
Citation: Gupta, H.S.; Nofal, O.M.;

González, A.D.; Nicholson, C.D.; van

de Lindt, J.W. Optimal Selection of

Short- and Long-Term Mitigation

Strategies for Buildings within

Communities under Flooding

Hazard. Sustainability 2022, 14, 9812.

https://doi.org/10.3390/su14169812

Academic Editors: Giuseppe Barbaro,

Giandomenico Foti and Pierfabrizio

Puntorieri

Received: 31 May 2022

Accepted: 28 July 2022

Published: 9 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Optimal Selection of Short- and Long-Term Mitigation
Strategies for Buildings within Communities under
Flooding Hazard
Himadri Sen Gupta 1 , Omar M. Nofal 2 , Andrés D. González 1,* , Charles D. Nicholson 1

and John W. van de Lindt 2

1 School of Industrial and Systems Engineering, University of Oklahoma, Norman, OK 73019, USA
2 Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA
* Correspondence: andres.gonzalez@ou.edu

Abstract: Every year, floods cause substantial economic losses worldwide with devastating impacts
on buildings and physical infrastructures throughout communities. Techniques are available to
mitigate flood damage and subsequent losses, but the ability to weigh such strategies with respect to
their benefits from a community resilience perspective is limited in the literature. Investing in flood
mitigation is critical for communities to protect the physical and socioeconomic systems that depend
on them. While there are multiple mitigation options to implement at the building level, this paper
focuses on determining the optimal flood mitigation strategy for buildings to minimize flood losses
within a community. In this research, a mixed integer linear programming model is proposed for
studying the effects and trade-offs associated with pre-event short-term and long-term mitigation
strategies to minimize the expected economic losses associated with floods. The capabilities of the
proposed model are illustrated for Lumberton, North Carolina (NC), a small, socially diverse inland
community on the Lumber River. The mathematically optimal building-level flood mitigation plan
is provided based on the available budget, which can significantly minimize the total expected
direct economic loss of the community. The results reveal important correlations among investment
quantity, building-level short- and long-term mitigation measures, flood depths of various locations,
and buildings’ structure. Additionally, this study shows the trade-offs between short- and long-term
mitigation measures based on available budget by providing decision support to building owners
regarding mitigation measures for their buildings.

Keywords: community resilience; optimization framework; Lumberton; flooding; economic loss

1. Introduction

Community resilience is defined as a community’s ability to withstand disruptions and
rapidly recover functionality following an event like flooding, a tsunami, or a tornado [1].
When a natural disaster strikes a community, there is a wide range of potential conse-
quences, and a community may suffer significant losses as a result of damage to the built
environment, with the effects cascading into the economy and social institutions. Although
it is better to avoid building structures in flood-prone areas to reduce those risks [2,3],
this is not always a viable option due to other factors, such as community cohesion and
social norms. Climate change and socioeconomic growth exacerbate the consequences of
natural disasters such as floods as a result of sea-level rise and changes in intensity and
frequency of storms [2]. Therefore, communities need more robust solutions for reducing
economic and social losses. Researchers from different disciplines, including social science,
economics, civil engineering, and industrial engineering, are working to identify effective
methods of enhancing community resilience because it is a vital indicator of social sustain-
ability [4]. Social scientists are trying to improve community resilience by considering social
responsibility [3]. Moreover, diverse studies analyzed a wide range of effects of natural
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hazards, including social, psychological, socio-economic, socio-demographic, and political
impacts [5]. Additionally, engineering studies focused on building resilient communities by
improving infrastructure systems [6]. Other advanced methods of enhancing community
resilience have also been developed [7].

In recent years, research on community resilience has significantly increased [8], and
researchers are using computational tools, such as probabilistic modeling in uncertain
environments, rating models for community resilience assessment, optimization-based
modeling for resilient community design, game theory, agent-based, and probabilistic dy-
namical modeling [9]. Lio et al. [10] used optimization techniques to study the resilience of
transportation networks in the face of natural and manmade disasters, and they sought to
determine how to employ multi-objective optimization after weighting each objective func-
tion. After that, Nozhati et al. [11] employed dynamic programming with reinforcement
learning approaches, followed by multi-objective optimization to increase resilience. This
method was used to reduce the number of days it takes a community to restore electricity
to a given level of functionality and to increase the number of individuals who have power
throughout a series of repairs. However, when a community is affected by a water-induced
natural catastrophe like floods, the buildings and infrastructure are severely affected since
they are destroyed and rendered useless. For addressing this issue, Sen et al. [12,13] de-
veloped a model using the Bayesian belief network (BBN) to increase flood resilience for
residential buildings within a community in India. Machine learning and optimization
approaches are now widely employed to improve and forecast community resilience to nat-
ural catastrophes. To correctly classify and forecast communities’ flood resistance and their
reactions to upcoming flood dangers, a two-stage machine learning (ML)-based system was
created by Abdel-Mooty et al. [14]. Additionally, Gudipati and Cha [15] utilized artificial
neural networks to create the community-level optimization of functionally interdependent
structures, and they worked with office and hospital buildings to execute seismic hazard
mitigation. However, in their analysis, the selection of building-level mitigation measures
was not studied, which is also vital for minimizing a community’s losses.

