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Abstract: Deep Neural Networks (DNNs) are algorithms with widespread use in the
extraction of knowledge from raw data. DNNs are used to solve problems in the
fields of computer vision, natural language understanding, signal processing, and
others. DNNs are state-of-the-art machine learning models capable of achieving bet-
ter results than humans in many tasks. However, their application in fields outside
computer science and engineering has been hindered due to the tedious process of
trial and error multiple computationally intensive models. Thus, the development of
algorithms that could allow for the automatic development of DNNs would further
advance the field. Two central problems need to be addressed to allow the automatic
design of DNN models: generation and pruning. The automatic generation of DNN
architectures would allow for the creation of state-of-the-art models without relying
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CHAPTER I

INTRODUCTION

Deep Neural Networks (DNNs) are powerful models used to solve a variety of real-

world problems, such as computer vision, natural language understanding, and signal

processing. However, their design and deployment are not trivial undertakings. In

the present work, the task of designing accurate and compact DNN architectures is

considered as a combinatorial optimization problem, and the developments of specific

algorithms to perform such task automatically are proposed. These algorithms are

inspired by the field of Evolutionary Computation (EC), which has been used success-

fully for many years to solve a variety of optimization problems employing little to no

prior knowledge about the problem in question. The motivation, problem statement,

contributions, and organization of the proposed work are presented in this chapter.

1.1 Motivation

Humanity has been dreaming of building intelligent machines for many decades or

even centuries now. The development of robots and computers are the materializa-

tion of such dreams. Even before the advent of the discipline of Artificial Intelligence

(AI), Alan Turing, in the 1950s, designed a test to verify if a machine could be called

intelligent or not, commonly known as the Turing Test [1]. Russell et al. [2] argue

that a machine needs to be proficient in four areas to be able to pass the Turing Test :

Natural Language Processing, Knowledge Representation, Automated Reasoning, and

1



Table 1.1: Artificial intelligence sub-disciplines, according to [2].

Sub-discipline Description

Natural Language Processing
Studies the human communication through the

use of language, both oral and written

Knowledge Representation
Studies how to store and retrieve previously

learned knowledge

Automated Reasoning
Studies how a machine should act based

on its internal knowledge and its sensors

Machine Learning
Studies how to use the results from

past data to extrapolate results on new data

Machine Learning. Interestingly enough, these are all parts of the AI discipline, which

has been studying how intelligence works and how to replicate it on machines since

its inception in 1956 [2]. Table 1.1 sums up what each of these disciplines studies —

the field of Natural Language Processing studies how humans use language to com-

municate and transmit knowledge; the field of Knowledge Representation studies how

to store and represent learned knowledge efficiently; the field of Automated Reason-

ing studies how to reasoning using stored knowledge. For last, the field of Machine

Learning studies how to use data to construct and extrapolate knowledge to unseen

situations.

No machine or algorithm developed so far has ever passed the Turing Test. How-

ever, many advancements were made in the Machine Learning (ML) field along the

way. The objective of an ML model is to find some structure or pattern in a given set

of data [3]. This process is also known as data fitting, where the model tries to find a

function that explains the data, which can be later used to extrapolate results from

new data. This data fitting procedure is also called adaptation, learning, or training.

A Machine Learning model can learn through the use of three learning paradigms:

2



Supervised, Unsupervised, and Reinforced. In Supervised Learning, the model learns

by observing data containing pairs of inputs and outputs, known as labeled data.

While in Unsupervised Learning, the model needs to separate the data in clusters,

and the training data contain only inputs, known as unlabeled data. For last, Rein-

forced Learning works as a mix of Supervised and Unsupervised Learning, and the

model is awarded for every correct prediction or action executed on a set of inputs.

Table 1.2 sums up the types of data used in each learning paradigm.

Currently, the most popular family of ML models used to extract meaningful infor-

mation from raw data are Deep Neural Networks (DNNs), which are part of the Deep

Learning (DL) field. There are two categories of DNNs: feed-forward and recurrent.

In feed-forward DNNs, the information flows in one direction from the beginning to

the end of the DNN architecture. While in recurrent DNNs, the flow of information

from one part of the network can be fed back to previous nodes creating a network

with memory capabilities. There are multiples and different DNN architectures in

each of these categories used to solve specific problems. For example, feed-forward

DNNs are suitable to solve most of the problems related to the field of computer vi-

sion, while recurrent DNNs are suitable for use with natural language understanding

and dynamics problems. Fully-Connected, Convolutional [4], Residual [5], and Dense

[6] Neural Networks are typical examples of feed-forward DNN architectures, while

Long-Short-Term Memory (LSTM) [7], Gated Recurrent Unit (GRU) [8], and Hop-

field [9] Neural Networks are typical examples of recurrent DNNs. Because DNNs are

highly adaptable models, among other tasks, they can be used to detect and classify

objects in images and videos [10, 11], to translate texts and voice between different

languages automatically [12, 13], and to generate text and speech [14, 15, 16]. The

types of DNNs and their uses are summarized in Table 1.3. However, to craft a DNN

model, one must take into account a series of unclear guidelines.

3



Table 1.2: Types of data used by ML algorithms, according to [3].

Learning type Data description

Supervised Learning Data contains both inputs and outputs

Unsupervised Learning Data contains only inputs

Reinforced Learning
Data contains rewards for

correct executed actions

First, the type and architecture of a DNN model are dependent on the type of data

available for training. If the data available are time-dependent, then recurrent DNNs

are the most suitable for the task. If the data are composed of images, then feed-

forward DNNs with convolutional layers, to be detailed in Chapter II, are the best

to exploit. Moreover, the number of parameters of a DNN model is also dependent

on the complexity of the data available, with small DNN models being able to learn

only simple data.

Second, the adaptation procedure of a DNN depends on the data being labeled or

unlabeled. Similar to other ML model, a DNN needs to adjust its internal parameters

interactively through a training process. Thus, DNNs can be supervised trained if the

available data is labeled, or unsupervised trained if the available data is unlabeled.

Third, a massive amount of data needs to be gathered. Given a sufficiently large

model and amounts of data, DNNs can learn any function, and, because of this, they

are known as universal approximators [17]. However, if the available training data

is not large enough, this also means that a DNN can easily overfit and memorize it

instead of learning from it. Thus, DNNs must be trained in databases containing tens

of thousands or even millions of samples.

Fourth, in order to train, or even deploy a trained DNN model, a large amount

of computing power is needed. For example, the most successful DNN models used
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Table 1.3: Deep neural networks types.

DNN Category Architectures Most used for

Feed-forward
Fully-connected, Convolutional [4],

Residual [5], Dense [6], etc.

Computer vision

problems [10, 11]

Recurrent
LSTMs [7], GRUs [8],

Hopfield [9], etc.

Natural language

understanding and

dynamics problems

[12, 13, 14, 15, 16]

in image classification tasks can take months to train on Central Processing Units

(CPUs). Hence, in recent years, the development of General Purpose Graphical

Processing Units (GPGPUs) was key to the revitalization of the Artificial Neural

Networks field in the form of Deep Learning (DL). Although the basic theory used in

today’s DNNs was first developed in the 1980s [18, 4], only recently the amount of

data and computational power, due to the advent of Big Data [19] and GPGPUs [20],

were finally enough to allow the development of very deep neural networks capable

of surpassing human beings in image classification tasks [21, 22].

For last, there are still other factors that one must take into consideration when

crafting a DNN model. For example, the creators of the VGG networks [23], a very

successful DNN model, showed that the use of small convolutional filters in DNNs for

image classification achieved better results than DNNs with large filters. Likewise,

Szegedy et al. [24] observed that the use of small networks inside a large one, a concept

called network-in-network [25], produced better results in image classification tasks

than those with simple DNN architectures. He et al. [5] showed that a DNN model

could increase its classification performance if it was trained to learning a residual

mapping instead of a direct mapping of the network’s inputs and outputs. Huang et
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al. [6] also increased the classification performance of DNN models by connecting any

given convolution layer to all of its previous layers. Thus, even though DNNs can be

used to solve a myriad of real-world problems, their development and deployment are

based on trial and error with no standardized methodology available, as illustrated

in Figure 1.1.

On the other hand, Evolutionary Computation (EC) algorithms are mostly used

to solve optimization problems. There are two types of approaches when dealing with

optimization problems: derivative-based and derivative-free. Derivative-based algo-

rithms use the gradient of a loss function to direct the search. By contrast, derivative-

free algorithms are ideal for problems where the derivatives are too expensive to ob-

tain, or they cannot be computed, such as discrete and combinatorial optimization

problems. Table 1.4 shows some examples of derivative-based and derivative-free al-

gorithms. Steepest descent, Newton’s method, and Levenberg-Marquardt are some

examples of derivative-based algorithms. On the other hand, EC algorithms, simu-

lated annealing, random search, and downhill simplex search are some examples of

derivative-free algorithms [26]. EC algorithms are also referred to as meta-heuristic

Data Collection

(Re)Design DNN architecture

Train DNN model

Performance is
good?

Deploy DNN model

Yes

No

Figure 1.1: Process of creation and deployment of a DNN model.
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Table 1.4: Types of optimization algorithms.

Type Algorithm

Derivative-based

Steepest Descent [26]

Newton’s Method [26]

Levenberg-Marquardt [27]

Etc.

Derivative-free

Genetic Algorithms [28]

Evolutionary Programming [28]

Evolutionary Strategies [28]

Simulated Annealing [26]

Random search [26]

Downhill Simplex Search [29]

Etc.

algorithms because most of them are derivative-free algorithms created based on natu-

ral metaphors, such as evolution and animal behavior, instead of purely mathematical

analysis. Similar to DNNs, EC algorithms were also created many years ago, but they

still see substantial interest at present.

Three algorithms are considered the most known representatives of the field [28]:

the Genetic Algorithm (GA) created by John Holland in the 1960s, the Evolutionary

Programming (EP) created by Fogel, Owens, and Walsh in 1966, and the Evolutionary

Strategies (ES) created by Rechenberg and Schwefel in 1965. The authors of EP

and ES created these algorithms to solve specific design problems, while GAs were

created to study the evolutionary and adaptation processes. More recently, algorithms

based more on the behavior of animals than in evolution were also developed. Some

examples are the Particle Swarm Optimization (PSO) algorithm created by Kennedy

and Eberhart in 1995 [30, 31], the Ant Colony System (ACS) created by Dorigo et al.
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[32], the Firefly algorithm created by Yang [33], the Fish School Search created by

Bastos Filho et al. [34] and the Cuckoo Search created by Yang [35], as exemplified

in Table 1.5.

As EC algorithms are used mostly to solve optimization problems, they can also

be placed into two categories: algorithms to solve single-objective optimization prob-

lems (SOPs), and algorithms to solve multi-objective optimization problems (MOPs).

Most of the previously cited algorithms are used to solve SOPs where the maximum

or minimum value of only one single objective function is searched. In MOPs, two or

more conflicting objective functions, where the improvement in one of the functions

deteriorates some of the others, are optimized at the same time. Most of the previous

algorithms can be enhanced to also work with MOPs.

EC algorithms have also been used to improve DNNs for a very long time now.

In the 1990s, GAs were mainly used for training DNNs at a time when the available

data were not large enough to avoid overfitting problems caused by the traditional

use of gradient descent [36, 37, 38]. In the 2000s, EC algorithms were mainly used

for DNN training and architecture searching, when the field of NeuroEvolution was

established. One of the most important works from that time was the development of

the NeuroEvolution of Augmenting Topologies (NEAT) by Stanley and Miikkulainen

in 2002 [39, 40]. However, NEAT and others’ algorithms from the 2000s cannot find

massive DNN models with the same level of performance as the ones hand-crafted by

human experts.

Although many improvements happened from the 1980s until now in the field

of Deep Learning and NeuroEvolution, the development of DNN architectures to

solve any given problem is still a complicated endeavor. Most of the algorithms for

searching for DNN architectures as part of NeuroEvolution are still convoluted and
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Table 1.5: Popular algorithms used in evolutionary computation.

Inspired by Algorithm

Natural selection and evolution

Genetic Algorithms [28]

Evolutionary Programming [28]

Evolutionary Strategies [28]

Differential Evolution [41]

Etc.

Animal behavior

Particle Swarm Optimization [30, 31]

Ant Colony System [32]

Firefly Algorithm [33]

Fish School Search [34]

Cuckoo Search [35]

Etc.

have a prohibitively computational cost for use by a person outside the field. Thus,

in the present work, a series of algorithms are proposed to address the problem of

automatically searching for DNN architectures for image classification tasks.

1.2 Problem Statement

Currently, data are everywhere and being continuously generated [19]. Ideally, re-

searchers, experts, and professionals from all academic disciplines would like to extract

meaningful knowledge from all these data automatically. As stated before, DNNs are

the most prominent tool used for such tasks because they can find correlations in any

data used to train them. One would expect that data with similar characteristics,

such as images from dogs or cats, could be easily analyzed with a single DNN model

or very similar models. In reality, various DNN models need to be devised even when

dealing with similar data coming from different sources. For example, in the field of
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image classification, there are many databases used to benchmark models. The most

famous being the ImageNet [42], CIFAR10 [43], CIFAR100 [43], and MNIST [44]

datasets. Some of them are easier to classify than others, but, even though they are

all composed of digital images, to get useful results, one needs to use different DNN

models for each of them. One can use a technique called transfer learning [45, 46] to

avoid the need to design a new DNN from scratch for use with a different database

than the one used to train the original DNN. With transfer learning, a DNN trained

in a large dataset can be repurposed to work with a smaller and simpler dataset by

retraining only the last few layers of the network in this new dataset.

However, transfer learning does not address the fact that the most successful DNN

models found in the literature have a high computational complexity for both training

and deployment. Indeed, model and data complexity are considered one of the biggest

challenges of the DL field [47, 48]. For example, the VGG16, VGG19, and Inception,

three DNNs with good results on ImageNet, contain a total of 138 million, 143 mil-

lion, and 23 million parameters1, respectively. These DNNs need to have millions of

parameters because they were designed to classify the 3.2 million images found in the

ImageNet dataset [42], and they can take weeks to finish one entire training session.

Even though they can be repurposed to work with other datasets with the use of

transfer learning, they will still contain roughly the same number of parameters. One

approach that could be used to reduce the computational complexity of DNNs is the

elimination of unnecessary or redundant parameters from their architectures. This

elimination of redundant parameters is known as compression or pruning of DNN ar-

chitectures [49, 50, 51, 52, 53, 54, 55, 56]. Nonetheless, the process of pruning a DNN

architecture is usually an afterthought, and it can also increase the time required to

implement DNN-based solutions.

1The number of parameters can be found in https://keras.io/applications/
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Therefore, this Ph.D. work proposes the development of algorithms capable of

searching for DNN architectures for image classification tasks that can find solutions

with a good trade-off between performance and computational complexity for a given

dataset automatically. The proposed algorithms empower researchers and profession-

als from all disciplines to unlock the potential of DL and DNNs in their future works

allowing for reduced development time and higher research output. In this sense, the

tasks of searching and pruning DNN architectures are seen as optimization problems,

where the DNN architecture searching algorithm tries to find models with the best

performance in a chosen dataset, while the DNN architecture pruning tries to find

models with the smallest number of parameters [53, 56]. However, the performance of

a DNN model and its computational complexity are two conflicting objectives. It is

not possible to maintain a model’s performance if too many parameters are removed.

For this reason, the proposed work considers that the task of pruning DNN archi-

tectures is a multi-objective optimization problem, and also allows the possibility of

using user preference to guide the pruning procedure.

Furthermore, at the time of writing, the present work is one of the first to propose

such a unified framework for searching and pruning DNN architectures. Many works

in the literature deal with network architecture searching and pruning separately, but

there is no work where both are considered part of the same problem.

1.3 Contributions

The contributions of the present work are three-fold:

• First, the development of a novel DNN architecture search algorithm based on

Particle Swarm Optimization is presented, called psoCNN. This algorithm can

automatically find Convolutional Neural Networks (CNNs) architectures given
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an image classification dataset. A novel encoding strategy and velocity com-

putation are devised to deal with variable length individuals in the population.

The results obtained are competitive with peer competitors.

• Second, the development of a novel DNN pruning algorithm based on Evo-

lution Strategies (ES) is presented, called DeepPruningES, which can prune

pre-trained CNNs, Residual Neural Networks, and Densely Connected Neural

Networks architectures automatically. The algorithm uses the Minimum Man-

hattan Distance (MMD) approach to find the solution with the best trade-off

between classification accuracy and computational complexity. It also finds two

boundary solutions: one with the best classification accuracy and the other with

the smallest computational complexity. With a total of three pruned solutions,

the algorithm can help decision-makers to choose which one is the best to be

used based on his or her needs.

• Third, a unified framework for DNN architecture searching and pruning is pro-

posed, called DNNDeepeningPruning, where very deep DNN architectures are

built from scratch as quickly as possible. Then, the newly found DNN is pruned

to create a compact model. DNNs are built by adding residual blocks, one on the

bottom of another. During pruning, models are selected based on the user pref-

erence of a small computational complexity or higher classification performance.

The proposed framework is applied to search for meaningful DNN models used

in medical imaging diagnostics applications with competitive results.

1.4 Dissertation Organization

The present document is organized into the following chapters:
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• The basic background theories about Deep Neural Networks, Evolutionary Com-

putation, and related DNN architecture searching and pruning algorithms are

presented in Chapter II.

• The first contribution of this work is presented in detail in Chapter III, where the

Particle Swarm Optimization algorithm is used for CNN architecture searching.

It is also shown the results obtained when the algorithm is applied in a series

of image classification databases.

• In Chapter IV, the proposed DNN architecture pruning algorithm based on

Evolution Strategies is presented, as well as the results obtained in a series of

state-of-the-art DNN models.

• In Chapter V, the proposed unified framework for DNN architecture search-

ing and pruning is presented. This chapter also presents the medical imaging

databases used to test the framework.

• In Chapter VI, Generative Adversarial Networks (GANs) used to generate x-ray

images are pruned using the proposed DNN architecture pruning algorithm.

• Finally, the conclusions of the present work are drawn in Chapter VII.
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CHAPTER II

RELATED WORKS

The basic theory behind deep neural networks (DNNs) and evolutionary compu-

tation (EC), as well as related works on DNN architecture searching and pruning

algorithms, are presented in this chapter.

2.1 Deep Neural Networks

Most of the Deep Neural Networks (DNNs) designs used at present are the same

ones used by the very first Artificial Neural Networks (ANNs). Thus, an overview of

ANNs will be presented first and, then, it will be used to explain further how DNNs

work.

2.1.1 Overview of Artificial Neural Networks

ANNs are composed of multiple computational nodes known as artificial neurons.

The purpose of an artificial neuron is to compute a simple function of its inputs with

its weights. In general, each neuron in an ANN produces only one single output.

Neurons have two sets of parameters: weights and biases.

The basic artificial neuron has one single input and output, as illustrated in Figure

2.1. First, this single input neuron will perform a multiplication between its weight,

w, and its input, x. Then, the bias, b, is added to produce n. For last, the neuron’s

output, a, is produced by inputting n to an activation function, f(.). Usually, non-
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linear functions are used as activation function, such as the hyperbolic tangent and

the sigmoid. In DNNs, the rectified linear unit (ReLU) is the commonly employed

activation function, and it is written as f(n) = max(n, 0) [57]. Typically, a neuron’s

output can also be used as inputs to other neurons allowing multiple layers of neurons

to be used in the building of a single ANN.

Although it is easier to understand the inner working of an artificial neuron by us-

ing a single input example, in general, most neurons used to solve real-world problems

have multiple inputs, as illustrated in Figure 2.2. To facilitate computations when

dealing with multiple inputs and a single neuron, the inputs, x, and the neuron’s

weights, w, can be seen as row and column vectors with the same dimension, respec-

tively, and the scalar multiplication from before will become a vector multiplication.

In the present work, feed-forward ANNs with no feedback connections are used;

one example is shown in Figure 2.3. In the field of Deep Learning (DL), this type

Figure 2.1: Artificial neuron with one input.

Figure 2.2: Artificial neuron with multiple inputs.
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of ANN can also be used as a layer to DNNs, and it is commonly known as a fully-

connected layer because each neuron from any given layer is connected to all neurons

in the next layer. The ANN shown in Figure 2.3 has two layers: one hidden layer, the

middle line of black nodes, and one output layer, the right-most black node. The left-

most line of black nodes is called the input layer, and it is not used when counting the

total number of layers in an ANN because its nodes do not perform any computation.

The input layer only forwards the inputs to the first hidden layer. Moreover, an ANN

can have an arbitrary number of hidden layers and output nodes.

The crucial advantage of stacking neurons is the fact that the weights of all neurons

from a given layer can be combined into a single matrix, and the outputs of each layer

can be treated as a vector. In Figure 2.3, the weights W1 and W2 are two different

matrices. Thus, the output, y, of the ANN can be computed as follows:

y = f2(f1(x ·W1 + b1) ·W2 + b2), (2.1)

where f1(.) and f2(.) are the activation functions of the first and second layers, re-

spectively, b1 and b2 are the bias vectors used by the neurons in the first and second

layers, respectively, and x is the inputs of the network. The process of computing the

output of an ANN or DNN from a set of inputs is called inference, and it is mainly

performed once the network parameters are fully trained [58].

Figure 2.3: Feed-forward artificial neural network.
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2.1.2 Training Procedure for ANNs and DNNs

The process of training unlocks one of the most compelling aspects of ANNs and

DNNs, which is their high adaptability to data. The backpropagation algorithm is

the most used one to train ANNs and DNNs because it can compute the gradients of

the network parameters with respect to the network’s output error.

