refined.
The results show that the higher order elements consistently decrease the oscillations
amplitude, and the smoothed curves are very close to the theoretical solutions.
However, the irregularities appear to increase in amplitude for frequencies above 2
and on some intervals, the chosen sampling seems to not be able to properly capture
the solution behavior. The larger spikes are reminiscent of the irregular frequencies
cited by [17], which other codes treat with so-called ”lid-panels”, additional cells
placed as a continuation of Γ𝑓 𝑟𝑒𝑒 to cover the hole pierced by the hull.
The process of refining the mesh to accommodate the radiated wavelength gives

good results, after post processing, but still requires a large number of nodes, or
higher order elements, to be able to properly extract convincing results.
An alternative approach would be to first estimate an optimal relationship between
the mesh geometry and the wavelength, then construct a sequence of ad-hoc meshes
respecting said relation, one for each 𝜔, without changing the number of nodes.
We opted for fixing the ratio between the wavelength and the distance between
the hull and Γ𝑤𝑎𝑙𝑙 to 3, and forced 4 rounds of radial refinement on Γ𝑓 𝑟𝑒𝑒 in order
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Figure 4.7: The nondimensionalized added mass and damping coefficients
computed on a cylinder of radius 20, radial refinement, moving average smoothing

Figure 4.8: The nondimensionalized added mass and damping coefficients
computed on a cylinder of radius 20, Q2 elements, radial refinement

44



Figure 4.9: The nondimensionalized added mass and damping coefficients for a
semi-submerged sphere computed on a cylinder of radius 20, Q2 elements, radial
refinement, moving average smoothing

to respect the constraint described before. Although this is somewhat of a magic
number, it comes from the empirical observation of the results seen so far.
The solver program was again extended to specify in the parameter file the mesh
elements to be scaled by a given factor, and the sequence of problems were generated
accordingly.
The results follow qualitatively the desired behavior, although with some deviation

Figure 4.10: On the left, the adaptive mesh for 𝜔𝑒 = 0.86; on the right, the adaptive
mesh for 𝜔𝑒 = 2.05, both with Γ𝑓 𝑟𝑒𝑒 refined along the radii
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trends. At the lower frequencies, the added mass coefficient shows a discontinuity
and underestimates in value; the tendency is towards overestimating between
𝜔 = 0.5 and 3, and the asymptotic behavior seems to tend to 0.35, which is again
under the expected result. The damping coefficient follows the target closely until
𝜔 = 1, after which decreases much slower than the theory.

Increasing the element order, we observe that the discontinuity for the added

Figure 4.11: The nondimensionalized added mass and damping coefficients
computed on the adaptive mesh, linear elements, radial refinement

mass coefficient is more severe, and the overestimation continues up to around
𝜔 = 4.5. From that point on, albeit with some localized instability, the agreement
with the theory is very good. For the damping coefficient, the pattern seen before
is repeated but difference with the theory is much lower; the same instability found
for the added mass coefficient show up, and the decrease to zero is still slower than
the theory, but faster than the previous experiment.
Finally, we exploit the reduced solution cost to increase the element order again.

The irregularity at lower frequency is exacerbated, but at higher values of 𝜔 the
results are smooth. However, the deviation from the theory is identical to the
previous experiment, suggesting this is the limit of the adaptive mesh for the
radius-wavelength ratio adopted.
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Figure 4.12: The nondimensionalized added mass and damping coefficients
computed on the adaptive mesh, Q2 elements, radial refinement

Figure 4.13: The nondimensionalized added mass and damping coefficients
computed on the adaptive mesh, Q3 elements, radial refinement
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Chapter 5

Conclusions

This work provided the initial steps for the implementation of the offline phase of
a linear seakeeping pipeline based on the 𝜋-BEM solver, and was carried out in
the context of the Winning a Sea State project in collaboration with Cetena.
From the analysis of the theoretical background of the model and the inner working
of the library, seamless implementations were devised for Robin and linearized free
surface boundary conditions, efficient solution of multiple problems sharing the
same geometry, and support for complex-valued formulations.
The enhanced performances of the revised library were compared against the
original in a strong scaling benchmark. The good scaling behavior was retained
when measured on a problem featuring complex-valued potential and Robin boundary
conditions, where the comparison of actual execution times showed agreement
with the theoretical estimates. For the algebraic solve process, the linear operator
takes roughly double the time of a purely real case, while the Fast Multipole
Approximation depends on the nodes partitioning between the different boundary
conditions.
Experimenting on the retrieval of the added mass and damping coefficients for a
semi-submerged sphere in the zero-speed case showed the versatility of 𝜋-BEM
and the deal.II framework, allowing to easily implement alternative strategies in
the mesh refinement process with the aim to decrease computational costs while
retaining solutions quality.
The issue of parasitic oscillations in the solutions were linked to the relationship
between the free surface tessellation, the basin walls distance from the ship hull,
and the radiated wavelength, as an effect of the Sommerfeld radiation condition
applied on the walls.
Refinement of the free surface cells along the radii allowed to retain the solution
quality of highly refined meshes with a lower node count. This allowed to increase
the order of the elements, with the effect of reducing the amplitude of the oscillations.
A naive smoothing procedure, based on the estimation of the oscillation period
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with a purely data-driven procedure, and its removal through a moving average
filter, retrieved coefficients very close to the theory.
An alternative strategy, exploiting the hypothesis of the existence of an optimal
relationship between wave frequency and mesh geometry, showed promise in the
retrieval of qualitatively good results, by substituting the refinement of the mesh
with a suitable scaling operation on the mesh.
Although the development effort shifted to the online phase of the motions prediction,
the work completed so far constitutes a promising basis for an efficient, scalable,
free open source framework.
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