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QUASI-OPTIMAL MESH SEQUENCE CONSTRUCTION THROUGH
SMOOTHED ADAPTIVE FINITE ELEMENT METHODS∗

ORNELA MULITA† , STEFANO GIANI‡ , AND LUCA HELTAI§

Abstract. We propose a new algorithm for adaptive finite element methods (AFEMs) based
on smoothing iterations (S-AFEM), for linear, second-order, elliptic partial differential equations
(PDEs). The algorithm is inspired by the ascending phase of the V-cycle multigrid method: we
replace accurate algebraic solutions in intermediate cycles of the classical AFEM with the application
of a prolongation step, followed by the application of a smoother. Even though these intermediate
solutions are far from the exact algebraic solutions, their a posteriori error estimation produces a
refinement pattern that is substantially equivalent to the one that would be generated by classical
AFEM, at a considerable fraction of the computational cost. We provide a qualitative analysis of
how the error propagates throughout the algorithm, and we present a series of numerical experiments
that highlight the efficiency and the computational speedup of S-AFEM.
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1. Introduction. The efficient numerical simulation of complex real-world phe-
nomena requires the use of computationally affordable discrete models. The adaptive
finite element method (AFEM) is one such scheme for the numerical solution of par-
tial differential equations (PDEs) in computational sciences and engineering. In finite
element simulations (FEM), the domain of the PDE is discretized into a large set
of small and simple domains (the cells or elements) depending on a size parameter
h > 0, and the PDE is transformed into an algebraic system of equations. Rigorous
analysis of the numerical method allows one to estimate the discretization error both
a priori (giving global bounds on the total discretization error that depend on a global
size parameter h), and a posteriori (providing a local distribution of the error on the
discretized mesh in terms of known quantities). Classical AFEM consists of successive
loops of the steps Solve −→ Estimate −→ Mark −→ Refine to decrease the total
discretization error, by repeating the FEM solution process (Solve) on a mesh that
has been refined (Refine) where the a posteriori analysis (Estimate) has shown that
the error is larger (Mark).

Intermediate solution steps are instrumental for the construction of the finally
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A2212 O. MULITA, S. GIANI, AND L. HELTAI

adapted grid and play no role in the final solution, which is the only one that is
retained for analysis and processing.

In this work we present a simple yet effective algorithm to reduce the overall
computational cost of the AFEM algorithm, by providing a fast procedure for the
construction of quasi-optimal mesh sequences that do not require the exact solution
of the algebraic problem in the intermediate loops of AFEM.

We refer to this new algorithm as the smoothed adaptive finite element method
(S-AFEM): the Solve step of AFEM in all intermediate loops is replaced by the appli-
cation of a prolongation step (Prolongate), followed by the application of a smoother
(Smooth):

Solve Estimate Mark Refine

ProlongateSmooth

Solve

S-AFEM takes its inspiration from the ascending phase of the V-cycle multigrid
method where a sequence of prolongation and smoothing steps is applied to what
is considered an algebraically exact solution at the coarsest level. In the multigrid
literature, this procedure is used to transfer the low frequency information contained
in the coarse solution to a finer—nested—grid, where some steps of a smoothing
iteration are applied in order to improve the accuracy of the solution in the high
frequency range (see, for example, the classical references [20, 21, 35, 13, 12]). The
iteration of this procedure is very effective in providing accurate algebraic solutions
in O(N) time, where N is the dimension of the final algebraic system. Even a small
number of smoothing iterations is sufficient to eliminate the high frequency error, while
the prolongation from coarser grids guarantees the convergence in the low frequency
regime, resulting in an overall accurate solution also when local refinement is present
(see, for example, [22]).

The classical AFEM algorithm generates nested grids and subspaces,1 but the
construction of the next (unknown) grid in the sequence still requires an exact alge-
braic solution on the current grid to trigger the Estimate-Mark-Refine steps. In
this paper we show, however, that in many practical situations it is not necessary to
use a fully resolved solution in the intermediate steps in order to obtain a good refine-
ment pattern: numerical evidence shows that it is sufficient for the high frequencies
of the error to be dumped in order to identify the next grid in the sequence through
the Estimate-Mark steps. In this context, the construction of a grid with excellent
approximation properties may require as little as a single ascending step of a V-cycle
multigrid method.

It is still not clear how to explain rigorously why the sequence of meshes construc-
ted with S-AFEM is close to the one obtained by classical AFEM. In this work we
examine the numerical behavior of S-AFEM in a family of linear second-order elliptic
problems and provide a qualitative analysis, based on classical results from the AFEM
and multigrid literature, to point the reader towards currently open questions, and
towards possible paths to complete the analysis.