The process of training is, in fact, an optimization problem. In supervised training,

one must find a set of parameters that minimizes the error between the network

predicted output and the correct one. Thus, it is natural that before the training can

begin, one must choose a loss function meaningful to the problem at hand. In modern

DNNs used for image/object classification, the activation function used in the output

layer is the softmax, which outputs a probability distribution of all possible classes

from a problem. The softmax is shown in Equation 2.2, and it uses the output of all

nodes, nj, in the last layer, from j equal to 1 to k, where k is the total number of

classes in the problem, to determine the probability of the current output node, ni.

The output of a DNN used for classification is its confidence that a given input comes

from a specific class. Thus, because the cross-entropy loss is the most suitable loss

used when comparing two probability distributions, it is also the most suitable one for

use in DNNs. This loss function is shown in Equation 2.3, where ŷ = [ŷ1, ŷ2, ..., ŷk]
T

is the ground truth, y = [y1, y2, ..., yk]
T is the predicted output, and k is the number

of classes.

yi = fi(n) =
eni∑k
j=1 e

nj

(2.2)

CrossEntropyLoss(y) = −
k∑
i=1

ŷi ln(yi) (2.3)
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With the loss function defined, one can train an ANN or DNN by iteratively

performing two steps: a forward step and a backward step. The forward step is per-

formed by giving inputs and computing the network’s losses, and no parameter is

adjusted in this step. The backward step is performed by first computing gradients

using backpropagation and, then, updating the network’s parameters. The backprop-

agation algorithm uses the information from the forward step and the chain rule of

Calculus to compute the gradients for all parameters in the network with respect to

the loss function. The gradients are then used to update the network’s parameters

using some optimization algorithm. For example, one could use the gradient descent

algorithm to update the parameters as follows:

zt = zt−1 − α∇F (zt−1), (2.4)

where z represents any parameter in the network: weights and biases; t represents the

current time step, t− 1 represents the previous time step; α is the learning rate, and

∇F (zt−1) is the gradient of the current parameter z with respect to the network’s

loss. Other optimization algorithms can also be used with backpropagation, such as

the Adam [59] and AdaGrad [60] optimizers.

2.1.3 DNN Architectures for Image Classification

In this section, first, the most common layers’ type used in DNNs for computer

vision tasks are presented, and, then, some specific examples of DNNs follows.

Modern DNNs are mainly composed of three types of layers: convolutional, pool-

ing, and fully-connected. As the name suggests, convolutional layers perform a convo-

lution operation between its weights, also called filters or kernels, and its inputs. The

output of a convolutional layer is produced by sliding the filters over the input. The
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filter will move over the input according to a parameter called stride, which controls

how many positions the filter will move to produce the next output. The output of a

convolution layer is shown in Equation 2.5, where i represents the current layer, f(.)

is the activation function of the current layer; Ai, Wi, and X are multi-dimensional

matrices representing the output, the weights, and the input of the current layer,

respectively, while bi is a vector representing the biases of each filter in the current

layer; ~ represents a convolutional operation. A simple convolutional operation is

shown in Figure 2.4, where a filter of size 3 × 3 and strides 1 × 1 is convolved with

a 6 × 6 input to produce a 4 × 4 output. Convolutional layers are frequently used

due to their weight sharing nature, which allows the use of more compact networks

when dealing with images [4]. They also extract features from images that are used to

facilitate the work of classifying them by the final layers. Thus, convolutional layers

are always used before any fully-connected layer in a DNN architecture.

Ai = f(Wi ~ X + bi) (2.5)

Pooling layers are used for downsampling their inputs. This downsampling is

done by using a sliding window over its input to produce an output by performing an

average or a maximum operation with the elements inside the window. This procedure

Figure 2.4: Example of a convolutional operation with a 3× 3 filter and strides equal
to 1× 1.
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is illustrated in Figure 2.5, where an input of size 8×8 is downsampled to 4×4 by using

a maximum and an average pooling. This type of layer is commonly placed between

convolutional layers and before the first fully-connected layer. This downsampling

process also contributes to the creation of compact DNNs. When building a DNN

architecture, the first few layers have higher output dimensions than the ones from

the final layers.

Fully-connected layers used in DNNs are just simple ANNs similar to the ones

explained before. They are also called classifier layers because they take the features

extracted by a sequence of convolutional and pooling layers and determine in which

class the input belongs.

Modern DNN architectures used for image classification were created to compete

in the ImageNet challenge, where the network needs to be able to correctly classify

three million color images with an average resolution of 400 × 350 pixels in one of

the one thousand possible classes [42]. The entire ImageNet database has a size of

140 gigabytes. To solve such a complex problem, researchers have designed many

different DNN architectures. Currently, the most successful DNNs in the ImageNet

challenge are the VGGs, Residual (ResNets), and Densely Connected (DenseNets)

Figure 2.5: Example of pooling with a 2× 2 window size and stride.
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Neural Networks.

The VGG neural networks were created by Simonyan and Zisserman and won

the ImageNet challenge in 2014 [23]. They showed that convolutional layers with

small convolutional kernels were able to achieve better classification performance than

networks using large convolutional kernels. There is a total of four VGG networks

ranging from 11 to 19 convolutional layers. These VGG networks are shown in Figure

2.6, where Conv stands for convolutional layer, MaxPool stands for max-pooling layer,

FC stands for fully-connected layer, the number in each convolutional layer represents

how many 3×3 filters are in that layer, and the number in each fully-connected layer

represents how many neurons is in that layer. The input size used in all four VGG

networks is equal to 3× 244× 244, where the first dimension represents the number

of channels in a color image (red, green, and blue channels).

Residual neural networks (ResNets) were created by He et al. to improve the

gradient computation in very deep neural networks [5]. Feed-forward DNNs, such

as the VGGs, are trained to learn a direct mapping between its inputs and outputs.

However, when DNN architectures contain too many layers, the gradient of the first

layers will become close to zero in a phenomenon called vanishing gradient. He et

al. showed that, instead of computing a direct mapping between inputs and out-

puts, a DNN could be trained to learn the residual mapping. In practice, this can

be achieved by adding shortcut connections between multiple layers. This new con-

nectivity pattern between layers improves the DNN performance without adding any

extra parameters to the network. It also allows for even deeper DNNs than the ones

seen before. The basic ResNet building block is the so-called residual block, shown

on the left side of Figure 2.7. A residual block contains two convolutional layers with

3× 3 filters and one shortcut connection from the inputs to the output of the second

convolutional layer. ResNets can also use bottleneck residual blocks, shown on the
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right side of Figure 2.7. These bottleneck residual blocks are composed of three con-

volutional layers with the middle layer having 3× 3 filters, and the others with 1× 1
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Figure 2.6: VGG neural network architecture. Adapted from [23].
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filters. He et al. claim that the bottleneck design is more computationally efficient

than the non-bottleneck one. However, the bottleneck design does not show any signs

of performance improvement in the network when compared with the non-bottleneck

design. For last, the shortcut connection is joined with the output of the last layer in

a block by performing an addition operation followed by a rectified linear activation

function (ReLU). Thus, the shape of the inputs needs to be equal to the shape of the

last layer’s output.

Densely connected neural networks (DenseNets) created by Huang et al. [6] can be

seen as an improvement from ResNets. Where in a residual block only the inputs are

connected to the outputs through a shortcut connection, the so-called dense block can

have an arbitrary number of layers, and each layer’s outputs within the same dense
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Figure 2.7: Residual blocks used by ResNets. Adapted from [5].

23



Dense Block Blottleneck
Dense Block

Conv. 3x3

ReLU

Concatenation

Inputs

Conv. 3x3

ReLU

Conv. 3x3

ReLU

Conv. 3x3

ReLU

Outputs

Concatenation

Concatenation

Concatenation

Conv. 3x3

ReLU

Concatenation

Inputs

Conv. 3x3

ReLU

Conv. 3x3

ReLU

Conv. 3x3

ReLU

Outputs

Concatenation

Concatenation

Concatenation

Conv. 1x1

ReLU

Conv. 1x1

ReLU

Conv. 1x1

ReLU

Conv. 1x1

ReLU

Figure 2.8: Example of Dense blocks with 4-layers. Adapted from [6].
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block are connected to the input of all subsequent layers in a pattern that resembles

the neurons’ connectivity in fully-connected layers. Instead of using addition, like in

the residual blocks, the dense blocks use concatenation. Thus, the number of inputs

for each layer is not constant and increases from one layer to the next, illustrated in

the left side of Figure 2.8. Similar to the residual blocks, it is also possible to use a

bottleneck version of a dense block. The bottleneck is built by adding convolutional

layers with 1 × 1 filters before the convolutional layers with 3 × 3 filters. The 1 × 1

convolutional layers help to stabilize the number of inputs that each 3×3 convolutional

layer receives, which creates more computationally efficient networks, illustrated in

the right side of Figure 2.8. After each dense block, a transition layer is used to

avoid that the number of inputs at the end of the network explodes exponentially.

The connectivity pattern found in DenseNets allows the use of fewer filters in each

convolutional layer; this produces DNNs with higher classification performance and

fewer parameters than any other DNN architectures.

2.1.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a particular type of DNN used to

generate data instead of classifying it. GANs were first developed by Goodfellow

et al. [61] in 2014, which consisted of two ANNs playing a minimax game: one

called the generator, and the other called the discriminator. The generator learns

the probability distribution of real data, while the discriminator learns to distinguish

between data coming from the real distribution or the distribution generated by the

generator. This vanilla GAN was later enhanced to allow the generation of images by

using convolutional layers in the discriminator and transposed convolutional layers

in the generator, and it is called Deep Convolutional Generative Adversarial Network

(DCGAN) [62]. Figure 2.9 illustrates a GAN in which DCGANs share the same
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structure. In general, z represents a vector of random values, which is used as the

input of the generator, and data coming from the real probability distribution is

represented by x. Finally, the training of GANs and DCGANs is performed by using

the following loss function [61]:

min
G

max
D

L(D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))], (2.6)

where the generator (G) tries to minimize log(1 − D(G(z))), and the discriminator

tries to maximize log(D(x)).

The Wasserstein Generative Adversarial Network (WGAN) developed by Arjovsky

et al. in 2017 [63] is another important GAN type. The WGAN architecture is

essentially the same as the ones found in DCGANs. The main difference is that

the WGAN’s discriminator has a linear activation function as output, which is not

limited to 0.0 and 1.0 as in the traditional DCGANs. The loss function in WGAN is

not a minimax game, but the Wasserstein distance or Earth-Mover distance, and it

Figure 2.9: Example of a Generative Adversarial Network.
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is defined as follows [63]:

L(Pr,Pg) = inf
γ∈

∏
(Pr,Pg)

E(x,y)∼γ[||x− y||], (2.7)

where Pr the probability distribution of the real data and Pg the probability distribu-

tion of the generator ’s parameters. The Wasserstein distance measures the distance

between two probability distribution in the horizontal axis instead of the vertical

axis. This loss function also allows for a more stable training avoiding problems with

gradient vanishing or mode collapse in the generator.

2.2 Evolutionary Computation

Evolutionary computation (EC) algorithms are a class of derivative-free algorithms

used to solve optimization problems. In this section, the definitions of single-objective

and multi-objective optimization problems are presented and, then, two EC algo-

rithms related to the present work, particle swarm optimization (PSO), and evolu-

tion strategy (ES), are explained in detail. PSO is a heuristic algorithm based on

the flying pattern of bird flocks capable of finding a suitable solution faster than

other EC algorithms. While ES is one of the first EC algorithms created back in the

1960s. It takes advantage of randomized heuristics to find solutions to discrete and

combinatorial optimization problems easily. These two algorithms contain important

characteristics that can be exploited during the generation and pruning of deep neural

network architectures.

2.2.1 Single-objective and Multi-objective Optimization

In an optimization problem, one would like to find the best possible solution from

a vast pool of candidate solutions [64]. Commonly, the best possible solution is the
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one that gives the minimum or maximum of an objective, loss, cost, or fitness function.

Note that EC algorithms also present a stochastic behavior and, therefore, it is not

guaranteed that the solution found is the global best possible solution, also known as

the optimal solution [64, 65]. It is also possible to place constraints on the solutions

being searched, reducing the size of the search space considerably. One key aspect of

EC algorithms that is not easily controllable is the level of exploration and exploitation

[66]. Exploration refers to the algorithm’s ability to find solutions far away from the

current ones, while the exploitation is the algorithm’s ability to find solutions close

to existing ones. The so-called operators that exist in all EC algorithms are one

way of achieving exploration and exploitation. All EC algorithms have a selection

operator that is used to choose the best individuals and variation operators that

ensure individuals will change over time. Moreover, optimization problems can be

divided accordingly to the number of functions being optimized.

If only one function is being optimized, the problem is called a Single-Objective

Optimization (SOP). A simple example is shown in Figure 2.10, where the black

dot represents the optimal minimum of a single input function, which also has some

local maximum and minimum points. An algorithm using information from this

function’s derivative, such as steepest descent, would become trapped in any of the

local minimum points because the derivatives in these points are equal to zero. Once

a derivative-based algorithm is trapped in a local minimum, the optimal minimum

becomes impossible to find. Because of their derivative-free nature, EC algorithms

can escape from local minimum points and are also ideal for use in problems where

the objective function is no guaranteed to be continuous.

If two or more functions are being optimized at the same time, the problem is then

called a Multi-Objective Optimization (MOP) problem. Furthermore, in these types

of problems, the functions being optimized conflict with each other. In this sense, a

28



good solution in one of the objectives may be a bad one in the other objectives. In

MOPs, in general, it is not possible to find a solution that is the best in all objec-

tive functions. Thus, algorithms dealing with MOPs are developed to find multiple

solutions from an N -dimensional space formed by the N objective functions used in

the problem, called the objective space. The selection of solutions in MOPs uses the

concept of domination in the objective space. A solution x1 is said to dominate a

solution x2 (x1 � x2), if fn(x1) is no worse than fn(x2), for all objective functions,

fn(.), n = 1, ..., N , and x1 performs better than x2 in at least one objective function

[65, 67]. The group of solutions in the objective space that dominates all other so-

lutions is called the non-dominated front, shown in Figure 2.11, and it is frequently

used by MOP algorithms to choose the best solutions in the population.

2.2.2 Particle Swarm Optimization

Kennedy and Eberhart created the Particle Swarm Optimization (PSO) algorithm

in 1995 [30, 31], and, in its simplest form, it is used to solve nonlinear Single-Objective

x

f(x)

Optimal minimum

Local minimum

Local maximum

Figure 2.10: Example of a continuous Single-Objective Optimization problem.
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Optimization problems. The flying pattern of a flock of birds was the inspiration for

the creation of PSO. The idea is that birds can travel together knowing only the

location of its neighbors and its current location. An individual bird does not know

the final objective of the flight, and, at any moment, if any bird finds something of

interest, it can change the flight direction of the flock. The PSO authors called this

social or swarm intelligence, and it is nature’s solution for optimization tasks. [30].

One key advantage of PSO over other EC algorithms is that PSO converges to good

solutions faster than other algorithms [68, 69].

In PSO, each particle or individual knows the position of the current best particle

in the population, the global best (gBest), and its own previous best position, the

personal best (pBest). At any given iteration, k, a velocity vector, vi, is computed

for each particle, i, which is used to compute the particle’s position vector, xi, for

the next iteration, k + 1. The velocity of each particle is computed according to

Equation 2.8, where vi,j(k + 1) represents the j-th component of the i-th particle’s

velocity for the next iteration k + 1; pBesti,j represents the j-th component of the

f1 (minimization)

f2 (minimization)

Non-dominated
front

Figure 2.11: Example of a non-dominated set in a two-objective space.
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best position of particle i so far; gBestj represents the j-th component of the current

global best particle; w is a constant defined beforehand called momentum; cp and cg

are also constants defined beforehand; rp and rg are random numbers generated in

the interval of 0 and 1. Once a particle’s velocity is computed, its position can be

updated following Equation 2.9.

vi,j(k+1) = w×vi,j(k)+cp×rp×(pBesti,j−xi,j(k))+cg×rg×(gBestj−xi,j(k)) (2.8)

xi,j(k + 1) = xi,j(k) + vi,j(k + 1) (2.9)

The general PSO algorithm is shown in Algorithm 1, where Pi represents a particle

i in the population, and Pi.obj represents the value of the particle i in the objective

function used for optimization, also known as the particle’s fitness value. A population

of N particles is first initialized at random, and their objective function values are

evaluated. The pBest of all particles are initialized to its initial position, and the

global best particle, gBest, is chosen within the population. Then, the velocity of

each particle and their positions are iteratively computed and updated according to

Equations 2.8 and 2.9. After each position update, the quality of the particle is

evaluated on the objective function and compared with its pBest and gBest. If the

updated particle is better than pBest and gBest, the particle’s position is replaced.

Not shown in Algorithm 1 is how to handle particle’s positional constraints, which can

be quickly implemented by limiting the positional values to upper and lower bounds

when updating the particle’s position in line 20 of Algorithm 1.
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2.2.3 Evolution Strategies

Evolution Strategies (ES) were first developed back in the 1960s to solve the prob-

lem of designing successive experiments to study turbulent airflow [70]. The ES cre-

Algorithm 1: Particle Swarm Optimization

Input : Objective function (f(.)), population size (N), maximum number
of iterations (itermax), momentum (w), constants cp, and cr.

Output: The global best particle (gbest).

1 // Population initialization

2 for i = 0 to N do
3 Pi.x← Initialize position values at random;
4 Pi.obj ← Evaluate the objective function value (f(Pi.x));
5 // Make the particle’s pBest equal to itself

6 Pi.pBest← Pi;

7 // gBest initialization

8 if i = 0 then
9 gBest← Pi;

10 else
11 if Pi.obj is better than gBest.obj then
12 gBest← Pi;
13 end

14 end

15 end
16 // Objective function optimization

17 for k = 1 to itermax do
18 for i = 1 to N do
19 Pi.velocity ← Update velocity according to Equation 2.8;
20 Pi.x← Update position according to Equation 2.9;
21 Pi.obj ← Evaluate the objective function value (f(Pi.x));
22 if Pi.obj is better than Pi.pBest.obj then
23 Pi.pBest← Pi;
24 if Pi.pBest.obj is better than gBest.obj then
25 gBest← Pi.pBest;
26 end

27 end

28 end

29 end
30 // Return global best individual

31 return gBest;
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ators observed that a well thought randomized heuristic produced better results than

the gradient-based one they had been using back then. The idea of using randomized

heuristics to solve optimization problems creates an elegantly simple algorithm with

only two essential actions: variation and selection.

The most basic variation operator used by ES algorithms is random mutations

of individuals’ parameters. Optionally, a recombination operator can also be used to

produce variation in the population. The discrete recombination is the most com-

monly used one. It is performed by randomly selecting ρ parents from the population,

and one new individual is generated by randomly picking one parameter of each ρ

parents to be transferred to the new individual [70]. An example of discrete recom-

bination with four individuals is shown in Figure 2.12. The selection procedure in

ES is very straightforward. At each generation, the best µ individuals are selected to

produce new offspring. Commonly, the best individuals are the ones with the highest,

in a maximization case, or the lowest, in a minimization case, fitness values.

Most of ES algorithms configurations can be summed up using the following
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Figure 2.12: Discrete recombination with four individuals. Adapted from [70].
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nomenclatures: (µ/ρ + λ) − ES or (µ/ρ, λ) − ES [70], where µ represents the num-

ber of parents selected at every generation, λ is the number of offspring that will be

produced at every generation from the µ parents selected, and ρ is the number of

individuals selected for use in the recombination process. Moreover, there are two

types of ES algorithms: a plus (+) and a comma (,) versions. Their main difference

is in the selection procedure. In the plus version, the selection is performed by using

the combination of µ parents plus λ offspring, while, in the comma version, the se-

lection is performed by using only λ offspring. The plus version is an elitist version

of ES because good solutions will be kept in the population until better offsprings are

found. On the other hand, in the comma version, only the offsprings are kept, and all

parents are eliminated regardless of how good they are. The entire ES pseudo-code

is presented in Algorithm 2.

2.3 DNN Architecture Searching and Pruning

In this section, related works about DNN architecture searching are first discussed,

followed by works on DNN architecture pruning.

2.3.1 DNN Architecture Searching

In the early 1990s, most evolutionary approaches (EAs) were used as a replacement

for backpropagation during the training phase of ANNs [36, 37, 38]. However, EAs

started been used to design ANN architectures soon after. Such algorithms are cur-

rently known as NeuroEvolution, Evolutionary Artificial Neural Networks (EANNs)

or Topology and Weight Evolving Artificial Neural Networks (TWEANNs) [71, 39],

and, as suggested by their names, they are capable of evolving only plain ANNs be-

cause they work by evolving the connections between individual neurons instead of
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groups of neurons.

Similar to EAs used to solve simple optimization problems, TWEANNs are also

population-based algorithms where each candidate solution represents a different

ANN architecture. Then, the objective of these algorithms is to use the EC’s se-

lection and variation operators to find better architectures over time. The definition

of better architectures will depend on the problem at hand; it can be architectures

with better accuracy in a given dataset or architectures with a small number of pa-

rameters [71].

The main challenge faced by researchers developing TWEANNs was how to rep-

Algorithm 2: Evolution Strategy

Input : Objective function (f(.)), maximum number of generations
(genmax), number of parents (µ), number of individuals for
recombination (ρ), number of offspring (λ), and algorithm version
(ver).

Output: The best individual in the final generation.