Furthermore, the preparedness of a community to withstand and recover from a
natural hazard depends on the type of event. For example, we must examine the mod-
ification of the roof structure for tornadoes and the basement structure modification for
flooding; thus, the appropriate mitigation analysis methods for each one of these haz-
ards is unique. This study focuses on floods to identify the components that have the
most substantial effects on flood losses. There are different approaches that account for
flood damage/losses to buildings and infrastructure, including deterministic approaches
that use stage-damage functions [16–19] and probabilistic approaches that use fragility
functions [20–22]. Marvi [23] reviewed the developed flood vulnerability functions and
identified that flood-related data scarcity and the inability to propagate uncertainty in
the flood damage models are the main challenges to developing a robust flood vulner-
ability model. Recently, component-based flood fragility functions were introduced to
propagate uncertainty in flood damage models and inform building probabilistic safety
margins [16,24,25]. For community-level flood damage and loss analysis, Nofal and van
de Lindt developed a portfolio of 15 building archetypes to model flood vulnerability for
the different building typologies within the community [26]. This approach depends on
dividing the building into components and investigates the flood susceptibility of each
component using a Monte Carlo simulation framework to propagate uncertainty in the
flood depth and flood duration resistance along with the replacement cost of each compo-
nent. Afterward, a set of damage states (DSs) was developed to characterize the building
performance during flooding. The exceedance probability of each DS was calculated based
on the failure of the components contributing to each DS. This approach provided a sys-
tematic mechanism for modeling different types of mitigation measures at the building and
community levels [16,21,25].

Based on the damage states (DSs) of a building, we can analyze the direct economic loss
of a building due to building damage by any natural disaster. To minimize economic loss,
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a community must invest in its infrastructure, but if the investment exceeds the monetary
loss, it has historically not been considered viable; hence, a trade-off between investment
and economic loss is critical. It is noted here that accounting for nonmonetary benefits is
critical in resilience studies and is not addressed herein but will be included in forthcoming
work by the authors. Ideally, investments should not exceed their planned budgets or result
in a financial loss [27]. Studies in the literature use a variety of methods and strategies
for determining the ideal balance between investment and economic loss. Najarian and
Lim [28] proposed a mathematical model for natural and human-made disasters to optimize
resilience with financial constraints in terms of developing a budget allocation approach to
any infrastructure component. To improve community resilience and reduce the overall
cost associated with the restoration process, a multi-objective optimization framework
with numerous constraints was presented by Almoghathawi et al. [29]. Recently, Wen [30]
presented her multi-objective tornado mitigation model, where she sought to minimize the
total economic loss and population dislocation due to the impact of a tornado and then
applied her model to Joplin, Missouri. Adluri [31] also created an optimization model to
decrease overall direct economic loss due to building damage in a multi-hazard scenario
and applied that model in Seaside, Oregon. Zhang and Nicholson [27] formulated an
optimization model for retrofitting buildings with different mitigation strategies while
minimizing the total economic losses to a community from a natural disaster and imple-
mented the earthquake in Centerville, a virtual community designed to test resilience
models. Later in their research, Zhang et al. [32] focused on estimating the loss of building
functionality due to any severe natural catastrophe, taking into account both the physical
damage to the structures and the interruption of the utilities. They did not incorporate
building-level mitigation in this research to restore building operations following such
hazards. Wiebe and Cox [33] analyzed the direct economic losses to a community in Oregon
by applying fragility curves for a tsunami, although they did not consider the indirect
tangible losses to that community. Onan et al. [34] also worked on a bi-objective model
for minimizing the economic losses from a natural disaster along with another objective
function of reducing the risk of hazardous waste exposure to transportation. Though a few
researchers [27,30,31,35] presented their natural hazard mitigation optimization models for
minimizing the direct economic losses to a community, they mainly focused on altering
existing building structure and design, which may not always be ideal or applicable when
also considering community-level mitigation strategies and adaptation, as more tempo-
ral building-level mitigation strategies would provide more flexibility and adaptability.
Furthermore, despite the fact that one research team developed research methodologies
for estimating a community’s resistance to flooding [14], they overlooked including the
required mitigation strategies for buildings in their study.

In this research, we used a mixed-integer linear programming approach to minimize
the community-level economic losses due to building damage by floods. Decision makers
can benefit from optimization techniques while deciding on the optimal mitigation option
for buildings that can also help to achieve community resilience. Previously, Nofal et al. [36]
worked on the analysis of strategies for making individual buildings more resilient, but they
did not suggest any separate mitigation strategy for each building or building archetype. It
is critical to choose the proper mitigation techniques for decreasing flood damage while
determining which mitigation approach is suitable for specific infrastructures.