1During AFEM, the grids remain nested if no de-refinement occurs. In the following we will work
under this assumption.
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S-AFEM A2213

In particular, we consider conforming discretizations of a Poisson problem, and
of a class of drift-diffusion problems in 2D and 3D, and we show that

? the a posteriori error estimator applied to the outcome of a single ascending
phase of the V-cycle multigrid method triggers aMark step where the refine-
ment pattern is substantially equivalent to the one that would be generated
by a classical Solve step, at a considerable fraction of the computational cost;

? even if the final grid is not exactly identical to the one that would be obtained
with the classical AFEM, the accuracy of the final solution is comparable in
most cases;

? the S-AFEM algorithm is robust with respect to different smoothers, and
with respect to different discretization degrees.

This article is organized as follows: we start by describing the general S-AFEM
algorithm in section 2, where the main algorithm is exposed. The connection with the
multilevel framework and with classical a posteriori error analysis is made in section 3,
where a qualitative analysis of S-AFEM is presented. Section 4 is dedicated to the
numerical validation of the algorithm and presents a detailed campaign of simulations
that shows when the S-AFEM algorithm can be used successfully. Finally, in section 5
we provide some conclusions and perspectives for future works.

2. The S-AFEM algorithm. We consider a class of linear elliptic, second-
order, boundary value problems (BVPs), whose variational formulation reads as fol-
lows: seek u ∈ V s.t. Au = f in V under suitable boundary conditions, where (V, ‖•‖)
is a normed Hilbert space defined over a Lipschitz bounded domain Ω, the linear oper-
ator A : V → V ? is a second-order elliptic operator, and f ∈ V ? is a given datum. The
finite element method provides numerical solutions to the above problem in a finite
dimensional solution space Vh ⊂ V , typically made up by continuous and piecewise
polynomial functions, and transforms the continuous problem above into a discrete
model of type Ahuh = fh in Vh under suitable boundary conditions, where, e.g.,
Ah = A |Vh

. The overall procedure leads to the solution of a (potentially very large)
linear algebraic system of equations of type Au = f in RN , where N = dim(Vh).

Given an initial (coarse) triangulation T1, we consider a (a priori unknown) nested
sequence of shape regular triangulations Tk for k = 1, . . . , k̄, which induces a nested
sequence of finite element spaces

(2.1) V1 ⊂ V2 ⊂ · · · ⊂ Vk̄ ≡ Vh,

on which we define standard prolongation operators, considering the canonical embed-
ding ik+1

k : Vk ↪→ Vk+1 that embeds functions uk ∈ Vk in the space Vk+1. We denote by

Ik+1
k : RNk → RNk+1 the corresponding discrete matrices, and we let Nk := dim(Vk)

for k = 1, . . . , k̄.
The sequence of grids and the solution on the finest grid are computed with the

S-AFEM algorithm, defined in Algorithm 2.1.
The motivation behind the strategy at the base of S-AFEM is the numerical ob-

servation that classical residual-based a posteriori error estimators [34] used in the
Estimate step are mostly insensitive to low frequencies in the solution, as shown in
Figure 2.1 for a benchmark example. Their application to very inaccurate approxi-
mate solutions in the intermediate loops—only capturing high frequency oscillations
through a smoother—produces an equally good grid refinement pattern at each step
of the S-AFEM algorithm, with an accuracy on the final approximation step that is
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A2214 O. MULITA, S. GIANI, AND L. HELTAI

Algorithm 2.1 S-AFEM algorithm.

Starting from an initial coarse mesh T1, solve A1u1 = f1 in RN1 to high accuracy and
generate u1. Then, do steps 1.− 4. for k = 2, . . . , k̄ − 1 or until the criterion is met.

1. Smooth: Compute ` smoothing iterations on the discrete system Akuk = fk,

with initial guess u
(0)
k := Ikk−1u

(`)
k−1, which produce u

(`)
k ∈ RNk (take u

(`)
1 =

u1).
2. Estimate: Compute estimators ηT (u`k) for all elements T ∈ Tk.
3. Mark: Choose a set of cells to refine Mk ⊂ Tk based on ηT (u`k).
4. Refine: Generate new mesh Tk+1 by refinement of the cells in Mk.