1 // Initialize population

2 Pµ,Pλ ← Initialize individuals at random;
3 f(Pµ), f(Pλ)← Evaluate the fitness of the population;

4 // Objective function optimization

5 for g = 1 to genmax do
6 if ver = plus then
7 Pµ ← Select best µ individuals from Pµ + Pλ;
8 else if ver = comma then
9 Pµ ← Select best µ individuals from Pλ;

10 end
11 for i = 0 to λ do
12 Pρ ← Randomly select ρ individuals from Pµ;
13 Pλi ← Generate one offspring using recombination from Pρ;
14 Pλi ← Randomly mutate each of the individual’s parameters;
15 f(Pλi)← Evaluate the fitness of the offspring;

16 end

17 end
18 return the best individual in Pµ;
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resent ANN architectures in a meaningful way for use by EC’s operators. Early

TWEANNs used direct encoding schemes to represent an ANN architecture. In this

kind of scheme, each neuron and each connection between them have a directly rep-

resentation in the algorithm. It was common to use binary connectivity matrices to

direct represent ANNs, where each matrix element, aij = 1, represents if a connection

from neuron i to j exists [71]. Some examples of works that use this type of repre-

sentation can be found in [36, 72, 73]. Weighted graphs are another direct encoding

representation used in [74], where real numbers are used to encode the weights of

an ANN. However, direct encoding is not efficient to use when the network contains

hundreds of millions of neurons, even when using real numbers to represent the ANN

architecture instead of binary numbers [71]. To overcome this problem, researchers

developed indirect means to represent an ANN architecture, called indirect encoding

schemes. Parametric representation is one conventional approach to represent ANNs

indirectly in which a candidate solution is constructed from a set of parameters, such

as the number of neurons in a given layer, the number of connections between layers,

and others [71, 75].

Perhaps the most influential TWEANN is the NeuroEvolution of Augmenting

Topologies (NEAT) developed by Stanley and Miikkulainen in 2002 [39, 40]. NEAT

uses a direct encoding scheme, where the representation or genome of an individual

is a list of neurons and their connectivity. NEAT works by growing simple networks

with only inputs and outputs neurons into more complex ones over the generations.

Embedded in the individual’s representation is also a history of changes that are

used as a speciation mechanism. Hence, the population is composed of individuals

from different species. The idea of using speciation is to avoid that individuals been

eliminated before they can begin to perform better, which also avoids premature con-

vergence of the population. An efficient crossover and mutation (variation) operators
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were also developed to deal with variable length genomes, and it always produces

valid architectures. At the time, NEAT was considered the best algorithm to evolve

neural networks with outstanding results. However, it was only capable of finding

feed-forward and recurrent ANN architectures, which does not scale well for use in

deep learning applications.

The Evolutionary Acquisition of Neural Topologies (EANT) [76, 77] is another

NeuroEvolution algorithm for searching feed-forward and recurrent ANN architec-

tures. EANT uses a hybrid representation scheme where the ANN weights are directly

encoded in each of the genome position, and the ANN architecture can be decoded by

reading the genome positions from left to right. In contrast with NEAT, EANT only

uses mutations to modify individuals in the population. It contains two mechanisms

for such a task: structural exploration and structural exploitation. Structural ex-

ploration performs mutations in the ANN architecture, while structural exploitation

uses Evolution Strategy to optimize the ANN weights. EANT achieves comparable

results to NEAT.

Particle swarm optimization (PSO) algorithms have also being used to evolve

ANNs weights and architectures similar to the purely evolutionary approaches cited

previously. The work presented by Gudise and Venayagamoorthy in [78] is one of the

firsts to use PSO to train ANNs replacing the backpropagation algorithm. Similarly,

the works developed by Carvalho and Ludermir in [79, 80] were the first ones to use

PSO to search ANN architectures and weights at the same time. However, these and

other works using PSO suffers from the same problem of classic TWEANNs as that

they are only capable of searching for classic ANN architectures [81, 82].

Stanley et al. in 2009 [83] tried to overcome the limitation in the size of ANNs

created by TWEANNs at the time by developing an indirect representation to use

together with the NEAT algorithm, called HyperNEAT. An individual is represented
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using hypercubes, and the algorithm uses NEAT to evolve connective compositional

pattern-producing networks (CPPNs) that can be later decoded into ANNs archi-

tectures. The advantage of HyperNEAT is that it can generate ANNs taking into

account the geometry of the problem at hand. Although HyperNEAT can create

more complex ANNs than the ones from NEAT, it still cannot create award-winning

ANNs for use in deep learning.

Recently, researchers from Google showed that it was possible to search for DNN

architectures, instead of simple ANNs, using evolutionary approaches given enough

computational power is available [84]. They developed a custom evolutionary algo-

rithm, called Large-Scale Evolution of Image Classifiers (LSEIC), where candidate

solutions are modified using only random mutations. LSEIC is one of the first algo-

rithms to find DNN architectures with competitive results in challenging image classi-

fication datasets. However, its main downside is the amount of computational power

required. The authors used a server with 250 graphical processing units (GPUs),

taking a total of 4 × 1020 floating operations (FLOPs), and 11 days to achieve good

results. Unfortunately, not all interested researchers have this amount of computa-

tional power at their disposal. Thus, there is still substantial efforts to develop DNN

architecture searching algorithms that can be executed in consumer-grade GPUs in

a reasonable amount of time.

Liu et al. [85] also developed an evolutionary algorithm for DNN architecture

searching by performing only random mutations on candidate solutions. Different

from LSEIC that builds the DNN layer by layers, Liu et al. build the DNN ar-

chitecture hierarchically, where each node in the structure can be further developed

into a small network. This algorithm also obtained competitive results in challenging

classification datasets. However, it still suffers from a high computational burden.

The authors reported that with 200 GPUs, it still takes 1.5 days to find reasonable
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solutions.

Xie and Yuille [86] developed the genetic CNN algorithm to search for DNN ar-

chitectures. Specifically, this algorithm is capable of finding convolutional neural

networks (CNNs), residual neural networks (ResNets), and densely connected neu-

ral networks (DenseNets) architectures. It also uses a complete EA framework with

crossover and mutations operators to perform variation in candidate solutions. More-

over, it has a smaller computational burden than those of LSEIC and Liu et al.’s

algorithms, with the authors reporting two days using 10 GPUs.

Sun et al. developed an evolutionary algorithm to search specifically for CNN

architectures, called evoCNN [87]. It uses novel crossover and mutation operators to

deal with a variable number of layers on a candidate solution. Due to its reduced

search space, it can obtain good solutions with significantly less computational power,

and the authors report a running time of three days using two GPUs. Sun et al.

further developed their algorithm in [88] to use blocks of ResNets and DenseNets to

construct a DNN architecture. Although it can obtain better results than the original

evoCNN algorithm, this new algorithm does require more computational resources,

with the authors reporting a running time of nine days using three GPUs. Evolution-

ary approaches can also be used to search for unsupervised DNN architectures. Sun

et al. in [89] developed the evolving unsupervised DNNs (EUDNN) algorithm, where

the solutions are encoded using a set of basis vectors. Unfortunately, no information

about the computational complexity of EUDNN was provided, but the algorithm is

capable of finding solutions with competitive results to other unsupervised machine

learning approaches.
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2.3.2 DNN Architecture Pruning

DNN architecture pruning, also called by some as DNN compression, is used to

reduce the computational complexity of DNN models. Most DNNs contain millions

of parameters, requiring a lot of computational power to train and deploy them. The

main hypothesis used for pruning is that DNN architectures created by human experts

may contain too many unnecessary or redundant parameters. Thus, it may be possible

to created DNNs with fewer parameters, and without performance degradation. This

procedure can be formulated as an optimization problem where one wants to find the

right combination of filters in each DNN layer that reduces its number of parameters

as much as possible while maintaining the original DNN performance.

Pruning can only be performed on convolutional and fully-connected layers, but

not on pooling layers because they do not contain any parameter. Fully-connected

layers can be pruned by eliminating individual neurons, while convolutional layers can

be pruned by eliminating entire filters. Most human-crafted DNN architectures con-

tain a series of convolutional and pooling layers, and just a few fully-connected layers

at the end. Thus, the convolutional layers could contain almost ten times the compu-

tational complexity of the fully-connected ones [55]. Because of this, most researchers

are interested in pruning only the convolutional layers of a DNN architecture.

The parameters or weights of a single convolutional layer are a four-dimensional

tensor, W, with dimensions equal to (K × D × W × H), where K represents the

number of individual filters (D ×W × H), and D the depth, W the width, and H

the height of each filter. The pruning procedure will consist of the elimination of up

to K − 1 filters in each convolutional layer. This procedure is exemplified in Figure

2.13, where, in the top half of the figure, the first filter from a total of four filters

of size (3 × 3 × 3) is selected to be pruned, and, in the bottom half, is the resulting
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pruned model. Hence, most researchers developed algorithms to select which filters

to eliminate and which ones to keep in the architecture, in a process called filter

selection.

Usually, researchers use some statistical information from the current layer to

decide which filters to eliminate. In the literature [90], the most used criteria for

filter selection are the following:

• The mean activation of each filter is used by Molchanov et al. in [53], where

the filters with the lowest mean activation are considered the least important

Figure 2.13: Pruning of a single filter in a convolutional layer.
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ones and are selected for elimination.

• The filter’s l1-norm is used by Li et al. in [55], where the filters considered

least important are the ones with the smallest l1-norm, i.e., the filters with the

smallest sum of its absolute weights and are usually eliminated.

• The Average Percentage of Zeros (APoZ) of each filter can also be used as se-

lection criteria [50]. Filters containing many zeros are considered less important

for the DNN model.

• Lu and Wu [49] used the entropy of each filter, given a set of inputs and outputs.

They argued that unimportant filters will have similar entropy even for different

sets of inputs and outputs.

• Luo et al. [56] used the output of the next layer to decide which filter to

eliminate in the current layer.

• Mittal et al. [90] argued that the filter selection criteria is not essential and

that one could select filters at random.

Other works use less popular pruning techniques instead of filter pruning. For

example, Han et al. and Hubara et al. use quantization to reduce the number of bits

needed to represent the parameters of a DNN model [51, 52]. While the approach from

Ding et al. [54] is to not modify the DNN architecture at all but to change the way

convolutions are computed by using block-circulant matrices. However, these pruning

technique needs specialized software and hardware for implementation, which makes

the filter pruning technique the most desired one for further development.
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CHAPTER III

CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE

SEARCHING BASED ON PARTICLE SWARM OPTIMIZATION

The most used models for image and object classification tasks are Convolutional

Neural Networks (CNNs). However, finding meaningful CNN architectures is not triv-

ial and needs human experts to design them by trial and error. Thus, in this chapter,

a Particle Swarm Optimization based algorithm to design CNNs automatically is

proposed and evaluated in challenging image classification datasets1.

3.1 Introduction

In image or object classification tasks, one would like to build a model capable

of classifying in which class a given image belongs to. Historically, researchers have

been using a plethora of algorithms and models to solve this type of tasks, such as

support vector machines [92], k-nearest neighbors [93], and Fisher vectors [94], to

name a few. However, only after the introduction of Deep Learning (DL) techniques

is when models began to be able to classify images with human-level accuracy.

The most successful models used in image classification are Convolutional Neural

Networks (CNNs), in which DL has allowed the creation of CNNs with dozens of

layers. These networks are a particular type of Deep Neural Networks (DNNs), where

a feed-forward architecture, without shortcut or skip connections, and with multiple

1The present chapter is partially based on my previously published work found in [91]. Tables
and Figures are reproduced here with permission of the publisher of [91].
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layers of convolutional operations, is used. Although CNN architectures are known

to be the most successful models for use in such tasks, finding the ideal architecture

for a given problem is still a trial and error undertaking. For example, Krizhevsky et

al. [57] showed that the use of the rectified linear unit (ReLU) as the convolutional

layer’s activation function, where f(n) = max(0, n), yielded better results than the

use of the classical hyperbolic tangent function, f(n) = tanh(n). Likewise, Simonyan

and Zisserman [23] found out that the use of small 3×3 convolutional filters decreases

the overall number of parameters of a CNN which allowed for deeper networks with

higher classification capabilities. Researchers have developed other approaches to

improve DNNs classification capabilities, but these approaches change the network

architecture so much that they are not considered simple CNNs anymore.

The ability to design a CNN architecture automatically would disseminate the use

of DL techniques to researchers and experts outside the field and reduce the develop-

ment time of CNN applications for consumer uses. In the last 30 years, as presented

in Section 2.3.1, many researchers have been developing methods for automatically

searching for CNN architectures. However, most of them were developed using the

concepts from genetic algorithms, which require massive amounts of computational

power to search for a single CNN model. Therefore, the development of an algo-

rithm to search CNN architectures without requiring the computational power only

available in data-centers is proposed in this chapter.

The Particle Swarm Optimization (PSO) algorithm is considered an excellent al-

ternative for Genetic Algorithms because of its fast convergence speed [68, 69]. Fur-

thermore, as presented in Section 2.3.1, researchers have used PSO algorithms for

artificial neural network architecture search with varying degrees of success in the

past. For example, Sun et al. [95] successfully developed a PSO algorithm to design

convolutional autoencoders (CAEs) automatically instead of direct CNN architec-
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tures, and they obtained competitive results when compared with other methods.

However, the closest related work to the proposed algorithm presented in this chap-

ter is the one done by Wang et al. [96] called IPPSO. In that work, each layer of a

CNN is encoded using real numbers based on IP addresses from computer networks.

The use of real number encoding allows for the implementation of an almost standard

PSO algorithm with no need for the development of specific operators, such as par-

ticle’s velocity and position updating. Although IPPSO can deal with particles with

different lengths, it cannot produce CNNs with more layers than a specified maximum

length. Furthermore, the results presented by the IPPSO authors are limited to only

three image classification datasets.

Thus, a novel PSO algorithm capable of searching for CNN architectures with

a good balance between searching speed and CNN classification accuracy, called

psoCNN [91], is presented in this chapter. The main contributions of the proposed

psoCNN algorithm are the following:

• A novel encoding scheme is developed where each position of a single particle’s

parameters encodes a single layer together with the layer’s hyperparameters,

such as the number and size of its convolutional filters.

• A novel operator to compute the difference between two particles is developed,

which also allows the comparison of particles with different lengths.

• A novel velocity operator with only a single turning parameter is developed,

allowing a particle to resemble the global best particle in the population or its

own personal best.

These contributions together facilitate the development of a novel PSO-based

algorithm that allows particles representing CNNs to grow or shrink in size, which
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is extremely important when developing algorithms for CNN architecture searching.

In the next section, the proposed psoCNN algorithm is discussed in detail. After

that, the results obtained with the proposed algorithm are presented as well, showing

that psoCNN is capable of obtaining competitive results when compared with peer

competitors’ algorithms.

3.2 Proposed Algorithm

The proposed psoCNN is shown in Algorithm 3. It receives as inputs the size

of the population or swarm (N); the total number of iterations that the algorithm

will run (itermax); the image classification dataset used during the searching process

(X); the probability of updating a particle’s parameters using the global best over the

personal best when computing the particle’s velocity (Cg); the maximum number of

layers that a particle can be initialized (lmax); the maximum number of filters and their

size that a convolutional layer can be initialized (filtersmax and kmax); the maximum

number of neurons that a fully-connected layer can be initialized (nmax); the number

of outputs (nout); the number of training epochs used for particle evaluation (etrain),

and the number of training epochs to fine-tuning the best CNN architecture found

(etest). The algorithm’s output is the best CNN architecture found (gBest).

The algorithm uses the standard framework found in most PSO algorithms due

to the proposed encoding scheme, and contains a total of four main components:

• The initialization of the population or swarm (Algorithm 3, line 1);

• The velocity computation of each particle (Algorithm 3, line 15);

• The parameter updating of each particle (Algorithm 3, line 16).

• The fitness or loss computation of each particle (Algorithm 3, lines 3, 8, 17, and
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28).

The following subsections explain the encoding scheme used to represent a single

CNN architecture and each of the above components. After these, more details about

the influence of each of the algorithm’s inputs are given.

3.2.1 Particle Encoding Scheme

The main challenge in adapting a PSO algorithm to work with CNN architecture

searching is how to develop an encoding scheme that can be used to produce mean-

ingful particle velocities. In the proposed encoding scheme, each particle’s parameter

encodes a single layer directly without using any conversion to a numbering system.

The encoding scheme can be thought of as a nested list where each position of the

list represents one layer, and, for each position, there is another list representing

the hyperparameters of that layer. This encoding scheme is exemplified in Figure

3.1, where the illustrated particle has four parameters representing a four-layer CNN

architecture.

There is a total of four types of layers allowed: convolutional, average pooling,

max pooling, and fully-connected. The hyperparameters used by the convolutional

layers are the number of filters, the two-dimensional size of each filter, and the two-

dimensional strides used by the moving window. The pooling layers only have the

type of pooling used by the layer: max or average. The fully-connected layers only

have one hyperparameter that is the number of neurons in the layer.

Thus, to construct a CNN architecture from the proposed encoding scheme, the

algorithm reads the particle’s parameter list from left to right and creates a CNN

by adding each layer represented by the parameter. The activation function used for

every layer is the rectified linear unit (ReLU), and the strides used for the pooling
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Algorithm 3: Proposed psoCNN [91]

Input : Swarm size (N), number of iterations (itermax), training data (X),
probability of choosing gBest over pBest when computing
velocities (Cg), maximum number of layers used in the
initialization (lmax), maximum number of convolutional filters used
in the initialization (filtersmax), maximum convolutional filter size
used in the initialization (kmax), maximum number of neurons in a
FC layer used in the initialization (nmax), number of outputs (nout),
number of training epochs during particle evaluation (etrain),
number of training epochs for the best CNN found (etest).

Output: The best CNN architecture found.

1 S = {P1, ..., PN} ← InitializeSwarm(N, lmax, filtermax, kmax, nmax, nout);
2 P1.pBest← P1 ;
3 P1.loss, P1.pBest.loss← ComputeLoss(P1, X, etrain) ;
4 Initialize gBest← P1;
5 gBest.loss← P1.loss ;

6 for i = 2 to N do
7 Pi.pBest← Pi ;
8 Pi.loss, Pi.pBest.loss← ComputeLoss(Pi, X, etrain) ;
9 if Pi.loss ≤ gBest.loss then

10 gBest← Pi ;
11 end

12 end

13 for iter = 1 to itermax do
14 for i = 1 to N do
15 Pi.velocity ← UpdateV elocity(Pi, Cg) ;
16 Pi ← UpdateParticle(Pi) ;
17 Pi.loss← ComputeLoss(Pi, X, etrain) ;
18 if Pi.loss ≤ Pi.pBest.loss then
19 Pi.pBest← Pi ;
20 Pi.pBest.loss← Pi.loss ;
21 if Pi.pBest.loss ≤ gBest.loss then
22 gBest← Pi.pBest ;
23 gBest.loss← Pi.pBest.loss ;

24 end

25 end

26 end

27 end
28 gBest← ComputeLoss(gBest,X, etest) ;
29 return gBest, gBest.loss ;
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layers are always 2× 2. Furthermore, the proposed encoding scheme does not encode

the weights of a CNN model, needing a small retraining phase when the algorithm is

computing the fitness or loss of a given particle.

3.2.2 Particle Evaluation

The main objective of the proposed psoCNN algorithm is to find the best CNN

architecture for a given image classification dataset. Hence, it does not search for

CNN weights for a given CNN architecture. When the algorithm needs to evaluate

the quality of a given particle, performed by the function ComputeLoss() found in

Algorithm 3, lines 3, 8, 17, and 28, it first decodes the particle’s parameters into

a CNN model with weights initialized using the Glorot approach [97]. Then, the

decoded CNN model is trained for a certain number of epochs using Adam optimizer

[59] over the whole dataset. When the algorithm is only searching for the best CNN

architecture, the models are trained using a smaller number of epochs (etrain) than

the number of epochs used to retrain the global best particle (etest) at the end of the

searching process. This particle evaluation procedure is also the main bottleneck of

the proposed algorithm because, at every iteration, the whole population needs to be

retrained.

Layer Type: Convolution
Number of filters: 128

Filter size: 3x3
Strides: 1x1

C
Layer Type: Convolution
Number of filters: 128

Filter size: 3x3
Strides: 1x1

C Layer Type: Pooling
Pooling type: AverageP

Layer Type: Fully-connected
Number of neurons: 64FC Layer Type: Fully-connected

Number of neurons: 10FC
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p

u
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u
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Figure 3.1: Proposed representation of a CNN architecture in psoCNN.
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3.2.3 Swarm Initialization

The first step in the proposed psoCNN is to initialize the population or swarm

of particles, which are initialized at random by following a series of input parameters

given to the function InitializeSwarm() in Algorithm 3, line 1. The parameters

this function receives as inputs are the following: the total number of particles in

the swarm N ; the maximum number of layers that a single particle can be initial-

ized (lmax); the maximum number of convolutional filters of any convolutional layer

(filtersmax); the maximum size of a convolutional filter of any given layer (kmax); the

maximum number of neurons of any given fully-connected (FC) layer (nmax), and the

number of outputs of the CNN being represented (nout).

The proposed initialization scheme is shown in Algorithm 4. First, the number

of layers of a particle is randomly chosen to be between three and lmax (Algorithm

4, line 2). Second, the first layer of a particle is always chosen to be a convolutional

layer with a randomly assigned number of filters and filters size (Algorithm 4, line 5),

and the last layer is always chosen to be a fully-connected (FC) layer with its number

of neurons equal to the number of outputs, nout (Algorithm 4, line 7). Third, the

remaining layers are chosen at random to be convolutional, average or max pooling,

or fully-connected (Algorithm 4, lines 11 to 17). For last, if a fully-connected layer

is added to the particle, all subsequent layers need to be fully-connected as well to

produce a valid CNN architecture (Algorithm 4, lines 8, and 9).

