
OPTIMAL USE OF REGULARIZATION AND CROSS-VALIDATION

IN NEURAL NETWORK MODELING

By

DINGDING CHEN

Bachelor of Science
Beijing Agricultural Engineering University

Beijing, China
1982

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1996

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
May,2000

OPTIMAL USE OF REGULARIZATION AND CROSS-VALIDATION

IN NEURAL NETWORK MODELING

Thesis Approved:

ii

ACKNOWLEDGMENTS

I wish to express my sincere appreciation and gratitude to Dr. Martin Hagan for

serving as my major advisor. His support, guidance, encouragement, and friendship con­

tributed immeasurably to my research effort'. I would also like to extend my appreciation to

Dr. George Scheets, Dr. Carl Latino and Dr. Glenn Kranzler for serving on my graduate

committee. Their suggestions and thorough editing and proof reading of my dissertation

were very helpful.

Additionally, I would like to give a special thanks to HalliburtonEnergy Services

in Houston for supporting this research and providing experimental da:ta.

I would especially like to thank my wife Kexin and son Jiayue. Their love, under­

standing and encouragement during this endeavor make my success possible.

Finally, I dedicate this dissertation to my parents. They undertook the awesome re­

sponsibility and sacrifice to support me to get my first college degree, and encouraged me

to pursue every academic or professional goal.

iii

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION ... 1

Objectives .. 1
Overview .. 2
Main Contributions .. 4
Outline ... 6

2. NONLINEAR MODELING WITH NEURAL NETWORKS 8

Objectives ... 8
Introduction ... 9
Multilayer Feedforward Neural Networks ... 10
Training Methods ...•............................. 16
Generalization .. 22

3. REGULARIZATION TECHNIQUES FOR LEARNING 31

Objectives .. 31
Introduction .. 32
Basic Concepts ... 32
Bayesian Regularization .. 41

4. CROSS-VALIDATED EARLY STOPPING .. 51

Objectives .. 51
Introduction .. 52
Basic Concepts ... 52
Asymptotic Cross-Validation Properties ... 57
Application Trade-off .. 65
Retrained Early stopping ... 69
Training Example .. 73

iv

Chapter Page

5. ACTIVE VALIDATION AND THE SDVR ALGORITHM 77

Objectives .. 77
Introduction .. 78
Background Review ... 79
Basic SDVR Algorithm ... 85
Method of Application ... 94
Simulation Testing ... 102
Variations of SDVR Algorithm ... 107
Summary .. 121

6. EMPIRICAL ALGORITHM COMPARISON .. 123

Objectives .. 123
Introduction .. 124
Experiment Design .. 124
Results and Discussions ... 130
Conclusions .. 140

7. VALIDATION-INCORPORATED BAYESIAN LEARNING 143

Objectives ... ; 143
Introduction .. 144
Evidence Framework and Generalization Error 146
OPE-Validated Bayesian Regularization (GPBR) 149
Validation-Set-Based Bayesian Regularization (VBBR) 152
Bayesian Regularization with Retrained Early Stopping (BRES) 156
Simulations and Discussions ... 158

8. REAL-WORLD APPLICATIONS .. 162

Objectives .. 162
Introduction .. 163
Soft Sensors for Diesel Engines ... 164
Prediction of Chaotic Intensity Pulsation of an NH3 Laser 167
Neural Network Inversion of Induction Logs .. 170
Environmental Corrections for Neutron Tools .. 174
Determination of Cholesterol Levels from Blood Spectral Contents 177

9. CONCLUSIONS AND FUTURE WORK .. 181

Objectives .. 181

V

Chapter Page

Summary .. 182
Recommendations for Future Work .. 185

REFERENCES .. 187

vi

LIST OF TABLES

Table Page

1. Determining from Discrepancy ... 39

2. Comparison of ~S and RTES ... 74

3. FDVR Results with Different Initial a Value (T\o= 0.0001) 104

4. SDVR Results with Different Initial a Value (µao = 0.005) 105

5. FDVR Results with Different Initial T\ Value (a0 = 0.01) 106

6. SDVR Results with Different Initial µa Value (a 0 = 0.01) 107

7. SDVR Results with Convergent Updating ... 111

8. SDVR Results with Conditional Updating ... : 117

9. Comparison of Variations of SDVR Algorithm ... 120

10. General Empirical Algorithm Comparison ... 131

11. Normalized Results for General Algorithm Comparison ... 132

12. Standard Deviation of Generalization Error over 30 Trials 133

13. Computation Cost with Different Algorithms .. 134

14. Effect of Data Splitting Ratio on SDVR Training Results 137

15. Effect of Data Splitting Ratio on ES Training Results ... 138

16. Effect of Data Splitting Ratio on RTES Training Results .. 139

17. Optimal Algorithm Selection .. 141

vii

Table Page

18. Generalization Performance with Variations of Bayesian Leaming 159

19. Standard Deviation in Performance with Variations of Bayesian Leaming 159

20. Computational Costs of Variations of Bayesian Leaming 160

21. Testing Results on Engine Data .. 167

22. Testing Results on NH3 Laser Data ... 170

23. Testing Results on Induction Logs ... 173

24. Testing Results on Neutron Logs .. 176

25. Testing Results on Cholesterol Data ... 178

26. Place in Rank for Real-World Applications ... 179

27. Points Obtained in Real-World Applications ... 179

viii

LIST OF FIGURES

Figure Page

1. Two-layer Network, Simplified Connection .. 10

2. Single Neuron Structure .. 11

3. Typical Hidden Layer Transfer Functions .. 14

5. Function Approximation Using MFNN .. 15

6. Examples of Overfitting .. 24

7. Determining from Discrepance .. 40

8. Training Example with Bayesian Regularization .. .47

9. Cross-validated Early Stopping .. 54

10. Analogy between Regularization and Early Stopping .. 56

11. Geometric Picture to Determine w* ... 61

12. Geometric Picture of Cross-Validated Early Stopping ... 63

13. Pure and Noisy Data ... 96

14. Data Splitting Grid .. 96

15. Model Comparison ... 97

16. Model Generalization ... 98

17. Incremental Updating ... 101

18. Convergent Updating ... 109

Figure Page

19. Conditional Updating .. .-............... 116

20. Noise Corrupted Sa.II1ples .. 128

21. Prior and Posterior of w 147

22. GPE Trajectories with Bayesian Learning .. 151

23. Speed and Fueling in Transient Cycle .. 165

24. NOx prediction Model .. 165

25. NOx Measurement and Prediction .. 166

26. Chaotic Intensity Pulsation of an NH3 Laser ... 168

27. Iterative Long-Term Prediction for NH3 Laser Data ... 169

28. Formation Resistivity and Tool Response of Oklahoma Profile 172

29. Neural Network Inversion of Induction Logs : ... 173

30. Porosity Prediction Using Corrected Neutron Tool Response 176

31. Collected Cholesterol Levels from 264 Patients ... 177

32. Neural Network Prediction of Cholesterol Levels .. 178

X

Symbols

m
a

b~
}

e(w)

F(w)

G(w)

NOMENCLATURE

The net output vector in layer m

The output of the neuron j in layer m

The bias vector in layer m

The bias of the neuron j in layer m

The data set including n input-target pairs {(x1,y1), ••. (xn,Yn)}

A set of transfer functions in layer m

General error function for the given data set

Error function of the training data set

Error function of the validation data set

General error vector for the given data set

Error vector of the training data set

Error vector of the validation data set

General performance function

Training performance function

Validation performance function

Fisher information matrix

xi

H O Entropy of the_ teacher network

Ha (wk+ 1 (a.k)) Incremental Hessian of the validation error with respect to a

H(w)

Hv(w)

I

J(w)

lv(w)

n

N

N(w)

N(w0)

P(ydxi, w)

P(xi,yi;w)

P(Dlw, ~)

P(Dla., ~)

P(wlD, a,~)

P(wla.)

P(a., ~ID)

P(x)

P(a.,~)

Qo

Hessian Matrix of the training data set

Hessian matrix of the validation data set

Identity matrix

Jacobian matrix of the training set

Jacobian matrix of the validation set

The number of total samples

The number of training samples

The number of validation samples

The number of network parameters

Student network

Teacher network

Conditional probability of y i given the input xi and weight vector w

Joint probability of xi and Yi with network parameters w

Likelihood function in Bayesian regularization

The evidence for a and ~ in Bayesian regularization

Posterior density function of the weights in Bayesian regularization

Prior density function of the weights in Bayesian regularization

Posterior density function of a and ~ in Bayesian regularization

Unknown input probability

Prior density function of a and ~ in Bayesian regularization

The set of possible solutions of w with noise corrupted measurements

xii

r The ratio of the training samples to the total samples

r' The ratio of the validation samples to the total samples

The training entropy of the student network

The generalized entropy of the student network

Asymptotic expectation of the entropic training error

Asymptotic expectation of the entropic generalization error

(R gen (w*, r opt)) Asymptotic expectation of the entropic generalization error using

cross-validated early stopping with the optimal data splitting ratio

u

u
X

m
X

y(x)

Y(x, w)

w

WMP

m w

The number of neurons in layer m

Output vector of linear systems

Noise corrupted output vector of linear systems

Real output space of linear systems

General input vector

The net input vector in layer m

Target function which produces the mapping of the input vector x

The approximating function of y(x) with parameter vector w

Weight (parameter) vector for linear or nonlinear systems

The true weight vector of the teacher network

The weight vector resulting from the kth iteration

The most probable weight vector in Bayesian regularization

The true weight vector of the linear system

Inverse solution of the linear system with noise corrupted outputs

The weight vector in layer m

xiii

w*

m
W·· 1)

w

w

w

w
a.

y

6

T\

O(w)

VF(w)

The weight vector corresponding to the early stopping point

The weight connected from neuron i in layer m - 1 to neuron j in

layer m

The weight vector corresponding to the minimum of the unregular­
ized performance function

The weight vector corresponding to the minimum of the regularized
performance function

The weight vector corresponding to the minimum of the validation
error function

Real weight space for linear or nonlinear systems

Regularization parameter

Performance function parameter in Bayesian regularization

The effective number of parameters

Small change in output measurements

Small change in parameter estimation

Leaming rate of the gradient descent training algorithm

Eigenvalues of the Hessian matrix

Tunable coefficient in weight update equation using the Levenberg­

Marquardt algorithm

Tunable coefficient in a. update equation

The variance-covariance matrix of multivariate w

Standard deviation of the noise in the data

Stabilizing functional of the regularized performance function

Gradient vector of the performance function with respect to w

V a.Fv(wk+ 1 (a.k)) Incremental gradient of the validation error with respect to a.

xiv

Abbreviations

AIC

BR

BRES

CDT

CVG

DSR

ES

FDVR

flops

GPE

GNBR

GPBR

INC

logsig

MFNN

MSE

MSLE

NIC

OBD

OBS

PPR

purelin

RCVE

RTES

SDVR

SSM

SSW

Akaike information criterion

Bayesian regularization

Bayesian regularization with retrained early stopping

Conditional updating

Convergent updating

Data splitting ratio

Cross-validated early stopping

First-derivative-of-validation-error regularization

Float point operations

Moody's generalized prediction error

Gauss-Newton approximation to Bayesian learning

GPE-validated Bayesian regularization

Incremental updating

log-sigmoid transfer function

Multilayer f eedforward neural network

Mean-squared-error

Mean-squared-log-error

Network information criterion

Optimal brain damage

Optimal brain surgeon

Pattern I parameter ratio

Pure linear transfer function

Relative change of validation error

Retrained early stopping

Second-derivative-of-validation-error regularization

Statistical stepwise method

Sum-squared-weights

xv

std

tansig

VBBR

Standard deviation

Hyperbolic tangent-sigmoid transfer function

Validation-set-based Bayesian regularization

xvi

Objectives
Overview
Main Contributions
Outline

Objectives

CHAPTER I

INTRODUCTION

1
2
4
6

Regularization and cross-validation are two important techniques used for improv-

ing performance of neural networks. Our goal in this study is to investigate how to make

optimal use of regularization and cross-validation in developing neural network models.

In this chapter, we will define the dissertation research, justify its significance, de-

scribe our contributions and outline the flow of this document. This chapter gives an over-

view of the dissertation study. The relevant materials will be explained in detail in the rest

of the chapters.

1

Overview

Many problems in the areas of signal processing, system identification, time series

analysis and adaptive control can fall into the category of nonlinear regression or function

approximation. Some of these problems can be solved with linear models, the other prob­

lems may display very complex behavior which can be captured only by using nonlinear

techniques. Neural networks provide a very useful and convenient tool for a broad range of

applications. In this proposal, we concentrate our study on nonlinear regression or function

approximation problems using neural networks. The advantages of using nonlinear neural

network modeling are:

• Neural network architectures are very flexible, which enables them to accurately

model strong nonlinear relationships.

• The adjustment of network parameters is systematic and efficient for many standard

optimization algorithms.

As with other nonlinear methods, the neural network model is developed from a set

of input/output examples through a training or learning process. The main concern in as­

sessing a neural network model is not how accurate the mapping is between the given train­

ing inputs and outputs, but the potential of the resulting network in prediction with new

inputs which are not used for the training. Usually, more exact representation of the training

data can be achieved by using more network parameters. However, a model with too many

coefficients may give poor prediction for new inputs, since it may fit the noise in the train­

ing data, or it may have too much flexibility. This problem is called overfitting. Training a

2

network to an adequate accuracy with less risk of overfitting is a challenging task. It is also

an open area in neural network research.

A number of different methods, such as network pruning, regularization, cross-val­

idation, network committee, model selection criteria and so on (which will be introduced

in Chapter 2), have been developed to avoid overfitting. Among these approaches, we find

that regularization and cross-validation deserve extra attention. The standard regularization

method uses a stabilized objective function to train networks. The effective complexity or

smoothness of the model is determined by the value of a coefficient called the regulariza­

tion parameter. This parameter can be automatically updated during the training when the

Bayesian technique [MacK92] [FoHa97] is applied. The cross-validation method uses a

withheld validation data set, which is disjoint from the training set, to assess the model after

training, or to determine when to stop training. A typical application of this technique is

called early stopping, which terminates the network training as soon as the validation error

increases [Bish96] [AmMu97].

In this research, we will extend regularization and cross-validation techniques by

developing some new methods. The new methods will be compared with current methods

on a variety of applications to shed light on the optimal use of these techniques.

First, we will investigate the possibility of retraining a network using the combined

data set after early stopping. It might improve the parameter estimation if limited retraining

is performed around the early stopping point.

Secondly, we will control the effective complexity of neural networks using the

concept of validation-set-based regularization. Since the validation set is disjoint with the

3

training set, it is reasonable to use the validation set to estimate the prediction potential of

neural networks. The model performance can be improved if the validation set is actively

used to determine the optimal regularization parameter.

We propose a new procedure called retrained early stopping (RTES) to improve the

performance of networks trained with conventional early stopping. We also propose two

approaches for validation-set-based regularization. In the first approach, the regularization

parameter is automatically adapted by minimizing the validation error. A second-deriva­

tive-of-validation-error regularization (SDVR) algorithm is developed for this purpose. In

the second approach, we propose a validation-set-based Bayesian regularization (VBBR)

method, in which the regularization parameters are adapted to maximize the Bayesian evi­

dence on the validation set. We present a thorough investigation of the first approach in

Chapter 5. The second approach, along with the other validation-incorporated Bayesian

methods, will be fully discussed in Chapter 7.

Main Contributions

The main contributions of this research are listed below according to the order of

their appearance in the dissertation:

• Development of a new RTES procedure. This procedure performs a controlled full­

data retraining to obtain better parameter estimation, after reasonable model accuracy

and complexity are determined using partial data from the conventional cross-vali­

dated early stopping.

• Derivation of a new SDVR algorithm which uses the second order information to set

the optimal learning rate for the regularization parameter to minimize the validation

4

error. The regularization parameter is updated in each training epoch, rather than after

the weights have converged. This method is called incremental updating.

• Implementation of several variations of the SDVR algorithm. These variations can be

put into the same SDVR framework, which allows the regularization parameter to be

calculated with same update equation, but at a variable weight update interval. With

these variations, the SDVR algorithm becomes more efficient on a variety of different

problems.

• Comparison of the SDVR algorithm and RTES procedure with Bayesian regulariza­

tion and cross-validated early stopping through extensive simulations. The relative

advantages and limitations of each algorithm are investigated to enable optimal algo­

rithm selection for different applications.

• Development of the validation-incorporated Bayesian learning. Three variations of

Bayesian methods are proposed and implemented. The VBBR (validation..:.set-based

Bayesian regularization) method updates the Bayesian regularization parameters by

maximizing the validation evidence. The BRES (Bayesian regularization with early

stopping) approach uses the validation set to determine when to stop the training. The

GPBR (OPE-validated Bayesian regularization) implementation employs Moody's

generalized prediction error (GPE) as a stop criterion instead of measuring the valida­

tion error. These variations improve the standard Bayesian method for some applica­

tions.

• Demonstration of the performance of the new methods on real-world problems. These

examples include indirect measurement of engine emission from speed and fueling,

5

prediction of a chaotic intensity pulsation time series of an NH3 Laser, determination

of formation parameters from well logging tool responses, and indirect measurement

of cholesterol.

Outline

This dissertation is composed of nine chapters.

Chapter 2 briefly reviews the basic concepts of nonlinear modeling using neural

networks. This includes discussions of the architecture and capability of multilayer feed­

forward neural networks, practical training methods, the concept of generalization, and

techniques to improve generalization.

In Chapter 3 the regularization technique is investigated in depth. We explain how

standard regularization can be used to solve an ill-posed problem, and to reduce variance

in model performance. Two variations of regularization, the discrepancy method and the

Bayesian method, are discussed and demonstrated.

Chapter 4 describes a method which uses a validation data set to determine when to

stop training. The results from Amari's asymptotic statistical theory of cross-validation

[AmMu97] are introduced in this chapter, along with a discussion of the use of cross-vali­

dated early stopping in non~asymptotic cases. Later in this chapter, the RTES procedure is

proposed and demonstrated.

The concept of validation-set-based regularization is introduced at the beginning of

Chapter 5. Then the basic SDVR algorithm is derived and compared with the gradient de­

scent method. The other two variations of the SDVR algorithm are also implemented. This

6

is followed by numerical experiments to investigate the optimal use of the SDVR frame­

work.

Chapter 6 includes extensive simulations of the SDVR algorithm, Bayesian regu­

larization, cross-validated early stopping, and retrained early stopping. The relative advan­

tages and limitations of each method are discussed.

In Chapter 7, the GPBR, VBBR and BRES methods, which use validation-incorpo­

rated Bayesian learning, are proposed. The objective of these methods is to improve gen­

eralization performance and training efficiency of the standard Bayesian regularization

algorithm. Simulation results obtained with these methods are compared with the standard

method.

In Chapter 8, we apply the new developed methods to real-world problems, and

compare them with the algorithms of Bayesian regularization and cross-validated early

stopping. Five representative problems with realistic complexity are selected to test the al­

gorithms. The relevant data analysis and preprocessing are also addressed in these case

studies.

Chapter 9 contains a summary of the dissertation research. This is followed by a·

recommendations for future work.

7

CHAPTER2

NONLINEAR MODELING WITH NEURAL NETWORKS

Objectives
Introduction
Multilayer Feed.forward Neural Networks

Architecture
Transfer Function
Capability

Training Methods
Gradient Descent
Levenberg-Marquardt

Generalization
Network Pruning
Regularization
Early Stopping
Training with Noisy Inputs
Network Committee
Model Selection Criteria

Objectives

8
9

10
10
13
14
16
17
19
22
24
26
27
28
28
29

This chapter reviews important background material for nonlinear modeling with

neural networks. This review will lay the foundation for subjects discussed in the following

chapters.

8

Introduction

In nonlinear regression, the major task can be regarded as approximating an under­

lying function based on a set of examples. The generated model retrieves the appropriate

output when presented with an example input and generalizes when presented with new in­

puts. Many classical approaches for this problem are based on approximation theory and

system identification techniques.

Approximation theory deals with the problem of approximating or interpolating a

continuous, multivariate function y(x) by an approximating function Y(x, w), where x is

an input vector and w is a parameter vector. For a choice of a specific Y, the problem is

then to find the set of parameters w that provides the best possible approximation of y on

the set of examples. This is the learning step. Needless to say, it is very important to choose

an approximating function Y that can accurately represent y . There would be little point

in trying to learn, if the chosen approximation function Y(x, w) could only give a very poor

representation of y(x), even with optimal parameter values. Therefore, the first concern in

nonlinear regression is to determine which approximation to use, i.e., which class functions

of y(x) can be effectively approximated by which approximating functions Y(x, w) . This

is a representation problem. The second concern is to determine which algorithm to use for

finding the optimal values of the parameters w for a given choice of Y.

In this chapter, we will briefly review the relevant background of using neural net­

works as universal function approximators to solve nonlinear regression problems. The

main topics include general concepts about network structure, training method and gener­

alization.

9

Multilayer Feed.forward Neural Networks

Although the biological inspiration for neural networks is important, we only dis­

cuss extremely simplified models called artificial neural networks, which are basically en­

gineering functions rather than physiological forms. Artificial neural networks can be

regarded as a graphic notation for a large class of algorithms by arranging the basic com­

puting elements into various configurations. In this study, we will use the most popular con­

figuration, the multilayer feedforward neural network (MFNN), to solve nonlinear

modeling problems.

Architecture

A simplified graphical notation for the MFNN is illustrated which is in Figure 1.

This architecture consists of a number of processing elements, called neurons (s1 , s2)

which are connected in a network by weights (w 1 , w2). The input vector x feeds through

the network to the output a 2 in one direction and no feedback connections are present.

X

input

I s

hidden layer output layer

Figure 1 Two-layer Network, Simplified Connection

10

The neurons are organized in layers such that the outputs of the neurons in one layer

act as the inputs for the neurons in the next layer. The layer which produces the output is

denoted as the output layer. Any layer which is not an output layer is called a hidden layer.

In this terminology the inputs are not considered as an independent layer. For instance, we

will use 2-4-1 to denote a two-layer network with 2 inputs, 4 neurons in the hidden layer

and 1 neuron in the output layer. Similarly, 5-10-10-1 is a denotation for a three-layer net-

work using 5 inputs, 10 neurons in the first hidden layer, 10 neurons in the second hidden

layer with a single output.

A single neuron extracted from the hidden layer is depicted in Figure 2, and an ab-

breviated, but more standard notation of a two-layer network is given in Figure 3, where

i is a transfer function in layer m, wm and bm are the weight and bias vector, and am is

the layer output.

1.0

Figure 2 Single Neuron Structure

To understand better the MFNN scheme in nonlinear modeling, first let's see what

is the general approximation form of Y(x, w) that the MFNN represents. If we put wm and

11

bm together by redefining wm = [wm h1 and let am- I = [am - I 1] T, then Y(x, w) can

be expressed as

m j m.J!rl- l m-1,;-2 p). I Y(x, w) = a = (w J (w (.. J (w x) ...))).

input

n r

R s• x 1

first (hidden) layer

I
X

~I

SI

I
a

(

second (output) layer

s2x I

s2x I s2

2
a

s2x I

u \._ ______ _)
~------)

I I I I a= (wx+b) 2 f 2 I 2 a = (w a +b)

Figure 3 Two-layer Network, Abbreviated Notation

(1)

Note that Eq. (1) is a nested transformation with transfer function j , ... f. Since

nonlinear transfer functions are usually used in the hidden layers of the MFNN structure,

the MFNN approximation function is a highly nonlinear function of both input x and pa-

rameter w . This is different from the classical linear approximation

Y(x, w) = w · x, (2)

or the classical approximation scheme which is linear in a suitable basis function <I>(.) of

the original inputs

12

Y(x, w) = w · <j>(x). (3)

Transfer Function

Now let's look into the internal neuron structure of the MFNN scheme. The neuron

is characterized by its transfer function (it is also called an activation function). For regres­

sion problems, the typical transfer function used on hidden layers is the log-sigmoid

(logsig) function or the hyperbolic tangent sigmoid (tansig) function. The transfer function

used on the output layer is usually a linear (purelin) function. To reduce the computational

complexity, we assume that the neurons on the same layer are activated by the same transfer

function. The logsig function is defined by

(4)

where the output a ranges from O to 1 as the input x changes from the minus infinity to

infinity. The tansig function has the form of

(5)

Its shape looks like the logsig function, but shows odd symmetry and ranges from -1 to 1.

These two functions are displayed in Figure 4.

Note that both the logsig and the tansig functions are squashing functions, since

they compress an infinite input range into a finite output range. Also, they have a roughly

linear response within a narrow input range, but produce more of a binary type output out

of that range. In comparison, the purelin function will produce the pure linear output over

the whole input range. Using networks with linear output neurons does not restrict the class

of functions which such networks can approximate. The use of sigmoid neurons on the out-

13

put layer would limit the range of possible outputs to the range attainable by the sigmoid,

and in some cases this would be undesirable.

...

...
0.7

~

05

...

...
02

0.1

.9io-a-a-c-2 o 2 ca 110 .
a. logsig function

OA

"'
02

• 0

'"'!s ~ -a -2 _,

b. tansig function

Figure 4 Typical Hidden Layer Transfer Functions

Another reason to choose the transfer functions described above is for their conti-

nuity and differentiability. Smooth input-output transformations can be achieved with these

functions, and the derivatives of these functions have simple forms which make optimizing

parameters convenient. Since each neuron input x is determined by its inputs and the con-

necting parameters (weights and bias), adjusting these parameters will affect the neuron

output. The final network output will be determined by the composite connection and

weighting of the specified MFNN structure.

Capability

Many mathematical results prove that the MFNN is a general function approxima-

tor [Cybe89], [Funa89], [HoSt89], [Hom91]. If enough neurons are used in the hidden lay-

er, even a simple two-layer (one hidden layer) network will be sufficient to represent any

arbitrary continuous function. In this study, we will restrict the architecture by using two-

14

layer and three-layer networks. Although three-layer networks may require more computa­

tions than two-layer networks, they may require fewer network parameters when the input

dimensionality is large [ChHa98b].

As an example to show the capacity of the MFNN in nonlinear modeling, let's con­

sider a parabolic function

Z = 2.5 + 5.0X(2-X)Y(2-Y), (6)

where both X and Y range from Oto 2. Assume that 121 input-output pairs, which are in­

dicated by the cross-points on the grid surface of Figure 5 (a), can be used to learn the

function. We choose a 2-8-1 network with the tansig transfer function in the hidden layer

and the purelin function in the output layer. The reconstructed surface is shown in Figure 5

(b), which is a very accurate approximation to the true function.

a. input-output pairs b. surface reconstruction

Figure 5 Function Approximation Using MFNN

15

Training Methods

As we addressed early in this chapter, an important concern in nonlinear modeling

is the choice of the appropriate algorithm to find the optimal parameters. Using the MFNN

as a general function approximator, the network parameters are optimized through a train-

ing process by minimizing the performance function measured on a set of examples called

training data. The choice of the performance function is problem dependent [Bish95],

[ChHa98b].

In this study, we assume that the approximation error is additive, thus

y(i) = Y(x(i), w) + e(x(i), w) , (7)

where {x(i), y(i)} are an input-output pair of training examples, Y(x(i), w) is the net-

work output, and e(x(i), w) is the approximation error. The training performance function

is the sum-of-squared error over all training data, i.e.,

n

F(w) = ED = L (y(i) - Y(x(i), w))2 = eT(w)e(w) , (8)

i = l

where e (w) is an n x 1 error vector and n is the number of training examples. For multi-

layer networks, the performance function will typically be a highly non-linear function of

the weights, and there may exist many local minima. As a consequence of the non-linearity

of the performance function, it is not in general possible to find closed-form solutions for

the minima. Instead, we consider algorithms which involve a search through weight space

consisting of a succession of steps of the form

(9)

16

The problem of minimizing continuous, differentiable functions of many variables

is one which has been widely studied ([Pola71], [Gill81], [DeSc83], [Luen84], [Flet87]),

and many of the conventional approaches to this problem are directly applicable to the

training of neural networks, since the derivative of performance function with respect to the

network parameters can be obtained in a computationally efficient way using back-propa-

gation [RuHi86][RuMc86]. In this section, we will briefly review two of the most impor-

tant training algorithms. One is the gradient descent, which updates the network parameters

with a small step in a descent direction. The other is the powerful Levenberg-Marquardt

algorithm, which is applicable specifically to a sum-of-squared error function.

Gradient Descent

Assume that the network parameters are organized in an N x 1 vector and iterative-

ly updated during the training process with a small step along a search direction. Then we

can rewrite Eq. (9) as

(10)

where k is an iteration index number, 11k is a small positive scalar called the learning rate

or step size, and pk is a search direction. For a given 11k, the goal of getting the new pa-

rameter vector wk+ 1 is to determine the search direction pk . In the optimization algorithm,

we would like to have the error function decrease at each iteration. In other words,

(11)

Using the first-order Taylor series expansion, we have

(12)

17

To make F(wk+ 1) < F(wk), the inner product (VF(wk))T(wk+ 1 -wk) must be negative.