The study separated mitigation actions into two categories, short-term and long-term.
Depending on their structure, the model will assist building owners in deciding whether
to take short- or long-term mitigating measures. However, this research contributes a
formulated optimization model that can help building owners in their decision-making
regarding mitigating their buildings’ potential losses from flooding. The proposed model
can inform decision makers regarding the optimal mitigation strategy for each building in
a community. The flood risk and mitigation model, as well as the optimization model, are
discussed in Section 2. In Section 3, the proposed model is applied to Lumberton, North
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Carolina (NC), and key findings are described. Section 4 contains concluding thoughts and
recommendations for further study.

2. Research Methodology

A novel optimization model was developed for minimizing the total direct economic
loss due to building damage in a community with an optimal building-level mitigation
plan. The proposed model considers several mitigations strategies as inputs to choose
the mitigation plan that minimizes the total losses associated with an investment within a
given budget. Figure 1 shows a schematic representation of the required models and inputs
for this optimization model. This approach uses a high-resolution flood loss analysis that
combines detailed information about the flood hazard and the impacted community to
identify the exposed buildings. The flood hazard intensity at each building location was
calculated to be used in a probabilistic fragility-based flood loss analysis at the building
level. An algorithm was then developed to use the hazard, exposure, and vulnerability
information for each building to calculate the flood losses. This algorithm was then
modified to include the impact of different mitigation strategies on the amount of flood
loss reduction at the building level. Afterward, an optimization model was developed to
optimally allocate these mitigation measures such that the total expected economic losses
can be reduced. The model is designed to inform the decision makers regarding resources
and fund allocation for the possible mitigation modifications to buildings. The main inputs
of this optimization model are the mitigation interventions, their corresponding losses, and
the total available budget of the decision maker to mitigate building losses.

2.1. Flood Risk and Mitigation Model

The flood risk components, including hazard, exposure, and vulnerability models,
were developed using high-resolution models based on the concept developed herein [21].
The hazard model is based on a 2D hydrodynamic model that can capture the extent
and intensity of flood inundation across the community. This hydrodynamic model uses
HEC–RAS to solve the Saint Venunt shallow water equation, which was calibrated and
validated in [37]. The community model was developed using a portfolio of 15 building
archetypes that can populate the building stock within the community [16] The flood hazard
model in terms of a raster map of the flood hazard scenario of interest was overlaid on the
GIS community model in terms of a shapefile of the buildings’ locations. This allowed for
extracting the flood hazard intensity at each exposed building to be used as input for the
vulnerability analysis. Then, the fragility analysis was used to model the flood vulnerability
of buildings. A fragility function is a probabilistic vulnerability model that can inform the
marginal safety of a system in terms of the exceedance probability of prescribed damage
states. For this study, a component-based fragility function corresponding to each building
archetype was used to account for building damage in terms of the exceedance probability
of a set of five damage states (DSs). Figure 2a,b show component and total building
fragility functions for an example building archetype: one-story residential buildings
on a slab-on-grade foundation and the relationship between flood depth and economic
loss is illustrated in Figure 2c,d. Similar fragility functions for a portfolio of 15 building
archetypes were developed by Nofal and van de Lindt [16]. Since there are no fragility
functions in the literature to be used for verification and validation, these fragility functions
were converted into loss functions and validated with the HAZUS stage-damage functions,
which show excellent match up to flood depth 3.0 m. This validation process was applied
to all 15 building archetypes, which are fully presented herein. Table 1 provides a brief
description of these DSs along with their damage scales, their loss ratios (percent loss
from the building replacement value), and the anticipated building functionality; more
details about each DS can be found in [16]. It should also be noted that the loss ratios
corresponding to each DS are based on the average calculated loss for a portfolio of the
15 building archetypes developed in this publication [16]. However, the exact loss values
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corresponding to each DS associated with each building archetype were used to conduct
the global loss analysis in this study.
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on a slab-on-grade foundation.

Table 1. Building Damage State Description.

Damage State Level Functionality Damage Scale Loss Ratio

DS-0 Operational Insignificant 0.00–0.03
DS-1 Limited Occupancy Slight 0.03–0.15
DS-2 Restricted Occupancy Moderate 0.15–0.50
DS-3 Restricted Use Extensive 0.50–0.70
DS-4 Restricted Entry Complete 0.70–1.00

A fragility-based flood loss analysis was conducted using Equation (1), which mul-
tiplies the probability of being in each DS by the replacement cost of each DS. The loss
analysis for each building was calculated by determining the building archetype and then
using the corresponding fragility functions. The calculated probabilities from these fragili-
ties ere then transformed into loss analysis based on Equation (1). The analysis resolution
used in this approach allowed for the investigation of different mitigation strategies ranging
from the component level to the building and community levels. These strategies include
pre-event, short-term flood mitigation measures for buildings, such as using flood barriers
with different elevations. Additionally, pre-event, long-term flood mitigation measures
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(e.g., increasing building elevation) are modeled such as increasing building elevation. A
set of flood mitigation scenarios associated with each mitigation strategy is investigated,
and the flood loss for each building corresponding to each mitigation scenario is then
calculated to be used as an input for the optimization model.