Not shown in Algorithm 4 is a mechanism that eliminates pooling layers in excess.

At the end of the initialization process, each particle goes into a correction phase in

which the sizes of each layer’s outputs are computed, and any pooling layer that

produces an output size smaller than 4 × 4 is eliminated from the particle. This

mechanism ensures that every particle always represents a valid CNN architecture.

50



There are two hyperparameters found in the convolutional layers that have fixed

values for every layer of every particle. The first one is the padding of inputs, which

is done by using zero-padding to make the size of the outputs equal to the size of the

inputs, and the second one is the convolutional filters’ strides being always equal to

1× 1.

Algorithm 4: Swarm initialization in the proposed psoCNN
(InitializeSwarm()) [91].

Input : Swarm size (N), maximum number of layers (lmax), maximum
number of convolutional filters (filtersmax), maximum
convolutional filter size (kmax), maximum number of neurons in a
FC layer (nmax), number of outputs (nout).

Output: A set of N particles, S = {P1, ..., PN}.
1 for i = 1 to N do
2 Pi.depth = rand(3, lmax) ;
3 for j = 1 to Pi.depth do
4 if j == 1 then
5 list layers[j]← addConv(kmax, filtersmax) ;
6 else if j == Pi.depth then
7 list layers[j]← addFC(nout) ;
8 else if list layers[j − 1].type == “fully − connected” then
9 list layers[j]← addFC(nmax) ;

10 else
11 layer type← rand(1, 3) ;
12 if layer type == 1 then
13 list layers[j]← addConv(kmax, filtersmax) ;
14 else if layer type == 2 then
15 list layers[j]← addPool() ;
16 else
17 list layers[j]← addFC(nmax) ;
18 end

19 end

20 end
21 Pi.list layers← list layers;

22 end
23 return S = {P1, ..., PN} ;
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3.2.4 Computing the Difference Between Two Particles

To be able to compute the velocity and, subsequently, update the parameters of a

particle, a novel operator is proposed to compute the difference between two particles

symbolically. This procedure is illustrated in Figure 3.2, where two particles (P1

and P2) are compared. The first step is to separate the particles’ convolutional and

pooling layers (Conv/Pool) from their fully-connected (FC) layers, as illustrated in

the top-right side of Figure 3.2, which are going to be compared independently of each

other. The difference between particles is always computed with respect to the first

one (P1), and it is computed by comparing the blocks of Conv/Pool and FC layers.

For the Conv/Pool blocks, the difference is computed from left to right, while in the

FC blocks, the difference is computed from right to left. Thus, if the layer type of P1

is equal to the layer type of P2, the difference is equal to zero. If the layer type of

P1 is different from P2, the difference is equal to the layer from P1. If P1 has fewer

layers than P2, the difference is equal to −1, which indicates to the velocity operator

that any layer in that position should be eliminated. For last, if P1 has more layers

than P2, the difference is equal to +L, where L represents the layer from P1 and

indicates to the velocity operator that a layer should be added to this position. This

process is summed up in the bottom part of Figure 3.2.

3.2.5 Particle’s Velocity Computation

The velocity operator (UpdateV elocity()) makes use of the difference explained in

the previous subsection. First, the difference between the global best particle (gBest)

and the current particle (P ) is computed (gBest− P ). Then, the difference between

the particle’s personal best (pBest) and the current particle configuration is computed

(pBest− P ).
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The output of the velocity operator is a list of layers chosen from gBest − P or

pBest−P accordingly to a threshold value (Cg). A random number generator is used

to perform this task. If the random number generated is smaller than Cg, the velocity

operator will choose the difference from gBest−P . On the other hand, if the random

number generated is greater than or equal to Cg, the velocity operator will choose

the difference from pBest − P . The process is repeated for each layer represented

by these two differences, as illustrated in Figure 3.3. Thus, the Cg parameters will

control how much a particle will be similar to the global best or the personal best.

If Cg is close to 1.0, the particle will be more similar to the gBest after its updating

C1 C1 P1 C1 P1 F1 F1

C2 C2 C2 C2 C2 P2 F2

Particle 2 (P2)

Particle 1 (P1)

C1 C1 P1 C1 P1 F1 F1

C2 C2 C2 C2 C2 P2 F2

Conv/Pool FC

Conv/Pool FC

Separate FC layers 

from other layers:
Original representation:

C1 C1 P1 C1 P1

C2 C2 C2 C2 C2 P2

Compute (P1 - P2):

Conv/Pool layers

0 0 P1 0 P1 -1

F1 F1

F2

FC layers

+F1 0

P1

P2

P1 - P2

0 0 P1 0 P1 -1 +F1 0P1 - P2

Final difference

C Convolution layer

P Pooling layer

F Fully-connected layer

Legend:

0 No difference

-1 Remove layer

+L Add layer of type L

Figure 3.2: Computing the difference between two particles in the psoCNN [91].
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process. The output from the velocity operator is then used to update the particle’s

parameters.

There is a special case when computing a particle’s velocity that needs to be

addressed independently. Close to the final iterations, the layers’ types of a given

particle can become similar to its gBest and pBest, making the difference gBest −

P equal to pBest − P . In this case, the velocity operator will choose to use the

hyperparameters from gBest or pBest accordingly to the parameter Cg, as illustrated

in Figure 3.4.

3.2.6 Particle’s Updating

After computing a particle’s velocity, the proposed psoCNN will update it by using

the UpdateParticle() function. The updating procedure is illustrated in Figure 3.5,

and it is performed by comparing the particle’s velocity with its current configuration.

The updating algorithm also treats blocks of Conv/Pool and FC layers separately, and

it will replace the positions that are different from zero, as indicated by the velocity

operator. Thus, the proposed difference and velocity operators allow particles to

shrink, by eliminating layers or grow, by adding layers to a particle’s architecture.
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Figure 3.3: Computing the velocity of a single particle in psoCNN [91].
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3.3 Experimental Design

In this section, the chosen datasets and peer competitors algorithms used to eval-

uate the proposed psoCNN algorithm, as well as a discussion about the algorithm’s

parameters are presented.

Random number
generator.
Cg = 0.7

Velocity computation (special case)
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Figure 3.4: Computing the velocity of a single particle in psoCNN when gBest and
pBest have the same layers types [91].
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Figure 3.5: Updating a particle’s architecture in psoCNN [91].
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3.3.1 Datasets

Nine image classification datasets with publicly available results were chosen to

evaluate the proposed psoCNN algorithm. The chosen datasets were also used by

other researchers, which makes it easier to compare the psoCNN results with the

ones obtained by peer competitors. They are illustrated in Figure 3.6 and explained

in detail in the following.

The first five datasets shown in Figure 3.6, from top to bottom, are based on the

Modified National Institute of Standards and Technology (MNIST ) dataset created

by LeCun et al. [4]. They are the original MNIST, the MNIST with rotated dig-

its (MNIST-RD), the MNIST with random noise as background (MNIST-RB), the

MNIST with background images (MNIST-BI ), and the MNIST with rotated digits

and background images (MNIST-RD+BI ) datasets. They all have grayscale images

with sizes of 28 × 28 pixels, and a single-digit handwritten numeral between zero

and nine (ten classes) in the center of the image. The original MNIST dataset only

contains images with a black background with white numbers in the foreground, with

50,000 images used as the training set and 10,000 used as the test set. The other

four datasets based on MNIST were created by Larochelle et al. [98]. They use ro-

tated digits with a variety of backgrounds, and are considered more challenging than

the original one because models need to learn to ignore the irrelevant information

presented in the images. These MNIST variations contain only 12,000 images in the

training set and 50,000 images in the test set.

The Rectangles, Rectangles-I, and Convex datasets were also created by Larochelle

et al. [98], and they are used to test models’ ability to learn polygonal shapes. The

Rectangles and Rectangles-I contain grayscale images with 28× 28 pixels in size with

a single rectangle located somewhere in the image. A CNN model would need to learn
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Table 3.1: Overview of the datasets used to evaluate the psoCNN [91].

Dataset Input size # classes # training # test

MNIST 28× 28× 1 10 60,000 10,000
MNIST-RD 28× 28× 1 10 12,000 50,000
MNIST-RB 28× 28× 1 10 12,000 50,000
MNIST-BI 28× 28× 1 10 12,000 50,000

MNIST-RD+BI 28× 28× 1 10 12,000 50,000
Rectangles 28× 28× 1 2 1,200 50,000
Rectangle-I 28× 28× 1 2 12,000 50,000

Convex 28× 28× 1 2 8,000 50,000
MNIST-Fashion 28× 28× 1 10 60,000 10,000

MNIST

MNIST-RD

MNIST-RB

MNIST-BI

MNIST-RB+BI

Rectangles

Rectangles-I

Convex

MNIST-Fashion
Figure 3.6: Image classification datasets used to evaluate the proposed psoCNN al-
gorithm [91].
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two classes: if the width of the rectangle is larger than the height, and vice-versa.

The difference from the Rectangles-I to the Rectangles dataset is that the images in

the Rectangles-I contain patches of random images. The Rectangles dataset contains

1,200 training images and 50,000 test images, while the Rectangles-I contains 12,000

training images and 50,000 test images. The Convex dataset contains black and white

images of sizes equal to 28×28 with some polygonal shape. There are only two classes

in this dataset: if the shape is convex or not. There are 8,000 training images and

50,000 test images in the Convex dataset.

The last dataset in the list is the MNIST-Fashion created by Xiao et al. [99]. It

has the same number of images for training and testing and input sizes as the original

MNIST, but, instead of numeric digits, it contains small images of fashion garments.

It has a total of ten classes: t-shirt/top, trouser, pullover, dress, coat, sandal, shirt,

sneaker, bag, and ankle boot.

An overview of all chosen datasets, with their input sizes, their number of classes,

and the number of images used for training and testing, can be found in Table 3.1.

3.3.2 Peer Competitors’ Algorithms

The two main peer competitors’ algorithms to the proposed psoCNN are the

evoCNN developed by Sun et al. [87] and the IPPSO developed by Wang et al. [96]

because these two algorithms generate similar CNN architectures to the proposed

psoCNN for image classification by using evolution or particle swarm optimization.

All other peer competitors’ algorithms chosen to be compared with psoCNN are

not models generated automatically. The following is the list of the peer competitors

models used for comparison with the psoCNN :

• The original CNN models (LeNet-1, LeNet-4, and LeNet-5) created by LeCun

58



et al. [44].

• The recurrent CNN model (RCNN) created by Liang and Hu [100].

• A CNN architecture with DropConnect regularization developed by Wan et al.

[101].

• The contractive autoencoders (CAE) developed by Rifai et al. [102].

• The models developed by Chan et al. based on principal component analysis

(PCANet, RandNet, and LDANet) [103].

• For last, some recent state-of-the-art CNN architectures: AlexNet [57], VGG16

[23], GloogLeNet [24], and MobileNet [104].

The chosen peer competitors’ algorithms give a reasonable coverage of currently

available models using CNN and other machine learning algorithms to verify the

performance of the proposed psoCNN.

3.3.3 Algorithm Parameters

The parameters used to test the proposed psoCNN are shown in Table 3.2. There

are three categories of parameters: the ones related to the particle swarm optimization

part of the algorithm, the ones related to the initialization of the swarm, and the ones

related to the training phase (evaluation) of each particle.

The parameters related to the particle swarm optimization part of the proposed

psoCNN are the number of iterations (itermax) chosen to be equal to 10, the swarm

size (N) equal to 20, and the Cg parameter equal to 0.5. The number of iterations is

the stopping criteria of the proposed algorithm. A large number of iterations increases

the probability of the algorithm finding good solutions, but it takes more time to run.
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Table 3.2: psoCNN parameters used for evaluation [91].

Description Value

Particle swarm optimization
Number of iterations (itermax) 10

Swarm size (N) 20
Cg 0.5

Swarm initialization
Maximum number of convolutional filters (filtersmax) 256

Maximum convolutional filter size (kmax) 7× 7
Maximum number of neurons in a FC layer (nmax) 300

Maximum number of layers (lmax) 20
Particle training

Number of epochs for particle evaluation (etrain) 1
Number of epochs for the global best (etest) 100

The swarm size defines how many particles are used by the algorithm. A large number

of particles ensures better coverage of possible CNN architectures, but it also requires

a lot more computational power to evaluate the entire swarm. The velocity operator

uses the Cg parameter to control how fast a particle will approach the global best

particle (gBest) in the swarm. A Cg close to 1.0 will make particles approach the

gBest very fast, leading to premature convergence.

The parameters related to the swarm initialization are the maximum number of

convolutional filters (filtersmax), convolutional filter size (kmax), number of neurons

in a fully-connected (FC) layer (nmax), and number of layers (lmax). For each convo-

lutional layer, its actual number of filters is chosen at random during the initialization

to be between three and filtermax. The actual size of each convolutional filter (kmax)

is chosen at random to be between 3×3 and 7×7. For the fully-connected layers, they

are initialized with 1 to 300 neurons, also chosen at random. The maximum number

of layers (lmax) of a particle is randomly chosen to be between 3 and 20. The values

used during the initialization of the swarm controls how many CNN architectures are

reachable by the algorithm. Thus, they need to be chosen according to the maximum
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CNN architecture size allowed by the available computational equipment.

The last group of parameters is related to the evaluation of each particle during the

searching process and the training of the final global best particle. During the process

of particle evaluation, only a single epoch over the entire dataset is used to train each

particle (etrain). After that, the particle’s training accuracy is used to measure its

quality. Better particles will have higher training accuracy. Each particle’s training

is also performed by using a 50% dropout of the neurons in the FC layers and batch-

normalization to reduce the effects of overfitting. The final global best particle found

by the algorithms is then trained (etest) for a total of 100 epochs before reporting the

results presented in the next section.

3.4 Experimental Results and Discussions

In this section, the results obtained by the proposed psoCNN is presented, com-

pared with peer competitors’ algorithms, and discussed in detail. Moreover, to ensure

the statistical significance of the results presented here, they were obtained by running

the proposed algorithm 30 times and using the test set of each presented datasets.

3.4.1 Results

The results for the MNIST, MNIST-RD, MNIST-RB, MNIST-BI, MNIST-RD+BI,

Rectangles, Rectangles-I, and Convex datasets can be visualized in Table 3.3 and Fig-

ure 3.7, where the test error for each dataset is reported as a percentage. The plus

symbol (+) next to each value represents the instances where the results of the pro-

posed psoCNN are better than results from the peer competitors’ algorithms in a

statistically meaningful sense, while the minus symbol (−) represents the instances

where the results of the proposed algorithm are worse than results from the other
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algorithms. The (best) and (mean) indications shown in Table 3.3 represents the

best and average results found by psoCNN in 30 independent runs. For the MNIST-

RD, MNIST-RB, MNIST-BI, MNIST-RD+BI, Rectangles-I, and Convex datasets,

the best CNN architectures found by psoCNN have test errors of 3.58%, 1.79%,

1.90%, 14.28%, 2.22%, and 1.7%, respectively, which are better than all peer com-

petitors algorithms. Only for the MNIST and Rectangles datasets that the best CNN

architectures found by psoCNN does not have the best test errors, 0.32% for MNIST,

and 0.03% for Rectangles. However, on MNIST, psoCNN still has better results than

12 of the peer competitors, losing to only two of them (RCNN and DropConnect),

while, on Rectangles, psoCNN only has worse results than those of the evoCNN al-

gorithm.

The results for the MNIST-Fashion dataset are shown in Table 3.4 and Figure

3.8. Only for this dataset, the proposed psoCNN is tested with and without dropout

and batch-normalization. The tests that do not use dropout and batch-normalization

are indicated as psoCNN - dropout - BN in Table 3.4, while the tests that do use

them are indicated as psoCNN + dropout + BN . The best CNN architecture

found by the proposed psoCNN has a test error of 5.53%, and the average test error

on 30 runs of the psoCNN is 5.90%, which is only worse than two of the chosen peer

competing algorithms: evoCNN and MobileNet.

3.4.2 Discussions

The results presented here were performed with a total of nine challenging image

classification datasets, and comparisons were made to a total of 20 peer competitors’

algorithms. The proposed psoCNN algorithm is capable of finding CNN architectures

with the best results in six out of the nine datasets. The datasets that psoCNN did

not produced the best results were the MNIST, Rectangles, and MNIST-Fashion.
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Table 3.3: Test results on the MNIST, MNIST-RD, MNIST-RB, MNIST-BI, MNIST-
RD+BI, Rectangles, Rectangles-I, and Convex datasets [91].

Model MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD+BI Rectangles Rectangles-I Convex

LeNet-1 [44] 1.7% (+) - - - - - - -
LeNet-4 [44] 1.1% (+) - - - - - - -
LeNet-5 [44] 0.95% (+) - - - - - - -
RCNN [100] 0.31% (-) - - - - - - -

DropConnect [101] 0.21% (-) - - - - - - -
CAE-1 [102] 2.83% (+) 11.59% (+) 13.57% (+) 16.7% (+) 48.10% (+) 1.48% (+) 21.86% (+) -
CAE-2 [102] 2.48% (+) 9.66% (+) 10.90% (+) 15.5% (+) 45.23% (+) 1.21% (+) 21.54% (+) -

PCANet-2 [103] 1.06%(+) 8.52% (+) 6.85% (+) 11.55% (+) 35.86% (+) 0.49% (+) 13.39% (+) 4.19% (+)
RandNet-2 [103] 1.27% (+) 8.47% (+) 13.47% (+) 11.65% (+) 43.69% (+) 0.09% (+) 17.00% (+) 5.45% (+)
LDANet-2 [103] 1.40% (+) 4.52% (+) 6.81% (+) 12.42% (+) 38.54% (+) 0.14% (+) 16.20% (+) 7.22% (+)

EvoCNN (best) [87] 1.18% (+) 5.22% (+) 2.8% (+) 4.53% (+) 35.03% (+) 0.01% (-) 5.03% (+) 4.82% (+)
EvoCNN (mean) [87] 1.28% (+) 5.46% (+) 3.59% (+) 4.62% (+) 37.38% (+) 0.01% (-) 5.97% (+) 5.39% (+)

IPPSO (best) [96] 1.13% (+) - - - 34.50% (+) - - 8.48% (+)
IPPSO (mean) [96] 1.21% (+) - - - 33% (+) - - 12.06% (+)
psoCNN (best) 0.32% 3.58% 1.79% 1.90% 14.28% 0.03% 2.22% 1.7%
psoCNN (mean) 0.44% 6.42% 2.53% 2.40% 20.98% 0.34% 3.94% 3.9%
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Figure 3.7: Boxplots of the results obtained by psoCNN for the MNIST, MNIST-
RD, MNIST-RB, MNIST-BI, MNIST-RD+BI, Rectangles, Rectangles-I, and Convex
datasets [91].
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Table 3.4: Test results on the MNIST-Fashion dataset [91].

Model Test error # parameters

Human performance 1 16.5% (+) -
MLP 256-128-100 1 11.67% (+) 3M

GRU + SVM 1 11.2% (+) -
HOG + SVM 1 7.4% (+) -

AlexNet 1 10.1% (+) 62.3M
3CONV + 3FC 1 6.6% (+) 500k

VGG16 1 6.5% (+) 26M
GoogLeNet 1 6.3% (+) 23M

evoCNN (best) [87] 5.47% (-) 6.68M
evoCNN (mean) [87] 7.28% (+) 6.52M

MobileNet 1 5% (-) 4M

psoCNN − dropout − BN (best) 8.1% (+) 1.4M
psoCNN − dropout − BN (mean) 9.15% (+) 1.8M

psoCNN + dropout + BN (best) 5.53% 2.32M
psoCNN + dropout + BN (mean) 5.90% 2.5M
1 https://github.com/zalandoresearch/fashion-mnist
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Figure 3.8: Boxplots of the results obtained by psoCNN for the MNIST-Fashion
dataset [91].
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However, psoCNN is always one of the top 3 models for these datasets.

Another important characteristic of the CNN architectures produced by psoCNN

is that they have fewer parameters than most peer competitors’ models. The number

of parameters can be verified in Table 3.4 for the MNIST-Fashion dataset. The best

CNN architecture found by psoCNN contains a total of 2.32 million parameters, which

is almost half of the number of parameters of the most accurate model (MobileNet).

It also found CNN architectures with less parameters than the ones from evoCNN, the

most similar algorithms to the proposed psoCNN due to its use of population-based

evolution.

The evolution of the global best particle (gBest) for ten independents runs of

0 3 6 9 12 15 18
PSO iteration

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

gB
es

t T
ra

in
in

g 
Ac

cu
ra

cy

Using the proposed psoCNN

Run 0
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9

Figure 3.9: Evolution of the global best particle (gBest) in the Convex dataset for
10 independent runs of psoCNN [91].
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the psoCNN in the Convex dataset is showed in Figure 3.9. It shows that the algo-

rithm is capable of improving the gBest accuracy over time and that it is not merely

performing random mutations. Furthermore, Figure 3.10 shows the evolution of the

gBest particle using different numbers of epochs for particle evaluation in the Con-

vex dataset. These results show that the proposed psoCNN algorithm is capable of

improving the gBest, even using a large number of epochs for evaluation. Although

using a single epoch for particle evaluation does not produce the highest training

accuracy compared to five or ten epochs, the algorithm can easily find better gBests

in this situation, and the final gBest particle is always retrained at the end of the

process for a large number of epochs, which improves its accuracy eventually. Thus,

it is unnecessary to evaluate particles for a large number of epochs.