Step k = k̄: Solve the discrete system Ak̄uk̄ = fk̄ to the desired algebraic accuracy.
Output: sequence of meshes Tk, smoothed approximations u`k, estimators η(u`k), and
final adapted-approximation u`

k̄
such that ‖ek̄‖ ≤ tol.

Fig. 2.1. The values of the total er-
ror energy norm and of the error estima-
tor for each loop of the classical AFEM
(|u−uh|1 and Est(uh)) and S-AFEM with
` = 2 smoothing iterations (|u− u`

h|1 and

Est(u`
h)) for a classical Poisson problem

on an L-shaped domain in 2D. The first
and last loops are solved exactly by both
methods.
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comparable to that obtained with the classical AFEM algorithm, at a fraction of the
computational cost.

In the S-AFEM algorithm, we capture the smoothest (i.e., less oscillatory) part
of the discrete approximation in the first loop (k = 1) by solving the discrete system
exactly on the coarsest level. As the mesh is locally refined from one level to the
other, we increase the higher portion of the spectrum of the matrix Ak. Thanks to the
structure of the refinement in typical finite element methods, mostly high frequencies
are added to the system, while low frequencies are substantially left unaltered. Even
though there are cases where low frequency components are added to the solution on
the whole mesh when performing local refinement (a phenomenon usually referred to
as the pollution effect), several local refinements are required for the effect to show
up, suggesting that this phenomenon may be neglected in the context of S-AFEM,
where we use the term “low frequencies” to indicate loosely functions that can be
captured by coarse meshes and the term “high frequency” to indicate functions that
can be captured by fine meshes.

Even though the distance between the algebraic approximation u`h (coming from
the S-AFEM algorithm at step k) and the exact solution u drifts away during the
various steps of the algorithm (curve |u − u`h|1 in Figure 2.1), the error estimator
evaluated on u`h remains substantially attached to the error estimator evaluated on
an algebraically exact solution uh computed on the same mesh (comparison between
curves Est(u`h) and Est(uh) in Figure 2.1).

The first and last loops of the S-AFEM algorithm coincide with those of the
classical AFEM algorithm. In intermediate S-AFEM loops, however, the solution u`h is
far from the exact algebraic solution uh. These intermediate solutions serve solely the
construction of the final grid and find no other use in the final computations; therefore,
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S-AFEM A2215

their inexactness is irrelevant, provided that the final adapted grid provides a good
approximation. Their role is instrumental in triggering the Estimate−Mark−Refine
steps.

In our setting, intermediate steps are only computed through a fixed number
of smoothing iterations, and have nonnegligible algebraic errors. This is in contrast
with the common practical assumption made in AFEM, where it is assumed that
the Solve step produces the exact solution of the algebraic system. Recent develop-
ments dedicated a great deal of effort to accounting for inexactness of the algebraic
approximations and introducing stopping criteria based on the interplay between dis-
cretization and algebraic computation in adaptive FEM. Among others, we mention
the seminal contributions [10, 23, 4, 5, 31, 26, 30, 29, 17, 28, 25, 16].

Nevertheless, most of this literature focuses on ways to estimate the algebraic
error, without really exploiting the other side of the coin: inexact approximate solu-
tions, with large algebraic error, offer large computational savings when used in the
correct way. S-AFEM provides a good strategy to exploit this fact.

3. Qualitative analysis of S-AFEM. To fix the ideas, in this section we apply
S-AFEM to a model Poisson problem with Richardson iteration as a smoother and
discuss the interplay between the algebraic solution in intermediate steps and the
classical a posteriori error estimator theory.

A larger selection of problem types and smoother algorithms is tested in sec-
tion 4, where we compare the application of a fixed number of Richardson iterations
or of the conjugate gradient (CG) method for symmetric systems, and of the general-
ized minimal residual (GMRES) method for nonsymmetric systems coming from the
discretization of drift-diffusion problems.

Let Ω ⊂ Rd (d = 1, 2, 3) be a bounded, polygonal domain (an open and connected
set with polygonal boundary) with Lebesgue and Sobolev spaces L2(Ω) and H1

0 (Ω).
We look for the solution u ∈ H1

0 (Ω) such that

(3.1) −∆u = f in Ω and u = 0 on ∂Ω,

where f ∈ L2(Ω) is a given source term. We use standard notation for norms
and scalar products in Sobolev spaces (cf. [1]): for u ∈ H1

0 (Ω) we write |u|1 :=
(
∫

Ω
|∇u|2)1/2 and denote by (·, ·) the L2(Ω)- scalar product with corresponding norm

‖ · ‖. The weak form of (3.1) is to find u ∈ H1
0 (Ω) s.t.