L f (IM = x) =
n

∑
i=0

[ P (DSi|IM = x)− P(DSi+1|IM = x)] ∗ Lrci ∗ Vt (1)

where Lf (IM = x) = is the total building fragility-based flood losses in monetary terms at
intensity measure IM = x (replacement or repair cost), P(DSi|IM = x) = is the exceedance
probability of DSi at IM = x, P(DSi+1) = is the exceedance probability of DSi+1 at IM = x,
Lrci = is the cumulative replacement cost ratio corresponding to DSi, and Vt = is the total
building cost (replacement cost).

2.2. Optimization Model

Mathematical optimization is the science of finding the best solutions to mathemat-
ically described problems, which may be models of physical reality [38]. Optimization
helps to identify the best feasible solution among several feasible or infeasible solutions.
In this paper, a mathematical optimization model is developed to enhance the resilience
of buildings by reducing the total direct economic loss from a flood hazard. The set Z
denotes the set of all buildings in the community, and the set S denotes the set of all
building archetypes. Each building i ∈ Z is associated with precisely one archetype j ∈ S.
The set K denotes all possible building mitigation intervention levels available across the
community. The mitigation alternative k = 0 (k ∈ K) indicates that no mitigation strategy
has been implemented. All buildings are assumed to be in this state prior to the modeling.
Additionally, L corresponds to the set of valid changes in the mitigation strategy associated
with a building, from strategy k to k′, where k, k′ ∈ K.

This optimization model can help inform building owners for decision making regard-
ing building mitigation to minimize their economic losses from flooding. Mathematically,
these decisions are modeled using two decision variables in the optimization model. The
first decision variable of this model is xijk, which denotes the total number of buildings
i ∈ Z of archetype j ∈ S retrofitted to mitigation strategy k ∈ K. The other decision
variable, yijkk′ , denotes the total number of buildings i ∈ Z of archetype j ∈ S that should
change from strategy k ∈ K to k′ ∈ K. As a result, for each mitigation option, the model
determines the number of buildings that would need to be modified for other mitigation
measures. This model may be used to identify the best mitigation strategies for individual
buildings, or it can be used when the decision maker is considering a small number of
buildings in a block and selecting single mitigation methods for each block.

2.2.1. Objective of the Optimization Model

In this model, the objective is to minimize the total expected economic loss, as de-
scribed in Equation (2). For this objective function, lijk is defined as the expected direct
economic loss for building i ∈ Z of archetype j ∈ S at the mitigation strategy k ∈ K.

min ∑
i ∈ Z

∑
j ∈ S

∑
k ∈K

lijkxijk (2)

Though the current model focuses on the financial aspect of the community, without
losing generality, the objective function can be extended to address other critical economic,
physical, or social metrics, such as population dislocation [27,39]. In that case, we would
have to replace expected economic loss with expected population dislocation. More gener-
ally, we could have a multi-objective scenario where we seek to optimize multiple objective
functions simultaneously. To address this case, as depicted in Equation (3), one could create
a set of objective functions, N, where φn

ijk indicates the expected value of the desired metrics
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(e.g., economic loss, population dislocation) for each building i ∈ Z, of archetype j ∈ S,
at the mitigation strategy k ∈ K:

min ∑
i ∈ Z

∑
j ∈ S

∑
k ∈K

φn
ijkxijk, ∀ n ∈ N (3)

2.2.2. Constraints of the Optimization Model

In most cases, analysts consider budgetary constraints, which can significantly affect
subsequent decisions regarding mitigation [40]. In this model, the mitigation budget, B,
corresponds to the total budget that can be used for building mitigation purposes. To make
an investment decision, we also needed to know the cost of implementing any building
mitigation measure. To this end, we define the strategy cost cijkk′ which describes the cost of
modifying the retrofitting strategy associated with changing a building i ∈ Z of archetype
j ∈ S from strategy k ∈ K to k′ ∈ K. Considering these, constraint Equation (4) guarantees
that that the costs associated with all suggested building-level mitigation strategies are
within the available budget. The total cost of mitigation can be calculated by multiplying
the strategy cost cijkk′ by yijkk′ , the total number of buildings i ∈ Z of archetype j ∈ S,
which are upgraded from strategy k ∈ K to k′ ∈ K.