Since Wk+ 1 -wk = 11,JJk from Eq. (10), the descending error condition becomes

(13)

For a fixed 'Ilk , the inner product (VF(wk) {pk will be most negative if the search direction

is equal to the negative gradient, i.e.,

(14)

Putting Eq. (14) into Eq. (10), we obtain the weight updating equation of the gradient de-

scent training algorithm:

(15)

In Eq. (15), the gradient vector is calculated by differentiating Eq. (8) with respect

to W,

(16)

where J(w) is an n x N Jacobian matrix defined by

J(w) = a~c;> = (17)

18

Calculating the Jacobian matrix is very important in training neural networks. Re­

call that for each training iteration, the error vector is measured on the output layer. How­

ever, since the training errors are composite non-linear functions of the network

parameters, their derivatives with respect to the network parameters have to be evaluated

layer by layer, function by function. For most of the currently used training algorithms, the

Jacobia.Jl matrix is calculated efficiently using back-propagation, which is an application of

the chain rule to the nested MFNN scheme. The back-propagation algorithm is one of the

key developments in the history of artificial neural networks. Some in-depth discussions

and examples can be found in many text books [HaDe96], [Bish95].

With standard gradient descent, the learning rate '11k in Eq. (15) is held constant

throughout the training. The performance of the algorithm is very sensitive to the proper

setting of the learning rate. There are other variations of gradient descent which use vari­

able learning rate and momentum to speed up convergence [VoMa88], [HaDe96]. All of

these approaches are easy to implement, but suffer from the problem of slow convergence

because of the nature of the first-order methods.

Levenberg-Marquardt

The derivation of the gradient descent algorithm was based on the first-order Taylor

series expansion. The Levenberg-Marquardt algorithm was designed to approach second­

order training speed without having to compute the second derivative of error with respect

to the weights. To explain the Levenberg-Marquardt algorithm, let's start with Newton's

method.

19

Newton's method is based on the local quadratic approximation to the performance

function using the second-order Taylor series expansion:

where H(wk) is the Hessian matrix defined by

(19)

In order to minimize the performance function F(wk+ 1) , let's differentiate Eq. (18)

with respect to wk+ 1 and set it to zero,

(20)

Solving wk+ 1 from Eq. (20), we get

(21)

in which (H(wk)f1 is the inverse of the Hessian matrix. The vector -(H(wk)f1VF(wk)

is known as the Newton direction or the Newton step, which forms the basis of a variety of

optimization strategies. The gradient VF(w) is given in Eq. (16) for the sum-of-squared

performance function. The Hessian matrix can be expressed as:

where

B(w) = a: VF(w) = 2JT(w)J(w) + 2S(w),

n

S(w) = L e;(w)V2e;(w),

i=l

20

(22)

(23)

with V2e;(w) being an Nx N matrix:

(24)

Newton's method is much faster than gradient descent for local convergence. How-

ever, the problem with the full Newton approach is that S(w) is too expensive to obtain.

To reduce the computational complexity, we assume that S(w) is close to zero, thus

T
H(w) = 2} (w)J(w). .(25)

Substituting Eq. (25) and Eq. (16) into Eq. (21), we obtain

(26)

The iterative method using Eq. (26) is called the Gauss-Newton method. This method can

also be derived/using the first-order Taylor series expansion of the error vector,

(27)

and then solving wk+ l by minimizing e(wk+ 1{(e(wk+ 1n.

The advantage of Gauss-Newton over the standard Newton's method is that it does

not require calculation of second derivatives. One problem with the Gauss-Newton method

is that the step size given by Eq. (26) could tum out to be relatively large. In that case, the

21

linear approximation in Eq. (27) would no long be valid. The other problem is that the ma-

The Levenberg-Marquardt algorithm uses an approximation to the Hessian matrix

in the following Newton-like update:

(28)

When the scalar µw is zero, this is just the Gauss-Newton method. When µw is large, this

becomes gradient descent with a small step size. Many versions of the Levenberg-:rv.iar-

quardt method have been coded using various strategies to choose µw . Since the Gauss-

Newton method is fast and accurate near an error minimum, we would like the training to

shift towards Gauss-Newton method as quickly as possible. For the standard training algo-

rithm, µw is decreased after each successful step (F(wk+ 1) < F(wk)) and is increased only

when a tentative step would increase the performance function. In this way, the perfor-

mance function will always be reduced at each iteration of the algorithm.

The Levenberg-Marquardt algorithm is very powerful in practice and has been rec-

ommended for the general solution of non-linear least-squares problems [DeSc83]. Com-

pared with some other currently used algorithms for training neural networks, the

Levenberg-Marquardt algorithm is fast, but requires more storage [HaMe94]. In this study,

we will use the Levenberg-Marquardt algorithm unless otherwise specified.

Generalization

It is not difficult to achieve high accuracy in approximating the training set with the

MFNN and an appropriate training algorithm. However, the goal of network training is not

22

to learn an exact representation of the training data, but rather to build a statistical model

of the process which generates the data. The model generalizes well if its performance with

new data is as good as its performance on the training data. This concept of generalization

is common to all of nonlinear modeling.

In practice, a model with good generalization performance is hard to achieve, be­

cause of the problem of overfitting. Overfitting is typically caused by overtraining on noisy

examples, which makes the model very sensitive to the particular data set. Assume that we

have additive noise in the training targets, which are the desired network outputs. Perform­

ing too many iterations of training to minimize the sum-of-squared error will cause the net­

work to learn the noise in the training data, and the model will perform poorly when making

predictions for new inputs. In other words, an overfitted model will exhibit large variance.

Overfitting can also be caused by using a complicated model structure with many redun­

dant parameters. When the number of parameters is larger than the number of available

training patterns, using the standard least squares techniques will lead to ill-determined fi­

nal parameters. These two types of problems are illustrated in Figure 6. The variance dis­

played in Figure 6 (a) is caused by overtraining noise corrupted data using a 1-15-1

network. In Figure 6 (b), even the training data is noise free, the generalization error is still

large.

In addition to overfitting, data deficiency (extrapolation) is another problem in non­

linear modeling which might lead to poor generalization. When overfitting is discussed, we

assume that the training set is representative of the population under investigation. If the

training set is not complete (does not cover the entire input space), then the prediction on

23

new data with unlearned features cannot be guaranteed. Data deficiency will make the

training of neural network models, especially the models with multiple inputs, less accu-

rate. However, since procedures for collecting data are beyond the scope of this study, we

will only discuss the overfitting problem and will assume that the training patterns cover

the input space.

u,,-----r--.-----r----,--.---,-~_= __ =......,::::;::::;i ·-­--...

z -
a. noise-oriented overfitting (1-15-1)

u,----,----,--,----,---,------.-,=..,.~-::c;-:::::;=;,

z

--

b. structure-oriented overfitting (1-30-1)

Figure 6 Examples of Overfitting

Many techniques have been developed to improve generalization performance in

neural network modeling. In the rest of this chapter, we will give a brief summary of some

important techniques. Among them, regularization and early stopping are closely related to

our new proposed algorithm and will be investigated in separate chapters.

Network Pruning

Network pruning reduces model complexity by eliminating insignificant parame-

ters which contribute little to training performance but may increase the risk of overfitting

with new inputs. With the use of this method, a relatively large network is first trained to

convergence. Then each parameter is examined according to the specified criterion to de-

24

termine its saliency. The low-salience parameters will usually be set to zero and frozen

there during the retraining of the network. This process is repeated until no more parame­

ters can be eliminated.

The simplest pruning is based on the magnitude of the parameter [HeK.r91]. This

naive approach often eliminates the wrong weights for nonlinear system, because small

weights can be necessary for low error. The other method called Optimal Brain Damage

(OBD) uses the criterion of minimal increase in training error for weight pruning

[CuDe90]. In this approach, the second derivative information of the training performance

function is critical to decision making. For computational simplicity, OBD assumes that the

Hessian matrix is diagonal. Since Hessian matrices are strongly non-diagonal for many

problems, Optimal Brain Surgeon (OBS) [HaSt92] suggests calculating the full Hessian to

eliminate the unnecessary weights. For the same error on the training set, OBS permits the

pruning of more weights than the magnitude based method and OBD, and yields better gen­

eralization on test data.

A different approach to weight elimination is using a statistical stepwise method

(SSM) [CoGi95]. This method offers a quantitative measure of weight significance. After

the network is trained to convergence, the standard deviation of each weight parameter can

be calculated from the training performance function and its second derivative information.

The least significant parameter might be removed, based on the predetermined confidence

interval of the standard statistic test. The SSM method works well for the nonlinear autore­

gressive time series process, but usually requires that all available data be used in order to

develop a proper model. Also, the final model depends strongly on initial weights.

25

Regularization

While network pruning reduces variance by eliminating the insignificant weights,

regularization smooths the model by limiting parameter magnitudes so that the network

cannot learn minor features of the training set.

A simplest regularization can be implemented in network training by adding a reg-

ularization term aO(w) to the standard (unregularized) performance function f?. The

new performance function, called the regularized performance function, becomes

F = f? + aQ(w) (29)

where Q(w) is a weight penalty term and a is a regularization parameter. For the given

f? , sum-of-squared error for example, we can control the degree of regularization, and

hence the complexity of the model, by choosing the form of 0(w) and determining the ap­

propriate regularization parameter a . A common form of regularization, known as weight

decay, can be written as

(30)

where the sum runs over all parameters in the network. There are other forms of Q(w)

discussed in the neural network literature [WeRu91], [Sjob95], [Will95].

For many problems in nonlinear regression, determining the regularization param-

eters a is a balance between the smoothness of the curve and the accuracy of the data fit­

ting. H a is too large, the regularization term will dominate the performance function, and

the model might be too simple to reflect the complexity of the true process. If a is too

26

small,. the emphasis will be placed on the training error, leading to the overfitting. In prac­

tice, multiple regularization parameters can also be used in neural network modeling. De­

termining the optimal regularization parameter is one of the objectives of this study. We

will give a thorough investigation in Chapter 3 and Chapter 5.

Early Stopping

Another well-known method to avoid overfitting is early stopping. This method

simply divides all available examples into two disjoint sets, a training set and a validation

set. The training set is used for learning and the validation set is used for evaluating the gen­

eralization error. For many applications, the training error monotonically decreases with

the number of iterations, but the error measured on the validation set decreases in an early

period but it increases after a critical period. This is the optimal time to stop, because further

training would only lead to overfitting.

In general, early stopping can be applied to any training algorithm and can be used

with either noisy data or noiseless data. However, its effectiveness strongly depends on the

ratio of the number of training samples to the number of network parameters. If the number

of training examples n is much larger than the number of parameters N, then early stop­

ping is not needed [AmMu97]. If n is only slightly larger than N, early stopping is effec­

tive [MuFi96]. When n is less than or equal to N, using simple validation set does not work

well, and some more complicated approaches should be attempted. We will discuss these

more complex methods in Chapter 4.

27

Training with Noisy Inputs

Another method for improving model generalization is to train with noisy inputs, in

which random noise is added to the original inputs before each training iteration takes place

[Si0o9l]. Heuristically, we might expect that the randomly added noise in each iteration

will make it difficult to fit individual data points precisely, since there is no exact replica­

tion of training patterns in each presentation. It can be proved that training with noise is

closely related to the technique of regularization [Bish95], but the problem with this meth­

od is that the noise level is usually difficult to determine, especially when example inputs

vary over a wide range. In practice, prior knowledge about the given system is important to

appropriate application of this method.

Network Committee

A Network committee is a group of networks which could be trained with a variety

of structures and initial conditions, or with different data splittings. To improve generaliza­

tion performance, we can predict outputs with each member network, and then average re­

sults over all member networks to produce the committee outputs. Since these outputs are

averaged over many solutions, a reduced variance is expected. This approach is different

from the common practice, in which many different candidate networks are trained, but

only the best one, based on the validation error for instance, is finally selected. However,

the risk of keeping one and discarding other networks is high if the training is performed

on sparse and noisy data. It is quite often true that the network which has best performance

on the validation set may not be the one with the best performance on new test data.

28

The advantage of using the committee of networks is that all of the effort involved

in training the candidate networks will be used, and significant improvement in prediction

on new data can be achieved with limited computation overhead. Since the extra variance

can be removed by averaging, we can use the standard unregularized optimization algo-

rithm to train the member networks with less worry about overfitting [Bish95].

One problem associated with the committee of networks is the number of parame-

ters. Since multiple models are generated, a tremendous number of parameters might need

to be used. For some real world applications, using a more complicated committee to avoid

the problem caused by using a complicated single network may not be the best choice.

Model Selection Criteria

Selecting a model from many candidates using some developed algebraic criteria is

very common in conventional statistics with linear systems. Usually, the model selection

criterion consists of two terms, the training error term and the complexity term. One crite-

rion used to evaluate autoregressive models is the well known Ak.aike Information Criteri-

on (AIC) [Ak.ai69],

AIC = lnF(w) + 2N'
n n

(31)

or the modified BIC criterion

BIC = lnF(w) + Mogn
· n n ' (32)

where F(w) is the sum-of-squared errors performance function, n is the number of data

points, and N is the number of parameters. Both criteria contain a penalty term, which

gives a cost to any additional parameters. If the model is too simple, it will give a large val-

29

ue for the criterion, because the training error is large. On the other hand, if the model is

too complex, the criterion will also have a large value, because the complexity is large. In

model selection, the smaller the criterion, the better the model.

This idea has been extended to the neural network training to deal with non-linear

models. Two criteria which have been used with neural networks are the Network Informa-

tion Criterion (NIC) [MuYo94], and the Generalized Prediction Error (GPE) [Mood92].

The GPE value can be calculated from the regularized performance function which has the

form

GPE _ 2F(w) ~ 2
- + a ' n n

(33)

in which 'Y is called the effective number of parameters, and a2 is the estimated data vari-

ance. Using the Gauss-Newton approximation to the Hessian matrix, the parameter 'Y is

given by

N ,...
1 = L ,...~a·

I
i = 1

(34)

where the Ai are the eigenvalues of the Hessian matrix of the unregularized performance

function, and a is the regularization parameter in Eq. (29). For each network construction,

the GPE can be computed at the end of training. The final model could be the one with

smallest GPE value among several candidates, or could be determined by using both cross-

validation and GPE.

30

CHAPTER3

REGULARIZATION TECHNIQUES FOR LEARNING

Objectives
Introduction
Basic Concepts

Regularization for Unear System
Regularization for Nonlinear Systems
Determination of Parameter a

Bayesian Regularization
Determining Most Probable Weights
Optimizing aand ~
Training Example
Features and Umitations

Objectives

31
32
32
33
35
38
41
42
44
46
48

This chapter presents a review of regularization techniques in neural network mod-

eling. The emphasis is put on nonlinear systems, but the traditional use of regularization in

linear systems is also described. The purpose here is to explain why we need to use regu-

larization and how we determine the appropriate regularization for a given problem. The

chapter includes both theory and examples.

31

Introduction

We have mentioned in Chapter 2 that one of the well-known methods to improve

generalization in neural network modeling is regularization. In this chapter, we continue

our discussion of regularization by investigating the problems that regularization tech­

niques are used to solve, and by presenting the practical training methods that are used in

neural network applications.

The basic concept of the regularization method was developed for solving ill-posed

problems in linear systems. In that case, regularization is applied to find a reasonable in­

verse solution of the system parameters. In nonlinear systems, especially when a large num­

ber of parameters is used, regularization techniques are very effective in reducing the

variance of the model and avoiding overfitting.

The key step in applying the regularization technique is determining the regulariza­

tion parameter, which is straightforward when the noise level is known, but is quite difficult

otherwise. In order to automatically optimize the regularization parameter, we introduce

the Bayesian regularization method, which produces a probabilistic model to match the

training data in a statistically appropriate manner.

Basic Concepts

Ill-posed problems exist in many linear and nonlinear systems where the standard

techniques are inadequate to determine appropriate parameter estimates. As a specific treat­

ment, regularization is used to add smoothness constraints to the problems to assist in find­

ing good approximate solutions.

32

Regularizati,on for Linear System

Consider a system of linear algebraic equations

Aw= u, (35)

where w is an Nx 1 unknown parameter vector, u is an Nx 1 known output vector, and

A is an N x N square matrix. The problem of determining the solution w in the real space

W from the data u in the real space U is said to be well-posed if the following conditions

are satisfied:

1. for every element u e U there exists a solution w e W;

2. the solution is unique;

3. the problem is stable on the spaces (W, U).

Here we consider that the problem is stable on ~e spaces (W, U) if, for any positive

number e, there exists a positive number <>(e) such that the small change on the right side

ofEq. (35) Pu(u 1, u2) ~ o(e) implies the change Pw(w1, w2) ~eon the left side. Where

w1 = R(u 1) and w2 = R(u2) are inverse solutions with u 1 u2 in U and w1 w2 in W.

The function p u or Pw can be defined as the root of the sum-of-squared error for simplic­

ity. Problems that do not satisfy the three conditions above are said to be ill-posed. One ex­

ample of an ill-posed problem is when the output measurement u contains noise. Another

example is the singular A matrix. If the matrix A is singular, the parameter w cannot be

solved using the standard matrix inverse routine. From a numerical point of view, ill-con­

ditioned systems also behave like singular ones. In all these situations, some additional in­

formation is needed to find a good approximation to w that satisfies an approximate

equation Aw = u .

33

. Regularization techniques can be used to obtain meaningful solution estimates for

such ill-posed problems. Suppose that measurements of u0 differ from their exact values

u by no more than 6 . It then is natural to seek an approximate solution in the class Q0 of

elements w 0 such that the error function

(36)

This Q0 is the set of possible solutions. However, many candidate vectors may meet this

requirement. We cannot take an arbitrary element w0 of Q0 as the approximate solution,

because such a solution will not in general be continuous with respect to 6 . One principle

for selecting the possible solutions is to minimize a stabilizing functional Q(w), called the

regularizer, which possesses the following properties:

1. Q(w) is continuous, nonnegative and everywhere dense in W;

2. the true solution wt belongs to the domain of definition of Q(w);

3. for every positive number d, the set of elements w for which Q(w) ~dis a

compact subset of W.

One of the simplest forms of Q (w) is called weight decay and consists of the sum

of the squares of the parameters

T
Q(w) = w w. (37)

It can be proven that the solution w O determined in this way is continuous on 6 , hence it

is a reasonable approximation of w 1 [TiAr77]. In practice, the numerical solution using this

approach is often difficult. Instead of minimizing Q(w) under the constraints ~ ~ 62 , we

34

can minimize the function

F = ~ +aO(w), (38)

where a is a nonnegative coefficient called the regularization parameter which can be es­

timated from extreme condition ~ = 62 . The regularization parameter controls the com­

promise between the degree of smoothness of the solution and its closeness to the data. The

mathematical results show that the solution of this new problem is close to the original one

under a small change in u and is stable, since the class of possible solutions is narrowed

through the introduction of the regularizer Q(w) with the properties described above

[TiAr77].

Regularizati.onfor Nonlinear Systems

Frequently, ill-conditioned or singular systems also arise in the iterative solution of

nonlinear systems or optimization problems. We have shown in Chapter 2 that the iterative

solution to neural network parameters using Newton's method can be expressed as:

H(w)Llw = -VF(w), (39)

which is a linear system analogous to Aw = u . Therefore, as we discussed in the linear

case, any uncertainty associated with Hessian matrix.H(w) and gradient vector VF(w)

will affect the solution of Llw. When the Gauss-Newton approximation to the Hessian ma­

trix is adopted in the training with the Levenberg-Marquardt implementation, we can avoid

the singular problem in finding the inverse of H(w). However, the noise oriented uncer­

tainty on the right-hand side ofEq. (39) is still not compensated, which may consequently

lead to ill-determined aw.

35

In addition, many neural network models are characterized by the high dimension

of parameter w , which is far from the goal of parsimony in the conventional view of sta­

tistical modeling. A well known result from estimation theory shows the relationship be­

tween the model variance and the number of model parameters [Ljun87]. Assume that the

observed data can be described by the true function plus white noise, i.e.,

y(i) = Y(x(i), w) + e(i), (40)

and the model parameter w is estimated using the standard least-squares method using n

training patterns. For many realizations with same sample size, the variance of the model

error over many different estimates of w can be approximated as:

(41)

where ci is the variance of the white noise, and N is the number of parameters. Eq. (41).

says that regardless of how important a certain parameter is to the data fit, its contribution

to the variance is cl In . This indicates that using the standard optimization method may

lead to overfitting if the model does not explain the behavior of the available training data

in a parsimonious and statistically adequate manner.

As in linear system applications, regularization techniques can also be used to ef­

fectively reduce variance and to remedy numerical problems in nonlinear systems. Let's

adopt the form of Eq. (38) as the regularized training performance function and use sum­

of-squared parameters as the regularizer, then we have

(42)

36

The gradient vector VF(w) is

VF(w) = 2JT(w)e(w) + 2aw, (43)

and the Gauss-Newton approximation to the Hessian becomes

T
H(w) = 21 (w)J(w) + 2a1N. (44)

These expressions are different from those used in the standard (unregularized) training

algorithms as we discussed in Chapter 2, and will affect the iterative solution of the weight

parameters. Apparently, training will move along a smooth descent direction, and the prob-

lem of Jacobian deficiency will be remedied if the value of a is not too small. Using the

Levenberg-Marquardt algorithm, the weight update equation can be expressed as:

Eq. (45) is important in optimizing the regularized performance function for neural

networks. Many resulting models trained with noisy data have demonstrated good general-

ization, provided that the value of parameter a is properly determined [Fore96]. Similar to

the form ofEq. (41), the regularized model quality with respect to the variance can be ap-

proximated by

with y being the effective number of parameters [Sjob95] [Mood92]. Recall that

N
A,.

- ~ l

'Y - £.J)... +a'
l

i = 1

in which Ai is the eigenvalue of the Hessian matrix. Since a is a positive coefficient,

37

(46)

(47)

A/ (Ai + a) will be close to 1 if the eigenvalue Ai is significantly larger than a, and close

to zero if Ai is significantly smaller than a. In neural network applications, Ai usually

spans a wide range. Even though a large number of parameters is used in modeling, the ef­

fective number of parameters, yin Eq. (47), might be significantly smaller than the total

number of parameters N. Therefore, the model variance with the use of regularization can

be dramatically reduced compared with the model variance using the standard optimization

algorithms.

Determination of Parameter a

If we choose a regularized performance function to train a neural network model,

the choice of the regularization parameter a will determine the model complexity, smooth­

ness and the distribution of the weights. The difficulty of determining the value of a is

problem dependent. For some cases, when the level of inaccuracy in measurements is

known, we can determine the regularization parameter accordingly [TiAr77]. We take a

monotonic sequence of a' s , find each corresponding solution of w , and choose ex.a for

which the sum-of-squared error has the required accuracy, i.e., ED = o2 •

Let's consider an example of a function approximation problem and show how to

determine the regularization parameter using the discrepancy method. The true function is

a shifted sinusoidal curve defined by

y = 1 + sin(~x). (48)

Assume that we have 51 samples evenly distributed from -2 to 6 over the input x. The mea­

surements in outputs are corrupted with random Gaussian noise of zero mean and 0.01 vari­

ance. For a specific realization, the sum-of-squared error between the noise output and the

38

true function output is 0.435. Let's define the inaccuracy 62 to be 0.45, and train a 1-15-1

neural network model with a = 0, 0.0001, 0.001, 0.01, 0.1, 1.0 respectively. The result-

ing E1, Q(w) and Fare summarized in Table 1.

parameter a IfJ = e7(w)e(w) O(w) = w7w F = 'E? + aO(w)

0 0.088 3328.9 0.088

0.0001 0.274 262.5 0.300

0.001 0.340 14.3 0.354

0.01 0.349 10.5 0.454
0.1 0.439 7.8 1.219
1.0 1.511 5.1 6.611

Table 1 Determining a from Discrepancy

For different choices of a, we have different performance functions. As the regu­

larization parameter a increases, E1 and F are nondecreasing, and Q(w) is nonincreas-

ing. Therefore, we cannot determine the optimal a based on these functionals only.

Additional constraints must be considered for decision making. Using discrepancy method,

the additional information is the prior knowledge about the inaccuracy of the measurements

which is 0.45 in this example. If the the resulting E1 is much less than 0.45, the selected

a is too small, indicating overfitting. If the resulting E1 is much greater than 0.45, the se­

lected a is too large, indicating underfitting. Choosing a = 0.1 , the corresponding E1 is

0.439 which is the closest one to the required accuracy.

Figure 7 shows the model behavior with four a values. Obviously, overfitting oc­

cur for a = 0 and a = 0.0001. When a large a is chosen, a = 1.0 for example, E1

increases quickly, leading to a large bias which makes the network output on average dif-

39

ferent from the true function. Since a = 0.1 produces adequate accuracy, it is a reasonable

solution to the given problem.

2.s,,---,--..----.--..----.---r-;:= __ :::;:_:c;:_=i ·-­--
, ..

...

_,

(l = 0

2

z.s,---,---.---,--,---,--....-;::: __ :::;:.,.c;:.._~ ·-­--
i ,

...
a = 0.1 ' +

+

~~.~---~----~.-~----~~

i

...
- • lnlelunGdon ·----+ +

, ..
,

...
(l = 0.0001

.., _,
2

2.&r---,---,----,---.----,---....-;::: __ :::;:_c;:..,.::;;: .. :::;i ·-­--
...

i 1

...
(l = 1.0

..,~.____,__.____,__,.____,__.____.____,

....

Figure 7 Determining a from Discrepance

The discrepancey method is based on the assumption that the measurement inaccu-

racy is known. There cannot be absolutely reliable ways to determine regularization param-

eter a in the absence of information about the size of the noise level and the degree of

smoothness. However, this lack of information is very common in practice. Some stochas-

tic techniques are reported for linear systems in the absence of information about the error

level [Neum98]. In the stochastic approach, the regularization parameter is determined

40

through variance component estimation methods. Since these methods are computationally

expensive, they are not suitable for nonlinear neural network applications.

One successful method for determining the smoothness of the model is Bayesian

regularization [MacK92] [FoHa97]. In the Bayesian method, both the model errors and the

model weights are described by certain probabilistic distributions. The parameters of the

distributions are automatically updated during the iterative learning process. They will fi­

nally match the training data in a statistic adequate manner under the given assumptions. In

the next section, we will discuss the Bayesian regularization method in neural network

modeling.

Bayesian Regularization

Bayesian regularization uses the concepts of Bayesian statistics to train neural net­

works. In this approach, the regularized performance function can be written as:

F = ~~ + a.Q(w) (49)

In this expression, both the training error and the network weights are random variables.

The performance function parameters, ~ and a., are the variance related parameters. Using

the Bayesian method, the network training is performed in a hierarchical fashion. The first

level involves the determination of the most probable network weights for the given ~ and

a. . At the second level, the parameters ~ and a are optimized to maximize the evidence

on the training data. These two-level operations can be performed alternately during the

training. Now let's see how to implement the Bayesian regularization from the fundamental

Bayes' rule.

41

Determining Most Probable Weights

Bayesian regularization is based on Bayes' rule, which is expressed in the form of

a conditional probability density function. Assuming the weights of the network are

random variables, the posterior density function of the weights can be updated after the data

is taken:

P(ID a. A.) = P(Dlw, ~)P(wla.)
w ' ''"' P(Dla., ~)

(50)

where D represents the data set, w is the vector of the network weights. P(w I a.) is the

prior density, which represents our knowledge of the weights before any data is collected.

P(D lw, ~) is the likelihood function, which is the joint probability of the data occurring,

given the weights w . The term in the denominator, P(D I a., ~) , is a normalization factor,

which guarantees that the total probability is 1.

In this implementation, we assume that the noise in the training set data with n mea-

surements is independent. Therefore, the joint probability density function can be written as

n .

(51)

i = 1

For the Gaussian noise with zero mean and variance of cl ,

(2) 1 e.
P(eijw, ~) = ~ exp -~ ,

..,21tcr 2cr
(52)

Eq. (51) then becomes

42

1 (Ie:J 1 E°. P(Dlw, ~) = n/2 nexp --2 = z (R)exp(-~),
(21t) O' 20' D P

(53)

1D T n/2
where ~ = - 2 , .I! = e (w)e(w), and Zv(~) = (x/~) .

20'

Similarly, if we assume that the prior density of the weights is independent and

Gaussian distributed with zero mean and variance of cr!, then

1
P(wla) = Zw(a) exp(-a.Q(w)), (54)

with a=~, .Q(w) = wTw,andZw(a) = (1t/a)N12 . Undertheseassumptions,
2crw

Eq. (50) can be simplified as

P(wlD, a,~) cc exp(-(~~+ a.Q(w))), (55)

which indicates that the posterior density function of the weights belongs to the same

Gaussian family as the prior density of weights does. For the given prior distribution, its

posterior distribution depends on the observed data only through ~E° .