(3.2) (∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω).

We consider a shape regular family of triangulations {Th}h of Ω in the sense of
Ciarlet [15], depending on a parameter h > 0 with shape regularity parameter CTh
consisting of cells T that are convex quadrilaterals in two dimensions and convex
hexahedrons in three dimensions.

The set of all edges/faces E of the cells is denoted by Eh, and similarly, Eh,int :=
Eh \ ∂Ω is the set of internal edges/faces. We use the Courant finite element space
Vh := {ϕ ∈ C0(Ω) s.t. ϕ|T ∈ P k(T ) ∀T ∈ Th, ϕ = 0 on ∂Ω} ⊂ H1

0 (Ω). The Galerkin
solution uh ∈ Vh is obtained by solving the discrete system

(3.3) (∇uh,∇vh) = (f, vh) ∀vh ∈ Vh.

In exact arithmetic, the discretization error eh := u − uh satisfies the standard or-
thogonality condition

(3.4) (∇(u− uh),∇vh) = 0 ∀vh ∈ Vh.
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A2216 O. MULITA, S. GIANI, AND L. HELTAI

Let N = dim(Vh); the discrete system (3.3) leads to a linear algebraic system of
type

(3.5) Au = f in RN ,

where A denotes the symmetric positive definite (SPD) stiffness matrix with entries
aij := (∇ϕj ,∇ϕi) ∀ i, j = 1, . . . , N, u = [u1, . . . , uN ]T denotes the coefficients vector

in RN of the discrete approximation uh =
∑N
j=1 ujϕj ∈ Vh, and f = [f1, . . . , fN ]T is

the vector with entries fj = (f, ϕj) ∀j = 1, .., N.
In particular, we assume that an initial (coarse) triangulation T1 is given, and

we consider a (a priori unknown) nested sequence of shape regular triangulations Tk
for k = 1, . . . , k̄, which induces a nested sequence of finite element spaces V1 ⊂ V2 ⊂
· · · ⊂ Vk̄. We let Nk := dim(Vk) for k = 1, . . . , k̄. By construction, the inequalities
N1 < N2 < · · · < Nk̄ hold true. The associated discrete systems for each level
k = 1, 2, . . . , k̄ read

(3.6) (∇uk,∇vk) = (f, vk) ∀ vk ∈ Vk,

and they generate linear systems of type

(3.7) Akuk = fk

of respective dimensions Nk.
The sequence of meshes in the classical AFEM algorithm is constructed through

the Solve–Estimate–Mark–Refine steps, where the Solve step should compute an
algebraically exact solution of (3.7). In the Estimate step, standard residual-based a
posteriori error estimators are the most widely used. They were first introduced in
the context of FEM by Babuška and Rheinboldt in [8], and they have been thereafter
widely studied in the literature (for a review, see [34, 2]).

Their derivation is based on the residual functional associated to the Galerkin
solution, which is defined as R{uh} : H1

0 (Ω) −→ R, R{uh} := (f, •) − a(uh, •) with
corresponding dual norm

(3.8) ‖R{uh}‖? := sup
v∈H1

0 (Ω)\{0}

R{uh}(v)

|v|1
= sup
v∈H1

0 (Ω)\{0}

(f, v)− a(uh, v)

|v|1
.

The identity |eh|1 = ‖R{uh}‖? leads to reliable and efficient residual-based a poste-
riori bounds for the discretization error via estimation of the residual function, i.e.,

(3.9) ‖eh‖ ≤ Crelη(uh) + h.o.t.rel

and

(3.10) η(uh) ≤ Ceff‖eh‖+ h.o.t.eff,

where the multiplicative constants Crel and Ceff are independent of the mesh size
and h.o.t. denotes oscillations of the right-hand side f , which are generally negligible
w.r.t. ‖eh‖.

We use standard residual-based a posteriori error estimators which are locally
defined through the jump of the gradient of the discrete approximation across the
edges/faces E of the cells; i.e., for a given function vh ∈ Vh, define for E ∈ Eh and
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S-AFEM A2217

T ∈ Th

(3.11)

JE(vh) := h
1/2
E

∥∥∥∥[ ∂vh∂nE

]∥∥∥∥
E

, JT (vh) :=
∑
E∈∂T

JE(vh),

J(vh) :=

(∑
E∈Eh

JE(vh)2

)1/2

=

(
1

2

∑
T∈Th

JT (vh)2

)1/2

,

where [•] indicates the jump of a piecewise continuous function across the edge/face
E in normal direction nE . A classical upper bound on the discretization error using
J is given by the estimate

(3.12) |u− uh|1 ≤ C?(osc2 + J2(uh))1/2,

where the constant C? > 0 depends on the shape of the triangulation, on Ω, and on
Γ, but it is independent of f and of the mesh-sizes hT , and osc is an oscillatory term
(see [14] for the exact definition of osc and for a proof of (3.12)).