∑
i ∈ Z

∑
j ∈ S

∑
k ∈K

∑
k′ :(k′ , k) ∈ L

cijkk′ yijkk′ ≤ B (4)

Constraints (5) guarantee that xijk (the number of buildings i ∈ Z of archetype j ∈ S
that end with a mitigation strategy k ∈ K) equals bijk (the initial number of buildings
i ∈ Z of archetype j ∈ S and strategy k ∈ K) plus the buildings i ∈ Z of archetype
j ∈ S that are changed to strategy k ∈ K, minus the buildings that are changed from
strategy k to a different strategy k′. Additionally, constraints (6) guarantee that the total
number of buildings i ∈ Z of archetype j ∈ S is the same before and after implementing
any mitigation strategies. One thing to keep in mind is that, for modeling purposes,
“No Intervention” is also regarded as a proposed mitigation, and every building should
be given a specific mitigation measure once the model has been executed for a certain
budget. Constraints (7) and (8) describe the domain of the decision variables (nonnegative
integer variables).

xijk = bijk + ∑
k′ :(k′ , k) ∈ L

yijk′k − ∑
k′ :(k, k′) ∈ L

yijkk′ , ∀ i ∈ Z, ∀ j ∈ S, ∀ k ∈ K (5)

∑
k ∈ K

xijk = ∑
k ∈ K

bijk , ∀ i ∈ Z, ∀ j ∈ S (6)

xijk ∈ Z≥0, ∀ i ∈ Z, ∀ j ∈ S, ∀ k ∈ K (7)

yijkk′ ∈ Z≥0, ∀ i ∈ Z, ∀ j ∈ S, ∀
(
k, k′

)
∈ L (8)

3. Illustrative Example of Lumberton, NC

The approach described above is applied to Lumberton, NC, to illustrate the appli-
cability of the developed methodology at the community level. Lumberton is a small city
within Robeson County in southern North Carolina with a population of 20,000 people
who live on the banks of the Lumber River, as shown in Figure 3. The cascading flooding
events following severe hurricanes made Lumberton an ideal location for investigating
flood damage and identifying the applicability of the developed optimization model. Addi-
tionally, the availability of data about the buildings of North Carolina makes it a perfect
example to apply the used high-resolution flood risk model. Many researchers have used
Lumberton as a testbed for flood risk, mitigation, and recovery analysis [21,41–43]. There
are 9000 buildings within the physical boundary of Lumberton, but in this study, the
buildings around Lumberton that share the city facilities are included in the analysis as
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well. As a result, the number of buildings in the considered community is around 20,000,
among which 2858 buildings were impacted by flooding.
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The concept of a building portfolio was used to model the different building typologies
within the community. A portfolio of 15 building archetypes developed by Nofal and van
de Lindt [14] was mapped to each building using a mapping algorithm that uses detailed
building information to map specific archetypes to each building. More information about
the mapping process and the mapping algorithm can be found in [21,36]. Figure 3b shows
the spatial location of each building within Lumberton, with the buildings color coded
based on their archetypes (e.g., occupancy). The flooding event after Hurricane Matthew in
2016 was used as a flood scenario to investigate the developed approach.
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3.1. Flood Hazard and Damage Analysis Results

A detailed hydrologic analysis was conducted using the rainfall, land use, and soil
information to account for the water flow in the main streams that deliver the water to
the study area. This water flow (flow hydrograph) was used as a boundary condition for
a hydrodynamic analysis along with a LiDAR-based digital elevation map (DEM) at a
resolution of 0.75 m. HEC–RAS was used for the hydrodynamic analysis of the study area
using the flow information at upstream. In this hydrodynamic model, the Saint-Venant
shallow water equation is solved using finite volume by dividing the analysis domain
(study area) into 50 ft × 50 ft mesh squares. The final analysis results are the flood hazard
characteristics in terms of flood depth, flood velocity, and flood duration. Readers are
referred to [21] for more details about the flood analysis. Figure 4a shows the simulated
flood hazard map for the flooding event after Hurricane Matthew in 2016, which shows
the flood inundation intensity and extent with respect to Lumberton, NC. The exposure
analysis results revealed that there are 2858 buildings exposed to flooding. Figure 4b
shows the spatial location of the flooded buildings color-coded based on their archetypes.
Detailed information about the buildings within Lumberton, NC, was retrieved from
North Carolina OneMap and includes building occupancy, foundation type, number of
stories, and building value. These data allowed us to perform detailed loss analysis at the
building level and then aggregate the losses to be at the community level. Table 2 provides
information about the number of buildings exposed to flooding by archetype, along with
their replacement value and the amount of flood losses. Table 3 shows the fragility analysis
results in terms of the exceedance probability of each DS corresponding to five ranges
from 0% to 100% and the number of buildings within each of these ranges. Therefore, the
flood-exposed buildings within the community were categorized based on the exceedance
probability of each DS. For example, there are 144 buildings with an exceedance probability
of DS2 between 40% and 60%.
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Table 2. The number of exposed buildings by archetype along with their current replacement value
and base flood loss.