The best CNN architectures found by psoCNN are shown in Table 3.5. One

exciting aspect of all these networks is that they only have one single fully-connected

(FC) layer at the end of their architectures. Springenberg et al. [105] showed that

CNN architectures with only a single FC layer produce better results than the ones

using multiple FC layers. These results have shown that psoCNN was able to find

this type of CNN architectures by itself without using any prior knowledge.
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Figure 3.10: Effect of the number of epochs used during each particle evaluation on
the Convex dataset [91].
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Table 3.5: Best CNN architectures found by psoCNN on each dataset [91].

Dataset Layer Parameters

MNIST

Convolution filter size: 4× 4; number of filters: 77
Convolution filter size: 6× 6; number of filters: 189
Convolution filter size: 5× 5; number of filters: 91
Convolution filter size: 5× 5; number of filters: 185
Convolution filter size: 6× 6; number of filters: 244

Average Pooling filter size: 3× 3; strides: 2× 2
Fully-Connected output neurons: 10

MNIST-RD

Convolution filter size: 6× 6; number of filters: 189
Convolution filter size: 5× 5; number of filters: 182
Convolution filter size: 6× 6; number of filters: 236
Convolution filter size: 5× 5; number of filters: 210

Average Pooling filter size: 3× 3; strides: 2× 2
Fully-Connected output neurons: 10

MNIST-RB

Convolution filter size: 5× 5; number of filters: 246
Convolution filter size: 3× 3; number of filters: 216
Convolution filter size: 5× 5; number of filters: 217
Convolution filter size: 5× 5; number of filters: 156
Convolution filter size: 6× 6; number of filters: 204

Average Pooling filter size: 3× 3; strides: 2× 2
Fully-Connected output neurons: 10

MNIST-BI

Convolution filter size: 3× 3; number of filters: 67
Convolution filter size: 4× 4; number of filters: 126
Convolution filter size: 6× 6; number of filters: 159
Convolution filter size: 3× 3; number of filters: 252
Convolution filter size: 6× 6; number of filters: 202
Convolution filter size: 6× 6; number of filters: 202

Fully-Connected output neurons: 10

MNIST-RD+BI

Convolution filter size: 4× 4; number of filters: 247
Convolution filter size: 5× 5; number of filters: 208
Convolution filter size: 4× 4; number of filters: 122
Convolution filter size: 5× 5; number of filters: 64
Convolution filter size: 4× 4; number of filters: 144
Convolution filter size: 5× 5; number of filters: 171

Average Pooling filter size: 3× 3; strides: 2× 2
Fully-Connected output neurons: 10

Rectangles

Convolution filter size: 5× 5; number of filters: 139
Convolution filter size: 6× 6; number of filters: 113
Convolution filter size: 5× 5; number of filters: 226

Fully-Connected output neurons: 2

Rectangles-I

Convolution filter size: 5× 5; number of filters: 127
Convolution filter size: 4× 4; number of filters: 162
Convolution filter size: 6× 6; number of filters: 212
Convolution filter size: 6× 6; number of filters: 212
Max Pooling filter size: 3× 3; strides: 2× 2

Fully-Connected output neurons: 2

Convex

Convolution filter size: 6× 6; number of filters: 118
Convolution filter size: 4× 4; number of filters: 224
Convolution filter size: 5× 5; number of filters: 243
Convolution filter size: 3× 3; number of filters: 71
Convolution filter size: 5× 5; number of filters: 35
Convolution filter size: 5× 5; number of filters: 160

Fully-Connected output neurons: 2
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3.5 Final Remarks

In this chapter, a novel algorithm for CNN architecture searching is presented.

The proposed algorithm is built on a particle swarm optimization framework with

modified velocity and updating operators, allowing the use of a symbolic encoding

scheme for CNN architectures, which is called here as psoCNN.

The results obtained show that psoCNN is capable of finding meaningful CNN

architectures for a given image classification dataset. The results are also competitive

with other similar algorithms. The results show that psoCNN can even find CNN

architectures with fewer parameters than other algorithms and models can.

For last, the main argument for the use of Particle Swarm Optimization instead

of purely evolutionary approaches is that the former converges faster than the latter.

Indeed, using indirect measurements, psoCNN converged faster than evoCNN. Using

a laptop Nvidia GTX 960M GPU, psoCNN took an average of 15.22 hours to find

meaningful CNN architectures on the MNIST dataset, while evoCNN is reported to

take up to four days using two powerful Nvidia GTX1080 GPUs.

68



CHAPTER IV

DEEP NEURAL NETWORK ARCHITECTURE PRUNING WITH

EVOLUTION STRATEGIES

Another challenge faced by researchers and experts when using Deep Neural Net-

works (DNNs) is their high computational complexity. Most DNNs require lots of

computational power for training and even deployment on consumer hardware. In

this chapter, an algorithm for DNN architecture pruning based on evolution strat-

egy (ES) is presented, which drastically reduces the amount of computational power

needed to run the state-of-the-art models1.

4.1 Introduction

Currently, deep neural networks are prevalent in the field of pattern recognition

and computer vision. However, beyond the main problem of designing a meaningful

DNN architecture, there is also another challenging problem in the use of such models

by researchers and experts from other fields, which is their high computational cost.

The development of DNN-based solutions requires two stages: training and inference.

The training stage is the most computationally intensive of both, where the param-

eters of a DNN model is iteratively modified to learn the underlying structure of a

specific database. The successful training of DNN models requires vast amounts of

data, and multiple passes through the whole data, which can take months to finish,

1The present chapter is partially based on my submitted work, which is currently under review.
A preprint of the submitted work can be found in [106].
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even when using multiple powerful parallel processors such as general-purpose graph-

ical processing units (GPUs). The inference phase or deployment phase is used once

a well-suitable DNN model is found and fully trained. It consists of the deployment

of the DNN model for use by consumers. Although, after deployment, a DNN model

is only used when needed by the consumer, there are still many applications where

real-time results are expected from the model, which is a challenging task given the

massive number of parameters found in state-of-the-art DNN models.

Researchers developed many different approaches to deal with the high compu-

tational complexity required by DNNs. One can tackle this problem by developing

specialized hardware solutions capable of running DNN models in real-time, such

as FPGA-based solutions [107, 108] and low-power mobile GPUs [109]. However,

software-wise solutions that can be used in the current hardware are more desirable

by researchers than hardware-wise ones. The quantization of the number of bits

needed to represent each parameter of a DNN model is one such solution [51] with

the extreme case of using only one bit to represent a single parameter in the DNN

model being another approach [52]. Some researchers developed approaches to reduce

the computational complexity of mathematical operation performed within a DNN

model [54, 104, 110]. However, such solutions do not address a common question:

would it be possible to find DNNs with fewer parameters, but with similar accu-

racy to hand-crafted state-of-the-art ones? In other words, hand-crafted DNNs may

contain too many parameters in excess, which is the central hypothesis used when

performing DNN architecture pruning.

Convolutional Filter Pruning is the most used approach to reduce the computa-

tional complexity of DNNs and does not need the usage of any specialized software or

hardware to achieve it. Since most of the processing of any given DNN comes from the

convolutional layers instead of the fully-connected (FC) layers [55] and recent state-
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of-the-art DNNs are not using as many FC layers as before [105], the elimination

of neurons in FC layers has little to no effect in a DNN computational complexity.

Thus, in this approach, only convolutional filters are selected and eliminated. In

the literature, the filter selection is performed by using some statistical information

about the current layer being pruned, such as the mean activation of each filter [53],

the average percentage of zeros of each filter [50], and others. Filters can also be

eliminated at random with no effect on the accuracy of the final DNN architecture

[90], showing that randomized heuristics can produce good results during the pruning

process. More details about Filter Pruning can be found in Subsection 2.3.2.

Most pruning algorithms use the percentage of parameters that one desires to

eliminate from a DNN architecture. For example, if 25% of the parameters in a DNN

need to be eliminated, the pruning algorithm needs to find an acceptable combina-

tion of convolutional filters that will produce the minimum degradation in the DNN

accuracy capabilities. Thus, DNN architecture pruning can be seen as a combinato-

rial multi-objective optimization problem (MOP), where one would like to eliminate

parameters in a DNN as much as possible while maintaining the DNN accuracy as

far as possible. These two objectives are also conflicting. It is easy to see that the

elimination of too many parameters will hurt the performance of a DNN model.

Therefore, in this chapter, a Convolutional Filter Pruning algorithm is presented,

capable of using a random heuristic to choose which filters to eliminate, and of taking

advantage of the multi-objective optimization nature of the problem to produce a

set of candidate solutions. The proposed algorithm is called DeepPruningES, and

it uses a modified multi-objective Evolution Strategy (ES) algorithm to prune DNN

architectures. ES is an Evolutionary Algorithm (EA) that relies heavily on random

changes of candidate solutions and is ideal for discrete combinatorial optimization

71



problems [70].

These are the main contributions of the proposed algorithm:

• A pruning algorithm that does not require prior knowledge about the number

of parameters that needs to be eliminated.

• State-of-the-art DNN architectures can be pruned: convolutional neural net-

works (CNNs), residual neural networks (ResNets), and densely connected neu-

ral networks (DenseNets).

• The algorithm can efficiently find three pruned DNN models with different

trade-offs between computational complexity and accuracy.

DeepPruningES is a population-based algorithm capable of pruning multiple types

of DNN architectures and finding three solutions that can be used by a decision-maker

accordingly to his or her needs. Specifically, the algorithm finds one solution with the

best accuracy, but with the highest computational complexity, called boundary heavy,

one solution with the smallest computational complexity, but with the worst accu-

racy, called boundary light, and, finally, one solution with the best trade-off between

accuracy and computational complexity, called knee.

In the following sections, the proposed algorithm and the results obtained in six

state-of-the-art, competing DNN models are presented in detail.

4.2 Proposed Algorithm

The general framework of the proposed DeepPruningES can be seen in Algorithm

5. The proposed algorithm performs DNN architecture pruning by eliminating con-

volutional filters from multiple layers. It is based on the plus version of the Evolution
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Strategy (ES) algorithm, where the best individuals in the population are kept indefi-

nitely. Specifically, DeepPruningES is a (3+λ)−ES algorithm, where three solutions

are always selected at every generation and are randomly mutated until λ offspring

are generated. At the end of the pruning process, the algorithm returns three pruned

DNN models: the boundary heavy solution, the boundary light solution, and the knee

solution.

The following is a list of inputs used by the proposed DeepPruningES :

• The number of offspring that will be produced at every generation (λsize).

• The maximum number of generation (gen), which is the only stopping criteria

used by the algorithm.

• The mutation probability (pm) of changing a single position in the genome of a

candidate solution.

• The original DNN model that will be pruned (dnn).

• The number of epochs that a candidate solution will be retrained before its

quality is evaluated (eeval).

• The learning rate used during the evaluation of a candidate solution (αeval).

• The number of epochs that the best solutions will be retrained or fine-tuned

before saving them on disk (efine).

• For last, the learning rate used to retrain the best solutions found (αfine).

Thus, there are five components in the proposed DeepPruningES, which are the

initialization of the population, knee and boundary selection, offspring generation,
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Algorithm 5: Proposed DeepPruningES [106]

Input : Offspring size (λsize), maximum number of generations (gen),
mutation probability (pm), original DNN model (dnn), number of
epochs for individual evaluation (eeval), learning rate for individual
evaluation (αeval), number of epochs for fine-tuning (efine), learning
rate for fine-tuning (αfine).

Output: Three DNN models: knee solution (µ.knee), boundary heavy
solution (µ.heavy) and boundary light solution (µ.light).

1 µ,λ← Initialize Population(λsize, dnn);
2 for g = 1 to gen do
3 P← µ+ λ

4 µ← Knee Boundary Selection(P, dnn, eeval, αeval);
5 λ← Offspring Generation(µ, λsize, pm, dnn);

6 end
7 Fine-tuning(µ, dnn, efine, αfine);
8 return µ.knee, µ.heavy, µ.light;

fine-tuning of the best solutions, and a binary representation used to identify fil-

ters that will be eliminated. These components and the chosen representation are

discussed in the following.

4.2.1 Filter Representation Scheme

DeepPruningES prunes DNN architectures by eliminating convolutional filters.

Hence, the individuals’ parameters used by the proposed algorithm only contains the

representation of which filters should be discarded and which ones should be kept.

This representation can be easily accomplished with the use of binary strings, where

1’s represent the active filters, and 0’s represent the inactive ones. Moreover, each

convolutional filter in a given DNN architecture is represented by its physical location

in this binary string.

As stated before, the proposed algorithm is capable of pruning CNNs, ResNets,

and DenseNets. However, for each type of DNN architectures, a slightly different
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representation scheme is used due to its connectivity pattern. The CNN architectures

are represented by using only a single binary string, and it follows the logic explained

before. The representation of CNN architectures is illustrated in Figures 4.1 and 4.2,

where a three-layer CNN with a total of 32 convolutional filters is encoded using a

32-bit string.

The main challenge to represent ResNets is the fact that every shortcut con-

nection is added with the output of a convolutional layer. These two entities are

four-dimensional tensors, where the output tensor of a given convolutional layer is

added with a tensor coming from a shortcut connection. These two tensors need

to have the same dimensions due to the addition operation. Thus, if a single filter

is eliminated from a shortcut connection, a filter needs to be also eliminated in the

convolutional layer immediately before the shortcut connection. Moreover, ResNets

uses blocks of shortcut connections with an equal number of filters. This connectivity

pattern means that the elimination of a filter in one shortcut connection needs to be

replicated in all subsequent shortcut connections.

To address this challenge, the proposed representation for ResNets uses two binary

strings, as illustrated in Figure 4.3. One binary string, located on the left-hand side of

Figure 4.3, is used to represent only the filters from convolutional layers located after

the shortcut connection, which are represented in blue color and with a small vertical

bar on the right side of the box. The other binary string, illustrated on the right-hand

side of Figure 4.3, represents the filters from the shortcut connections. Thus, multiple

convolutional filters are represented by one binary string. For example, each layer in

green, the layers with small bars on the right side, has 16 filters with a total of 64

filters, but they are all represented with 16 bits because the elimination of one filter

in one layer requires the elimination of one filter in all other layers.

DenseNets does not present the same challenge as ResNets because, although
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they have multiple connections from multiple layers, they concatenate filters instead

of adding the filters values in one single tensor. Concatenation increases the number

of incoming filters in each layer, which is known as the growth rate. The proposed

representation for DenseNets also uses two binary strings, and it is illustrated in Fig-

ure 4.4. However, one of the binary strings is only used in the DenseNet’s bottleneck

version, which uses a convolutional layer to reduce the number of input feature maps

to the next layer. This version is also the one used in the experiments because it

has better performance than the non-bottleneck one. The other binary string is used

to represent the filters from the convolutional layers directly connected to the other

layers. Thus, similar to the CNN representation, in the proposed DenseNet represen-

tation, each filter in the DNN architectures is represented by one bit in one of the

Figure 4.1: Representation of a three-layer CNN architecture on DeepPruningES
[106].

Figure 4.2: Representation of a three-layer CNN architecture on DeepPruningES
where half of the filters are pruned [106].
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Figure 4.3: Representation of a 20 layer ResNet architecture on DeepPruningES [106].
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binary strings.

4.2.2 Evaluation of Candidate Solutions

Each candidate solution in the population is evaluated in two objectives: its num-

ber of floating-point operations (FLOPs), and its training error. The number of

floating-point operations can be directly counted by knowing the DNN architecture

of the candidate solution. However, every time a filter is eliminated from a DNN ar-

chitecture, its training error will be increased. Thus, every candidate solution needs

to be retrained to decrease its training error.

The retraining phase of a candidate solution is done by randomly selecting 10%

of the dataset to be used as input, which speeds up the retraining phase. It is not
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Figure 4.4: Representation of a Dense Block with four layers in DeepPruningES [106].

78



needed to use the whole dataset because all remaining parameters of a candidate

solution are initialized to the parameters from the original pre-trained DNN model.

Thus, the algorithm only needs to adjust the remaining parameters to accommodate

the elimination of specific filters.

Two input parameters are used in Algorithm 5 to control the evaluation of candi-

date solutions: the number of epochs for individual evaluation (eeval), and the learning

rate for individual evaluation (αeval). The eeval parameter controls how many epochs

a candidate solution will be retrained on the 10% of the dataset. While the αeval

is the learning rate used by the stochastic gradient descent (SGD) optimizer. Their

chosen values are detailed in the next section.

4.2.3 Population Initialization

The proposed algorithm initialized all 3+λsize individuals in the population to be

identical to the original DNN model being pruned, which is used as an input (dnn)

in Algorithm 5. A DNN model well trained in the chosen dataset is used as input

because all candidate solutions use this model parameters’ values in their architectures

to reduce the time required for particle evaluation. Thus, the individuals in the initial

population are all identical to the original DNN model, and they are modified during

the offspring generation.

4.2.4 Knee and Boundary Selection

In Multi-Criteria Decision Making (MCDM) problems, there is no single best so-

lution to a problem. These types of problems have multiple objective functions and

candidate solutions with many parameters. A small change in one of the candidate

solution’s parameters can produce a completely different result in one of the objec-

tive functions. Hence, decision-makers (DM) may need to use different solutions,
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depending on his or her needs.

The population of candidate solutions is usually plotted in the objective space of

the problem, making it easier to know which solution is better for use than the other

based on the requirements at the moment. Then, the quality of candidate solutions

can be evaluated by using geometric methods in the objective space. The so-called

knee solution is a particular one with a strong geometric implication. The knee so-

lution is usually the one that can be easily improved in any of the objectives with

fewer changes in its parameters than the other solutions. Chiu et al. [111] developed

the Minimum Manhattan Distance (MMD) method to find the knee solution by com-

puting the Manhattan distances of all solutions located in the Pareto optimal front,

where no solution is strictly better than the others, and selecting the one with the

minimum distance. Because there are only three solutions of interest, the proposed

algorithm does not impose a burden to find the whole Pareto optimal front. Thus,

a modified MMD method is used to find the knee and boundaries solutions directly

without using the whole Pareto optimal front.

The proposed knee and boundary solutions selection is presented in Algorithm

6 and illustrated in Figure 4.5. First, the algorithm evaluates the entire population

to determine the number of FLOPs and training error of each candidate solution.

Second, the algorithm determines the solutions with the smallest training error and

with the smallest number of FLOPs to become the boundary heavy and the boundary

light, respectively. Third, the Manhattan distance of each candidate non-dominated

solution is computed accordingly to Algorithm 6, line 6. Finally, the knee solution

is chosen to be the candidate solution with the minimum Manhattan distance in the

population.
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Algorithm 6: Knee and Boundary Selection [106]

Input : Individuals in the population (P), original DNN model (dnn),
number of epochs for individual evaluation (eeval), learning rate for
individual evaluation (αeval).

Output: Three individuals: knee solution (µ.knee), boundary heavy solution
(µ.heavy) and boundary light solution (µ.light).

1 P← Evaluate Population(P, dnn, eeval, αeval);
2 Find min(f1),min(f2),max(f1),max(f2) in P;
3 µ.heavy ← Pi, where f1(Pi) = min(f1);
4 µ.light← Pj, where f2(Pj) = min(f2);
5 for k = 1 to len(P) do

6 dist(k) = f1(Pk)−min(f1)
max(f1)−min(f1) + f2(Pk)−min(f2)

max(f2)−min(f2) ;

7 end
8 µ.knee← Pk, where Pk has the minimum dist(k);
9 return µ.knee, µ.heavy, µ.light;

Figure 4.5: Example of knee, boundary heavy, and boundary light solutions [106].
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4.2.5 Offspring Generation

After the knee and boundaries solutions are selected, they are used to generate

λsize offspring. DeepPruningES follows the standard ES offspring generation, where

all offspring are generated by applying random mutations to the three solutions se-

lected before. Each bit from a parent solution will be inverted with a probability

equal to pm. Once all offspring are created, the algorithm will go back to the selec-

tion of the knee and boundaries solutions, and the process will be repeated until the

maximum number of generations (gen) has been reached.

4.2.6 Fine-Tuning of the Best Solutions

At the ending of the pruning process, the knee, boundary heavy, and boundary

light solutions undergo a fine-tuning process to recover some of the classification

performance they may have lost. The fine-tuning process is a retraining phase, where

each solution is further trained in the whole dataset for many more epochs than

during the pruning procedure. Thus, the two parameters used in the retraining are

the number of epochs for fine-tuning (efine) and the learning rate for the fine-tuning

(αfine). Once the fine-tuning has finished, the pruned DNN models are saved in the

disk, and their performance in both objectives is reported. All results reported in

this chapter were obtained after the fine-tuning process.

4.3 Experimental Design

The chosen DNN architectures used to test the proposed DeepPruningES, and the

algorithm parameters used in the experiments are discussed in this section.
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4.3.1 Chosen DNN Models for Pruning

The proposed DeepPruningES is capable of pruning three types of DNN architec-

tures: Convolutional Neural Networks (CNNs), Residual Neural Networks (ResNets),

and Densely-connected Neural Networks (DenseNets). Thus, two state-of-the-art

DNNs of each type are chosen to be pruned using the proposed algorithm. Moreover,

only DNNs with excellent results in a challenging dataset were chosen for pruning.