In this Bayesian framework, the optimal weights, which are also called the most

probable weights wMP• should maximize the posterior density P(wlD, a,~). As we can

see from Eq. (55), maximizing the posteriori density is equivalent to minimizing the regu­

larized performance function F = ~E° + a.Q(w). The iterative solution to the weight up-

date can be found using the Gauss-Newton method with the Levenberg-Marquardt

implementation [FoHa97]:

43

Optimizing a and ~

Now we consider the second level Bayesian analysis which applies Bayes' rule to

optimize the performance function parameters ~ and a. If we assume that a and ~ are

random variables, then their posterior density function conditional on the given data set can

be expressed as

P(RID)= P(Dla,~)P(a.~)
a,p P(D) (57)

Since P(D) is a normalization factor, we can simplify Eq. (57) as

P(a, ~ID) cc P(Dla, ~)P(a, ~). (58)

If we assume a uniform prior density P(a, ~) for parameters a and ~, then

P(a, ~ID) cc P(Dla, ~), (59)

which indicates that maximizing the posterior can be achieved by maximizing the likeli-

hood function P(D I a, ~) . Note that this likelihood function is the normalization factor for

Eq. (50). This factor is called the evidence for a and~. Solving Eq. (50) for the normal-

ization factor, we have

P(Dla, ~) = P(Dlw, ~)P(wla)
P(wlD, a,~)

(60)

Recall that the posterior density function of weights is within the Gaussian family, and can

be expressed as

P(wlD, a,~) = ZF(~. ~) exp(-(~£1) + an(w))). (61)

Putting Eq. (53), Eq. (54) and Eq. (61) into Eq. (60), we obtain

44

Zp(CX, ~)
P(Dja, ~) = Zv(~)Zw(CX). (62)

To solve Zp(a, ~) on the right-hand side ofEq. (62), let's use the second order Taylor

series expansion to approximate the regularized performance function F = ~~ + an(w)

around the most probable weight vector w MP,

(63)

then the Gaussian approximation to the posterior distribution of the weights becomes

(64)

Note that the standard multivariate Gaussian distribution has a form of

(65)

where l: is the variance-covariance matrix of multivariate w, which is approximated by the

inverse of the Hessian matrix H MP in our application. We can obtain Zp by comparing the

coefficients of Eq. (64) and Eq. (65)

N/2 I 1/2
Zp = (27t) (det(~p)) exp(-F(wMp)). (66)

Now every term on the right-hand side ofEq. (62) is known. The optimal a and~

which maximize the evidence can be determined by seeking the extreme value of the log

ofEq. (62) using the standard zero-partial-derivative method [Bish96] [Fore96]. The solu-

tions are given below:

45

(67)

(68)

where

. -1
y = N- a.tr(HMP) (69)

is called the effective number of parameters. Since this number is smaller than the total

number of parameters for ill-posed problems, the predicting variance of the model will be

reduced. H = ~V2ED + a.V2il(w) is the Hessian matrix of the regularized performance

function. In practice, the Hessian matrix can be approximated using the Gauss-Newton

method, i.e., H = 2~JT(w)J(w) + 2a.IN.

Training Example

Let's consider the same shifted sinusoidal function given in Eq. (48), and train a

neural network model with the noisy data set using the Bayesian regularization method.

The algorithm required for Bayesian optimization of the performance function parameters

can be implemented in different ways [Bish96] [Fore96]. Here we update the network

weights and the function parameters alternately in the following steps [FoHa97]:

1. Initialize a., ~ and weights. Using a.= 0 and ~ = 1 for most applications.

2. Take one step of training to minimize F = ~~ + a.il(w) by using Eq. (56).

3. Compute the effective number of parameters y using Eq. (69), making use of

the Gauss-Newton approximation to the Hessian matrix.

46

4. Compute new estimates of a. and P using Eq. (67) and Eq. (68).

5. Iterate step 2 through 4 until convergence.

The training results are illustrated in Figure 8. Figure 8 (a) shows that the model

trained with the Bayesian regularization algorithm produces a smooth function approxima-

tion to the true function with the presence of noise in the measurements.

u,--,----,-.......---,---r---r-~-~--~..-.~ ·-­--
1.6

-o.,'--~---'-~____.__...___..._..____.
-2 -1 Z -

(a). Training results

10'

1rlk

1o"'

i
1.-'

1.-'

10"
0 20 100 120 140 100 -

(c). Parameter a.

I

1rl,--.----,-.......---,---r---,--...----,

(b). Parameter 'Y

10'

10·'0~ --=20-........ -....,.. .. ,---c', .. ,---'-100_....,120_..._1<0-.l110 -
(d). Parameter p

Figure 8 Training Example with Bayesian Regularization

47

. Figure 8 (b) illustrates how the effective number of parameters changes during the

training. Although we use a 1-15-1 network model which has 46 parameters in total, the

effective number of parameters converges to 9 by the end of the training. The other

superfluous parameters which did not contribute to the error reduction no longer have a side

effect on the model performance.

Figure 8 (c) presents a trajectory of the parameter a. which is automatically adapt­

ed in each training epoch. The initial a. is set to 0.0005 (cr! = 30), assuming that the net­

work weights spread over a wide range. After the optimization converges, the optimal a. is

0.35 (cr! = 1.2), indicating a more concentrated posterior density function of the weights.

The different values of the parameter ~ in Figure 8 (d) reflect the noise assessment

during the iterative training. A small ~, value suggests a large variance in the training error,

and a large ~ value indicates a small variance in the training error. In this example, we add

a random Gaussian noise sequence (zero mean and 0.01 vari3.D;ce) to the function outputs.

The resulting ~ is about 55 (cr2 = 0.009), which is close to the underlying noise distribu­

tion.

Features and Limitati.ons

Some important features of the Bayesian method have been discussed in the litera­

ture [BuWe9 l][MacK92][MacK94][Bish95][Neal96] [Fore96][FoHa97], which demon­

strate that Bayesian regularization is very practical for neural network training. One of

these features is making an efficient use of the available training data to produce a proba­

bilistic model based on prior assumptions. Using priors in the Bayesian framework allows

a shift in the weight space toward a set of weights yielding a smooth network response. Dif-

48

ferent priors may give different probabilistic regimes for modeling this shift. However, the

Gaussian prior for the network weights is found to be simple and robust and produces rea­

sonable results most of the time.

In addition, Bayesian regularization can be implemented in different ways under the

same framework. Although we discussed only a single class of weights in this chapter, the

results for complicated problems can be improved by dividing the total weights into several

classes, each class with its own regularization constant. Using multiple Gaussian priors

makes it possible to build a huge, flexible model with a large number of parameters, and to

control the complexity of the model with multiple regularization parameters. This will en­

able the model to capture the local smoothness of the problem and approximate the prop­

erties of the training data better.

One controversial issue associated with the Bayesian regularization is whether

training the network with all available data is an advantage. In common practice, the Baye­

sian model is constructed with explicit assumptions including the Gaussian prior for the

network weights, the Gaussian noise model, and the uniform density function for ex and ~ .

These assumptions, however, can be quite hard to justify. Bayesian network users may have

difficulty in explaining their selections for the models and priors, because no matter what

problem it is, the training is always performed to capture the specified prior beliefs. As a

consequence, the generalization error which is measured on new testing data may not relate

to the training results in a simple way, which is our primary interest in later chapters. Still,

using all available data in the training is computationally expensive, if the Jacobian matrix

is too large.

49

In Chapter 4, we will introduce the use of cross-validated early stopping in neural

network modeling. This procedure is computationally efficient, does not need any statisti­

cal assumptions, and can be used with any of the training performance functions.

50

CHAPTER4

CROSS-VALIDATED EARLY STOPPING

Objectives
Introduction
Basic Concepts

General Description
Relati.on to Regularization

Asymptotic Cross-Validation Properties
Stochastic Network and Asymptoti.c Learning
Virtual Opti.mal Stopping Point
Cross-Validated Opti.mal Stopping

Application Trade-off
Effect of Pattern/Parameter Rati.o
Effect of Initial Parameters
Effect of Data Splitting Rati.o

Retrained Early stopping
Training Example

Objectives

51
52
52
53
55
57
58
61
62
65
66
66
67
69
73

The technique of cross-validated early stopping is widely used in neural network

modeling, but its effectiveness is very problem-dependent. The features of early stopping

will be addressed in this chapter. In order to improve early stopping techniques, we propose

and demonstrate a new procedure called retrained early stopping.

51

Introduction

The regularization method introduced in the previous chapter uses a modified per­

formance function to control the effective complexity of the neural network. In this chapter,

we examine a different method which improves generalization by stopping the training ear­

ly, before overfitting occurs.

The stopping rule has been proposed based on cross-validation, which will be de­

scribed at the beginning of this chapter. Then the relationship between early stopping and

regularization will be briefly discussed.

To better understand cross-validation, we will introduce its statistical properties in

the asymptotic case of a large number of training examples. The non-asymptotic features

of early stopping, however, can only be investigated empirically, and are very problem-de­

pendent. We will investigate the dependence of effective early stopping on several influen­

tial factors.

Conventional early stopping uses only part of the available data for parameter esti­

mation, which often prevents the generated network from achieving superior performance.

To overcome this weakness, we will propose and demonstrate a new procudure which al­

lows a combined retraining after the conventional early stopping.

Basic Concepts

As we stressed in Chapter 2, the goal of neural network training is not to memorize

the training examples, but rather to model the underlying function which generates the data,

so that the best possible prediction can be made when the trained network is subsequently

presented with new inputs. This task is usually difficult if the training performance is mea-

52

sured by the sum-of-squared errors and the measurements are corrupted with noise, or if an

overly complicated network structure is used. In practice, the mapping between training in­

puts and outputs is roughly approximated during the first stage of training. The details are

gradually refined as training proceeds. Therefore, it is widely believed that the generaliza­

tion error decreases as the common features of the problem are learned in the early period

of training, but then later increases as training goes on. Usually, the increase in the gener­

alization error indicates that further training will lead to overfitting, even though the train­

ing error will monotonically decrease. To avoid overfitting, it is considered better to stop

training at an adequate time before the generalization error increases. This technique is of­

ten referred to as early stopping.

General Description

The following simple stopping rule has been proposed based on cross-validation.

Divide all the available examples into two disjoint sets. One set is used for training. The

other set is used for validation. The behavior of the trained network is evaluated by using

the cross-validation examples, and the training is stopped at the point that minimizes the

error on the validation set. Note that the assumption behind the cross-validated early

stopping is that the validation set is a reasonable representative of unknown new data sets,

and, therefore, the validation error is an estimate of the generalization error.

Early stopping can be applied to any standard optimization algorithm which mini­

mizes the sum-of-squared error training function. In each training epoch, the network

weights are updated using the training data set, then the validation error is computed using

the latest updated weights. The smallest validation error and the corresponding network

53

weights are saved. These weights are usually overwritten in each training epoch during the

early period of training, because the validation error is descending along with the training

error. This can be shown in Figure 9 in which the validation error monotonically decreases

before the point A.

101 .--..----.---~--.---,---r;:=::::;::;::=:::;:i

I:.: ==~-I · - · testina enor

,o'

Point A

i .,.-------·-

\ --·-------~ ,__.,_--J·-·-·-·-·--·------ - -

Figure 9 Cross-validated Early Stopping

In Figure 9, the validation error reaches a minimum at the point A. After that, the

training error keeps decreasing as the training refinement continues, but the validation error

increases. Further refinement on the training data might be noise-oriented, which is random

in nature and not related to data in the validation set. Therefore, the training is terminated

at the point A, since continued training will only lead to overfitting. If the selected valida-

tion set is really a good representative of new data (as represented by the testing error curve

in Figure 9), then the network obtained with early stopping will have the minimum gener-

alization error.

54

. Note that the cross-validation data set described above is only used passively to stop

the training. The weight update is computed to minimize the training error only. In the next

chapter we will discuss a training procedure that actively uses the validation set.

We have assumed in this chapter that the generalization error of a network trained

on the full data set, using an unregularized performance function, is always high. This is

not always the case, as is discussed in [AmMu97]. We will explain later in this chapter that

cross-validated early stopping is useless in the asymptotic region where the number of

training examples is much lager than the number of network parameters.

Relation to Regularizati,on

Early stopping is methodically different than regularization. However, the effects

of the two techniques are similar. Sjoberg [Sjob95] called early stopping "implicit regular-

ization," and showed that the number of the training iterations was inversely proportional

to the regularization parameter. Bishop [Bish95] graphically d~monstrated the analogy be-

tween regularization and early stopping.

To explain this analogy, let's assume that we have a two-dimensional weight space,

and the unregularized error function has a quadratic form:

~ ~ T 1 T
I!; (w) = l!;o + b w + 2w Hw. (70)

The effect of a simple weight-decay regularizer 0(w) on a quadratic error function

is illustrated in Figure 10 (a). The circle represents a contour along which the weight-de-

-cay term is constant, the ellipse represents a contour of constant unregularized error. w is

the weight vector corresponding to the minimum of Ff' (w) . z 1 and z2 are the eigenvectors

of the Hessian matrix H which determine the length of the long and short axis of the ellipse.

55

W2 Z2

~ct 3-- z,
•w

(a). Regularization (b). Early stopping

Figure 10 Analogy between Regularization and Early Stopping

For simplicity, we rotate the axes in weight space to be parallel with z 1 and z2 • When we

add aO(w) to ~ (w) , the effect of the regularizer is to shift the minimum of the error

A -.

function from w to w . The relation between the minima of the original and the regularized

error functions [Bish95] can be expressed as

-._ A.• A

W . - -.:..:.Lw J - '
r,.. + a J

J

(71)

where the A.j are the eigenvalues of the Hessian matrix H. Since the eigenvalue value A.1

is smaller than A.2 , the ratio of A.1 I (A.1 + a) is greater than A.2/ (A.2 + a) . Therefore, the

-. -.
value of w 1 at the minimum is significantly reduced, and the value of w 2 is only slightly

affected by the regularization.

Early stopping produces results that are similar to regularization. This can be under-

stood from Figure 10 (b). The weight vector starts at the origin and proceeds during train-

56

ing along a path which follows the local descent direction. In this example, the eigenvalues

of the Hessian differ widely, which can be seen from the shape of the ellipse. Thus, the

weight vector will move initially parallel to the w2 axis to a point corresponding roughly

~

to w* and then move towards the minimum of the error function w . Stopping at a point

-near w* is therefore similar to w , which is obtained with regularization

Although early stopping is qualitatively similar to regularization, the quantitative

analysis of early stopping is very difficult. However, under the asymptotic condition in

which a large number of samples are available, we can statistically compare early stopping

with the full set training method, and give a quantitative description of the each generali-

zation error.

Asymptotic Cross-Validation Properties

In this section, we will introduce the asymptotic cross-validation theory mainly in-

vestigated by Amari et al. [AmMu93] [AmMu96] [AmMu97]. This statistical theory ex-

plains when cross-validation is asymptotically effective and describes how to divide the

total samples into training and validation sets to obtain the optimum performance. Al-

though the asymptotic region (large sample size) is often inaccessible in practical applica-

tions, we will see a study of this region makes it possible to exactly calculate the

generalization error for hypothetical models. Moreover, investigating asymptotic statistical

properties of cross-validation will help us to understand better the advantages and limita-

tions of early stopping in practical applications. In this section, instead of showing Amari's

derivations and mathematical proofs, we will mainly review the results of their study and

the assumptions made in their calculation.

57

Stochastic Network and Asymptotic Learning

In Amari' s study, a stochastic network was used and the network performance was

evaluated by the average predictive entropy.

Assume that there exists a teacher network N(w0) which generates training exam-

ples. Each input xi is randomly chosen from an unknown probability P(xi). The input-tar-

get relation of the network is specified by the conditional probability P(y i Ix i• w 0), where

w0 is the true network weight vector. The joint probability of (xi,Yi) of N(w0) is given by

(72)

Assume that the training set D n has n independent patterns generated by the distri-

bution P(y Ix, w0), and n is asymptotically large. A student network having the same num-

ber of parameters is trained to learn the input-target mapping from the training set

(73)

The training function is defined by

n
1

Rtrain(w) = -~ L logP(xi,yi;w), (74)

i = 1

which is the entropy of the student network. Let us denote f(xi;w) as the output calculated

by the multilayer feedforward network N(w) for the given input xi and weights w. The

difference Yi-f(xi;w) is Gaussian with zero mean and ci variance. Then

(75)

From Eq. (72), we obtain

58

(76)

where c(x) does not depend on w. The training performance function defined by Eq. (74)

therefore measures the mean-squared-error.

The generalization error is the average predictive entropy of a trained network for

a new example. The asymptotic theory of statistics proves that the maximum likelihood es­

timator;;, is asymptotically normally distributed with mean w0 and variance !a-1 , where
n

G is the Fisher information matrix. Its elements G ;/ w) are defined by

Gi/w) = E[a:.logP(x,y;w)a:.logP(x,y;w)J.
I }

(77)

A

in which E denotes the expectation with respectto P(x, y;w). When w belongs to the

1 I Jn neighborhood of w O, the Taylor expansion of the training and the generalization er-

ror can be expressed as

(78)

and

(79)

where H0 denotes the entropy of the teacher network

H 0 = -E[IogP(x,y;w0)]. (80)

This is an unknown constant and indicates the stochastic uncertainty of the teacher network

itself. Ho is the estimate of H0 from the training examples. G(w0) is the Fisher matrix,

59

which is the expectation of the second derivative of -logP(x,y;w0) with respect to w0 •

n

Considering the distribution of w with different D n , the entropic training error is
n

expressed as the asymptotic expectation of Rtrain (w)

(81)

n

and the entropic generalization error is expressed as the asymptotic expectation of Rgen(w)

[AmMu93]

(82)

The training error is smaller than the generalization error. Since H0 is unknown in

general, we can relate generalization error to the training error,

" " N
(Rgen(w)} = (Rtrain(w)} + n. (83)

We want to know if the generalization error decreases when we terminate the train-

-ing before w is reached.

Let us consider the gradient descent learning rule

(84)

It has been shown [AmMu97] that

" t-k " " "
w(t) = (I-11) {w(k)-w}+w, t> k, (85)

"' - "' "'
thus, the trajectory w(t) linearly approaches w in the neighborhood of w. We call w(t) a

- - -ray. The direction from which the ray w(t) approaches w depends on the initial w(O). In

60

A

our calculation, the ensemble average (Rgen(w(t))) is the expectation with respect to the

A

initial condition w(O) and with respect to different realizations of Dn, therefore, we can as-

A A

sume that w(t) approaches w isotropically.

Virtual Optimal Stopping Point

Now, let us go back to Eq. (79). The Taylor expansion of the generalization error

can be rewritten as

(86)

Here we take the coordinate system such that the Fisher information matrix in Eq. (79) is

equal to the identity matrix at w0 , i.e., G(w0) = I. As we discussed before, the true w0

and .;;, are in general different, and the distance between them is of order 1 I ,Jn . To visu-

alize the relations among the different weight estimates, we compose a sphere centered at

A

(w + w0)/2, as is shown in Figure 11.

A

A'

Figure 11 Geometric Picture to Determine w*

61

A

Assuming that A is a ray, which is the trajectory of w (t) , the optimal stopping point

A

w* will be the one that minimizes the generalization error. As w(t) moves along the ray

A (see Figure 11), the generalization error RgenCt) is minimized at the point w* where the

line between w* and w O is orthogonal to the ray A. The point w* is the first intersection

A

of the ray A and the sphere. When ray A' is approaching w from the opposite side of w O,

A A

the first intersection point is w itself. In this case, the optimal stopping point is w .
A A

It can be proved [AmMu97] that, when w(t) approaches w isotropically, the aver-

age generalization error at the optimal stopping point is asymptotically given by

(87)

Comparing Eq. (87) with Eq. (82), if we could know the optimal stopping time topt for each

trajectory, the generalization error decreases by 1 I 4n , which has the effect of decreasing

the effective dimensions by 1 /2 . This effect is negligible when N is large. However, it is

impossible to know the optimal stopping time when using the full data set in training. If we

stop learning at an estimated optimal time, we have some gain when ray A is from the same

side as w O , but we have some loss when ray A is from the opposite direction. Since the

optimal stopping time can not be determined from the training set with the use of the un-

regularized optimization algorithm, an indirect method to estimate the optimal stopping

time is to use the validation set.

Cross-Validated Optimal Stopping

Assume that n samples are divided into r · n examples of the training set and

r' · n examples of the validation set. The data splitting ratio is defined by r' · nl r · n ,

62

A

where r + r' = 1 . Let w be the weight vector which minimizes the training error function,

and let w the weight vector which minimizes the validation error function. Since the train-

A -

ing examples and cross-validation examples are independent, both w and w are asymptot-

ically subject to independent normal distributions with mean w O and covariance matrices

G-1 /(r. n) and G-1 /(r' · n) , respectively. A new sphere can be composed in Figure 12

A - A

which is centered at (w + w)/2. The trajectory A enters w linearly in the neighborhood

A

of w. The point w* on the ray A which minimizes the cross-validation error is the point

- A -

on A that is closest tow. When ray A' is approaching w from the opposite side of w, the

A

optimal stopping point is w* = w .

A

A'

Figure 12 Geometric Picture of Cross-Validated Early Stopping

The average generalization error that can be achieved by the optimal early stopping

can be expressed as

* _ 2N-1 _1_ (RgenCw , r))-Ho+ 4 + 4 , ·
r·n r · n

(88)

63

The proof is given in [AmMu97]. Minimizing Eq. (88) with respect to r, we can obtain r opt

which is the optimal ratio of the training samples to the total samples

J2N-1-1
r opt = 1 - 2(N - 1) .

When N is large, r opt can be simplified as

1
ropt=l- Jfiv'

(89)

(90)

which says that if the total number of samples is n , only nl JfN samples are needed for

the validation set to minimize the average generalization error. The optimal data splitting

rartio is

(91)

H the number of network parameters N is large, the splitting ratio is small, meaning that a

large percentage of samples should be put in the training set. Substituting Eq. (90) into Eq.

(88) and making further simplification, we obtain the average generalization error

(Rgen(w*, ropt)) =Ho+~(1 + ~.). (92)

Recall that the generalization error given by Eq. (82) without the use of cross-validation

(r=l) is

" N
(Rgen(w)) =Ho+ 2n.

This implies that the generalization error increases slightly when using cross-validated ear-

ly stopping, compared with using all the examples for training.

64

Amari's study of cross-validation shows that cross-validated early stopping is not

asymptotically effective in reducing the generalization error. However, this theory is not

valid for applications where the number of samples n is not asymptotically large. To ex­

plain why cross-validated early stopping is effective in practice, the distribution of the ini­

tial w(O) and the nonlinear learning trajectories should be considered. The complete theory

is difficult to construct due to the complexity introduced by the limited data size. The opti­

mal use of cross-validated early stopping is problem dependent.

Application Trade-off

We discussed the asymptotic cross-validation properties in the previous section.

Now let us go back to practical applications.

Training neural networks with cross-validated early stopping has two advantages.

First, no assumptions on the system, the model parameter distribution and the noise distri­

bution are required. Secondly, compared with the computational cost in adapting regular­

ization parameters, cross-validated early stopping is more efficient. In Bayesian

regularization, for instance, updating a and ~ requires calculation of the trace of the in­

verse of the Hessian matrix. In early stopping, only the additional computation of the val­

idation error function is required in each iteration. In addition, the total number of training

epochs needed in early stopping is usually smaller than that required for adaptive regular­

ization, especially when the noise levels are low. However, the optimal use of cross-vali­

dated early stopping depends on several important factors, which are the pattern/parameter

ratio, the initial parameters and the data splitting ratio.

65

Effect of Pattern/Parameter Ratio

The pattern/parameter ratio is the ratio of the number of training examples n to the

number of network parameters N. When n is less than or equal to N, the examples can in

principle be memorized, and overfitting is possible. In this case, placing any samples in the

validation set severely reduces the training set size. Early stopping does work for this case,

but the variation in model performance is very sensitive to the choice of the validation data

[KrHe92][ChHa98]. Instead of using a specific hold-out validation set, it is better to train

different networks with different data splittings and average the prediction results.

If the pattern/parameter ratio is somewhat larger than 1, then early stopping is ef­

fective in general. This can be explained by the analogy between early stopping and regu­

larization. However, there is no general theory (as we presented in the previous section) to

fully support it. In practice, the condition n > N is satisfied by many neural network appli­

cations, and there are many heuristics for using early stopping in this case.

If the pattern/parameter ratio is greater than 30, then the number of the training ex­

amples n can be considered asymptotic large [AmMu97]. In this case, the theory and the

simulation results demonstrate that cross-validation is not necessary. The generalization er­

ror becomes worse when using cross-validation examples to determine the stopping time.

This is not the typical situation encountered in neural network modeling. For the rest of this

chapter, our discussion will focus on the intermediate pattern/parameter ratio case.

Effect of Initial Parameters

Recall that in Amari' s asymptotic study, the optimal stopping point depends on the

direction by which the training ray approaches convergence. Therefore, the distribution of

66

the initial weights may play an important role in the training results. Starting from a specific

initial condition, the procedure may stop too early due to a premature increase in the vali­

dation error. For a different choice of the initial weights, the trajectory of the validation er­

ror may be monotonically descending. This is not critical for the regularization method, if

the regularization parameter is properly adapted during the training. In that case, each up­

date of the regularization parameter leads to a new performance function. Since many dif­

ferent performance functions are trained with various conditions before the adaptive

regularization converges, the influence of the initial weights on the final result becomes less

significant.

To get more consistent results with early stopping, we may put some constraints on

the initial weights so that the nonlinear learning trajectory is not isotropic. For example, the

initial weights can be randomly selected from a small range to keep all activation values of

neurons in the dynamic range of the transfer function [Lars93]. Then these weights might

be further scaled to keep the initial variance for all activation values approximately equal

[Wan93]. In practice, the necessary preprocessing of the inputs and the targets is performed

along with the parameter initialization.

Effect of Data Splitting Ratio

For a fixed pattern I parameter ratio, the division of the available data into training

set and validation sets often makes a difference in network performance. An obvious draw­

back to use cross-validated early stopping is that only part of the available data can be used

for parameter estimation. The validation data set is passively withheld to determine the

stopping point, but it does not contribute to calculating the weights. This implies a trade off

67

in selecting the data splitting ratio n/ n1 • On the one hand, the validation size nv should

be as small as possible to ensure a proper weight estimate; on the other hand, nv should be

as large as possible to ensure that er: will be a reliable estimator of the generalization error.

"
In general, there is no single fixed data splitting ratio accepted for all applications. Practi-

cally, we can refer to some existing rules to make a nearly optimal selection.

One rule, as recommended by Amari et al.[AmMu97], relates the data splitting ratio

to the number of network parameters. It says we can use only n/ $1 samples in the cross-

validation set. This ratio can be very small in the case of large N. The other rule [Lars93]

suggests using a 1 / 1 data splitting ratio if we have no information about the function com-

plexity and the confidence interval on the validation data set. Kearns [Kear97] concluded

from his study that if the function complexity is small compared to the sample size, the per-

formance of cross-validation is relatively insensitive to the choice of the data splitting ratio.

Any choice between 1 / 9 and 1 / 1 yields nearly optimal generalization error. However, as

the function becomes more complex relative to the sample size, the optimal data splitting

ratio decreases. For the backpropagation experiments with early stopping, Keams showed

that the optimal data splitting ratio is somewhere between 1 /4 and 3 I 7.

We believe that the optimal data splitting ratio is problem dependent. However,

there could be a narrow range for the ratio that works nearly optimally for a wide range of

applications. Since only part of the available data can be used for parameter estimation, the

resulting networks trained with early stopping generalize worse, on average, for noisy data,

than networks trained using all the data with properly adapted regularization. To overcome

this drawback, we will propose a new procedure called retrained early stopping.

68

Retrained Early stopping

In order to improve the performance of networks trained with conventional early

stopping, we propose a new procedure which retrains the network after early stopping. We

call the training using early stopping the first stage training, and the retraining described in

this section the second stage training. The objective of the retraining is to improve the pa­

rameter estimation by using the whole data set, without violating the model constraints de­

termined by early stopping.

The new retraining procedure is described below. The retraining starts with the re­

sulting weights obtained from the first stage training, but uses a combined training data set

including all data points in the previous training and validation sets. Any standard optimi­

zation algorithm with unregularized performance function can be used in the retraining pro­

cess. The stop criteria of the second stage training are based on the model accuracy and

complexity of the first stage. We use the mean-squared-error (MSE) to measure the model

accuracy. In addition, we use the sum-squared-weights (SSW) to measure the model com­

plexity. The error goal of the second stage training is slightly less than the value of the MSE

at the early stopping point. The weight goal of the second stage training is the value of the

resulting SSW of the first stage multiplied by a small incremental constant (1.05 - 1.3).

The retraining will be terminated when either the error goal or weight goal is met.

Now let us explain why it is possible to use retrained early stopping to improve gen­

eralization. As we discussed early in this chapter, terminating network training before con­

vergence is similar to regularization. Regularization can use the whole data set for

parameter estimation. However, early stopping can only use part of the available data

69

points, because a separate data set has to be selected for validation testing. The selection of

the validation data set is somewhat arbitrary. Therefore, it is rational to find a way to adjust

the parameter estimation after early stopping by retraining the network using the combined

data set. If the network complexity is fixed, training with more data points does not risk

overfitting.

Here arises another question. In order to make a full use of the available data set,

we would like to perform a combined training. However, since we use the unregularized

performance function, the MSE will decrease, and the SSW will increase when retraining

proceeds. To avoid overfitting, we add the error goal and the weight goal constraints ob-

tained from the first stage training. The error goal gives a lower bound on the training ac-

curacy, which is the best achieved using cross-validation. The weight goal gives an upper

bound on the SSW, which limits the model complexity. These bounds set a new compro-

mise between the model accuracy and the model complexity for the combined training. To

justify these settings, let us make a new use of Moody's OPE (generalized prediction error)

[Mood92] which was briefly discussed in Chapter 2.