Archetype Number of
Buildings

Total Current
Replacement Value

Total Base
Flood Losses

F1: One-Story Single-Family Residential Building 665 $37,527,864 $10,097,519
F2: One-Story Multi-Family Residential Building 1741 $194,990,289 $80,651,358
F3: Two-Story Single-Family Residential Building The 7 $1,059,617 $316,074
F4: Two-Story Multi-Family Residential Building 96 $21,174,848 $5,548,556
F5: Small Grocery Store/Gas Station with a Convenience Store 157 $62,855,685 $7,921,982
F6: Multi-Unit Retail Building (Strip Mall) 1 $7,195,517 $0
F7: Small Multi-Unit Commercial Building 1 $256,600 $157,864
F8: Super Retail Center The 2 $408,318 $176,194
F9: Industrial Building 62 $124,562,628 $12,002,943
F10: One-Story School 8 $7,429,091 $2,495,461
F11: Two-Story School 3 $23,456,627 $3,621,603
F12: Hospital/Clinic The 0 $0 $0
F13: Community Center (Place of Worship) 44 $23,381,452 $6,720,040
F14: Office Building 17 $8,782,066 $2,565,452
F15: Warehouse (Small/Large Box) 53 $40,975,016 $860,940

Table 3. Fragility analysis results in terms of the exceedance probability.

Exceedance Probability of a
DS (Fragility)

Number of Buildings (Total = 2858)

DS0 DS1 DS2 DS3 DS4

0% < P_DS < 20% 2201 396 567 2071 2822
20% < P_DS < 40% 5 72 115 355 25
40% < P_DS < 60% 7 72 144 293 7
60% < P_DS < 80% 30 108 290 121 3

80% < P_DS < 100% 614 2209 1741 17 0

3.2. Comparative Analysis of Short- and Long-Term Mitigation Strategies

The initial analysis results showed that Lumberton’s total economic loss is predicted
to be more than $133 million if the community does not invest in mitigation. However, the
choice of optimal mitigation technique has a significant impact on reducing overall direct
economic loss [44]. This study performed three distinct methods of mitigation: (i) long-
term, (ii) short-term, and (iii) a combination of both. A long-term mitigation measure
can be defined as a building retrofitting method that can protect a building from several
natural hazards and help reduce the losses in the long run. On the other hand, short-term
mitigation measures have the ability to save a building from any natural disaster one
time. Short-term mitigations can be easily applied to most buildings, and the cost will be
significantly lower than long-term mitigation measures. Nofal and van de Lindt [21,25]
described various flood mitigation measures that can help to reduce the impacts of flooding.
According to their analysis, flood water pumping is a suitable mitigation measure, which
can reduce the flood water from a building. Furthermore, they mentioned flood barrier
systems as an effective flood mitigation measure. Water pumping and flood barriers are
two examples of short-term flood mitigation measures. On the contrary, building buyout
or building elevation are two examples of long-term mitigation measures that will help
protect buildings against multiple natural disasters. Although building elevation is one of
the costliest mitigation measures, it is still one of the most effective direct flood mitigation
measures. Sometimes homeowners receive federal funding for such mitigation measures
to cover a percentage of the total cost. Additionally, homeowners can obtain mitigation
loans in front of more equity on their building value. For implementing the optimization
model with various mitigation measures, we need to make sure to have the expected
economic losses with any specific mitigation measure. Furthermore, we need to know the
cost of adopting any specific mitigation measures for a building. First, this study employed
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mitigation techniques to eliminate flood threats, such as elevating structures to a specific
height. Second, flood barriers of various sizes ranging from 0.4 to 1.5 m were employed in
the mitigation approach. Due to a scarcity of cost information for flood barriers over 1.5 m,
a limit on the height of the flood barrier to 1.5 m was put in place in this study. Finally, all
of the strategies (long- and short-term) were combined in the model to provide a diverse
set of results.

Building owners who want to mitigate their building losses with a specific mitigation
measure have to invest a particular amount of money based on their chosen mitigation
method. This linked expense is referred to as strategy cost in the described model and is
funded from the model’s budget. Based on the type of mitigation measures, we needed
to calculate this linked expense. For instance, the cost of a flood barrier depends on the
building area and barrier type, whereas the cost of elevating buildings depends on required
materials, labor, and equipment. The user can specify any budget for retrofitting the
buildings while using the model, and the program will only offer mitigation methods based
on the available budget. For example, if a user wants to spend $3.5 million retrofitting all
the buildings in a community with long-term mitigation measures, the user may not be able
to advise building elevations for all of the structures. As a result, the model will suggest
“No Intervention” for the rest of the buildings where the model could not be applied.
The formulated model was tested with various budgets to test the model’s workability at
different budgets.