Many researchers develop DNN models for use with the CIFAR10 dataset [43]

because it is a challenging dataset, but small enough to be used in consumer-grade

hardware. This dataset consists of 50,000 training images and 10,000 test images from

ten different categories. Each image has a size equal to 3× 32× 32 pixels, where the

first dimension represents the red, green, and blue channels. Some samples of images

in each class of the CIFAR10 dataset are shown in Figure 4.6. There also exists a

dataset called CIFAR100 with similar characteristics to CIFAR10. Its main difference

is that it used 100 classes instead of just ten with the same number of training and

test images. However, there is no DNN architecture pruning works in the literature

making use of this dataset.

The VGG16 and VGG19 are the two CNN models chosen to be pruned with the

proposed algorithm. They have a total of 16 and 19 convolutional layers, respectively,

and 3.15× 108 and 4.01× 108 floating-point operations (FLOPs), respectively. These

networks also have good classification results on the CIFAR10 dataset with test errors

equal to 6.06% and 6.18%, respectively. VGG16 and VGG19 are considered ones of

the best CNN architectures for image classification tasks.

The ResNet56 and ResNet110 are the two state-of-the-art ResNet models chosen

to be pruned. They have a total of 56 and 110 convolutional layers, and 1.27 × 108

and 2.57 × 108 FLOPs, respectively. Their test error on CIFAR10 is equal to 6.63%
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Figure 4.6: Example of images from each class in the CIFAR10 dataset [106].

and 6.2%, respectively. These two models are considered amongst the best ResNet

architectures on the CIFAR10 dataset.

For last, the DenseNet50 and DenseNet100 are the two DenseNet models used to

compare with the proposed algorithm. They have a total of 50 and 100 convolutional

layers, and 0.93 × 108 and 3.05 × 108 FLOPs, respectively. Their test errors on

CIFAR10 are 6.92% and 5.66%, respectively. These are also the best DenseNet models

on the CIFAR10 dataset. The overview of all DNN models used to evaluate the

proposed DeepPruningES can be seen in Table 4.1.
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Table 4.1: Overview of the DNN architectures used to evaluate the proposed Deep-
PruningES [106].

DNN # layers # FLOPs Test error on CIFAR10

VGG16 16 3.15× 108 6.06%
VGG19 19 4.01× 108 6.18%

ResNet56 56 1.27× 108 6.63%
ResNet110 110 2.57× 108 6.2%
DenseNet50 50 0.93× 108 6.92%
DenseNet100 100 3.05× 108 5.66%

4.3.2 Algorithm Parameters

The algorithm parameters used to prune all chosen DNN architectures are equal

to the values indicated in Table 4.2. The number of offspring generated at every

generation (λsize) is equal to 20. All results are obtained with a maximum number of

generation (gen) equal to 10. The probability of inverting a single bit in the binary

strings representing convolutional filters (pm) is equal to 0.1. The number of epochs

and learning rate for individual evaluation (eeval and αeval) are equal to 5 and 0.1,

respectively. For last, the number of epochs and learning rate used during the fine-

tuning of the best solutions (efine and αfine) are equal to 50 and 0.01, respectively.

Most of the parameters used by the proposed DeepPruningES are limited only

by the amount of computational power available for use by the algorithm. A large

number of offspring, generations, and epochs will require more computational power or

more time to run. More offspring and generations would allow the algorithm to explore

the objective space even more. However, a large mutation probability would reduce

the algorithm’s ability to find reasonable solutions because the candidate solutions’

parameters would be guaranteed to change most of the time, avoiding the survival of

a good combination of filters over the generations.

The number of epochs that each candidate solution is retrained during its evalua-

tion follows the standard from other works in the literature in which the DNN is not
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Table 4.2: Parameters used to evaluate the proposed DeepPruningES [106].

Parameter Value

Offspring size (λsize) 20
Maximum number of generations (gen) 10

Mutation probability (pm) 0.1
Number of epochs for individual evaluation (eeval) 5

Learning rate for individual evaluation (αeval) 0.1
Number of epochs for fine-tuning (efine) 50

Learning rate for fine-tuning (αfine) 0.01

fully retrained [56, 49, 91]. The retraining will give a sense of the overall quality of

the candidate solution. Thus, the model does not need to be retrained to perfection.

The learning rate used during an individual evaluation is chosen to be higher than

when fine-tuning because this parameter controls how strong the DNN weights are

updated at every batch of images. A large learning rate will reduce the training error

faster, but it can produce instability during long training sessions.

4.4 Experimental Results and Discussions

In this section, the results from the proposed DeepPruningES algorithm are pre-

sented and explained in detail.

4.4.1 Results

The results obtained with the six chosen DNNs are shown in Table 4.3. This table

shows the knee, boundary heavy, and boundary light solutions found for each one of

the chosen DNNs. It also contains the test errors, the numbers of FLOPs, and the

percentage decreases in the number of FLOPs of the best solutions and the average

of ten independent runs.

For the VGG16, the best knee, boundary heavy, and boundary light solutions

have 65.49%, 32.01%, and 72.17%, respectively, fewer FLOPs when compared with
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the original DNN model. Their final test error after fine-tuning are 9.04%, 8.21%, and

10.51%. On average, the algorithm pruned the knee, boundary heavy, and boundary

light solutions by 61.58%, 20.88%, and 71.36%, respectively, and their average test

errors are 9.58%, 8.6%, and 11.41%. These results are the expected ones because the

knee solution is the best trade-off between the boundaries heavy and light solutions.

For the VGG19 model, the best (and average) knee, boundary heavy, and bound-

ary light solutions are pruned by 61.86% (57.15%), 32.56% (22.28%), and 71.74%

(70.69%), respectively. Their best (and average) test errors are 9.04% (9.87%), 8.21%

(8.77%), and 10.53% (12.03%), respectively.

For the ResNet56, the best (and average) knee, boundary heavy, and bound-

ary light solutions are pruned by 66.23% (59.15%), 21.32% (15.23%), and 80.89%

(77.67%), and their best (and average) test errors are 9.28% (9.98%), 8.11% (8.77%),

and 11.42% (13.36%), respectively. In the case of the ResNet110 model, the best (and

average) knee, boundary heavy, and boundary light solutions have 64.84% (59.89%),

16.72% (14.14%), and 83.29% (77.86%) fewer parameters than the original model,

while their final test errors are 8.66% (9.42%), 7.43% (7.93%), and 10.27% (12.9%),

respectively.

For the DenseNet50, the best (and average) knee, boundary heavy, and bound-

ary light solutions are pruned by 56.05% (50.15%), 19.16% (16.59%), and 75.53%

(73.91%), and their best (and average) test errors are 9.8% (10.43%), 8.91% (9.26%),

and 13.04% (14.8%), respectively. For last, the best (and average) knee, bound-

ary heavy, and boundary light solutions for the DenseNet100 are pruned by 63.64%

(60.31%), 19.33% (18.24%), and 73.09% (71.16%) with test errors equal to 9.04%

(9.37%), 8.34% (8.39%), and 10.47% (11.90%), respectively.

In general, the knee solutions are compressed around 63% with test error around
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Table 4.3: Pruning results obtained with the proposed DeepPruningES [106].
DNN Model DeepPruningES

VGG16

Solution Test error (best) Test error (mean) # FLOPs (best) # FLOPs (mean) % Pruned (best) % Pruned (mean)
Knee 9.04% 9.58% 1.09× 108 1.22× 108 65.49% 61.58%

Boundary Heavy 8.21% 8.6% 2.15× 108 2.49× 108 32.01% 20.88%
Boundary Light 10.51% 11.41% 0.88× 108 0.9× 108 72.17% 71.36%

VGG19

Solution Test error (best) Test error (mean) # FLOPs (best) # FLOPs (mean) % Pruned (best) % Pruned (mean)
Knee 9.04% 9.87% 1.53× 108 1.72× 108 61.86% 57.15%

Boundary Heavy 8.21% 8.77% 2.7× 108 3.12× 108 32.56% 22.28%
Boundary Light 10.53% 12.03% 1.13× 108 1.18× 108 71.74% 70.69%

ResNet56

Solution Test error (best) Test error (mean) # FLOPs (best) # FLOPs (mean) % Pruned (best) % Pruned (mean)
Knee 9.28% 9.98% 0.432× 108 0.523× 108 66.23% 59.15%

Boundary Heavy 8.11% 8.77% 1.01× 108 1.08× 108 21.31% 15.23%
Boundary Light 11.42% 13.36% 0.244× 108 0.286× 108 80.89% 77.67%

ResNet110

Solution Test error (best) Test error (mean) # FLOPs (best) # FLOPs (mean) % Pruned (best) % Pruned (mean)
Knee 8.66% 9.42% 0.905× 108 1.03× 108 64.84% 59.89%

Boundary Heavy 7.43% 7.93% 2.14× 108 2.21× 108 16.72% 14.14%
Boundary Light 10.27% 12.9% 0.43× 108 0.56× 108 83.29% 77.86%

DenseNet50

Solution Test error (best) Test error (mean) # FLOPs (best) # FLOPs (mean) % Pruned (best) % Pruned (mean)
Knee 9.8% 10.43% 0.41× 108 0.466× 108 56.05% 50.15%

Boundary Heavy 8.91% 9.26% 0.756× 108 0.779× 108 19.16% 16.59%
Boundary Light 13.04% 14.8% 0.229× 108 0.244× 108 75.53% 73.91%

DenseNet100

Solution Test error (best) Test error (mean) # FLOPs (best) # FLOPs (mean) % Pruned (best) % Pruned (mean)
Knee 9.04% 9.37% 1.11× 108 1.21× 108 63.64% 60.31%

Boundary Heavy 8.34% 8.39% 2.46× 108 2.49× 108 19.33% 18.24%
Boundary Light 10.47% 11.90% 0.82× 108 0.879× 108 73.09% 71.16%

9%; the boundary heavy solutions are compressed by 20% with test error of 8.2%; the

boundary light solutions are compressed by 70% with test errors of around 11%. These

results demonstrate that the proposed algorithm can be used to produce pruned DNN

models with different trade-offs between computational complexity and classification

accuracy.

4.4.2 Discussions

The proposed DeepPruningES algorithm is capable of pruning multiple types of

DNN architectures while maintaining a good classification accuracy. The algorithm

significantly pruned all six chosen DNN models with similar results across all of them.

It was even capable of pruning ResNets and DenseNets, which were designed to have

fewer parameters than standard CNNs.

Most pruning algorithms in the literature were tested with fewer DNN models

than the ones presented here. Moreover, the results obtained by the DeepPruningES

are comparable with other state-of-the-art pruning algorithms presented in Table 4.4,

where the proposed algorithm can further prune DNN models than the algorithm de-

veloped by Li et al. [55] with slightly worse test errors on CIFAR10. DeepPruningES
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Table 4.4: Pruning results from peer competitors using the CIFAR10 dataset [106].

Approach DNN Model % FLOPs Pruned Test error

Li et al. [55]
VGG16 34.2% 6.60%

ResNet56 27.6% 6.94%
ResNet110 38.6% 6.70%

Ding et al. [112]
VGG16 81.39% 7.56%

ResNet56 66.88% 9.43%

also obtains comparable pruning results to Ding et al. [112], and with comparable

test errors on CIFAR10. These two works are the most similar ones in the literature

to the proposed algorithm presented here, which were also tested on similar DNN

models and dataset.

Although the test errors of the pruned solutions in DeepPruningES are slightly

worse than the ones from Li et al. [55] and Ding et al. [112], they can be further

improved by being trained from scratch. Figure 4.7 shows the training evolution of the

knee solution of the VGG16 being trained from scratch for 200 epochs. Training from

scratch means that all the parameters of the pruned DNN model are re-initialized

using the Glorot method [97], and the network is trained using stochastic gradient

descent (SGD) from there. Training from scratch was able to bring the test error

down from 9.04% to 8.23%. Further improvements are still possible if other training

optimizers and data augmentation are used.

As stated before, DeepPruningES uses the ES plus version, which is an elitist ver-

sion of ES, which improves the final results by not eliminating the best individuals in

the population. A version of DeepPruningES using the comma version was developed

to test this statement. The population evolution of the proposed algorithm over nine

generations using the plus version can be seen in Figure 4.8, while the comma version

can be seen in Figure 4.9. The comma version of the algorithm is capable of pruning

a DNN architecture, but it does not preserve the training error as well as the plus
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version. Furthermore, in the comma version, the knee and boundaries solutions are

all very close to each other and do not present good trade-off as the ones from the

plus version.

4.5 Final Remarks

In this chapter, a DNN architecture pruning algorithm based on Evolution Strat-

egy, called DeepPruningES, was presented and evaluated. The proposed algorithm

works by eliminating convolutional filters from convolutional layers found in CNN,

ResNet, and DenseNet architectures, and it does not require the use of any statistical

information about the filters being pruned. It uses a modified Minimum Manhat-

tan Distance approach to select three candidate solutions from the population with

the best trade-off between computational complexity and classification performance.

These three solutions can be used by decision-makers to fulfill their needs at the mo-

ment. DeepPruningES is capable of finding pruned solutions with comparable results

to other algorithms in the literature by using a small population of only 20 individu-

als, and the evolution process only takes ten generations. A single run of the proposed

Final Test Error: 8.23%

(%
)

Figure 4.7: Knee solution from the pruned VGG16 network trained from scratch for
200 more epochs [106].
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Figure 4.8: Evolution of the population when pruning VGG16 using the plus version
of the proposed DeepPruningES [106].

Figure 4.9: Evolution of the population when pruning VGG16 using the comma
version of the proposed DeepPruningES [106].
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algorithm can be performed in less than four hours using a mid-entry consumer-grade

NVIDIA GTX 1060 GPU. Thus, the algorithm proposed in this chapter can be used

in the development of DNN architectures to be used in mobile hardware.
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CHAPTER V

AUTOMATIC SEARCHING AND PRUNING OF DEEP NEURAL

NETWORKS FOR MEDICAL IMAGING DIAGNOSTICS

In the present chapter, DNN architecture searching and pruning algorithms are

used together to solve the real-world problems of medical imaging diagnostics while

also taking into account the user preference about the problem1.

5.1 Introduction

As presented in Chapter II, multiple algorithms can be used to perform DNN

architecture searching and pruning. For example, DNN architecture searching can

be performed by Evolutionary Computation methods, such as Genetic Algorithms

[40, 86, 89], Particle Swarm Optimization [96, 91], and others [84, 85]. On the other

hand, DNN architecture pruning algorithms are mostly metaheuristic ones relying

heavily on prior knowledge about the problem at hand and the topology of the DNN

models [51, 50, 49, 55, 56]. To the best of the author’s knowledge, DNN architecture

searching and pruning are always treated as two separate and independent problems

in the literature. Thus, in the present chapter, a unified framework is presented

where these two problems are seen as two critical pieces for the automatic design of

DNN models. Moreover, the proposed framework is applied to solve the real-world

problems of medical imaging diagnostics.

Due to their extraordinary results, DNNs are being used in a variety of problems in

1The present chapter is partially based on my submitted work, which is currently under review.
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the medical field. One crucial example of their use is in the field of medical diagnostics

aided by images from a variety of sources, such as Computed Tomography (CT), x-

rays, skin lesion photographs, and Magnetic Resonance Images (MRI). For example,

Convolutional Neural Networks (CNNs) were used to segment tumor tissues on MRI

brain scans [113, 114], to identify masses and non-masses in breast tomosynthesis

images [115], and to characterize plaque compositions in carotid ultrasound [116].

Even a special type of DNN, called U-Net, was created to perform segmentation of

regions of interest from medical images, where its input and output are both images

[117]. The input is an image that needs to be segmented, and the output is a black

and white image where the white pixels indicate the location of pixels belonging

to the region of interest. The architecture of a U-Net resembles the ones found in

autoencoders [117], where half of its structure uses convolutional layers to reduce the

dimensionality of the input image, and the other half uses deconvolutional layers to

create an output image.

Although DNNs have been used successfully in the field of medical imaging diag-

nostic, the main challenge remains: how to create a meaningful DNN architecture for a

given problem? All of the previously cited works designed uniquely handcrafted DNN

models by using expert knowledge of the problem. Thus, in this chapter, a frame-

work for the creation of DNNs for use in medical imaging tasks, called DNNDeepen-

ingPruning, is proposed. This framework has two phases: In the first phase, called

DNN Architecture Deepening, a DNN model is created by iteratively deepening its

architecture; in the second phase, called DNN Architecture Pruning, any parameter

in excess is removed from the model’s architecture. Furthermore, the second phase

is guided by user preference between the model’s computational complexity and the

model’s performance in the problem at hand.

Thus, the main contributions of the proposed framework are the following:
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• The development of a simpler DNN architecture searching algorithm is pre-

sented where DNN models are found by only increasing their computational

complexity, which, in turn, reduces the size of the algorithm’s searching space.

• An improved Multi-Criteria Decision Making (MCDM) pruning algorithm is

proposed where the user preference for one of the objectives is taken into con-

sideration.

• A framework for DNN architecture designing is presented where accurate, and

compact DNN models can be found by making the pruning stage an integral

part of the algorithm.

5.2 Proposed Algorithm

The overview of the proposed DNNDeepeningPruning framework is presented in

Algorithm 7. Its inputs are the chosen image classification dataset, and a set of

parameters to control the DNN architecture deepening and pruning processes. Its

outputs are three pruned models: the boundary heavy, the boundary light, and the

user preferable knee. Each phase of the proposed framework is explained in detail in

the following subsections.

5.2.1 DNN Architecture Deepening Algorithm

In the DNN architecture deepening phase, the algorithm only increases the com-

putational complexity of a DNN model by iteratively adding randomly chosen blocks

of residual layers (residual blocks) to the DNN architecture. At each iteration, the

algorithm tests a total of Gtrial blocks. The best one is added to the model, and a new

iteration starts the process again. In order to assess the quality of each added block,

the proposed algorithm adds a classification layer to the end of the current DNN
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Algorithm 7: Proposed DNNDeepeningPruning Framework.

Input : DNN Deepening: Number of trials to test new blocks (Gtrial).
DNN Pruning: Offspring size (λsize), number of iterations for
pruning (Gprune), mutation probability (pm), DNN model for
pruning (dnn), number of epochs for individual evaluation (eeval),
learning rate for individual evaluation (αeval), number of epochs for
fine-tuning (efine), learning rate for fine-tuning (αfine). Shared
parameters: image classification dataset (X).

Output: Three DNN models: preferable knee solution (prefer knee),
boundary heavy solution (heavy), and boundary light solution
(light).

1 /* DNN Architecture Deepening */

2 dnn← DNNDeepening(Gtrial,X);

3 /* DNN Architectute Pruning */

4 prefer knee, heavy, light←
DeepPruningES WIN(λsize, Gprune, pm, dnn, eeval, αeval, efine, αfine,X);

5 /* Return best solutions */

6 return prefer knee, heavy, light;

architecture, performs a small training phase using traditional backpropagation, and

tests the model’s performance in a validation set. The process of deepening and eval-

uation of a candidate solution is illustrated in Figure 5.1. Furthermore, the chosen

evaluation metric used during deepening is the Area Under the Receiving Operating

Characteristic Curve (ROC-AUC), which incorporates the concepts of True Positive

Rate, which is equal to the Sensitivity, and the False Positive Rate, which is equal

to 1− Specificity, into a single measure.

The proposed DNN Architecture Deepening algorithm is presented in Algorithm 8.

Its inputs are the number of trials (Gtrial) to test new blocks in a given iteration, and

the chosen image classification dataset (X). Its output is the best DNN model found

during the deepening process. The algorithm works by adding blocks every iteration

into the DNN model until the ROC-AUC of the validation set stops improving after

two consecutive iterations in an early stopping fashion to avoid overfitting [118].
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Figure 5.1: Proposed DNN deepening and evaluation.

Each block consists of three parameters: its number of residual layers, the number of

convolutional filters for all residual layers, and if the block performs a downsampling

operation.

Moreover, during the evaluation, each candidate solution is trained until the vali-

dation ROC-AUC stops improving for five epochs. In that sense, each added block is

compared with others only after full training. The deepening algorithm also saves and

loads the weights of the best blocks in each iteration, which allows for reduced train-

ing time. Another important key aspect of the proposed DNN architecture deepening

algorithm is that it never deletes any block added in a previous iteration. Thus, the

use of a pruning algorithm is crucial to allow the creation of compact DNN models.

5.2.2 DNN Architecture Pruning Algorithm

The proposed DNN architecture pruning algorithm presented in this chapter is

an extension of the pruning algorithm previously presented in Chapter IV. It is

still a two-objective Multi-Criteria Decision Making (MCDM) algorithm searching

for three candidate solutions, but, instead of searching for the boundary heavy, the
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Algorithm 8: Proposed DNN Architecture Deepening (DNNDeepening).

Input : Number of trials to test new blocks (Gtrial), image classification
dataset (X).

Output: A DNN model.

1 /* Initializes a DNN with a single block */

2 dnn← Creates an empty DNN object;
3 dnn← AddRandomResidualBlock(dnn);
4 previous fitness← Evaluate(dnn,X);
5 BlocksWithoutImprovement = 0;
6 while BlocksWithoutImprovement < 2 do
7 dnn test← dnn;
8 for j = 1 to Gtrial do
9 dnn temp← dnn test;

10 /* Adds a new block at random to the DNN */

11 dnn temp← AddRandomResidualBlock(dnn temp);
12 test fitness← Evaluate(dnn temp,X);
13 if j = 1 then
14 dnn← dnn temp;
15 best fitness← test fitness;

16 else if j > 1 and test fitness is better than best fitness then
17 dnn← dnn temp;
18 best fitness← test fitness;

19 end

20 end
21 if best fitness is better than previous fitness then
22 BlocksWithoutImprovement = 0;
23 else
24 BlocksWithoutImprovement = BlocksWithoutImprovement+ 1;
25 end

26 end

27 return dnn;

boundary light, and the exact knee solutions, it searches for a preferable knee and

the boundaries solutions. In this algorithm, the decision-maker can choose which of

the two objectives is more important for him/her. Hence, the algorithm selects a

non-dominated solution, excluding the boundary ones, which has its objective values

closest to the preference given by the decision-maker. The preferable knee selection
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Algorithm 9: Proposed DNN Architecture Pruning (DeepPruningES-
WIN ).