Moody's model selection criterion can be expressed as

OPE = MSEtrat. + 2cr2 Y..
n ' n

(93)

where y is the effective number of parameters, n is the number of training data points, and

cr2 is the variance of the noise on the data. Eq. (93) is essentially a different expression of

Eq. (83), which is given in the asymptotic learning section in this chapter and is rewritten

below:

70

A A N
(Rgen(w)) = (Rtrain(w)) + n.

In Eq. (93), the training performance is measured by the mean-squared-error. In Eq. (83),

the training performance is measured by the entropy. Also, Eq. (93) enables us to use a reg-

ularized performance function to calculate the effective number of parameters.

Since early stopping has an effect that is similar to regularization, we can use Eq.

(93) to estimate the GPE obtained using early stopping. From [Mood92], cl in Eq. (93)

can be estimated by

2 n
O' = --MSEtrain · n-y

For this choice, the expression for GPE becomes

GPE = n + '.YMSE .
n -y train

(94)

(95)

Now assume that we use the same error goal for retrained early stopping. To make

GPE2 < GPE1, where subscripts are the stage index numbers, the following inequality

should be held

which indicates

Recall that the y = 2aQ(w) in Bayesian regularization, where a is the regularization pa-

rameter, and Q(w) is the sum-squared-weights (SSW). And suppose that early stopping

and retrained early stopping generate models with similar complexity, i.e., a 1 = a 2 in a

71

rough analogy to regularization. The condition required to get a reduced GPE becomes

SSW2 n2
--<­
SSW1 n 1

Thus, if we limit the increase of the SSW to a small fixed percentage during the retraining,

the inequality above will hold for most practical data splitting ratios, and the GPE may be

reduced. Even though the SSW goal is reached before the error goal has been met, the ine-

quality above may still compensate for the increase in the MSE and force the GPE to de-

crease.

Let us assume some retraining situations. When a small data splitting ratio is used,

the starting MSE for the retraining is either less than or slightly larger than the error goal.

In the former case, the prediction on the validation set was better than the prediction on the

training set. Therefore, no further combined training is needed. In the latter case, only a few

training epochs are required to reach the error goal. The increase in the SSW will not exceed

the permissible range.

When a large data splitting ratio is used, the starting MSE for the retraining may be

larger than the error goal by a significant percentage. Since retraining usually requires more

iterations to reach the error goal under this circumstance, the weight goal might be met first.

Whether or not the generalization error decreases will depend on the balance of the product

on the right side of Eq. (95).

Note that calculating the equivalent effective number of parameters for early stop-

ping is very difficult. In general, we cannot locate the lowest point of the GPE curve during

the retraining. And, without referring to a new validation data set, we cannot determine the

optimal stop point by using the combined training data set only. Therefore, the setting of

72

the stop criteria for the retraining is heuristic. However, as we discussed above, in order to

get improved performance, it would be better to perform the limited retraining around the

previous stop point.

In the next section, we will compare retrained early stopping with conventional ear­

ly stopping using a simple problem with different pattern parameter ratios and data splitting

ratios. Simulations on a different problem under more complicated conditions will be dis­

cussed in Chapter 6.

Training Example

To investigate the features of retrained early stopping (RTES) and conventional ear­

ly stopping (ES), let's consider the same shifted sinusoidal function that we used in Chapter

3,

y = 1 + sin (~ x).
This is a simple single-input, single-output example, and will be modeled by a 1-15-1 net­

work with 46 parameters. For each training procedure, we run simulations with three pat­

tern I parameter ratios (PPR= 81/46, 161/46 and 481/46), and three data splitting ratios

(DSR= 1/7, 1/3 and 1/1). The training targets Yi are evenly generated from the shifted si-

nusoidal function over the inputs xi (-2 - 6), and corrupted with Gaussian noise (zero

mean and 0.04 variance). For each PPR I DSR combination, the generalization error is mea­

sured between the network outputs and the true function outputs on a large testing data set

(6000 data points), and is averaged over 100 trials with different initial weights and random

noise realizations. The computational cost is measured by the average number of floating

73

point operations (FLOPS).

The goals for retrained early stopping are set to 0.95 x MSE and 1.30 x SSW,

where MSE and SSW are the mean-squared-error and sum-squared-weights obtained using

conventional early stopping. In addition, we require retraining to take at least one epoch.

The results are summarized in Table 2.

PPR DSR MSE(ES) MSE(RTES) FLOPS (ES) FLOPS (RTES)

(X 10-3) (X 10-3) (X 107) (X 107)

1/7 6.80 5.66 1.99 2.41

81 I 46 1/3 6.80 5.37 1.80 2.39
1 /1 7.57 4.84 1.48 2.15

1/7 4.09 3.46 3.54 4.72

161 I 46 1/3 4.21 3.26 3.24 4.46

1 I 1 4.29 2.80 2.50 3.80

1/7 1.72 1.26 11.8 15.6

481 I 46 1/3 1.55 1.08 9.43 13.2
1 I 1 1.63 1.00 6.75 10.7

Table 2 Comparison of ES and RTES

It is observed that prediction becomes more accurate as the pattern I parameter ratio

increases. For each PPR I DSR combination, the performance trained with RTES is better

than that trained with ES. However, the quantitative improvement varies with different data

splittings. The error ratio of ES over RTES is 1.18 - 1.37 for DSR = 1 I 7, 1.29 - 1.43 for

DSR = 1 I 3, and 1.53 - 1.63 for DSR = 1 I 1. This is in good agreement with our previous

analysis, which says that using a relatively large DSR will make the conditional inequality

easily satisfied.

74

Table 2 also shows that the optimal data splitting ratios for retrained early stopping

and conventional early stopping are different. The optimal DSR is 1 11 for RTES, but is

l / 7 or l / 3 for ES. Therefore, it is better to use a relatively large DSR when retrained early

stopping is used, but to use a relatively small DSR if the network is only trained with con­

ventional early stopping.

In this simulation experiment, the computational cost of RTES is 21 - 56 percent

higher than ES. The larger percentage corresponds to the larger DSR, and the smaller per­

centage corresponds to the smaller DSR. However, since training with ES using a larger

DSR is less computationally expensive, the lowest cost for RTES is when the DSR of 1 I

1 is used. If we compare the best ES performance with the best RTES performance under

each PPR, the generalization error for ES is 40 - 55 percent larger, and the computational

cost for RTES is only 7 - 19 percent higher.

In summary, this example demonstrates the potential to retrain a network using the

combined data set after early stopping. In order to improve model performance, we can use

a relatively large validation data set to determine reliable estimators of the optimal model

accuracy and complexity. We then can perform a limited full-data retraining to obtain better

parameter estimation. The simulation shows that the networks produced by retrained early

stopping generalize significantly better than conventional early stopping, with only slightly

increased computational cost.

Here arises an interesting question. As we discussed in this chapter, the validation

data set is used to monitor the network training. However, the training follows its own path

before early stopping. The minimum validation error at the stop point is a function of the

75

initial training parameters, and cannot be adapted during the training. This is called passive

validation. This problem is inherent in using the unregularized training performance func­

tion. In the next chapter, we will combine regularization with the active use of the valida­

tion data set, and we will propose a new adaptive regularization algorithm to minimize

validation error.

76

CHAPTERS

ACTIVE VALIDATION AND THE SDVR ALGORITHM

Objectives
Introduction
Background Review

Gradient Descent Approach
umitations

Basic SDVR Algorithm
Incremental Gradient Descent
Incremental Hessian Approximation

Method of Application
Recipe of Appllcation
Training Example
Parameter Setti.ng

Simulation Testing
Method and Procedure
Results and Discussion

Variations of S~VR Algorithm
Convergent Updating
Conditional Updating
Optimal Use of the SDVR Algorithm

Summary

Objectives

77
78
89
81
84
85
87
90
94
95
95
98

102
102
104
107
108
113
118
121

This chapter introduces the concept of validation-set-based regularization and pro-

poses a new SDVR framework, which consists of a basic algorithm and two variations. The

development of the SDVR framework is one of the main contributions of this study.

77

Introduction

In previous chapters, we have shown how early stopping and regularization tech­

niques can be applied to improve generalization in neural network modeling. In most ap­

plications, early stopping and regularization are used separately. When the early stopping

procedure is employed, we terminate the training process as soon as the validation error in­

creases. In that approach, the validation data set is passively withheld to determine the

training stop point. When Bayesian regularization is used, we do not use a separate valida­

tion data set. The regularization parameter is statistically updated to match the training data.

In this chapter we will combine regularization with the active use of the validation

data set. Instead of using the validation set to determine when to stop training, we will

choose the regularization parameter a. so as to minimize the error on the validation set.

The main purpose of this chapter is to develop a new algorithm to iteratively update

the regularization parameter through an adaptive training process. We will propose a sec­

ond derivative of validation error based regularization method (SDVR), and investigate its

application in depth.

We will begin with a brief review of validation set based regularization, and intro­

duce a convergent gradient descent approach which was proposed by Larsen et al.

[LaHa96].

We then introduce our SDVR algorithm. We will start with the mathematical deri­

vation of the basic algorithm, which recalculates the regularization parameter in each train­

ing epoch. Then, we will apply the basic SDVR algorithm to a training example and will

78

show how the SDVR algorithm improves the model generalization performance. The spe­

cific parameter settings in the application recipe will be explained briefly.

Additional features of the SDVR algorithm will be investigated through a compar­

ison test with the gradient descent method. The simulations will be performed under a va­

riety of initial conditions. The model performance and the computation cost will be

evaluated accordingly.

The basic SDVR algorithm updates the regularization parameter incrementally.

However, this is not the only possible implementation. We will propose two variations of

the SDVR algorithm that enable the regularization parameter to be updated over a variable

interval according to the specified control criteria. All of implementations presented in this

chapter can be placed into a common SDVR framework. We will test this framework with

several numerical experiments and show how to make optimal use of the SDVR framework

with a variety of different problems.

Background Review

Many applications have shown that training a feedforward neural network with the

regularized performance function F = eT e + exwT w can improve the generalization per­

formance of the network, if the regularization parameter ex is appropriately estimated.

However, how to determine the parameter ex is still an open question. There are several dif­

ferent approaches to this problem. MacKay' s Bayesian framework automatically adapts the

regularization parameter to maximize the evidence of the training data [MacK92]. The

computation overhead in updating the regularization parameter can be reduced when the

Gauss-Newton approximation to the Hessian matrix is employed [FoHa97].

79

A different approach to adaptive regularization is to minimize validation error. In

this case, a validation data set, which is independent of the training data, is withheld for de­

cision making. The network weights are estimated from the training data, and the amount

of regularization is optimized for the validation data. This approach is based on the assump­

tion that the selected validation set is a good representative of new data. Therefore, the

model with minimum validation error will have a better chance to generalize well on novel

inputs. The simplest application of this method is to train the neural network with a number

of different a values, and then choose the model having the smallest validation error.

A more attractive approach to validation-set-based regularization is to use an opti­

mization algorithm to adapt the regularization parameter a automatically. Consider that

validation error is a function of the network weights, and the network weights are affected

by the a value through the regularized performance function. Therefore, the validation er­

ror is an implicit function of a. These inherent relations can be used to solve the optimiza­

tion problem. A simple gradient descent algorithm was proposed by Larsen et al. [LaHa96]

using a single validation set, and then extended to multi-fold validation sets [LaSv97]. In

both approaches, an updated regularization parameter is calculated after the network has

been trained to convergence with the previous regularization parameter. After each param­

eter update, the network is again trained to convergence.

Theoretically speaking, validation-set-based regularization is not constrained to a

single validation set and a single regularization parameter. Multi-fold validation sets and

multiple regularization parameters can be used under the same framework. However, some

problems are associated with these options ([Gout97], [ZhRo96]). If the regularizer con-

80

sists of many parameters, there is a potential risk of overfitting on the cross-validation data.

Also, the computation burden and complexity of the data splitting may prohibit their prac-

tical use. In the rest of the chapter, we will use a single validation set and a single regular-

ization parameter.

Gradient Descent Approach

We have mentioned that Larsen's gradient descent approach to adaptive regulariza-

tion is implemented with a convergent updating method; the regularization parameter is

only updated after the network has been trained to convergence. Larsen's approach is com-

monly used for validation-based regularization, so we will introduce this scheme first, in

order to provide a basis for comparison for the new methods introduced in this chapter.

Let's start with a preselected regularization parameter ak and assume that a net-

work model has been trained with fixed ak to convergence. The resulting weight vector w

is a function of ak, which can be denoted as w(ak). The validation performance Fv is

measured using w ,

(96)

Calculating the new regularization parameter along the gradient descent direction

VaFv(w(ak)) leads to an updating equation

(97)

where T\ is a leaning rate, and

(98)

81

In order to find the gradient VF v< w (a.k)) , we use the chain rule

a a r a
-a Fy(w) = -a (w) · -a Fv(w),

a.k a.k w
(99)

since F v< w) is an implicit function of a.k .

Now, let's consider the first term on the right side of Eq. (99). To calculate the par-

tial derivative of the weight vector with respect to the fixed a.k, we need to use some prop-

erties of the training performance function. Recall that when the weight vector is trained to

convergence, the training performance reaches its local minimum, i.e.,

a
awF,(w) = 0, (100)

where the regularized training performance index is a function of w and a.k:

(101)

Eq. (100) implies

(102)

We know that the first derivative of the training performance index is also a function of w

a T
aw F,(w) = VF,(w) = 21 (w)e(w) + 2a.kw, (103)

Differentiating Eq. (103) with respect to a.k can be expanded as:

(104)

82

where the second derivative of the training performance function with respect to the weight

vector is the Hessian matrix,

a
dw VF,(w) = H(w),

and from Eq. (103),

Substituting Eq. (105) and Eq. (106) into Eq. (104), and setting it to zero, we have

aw
H(w)·s--+2w = 0.

oak

Then we obtain the derivative of the resulting w with respect to ak,

aw · -1
- = -2H(w) w.
aak

(105)

(106)

(107)

(108)

The second term on the right side of Eq. (99) is the gradient of the validation per-

formance function with respect to the resulting w, which can be calculated from Eq. (96),

Substituting Eq. (108) and Eq. (109) into Eq. (99), we obtain the required gradient

c) -1 TT
s--F)w) = -4[H(w) w] Jv(w)ev(w).
oak

The regularization parameter ak+ 1 then can be recalculated using Eq. (97).

(109)

(110)

In the next iteration, the network is again trained to convergence with fixed ak + 1 .

After each updating of the regularization parameter, the training is initialized with the pre-

83

vious resulting weight vector. If the validation error increases with current a., then, the

learning rate is reduced by bisection, and the regularization parameter is recalculated from

the previous a.. This retraining may be attempted several times in Larsen's approach until

the validation error decreases. Then the next estimate of a. is computed from the current

value. The first stage training is usually terminated if the gradient of the validation error

with respect to the regularization parameter is small enough, or the relative change of val­

idation errors between two adjacent training cycles is below a predetermined threshold. Fi-

nally, the parameter a. corresponding to the minimum validation error is used to perform

the second stage training using all available data.

Limitations

The gradient descent approach is simple in implementation. However, it has several

inherent limitations.

Convergent updating using the gradient descent method is computationally ineffi­

cient. If the training starts from a small a. , and the initial learning rate is also small, more

than a hundred retrainings are usually needed to find the appropriate value of a. . Reaching

convergence for each regularization parameter, for most a. values, would require many

training epochs. The total computation cost would be very high.

Another problem with the gradient descent scheme is the determination of the learn­

,ing rate. Usually, a small learning rate is used for a. to ensure stability. As a consequence,

the gradient descent approach has a tendency to converge to the first local minimum point.

For example, when a. increases gradually, it often converges to the first local minimum at

84

a small a ; and it never has a chance to reach the global minimum point with a larger a .

On the other hand, since the increment in a is the product of the learning rate and the gra­

dient, an unexpectedly large jump in a may occur even with a small learning rate if gradi­

ent is large. As we will see later in this chapter, the proper choice of the learning rate for

gradient descent depends on the initial weights and the initial regularization parameter, and

the variation in training results is usually large when different initial conditions are tested

with same learning rate. This shortcoming makes gradient descent difficult to apply.

In addition, training to convergence is controversial in practice, since there are

many possible convergence criteria. If we use the Levenberg-Marquardt training algorithm,

as we discussed in previous chapters, convergence is defined when the training perfor­

mance function does not decrease with a large value of µw. However, the regularization

parameter will almost remain unchanged if the maximum µw is reached, because the gradi­

ent calculated from the Larsen's equation is too small. In general, we have to update the

regularization parameter before the µw value becomes very large, when the Levenberg­

Marquardt algorithm is used.

In the next section, we will propose a more efficient and easy-to-apply training al­

.. gorithm using validation-set-based regularization.

Basic SDVR Algorithm

In this section we will introduce a new algorithm for active regularization that ad­

dresses some of the limitations of Larsen's approach. There are two main innovations of

this algorithm. First, the algorithm uses second order information to set the optimal learning

85

rate. Second, the algorithm updates the regularization parameter at each weight update,

rather than after the weights have converged. Tests will show that the new algorithm pro-

duces networks with better generalization and requires less computation.

Before introducing our proposed new algorithm, let's assume that the network is

trained with a batch training algorithm. Its regularized performance index at iteration k is

(111)

where wk is an Nx 1 weight vector, ei(wk) is an n x 1 error vector and the subscript t

denotes the training data set. For the next training epoch, the weight vector wk+ 1 is com-

puted with fixed ak to minimize the performance index by using the Gauss-Newton meth-

od

(112)

where VF,(wk) is the gradient vector of Fi(wk) with respect to wk,

(113)

H(wk) is the Gauss-Newton approximation to the Hessian matrix,

(114)

in which J (wk) is an n x N Jacobian matrix, IN is an N x N identity matrix, and µw is a

tunable parameter, as in the Levenberg-Marquardt implementation [HaDe96], [Fore96].

Now we propose a new algorithm to update parameter a using a second derivative

of validation error based regularization (SDVR). The updating equation for the parameter

86

a. uses an approximation of Newton's method to minimize the validation error:

(115)

In Eq. (115), the validation error

(116)

is a function of wk+ 1, hence it is an implicit function of a.k. V a.Fv(wk+ 1(a.k)) and

Ha.(wk+ 1 (a.k)) are the gradient and Hessian of the validation error with respect to the reg-

ularization parameter a.k. Thus

(117)

and

(118)

In order to update the parameter a.k + 1 , we assume that the weight vector wk+ 1 is

updated first, using a fixed a.k. After wk+ 1 is computed, then a.k + 1 is updated. In the fol-

lowing derivation, we will refer to updating wk+ 1 as the inside loop training, and will refer

to calculating a.k + 1 as the outside loop updating.

Incremental Gradient Descent

As we see in Eq. (115), the mathematical implementation of the SDVR algorithm

requires the gradient V a.Fv<wk+ 1 (a.k)) and the Hessian Ha.(wk+ 1 (a.k)). Since validation

error is not an explicit function of a.k, we can use chain rule:

87

Note that Eq. (119) is different from Eq. (99). In Eq. (99), the chain rule was applied to find

the convergent gradient. In Eq. (119), the chain rule is used to compute the incremental gra-

dient. The first partial derivative term on the right side of Eq. (119) can be calculated from

Eq. (112). Recall that wk was computed before ak was updated. From this view, wk is not

a function of ak. Therefore differentiating Eq. (112) with respect to ak becomes

(120)

To find the derivative matrix dH-1(wk)ldak, we use the fact that

(121)

Since the derivative of the identity matrix IN with respect to ak is zero, we have

(122)

Now let's examine derivative (dH(wk))l(dak). In Eq. (114), the Jacobian matrix

J(wk) is a function of wk only. Since wk is not a function of ak,

(123)

Then dH-\wk)ldak in Eq. (122) can be obtained by

(124)

88

Similarly, oVFt(wk)/oa.k in Eq. (120) can be calculated from Eq. (113) directly,

with the result

(125)

Substituting Eq. (124) and Eq. (125) into Eq. (120), we get

(126)

Note that the term in the bracket above is the new updated weight vector wk+ 1 from Eq.

(112), therefore, we can rewrite Eq. (126) as:

(127)

Now, let's go back to Eq. (119). After wk+ 1 is ~btained from the inside loop train-

ing, the validation error is evaluated. The gradient of the validation error with respect to

wk+ 1 can be calculated directly:

(128)

where lv(wk+ 1) is the Jacobian matrix of the validation data. The incremental gradient

now can be obtained by substituting Eq. (127) and Eq. (128) into Eq. (119):

Comparing Eq. (129) with Larsen's gradient expression in Eq. (110), we can see

that Larsen's expression is a special case of Eq. (129) when the weight vector converges,

89

atwhichtime wk+l =wk= w.However,ourapproachandLarsen'sapproacharebased

on different assumptions. In Eq. (110), the converged weight vector w is a function of

fixed ak, the derivative aw 1aak is derived using the convergent condition of the inside

training loop, i.e., aF/aw = 0 and acaF/aw)/aak = 0. While in our approach, the

regularization parameter is updated in each training epoch. Only the weight vector wk+ 1 ,

rather than wk, is a function of ak. The derivative aw k + 11aak is computed from the

weight update equation directly. Treating wk and ak as independent variables is important

in implementing the SDVR algorithm. As we will see next, this assumption also makes it

convenient to calculate the incremental Hessian.

Incremental Hessian Approximation

The SDVR algorithm is characterized by the incremental Hessian H aC wk+ 1 (ak)) ,

which can be computed by differentiating Eq. (129) with respect to ak.

(130)

Therefore,

Using the rule for differentiation of a product, we can rewrite Eq. (130) as:

90

(132)

The first partial derivative of the product within the bracket on the right side ofEq.

(132) can be expanded as

(133)

Note that both air\wk)/c)ak and d(wk+ 1)/dak inEq. (133) were calculated previously

in deriving the incremental gradient. Substituting Eq. (124) and Eq. (127) into Eq. (133),

we get

(134)

The derivative vector e~(wk+ 1)Jv(wk+ 1) in Eq. (132) is not an explicit function

of ak. Its derivative with respect to a.kcan also be calculated using the chain rule:

In Eq. (135), only d[e~(wk+ 1)Jv(wk+ 1)]/dwk+ 1 is unknown, which is the Hessian ma-

trix of the validation data. As with the Hessian matrix of the training data, we use the Gauss-

Newton method to obtain the approximate expression

(136)

91

Substituting Eq. (127) and Eq. (136) into Eq. (135), we have

The approximate incremental Hessian can be obtained by putting Eq. (134) and Eq. (137)

into Eq. (132):

As we see from Eq. (138), the incremental Hessian is eventually approximated as

an algebraic manipulation of the characteristic matrices and vectors of the training data set

and the validation data set. It appears to involve significant computation. However, after

the incremental gradient is calculated, the extra computation associated with the incremen-

tal Hessian is very limited. In addition, since we use the Gauss-Newton approximation to

both the Hessian matrix of the training data and the Hessian matrix of the validation data,

calculating the incremental Hessian is convenient. For instance, IT 1 (wk) and wk+ 1 in Eq.

(138) can be obtained from the inside loop training directly. The validation gradient vector

lated simply by passing the validation data through the same conventional subroutine as

used in computing the gradient and Hessian matrix for the training data.

One more comment should be made on Eq. (138). Recall that in the inside loop

training, the Hessian matrix given in Eq. (114) can be made positive definite with the Lev-

enberg-Marquardt implementation, which guarantees that the weight increment is always

in a descent direction. However, the situation is different as we compute the incremental

92

Hessian in the outside loop. Let's look at the two sequential product terms in Eq. (138). The

has a quadratic form with J~ (wk+ 1)J v< wk+ 1) being a real symmetric and positive semi-

definite matrix, but the first product term (111 (wk)H-1(wk)wk+ 1) T]~(wk+ 1)ev(wk+ 1) is

non-quadratic which can be either positive or negative. Therefore, by using Eq. (138) di-

rectly, it is possible to get a negative incremental Hessian Ha.(wk+ 1 (a.k)), which is not de-

sirable in practice. In order to keep the increment of the regularization parameter in a

descent direction, we will force Ha.(wk+ 1 (a.k)) to be equal to the quadratic term when the

value obtained from Eq. (138) is negative. In this case, we get a larger Hessian, which cor-

responds to a reduced learning rate and will not cause any problem during the training.

In addition, a tunable positive parameter µa. can be added to Eq. (138) to make the

incremental Hessian invertible in any case and can be used to adjust the effective learning

rate. This is similar to the use of µw in Eq. (114) with the Levenberg-Marquardt implemen-

tation. A small µa. corresponds to a second derivative dominated approach, while a large

µa indicates a transition to the gradient descent method. Another purpose of µa. is to pro-

vide additional stability control. When we use a regularized performance function to train

a neural network model, the a. value is usually restricted to be positive. However, a decre-

ment of the regularization parameter suggested by the updating equation may lead to a neg-

ative a., which may cause a large increase in weight values. To avoid this problem, we can

93

force the updated ex to be positive by increasing µa if the decrement of the regularization

parameter is too large. Other usages of µa will be discussed in the next section. Adding µa

into Eq. (138), we have

(139)

Now we have completed the derivation of both the gradient and the Hessian in Eq.

(115) for the incremental updating of the SDVR algorithm. In the next section, we will ap-

ply the basic SDVR algorithm to a training example, and explain the relevant parameter set-

tings.

Method of Application

In this section, we will use a two-stage training method to apply the SDVR algo-

rithm. In the first stage, our purpose is to determine an optimal regularization parameter. In

the second stage, we will use a fixed ex and perform the final training on a combined data

set consisting of the previous training and validation data. Since the resulting ex is optimal,

we will limit the complexity of the neural network so that it has less risk of overfitting. Our

discussion will be mainly concentrated on the first stage training. When the optimal regu-

larization parameter is determined, the final combined training is straightforward.

94

Recipe of Application

Here are the general steps required for optimization of the regularization parameter

with the incremental SDVR algorithm:

1. Divide the available data set into training and validation subsets using a proper

splitting ratio. Initialize w O and a.0 •

2. Use the weight update equation (Eq. (112)) to get wk+ 1 .

3. Compute the validation error.

4. Check the relative change of the validation error. If the change is small enough,

terminate the first stage of training, and go to step 5. Otherwise, use the a.

update equation (Eq. (115)) to obtain a.k+ 1 and go back to step 2.

5. Put the training data set and the validation data set together for the final train­

ing, using the latest updated regularization parameter.

Training Example

For a demonstration of how the SDVR algorithm improves neural network model

generalization, consider the parabolic function used in the previous chapter. The function

output is computed by using the following equation:

Z = 2.5 + 5.0X(2-X)Y(2-Y),

where the variables X and Y both range from O to 2. We chose to explore the regularization

with a two-input, single-output function, because in real world applications many regres­

sion problems use multi-input, single-output models. The function targets are corrupted

with normally distributed noise with zero mean and 0.04 variance. A 2-10-10-1 feedfor­

ward neural network model with hyperbolic tangent activations on the hidden layers and

95

linear activations on the output layer is used to learn the function. The pure data and the

noisy data are displayed in Figure 13.

Figure 13 Pure and Noisy Data

In this example, the X -Y plane is sampled along a 21 by 21 grid. We use 231 data

points for training and 110 data points for validation. The data splitting ratio is 110/231.

The data splitting grid is given in Figure 14, where the ·circle-mark is used to represent the

training sample and the x-mark is used to indicate the validation sample.

o.;;.

~o 0.2 o.4 o.6 o.8 1 1.2 1.4 1.6 1.8 2
X

Figure 14 Data Splitting Grid

96

. Note that training this complicated network (151 weight parameters in total) will

overfit the noise training data if the unregularized performance function is used with the

Levenberg-Marquardt algorithm. This is demonstrated in Figure 15 (a), where we show

two cross-sections of the fitted function, at Y = 0.2 and Y = 0.4 . Obviously, the model

performance is poor if we do not use regularization, since the model fits the noise. As over-

fitting occurs, some prediction errors for inputs between the training data points are very

large.

In comparison, results obtained using the SDVR algorithm are displayed in Figure

15 (b). No overfitting occurs because the appropriate regularization is determined during

the adaptive training. Therefore, with the use of the SDVR algorithm, we can choose a net-

work with adequate complexity and apply a fast training algorithm with less worry of over-

fitting.

'•

Y = 0.2 '-' Y = 0.4

(a). LM results

- - lruetundlon ·--5.S -SOVA

••

Y = 0.2 y = 0.4

\!:-------,o----,~,___.,m'---~~---'~~~~~~..__~~ --
(b). SDVR results

Figure 15 Model Comparison

A more complete evaluation of the SDVR results can be made by testing the model

over the whole input data space, as shown in Figure 16. Recall that the training and valida-

97

f

tion data are selected from a 21 by 21 sampling grid on the X -Y plane, but now we use a

51 by 51 entry (2601 points) for testing. More than 2000 new points are contained in this

test set. As we see from Figure 16, the learned function is much smoother than the noisy

training data, and closely approximates the noise-free data shown in Figure 13.

y
X

Figure 16 Model Generalization

Parameter Setting

Now, let's go back to the application recipe for the SDVR algorithm, and look at

specific parameter settings at each training step.

Data Splitting Ratio

The data splitting ratio in step 1 is the number of the validation data points divided

by the number of training data points. Since the SDVR algorithm is derived under the as­

sumption that the validation data set is a good representation of new data, the validation

data set should have a wide coverage. For this reason, a splitting ratio from 0.5 to 1 is pre­

ferred. However, when the target function is complex compared to the sample size, and the

98

data is noiseless, a smaller data splitting ratio can also be u~ed. In practice, the SDVR al­

gorithm is best suitable to the situations where the data samples are adequate to be divided

into two groups without losing generality. The effect of the data splitting ratio on the gen-

eralization performance will be discussed in the next chapter.