Long-term mitigation strategies include increasing building elevations from 5 ft (1.5 m)
to 10 ft (3.0 m) to reduce the flood losses for each building. Table 4 summarizes the
optimization model’s findings in terms of a specific building and different long-term
mitigation strategies. The base flood loss analysis without any mitigation resulted in a
direct economic loss of over USD 133 million. The optimization model was tested with an
initial budget of USD 3.5 million, and the model showed an economic loss reduction of more
than USD 4.0 million. On the other hand, for a budget of USD 280 million, 1738 buildings
can be retrofitted to reduce the economic loss by more than USD 118 million. This is because
long-term measures such as increasing building elevation have significantly high mitigation
costs, but they can decrease the overall building damage in the long -term. Furthermore, the
implementation of long-term mitigation will help building owners to save their buildings
from multiple future flooding events by a one-time investment. Thus, by investing USD
280 million, it will be possible to save USD 118 million in each flooding event.

Table 4. Results Summary for the Long-term Mitigation Strategies.

Number of Buildings Mitigated

Budget
(Million) No Intervention Elevate 5 ft

(1.5 m)
Elevate 10 ft

(3 m)
Total # of Mitigated

Buildings Economic Loss

$0 2858 0 0 0 $133,135,992
$3.5 2837 17 4 21 $127,398,555
$7 2818 33 7 40 $124,164,674

$10.5 2787 57 14 71 $121,268,774
$14 2762 81 16 97 $118,517,884
$ 20 2718 123 18 141 $114,017,769
$50 2524 288 46 334 $94,973,886

$150 1797 726 335 1061 $52,520,789
$280 1120 1329 409 1738 $14,704,547

For long-term mitigation, the model sought to identify the optimal mitigation option
for a specific building based on the cost of the mitigation strategy. Although 10 feet (3 m)
of elevation can make a structure safer than 5 feet (1.5 m), the financial loss will be zero
with 3 m of elevation. However, some industrial buildings in Lumberton will not be able to
achieve this building elevation since it would require substantial funds for mitigation. At
various budgets, Figure 5 depicts the selected buildings for long-term mitigation solutions
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for individual structures in Lumberton, NC, at various budgets. The figure shows that red
and dark pink dots increase when a larger budget is used, implying that more community
structures would be mitigated. The model showed how resources were optimally allocated
across buildings in terms of mitigation funds that could minimize the economic losses.
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Flood barriers were also investigated and implemented in the optimization model in
Lumberton as an example of a short-term mitigation strategy. Table 5 shows the investigated
budgets along with the number of flood barriers that are selected from 0.4 m to 1.5 m in
height to mitigate flood impacts on buildings, as well as the resulting estimated direct
economic loss. The main objective of the developed optimization model is to minimize
the total economic loss within a given budget. The developed optimization model is
designed to select buildings that can minimize the total economic loss. The analysis results
showed that investing $50 million in a long-term mitigation strategy can mitigate the flood
impacts on 334 buildings. On the contrary, investing the same amount of mitigation funds
($50 million) on short-term mitigation can increase the number of mitigated buildings to 832.
This is because of the lower cost of short-term mitigation, which can only be implemented
for buildings during a single flooding event. Using a flood barrier of 1.5 m is the costliest
option among all the short-term strategies, and as the model receives more money to invest,
it is giving more money to use the mitigation strategy. Taller flood barriers will achieve
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better results, but in this case, due to the lack of pricing information for higher flood
barriers, we need to stop at 1.5 m. The locations of the buildings and the distributions of
the various short-term mitigation strategies are presented in Figure 6 for different budgets.
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Figure 6. Locations of buildings based on short-term strategy implementation when the total invest-
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Table 5. Results Summary for the Short-term Mitigation Strategies.

Number of Buildings Mitigated

Number of Buildings Surrounded by a Barrier of Height (Hb)

Budget
(Million)

No Inter-
vention Hb = 0.4 m Hb = 0.5 m Hb = 0.7 m Hb = 1.0 m Hb = 1.3 m Hb = 1.5 m

Total # of
Mitigated
Buildings

Economic
Loss

$0 2858 0 0 0 0 0 0 0 $133,135,992
$3.5 2827 0 0 5 4 7 15 31 $124,118,022
$7 2767 1 0 9 16 26 39 91 $119,675,195

$10.5 2707 1 0 12 29 47 62 151 $116,597,842
$14 2638 1 0 14 37 74 94 220 $114,059,986
$20 2514 2 1 16 47 116 162 344 $110,680,315
$50 2027 33 8 70 146 264 311 832 $107,224,597
$150 2027 33 8 70 146 264 311 832 $107,224,597
$280 2027 33 8 70 146 264 311 832 $107,224,597
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The analysis showed that the developed optimization model could be used efficiently
for both short- and long-term mitigation options. The developed optimization model has
the essential features needed to recommend the optimal mitigation strategies for buildings
in terms of short-term (flood barriers) and long-term (building elevation) efforts. Flood
barriers may not be advantageous for some buildings after being used, need to be installed
before each event, and do not add to the building equity. On the other hand, increasing
building elevation as a long-term plan is much better since it is a permanent mitigation,
and the value invested is added to the building equity. Though it is a costly alternative, it
can help significantly reduce the amount of flood losses for the community.