Input : Offspring size (λsize), number of iterations for pruning (Gprune),
mutation probability (pm), original DNN model (dnn), user
preference vector (r), number of epochs for individual evaluation
(eeval), learning rate for individual evaluation (αeval), number of
epochs for fine-tuning (efine), learning rate for fine-tuning (αfine).

Output: Three DNN models: preferable knee solution (µ.prefer knee),
boundary heavy solution (µ.heavy) and boundary light solution
(µ.light).

1 µ,λ← Initialize Population(λsize, dnn);
2 for g = 1 to Gprune do
3 P← µ+ λ

4 F← Non-dominated Selection(P);
5 µ← Preferable Knee & Boundary Selection(F, r, dnn, eeval, αeval);
6 λ← Offspring Generation(µ, λsize, pm, dnn);

7 end
8 Fine-tuning(µ, dnn, efine, αfine);
9 return µ.prefer knee, µ.heavy, µ.light;

proposed here is a modified version of the Weight Induced Norm (WIN) approach

developed by Chiu et al. [119], where the non-dominated solution with the smallest

WIN value is chosen to be the preferable knee solution.

This new DNN architecture pruning algorithm is called here DeepPruningES-WIN,

and it is shown in Algorithm 9. It is a (3 + λ)-ES algorithm, where a DNN model is

given as input, and three pruned models are returned. Most of the input parameters

are the same as the ones used in the DeepPruningES algorithm presented in Chapter

IV, with the addition of a two-dimensional user preference vector (r) used to rank the

two-objective preference of a decision-maker. The user preference vector uses integer

values to indicate a preference, and small values indicate the highest importance of the

corresponding objective. For example, if r = [1, 2], it means that the first objective is

more important than the second one for this particular decision-maker. Furthermore,
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Algorithm 10: DNN Pruning: Non-dominated Selection

Input : Individuals in the population (P), number of epochs for individual
evaluation (eeval), learning rate for individual evaluation (αeval).

Output: Set of non-dominated candidate solutions in the pareto front (F).

1 P← Evaluate Population(P, dnn, eeval, αeval);
2 F = ∅;
3 Pi.isDominated = False, for i = 1 to len(P);
4 for i = 1 to len(P) do
5 if Pi.isDominated = False then
6 for j = 1 to len(P) do
7 if i 6= j then
8 if Pj � Pi then
9 Pi.isDominated = True;

10 break;

11 end

12 else
13 Pj.isDominated = True;
14 end

15 end

16 end

17 end
18 for i = 1 to len(P) do
19 if Pi.isDominated = True then
20 F← F ∪ Pi;
21 end

22 end
23 return F;

the algorithm has three key components: the Non-Dominated Selection (Algorithm

9, line 4), the Preferable Knee and Boundary Selection (Algorithm 9, line 5), and the

Offspring Generation (Algorithm 9, line 6).

The Non-Dominated Selection is presented in Algorithm 10. It consists of pair-

wise comparisons between all candidate solutions to determine which ones are non-

dominated with respect to the others. Once the non-dominated solutions are identi-

fied, the algorithm performs the Preferable Knee and Boundary Selection, according

to Algorithm 11. Finally, during the Offspring Generation, the three selected candi-
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Algorithm 11: DNN Pruning: Preferable Knee & Boundary Selection

Input : Individuals in the Pareto Front (F), user preference vector (r),
original DNN model (dnn), number of epochs for individual
evaluation (eeval), learning rate for individual evaluation (αeval).

Output: Three individuals: preferable knee solution (µ.prefer knee),
boundary heavy solution (µ.heavy) and boundary light solution
(µ.light).

1 Find min(f1),min(f2),max(f1),max(f2) in F;
2 µ.heavy ← Fi, where f1(Fi) = min(f1);
3 µ.light← Fj, where f2(Fj) = min(f2);
4 // Compute Ranking Transforms

5 φ1 = 2− r1 + 1 and φ2 = 2− r2 + 1;
6 // Compute Weighting Vector

7 w1 = φ1
φ1+φ2

and w2 = φ2
φ1+φ2

;

8 for k = 1 to len(F) do
9 // Compute Weighted Induced Norms

10 norm(k) = w1 · f1(Fk)−min(f1)
max(f1)−min(f1) + w2 · f2(Fk)−min(f2)

max(f2)−min(f2) ;

11 end
12 µ.prefer knee← Fk, where Fk has the minimum norm(k);
13 return µ.prefer knee, µ.heavy, µ.light;

date solutions are mutated until λsize offspring have been generated. This process is

repeated for Gprune iterations in which the best candidate solutions are returned.

During pruning, candidate solutions are evaluated in the following objectives:

ROC-AUC of the validation set, and the number of Floating-Point Operations (FLOPs).

Thus, the boundary heavy solution is the non-dominated solution with the smallest

ROC-AUC value, while the boundary light solution is the one with the smallest num-

ber of FLOPs. The preferable knee solution will depend on the user preference. If

the ROC-AUC is chosen to be more critical than the number of FLOPs, the prefer-

able knee will be closer to the boundary heavy. If the number of FLOPs is chosen

to be more critical than the ROC-AUC, the preferable knee will be closer to the

boundary light solution. Figure 5.2 illustrates the behavior of the preferable knee in
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Figure 5.2: Example of preferable knee selection with the WIN approach.

a two-dimensional objective space, depending on the decision-maker preference.

5.3 Experimental Design

This section describes the experimental design used to evaluate the proposed algo-

rithm. It includes the datasets selected for evaluation, the chosen evaluation criteria,

and the algorithm parameters.

5.3.1 Medical Imaging Datasets

Because the proposed algorithm was designed to deal with binary classification

problems, two binary classification datasets were chosen to evaluate it: one composed

of images of skin lesions, and the other of chest x-ray images. Sample images of each

dataset can be seen in Figure 5.3.

The first dataset was devised by the International Skin Imaging Collaboration in

2016 (ISIC2016), and it has pictures taken from benign and malignant (melanoma)
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Figure 5.3: Chosen datasets to evaluate the proposed DNNDeepeningPruning algo-
rithm.

skin lesions [120]. It has a total of 900 training images, where 727 samples are from

benign lesions, and 173 are from malignant lesions, and 379 test images, where 304 are

from benign lesions, and 75 from malignant lesions. The assessment of the proposed

algorithm was done by randomly selecting 20% of the training images to be used

as a validation set. Each image in this dataset has different resolution sizes. Thus,

all images were resized to 224 × 224 pixels in resolution for use during training and

evaluation.

The second dataset is composed of 5,232 training images and 624 test images of

chest x-rays from patients of different ages and genders. The samples are classified

as normal or pneumonia cases. In the training set, 1,349 images are from healthy

patients, and 3,883 are from patients with pneumonia [121]. Similar to the previous

dataset, 20% of the training images are selected at random to be used as a validation

set. It also contains images with different resolution sizes, which are resized to 224×

224 pixels.
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5.3.2 Evaluation Criteria

The Area Under the ROC Curve (ROC-AUC) is used as the main selection criteria

to select the best solutions produced by the DNN Deepening algorithm and presented

in the next section. The ROC-AUC is used mostly in binary classification tasks,

and it incorporates the number of true/false positives cases and true/false negatives

cases into a single value ranging from 0.0 to 1.0, where a good classifier model is

the one with the ROC-AUC value closest to 1.0. This metric is also important

because it is computed using multiple decision thresholds to construct the ROC curve.

Thus, models with acceptable performance only in a few decision thresholds still have

low ROC-AUC values [122]. Furthermore, the results are presented using four more

metrics: the model’s accuracy, Sensitivity, Specificity, and number of FLOPs.

The model’s accuracy is reported using a decision threshold equal to 0.5, which

is similar to others’ works, and it is computed by dividing the number of correctly

classified data samples by the total number of data samples. In contrast, Sensitivity

and Specificity are reported using a decision threshold (t) equal to:

t = argmax
x∈T

(Se(x) · (1− Sp(x)))), (5.1)

where Se(x) is the model’s Sensitivity using a decision threshold equal to x, and

Sp(x) is the model’s Specificity using a decision threshold equal to x, and they are

defined as follows:

Se(x) =
TP (x)

TP (x) + FN(x)
and Sp(x) =

TN(x)

TN(x) + FP (x)
, (5.2)

where, x represents a chosen decision threshold, TP (x) the number of true positives,

FP (x) the number of false positives, TN(x) the number of true negatives, and FN(x)
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the number of false negatives given the threshold x. In other words, the decision

threshold is the one that maximizes the Sensitivity and Specificity of the model at

the same time, given the values from a ROC curve.

Additionally, a true positive (TP) classification is one that the model classified

the data sample correctly as a positive case (presence of the condition). In contrast, a

true negative (TN) classification is the one that the model classified the data sample

correctly as a negative case (absence of the condition). Thus, false positives (FP)

are cases where the model incorrectly classified the data as a positive case, and false

negatives (FN) are cases where the model incorrectly classified the data is a negative

case.

For last, the number of FLOPs in a given model is used to compare and contrast

the resulted pruned models with handcrafted ones.

5.3.3 Algorithm Parameters

Unless stated otherwise, all results shown in this chapter were obtained using the

algorithm parameters shown in Table 5.1, which shows the parameters by stages:

DNN Architecture Deepening and DNN Architecture Pruning.

During the DNN Deepening stage, the algorithm was set to test a total of 10

residual blocks (Gtrial) before moving to the next iteration. Furthermore, the min-

imum and the maximum number of layers in a residual block was randomly chosen

to be between 4 and 12, respectively, while the number of convolutional filters in a

given block was randomly chosen to be between 8 and 64. The evaluation of a given

candidate solution was performed by training it with a learning rate of 0.001 until

the validation AUC stopped improving for five epochs.

The best model of a total of five runs of the DNN Deepening algorithm was pruned

using parameters with similar values to the ones presented in Chapter IV. The main
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Table 5.1: Parameters used to evaluate the proposed algorithm.

DNN Architecture Deepening Parameters

Number of trials to test new blocks (Gtrial) 10
Minimum number of layers in a residual block 4
Maximum number of layers in a residual block 12

Minimum number of convolutional filters in a residual block 8
Maximum number of convolutional filters in a residual block 64
Stops DNN evaluation after x epochs without improvement x = 5

Learning rate to evaluate a candidate solution 0.001

DNN Architecture Pruning Parameters

Offspring size (λsize) 30
Number of iterations for pruning (Gprune) 10

Mutation probability (pm) 0.2
User preference vector (r) [1, 2]

Number of epochs for individual evaluation (eeval) 3
Number of epochs for fine-tuning (efine) 200

Learning rate for individual evaluation (αeval) 0.01
Learning rate for fine-tuning (αfine) 0.0001

addition is the user preference vector (r) to control the selection of the preferable

knee. In this case, while a model with reduced computational complexity is desired,

maintaining a model’s validation AUC as high as possible is considered more critical.

Thus, r is chosen to be equal to [1, 2], indicating that the first objective (validation

ROC-AUC) is more important than the second (number of FLOPs). Furthermore,

the algorithm minimizes the (1 − ROC-AUC), which is the same as maximizing the

ROC-AUC.

5.4 Experimental Results

This section presents the experimental results obtained by the proposed DNNDeep-

eningPruning algorithm. The results of each stage are presented individually with

their corresponding discussions.
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Table 5.2: DNN Deepening results on the selected datasets.

Skin Lesion Dataset (ISIC2016)

Model Test AUC Test Accuracy Test Sensitivity Test Specificity # FLOPs
ResNet18 0.6927 (+) 0.7942 (+) 0.5333 (+) 0.7961 (-) 1.826× 109

ResNet34 0.6208 (+) 0.7731 (+) 0.720 (-) 0.4704 (+) 3.681× 109

ResNet50 0.6275 (+) 0.7836 (+) 0.56 (+) 0.602 (+) 4.139× 109

DNNDeepening (best) 0.7022 0.7995 0.64 0.6645 1.848× 1010

DNNDeepening (mean) 0.6843 0.8047 0.6333 0.6571 2.177× 1010

Chest X-Ray Dataset

Model Test AUC Test Accuracy Test Sensitivity Test Specificity # FLOPs
ResNet18 0.9223 (+) 0.7965 (+) 0.8872 (+) 0.8761 (-) 1.747× 109

ResNet34 0.9197 (+) 0.8109 (+) 0.9333 (-) 0.812 (+) 3.602× 109

ResNet50 0.9335 (-) 0.8237 (+) 0.8692 (+) 0.859 (+) 4.059× 109

DNNDeepening (best) 0.9323 0.8558 0.9128 0.8462 3.833× 1010

DNNDeepening (mean) 0.9107 0.7782 0.9087 0.8128 2.227× 1010

5.4.1 DNN Architecture Deepening Results and Discussion

The overall results of the proposed DNN architecture deepening algorithm is pre-

sented in Table 5.2. All results are obtained by evaluating the DNN models in the

test set of each dataset. Furthermore, all models are trained and selected using

the validation set, and the test set is used only to evaluate them. Notably, the re-

sults obtained by the DNN architecture deepening algorithm are compared with the

ResNet18, ResNet34, and ResNet50 because they have similar architectures. It is

necessary to mention that the results of the proposed algorithm are obtained with

five independent runs, and the one with the best validation ROC-AUC is reported

on Table 5.2. Additionally, in this table, the best model found by the algorithm out-

performs the handcrafted ones represented by a (+) sign, while a (−) sign represents

situations where a handcrafted one outperformed the best model.

The results presented in Table 5.2 show that it is possible to obtain competitive

results in image classification tasks by only adding layers to a DNN model. More-

over, Figures 5.4a and 5.4b shows that the validation ROC-AUC of the model being

searched is continuously improving at every iteration, and, as expected from the way

the algorithm was designed, it only stops improving in the last two iterations. The
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(a) Validation ROC-AUC during DNN Deepening for the ISIC2016 dataset.
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(b) Validation ROC-AUC during DNN Deepening for the Chest X-Ray dataset.

Figure 5.4: Evolution of the validation ROC-AUC during DNN Deepening.

reason that the proposed algorithm waits for two iterations before stopping the deep-

ening process is to ensure that local optima architectures can be avoided.

Table 5.3 and Figures 5.5 and 5.6 present the best DNN model found by the

proposed DNN Deepening algorithm for both datasets. For the ISIC2016 dataset, the

best DNN found has a total of seven residual blocks and a total of 56 convolutional

layers, while, for the Chest X-Ray dataset, the best DNN model has a total of six

residual blocks and a total of 48 convolutional layers.
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Table 5.3: Best DNNs found by the DNN Deepening in the selected datasets.
Skin Lesion Dataset (ISIC2016) Chest X-Ray Dataset

Block Convolutional Filters Number of Layers Downsampling Block Convolutional Filters Number of Layers Downsampling
Residual Block 1 50 8 No Residual Block 1 49 8 No
Residual Block 2 37 6 Yes Residual Block 2 53 10 No
Residual Block 3 24 8 No Residual Block 3 29 6 No
Residual Block 4 18 6 No Residual Block 4 32 8 No
Residual Block 5 63 8 No Residual Block 5 40 10 No
Residual Block 6 30 10 No Residual Block 6 32 6 No
Residual Block 7 52 10 No

Total Number of Layers: 56 Total Number of Layers: 48

Table 5.4: DNN pruning results in the selected datasets.

Skin Lesion Dataset (ISIC2016)

Model Test AUC Test Accuracy Test Sensitivity Test Specificity # FLOPs % of FLOPs decreased
Original DNN 0.7022 0.7995 0.64 0.6645 1.848× 1010 -

Boundary Heavy 0.6878 0.7731 0.6133 0.7138 1.240× 1010 32.87
Boundary Light 0.7023 0.8101 0.6800 0.6447 3.09× 109 83.27
Preferable Knee 0.7076 0.8021 0.5867 0.7269 3.814× 109 79.36

Chest X-Ray Dataset

Model Test AUC Test Accuracy Test Sensitivity Test Specificity # FLOPs % of FLOPs decreased
Original DNN 0.9323 0.8558 0.9128 0.8462 3.833× 1010 -

Boundary Heavy 0.9334 0.8061 0.9154 0.8462 2.405× 1010 37.25
Boundary Light 0.9257 0.8295 0.9282 0.8162 7.485× 109 80.47
Preferable Knee 0.9376 0.8510 0.8846 0.8718 1.429× 1010 62.70

5.4.2 DNN Architecture Pruning Results and Discussion

From Tables 5.2 and 5.3, it is easy to see that, by not allowing parameters to

be eliminated, the DNN architecture deepening algorithm finds DNN models with

higher computational complexity than the handcrafted ones, as expected. Thus,

the pruning of DNN models is an essential part of the proposed DNN architecture

searching algorithm proposed in this chapter.

The best models in each dataset found by the DNN Deepening algorithm were

pruned using the proposed DeepPruningES algorithm with the WIN approach, and

the results can be seen in Table 5.4. As stated before, the proposed pruning algorithm

uses a user preference vector to select the so-called preferable knee. In this case,

the algorithm has a preference to maintain the validation ROC-AUC of a candidate

solution as high as possible instead of small computational complexity.

Table 5.4 also shows that, although the preferable knee solutions for the ISIC2016

and Chest X-Ray datasets were pruned by 79.36% and 62.70%, respectively. In

both datasets, the preferable knee solution’s Test AUC outperformed the original
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model after pruning. The results in Table 5.4 shows that iteratively increase the

computational complexity of a DNN model may improve its performance. However,

it does add too many redundant parameters to the model. Thus, pruning algorithms

can also be considered an essential part of the design of DNN architectures.

The evolution of the population of candidate solutions through the generations in

each dataset can be seen in Figures 5.7a and 5.7b. Because the algorithm starts with

an original model with all of its convolutional filters enabled, thus, most candidate

solutions have a higher computational complexity than the ones in the last generation.

As the convolutional filters are eliminated, the computational complexity and the

validation ROC-AUC of the candidate solutions start to decrease. Consequently, at

the end of the pruning process, the selected solutions are retrained for 200 epochs in

order for them to regain some of their performance.

5.5 Final Remarks

This chapter presented a unified framework for DNN architecture designing con-

sisting of a deepening and a pruning phases. The deepening phase allows a DNN

model to grow more complex over time, while the pruning phase eliminates redun-

dant parameters added during the deepening phase. The proposed framework was

tested in two medical imaging datasets and showed competitive results with hand-

crafted networks and used less prior knowledge about the problem at hand. The work

developed in this chapter also shows that DNN architecture searching and pruning

can be seen as two essential parts in the automatic design of DNN architectures.
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Figure 5.5: Best DNN found by the proposed DNN Deepening algorithm for the ISIC
2016 dataset.
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(a) Evolution of the population on the ISIC2016 dataset.

(b) Evolution of the population on the Chest X-ray dataset.

Figure 5.7: Evolution of the population during the pruning stage in generations 1, 5,
and 10.
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CHAPTER VI

GENERATIVE ADVERSARIAL NETWORK ARCHITECTURE

PRUNING WITH EVOLUTION STRATEGY

In this chapter, the DNN architecture pruning algorithm presented before is ex-

tended and used to prune a specific Generative Adversarial Network (GAN) used for

chest x-ray image synthesis.

6.1 Introduction

Deep Learning (DL) models have the potential to revolutionize the field of medical

diagnosis due to their astonishing classification capabilities. However, Deep Neural

Networks (DNNs) require large amounts of data to be adequately trained, which

limits their application in the medical field. Due to concerns about the privacy of

patients and the need for experts to perform annotations, large amounts of medical

data are expensive and challenging to obtain [123].

Deep Learning practitioners often rely on the use of data augmentation, such as

image rotations and cropping, to develop DNN-based solutions for the medical field.

However, data augmentation is often not enough to produce meaningful new data

from a small dataset. Thus, Generative Adversarial Networks (GANs) are becoming

an essential tool in the generation of new and useful data that can be later used to

train large DNN models. GANs have been successfully used to synthesize Magnetic

Resonance Images (MRIs) [124, 125], Computer Tomography (CT) images [126, 127],
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chest x-ray images [128, 129, 130], and others. Therefore, due to their popularity in

the field of medical imaging synthesis, GANs are promising candidates to further test

the proposed DNN architecture pruning presented in Chapter IV.

Vanilla GANs usually are composed of two DNN models. One of them is called

the Generator, and it is responsible for synthesizing new data. The other is called

the Discriminator, and it is responsible for classifying images as real or fake. During

training, the Generator tries to fool the Discriminator in thinking that synthesized

images are real ones. GAN training is often compared to a money forger trying to

trick a detective in thinking that fake money is real. However, the Discriminator is

only needed when training the Generator. In general, the architecture of the Dis-

criminator is a traditional Convolutional Neural Network with a single output, while

the architecture of the Generator is composed of transposed convolutional layers,

which upsamples its inputs to produce a higher resolution output. Once trained, the

Generator can be used by itself to synthesize new images.