Initial Conditions

. The effect of the initial conditions on the SDVR training results will be discussed

later in this chapter. In the above example, the initial weights are normally distributed with

zero mean and 0.01 variance. The initial regularization parameter is set to 0.01 which is far

from the optimal value obtained by the end of the first stage training.

Tunable Parameter µw

In step 2, Hessian matrix H(wk) must be computed in the inside loop to obtain the

network weight vector wk+ 1 . Using the Levenberg-Marquardt implementation ofEq.

(114), we usually set a small initial µw (e.g., 0.005), which corresponds to a fast learning

rate. For the fixed regularized performance function characterized by wk and a.k, the goal

of the inside loop optimization is to search for a new weight vector wk+ 1 to reduce the per-

formance index on the training data. This can be done by it¢ratively adjusting µw until the

right wk+ 1 is found. If the performance is not improved, µW is incremented. After the per-

formance is improved, µw is decremented. Normally, the increment constant of µw can be

I

set to 10, and the decrement constant can be set to 0.1. Performing inside loop training in

this way, we can guarantee that improved training performance is obtained before the reg-

ularization parameter is updated.

99

Tunable Parameter µa

Updating the regularization parameter in step 4 requires the computation of the pa­

rameter increment using Eq. (115). Similar to the weight calculation within the inside loop,

we can preselect a small µa in Eq. (139) to get the new estimate of ak+ 1 • The adjustment

of µa is dependent on the next validation error, which is measured by using the resulting

model from the inside loop training. Note that the dynamic weight update within the inside

loop is based on the training data set only, and the effect of the regularization parameter on

the validation error is indirect. Therefore, the trajectory of the validation error may not be

monotonicaly descending during the training. When the validation error increases with the

ak + 1 , instead of going back to the previous ak and giving a different increment, we still

accept the current update but compensate in the next iteration by multiplying µa by an in­

crement coefficient. This increment coefficient can be set to 1.05 for many applications,

and no decrement coefficient is required in general. With this implementation, the param­

eter µa will not contribute significantly in computing the incremental Hessian

Ha (wk+ 1 (ak)) if the validation error keeps going down, but gradually affects the learning

rate if the validation error oscillates. This is the advantage of the SDVR algorithm, which

allows a transition from the second derivative dominated approach to the gradient descent

method as the value of µa becomes large.

Stop Criteria

The goal of the first stage training using the SDVR algorithm is to determine an op­

timal regularization parameter. Therefore, it is reasonable to terminate the first stage train-

JOO

ing in step 4 when the regularization parameter converges. This corresponds to the

condition aF vi aex = 0 , which indicates that the gradient of the validation error with respect

to the regularization parameter is close to zero. Since this stop criterion is not easy to apply

in practice, we can use an equivalent condition instead. As'the training continues around

the optimal regularization parameter, the relative change of the validation error (RCVE),

which is equal to l(FvCwk+ 1)-Fv(wk))IFvCwk+ 1)1 , should be small. In the previous ex-

ample, the stop criterion is considered to be reached when the relative change of the vali-

dation error between any two adjacent iterations within a sliding 15-epoch window is less

than 0.00005. The trajectories of the parameter ex and the validation error versus the train-

ing epochs are presented in Figure 17.

Since the optimal regularization parameter is determined by the end of the first

stage training, the combined training with fixed ex is straightforward. Starting from the lat-

est updated weight vector, the number of training iteration~ required in the second stage is

very limited.

.. , ___________ _

,
....

...... '------' .. --...... , .. --,'--,. -----',..-----',,. -
(a). Parameter ex

,o''r---....,.,...,:----.---.-----.-----,

.•.

,,~.----: .. =---=~----=,~ .. -----= ... =--~ ... -
(b). Validation error

Figure 17 Incremental Updating

101

Simulation Testing

We have discussed the methods for applying of the SDVR algorithm in the previous

section. Recall that our motivation for proposing the SDVR algorithm is to obtain a more

efficient algorithm for adaptive regularization than Larsen's method. In this section, we

will compare these two approaches through simulation. For convenience, we will refer to

Larsen's method as the FDVR (first derivative of validation error based regularization)

algorithm. One of our measures of algorithm performance is test set error. The other mea­

sure is computational complexity. In addition, we will also consider how easy the algorithm

is to apply.

Method and Procedure

Let's consider the same example as we used in the previous section. The example

is a two-input parabolic function which has its single output corrupted with zero mean and

0.04 vapance noise. The objective is to approximate the true function with neural network

models trained from the noisy data. We will compare the results obtained using two differ­

ent adaptive regularization methods.

In order to make a fair comparison, let's specify some conditions which are com­

mon to both algorithms under investigation. First, since the SDVR algorithm and the FDVR

algorithm both adapt the regularization by minimizing the error of the single validation set,

it is convenient for us to use the same data splitting ratio of 110/231.

The other condition is the choice of initial weights. Thirty different sets of initial

weights are used for each run of the simulation. Therefore, it is the statistic results that will

be compared in the simulation testing.

102

1 '

Two empirical tests are designed to compare the average model performance and

the computation load of the two algorithms. In the first test, we are interested in the effect

of the initial regularization parameter on the training results. Five different initial a.' s ,

which cover a practical range of normal settings, are tested with each algorithm. For the

FDVR method, the initial learning rate Tl is set to 0.0001, and will be multiplied by 1.2 if

the validation error decreases, or by 0.5 if the validation error increases. For the SDVR al­

gorithm, the learning rate is determined by the iterative Hessian, and µa is initialized to

0.005. A multiplying constant, equal to 1.05, will be used a~ the validation error increases.

In the inside loop training, since .both algorithms employ the Gauss-Newton method with

the Levenberg-Marquardt implementation, there is no need to choose different initial set­

tings for µw .

In the second test, we use the same initial regularization parameter, but change the

initial learning rate Tl in the FDVR algorithm, and the µa ;value in the SDVR algorithm.

Through this test, we will investigate how these initial parameters affect the training results.

A large testing data set, 2601 samples from a 51 by:51 grid over the input plane, is

used to test the model performance. The model output is calculated using the resulting

weights from the combined training, and the model performance is measured by the mean

squared error (mse) between the model outputs and the true function outputs. The results

are averaged over 30 trials under different initial weights. :

To measure algorithm complexity, we use the number of float point operations

(FLOPS). Since there is no significant difference in computation complexity between the

103

two algorithms during the final combined training, we only measure the FLOPS during the

first stage search. The computational load is averaged over ,30 trials.

We also measure the variation in resulting regularization parameter and use it as an

additional index of the model sensitivity to the initial conditions.

Results and Discussion

The results of the simulation testing are presented from Table 3 to Table 6. In Table

3, measurements obtained using the FDVR algorithm are summarized under five different

initial regularization parameters with initial learning rate of 0.0001. The item marked by

the overline is the mean value averaged over 30 trials, and the prefix 'std' is the notation

for the standard derivation of the item after the underscore.

Results ao=l.0 a 0 =0.l a0 =0.0l a 0 =0.001 a 0 =0.0001

-
X 10-3 5.23 2.59 7.15 3.54 mse 105

std_mse x 10-3 0.06 0.32 4.26 1.00 4.59

flops X 1010 0.87 1.25 6.40 4.41 3.55

std_flops X 1010 0.28 0.76 4.23 4.00 2.45

alpha X 10-l 9.99 0.99 0.46 0.99 58.8

std alpha x 10-1 0.002 0.83 0.27 0.62 216

Table 3 FDVR Results with Different Initial a Value (T\o= 0.0001)

We can see from Table 3 that the effect of the initial.regularization parameter on the

training results is dramatic for this training example. The model performance is best for the

condition a0 = 0.1 , and becomes worse as a.0 changes in either directions. Also, the

mean values of the resulting parameter a. in the first and second columns are almost equal

104

to the corresponding initial value. As a.0 decreases, the regularization is adapted during the

training. However, since there is no relation between the convergent gradient and the learn-

ingrate, updating the regularization parameter is less systematic. Even a small learning rate

may cause a large change in a if the gradient at convergence is too large. The same learn-

ing rate may only cause a small change if the gradient is too small. As a consequence, the

training might be improperly terminated under many different circumstances. For the given

range of a0 in Table 3, the maximum ratio is about 40 for mse, about 7 for flops, and the

variation in alpha is very large.

Results a.o=l.O a.0 =0.1 a.0 =0.01 a.0 =0.001 a.0 =0.0001

--
X 10-3 2.83 2.88 2.89 mse 2.97 2.94

std mse X 10-3 0.57 0.61 0.58 0.66 0.53

flops X 1010 1.15 1.07 1.14 1.03 1.09

std flops X 1010 0.21 0.31 0.28 0.36 0.26

alpha X 10-l 1.65 1.68 1.58 1.61 1.49

std alpha x 10-1 0.78 0.76 0.77 0.76 0.75

Table 4 SDVR Results with Different Initial a. Value (µao = 0.005)

Table 4 summarizes the SDVR training results for the same initial regularization

parameters. The initial µa equals 0.005, which is a typical setting for the SDVR algorithm.

Although the parameter a.0 changes over a wide range, the training results are less sensi-

tive. Moreover, the simulation results of the SDVR algorithm are not only more consistent,

but are also better than those of the FDVR algorithm. The model performance under each

105

condition of Table 4 is comparable to the best performance of Table 3, and the computation

load summarized in Table 4 is also much lower than that in Table 3, on the average.

Table 5 is used to evaluate how the initial learning rate affects the training results

for the FDVR algorithm. In this test, we set a.0 = 0.01, which would not provide adequate

smoothness of the model if regularization was not adapted during the training. The different

initial learning rates range from 0.0001 to 0.1.

Results T\o=O.l 110 =0.0l T\o=0.001 T\o=0.0001

--
X J0-3 3.60 3.23 3.92 7.15 mse

std mse X 10-3 0.85 1.62 0.40 4.26

flops x 1010 8.13 3.01 5.01 6.40

std_flops X 1010 2.62 2.38 1.70 4.23

alpha X 10-I 1.11 2.05 0.69 0.46

std_alpha x 10-1 1.04 1.40 0.09 0.27

Table 5 FDVR Results with Different Initial T\ Value (a.0= 0.01)

As shown in Table 5, using the initial learning rate of 0.0001 almost doubles the er-

ror index compared with using other initial learning rates. The best results for both model

performance and computation load are achieved with 'Tlo= 0.01 . Further increasing the ini-

tial learning rate does not improve the model performance, but causes serious oscillation in

parameter a, which leads to an extreme increase in computation load.

The situation is quite different in Table 6. For the SDVR algorithm, the learning rate

is determined automatically. The choice of initial µex in a reasonable range does not make

a significant difference in model performance, but it may affect the convergence speed to

106

some extent. This can be seen from Table 6, in which the v~lue of initial µa is changed

from 0.0005 to 0.5. Comparing the results in Table 6 with the results in Table 5, the SDVR

algorithm produces a 10- 150 percent mean error reductio.n over the FDVR algorithm,

and needs only 10 - 40 percent as much computation.

Results µaO ::0.0005 µao=0.005 Jlao=0.05 µao=0.5
-

X 10-3 2.97 2.89 2.90 2.83 mse

std_mse x 10-3 0.61 0.58 0.59 0.54

flops x 1010 1.27 1.14 8.93 8.36

std_flops x 1010 0.32 0.28 0.37 0.36

alpha X 10-I 1.52 1.58 1.54 1.52

std_alpha x 10-1 0.81 0.77 0.72 0.66

Table 6 SDVR Results with Different Initial µa Value (a.0= 0.01)

We can conclude from the simulation testing in this :section that the basic SDVR al-

gorithm generalizes better and converges faster than the FDVR algorithm. Without prior

information about the right choice for parameter a., the FDVR algorithm has to be attempt-

ed under many different initial conditions. In contrast, we almost always get good results

the first time when using the SDVR algorithm.

Variations of SDVR Algorithm

The discussions so far on the SDVR algorithm have concentrated on the basic

scheme, which incrementally updates the regularization parameter in each training epoch.

We have tested the algorithm on examples with a moderate data size and a moderate num-

ber of network parameters. We have shown that the basic SDVR algorithm works better

107

than the FDVR algorithm does on these particular tests. In practice, the problem complexity

may vary from case to case. For some applications we may need to process a large amount

of data using networks with thousands of parameters. Under those circumstances, the com­

putational trade off between the inside loop training and the outside loop updating may be­

come an important concern. To reduce the total computation cost, we are interested in

different implementations of the SDVR algorithm which are distinguished by the way in

which the parameter a is updated.

Although the SDVR algorithm was derived using the incremental iteration method,

the updating of the regularization parameter in the outside loop can be implemented over a

variable. In this section, we will propose two variations of the SDVR algorithm. The first

variation is called convergent updating. This method is similar to the FDVR algorithm in

training procedure, but uses a second derivative method instead of gradient descent. The

second variation is called conditional updating. This method recalculates the regularization

parameter only if the validation error increases, or if the trajectory of the validation error is

descending very slowly. With these variations, the SDVR algorithm can be more efficiently

applied to a variety of different problems.

Convergent Updating

Convergent updating is the oppsite of incremental updating. While incremental up­

dating recalculates the regularization parameter in each training epoch, convergent updat-

ing keeps training with a fixed a until the optimization algorithm converges. After

convergence, a new a will be estimated by using Eq. (115), as with incremental updating.

Although the algorithm is implemented with convergent updating, the Hessian in Eq. (115)

108

is still computed from Eq. (139). This procedure will be repeated several times during the

first stage training. The tunable parameter µa is set to a small value at the beginning, but

will be multiplied by a relatively large constant if the validation error increases at each

switching point of ex.. The first stage training is usually terminated when the RCVE be-

tween two subsequent updates is smaller than a predetermined threshold. Since we train the

network to convergence for each fixed a., the final choice of the optimal regularization pa-

rameter will be the one with smallest validation error among all updatings.

Training Example

Figure 18 shows the trajectories of a. and validation error for convergent updating

on our previous problem. This algorithm needs only a few iterations in the outside loop, but

to'----,--~-,--~---,--~---,-~ to',--,-----,.---,--.---,--.-----,----,

to'

J,o·•

to'
\.

(a). Parameter a. (b). Validation error

Figure 18 Convergent Updating

requires more training epochs in the inside loop. Starting from a. = 0.01 , the training takes

several hundred epochs to reach convergence for the first few updatings of the regulariza-

tion parameter. As the parameter ex. approaches the optimal value, the required number of

109

training epochs with fixed a become smaller, since each retraining starts from the previous

weight vector. The minimum validation error is reached at the end of training.

In this example, the stable state of the inside loop training is controlled by a

30-epoch sliding window with 0.00005 RCVE threshold. The other specific settings in-

clude 0.05 for initial a, and 10 for increment constant of µa.

Framework Justification

One important feature of the convergent updating is using the basic SDVR frame-

work to compute the new parameter a. Recall that the basic SDVR algorithm was designed

for incremental updating. In determining the incremental gradient and Hessian, we as­

sumed that wk is not a function of ak. This is not true for convergent updating, because

there is an accumulative effect of fixed a on the inte~ediate weight vector. However,

each updating of the network weights in the inside loop is mathematically meaningful only

within its own iteration. To compute the new estimate wk+ 1 using Eq. (112), the vector wk

and parameter ak can always be considered as independent initial conditions, no matter

how they were determined previously. From this view, convergent updating is just incre­

mental updating initialized with the previous parameters. As proved early in this chapter,

Eq. (110) for calculating the convergent gradient is a special case of Eq. (129) for comput-

ing the incremental gradient at the convergent state wk+ 1 = wk. Therefore, without fur­

ther proof, we can apply the incremental Hessian updating equation to compute the

convergent Hessian. In fact, the basic SDVR algorithm derived for incremental updating

can be implemented with any updating interval.

110

Feature Discussion

Now we have the SDVR algorithm implemented with convergent updating. Recall

that the FDVR algorithm, which we introduced early in this chapter, was also derived under

the condition of the convergent updating. The FDVR algorithm applies a gradient descent

method to calculate parameter a, while the convergent SDVR algorithm employs a second

derivative method. We compared the FDVR algorithm with the incremental SDVR algo-

rithm in the previous section (from Table 3 to Table 6). Here, using the same example, we

provide more simulation results in Table 7 that reflect the features of the convergent SDVR

algorithm.

Table 7 is divided into five columns, which represent five different initial regular-

ization parameters. This table is analagous to Table 3, which presents the training results

under the same initial conditions by for the FDVR algorithm. A comparison of these two

tables allows us to see the difference between the first derivative and the second derivative

approaches, because in both tests parameter a is updated only when the optimization algo-

rithm converges in the inside training loop.

Results ao=l.0 a0 =0.l a 0 =0.0l a 0 =0.001 a 0 =0.0001
-

X 10-3 mse 2.57 2.80 3.36 3.18 3.43

std mse X 10-3 0.48 0.57 0.61 0.72 0.69

flops X 1010 2.22 1.58 4.24 4.71 6.30

std_flops X 1010 1.37 0.90 2.16 1.54 2.31

alpha X 10-l 1.75 1.44 1.01 0.99 0.87

std_alpha X 10-I 0.61 0.69 0.53 0.39 0.35

Table 7 SDVR Results with Convergent Updating

111

On average, the model performance in Table 7 is better than that in Table 3. Al­

though the FDVR results with a.0 = 0.1 and a.0 =0.001 are comparable to the corresponding

SDVR results, the among-group variance of mse is larger in Table 3 than in Table 7. No

matter what initial condition it starts from, the training with the SDVR algorithm converges

properly with little variation. This demonstrates that under the same implementation of

convergent updating, the SDVR algorithm is still superior to the FDVR algorithm.

One interesting phenomenon can be observed from Table 7. For this particular ex-

ample, there is an applicable range of parameter a. under which the validation error surface

is flat. When the training starts from a small value of a.0 , the chance to converge to the left

bound of the applicable range is high. Therefore, over 30 trials, the mean of the parameter

a. is relatively low. When the search begins from the opposite direction of a, the training

usually stops near the right bound of the applicable range, ~d the· mean of parameter a. is

relatively high. This phenomenon is not obvious for incremental updating (see Table 4) be­

cause several hundred recalculations for a are made during.the first stage of training. After

that, the final results are less sensitive to the initial condition. Later in this chapter, we will

see that the SDVR results using convergent updating are consistent with SDVR results us­

ing incremental updating with respect to the model performance when the data splitting ra­

tio is close to 1. In that case, the validation data set and the.training data set are both likely

to be representative, and therefore the effect of the local variation of the validation data set

on the regularization may be smaller.

Also, as shown in Table 7, the computational load is sensitive to the value of the

initial regularization parameter for the convergent SDVR algorithm. If the noise level of

112

the data set is underestimated at beginning, by setting the initial regularization parameter

too small, then reaching convergence in the inside loop will be computationally expensive,

and the convergence of the parameter ex. will take many training epochs. This problem is

common with convergent updating and cannot be avoided.

Next we will investigate a different implementation which can improve the efficien­

cy of the SDVR algorithm by reducing the unnecessary computation in both the inside loop

and the outside loop.

Conditional Updating

Conditional updating is motivated primarily by computational simplicity. Since

adapting regularization with the SDVR algorithm requires both inside loop training and

outside loop calculation, the total computational load is an important concern in selecting

the appropriate implementation. Incremental updating and convergent updating have limi­

tations for some applications. On the one hand, updating ex. too frequently may increase

computational overhead in the outside loop. On the other hand, training a network to con­

vergence with fixed ex. involves unnecessary computation in the inside loop if the valida­

tion error has increased long before.

As a solution to these problems, conditional updating is proposed as a compromise

between incremental updating and convergent updating. In this implementation, the updat­

ing of the regularization parameter is made over a variable interval controlled by some per­

formance constraints. This variable interval, measured by the number of training epochs in

the inside loop, is at least several epochs long; thus, conditional updating does not require

as many iterations as incremental updating in the outside loop. In addition, since condition-

113

al updating uses a less expensive stop control in the inside loop, it does not require as many

training epochs as convergent updating with fixed a. .

Method of Implementation

The conditional updating can be implemented with the same SDVR framework by

making a simple modification to the stop criteria of the basic scheme. The general training

procedure for using conditional updating can be described as follows:

1. Divide the available data set into training and validation subsets using a proper

splitting ratio.

2. Initialize the network weights and the regularization parameter.

3. Optimize the training performance function with fixed a. by iteratively updat­

ing the weight vector using Eq. (112) until the validation error increases, or the

RCVE within a sliding window is sufficiently small.

4. Evaluate the performance on the validation data set. If the stop criterion is not

satisfied, update the regularization parameter using Eq. (115).

5. Go back to step 3 if the stop criterion is not met. Otherwise, terminate the first

stage training.

6. Put the training data set and the validation data set together for combined train­

ing using the last updated regularization parameter.

Comparing conditional updating with the other two implementations, the main dif­

ference in the application recipe is in step 3. If the network training starts from an improper

initial parameter a. , then an increase of the validation error will be observed before training

114

converges. Recalculating the regularization parameter at this switching point will avoid the

further unnecessary training with the initial a, as occurs with convergent updating.

During the transition of a, the validation error may increase after a number of train­

ing epochs, or its trajectory may be descending but very flat. We stop the inside loop train­

ing in either case. To test these conditions, we use a sliding window for RCVE that is

shorter than that for convergent updating (e.g., 10 epochs). This guarantees that the com-

putation cost using conditional updating with fixed a never exceeds the computation cost

using convergent updating.

Training Example

Figure 19 (a) illustrates the switchings of a during the first stage training with con­

ditional updating. Beginning at a = 0.01, the regularization is adapted quickly due to the

increase of the validation error. The total inside loop training takes about 400 epochs and

about 30 updates of the regularization parameter. Compared with Figure 18 (a), condition­

al updating uses about 20 more iterations than convergent updating in the outside loop, but

saves about 1200 training epochs in the inside loop. The most significant saving is observed

for the initial setting. In Figure 19 (b), we can see that the regularization is adapted at each

increase of the validation error just occurs. The final adjustment of the parameter a is

small, since the validation error is almost unchanged.

115

10' .--~-....-~-....-~-....-~--,

:!10·'

,o·zo'--'--,.'---100'---1so'---,,.'---,..'----,,,.'----,350'---:'<00 -
(a). Parameter a

10'

10'

(b). Validation error

Figure 19 Conditional Updating

There is also an apparent difference in the a trajectory between conditional updat-

ing and incremental updating. This can be understood by comparing Figure 19 (a) with

Figure 17 (a). While incremental updating recalculates the parameter a more than 200

times during the training, conditional updating requires much fewer computations in its

nearly 30 iterations. Moreover, the transition of a in Figure 19 (a) is smoother than that

in Figure 17 (a), especially during the early stage.

In this training example, the initial µa is the same as that used in the other two c~s-

es, but the incrementing constant for µa was changed to 2. The stop criterion in the outside

loop for conditional updating is similar to that for incremental updating, but uses a shorter

5-point sliding window.

Feature Discussion

As with incremental updating and convergent UP.dating, we investigate the sensitiv-

ity of the training results to the initial condition through a simulation test using conditional

updating. The results are summarized in Table 8.

116

Results cx.0 =1.0 cx.0 =0.1 cx.0 =0.01 cx.0 =0.001 cx.0 =0.0001

--
X 10-3 2.62 2.68 2.96 2.88 2.77 mse

std_mse X 10-3 0.50 0.55 0.65 0.66 0.59

flops X 1010 1.69 0.95 0.81 1.12 1.06

std_flops X 1010 0.74 0.63 0.50 0.73 0.80

alpha X 10-l 1.67 1.54 1.28 1.40 1.38

std_alpha X 10-l 0.75 0.69 0.76 0.79 0.77

Table 8 SDVR Results with Conditional Updating

Now, we are interested in comparing the results in Table 8 with the results in Table

7 and Table 4. Recall that Table 7 is for convergent updating and Table 4 is for incremental

updating. These results are based on the same example, modeled with the same neural net-

work architecture, investigated under the same initial weights and initial regularization pa-

rameters, trained with the same SDVR framework but with different implementations.

Considering the model performance in Table 8, the conditional SDVR algorithm

works as well as the other two SDVR schemes. Each column in Table 8 has almost the same

error mean and variance, which indicates that conditional updating is also less sensitive to

the initial setting of the regularization parameter. Starting from very small cx.0 , the training

with the conditional SDVR algorithm is three times faster than the training with the cover-

gent SDVR algorithm. The average computational cost over the five groups in Table 8 is

similar to that in Table 4. Thus, for this example, the conditional updating seems as efficient

as the incremental updating.

117

Optimal Use of the SDVR Algorithm

We have investigated three implementations of the SDVR algorithm, incremental

updating, (which is the basic scheme,) convergent updating and conditional updating.

These three implementations are based on the same SDVR framework, but are distin­

guished by the way in which the parameter a is updated.

The incremental updating method recalculates the parameter a in each training ep­

och. Therefore, the number of the iterations required to update the weight vectors in the in­

side loop equals the number of iterations used to reestimate the regularization parameter in

the outside loop. The convergent updating method optimizes the training performance

function with fixed parameter a and then determines the next estimate of the parameter a.

It takes many more training epochs in·the inside loop but only a small number of calcula­

tions in the outside loop. The conditional updating method usually needs more iterations in

the outside loop than the convergent updating method does, }?ut much less computation in

the inside loop.

Now the question is how to make optimal use of the SDVR algorithm. How do we

choose the most suitable implementation for the specified problem, and what are the opti­

mal parameter settings for each implementation? Definitely, for the first task, the model

performance is the main cpncem in evaluating the algorithm. However, it has been shown

that there are no significant variations in model performance among the three SDVR im­

plementations. Since the computation load involved in the inside loop training and the out­

side loop updating is different for each implementation, the total computation cost may

become a dominating factor in decision-making.

118

Previously, we discussed the training results of the three implementations for a par­

ticular example and a fixed data size. In the following, we will investigate how the training

results change as the problem complexity varies. A reasonable index for the problem com­

plexity is the size of the Jacobian matrix, which is the product of the number of training

patterns and the number of network parameters.

Using the same parabolic function training example and the same neural network

structure, we can vary the training complexity by changing the number of patterns. In this

empirical investigation, data is evenly sampled over the input space with three different

data set sizes. Normally distributed random noise with zero mean and 0.04 variance is add­

ed to the function outputs. The data splitting ratio (the number of validation samples to the

number of training samples) is 220/221 for the first data set, 480/481 for the second, and

1300/1301 for the third. The initial regularization parameter is set to 0.01 for all cases, and

30 trials with different initial weights are averaged to obtain the final results. The results

are summarized in Table 9, where INC represents incremental updating, CVG refers to con­

vergent updating ,and CDT is for conditional updating.

It can be concluded from the table that the three SDVR implementations work

equally well with respect to the model performance. However, the computation costs are

quite different among them. Incremental updating is as efficient as conditional updating for

the first two data sets, but conditional updating is more cost-effective for the third data set.

Convergent updating is much slower than the other two methods for moderate data size, but

for large data size, its computation cost is close to incremental updating. Therefore, as a

guide to the user, we suggest using either incremental updating or conditional updating if

119

the size of the Jacobian matrix is not too large, and using conditional updating method oth-

erwise. If the computational load is not a big concern, then convergent updating is always

a useful method. The other factors, like data splitting ratio and noise level, may affect the

comparison results, but they were not considered in this chapter.

Method No. Data mse std_mse flops std_flops alpha std_alpha
X 10-3 X 10-3 X 1010 X 1010 X 10-l xl0-1

INC 441 2.86 0.05 1.28 0.18 1.20 0.08

CVG 441 2.49 0.41 3.03 1.06 1.27 0.15

CDT 441 2.79 0.42 1.60 0.77 1.20 0.15

INC 961 1.82 0.06 2.16 1.22 6.42 0.55

CVG 961 1.89 0.32 4.50 0.86 6.53 0.64

CDT 961 1.83 0.06 1.49 0.75 6.79 0.45

INC 2601 1.00 0.12 5.32 0.72 2.50 0.98

CVG 2601 1.03 0.08 6.87 2.00 2.61 0.79

CDT 2601 1.04 0.05 2.65 1.10 2.71 0.79

Table 9 Comparison of Variations of SDVR Algorithm

The second task in the optimal use of the SDVR algorithm is making a proper pa-

rameter setting with each implementation. We have discussed the insensitivity of the train-

ing results with each implementation to the initial regularization parameter. We have also

shown that training results with incremental updating are insensitive to the initial µa within

a normal range. The effect of initial µa on the training results of convergent updating and

conditional updating is similar to that for incremental updating.

Now let's consider the incrementing constant for µa, which is usually set to differ-

ent values for different implementations. Recall that in Eq. (139), we multiply µa by a

120

incrementing constant each time the validation error increases. The parameter a. will be

forced to be stable if the value of µa becomes very large. Therefore, in incremental up­

dating, this constant is usually set to 1.05-1.2, which allows over a thousand updatings be­

fore µa dominates the learning rate. In convergent updating, a. is recalculated only at the

convergent condition, therefore not too many iterations are expected. Thus, a larger incre­

menting constant, 10 for example, can be used. The best value for conditional updating is

around 2, which is greater than the value for incremental updating, but less than the value

for convergent updating.