At the highest budget of $280 million, the model allows for mitigating more than
2000 buildings. At the other budget level, the model suggests elevating the building by 5 ft
for two main reasons. Firstly, it is cheaper than elevating 10 ft, and secondly, it significantly
reduces the economic losses. However, building elevation is highly dependent on the
area of each building. Typically, commercial buildings hold large areas, which makes the
cost of building elevation very high for them. The summary of the outcomes from the
optimization model’s use of both short- and long-term mitigation methods is provided
in Table 6. Figure 7 depicts the mitigation strategies on the Lumberton map based on the
budget while implementing both short- and long-term strategies together.
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Table 6. Results Summary for Short- and Long-Term Mitigation Strategies.

Number of Buildings Mitigated

Number of Buildings Surrounded by a Barrier of Height (Hb)

Budget
(Million)

No
Intervention

Hb =
0.4 m

Hb =
0.5 m

Hb =
0.7 m

Hb =
1.0 m

Hb =
1.3 m

Hb =
1.5 m

Elevate
5 ft

Elevate
10 ft

Total # of Mitigated
Buildings

Economic
Loss

$0 2858 0 0 0 0 0 0 0 0 0 $133,135,992
$3.5 2834 0 0 4 3 4 9 3 1 24 $ 123,380,846
$7 2788 1 0 7 8 15 28 8 3 70 $ 118,059,178

$10.5 2746 1 0 9 16 28 39 15 4 112 $ 114,175,819
$14 2716 1 0 10 22 34 44 24 7 142 $ 110,893,178
$20 2650 1 0 10 27 45 60 51 14 208 $ 105,849,491
$50 2378 2 1 14 39 80 106 212 26 480 $ 84,368,342
$150 1539 2 1 18 53 131 184 601 329 1319 $ 39,452,522
$280 788 5 3 23 75 185 239 1091 446 2067 $ 4,539,084

Figures 8 and 9 (close-up view) show the total direct economic losses and the invested
budget, which illustrate the decreasing rate of economic loss corresponding to the amount
of invested mitigation funds. These graphs depict how the economic loss decreases as the
budget increases for different strategies. When long-term mitigation is used, the model
seeks to identify a mitigation option for a specific building based on the strategy cost of that
mitigation approach. It is noticed that up to a specific budget (around $25 million), short-
term mitigation measures can help the community reduce the amount of direct economic
losses due to building damage but after that, long-term strategies showed much better
performance after that. Since short-term strategies are as costly as long-term ones, the
model suggests short-term mitigation measures for smaller budgets. Buildings of 10 ft
(3 m) have higher mitigation plan costs than those of 5 ft (1.5 m). However, 10 feet (3 m)
of elevation can make a structure safer than 5 feet (1.5 m), and in some circumstances, the
financial loss will be nil if the owner chooses 10 feet (3 m) of elevation. However, some
industrial buildings in Lumberton will not be able to achieve this building elevation since
it would require them to invest substantially more money.
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4. Conclusions

Previous researchers analyzed various building-level mitigation measures for different
natural hazards, but this research focuses on finding optimal mitigation strategies for
buildings threatened by flooding. The contribution of this research is the developed
optimization model, which can determine optimal building-level mitigation measures for
each building in a community to minimize the total direct expected economic losses due to
building damage. The model detailed in this paper is formulated in such a way that it can
be used in any community subject to flooding. Although the optimization model provides
decisions at the building level, the model can also be employed when stakeholders at the
community level seek to look at blocks of buildings as a whole.

The optimization model was applied to Lumberton, North Carolina, which is subject
to recurrent flooding, and its performance was tested. Two mitigation techniques were
investigated in this case study. Firstly, building elevation was investigated using two
elevationss, 1.5 and 3.0 m, as a long-term mitigation measure, and secondly, flood barriers
were investigated as a short-term mitigation measure. It was demonstrated that long-
term mitigation measures could help the community significantly reduce the expected
economic losses. On the other hand, short-term mitigation measures for some buildings
will not help reduce their losses due to the high flood depth in that region. According
to this study, it is preferable to implement long-term building mitigation measures if
the budget allows due to the high flood depth in most areas. Furthermore, this long-
term mitigation will protect a structure from multiple natural disasters. The optimization
approach can be expanded to use other mitigation techniques to efficiently reduce the total
direct economic losses at the building and community levels. It is noted here that one
of this study’s limitations is that the optimization model only has one objective function,
which is minimizing the expected economic loss, despite the fact that it may be expanded
to include several objective functions.
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The current model does not consider community-level decisions prior to determin-
ing building-level mitigation strategies for individual building owners. The developed
model can be extended so that the model addresses community-level decisions along with
building-level mitigation measures. Additionally, some machine learning algorithms can
help predict future mitigations at both the community and building levels.
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