Thus, only the Generator is pruned with the proposed DNN architecture pruning

algorithm because it is the end product of a GAN training session. Although the

Generator has only transposed convolutional layers, its filters are arranged similarly

to the ones found in standard CNN architectures. Thus, a similar filter representation

used with CNNs in Chapter IV can be used to prune GANs. Moreover, the results

presented in this chapter demonstrate that the use of DNN architecture pruning

has many applications beyond image classification tasks. In the next sections, a

description of the proposed algorithm, experimental design, and results are presented.
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Algorithm 12: Proposed GANPruningES

Input : Offspring size (λsize), maximum number of generations (gen),
mutation probability (pm), original Generator model (generator),
original Discriminator model (discriminator), number of epochs
for individual evaluation (eeval), learning rate for individual
evaluation (αeval), number of epochs for fine-tuning (efine), learning
rate for fine-tuning (αfine).

Output: A pruned Generator model.

1 1,λ← Initialize Population(λsize, Generator, Discriminator );
2 for g = 1 to gen do
3 P← 1 + λ

4 1← Knee Selection(P, Generator, Discriminator, eeval, αeval);
5 λ← Offspring Generation(1, λsize, pm, dnn);

6 end
7 PrunedGenerator ← Fine-tuning(1, efine, αfine);
8 return PrunedGenerator;

6.2 Proposed Algorithm

The proposed GAN architecture pruning is called here as GANPruningES, and it

is shown in Algorithm 12. It uses the concepts and ideas developed in the previously

shown DeepPruningES to find a pruned Generator model. The main difference be-

tween GANPruningES and DeepPruningES is that GANPruningES only searches for

a knee solution in a two-dimensional objective space because of the noisy loss function

used in GANs. In practice, the proposed GANPruningES is a (1 + λ)-ES algorithm.

Furthermore, it uses the same inputs from DeepPruningES with the addition of the

original Generator and Discriminator. Thus, as with all pruning algorithm, a well-

trained GAN is needed.

The Knee Selection and Offspring Generation (Algorithm 12, lines 4, and 5) are

similar to the ones developed in Chapter IV. However, instead of selecting three

solutions, the proposed Knee Selection only selects the individual with the minimum

Manhattan distance in the population (P), as shown in Algorithm 13. Another dif-
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ference is the Evaluate Population function found in the first line of Algorithm 13.

Due to the inherent instability produced when training GANs, Evaluate Population

does not perform any form of training using backpropagation. An individual is eval-

uated by computing its GAN loss function over the entire dataset together with the

fake images produced by the pruned Generator, as shown in Algorithm 14. At the

end of the pruning process, the selected pruned Generator model is retrained from

scratch for 10,000 iterations in the chosen medical imaging dataset in order to avoid

any training instability.

6.3 Experimental Design

In this section, the chosen Generator and Discriminator architectures used dur-

ing the pruning process, as well as the dataset chosen to train the original GAN is

presented in detail.

6.3.1 Chosen GAN Architecture

Inspired by the work developed by Salehinejad et al. [128, 129], a Deep Convolu-

tional Generative Adversarial Network (DCGAN) was the chosen candidate to syn-

thesize medical images and to be pruned by the proposed GANPruningES algorithm.

Both Generator and Discriminator have a total of eight layers. The Generator has

eight transposed convolutional layers with Batch Normalization and ReLU activation

functions, illustrated in Figure 6.1a. The Discriminator has eight convolutional lay-

ers with LeakyReLU activation functions [131], illustrated in Figure 6.1b. The chosen

GAN architecture was trained for 2,000 iterations using the Wasserstein Distance as

its loss function, which was defined in Chapter II.
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Algorithm 13: Knee Selection

Input : Individuals in the population (P), original Generator model
(Generator), original Discriminator model (Discriminator),
number of epochs for individual evaluation (eeval), learning rate for
individual evaluation (αeval).

Output: One individual: knee solution (knee).

1 P← Evaluate Population(P, Generator, Discriminator, eeval, αeval);
2 Find min(f1),min(f2),max(f1),max(f2) in P;
3 for k = 1 to len(P) do

4 dist(k) = f1(Pk)−min(f1)
max(f1)−min(f1) + f2(Pk)−min(f2)

max(f2)−min(f2) ;

5 end
6 knee← Pk, where Pk has the minimum dist(k);
7 return knee;

Algorithm 14: Evaluate Population

Input : Individuals in the population (P), original Generator model
(Generator), original Discriminator model (Discriminator),
number of epochs for individual evaluation (eeval), learning rate for
individual evaluation (αeval).

Output: Individual in the population with fitness scores (P).

1 for i = 1 to len(P) do
2 Decode the genetic code of the individual (Pi) in the population;
3 Compute the average Wasserstein Distance over the entire dataset and

fake images;
4 Compute the number of FLOPs of the individual (Pi);
5 The fitness score of the individual is equal to the average Wasserstein

Distance and its number of FLOPs;

6 end
7 return P;
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6.3.2 Chosen Dataset for GAN Training and Pruning

The chosen dataset to train and to prune the chosen GAN is called here as Chest

X-Ray showed in Figure 6.2, and it was developed by Kermany et al. [121]. It

contains a total of 5,232 training images in which 1,349 images are from healthy

patients, while 3,883 are from patients diagnosed with pneumonia. There is also a

test set with 624 images, where 234 images from healthy patients and 390 images

from patients diagnosed with pneumonia. Because this is an unbalanced dataset, the

GAN was trained using the 1,349 images of healthy patients to generate chest x-ray

images of healthy people. The trained Generator can then be later used to generate

a balanced dataset in which both classes have the same number of training samples.

6.4 Experimental Results

The results obtained from the original and pruned Generator models are presented

and discussed in this section.

Noise (z)
Trans_Conv2D Trans_Conv2D

512 x 16 x 16 256 x 32 x 32 128 x 64 x 64 64 x 128 x 128 32 x 256 x 256

3 x 512 x 512

100 x 1 2048 x 4 x 4 1028 x 8 x 8

Trans_Conv2D Trans_Conv2D Trans_Conv2D Trans_Conv2D Trans_Conv2D Trans_Conv2D

Synthesized X-Ray

(a) Representation of the chosen Generator architecture.

Conv2D Conv2D

512 x 16 x 16256 x 32 x 32128 x 64 x 6464 x 128 x 12832 x 256 x 256

3 x 512 x 512

2048 x 4 x 41028 x 8 x 8

Conv2D Conv2D Conv2D Conv2D Conv2D Conv2D

Input Image

Real

or

Fake

(b) Representation of the chosen Discriminator architecture.

Figure 6.1: The chosen GAN architecture used for pruning.
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Figure 6.2: Chosen dataset to evaluate the proposed GANPruningES algorithm.

Figure 6.3: Losses of the chosen GAN architecture in the Chest X-Ray dataset for
2,000 iterations.

6.4.1 Original GAN Training Results

The original GAN was trained for 2,000 iterations using the Wasserstein Distance

as the loss function. The evolution of the losses from the Generator, Discriminator,

and the Wasserstein distance can be seen in Figure 6.3. The final Wasserstein distance

was equal to 143.4226. Unfortunately, there is no other metric to measure the quality

of training in the field of GANs. Thus, a fixed noise vector was used throughout the

training, and its corresponding synthesized images from the Generator was saved. At
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Figure 6.4: Images synthesized by the original Generator model.

the 2000th iteration, the quality of the images generated is displayed in Figure 6.4.

6.4.2 Pruned GAN Results

As stated before, the final pruned Generator was trained from scratch for a total

of 10,000 iterations using the original Discriminator, also trained from scratch. The

losses of the pruned Generator, original Discriminator, and Wasserstein distance are

shown in Figure 6.5. The final Wasserstein distance was equal to 682.0936. Figure

6.6 shows 64 synthesized images from the pruned Generator once the training was

finished. Moreover, the proposed GANPruningES was capable of eliminating 70.51%

of the number of Floating-Point Operations (FLOPs) from the original Generator.
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Figure 6.5: Losses of the pruned GAN architecture in the Chest X-Ray dataset for
10,000 iterations.

6.4.3 Discussion

The original Generator has a total of 2.08×107 FLOPs, while the pruned one has

a total of 6.14×106 FLOPs, which is equal to 70.54% fewer in number of FLOPs than

the original model. Moreover, comparing Figures 6.4 and 6.6, the pruned Generator

was capable of generating chest x-ray images with a similar level of quality compared

to the original one, even though the pruned Generator contains fewer parameters

than the original one.

In order to further test the quality of the images synthesized by the pruned Gener-

ator, 5,068 images of the healthy patient were generated, where the original Generator

generated 2,564 images, and the pruned Generator generated 2,564. These generated

images were added to the original Chest X-Ray dataset and were used to fine-tuning

an AlexNet model pre-trained on the ImageNet challenge. The overall results can be
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Figure 6.6: Images synthesized by the pruned Generator model.

Table 6.1: AlexNet finetuned with generated chest x-ray images.

Only the
original
dataset

Original dataset +
images from the

original Generator

Original dataset +
images from the

pruned Generator

Test Acc 0.8125 0.8151 0.8237
Test AUC 0.9671 0.9656 0.9656

Test
Sensitivity

0.9128 0.8897 0.9077

Test
Specificity

0.9060 0.9145 0.8974

seen in Table 6.1. From these results, it is easy to see that the pruned Generator did

not lose any of its synthesis capabilities as compared with the original one.
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6.5 Final Remarks

In this chapter, the proposed DNN architecture pruning algorithm presented in

Chapter IV was extended and used with Generative Adversarial Networks (GANs)

architecture pruning. With minimal modifications, the proposed DNN architecture

pruning was capable of reducing the number of Floating-Point Operations (FLOPs)

of a Generator model without negative impacts on its synthesizing capabilities. This

application demonstrates that it is possible to develop an evolutionary framework

where compact GANs could be designed automatically. Such GANs would have a

significant impact on training DNN models for use by the field of medical diagnostics

of rare or uncommon diseases.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

Deep Neural Networks (DNNs) are the most ubiquitous machine learning models

currently available. They are used to solve a variety of real-world problems, such

as object recognition, natural language understanding, and others. However, their

development and deployment for consumer use is not a trivial task requiring vast

amounts of time by trial and error multiple DNN architectures. The development

of DNN-based solutions requires both expertise in the field of deep learning and

massive amounts of computational power, which are not always available for interested

researchers and experts from other fields. Thus, the development of algorithms and

solutions that allows for the automatic generation of DNN architectures and the

reduction of their computational complexity is critically needed to advance Deep

Learning to other fields outside computer science and engineering. The main objective

of this Ph.D. work was to address such problems in the development and deployment

of DNN models.

The designing of meaningful DNN architectures can be seen as a discrete opti-

mization problem, where one wants to find the best architecture for a given prob-

lem. However, there is no analytical approach available when searching for the best

architectures. In that sense, Evolutionary Computation (EC) algorithms are good

candidates for use in the designing of DNN architectures. ECs are nature-inspired
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algorithms that have been used to solve all types of optimization problems where

no analytical solution exists. In the present work, it is proposed the use of Particle

Swarm Optimization (PSO), a type of EC algorithm, to search for DNN architectures

automatically, called psoCNN. More specifically, the proposed algorithm is capable

of finding meaningful CNN architectures, a particular type of DNN, used for image

classification tasks. PSO is chosen because of its proven convergence speed compared

with other EC algorithms, which in turn reduced the average running time for the

algorithm to find CNN architectures. Indeed, the proposed psoCNN algorithm is

capable of finding state-of-the-art CNN architectures faster than the peer competi-

tors’ algorithms. psoCNN is the best algorithm in six out of nine image classification

datasets used to benchmark CNN models. Furthermore, in the other three datasets,

psoCNN obtained results that are within the top three best algorithms. Therefore,

PSO and other EC algorithms can be successfully used during the designing of DNN-

based solutions with no prior knowledge required.

An important issue when DNN-based solutions are ready for deployment is that

they require massive amounts of computational power to run in real-time. Many

of these solutions are developed for deployment in consumer-grade hardware, which,

in most cases, does not have enough computational power to run such models in

real-time. Thus, the development of an algorithm to reduce the amount of computa-

tional power required by state-of-the-art DNN models is also presented in this work.

The proposed algorithm is called DeepPruningES, and it eliminates convolutional fil-

ters from multiple convolutional layers by using Evolution Strategy (ES) and Multi-

Criteria Decision making (MCDM). ES is another EC algorithm where candidate

solutions are modified at random. In MCDM, a decision-maker (DM) uses informa-

tion from multiple objective functions being optimized at the same time to choose

which candidate solution better fits his or her needs at the moment. The proposed
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DeepPruningES is capable of reducing the computational complexity of the state-of-

the-art CNN, ResNet, and DenseNet architectures by up to 80% while maintaining

reasonable classification performance. Furthermore, DeepPruningES uses MCDM to

find three specific DNN models with different trade-offs between computational com-

plexity and classification accuracy that can help decision-makers in choosing which

one is better to be used in their available hardware.

To the best of the author’s knowledge, no other work in the literature considered

that DNN architecture searching and pruning can be seen as a unified framework to

develop DNN-based solutions. The present work proposed the development of such a

framework where DNNs are built as quickly as possible by adding residual blocks on

the bottom of existing ones, which are later pruned, called DNNDeepeningPruning.

Such methodology allowed for a reduced searching space of possible DNN architectures

and sped up the searching procedure. Because the process of adding blocks does

not allow for the elimination of any existing parameter, the newly created DNN

model needs to be pruned in order to remove any parameter in excess. Users are

allowed to control the pruning process by specifying their preference of models with

reduced computational complexity or higher classification performance. The proposed

framework was tested and evaluated with medical imaging diagnostics applications

and achieved competitive results compared with hand-crafted DNN models.

For last, the proposed DNN architecture pruning algorithm was applied in the

pruning of Generative Adversarial Networks (GANs) used to synthesize medical imag-

ing data. The proposed pruning algorithm can successfully eliminate up to 70% of

the parameters in a GAN with no impact on its image generation performance. These

results show that DNN architecture pruning can be applied to all sorts of tasks, not

only image classification ones.

Therefore, in the present work, highly accurate and compact DNN models used

127



for image classification and medical imaging diagnostics applications were developed

automatically with the help of metaheuristic algorithms. The proposed algorithms

and frameworks allow researchers and experts from other fields to take advantage

of the learning powers of DNN models without being experts in the field of Deep

Learning.

7.2 Future Work

Traditionally, DNN models are developed to solve problems with a well-defined

number of classes or labels. For example, if an initial DNN model is created and

trained to classify chest x-ray images as coming from healthy patients or patients

with pneumonia, this model cannot be later re-purposed to identify which type of

pneumonia, viral or bacterial, is present. One could think that adding an extra

output to the DNN model and retraining it with new data would suffice. However, this

method would result in catastrophic forgetting [132]. The main problem of training

a DNN in a new problem is that the previously learned weights may not be that

important in learning the new data, and they get erased. Thus, the model learns the

new data but forgets the old one.

Similar to DNNs, this is a well known problem being in study since the 1990s

[132, 133] that has regained attention recently with the popularity of Deep Learning.

This problem is currently known as Continual Learning, and it is actively researched.

Kirkpatrick et al. tried to overcome catastrophic forgetting in DNNs with the devel-

oped of Elastic Weight Consolidation, where a penalization term is added to the loss

function helps maintain the weights related to the old data [134]. Zenke et al. used the

idea of Synaptic Intelligence, where each DNN parameter contains its current value,

its past value, and an estimate of importance, to overcome catastrophic forgetting
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[135]. However, there are a paucity of evolutionary approaches that tries to overcome

this problem. Evolving Neural Turing Machines are one of the few examples that use

an evolutionary framework to deal with Continual Learning [136, 137]. Nevertheless,

they are still very limited and cannot deal with image classification problems. Thus,

there are many open opportunities to deal with such an essential problem with the

help of evolutionary algorithms.

One suggestion of future work is to search for DNN architectures for Continual

Learning using evolutionary algorithms. Specifically, instead of using a single DNN

model to learn multiple tasks, a new DNN model could be searched for each new

task. In this sense, multiple DNNs would be responsible for classifying different

tasks. However, in this case, one would have to study how to fuse the information

of multiple DNNs into a single classification output. One could also use evolutionary

algorithms to train a single DNN architecture for Continual Learning. In this case,

the architecture would be fixed, but the evolutionary algorithm would be used to

preserve the weights necessary for old tasks while training the DNN in a new task.

The development of algorithms to deal with Continual Learning would also have

ramifications to other fields, such as the field of dynamic optimization problems.

In these types of problems, the environment is always changing over time, and new

decisions need to be taken once a change is detected. In a sense, dynamic problems are

similar to Continual Learning in which the DNN needs to learn the conditions of a new

environment. However, these changes can happen at any time. Thus, a model needs

to be able to identify such changes and needs to adapt to them as fast as possible.

Dynamic problems are also a hot research area with many open opportunities. Many

approaches are being used to tackle these problems, such as reinforcement learning

[138, 139], and Multi-Criteria Decision Making [140]. Therefore, this is another field
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that could benefit from the use of DNN architecture designing based on evolutionary

algorithms. Specifically, DNN models and weights could be easily optimized with

evolutionary algorithms once an environmental change is detected.
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[16] T.-H. Wen, M. Gasic, N. Mrkšić, P.-H. Su, D. Vandyke, and S. Young, “Se-

mantically Conditioned LSTM-based Natural Language Generation for Spoken

Dialogue Systems,” in Proceedings of the 2015 Conference on Empirical Methods

in Natural Language Processing, 2015, pp. 1711–1721.

[17] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks

are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366,

Jan. 1989. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/

0893608089900208

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, Oct.

1986. [Online]. Available: http://www.nature.com/articles/323533a0

[19] M. Chen, S. Mao, and Y. Liu, “Big Data: A Survey,” Mobile Networks

and Applications, vol. 19, no. 2, pp. 171–209, Apr. 2014. [Online]. Available:

http://link.springer.com/10.1007/s11036-013-0489-0

[20] K.-S. Oh and K. Jung, “GPU implementation of neural networks,” Pattern

Recognition, vol. 37, no. 6, pp. 1311–1314, Jun. 2004. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S0031320304000524

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:

Surpassing Human-Level Performance on ImageNet Classification,” in 2015

IEEE International Conference on Computer Vision (ICCV). Santiago,

Chile: IEEE, Dec. 2015, pp. 1026–1034. [Online]. Available: http:

//ieeexplore.ieee.org/document/7410480/

134



[22] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift,” in Proceedings of the 32nd

International Conference on Machine Learning, ser. Proceedings of Machine

Learning Research, vol. 37. Lille, France: PMLR, Jul. 2015, pp. 448–456.

[Online]. Available: http://proceedings.mlr.press/v37/ioffe15.html

[23] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-

Scale Image Recognition,” arXiv:1409.1556, Sep. 2014, arXiv: 1409.1556.

[Online]. Available: http://arxiv.org/abs/1409.1556

[24] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with

convolutions,” in 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). Boston, MA, USA: IEEE, Jun. 2015, pp. 1–9. [Online].

Available: http://ieeexplore.ieee.org/document/7298594/

[25] M. Lin, Q. Chen, and S. Yan, “Network In Network,” arXiv:1312.4400 [cs], Dec.

2013, arXiv: 1312.4400. [Online]. Available: http://arxiv.org/abs/1312.4400

[26] J. S. Arora, O. A. Elwakeil, A. I. Chahande, and C. C. Hsieh, “Global

optimization methods for engineering applications: A review,” Structural

Optimization, vol. 9, no. 3-4, pp. 137–159, Jul. 1995. [Online]. Available:

http://link.springer.com/10.1007/BF01743964

[27] D. W. Marquardt, “An Algorithm for Least-Squares Estimation of

Nonlinear Parameters,” Journal of the Society for Industrial and Applied

Mathematics, vol. 11, no. 2, pp. 431–441, Jun. 1963. [Online]. Available:

http://epubs.siam.org/doi/10.1137/0111030

135



[28] M. Mitchell, An introduction to genetic algorithms, 5th ed., ser. Complex adap-

tive systems. Cambridge, Mass.: The MIT Press, 1999.

[29] J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,”

The Computer Journal, vol. 7, no. 4, pp. 308–313, Jan. 1965. [Online]. Available:

https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/7.4.308

[30] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings

of ICNN’95 - International Conference on Neural Networks, vol. 4.

Perth, WA, Australia: IEEE, 1995, pp. 1942–1948. [Online]. Available:

http://ieeexplore.ieee.org/document/488968/

[31] J. Kennedy and R. C. Eberhart, Swarm Intelligence. Elsevier,

2001. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/

B9781558605954X50001

[32] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by

a colony of cooperating agents,” IEEE Transactions on Systems, Man and

Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29–41, Feb. 1996.

[Online]. Available: http://ieeexplore.ieee.org/document/484436/

[33] X.-S. Yang, “Firefly Algorithms for Multimodal Optimization,” in Stochastic

Algorithms: Foundations and Applications, O. Watanabe and T. Zeugmann,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, vol. 5792, pp. 169–

178. [Online]. Available: http://link.springer.com/10.1007/978-3-642-04944-6

14

136



[34] C. J. A. Bastos Filho, F. B. de Lima Neto, A. J. C. C. Lins, A. I. S.

Nascimento, and M. P. Lima, “A novel search algorithm based on fish school

behavior,” in 2008 IEEE International Conference on Systems, Man and

Cybernetics. Singapore, Singapore: IEEE, Oct. 2008, pp. 2646–2651. [Online].

Available: http://ieeexplore.ieee.org/document/4811695/

[35] X.-S. Yang and Suash Deb, “Cuckoo Search via Lévy flights,” in
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