Summary

This chapter presented a thorough investigation of methods to adapt regularization

during the training of feedforward neural networks through actively using a single valida­

tion data set. The FDVR algorithm has suffered from the problem that both the resulting

model performance and the computational cost are sensitive to the initial a. and the initial

learning rate. To improve the generalization performance of neural network models, we

proposed anew SDVRalgorithm by treating a.k and wk as independent variables. We have

shown how the basic SDVR algorithm, as well as its two variations, can be applied to adapt

the regularization parameter in order to minimize the validation error.

In the SDVR algorithm, we use a second derivative algorithm in both the inside

loop training and the outside loop updating to achieve quick convergence. The Hessian ma­

trices of the training data and the validation data are both approximated with the Gauss­

Newton approximation. We have shown that the additional computational overhead in the

121

SDVR algorithm is limited, since intermediate results and conventional routines are com­

mon to updating the weight vector and calculating the regularization parameter.

We have placed the three SDVR implementations (incremental updating, conver­

gent updating, and conditional updating) into a common mathematical framework. The

tests on numerical examples demonstrate that the three SDVR implementations work better

than the FDVR algorithm with respect to the resulting model performance, sensitivity to

the initial conditions, and training efficiency. The tests also indicate how to choose the best

implementation to reduce the computational load according to the problem complexity.

Note that simulations and comparisons made in this chapter are concentrated on the

validation set based regularization only. We are interested to know if the SDVR algorithm

works better than other widely used techniques in improving generalization. This compar­

ison is more difficult to make because each algorithm may have its own best application

scope. However, gaining an insight into it will help us to make better use of each technique

for future applications.

In the next chapter, we will compare the SDVR algorithm with other previously dis­

cussed algorithms under more complicated conditions from 'an application point of view.

122

CHAPTER6

EMPIRICAL ALGORITHM COMPARISON

Objectives
Introduction
Experiment Design

Pattern/Parameter Ratio
Data Splitting Ratio
Noise Level
Average Generalization E"or

Results and Discussions
General Comparison
Effect of Data Splitting Ratio

Conclusions

Objectives

123
124
124
126
127
127
128
130
130
136
140

In this chapter, simulation experiments are designed to compare the generalization

capabilities of the SDVR algorithm, Bayesian regularization, cross-validated early stop-

ping, and retrained early stopping. The relative advantages and limitations of each algo-·

rithm are discussed, based on simulation results.

123

Introduction

We proposed a new RTES procedure in Chapter 4, and a new SDVR algorithm in

Chapter 5. In this chapter, we will compare the generalization capability of these new meth­

ods with Bayesian regularization and cross-validated early stopping using a sufficiently

complicated neural network structure. Bayesian regularization and cross-validated early

stopping were described in Chapter 3 and Chapter 4, and are procedures which have been

found to have good performance in a wide range of applications. We are attempting to de­

termine if the proposed methods have any advantage over these two algorithms. However,

different algorithms may perform best on different problems, and it is therefore not possible

to recommend a single universal optimization algorithm. Instead, we highlight the relative

advantages and limitations of each algorithm.

The algorithm comparison presented in this chapter will be based on simulation ex­

periment results only, so that the generalization error can be computed with respect to the

true function output. We will describe the specific experiment design in the first section,

and will discuss the simulation results in the second section. This chapter analyzes the ef­

fects of many influential factors, such as the pattern/parameter ratio, the data splitting ratio

and the noise level. The conclusions drawn from this study will help us to better understand

each training algorithm from an application point of view.

Experiment Design

We have proposed and demonstrated a new RTES procedure, and a new SDVR al­

gorithm in the previous chapters. It is a common practice to compare a new algorithm with

some currently well-used algorithms to understand its advantages and limitations. In this

124

chapter, we compare the RTES and SDVR methods with Bayesian regularization and

cross-validated early stopping. (The latter two are implemented with the Levenberg-Mar­

quardt algorithm in the Matlab Neural Network Toolbox.) The goal of the comparison is to

investigate the generalization capability of each candidate algorithm. In addition, the com­

putational cost required for each candidate is also considered.

The algorithm comparison presented in this chapter will be based on simulation ex­

periment results only. We will use the parabolic function defined in Chapter 5 as the true

function, and will approximate this function with neural network models. From an applica­

tion point of view, neural network users want to know how to select a suitable algorithm

according to the sample size. They want to know how to divide total samples into the train­

ing set and the validation set. They want to know which algorithm generalizes better with

noisy data. In order to answer these basic questions, we will investigate the effects of the

pattern I parameter ratio (PPR), the data splitting ratio (DSR), .and the noise level. In prac­

tice, these factors interact with each other, and the effect of these factors on the training re­

sults may not be same with different candidate algorithms. In order to make a fair

comparison, the experiment should be designed using many combinations of the selected

influential factors.

In our experiments, we use a fixed and complicated network structure to run sim­

ulations. This does not mean that simpler network structures cannot be used. However, our

main concern is the ability of an algorithm to control the effective complexity of the model

in the case when a complicated network structure is used.

125

In the rest of this section, we will define the specific options of the experiments and

will describe the comparison method used in this empirical study.

Pattern/Parameter Ratio

Consider the previously used parabolic function

Z = 2.5 + 5.0X(2-X)Y(2-Y),

and a three-layer 2-10-10-lnetwork architecture with 151 parameters. The three basic data

sets, n = 961,441 and 225, are evenly sampled along a 31 by 31, 21 by 21, and 15 by 15

grid across the X -Y plane ranging from O to 2. The pattern I parameter ratio with respect

to each data size is 961 / 151,441 / 151, and 225 / 151. The smallest ratio is slightly larger

than 1, which is representative of the cases with sparse data. The largest ratio is greater than

6, which represents situations with a large number of samples within the non-asymptotic

region, where the computation cost is not too high for simulation tasks. By using different

training algorithms, the challenge is how to manipulate the available samples in each data

set to minimize the generalization error measured on a new large testing set.

Note that the effective pattern I parameter ratio is different during the training

among the four candidate algorithms. Cross-validated early stopping uses only the training

patterns to calculate the network weights, but uses the validation patterns to terminate the

training as soon as the validation error increases. The RTES and SDVR methods utilize a

two stage training method. The training patterns and the validation patterns play different

roles during the first stage training, but the final results are optimized during the second

stage training by putting the two data sets together. Bayesian regularization uses all avail­

able data to update the network weights and the performance function parameters during

126

the whole training process. The difference created by the pattern I parameter ratio will be

discussed, along with the data splitting ratio.

Data Splitting Ratio

Within each data set, we divide the samples into the training set and the validation

set. The data splitting ratio (DSR) is defined as the number of validation examples divided

by the number of training examples. The DSR has no effect on Bayesian regularization, but

may affect the training results with cross-validated early stopping, the RTES and SDVR

methods.

Our experiments are simulated under three different data splitting ratios, 1 I 1, 1 I 3

and 1 I 7. In each case, the validation patterns are evenly sampled in the input space. The

largest ratio is Larsen's frequent setting for validation-set-based regularization [LaHa96],

under which the number of training samples is about as same as the number of validation

samples. The smallest ratio is larger than, but close to, Amari' s criterion for cross-validated

early stopping [AmMu97]. Since Amari's criterion is derived with the asymptotic assump­

tion, we slightly increase the ratio for non-asymptotic use. The intermediate ratio, which is

about 1 I 3, is also a common setting in many applications. These settings cover a wide

range of data splitting. The best ratios for the candidate algorithms should fall within these

settings.

Noise Level

We use four noise levels in our numerical experiments. The random noise added to

the outputs of the parabolic function has a Gaussian distribution with zero mean and stan-

127

dard derivation of 0.3, 0.2, 0.1 and 0.05 respectively. Figure 20 illustrates typical examples

of noise corrupted data with different noise levels.

(j = 0.3

N

'

er = 0.1

• •

• •

er = 0.2

er = 0.05

Figure 20 Noise Corrupted Samples

• •

• •

We can see from this example that er = 0.3 is a representative of very noisy data,

while er = 0.05 is almost noise free. The simulation results from these different noise lev-

els will help us to know the target reconstruction capability of each candidate algorithm.

Average Generalization E"or

The purpose of using regularization and cross-validated early stopping is to im-

prove the generalization performance of the model. Therefore, after each individual trial,

we measure the generalization error (mean-squared-error) between the model outputs and

128

the true function outputs for a given large testing set. For neural network models, different

initial weights and sample realizations may lead to different results. Thus, a rational algo­

rithm comparison should not be based upon the training result from only a single realization

of the noisy set and fixed initial weights. Instead, it should rest on the training results of

statistically adequate resamplings from the population space. Given the data splitting ratio

and the noise level, we average the generalization error over 30 trials with different initial

weights and random noise realizations. This measurement is a reasonable estimate of the

expectation of the generalization error with respect to the initial weight distribution and the

noise distribution. In the next section, we will use average generalization error as the algo­

rithm performance index throughout the discussion.

In summary, simulations in this chapter use three pattern /parameter ratios, three

data splitting ratios, and four noise levels. For each combination, the testing results are av­

eraged over 30 trials with different initial weights and random noise. The number of trials

for Bayesian regularization is 3 x 4 x 30 = 360 , because the data splitting ratio does not

apply to the Bayesian method. The number of trials for each of other algorithms is

3 x 3 x 4 x 30 = 1080 . The total number of simulations required for these tests is 3600 !

We will see in the next section that these trials provide adequate information for us to eval­

uate the effect of the different influential factors on the training result~, and to draw mean­

ingful conclusions for future applications.

129

Results and Discussions

Now let us compare the four candidate algorithms under the different conditions

which were specified in the experiment design. We provide the empirical results in a num­

ber of tables. These tables are summarized with respect to the different influential factors,

and the results are discussed with respect to each factor. We will present a general compar­

ison first, which is made under the relatively optimal testing conditions for each candidate

algorithm. Then, the effect of the data splitting ratio on the training results of the relevant

algorithms will be evaluated. These results give us a basic idea of the generalization capa­

bility of neural network models, and highlight the relative advantages of each algorithm.

General Comparison

The comparisons made here cover average generalization error, variability over dif­

ferent trials and computation cost.

Average Generalization Error

The general results of the empirical algorithm comparison is summarized in Table

10, where PPR represents pattern I parameter ratio, BR refers to Bayesian regularization,

and ES refers to cross-validated early stopping. The three pattern I parameter ratios are sep­

arated by the double lines in the table, and the four noise levels are summarized in different

columns.

Table 10 shows that the pattern I parameter ratio and the noise level of the data play

a fundamental role in neural network modeling. For a fixed noise level, the average gener­

alization error decreases as the pattern I parameter ratio increases. Also, for the fixed pat­

tern I parameter ratio, the predictions become worse if the samples used for the learning are

130

corrupted with the higher level of noise. This is true in general for each of the training al-

gorithms. In order to generate a good neural network model, it is important to get adequate

training patterns to learn the underlying function, and to improve the accuracy of measure-

men ts.

PPR
Training MSE X 10-4 MSE X 10-4 MSE X 10-4 MSE X 10-4

Algorithm (a= 0.3) (a= 0.2) (a= 0.1) (a= 0.05)

SDVR 30.41 17.93 6.18 1.62

961 / 151
BR 39.86 18.42 5.05 1.42

ES 37.78 20.36 5.99 1.85
RTES 32.60 17.68 5.27 1.50
SDVR 55.23 29.90 10.71 2.88

441 / 151
BR 69.78 34.73 11.40 3.13
ES 73.62 40.85 10.98 3.69

RTES 64.51 32.98. 9.02 2.74

SDVR 100.27 49.97 18.58 · 6.05

225 / 151
BR 125.59 61.17 20.25 6.30
ES 140.60 67.63 21.02 6.15

RTES 123.30 55.38 16.65 5.25

Table 10 General Empirical Algorithm Comparison

However, using different algorithms can make a difference in generalization error.

To make this clear, let's divide each entry in Table 10 by its corresponding SDVR error

term. The normalized results are listed in Table 11, in which, the average generalization er-

ror for the SDVR algorithm equals 1.00.

It is observed from Table 10 and Table 11 that the SDVR algorithm is best suitable

to the high noise data (a = 0.3 , 0.2). It wins competition for different pattern/parameter

ratios under those conditions. When the data become less noisy and the PPR is not high, the

131

SDVR algorithm is ranked in the second place (following the RTES method) according to

the generalized performance.

Training MSE(norm) MSE.(norm) MSE (norm) MSE (norm)
PPR Algorithm (O' = 0.3) (cr = 0.2) (cr = 0.1) (cr = 0.05)

SDVR 1.00 1.00 1.00 1.00
BR 1.31 1.03 0.82 0.88

961 I 151
ES 1.24 1.14 0.97 1.14

RTES 1.07 0.99 0.85 0.92
SDVR 1.00 1.00 1.00 1.00

BR 1.26 1.16 1.06 1.09
441 I 151

ES 1.33 1.37 1.03 1.28
RTES 1.17 1.10 0.84 0.95
SDVR 1.00 1.00 1.00 1.00

225 I 151
BR 1.25 1.22 1.09 1.04
ES 1.40 1.35 1.13 1.02

RTES 1.23 1.10 0.90 0.87

Table 11 Normalized Results for General Algorithm Comparison

The RTES method has obvious advantage for the low noise data (cr = 0.05, 0.1).

It generalizes almost equally well as the Bayesian method when the PPR is high, and pro-

duces the best networks when the PPR decreases. Even for high noise data, the RTES meth-

od has the second best performance among the candidate algorithms. It is superior to

conventional early stopping under each simulation condition.

The Bayesian method predicts better than the other algorithms when the noise is

low and PPR is high. This is not surprising if we consider the assumptions that the Bayesian

method rests on. In Bayesian regularization, the Gaussian approximation to the posterior

probability density function is used to make analysis easy, which is rational in the case of

132

the large data size. However, with small data size, especially for high noise data, the simple

Bayesian model may not work well, even though we put all available data in the training

set. Under this circumstance, performing regularization to minimize validation error or us-

ing retrained early stopping is more effective in reducing the generalization error.

Cross-validated early stopping does not work well for the high noise data. However,

as can be seen from Table 10 and Table 11, the networks trained with the ES method are

comparable to the SDVR algorithm and Bayesian method for some low noise cases.

Variability in Generalization Error

The previous discussion concentrated on the average generalization error. Now let's

consider the variance of the generalization error.

PPR
Training std X 10-4 std X 10-4 std X 10-4 std X 10-4

Algorithm (a= 0.3) (a= 0.2) (a= 0.1) (a= 0.05)

SDVR 8.75 3.69 1.91 0.34

9611151
BR 18.10 5.39 1.35 0.36
ES 13.91 4.94 1.32 0.53

RTES 7.30 4.45 1.26 0.37
SDVR 16.72 9.62 2.44 0.69

4411151
BR 29.0 12.36 4.45 0.92
ES 25.28 10.52 2.44 0.99

RTES 21.22 8.75 2.18 0.84
SDVR 33.20 14.23 7.65 1.58

225 / 151
BR 53.83 25.78 8.24 2.08
ES 58.16 30.78 7.94 1.44

RTES 41.15 18.59 5.65 1.06

Table 12 Standard Deviation of Generalization Error over 30 Trials

133

The standard deviations of the generalization errors are summarized in Table 12. It

can be concluded that the SDVR and RTES methods generalize more consistently than the

Bayesian method and cross-validated early stopping for the high noise data. For the low

noise data, the RTES method still shows a smaller diversity in the training results than

cross-validated early stopping, but the SDVR algorithm has no obvious advantage over the

other algorithms with respect to the variance. Note that the comparison made in this chapter

is based on 30 trials for each testing condition, in order to have a reasonable computation

load. With this number of trials, one particular case with a large error may contribute sig-

nificantly to the variance calculation. In a future study, we may increase the number of tri-

als to some extent, and combine future and current results in our statistical analysis.

Computation Cost

The computation cost summarized in Table 13 is measured with the average float-

ing point operations (flops) over the 30 trials in each testing condition.

PPR
Training flops X 109 flops X 109 flops X 109 flops xl09

Algorithm (a= 0.3) (a= 0.2) (a= 0.1) (a= 0.05)

SDVR 7.81 8.26 15.73 15.0

961 / 151
BR 6.90 7.72 10.70 13.3
ES 2.92 3.18 4.66 7.33

RTES 1.96 2.41 4.97 4.87
SDVR 5.11 5.84 8.70 11.8

441 / 151
BR 3.70 4.65 8.92 11.1

ES 1.17 1.36 2.42 3.67
RTES 1.31 1.12 2.62 2.49
SDVR 3.98 3.81 5.52 7.46

225 / 151
BR 2.40 3.37 5.83 7.76
ES 0.73 0.77 1.28 1.90

RTES 0.78 0.68 1.44 2.17

Table 13 Computation Cost with Different Algorithms

134

Compared with the SDVR algorithm and Bayesian regularization, the RTES meth­

od and cross-validated early stopping require fewer computations. This is because the latter

two procedures are normally used along with the simple error function. The SDVR algo­

rithm and the Bayesian method both need to update the regularization parameter many

times, which usually requires more calculations. In most applications, however, we are

more interested in accurate results than in the time required to computer the answer. Even

the SDVR and Bayesian algorithms can train practical networks in an acceptable amount

of time.

The computational cost of the SDVR algorithm is close to the computational cost

of the Bayesian method, especially for the low noise data. We set similar stop criteria to

control the relative change of the validation error with the SDVR algorithm and to control

the relative change of the training error in Bayesian regularization. Even though the com­

putation time is not too critical for off-line training, cost-effective training algorithms are

always desired. To reduce the computational load, we changed the a. and ~ update interval

from one training iteration to five iterations for both algorithms, and found that this modi­

fication makes adaptive regularization more efficient.

Note that for some entries in Table 13, the RTES method is more computationally

efficient than the ES method. This is true since each of them may use its own optimal data

splitting ratio in applications. The computational cost for the RTES method with a large

DSR might be lower than the cost for the ES method with a small DSR. The effect of the

data splitting ratio on the model performance when cross-validation is used will be dis­

cussed next.

135

Effect of Data Splitting Ratio

It is believed that the data splitting ratio is important to the final model performance

if cross-validation techniques are used. However, the best data splitting ratio is hard to the­

oretically determined due to the complexity of different problems. In general, selecting a

relatively optimal data splitting ratio depends on what training algorithm is used, which

specifies the role played by the validation set during the training. In this subsection, we dis­

cuss the effect of the data splitting ratio on the SDVR method, cross-validated early stop­

ping and retrained early stopping, and recommend the relatively optimal ratios for each

algorithm.

Data Splittings with SDVR Algorithm

To determine the relatively optimal data splitting for the SDVR algorithm, we di­

vide the total samples in each data set into the training set and the validation set with three

different data splitting ratios (DSR), which are close to l / l, 1 / 3 and I / 7. The simulation

results are summarized in Table 14.

It is observed from Table 14 that among the 12 testing conditions, which are spec­

ified by different PPR and noise combinations, the 11 largest average generalization errors

appear with the data splitting ratio of 1 / 7, and the 11 smallest average generalization errors

are obtained with the data splitting ratio of l / 1. The errors arising from these two data split­

tings are different by a scale factor of 1.14- 1.77. The simulation results using the inter­

mediate data splitting ratio are generally better than those using the small DSR and are

worse than that using the large DSR. Without losing generality, we can conclude that

equally dividing the total samples into the training set and the validation set is the relatively

136

optimal way to split the data for the SDVR algorithm.

PPR DSR
MSE xl0-4 MSE xl0-4 MSE X 10-4 MSE X 10-4

(cr = 0.3) (cr = 0.2) (cr = 0.1) (cr = 0.05)

480/ 481 30.41 17.93 6.51 1.62

961 / 151 241 /720 39.12 18.29 6.18 1.87

121 / 840 39.43 19.31 8.46 2.41
220/221 55.23 29.90 10.71 2.88

441 / 151 111 / 330 63.42 30.87 15.91 4.79
56 / 385 78.84 34.14 16.98 4.73

112 / 113 100.27 49.97 18.58 6.05

225 / 151 57 / 168 104.61 50.87 18.97 8.02
28 / 197 153.38 57.60 19.19 10.69

Table 14 Effect of Data Splitting Ratio on SDVR Training Results

Some explanations can be given for these results. Recall that the SDVR algorithm

uses a two-stage training method. The objective of the first stage training is to determine

the optimal regularization parameter which minimizes the validation error. However, if the

validation set is not a good representative of future new data, the regularization selected to

minimize the error of the validation set may still have a risk to overfit the new data set.

Since we use only a single hold-out validation set, it is desired that the validation data cover

a wide range to reflect the properties of the potential novel data as close as possible. When

the data splitting ratio is small, it is difficult to determine which portion of the data is the

best candidate for the validation set that can be used to estimate the generalization error.

However, when the data splitting ratio is close to l / 1, the validation data set and the train-

ing data set are both likely to be representative, and therefore the effect of the local variation

of the validation data set on the regularization will be smaller. In that case, even though the

137

model performance at the end of the first training stage is not good enough, due to the lack

of training patterns, it will always be improved during the combined training of the second

stage if the proper regularization parameter is selected.

Data Splittings with Cross-Validated Early Stopping

Similarly, the DSR related difference in generalization error for cross-validated ear-

ly stopping is shown in Table 15. It can be seen that the data splitting ratio which favours

the SDVR algorithm does not work well for cross-validated early stopping. While the

SDVR algorithm achieved its best training results with the highest DSR of 1 / l, cross-val-

idated early stopping works more successfully on the same problems with DSR = 1/3 (9

cases from 12) and DSR = In (3 cases from 12).

PPR DSR
MSE xl0-4 MSE X 10-4 MSE X 1.0-4 MSE x 10-4

(cr = 0.3) (cr = 0.2) (cr = 0.1) (cr = 0.05)

480/ 481 46.22 26.76 8.64 2.44

961 / 151 241 /720 42.04 20.36 5.99 1.85
121 / 840 37.78 22.53 7.16 1.92
220/221 107.20 46.22 14.81 4.22

441 / 151 111 / 330 73.62 40.85 10.98 3.69
56/ 385 81.36 41.67 11.44 4.35
112 / 113 194.53 90.82 26.32 9.01

225 / 151 57 / 168 145.14 70.86 21.02 6.15
28 / 197 140.60 67.63 23.67 9.69

Table 15 Effect of Data Splitting Ratio on ES Training Results

This can be partially explained by Amari's rule, which establishes the asymptotic

relationship between the number of the network parameters and the data splitting ratio

[AmMu97]. Amari's rule says the more parameters are used in the network, the larger the

138

portion of the total samples that are needed in the training set. When the network parame-

ters vary over a wide range, from 2 to 200 for example, the asymptotic data splitting ratio

decreases from l / 1 to 1 / 19. Therefore, as long as the number of parameters is greater than

2, more than half of the total samples should be used in the training set in order to make the

learning curve as accurate as possible.

Amari' s rule does not explain how to modify the data splitting ratio when the num-

ber of samples is not asymptotically large. To keep a reasonable validation data size, it is

usually best to select a somewhat larger DSR than that determined by Amari' s rule. As can

be seen from Table 15, the difference in average generalization errors between DSR's of

1 I 7 and 1 I 3 are not significant for most testing conditions.

Data Splittings with retrained Early S~opping

.
The effect of the data splitting ratio on retrained early stopping can be evaluated

from Table 16.

PPR DSR
MSE xl0-4 MSE X 10-4 MSE X 10-4 MSE xto-4

(cr = 0.3) (cr = 0.2) (cr = 0.1) (cr = 0.05)

480/ 481 32.60 17.68 5.87 1.50

961 / 151 241 /720 36.33 18.31 5.27 1.56
121 / 840 36.64 21.48 6.58 1.75

220/221 70.54 32.98 9.96 2.74

441 / 151 111 / 330 64.51 33.53 9.02 2.80

56/ 385 75.42 40.53 10.68 4.07
112 / 113 132.48 55.38 17.80 6.21

225 / 151 57 / 168 123.30 60.64 16.65 5.25

28 / 197 137.47 66.30 21.76 8.45

Table 16 Effect of Data Splitting Ratio on RTES Training Results

139

Compared to the ES method, the RTES method requires a relatively large DSR to

produce more promising networks. Under the 12 PPR I noise conditions, 6 of them are best

trained with DSR = 111, the others are best trained with DSR = 113. For the Gaussian

noise with cr = 0.2 , the optimal DSR obtained in this example is 1 I 1, which is in agree­

ment with the other example discussed in Chapter 4. But for different noise levels and mod­

el complexity, the optimal DSR varies over a range which is problem dependent.

Note that in this study we employ a two stage training method for both the RTES

and SDVR applications. It seems best to use a relatively large data splitting ratio during the

first stage if the final parameter estimation will be refined by combined training during the

second stage. As can be seen from Table 16, using 25 - 50 percent of the total samples for

cross-validation might be a nearly optimal choice for this RTES application.

Conclusions

In this chapter, a large number of numerical simulations were performed to inves­

tigate the relative advantages and limitations of the SDVR algorithm, Bayesian regulariza­

tion, cross-validated early stopping and retrained early stopping.

It can be concluded from this study that cross-validated early stopping is computa­

tional efficient. It works reasonably well with a relatively small data splitting ratio for the

low noise data. For the high-noise data, cross-validated early stopping generates worse

models than the SDVR algorithm and Bayesian regularization and should not be recom­

mended in applications.

Bayesian regularization produces the best results when the pattern I parameter ratio

is large and the noise level is not too high. It also generates better models than cross-vali-

140

dated early stopping in general for high-noise data. The computational cost of the Bayesian

method is slightly lower than the SDVR algorithm, but higher than cross-validated early

stopping.

The SDVR algorithm wins the competition for high-noise data. It also performs bet-

ter than the Bayesian method and cross-validated early stopping for low-noise data when

the pattern I parameter ratio is not high. However, the SDVR algorithm needs more com-

putations, and its performance is partially affected by the data splitting ratio. It is found that

using a data splitting ratio of about l / 1 is relative optimal for the SDVR algorithm. This

ratio not only works well for the large data size, but also works well for the small data size.

The RTES method works well for the low noise data. It performs better than cross-

validated early stopping in each testing condition. Moreover, when noise is low and the pat-

tern/parameter ratio is not high, the RTES method produces networks which demo.nstrate

smaller generalization error than the SDVR algorithm and the Bayesian method. Since the

RTES method is also computationally efficient, it has advantages over other algorithms in

low noise applications.

These conclusions can be summarized in the following table which recommends the

optimal algorithm selection based on our simulation experiments.

high-noise data low-noise data

high PPR SDVR BR,RTES

mid.PPR SDVR RTES

low PPR SDVR RTES

Table 17 Optimal Algorithm Selection

141

In the next chapter, we will extend the concepts of val~dation-set-based regulariza­

tion and retrained early stopping to the Bayesian probabilistic networks, and propose sev­

eral new methods of validation-incorporated Bayesian learning. We will see how those

methods can improve generalization performance and training efficience of the standard

Bayesian regularization algorithm.

142

CHAPTER7

VALIDATION-INCORPORATED .BAYESIAN LEARNING

Objectives 143
Introduction 144
Evidence Framework and Generalization Error 146
GPE-Validated Bayesian Regularization (GPBR) 149
Validation-Set-Based Bayesian Regularization (VBBR) 152
Bayesian Regularization with Retrained Early Stopping (BRES) 156
Simulations and Discussions 158

Objectives

In this chapter, several new training methods, which use validation-incorporated

Bayesian learning, are proposed. The objective of these methods is to improve generaliza-

tion performance and training efficiency of the standard Bayesian regularization algorithm.

Simulation results obtained wi~ these new methods are compared with the standard meth-

od.

143

Introduction

In Chapter 3, we discussed the Bayesian regularization technique. The network

weights using the Bayesian method are updated to minimize the regularized performance

function F = ~eT e + awT w, where the parameters a and ~ are adapted to maximize the

evidence presented in the training data set. In this approach, the validation data set is not

needed during the training. The model with the largest evidence on the training data would

be expected to generalize well on unseen data. Many applications which demonstrate this

correlation have been reported [MacK92] [FoHa97]; For some other applications, however,

this correlation is far from perfect.

In this chapter, we will first investigate the correlation between the evidence frame­

work and generalization error, and discuss the advantages and limitations of the standard

Bayesian regularization algorithm.

In order to improve the network generalization performance and the training effi­

ciency in the cases when the standard Bayesian method shows its limitations, we propose

several novel approaches using validation-incorporated Bayesian learning.

OPE-validated Bayesian regularization (GPBR) links Moody's model selection cri­

terion [Mood92], the generalized prediction error (GPE), to standard Bayesian learning. In­

stead of training networks to convergence, we terminate the training as soon as the GPE

value increases. Since the GPE value can be computed by using the training data only, no

validation set is required in this approach. The network parameters can be optimized with

the conventional one-stage training method using the whole data set.

144

The other two methods use a two-stage training method. In validation-set-based

Bayesian regularization (VBBR), the total samples are divided into a training set and a val­

idation set. The network weights are updated by using the training data only, but the param­

eters a. and ~ are recalculated to maximize the generalized probabilistic evidence on the

validation data. In this approach, we assume that validation evidence may have a more di­

rect correlation with generalization performance. After the optimal a. and ~ are deter­

mined, the combined training is performed to refine the estimation of the network

parameters.

Bayesian regularization with retrained early stopping (BRES) also uses a validation

data set to determine the optimal a. and ~. However, in the VBBR implementation, the val­

idation data are actively used to update the regularization parameters. In the BRES imple­

mentation, the update of a. and ~ are based on the training data only during the first stage

training. The validation data are passively used to terminate the first stage training as the

validation error increases. With the BRES method, the optimal a. and ~ are the values

which generate the smallest validation error. During the second stage training, the network

parameters are reestimated using the combined data set with fixed a. and ~ .

We will compare these validation-incorporated Bayesian methods with standard

Bayesian method through simulation experiments. The real-world applications of these

methods, as well as other new algorithms proposed in the previous chapters, will be dis­

cussed in the next chapter.

145

Evidence Framework and Generalization Error

As we introduced in Chapter 3, network training with Bayesian regularization is

performed in a hierarchical fashion. The first level involves the determination of the most

probable network weights for the given a and P , which is equivalent to minimizing the

regularized performance function. At the second level, the parameters a and P are opti-

mized to maximize the evidence on the training data [MacK92]. These two-level operations

can be performed alternately during the training. Let us rewrite the evidence in Eq. (140)

(140)

where P(D1la, ~), the probability of the model with given a and P which fits the training

dataD1,iscalledtheevidence. P(D,lw, P) isthelikeli~oodfunction. P(wla) is the prior

density of the weight vector w, and P(wlDv a,~) is the posterior density function of w.

Now consider a single weight parameter w . Figure 21 illustrates the prior density

P(wla) and the posterior density P(wlDv a, P). As illustrated in Figure 21, if the poste-

rior distribution is sharply peaked in weight space around the most probable value w MP ,

then we can approximate the area under the curve P(wlDv a,~) by the value at the max-

imum times the width Aw posterior of the peak. If we take the prior P(w I a) to be uniform

over some large interval Aw prior• then Eq. (140) becomes

(141)

146

Aw posterior

P(wla.)

---------------/ ~

I \
/ '

Figure 21 Prior and Posterior of w

The ratio of Aw posterior/ Aw prior is referred to as an Occam factor, which is less than 1.

Note that in Eq. (141), the evidence is a product of the likelihood evaluated for the most

probable parameter value and the Occam factor. To achieve the largest model evidence, we

search for a trade off between fitting the data well and having a relatively wide posterior

density spectrum. The value of Aw posterior indicates the uncertainty of wMP. A relative

large Awposterior means the model performance will not be too sensitive to wMP· For a

model with many parameters, each will generate a similar Occam factor. The sequential

product of the individual Occam factor will be correspondingly reduced. If two models

have the same likelihood evaluated for the most probable parameters, the Bayesian ap­

proach favours the simple model because of its larger evidence. From this view, the evi­

dence criterion has a good agreement with other model selection methods. We would

expect that the model with the largest evidence would give the smallest generalization er­

ror.

147

However, from other points of view, the distinctions between the evidence and gen­

eralization error can be identified [Bish95] from several respects. Basically, the evidence

is not measuring the same thing as generalization performance. Generalization perfor­

mance is calculated with fixed network weights, while the evidence takes account of the

complete posterior distribution around the most probable value. The correlation between

these two quantities might be strong in some cases, but weak in other cases.

Now let us consider single-input I single-output regression problems. We usually

start from Bayesian learning with an adequately complex network structure. Suppose that

there are two networks, both with sufficient complexity. The resulting generalization per­

formance would be necessarily similar regardless of the network size if the training con­

verges to the almost same effective number of parameters. However, the calculated

evidence may favour the simple model with a relatively small number of network parame­

ters, and reject the more complicated model, which has comparable generalization perfor­

mance.

For multiple-input I single-output regressions, we often have different problems.

Although extensively training a complicated network with the Bayesian framework may

overfit the unseen data, the evidence measured on the training data may still be improved,

indicating an acceptance of a model with less optimal generalization performance.

In practice, the evidence is difficult to measure accurately. This is because, as we

discussed in Chapter 3, calculating the evidence requires the computation of the determi­

nant of the inverse of the Hessian (Eq. (62) and Eq. (66)). Since the product of the eigen­

values of the Hessian is very sensitive to the approximation and the numerical error, the

148

evaluation of the evidence is often inaccurate, especially when the dimension of the param­

eter space is high. In contrast, the calculation of the effective number of parameters for up­

dating the regularization parameters only needs the computation of the trace of the inverse

Hessian. This is the sum of the eigenvalues and is less sensitive to the approximation accu­

racy and the numerical error. Therefore, it is advantageous to adapt regularization through

computing the effective number of parameters in the Bayesian framework. Since our goal

in this study is to achieve the optimal generalization performance, even with redundant pa­

rameters, we rarely compute the evidence in model comparison.

Here arises a problem. An imperfect correlation between evidence and generaliza­

tion might be detected for some multiple-input applications, which infers the presence of

limitations in the models. In these cases, training a network with the standard Bayesian

method to convergence may lead to an increase in generalization error. To overcome these

limitations, we propose several novel approaches which apply some generalization-corre­

lated controls to ensure the model validity during the training while still keep using the

main framework of Bayesian regularization.

GPE-Validated Bayesian Regularization (GPBR)

GPE-validated Bayesian regularization (GPBR) links Moody's model selection cri­

terion [Mood92], the generalized prediction error (GPE), to standard Bayesian learning.

With the GPBR approach, we terminate the training as soon as the GPE value increases,

instead of training networks to convergence.

Moody's GPE was briefly introduced in Chapter 2 and Chapter 4. The estimation

of GPE from the training examples can be expressed as (see Eq. (95), Chapter 4)

149

GPE = n+yMSE .
n -y train

where n is the number of training examples, y is the effective number of parameters, and

MSEu-ain is the mean-squared training error. The GPE is a nonlinear function of y and

MSEu-ain· After training is completed, a large effective number of parameters is usually as-

sociated with a small training error, and vice versa.

GPE was originally developed as an objective guide for architecture selection prob-

lems, such as choosing between various classes of models for a specific problem, determin-

ing the number of hidden neurons, finding the best value of the regularization parameter. It

is rarely used to decide when the training should be terminated. In Chapter 4, we made a

new use of GPE to justify retrained early stopping. Here we find an additional use of GPE

-- to check the validity of a specific model.

In the Bayesian method, the parameter y is calculated in each iteration by using the

following equation (see Eq. (69), Chapter 3)

-1
'Y = N-atr(HMP),

This is a function of the number of network weights N, regularization parameter a , and

Hessian matrix H MP evaluated at the most probable weight vector. Since the effective

number of parameters is less sensitive to approximation accuracy and numerical error, we

can use it to estimate the GPE directly. We can then monitor the GPE to determine the train-

ing stop point. In this approach, we suppose that the GPE is a better generalization perfor-

mance indicator than the training evidence, and the increase of the GPE may indicate the

risk of overfitting.

150

Figure 22 presents several GPE trajectories for Bayesian learning on a two-input I

single-output model with a sufficiently large number of parameters. The training data are

corrupted with Gaussian noise of different variances.

0.0111

0.0111 ...
~0.0114 5 ...

0.01t2 cr = 0.3 .. O" = 0.2

0.011 u

... • ,rl' 10' ,rl - -
•• ,o"" ,a'

,rl'

.... ...
;, ...

,..

• cr = 0.05 O" = 0 ...
... 10· .. , •. , •. . .. - -

Figure 22 GPE Trajectories with Bayesian Learning

Now let's examine these trajectories in more detail. For noise-free data, the GPE is

monotonously descending during the training. However, for noisy data, which is our main

concern in this study, the GPE decreases first, then oscillates. Here arises a question: Where

is the best stop point based on the given GPE trajectory? As a general stop criterion, we

propose to terminate the training at the point A where the GPE reaches its first local mini-

mum. There are several reasons to justify this choice. First, Based on Figure 22, the com-

151

putational cost up to the point A is inversely proportional to noise variance. This is

reasonable, because noise-free data might be trained accurately without overfitting, adapt­

ing regularization usually takes longer to obtain high accuracy. Noisy data require models

with appropriate smoothness. Shorter training is therefore expected as noise level increases.

Secondly, after point A , the change of GPE is not significant. The job of finding point A

is simpler than the determination of the global minimum GPE. Furthermore, the GPE tra­

jectory changes in a complicated way after point A , which may reflect the uncertainty of

the model validity. The global minimum GPE may not be the best one if it appears after the

point A . This is similar to cross-validated early stopping. With early stopping experiments,

validation error may occasionally decrease again if we overtrain a network after the valida­

tion error first increases. However, the testing error in this case is usually larger than the

error tested at the early stopping point.

There is another convenience of using the GPBR method. Since the GPE value can

be estimated from the training data only, no validation set is required in this approach. The

network parameters can be optimized with the conventional one-stage training method us­

ing the whole data set.

Validation-Set-Based Bayesian Regularization (VBBR)

In validation-set-based Bayesian regularization (VBBR), the total samples are di­

vided into a training set and a validation set. The network weights are updated by using the

training data only, but regularization is adapted based on the validation data. This concept

is similar to the SDVR algorithm. However, in the SDVR algorithm, the parameter a. is

selected by minimizing the validation error. In the VBBR algorithm, a and P are chosen

152

to maximize the generalized probabilistic evidence on the validation data. Using the VBBR

approach, we assume that the validation evidence might be more highly correlated to the

generalization error.

Now, let us show how a. and P are calculated in the VBBR implementation. If we

assume that a. and p are random variables, then Bayes' rule to optimize these two param-

eters, conditional on the given validation data D,., has the form

(142)

As we explained in Chapter 3, the following proportional relation can be identified between

the two probabilistic quantities

(143)

where P(a., PIDv) is the conditional posterior density function, and P(Dvla., P) is the val-

idation evidence for a. and P. Eq. (143) says that optimizing the posterior probability of

a. and P is equivalent to maximizing the validation evidence P(Dvla., P). Substituting the

validation data Dv for the training data D, in Eq. (140), we have validation evidence ex-

pressed as:

(144)

In order to evaluate the validation evidence, we need to calculate the weight poste-

riordensity P(wlDv, a., P) andthelikelihoodfunction P(Dvlw,P) basedonthevalidation

data. Instead of retraining the validation data to get these quantities, we assume that the

153

weight posterior probabilities of the training and validation sets are both Gaussian distrib-

uted and centered at the same most probable weight vector w MP . The uncertainties

P(Dvjw,~) and P(wlDv,a.,~) therefore can be approximately computed by substituting

validation data (denoted by subscript v) into the corresponding equations for calculating

the uncertainties of training data which were given in Chapter 3. The generalized likelihood

function of the validation set can be expressed as

(145)

D T f.l (/A)n/2 h . . where Ev = ev(w)ev(w), and Zv (..,) = 7t .., . T e uncertamty of the postenor
V

weights measured on the validation set has the form

(146)

..,..[) N/2 I 112
where Fv = ~l!.v + aQ(w), and ZF, = (27t) (det(f1v)) exp(-Fv(wMP)).

Note that the weight prior density function P(wla) ·in Eq. (144) is same for both

the training and validation sets. As given in Eq. (54) of Chapter 3,

1
P(wla) = Zw(a) exp(-a.Q(w)),

with Q(w) = wTw, and Zw(CX) = (1t/a)N12 . Substituting P(Dvlw,~), P(wlcx) and

P(wlDv,a,~) into Eq. (144), we have

(147)

154

If we take the log of Eq. (147), we obtain

(148)

The optimal ex and~ which maximize the validation evidence can be determined by seek-

ing the extreme value of Eq. (148). The solutions are given below:

where Yv is the effective number of parameters assessed from validation data.

MP -I
Yv = N- atr((Hv))

(149)

(150)

(151)

Comparing the final equations obtained from the validation evidence framework ·

with the corresponding equations from the training evidence framework, we can see that

they have the exactly same form. However, the training evidence is a straightforward mea-

sure following a hierarchical fashion. It is evaluated on the same data as that used to deter-

mine the network weights. In contrast, the validation evidence is a generalized

comprehensive measure made on the validation data, which is disjoint to the training data,

to evaluate the validity of the training probabilistic model about the weight and error dis-

tributions. The return values based on this evaluation are ex and ~ , which maximize the

generalized validation evidence. They produce constraints on the new training performance

function.

155

Using the VBBR algorithm, a and ~ are adapted in each iteration. Initially, we can

set ~ to be 1 and a to be a small value (e.g., 0.1). The change of their trajectory is usually

fast during the early stage of training, and gradually becomes slow without significant os­

cillation as the training continues. After the training converges to the required accuracy, the

optimal values of a and~ are saved. The combined training (using both training and val­

idation data) then will be performed to refine the estimation of the network parameters us­

ing the fixed a and ~.

Bayesian Regularization with Retrained Early Stopping (BRES)

Now let us turn to another implementation of validation-incorporated Bayesian

learning which is called Bayesian regularization with retrained early stopping (BRES). As

with the VBBR algorithm, the approach of BRES also employs a two-stage learning meth­

od, and uses a disjoint training set and validation set in the first stage. However, unlike the

VBBR algorithm, network learning for BRES starts with the standard Bayesian method to

alternately update the network weights and regularization parameters using the training da­

ta. The model validity, measured with sum-of-squared error on the validation data, is

checked at each iteration. The first stage training of BRES is terminated when the valida­

tion error increases. Then, it is followed by a second stage retraining, as in the VBBR al-

gorithm, using a combined data set and the fixed a and ~ obtained from the early stopping

point.

It can be seen that the BRES implementation also has some features in common

with the previously discussed retrained early stopping (RTES). Both of them monitor val­

idation error to determine the optimal stop point of the first stage training, and perform a

156

retraining using all of the data. However, several distinctions can be identified between

these two implementations. In the RTES algorithm, conventional cross-validated early

stopping is applied to the unregularized performance function during the first stage. In the

BRES method, the early stopping procedure is applied to the regularized performance func­

tion. For the unregularized performance function, the increase of validation error simply

means that further training may learn the noise, or overfit the data. For the regularized per­

formance function, the increase of validation error indicates that the specific model as­

sumptions for the weight and error distribution may no longer apply if further training

follows the Bayesian framework. In the retraining stage, the RTES algorithm needs to spec­

ify the error goal and the weight goal to control the final model complexity. The BRES

method can use the GPE criterion to determine the stop point, since the effective number

of parameters can be calculated directly from the Bayesian framework.

Now we can summarize what we have proposed so far in this chapter. In the stan­

dard Bayesian method, the training is always performed to capture the specified prior be­

liefs. The model validity is hard to justify when all available data are used to produce the

network. In order to reduce the potential risk of overfitting, we implemented several new

approaches using validation-incorporated Bayesian learning. The GPBR and BRES meth­

ods presented new ways to determine the early stopping points which infer the presence of

limitations in models if the further training is performed. The VBBR algorithm uses vali­

dation evidence to update regularization parameters which might result in better generali­

zation performance than using training evidence. Note that we employed a two-stage

training method in both VBBR and BRES implementations. To avoid the overuse of Baye-

157

sian learning, the second stage training does not follow the standard two-level hierarchical

procedure. The performance function with optimal regularization parameters remains un­

changed to the end. Since the retraining combines previous training data and validation da­

ta, we are able to use all available data, but in a different way than the standard Bayesian

method.

In the next section, we will compare these new proposed approaches with the stan­

dard Bayesian framework through simulation experiments.

Simulations and Discussions

In this section, we will show the testing results of the validation-incorporated Baye­

sian learning algorithms on the same example that we used in Chapter 6, and will compare

them with those obtained using the GNBR (Gaussian Newton Approximation to Bayesian

Learning) algorithm [Fore96] [FoHa97], which has been implemented in the Matlab Neural

Network Toolbox.

The algorithms under testing competed in parabolic function approximation with

noisy data employing a sufficiently complicated neural network structure. The results are

compared under three pattern /parameter ratios (PPR= 961 I 151,441 I 151,225 I 151) arid

four noise levels(a = 0.3, 0.2, 0.1, 0.05). The data splitting ratio is 1 I 1 for both VBBR and

BRES methods at the first training stage. The performance comparison is summarized in

Table 18. In which, each performance entry is averaged over 30 trials with different initial

weighs and random noise realizations, as we explained in Chapter 6.

158

PPR
Training MSE X 10-4 MSE X 10-4 MSE X 10-4 MSE X 10-4

Algorithm (cr = 0.3) (cr = 0.2) (cr = 0.1) (cr = 0.05)

GNBR 49.01 20.47 6.60 1.81

GPBR 34.48 16.35 5.02 1.44
961 I 151

VBBR 28.72 15.64 4.71 1.36

BRES 28.40 14.76 4.76 1.34

GNBR 84.26 40.80 13.79 4.17
GPBR 62.97 30.51 8.97 2.62

441 I 151
VBBR 58.54 27.75 7.89 2.35

BRES 57.57 27.67 7.28 2.47
GNBR 138.79 63.52 23.31 7.52

GPBR 112.71 50.39 15.26 4.69
225 I 151

VBBR 95.96 44.31 13.49 4.23
BRES 99.23 46.69 13.66 4.26

Table 18 Generalization Performance with Variations of Bayesian Leaming

PPR
Training MSE X 10-4 MSE X 10-4 MSE X 10-4 MSE X 10-4

Algorithm (cr = 0.3) (cr = 0.2) (cr = 0.1) (cr = 0.05)

GNBR 28.93 5.17 1.96 0.55
GPBR 14.02 3.84 1.14 0.38

961 I 151
VBBR 9.21 3.85 1.13 0.34
BRES 8.22 3.57 1.11 0.37
GNBR 50.59 20.58 5.95 1.51

441 I 151
GPBR 22.55 8.92 3.07 0.91
VBBR 19.16 8.14 1.72 0.75
BRES 19.89 7.47 1.59 0.77
GNBR 58.22 27.15 12.74 2.27

225 I 151
GPBR 30.71 14.49 5.50 1.25
VBBR 28.36 12.15 4.74 0.83
BRES 26.98 13.44 4.33 0.81

Table 19 Standard Deviation in Performance with Variations of Bayesian Leaming

159

. Table 19 shows the standard deviation in generalization error over 30 trials. It can

be concluded from these tables that VBBR and BRES methods produce the best results un-

der each testing condition. The prediction error with the BBR-trained I BRES-trained mod-

el is 54 - 74 percent of the GNBR-trained model. Although GPBR results are not as good

as VBBR and BRES results, they are still significantly better than those we obtained by us-

ing the standard GNBR algorithm (0.63 - 0.81 in error ratio). For the given problem, these

simulation experiments demonstrate that the validation-incorporated Bayesian implemen-

tations proposed in this chapter have distinct advantages over the training-evidence-based

Bayesian method.

PPR
Training flops X 109 flops X 109 flops X 109 flops X 109

Algorithm (O' = 0.3) (O' = 0.2) (0'=0.1) (cr = 0.05)

GNBR 21.5 23.8 33.9 47.8

961 / 151
GPBR 10.2 13.4 20.2 29.8
VBBR 4.94 7.87 10.8 18.4
BRES 3.84 6.34 11.2 15.6
GNBR 12.3 14.5 20.7 32.5

441 / 151
GPBR 3.94 6.25 8.21 14.9
VBBR 3.07 3.38 5.87 8.12
BRES 1.98 3.04 6.75 7.99
GNBR 10.9 12.2 22.2 31.0

225 / 151
GPBR 2.26 2.73 5.40 6.02
VBBR 1.90 2.07 3.81 5.17
BRES 1.13 1.64 3.73 4.99

Table 20 Computational Costs of Variations of Bayesian Learning

In Table 20, comparisons are made on the computational costs with different Baye-

sian implementations. We can see that computation efficiency can be dramatically im-

160

proved when validation-incorporated Bayesian learning is used. The cost ratio of GNBR

over VBBR (BRES) is between 3 - 9 . And the ratio is between 1.5 - 5 for GNBR over

GPBR.

Note that the GNBR results summarized in this chapter are different from the BR

results presented in Chapter 6. In this chapter, training with GNBR is extended until con-

vergence (SSE< 10-6 , or µw > 1010) is reached. While in Chapter 6, to make the training

efficient, we heuristically terminated the learning process when the relative change of SSE

within a sliding window was below a predetermined value(5.0 x 10-4). The results pre­

sented in Chapter 6 using BR are better than GNBR results, but not as good as the valida­

tion-incorporated Bayesian implementations we proposed in this chapter.

One more comment should be made on the use ofGPE-validated training. The GPE

criterion is not just limited to the GPBR implementation. It can also be used to determine

the stop point of the second stage training required by VBBR and BRES algorithms with

fixed a. and ~ . Even for the SDVR algorithm, the simulation experiments show that the

GPE-validated retraining can result in better generalization performance. There might be a

limitation for using GPE in noise free data. However, if optimal a. and ~ are determined

from the first stage learning, the monotonic decrease of the GPE in the second stage may

infer the very low probability of overfitting. In this case, training can be terminated when­

ever the required mapping accuracy is reached.

161

CHAPTERS

REAL-WORLD APPLICATIONS

Objectives 162
Introduction 163
Soft Sensors for Diesel Engines 164
Prediction of Chaotic Intensity Pulsation of an NH3 Laser 167
Neural Network Inversion of Induction Logs 170
Environmental Corrections for Neutron Tools 174
Determination of Cholesterol Levels from Blood Spectral Contents 177

Objectives

In this chapter, we will apply the newly developed methods to real-world problems,

and compare them with some currently used methods. Five representative problems with

realistic complexity are selected to test the algorithms. The relevant data analysis and pre-

processing are also addressed in this chapter.

162

Introduction

In the previous chapters, we proposed several new methods to improve generaliza­

tion performance of neural networks by optimal use of regularization and cross-validation

techniques. The simulation experiments showed promising results for these innovative ap­

proaches.

In this chapter, we will test our new algorithms on several real-world problems.

These problems represent a diverse cross-section of applications with a variety of complex­

ity, and they will require the application of a variety of networks. The number of network

parameters will vary from a few tens to several hundreds. Each of the problems has distinct

noise levels.

Real-world applications are different from numerical simulations in several re­

spects. First, in the simulation experiments the generalization performance is evaluated by

the error between the model predictions and the true function outputs. In real~world appli­

cations, the true function is unknown. The generalization performance is estimated by the

error on a test set, which is not used for training. This estimate can be quite noisy. There­

fore, the model with smallest test error on a specific data set may not be the model with

smallest generalization error. Secondly, the data availability is usually not a problem in

simulation experiments. The training examples can be appropriately sampled over the in­

put/output space. In real-world applications, the information provided by the finite data set

is often limited. The model prediction credibility is seriously affected by the sparsity of da­

ta. This increases the difficulty of algorithm comparison, which is based on the test error.

To make a reasonable comparison, we will calculate the test error in different ways. When

163

a large number of examples are available, the test error will be measured from a fixed large

testing set, and averaged over several trials with different initial weights. When data are

limited, however, the test error will be averaged over several trials with different data split­

tings.

Although the objective of this chapter is to test different algorithms through real­

world applications, the relevant data analysis and preprocessing are also discussed. Each

example presented in this chapter can be considered as a case study.

Soft Sensors for Diesel Engines

This example is selected from the OSU Report to Cummins Engine Company

[ChMa97]. The emission levels of carbon monoxide, unburned hydrocarbons, and nitrogen

oxides from diesel engines are restrictively legislated with the increasing concern about en­

vironmental pollution. Although the emissions can be measured in the raw undiluted ex­

haust, the sampling and analysis process can be expensive for some cases. In this example,

we use a neural network as a soft sensor to indirectly compute nitrogen oxide (NOx) emis­

sions from measurements of speed and fueling, which can be obtained more easily and in­

expensively. The data were collected from a diesel engine, which was operated over a

transient test cycle for two minutes. The transient cycle involves steady states, accelera­

tions, decelerations and overrun conditions which are supposed to represent engine maneu­

vers in an urban environment.

Figure 23 shows part of the sample sequences of the speed and fueling with a sam­

pling interval of one second. The speed and fueling in the transient cycle change frequently,

and the time series data appear nonstationary. Since the frequent shift of speed and fueling

164

will change the state of flame diffusion in the combustion chamber, the emission level of

the engine at a given instant can be modeled as a function of the currentand previous mea-

surements of the speed and fueling.

""
""l,;o--"-~----~---~~c:--~~,--~~,---=-~-=--~­

tlrne (NC)
S60 100 760 800

tlrne(MC)

Figure 23 Speed and Fueling in Transient Cycle

... =

In this application, the NOx prediction system is represented by a four-input I sin-

gle-output neural network model which is defined in Figure 24.

Speed (t)

Speed (t-1)
----.i Neural Network

t-----11-~ NOx (t)

Fueling (t) (4-10-10-1)

Fueling (t-1) -----11 ... ~.__ ____ ___,

Figure 24 NOx prediction Model

The total input/output patterns are randomly resampled five times. In each resam-

piing, the available data are divided into the training, validation, and testing groups. The

data splitting ratio (training size I validation size I testing size) is about 3 I 3 I 2. Figure 25

165

presents partial measurements of the nitrogen oxide, which are used as training targets, and

the NOx prediction using a trained neural network model. Although using speed and fuel-

ing alone to predict emission levels is a simplified approach, the neural network prediction

is reasonably accurate. The obvious prediction errors occurred at the time instants when the

measured NOx is zero. Apparently, the sensor was unable to register NOx levels below ap-

proximately 200, therefore any emission below this level registered as zero. It is difficult

for the neural network model to capture this kind of nonlinearity without overfitting the

data in other regions.

,,..,---....,....--,,---.----,---,-------.---,---,

....

"""'2oo __ _._ __ ..__ __ .___~~-~~--.,__-_..__~ ... --

....
1200

I ...
L.
§ ...

200

"""'2oo-.==-~ ... =-~-=--~~,--=~--,-==-~---~­--
Figure 25 NOx Measurement and Prediction

The testing results used for algorithm comparison are averaged over five trials.

Each trial is run under different data resampling. Table 21 presents the statistical parame-

ters obtained from the error measurements. It is observed from this example that the testing

error of the neural network models trained with the GNBR algorithm is larger than the test-

ing error of the models trained with the other algorithms. This might be a case which shows

the limitation of the Bayesian method when the assumptions about the noise and the weight

distribution do not apply as the network is trained to convergence. The other methods

166

performed almost equally well indicating that the nature of the data is easy to capture by

using either active validation or passive validation.

Algorithm Sl S2 NumParam MSE x10-2 STD x 10-2

GNBR 10 10 171 1.68 0.42

ES 10 10 171 1.31 0.33

SDVR 10 10 171 1.26 0.37

VBBR 10 10 171 1.29 0.39

BRES 10 10 171 1.32 0.42

RTES 10 10 171 1.22 0.32

Table 21 Testing Results on Engine Data

Prediction of Chaotic Intensity Pulsation of an NH3 Laser

This example is from the Santa Fe Institute Time Series Prediction and Analysis

Competition [Wan93]. The chaotic intensity pulsation of an NH3 laser was distributed as

part of the competition. The contestants were given only 1000 points of data, which are

shown in Figure 26, and invited to send in solutions predicting the next 100 points. This is

a long-term time series prediction problem, and the network structure will consist of a

tapped delay line preceding a multilayer network.

For this problem, we assume that the time series y(n) will be modelled as a nonlin-

ear function of its past values, i.e.,

y(n) = f(y(n- 1), y(n-2), ... y(n-m)) + e(n), (152)

where e(n) is prediction error, and m is the order of tapped delay, which is also the

input dimension of the neural network. Selection of the input dimension was based mostly

167

on trial-and-error along with various heuristics. In this example, a high-order tapped delay

(m = 35) was used.

4

3

1 2
;;
0

j
g 1

_,

~L-~L----'L-~L-~L----'L----'L-~L-~L-~L---'
0 100 200 300 400 500 600 700 800 900 1000

sample index

Figure 26 Chaotic Intensity Pulsation of an NH3 Laser

To model the given time series, the original data were first scaled to zero mean, unit

variance. Since the true task involved long-term prediction, we chose the last 100 points of

the given 1000 samples as the validation set. A three-layer 35-12-12-lnetwork with 601 pa-

rameters was selected to approximate the underlying function of the time series. Five trials

with different initial weights were run by using each training algorithm. The error mini-

mized in the training objective function was based on the one-step prediction.

After the training was completed, the generated model was used to make the itera-

tive prediction, in which the previous predicted values were put into the input vector to

forecast future output. This process was repeated several times. After 35 iterated

168

predictions, no true sample of the time series would be included in the input filter. The

whole tapped delay line would be filled with forecasted data!

The 100-point predictions obtained in this way then were compared with withheld

measurements to compute the testing error. The predictions from two trials and the mea-

surements are plotted in Figure 27. It was clear from the nature of the data that predicting

downward intensity collapses would be the most important and difficult aspect of the series

to learn. The prediction accuracy can be as good as that shown in the left plot of Figure 27

if the network weights are appropriately determined. Also, if overfitting occurs, the predic-

tion accuracy can be much worse than that shown in the right plot of Figure 27.

-20 10 20 30 40 SD ID 70 m GO 100 --

1·
L

--
Figure 27 Iterative Long-Term Prediction for NH3 Laser Data

The testing results with different algorithms are given in Table 22. Apparently, the

variation of the prediction accuracy among the candidate algorithms is large due to the dif-

ficulty to forecast the downward intensity collapses. It can be concluded from the table that

using the validation-set-based VBBR and SDVR algorithms to determine the optimal reg-

ularization parameter is very effective in reducing the generalization error in this time

series example. While training with the GNBR algorithm to high accuracy on the whole

169

data set may risk overfitting on unseen data.

Algorithm SI S2 NumParam MSE X 10-1 STD x 10-1

GNBR 12 12 601 3.17 3.90

ES 12 12 601 1.64 0.80

SDVR 12 12 601 0.70 0.35
VBBR 12 12 601 0.59 0.49

BRES 12 12 601 2.03 1.88

RTES 12 12 601 1.64 1.01

Table 22 Testing Results on NH3 Laser Data

Neural Network Inversion of Induction Logs

This application reflects our current research on well logging analysis [ChHa98b].

Formation resistivity is one of the primary formation parameters that is highly relevant to

the presence of oil and/or gas. Modeling formation resistivity has been widely used as a

means to design electrical logging tools, to predict their responses and to extract resistivi-

ties and structural geometries from resistivity logs. The complexity of the problem can be

represented by the ID, 2D and even 3D models, depending on the versatility of the forma-

tion geometries.

In this application, we will use a neural network model to determine the relationship

between the induction logging tool response and the formation resistivity. Induction log-

ging uses a bank of coils to make resistivity measurements. Some of these coils, referred to

as the transmitter coils, are energized by an alternating current at a frequency between 8

and 40 kHz. The oscillating magnetic field produced by this arrangement results in the in-

duction of currents in the earth formations which are nearly proportional to the conductivity

170

(reciprocal of the resistivity). These currents in tum contribute to the voltage induced in the

receiver coils. The receiver responses, the real signal and the imaginary signal, are usually

used in signal processing. The real signal is the portion of the received voltage that is in

phase with the transmitter current, and the imaginary signal is the portion 90 degrees out of

phase with the transmitter current. In general, the receiver response, which is also called the

tool response, is a nonlinear function of the formation resistivity. Since the imaginary sig­

nal is too noisy and not reliable, we often only use the measured real signal as the induction

logging tool response.

The traditional method of modeling formation resistivity is usually used to predict

the tool response. In this example, we have an inverse modeling problem, in which the tool ·

responses are used as the inputs to the model, and the model outputs will approximate the

formation resistivities. We assume that the formation geometry is one dimensional and hor­

izontal, i.e., the resistivity changes only along the depth of the borehole (without radial vari­

ation).

In the previous example, the current value of a time series can be predicted with its

past values. In this example, the resistivity at the certain position in depth is modelled as a

function of the tool responses both below and above that position. We use a filter input win­

dow which is centered at the same depth index as that of the bed resistivity to be predicted.

The window length is 25 feet, and is stretched evenly above and below the index point. The

window symmetry may not be necessary, the motivation of this design is simplicity.

The tool response/resistivity profiles used in developing the neural network model

are subsets of typical Oklahoma profiles generated from a single receiver with 8 kHz

171

excitation frequency. One example of an Oklahoma profile is shown in Figure 28.

-200 -150 -100 -50 0 50 100 150 200
depth (feet)

Figure 28 Formation Resistivity and Tool Response of Oklahoma Profile

We can see from Figure 28 that the relation between the tool response and the re-

sistivity is nonlinear. In this example, several Oklahoma formation subsets with similar

shapes but different bed values are available. We use 8 subsets (3928 patterns) for training,

and 4 subsets (1964 patterns) for validation. The samples are collected at a 0.5 feet interval.

For the 25-foot window, the input dimensionality is 51 !

Since the values of tool responses and resistivities cover a wide range, a logarithmic

transformation is made first on both inputs and targets. Then we train a 51-10-20-1 network

with each algorithm by using the normalized log data ranging from -1 to + 1. After that, a

large number of novel patterns with a variety of formation shapes are used to test the

applicability of the neural network inversion of induction logs. Figure 29 presents some of

the testing profiles.

172

1o'.----------,-----===

1=::;.I
,o' .----~-----,.---===

l=::"'I

10'

10'

f
10·~---.....

10'

1o'o'------:,.:------,!:100,------;;100
,a~,...__ __ __. ___ ___._ ___ __,

O ~ 1~ 1Y

,o•,------,.-----,-----===
l=:;~1

f
10'

10·0-----c":,.c-----=100---~100 --
Figure 29 Neural Network Inversion of Induction Logs

For the Oklahoma like profile, the prediction is very accurate. Even for the totally

different profiles, the neural network inversion also gives reasonably good prediction. The

algorithm comparison based on the testing results are given in Table 23.

Algorithm SI S2 NumParam MSLE x10-2

GNBR 10 20 761 8.24
ES 10 20 761 11.67

SDVR 10 20 761 8.02
VBBR 10 20 761 8.74
BRES 10 20 761 9.40
RTES 10 20 761 10.04

Table 23 Testing Results on Induction Logs

173

. Note that the testing performance measured in Table 23 is MSLE, which is mean ·

squared log error averaged over about 1200 testing patterns. In this single trial, the SDVR

algorithm wins the competition, followed by the GNBR and VBBR algorithms. The expen­

sive computation cost for this example limits the multiple trials with different initial con­

ditions. However, since the data are noiseless, and the pattern/parameter ratio is high, low

variation in testing results with further experiments is expected.

Environmental Corrections for Neutron Tools

For this example, a different type of well logging tool, called the neutron tool, is

used to determine the formation parameters. While the responses of the induction logging

tool are highly correlated with formation resistivity, the responses of the neutron tool are

highly correlated with formation porosity. The neutron logging tool comprises a fast neu­

tron source, shielding materials, and two thermal neutron detectors. The fast neutrons

spread out and slow down by elastic scattering, approach therqial equilibrium, diffuse at

thermal energy, and are absorbed by nuclei in the borehole/formation environment. During

the thermal diffusion process, some neutrons are detected by either the near or the far de­

tector, and count rates are developed that become the primary logging input variables.

Since the neutron tool responses are sensitive to several environmental factors, the

environmental corrections must be performed in order to make the porosity prediction ac­

curate. However, current techniques for environmental corrections involve applying each

correction sequentially and independently of other corrections. The neural network models

will be designed to apply all corrections simultaneously, accounting for correction

interactions. For this example, we will train a seven-input/single-output model. The model

174

output is the formation porosity. The seven input variables are:

1. Log of the near count rate recorded by short spaced neutron detector;

2. Log of the far count rate recorded by long spaced neutron detector;

3. Ratio of near count rate to far count rate;

4. Formation type (1 for limestone and O for sandstone);

5. Matrix absorption cross section, or sigma matrix (capture unit);

6. Borehole diameter (inch);

7. Standoff, which is a measure of lost density pad contact with formation (inch).

The main problem of this task is that only very limited data are available, because

making more direct experimental observations is expensive [ChHa98a]. Totally, 222 pat­

terns are provided for model development. Before splitting these samples, we first divide

the whole data set into two groups. One group comprises 144 patterns on the boundary of

the input space. The other consists of 78 patterns which are located within the range bound­

ed by the patterns in the first group. All of the boundary patterns are included in the training

data set. The interior patterns are used to form the validation and test sets, and some of them

also form a portion of the training set.

The data are divided into the training, validation and test sets. We randomly pick 39

patterns from the interior group to construct a test set. For the remaining 39 patterns in the

interior group, 19 of them are randomly selected to form the validation set. The other 20

patterns are combined with 144 boundary patterns to form the training set. The same pro­

cedure is repeated five times to produce five different data splittings. The inputs and the

targets are scaled from -1 to + 1 before entering the network.

175

The representative model designed to predict the formation porosity is a two-layer,

7-10-1 network with 91 parameters. One testing example using the neutron tool response

as input with environment correction is shown in Figure 30. Since the measurement noise

is low, the prediction is accurate for this application.

1-e- predictions I
-+- measurements

80

60

20

0

5 10 15 20 25 30 35 40
test sample index

Figure 30 Porosity Prediction Using Corrected Neutron Tool Response

The test results averaged over five trials are summarized in Table 24.

Algorithm Sl NumParam MSE xI0-4 STD x 10-4

GNBR 10 91 3.12 0.96
ES 10 91 4.81 1.16

SDVR 10 91 4.13 1.98
VBBR 10 91 3.81 0.85
BRES 10 91 3.35 1.00

RTES 10 91 4.43 1.21

Table 24 Testing Results on Neutron Logs

176

In this application, the results show that the GNBR algorithm generalizes best with

sparse data. The share of the data using cross-validated early stopping (ES) will worsen the

existing problems due to the very limited availability of the training data. The other algo-

rithms predict better than the ES algorithm, because the combined training with more sam-

pies are finally performed to improve the parameter estimation.

Determination of Cholesterol Levels from Blood Spectral Contents

This is a medical application example [PuLu92]. We are going to design a network

which can determine serum cholesterol levels from measurements of spectral content of a

blood sample. We have total of 264 patients for which the measurements of 21 wavelengths

and the Hdl, Ldl cholesterol levels are collected. This example can be considered as a mul-

tiple-input, multiple-output modeling problem, in which the network inputs are

21 wavelengths of a blood spectral content, and the network outputs are the Hdl and Ldl

cholesterol levels. Figure 31 displays the Hdl and Ldl measurements of patients.

... 350

350 300

300
250

1250
1200

] l
1200 I. ..
l!1so :!l

so

0
100 200 300 0 50 100 150 200 250 300 --

Figure 31 Collected Cholesterol Levels from 264 Patients

To determine the input/output relationships, we use a two-layer network structure

with 6 hidden neurons. Five random data splittings with different sample groupings are

177

made. In each splitting, the samples from 44 patients are withheld for the testing, and the

samples from 189 and 31 patients are used for the training and validation. The experiments

show that the measurements are very noisy in this example. Increasing the number of hid-

den neurons has little effect on prediction. Figure 32 illustrates how good the prediction can

be based on a single testing set.

0.8 1~~1
o.•·r--.-~-.-----.---,-.-.-----;:c .. :=..........,;::;:r:::==,..;:;,

0.6

0.4

l 0.2

I 0

! .. 2

o.,

02

....
_.A0',-----'-10 _l.,_5 --'-20--',-25 ---'30~~ .. ~-'-40 __J45 --

Figure 32 Neural Network Prediction of Cholesterol Levels

The testing results with different training algorithms are summarized in Table 25.

Clearly, the newly developed four algorithms work better than the GNBR and ES algo-

rithms with the smaller mean-squared errors and standard deviations.

Algorithm Sl NumParam MSE x10-2 STD x 10-2

GNBR 6 146 3.82 1.82
ES 6 146 2.20 0.77

SDVR 6 146 1.65 0.30
VBBR 6 146 1.90 0.42
BRES 6 146 1.42 0.27
RTES 6 146 2.00 0.63

Table 25 Testing Results on Cholesterol Data

178

We have already tested six candidate training algorithms on the five real-world

problems. The place of each algorithm in the rank of each application is presented in Table

26, where the winner is ranked as the first place.

Engine Laser Induction Neutron Cholesterol

GNBR 6 6 2 1 6
ES 4 3 6 6 5

SDVR 2 2 1 4 2
VBBR 3 1 3 3 3
BRES 5 5 4 2 1
RTES 1 4 5 5 4

Table 26 Place in Rank for Real-World Applications

It is interesting to note that the five first places are distributed among the five dif-

ferent algorithms. In order to determine an 'all-round champion', or to quantitatively eval-

uate the comparison results, we assign points to each place in the competition. First place

receives 6 points. The number of points will be reduced by one as the corresponding rank

is reduced. In this way, the sixth place will get 1 point. The score in each application and

the accumulated points for each algorithm are listed in Table 27.

Engine Laser Induction Neutron Choleterol I:

GNBR 1 1 5 6 1 14
ES 3 4 1 1 2 11

SDVR 5 5 6 3 5 24
VBBR 4 6 4 4 4 22
BRES 2 2 3 5 6 18
RTES 6 3 2 2 3 16

Table 27 Points Obtained in Real-World Applications

179

According to this summary, the two new validation-set-based regularization algo­

rithms, SDVR and VBBR, generated the networks which produce the best testing results in

real-world applications. Also, the other two new methods, BRES and RTES, demonstrated

advantages over the standard GNBR and ES algorithms. The GNBR algorithm performed

better than early stopping. These results are consistent with the numerical simulation results

presented in the previous chapters.

180

Objectives
Summary

CHAPTER9

CONCLUSIONS AND FUTURE WORK

Recommendations for Future Work

Objectives

181
182
185

In this chapter, we present a summary of the research completed, and recommend

possible future work drawn from this _dissertation.

181

Summary

The objective of this research has been to effectively improve the generalization

performance of neural networks in solving nonlinear regression or function approximation

problems. It has been shown that multilayer feedforward neural networks can be used to

represent any arbitrary continuous function. Many current training methods are able to pro­

duce networks with accurate input/output mappings for the training examples, but may not

be satisfactory in generalizing to new data, due to the problem of overfitting. Improving

generalization is a major area in neural network research. A variety of different techniques

have been developed.

Among the different techniques for improving generalization performance, we have

investigated two key methods: regularization and cross-validated early stopping. Training

with early stopping is computationally efficient, but only partial data can be used to update

network weights, and the resulting models usually show a large variance in generalization

error in the presence of noise. Bayesian regularization works well in many situations, but

the quality of the produced model depends on whether or not the probabilistic assumptions

match the training data in a statistically adequate manner. In order to generate neural net­

work models with better generalization, we are interested in techniques which incorporate

adaptive regularization with cross-validation, and refine parameter estimation after early

stopping.

One of the main contributions of this dissertation research is the development of the

validation-set-based regularization algorithms which combine regularization with the ac­

tive use of the validation information. We made two innovations which can be applied to

182

the standard regularization networks and the Bayesian probabilistic networks, respectively.

First, In Chapter S, the SDVR (second derivative of validation error regularization) algo­

rithm was derived to automatically update the regularization parameter by minimizing the

validation error. To do this, the algorithm uses second order information to set the optimal

learning rate for the regularization parameter. Second, in Chapter 7, the VBBR (validation­

set-based Bayesian regularization) algorithm was implemented to calculate the Bayesian

regularization parameter by maximizing the validation evidence. The evidence framework

of the validation data set is approximately represented in the same Bayesian form as the ev­

idence framework of the training data set. Although the validation error and the validation

evidence have different meanings, both are more directly related to the generalization error.

We have shown from Chapter S to Chapter 8 that the SDVR and VBBR algorithms produce

networks with excellent generalization capability.

The other main contribution of this work is the RTES (retrained early stopping) pro­

cedure. This procedure retrains a network using the combined data set after early stopping,

and therefore overcomes the limitation of conventional early stopping which uses only part

of data for parameter estimation. We have shown that Moody's GPE (generalized predic­

tion error), which was developed for regularization, can be functionally reduced by using

the R TES if the error goal and weight goal are set appropriately. We have shown in Chapter

4, Chapter 6 and Chapter 8 that the networks produced by retrained early stopping gener­

alize better than conventional early stopping.

As an extension of the RTES method to the Bayesian learning, we proposed and im­

plemented the BRES (Bayesian regularization with early stopping) method in Chapter 7.

183

While the RTES approach is applied to the unregularized performance function, the BRES

approach is applied to the regularized performance function. The BRES algorithm has the

advantages of regularization, passive validation, and retraining. In the retraining stage, the

BRES algorithm does not need to specify the error goal and the weight goal to control the

final model complexity. The Moody's GPE criterion can be used directly to determine the

termination point. It has been shown that the BRES algorithm performed better than the

RTES algorithm.

Another contribution of this work is the algorithm comparison through extensive

simulations and real-world applications with respect to the generalization error. Neural net­

work research should not only develop new techniques, but should also investigate the best

techniques for certain types of problems. In numerical experiments, different algorithms

were applied to the same function approximation problem under various pattern I parameter

ratios, data splitting ratios, and noise levels. We highlighted the relative advantages and

limitations for each method, and emphasized the importance of the data splitting ratio when

the validation set is used. In real-world applications, five problems were selected for case

studies. These problems represent realistic complexity and require the application of a va­

riety of networks. The information provided by this work will assist neural network users

in algorithm and model selection, data analysis and preprocessing.

According to the results obtained from the numerical experiments and the real­

world applications, the newly developed methods produced networks which generalized

better than the standard Bayesian method and early stopping procedure. The two-stage

training strategy employed by these methods is effective in improving parameter estimation

184

and is flexible in controlling training accuracy. These methods enrich the regularization and

cross-validation techniques, provide network users with practical training tools, and show

promise for many applications.

Recommendations for Future Work

The possible future work recommended here is related to the VBBR and SDVR al­

gorithms, which are most promising for potential applications.

One thing which needs to be examined is the relationship between the validated

VBBR assumption and the data splitting. In deriving the VBBR algorithm, we assumed that

the weight posterior probabilities of the training and validation sets are centered at the same

most probable weight vector w MP. This is approximately true if the validation set is a good

representative of the training set. In that case, the mean-squared error of the validation set

and the training set will be about the same level. When improper data splitting is used, the

assumption above may not hold, and the validation error may be considerably larger than

the training error. Therefore, monitoring the validation error during the first-stage training

by using the VBBR algorithm may help decide whether the data splitting needs to change.

With the optimal data splitting, the validation error is expected to be well correlated with

the validation evidence, and the model trained with the VBBR algorithm therefore would

have good generalization. Since the size of the validation set is also important to the calcu­

lation of the effective number of parameters, examining these interactions would provide a

better understanding of the VBBR algorithm.

For the SDVR algorithm, the future work concerns the computation cost. One prop­

erty associated with the SDVR algorithm is the trajectory oscillation during training,

185

especially when the regularization parameter is updated incrementally. We showed in

Chapter 5 that the computation cost can be reduced by using a variable update interval for

parameter a . It might also be possible to change the incremental coefficient of the tunable

parameter µa to force a quick convergence as the oscillation is detected. Currently, the in-

cremental coefficient of the tunable parameter µa is held constant within each variation of

the SDVR algorithm for simplicity. Due to the complicated relationship between the weight

update and the regularization update, whether these changes provide any advantages re­

mains to be seen.

186

REFERENCES

[Akai69] H. Ak.aike, "Fitting autoregressive models for prediction," Annals of the
Institute of Statistical Mathematics, vol. 21, pp. 243-24 7.

[AmMu93] S. Amari and N. Murata, "Statistical theory of learning curves under
entropic loss criterion," Neural Computation, vol. 5, pp. 140-153, 1993.

[AmMu96] S. Amari, N. Murata, K.-R. Muller, M. Finke, and H. Yang, "Statistical
theory of overtraining: Is cross-validation effective?," in Advances in
Neural Information Processing Systems 8, D. S. Touretzky, M. C. Mozer,
and M. E. Hasselmo, eds., Cambridge, MA: MIT Press, 1996.

[AmMu97] S. Amari, N. Murata, K.-R. Muller, M. Finke, and H. Yang, "Asymptotic
statistical theory of overtraining and cross-validation," IEEE Transac­
tions on Neural Networks, vol. 8, no. 5, pp985-996, 1997

[BuWe91] W. L. Buntine and A. S. Weigend, "Bayesian back-prQpagation," Com­
plex Systems, vol. 5, pp. 603-643, 1991.

[Bish95] C. M. Bishop, Neural Networks for Pattern Recognition, New York:
Oxford University Press, Inc., 1995.

[ChHa97] D. Chen and M. T. Hagan, "Soft sensors for diesel engines," OSU Report
to Cummins Engine Company, Inc., 1997.

[ChHa98a] D. Chen and M. T. Hagan, "Environmental corrections for neutron
tools," OSU Report to Halliburton Energy Services, 1998.

[ChHa98b] D. Chen and M. T. Hagan, "Neural network inversion of induction logs
(phase I)," OSU Report to Halliburton Energy Services, 1998.

[ChHa99] D. Chen and M. T. Hagan, "Optimal use of regularization and cross-val­
idation in neural network modeling," Proceedings of the International
Joint Conference on Neural Networks (IJCNN99), paper no. 323, Wash­
ington, DC, July, 1999.

[CoGi95] M. Cottrell, B. Girard, Y. Girard, M. Mangeas, and C. Muller, "Neural
modeling for time series: a statistical stepwise method for weight elimi­
nation," IEEE Transactions on Neural Networks, vol. 6, no. 6, pp. 303-
314, 1995.

187

[CuDe90] Y. L. Cun, J. S. Denker, and S. A. Solla, "Optimal brain damage," in
Advances in Neural Information Processing Systems 2, D. S. Touretzky,
ed., pp. 598-605, San Mateo, CA: Morgan Kaufmann Publishers, Inc.,
1990.

[Cybe89] G. Cybenko, "Approximations by superpositions of a sigmoidal func­
tion," Mathematics of Control, Signals and Systems, vol. 2, pp. 303-314,
1989.

[DeSc83] J.E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Uncon­
strained Optimization and Nonlinear Equations, Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1983.

[Flet87] R. Fletcher, Practical Methods of Optimization (Second ed.), New York:
John Wiley, 1987.

[Fore96] F. D. Foresee, Generalization and Neural Networks, Ph.D. Thesis, Okla­
homa State University, 1996.

[FoHa97] F. D. Foresee and M. T. Hagan, "Gaussian-Newton approximation to
Bayesian learning," Proceedings of the IEEE International Conference
on Neural Neworks (ICNN'97), vol. 3, pp. 1930-1935, Houston, Texas,
June, 1997.

[Funa89] K. Funahashi, "On the approximate realization of continuous mappings
by neural networks," Neural Networks, vol. 2, pp. 183-192, 1989.

[Gill81] P. E., Gill, W. Murray, and M. H. Wright, Practical Optimization, Lon­
don: Acdemic Press, 1981

[Gout97] C. Goutte, "Note on free lunches and cross-validation," Neural Compu­
tation,vol. 9, pp. 2111-1215, 1997.

[HaDe96] M. T. Hagan, H.B. Demuth, and M. Beale, Neural Network Design,
Boston, MA: PWS Publishing, 1996.

[HaMe94] M. T. Hagan and M. Menhaj, "Training multilayer networks with the
Marquardt algorithm," IEEE Transactions on Neural Networks, vol. 5,
no.6, 1994,pp.989-993.

[HaSt92] B. Hassibi and D. G. Stork, "Second order derivatives for network prun­
ing: optimal brain surgeon," in Advances in Neural Information Process­
ing Systems 5, S. J. Hanson et al. eds., pp. 164-171, San Mateo, CA:
Morgan Kaufmann Publishers, 1992.

[HeKr91] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neu­
ral Computation, Redwood City, CA: Addison Wesley, 1991.

188

[Hom91] K. Hornik, "Approximation capabilities of multilayer networks," Neural
Networks, vol. 4,'pp. 251-257, 1991.

[HoSt89] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward net­
works are universal approximators," Neural Networks, vol. 2, pp. 359-
366, 1989. >

[Kear97] M. Keams, "A bound on the error of cross validation using the approxi­
mation and estimation rates, with consequences for the training-test
split," Neural Computation, vol. 9, no. 5, pp. 1143-1161, 1997.

[KrHe92] A. Krogh and J. Hertz, "Generalization in a linear perceptrori in the pres­
ence of noise," J. Phys. A. vol. 25, pp. 1135-1147, 1992.

[Lars93] J. Larsen, Design of Neural Network Filters, Ph.D. Thesis, Electronics
Institute, Technical University of Denmark, 1993.

[LaHa96] J. Larsen, L. K. Hansen, C. Svarer, and M. ohlsson, "Design and regular­
ization of neural networks: The optimal use of a validation set," in Pro­
ceedinds of IEEE Workshop on Neural Networks for Signal Processing
VI, S. Usui, Y. Tohkura, S. Katagiri, and E. Wilson, eds., pp.62-71, Pis­
cataway, NJ: IEEE, 1996.

[LaSv97] J. Larsen, C. Svarer, L. N. Andersen, and L. K. Hansen, "Adaptive regu­
larization in neural network modeling," in The Book of Tricks, G. B. Orr
et al., eds., Germany: Springer-Verlag, 1997.

[Ljun87] L. Ljung, System Identification: Theory for the User, Englewood Cliffs,
NJ: Prentice-Hall,1987.

[Luen84] D. G. Luenberger, Linear and Nonlinear Programming (Second ed.),
Reading, MA: Addison-Wesley, 1984.

[MacK92] D. J. C. MacKay, "Bayesian interpolation," Neural Computation, vol. 4,
pp. 415-447, 1992.

[MacK94] D. J. C. MacKay, "Bayesian methods for backpropagation networks,"
Models of Neural Networks III, E. Domany, J. L. van Hemmen, and K.
Schulten, eds., pp. 211-254, New York: Springer-Verlag, 1994.

[MacK97] D. J.C. MacKay and R. Takeuchi, "Interpolation models with multiple
hyperparameters," 1997, http://wol.ra.phy.cam.ac. uk/mackay/

[Mood92] J.E. Moody, "The effective number of parameters: An analysis of gener­
alization and regularization in nonlinear learning systems," in Advances
in Neural Information Processing System 4, J. E. Moody, S. J. Hanson
and R. P. Lippmann, eds., pp. 847-854, San Mateo, CA: Morgan Kauf­
mann Publishers, Inc., 1992.

189

[MiiFi96]

[MuYo94]

[Neal96]

[Neum98]

[Pola71]

[PuLu92]

[RuHi86]

[RuMc86]

[SiDo91]

[Sjob95]

[TiAr77]

[VoMa88]

[Wan93]

K.-R. Millier, M. Finke, N. Murata, K. Schulten, and S. Amari, "A neu­
merical study on learning curves in stochastic multilayer feedforward
networks," Neural Computations, vol. 8, pp. 1085-1106, 1996.

N. Murata, S. Yoshizawa, and S. Amari, "Network information criterion:
determining the number of hidden units for an artificial neural network
model," IEEE Transactions on Neural Networks, vol. 5, pp. 865-872,
1994.

R. M. Neal, Bayesian Learning for Neural Networks, New York:
Springer Verlag, 1996.

A. Neumaier, "Solving ill-conditioned and sigular linear systems: A
tutorial on regularization," SIAM Rev., vol. 40, no. 3, pp. 636-666, 1998.

E. Polak, Computational Methods in Optimization: A Unified Approach,
New York: Academic Press, 1971.

N. Purdie, E. A. Lucas and M. B. Talley, "Direct measure of total choles­
terol and its distribution among major serum lipoproteins," Clinical
Chemistry, vol. 38, no. 9, pp. 1645-1647, 1992.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representa­
tions by back-propagating errors," Nature, vol. 323, pp. 533-536, 1986.

D. E. Rumelhart and J. L. McClelland, eds., Parallel Distributed Pro­
cessing: Explorations in the Microstructure of Cognition, vol. 1, Cam­
bridge, MA: MIT Press, 1986.

J. Sietsma and R. J. F. Dow, "Creating artificial neural networks that
generalize," Neural Networks, vol. 4, pp. 67-79, 1991.

J. Sjoberg, Non-Linear System Identification with Neural Networks,
Ph.D. Thesis, Department of Electrical Enginerring, Linkoping Univer­
sity, Sweden, 1995.

A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems,
Washington, DC: V. H. Winston & Sons, 1977.

T. P. Vogl, J. K. Mangis, A. K. Zigler, W. T. Zink and D. L. Alkon,
"Accelerating the convergence of the backpropagation method," Biolog­
ical Cybernetics, vol. 59, pp. 256-264, 1988.

E. A. Wan, "Time series prediction by using a connectionist network
with internal delay lines," in Times Series Prediction: Forecasting the
Future and Understanding the Past, A. S. Weigend and N. A. Gershen­
feld, eds., pp. 195-217, Addison-Wesley, 1993.

190

[WeRu91]

[Will95]

[ZhRo96]

A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, "Generalization
by weight-elimination applied to currency exchange rate prediction," in
Proceedings of the International Joint Conference on Neural Networks,
vol. 1, pp. 837-841, Piscataway, NJ: IEEE,1991.

P. M. Williams, "Bayesian regularization and pruning using a Laplace
prior," Neural Computation, vol. 7, pp. 117-143, 1995.

H. Zhu and R. Rohwer, "No free lunch for cross-validation," Neural
Computation, vol. 8, pp. 1421-1426, 1996.

191

VITA

Dingding Chen

Candidate for the Degree of

Doctor of Philosophy

Thesis: OPTIMAL USE OF REGULARIZATION AND CROSS-VALIDATION
IN NEURAL NETWORK MODELING

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Taiyuan, Shanxi, P.R. China, on December 12, 1956, the
son ofWenyong Chen and Xigu Miao.

Education: Graduated from Fifth High School, Taiyuan, Shanxi, in August 1974;
received Bachelor of Science degree in Mechanical Engineering from
Beijing Agricultual Engineering University, Beijing, China, in May 1982;
received Master of Science degree in Agricultural Engineering and Master
of Science degree in Electrical Engineering from Oklahoma State Universi­
ty, Stillwater, Oklahoma in May 1993 and May 1996, respectively. Com­
pleted the requirements for the Doctor of Philosophy degree in Electrical
Engineering at Oklahoma State University in May 2000.

Experience: Employed by Shanxi Agricultural Mechanization Research Institute as
a Research and Design Engineer in 1982; invited by Oklahoma State Uni­
versity, Department of Agricultural Engineering as a visiting scholar in
1990; employed by Oklahoma State University as a Research and Teaching
Associate from 1991 to present.

Professional Status and Memberships: Institute of Electrical and Electronic Engi­
neers, American Society of Agricultural Engineers.