In S-AFEM, we do not solve the linear systems (3.7) for k = 2, . . . , k̄ − 1, but
only apply a smoother (typically, ` steps of a smoothing iteration) by taking as an
initial guess the prolongation of the approximation from the previous level, obtaining
an algebraically inexact approximation u`h of uh in all intermediate steps. In this case,
the total error in intermediate steps can be written as the sum of two contributions

(3.13) u− u`h︸ ︷︷ ︸
total error

= (u− uh)︸ ︷︷ ︸
discretization error

+ (uh − u`h)︸ ︷︷ ︸
algebraic error

.

A vast literature is dedicated to the extension of the standard residual-based a
posteriori error estimator theory to incorporate in some way the algebraic error deriv-
ing from an inexact Solve step. We refer the reader to the seminal and investigative
paper by Papež and Strakoš [30] and the references therein for various approaches.

In particular, in [30] the authors give a detailed proof of a (worst-case scenario)
residual-based upper bound on the energy norm of the total error

(3.14) |u− vh|21 ≤ 2C2(J2(vh) + osc2) + 2C2
intp|uh − vh|21

for arbitrary vh ∈ Vh. In order to provide sharper bounds, one should exploit the fact
that vh is actually not arbitrary, but it originates from the Smooth step of S-AFEM;
i.e., it is the result of a smoothing iteration.

For simplicity of exposition, in this section we use a fixed number of Richardson
iterations as a smoother, but other choices are possible (see, for example, the reviews
in [12, 19, 35]).

Given ωk ∈ R a fixed parameter and u
(0)
k ∈ RNk an initial guess, a Richardson

smoothing iteration for (3.7) takes the form

(3.15) u
(i+1)
k = u

(i)
k + ωk(fk −Aku(i)

k ) for i = 0, 1, . . . , `.

After i + 1 iterations, the error e
(i+1)
k := uk − u

(i+1)
k satisfies the error prop-

agation formula e
(i+1)
k = Mke

(i)
k = · · · = M i+1

k e
(0)
k , where Mk := IdNk

− ωkAk is
the Richardson iteration matrix. When using the Richardson method as an iterative
solver, convergence takes place for 0 < ωk < 2/ρ(Ak), where ρ(Ak) is the spectral

D
ow

nl
oa

de
d 

07
/0

4/
21

 to
 1

95
.2

9.
12

6.
15

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2218 O. MULITA, S. GIANI, AND L. HELTAI

0 5 10 15 20 25 30

10−4

10−3

10−2

Iteration count

R
es

id
u

al
n

o
rm

0 5 10 15 20 25 30

10−2.6

10−2.4

10−2.2

10−2

10−1.8

Iteration count

E
st

im
a
to

r

Fig. 3.1. Algebraic residual `2-norm (left) and error estimator (right) for intermediate cycles
of the classical AFEM algorithm when using Richardson iteration without preconditioner as a solver,
with prolongation from the previous solution as starting guess. Darker lines correspond to earlier
cycles. Only the first 30 iterations are shown.

radius of Ak. The optimal choice of the parameter ωk is in this case ωk = 1/ρ(Ak)
(see, e.g., [20, 32]).

The high frequency components of the error are reduced by a factor which is
close to zero, while the low frequency components of the error are left substantially
unaltered. The high frequencies are also the ones that have a greater influence on
classical a posteriori error estimators, justifying the S-AFEM algorithm.

To show the effect of the smoothing iterations on the a posteriori error estimator,
we consider as an example case the Peak problem in two dimensions as described in
subsection 4.1, and we apply ten cycles of the classical AFEM algorithm using non-
preconditioned Richardson iterations for the algebraic resolution of the system with
initial guess given by the prolongation of the previous approximation for each cycle.

In Figure 3.1 we plot the `2-norm of the residual r
(`)
k := Ake

(`)
k and the value of

the a posteriori error estimator J(u`k) for all cycles as the Richardson iteration count
` increases from 1 to 30.

The same behavior is present in every refinement cycle: the first few Richardson
iterations induce a rapid drop in the residual norm (due to convergence of the highly
oscillatory terms in the solution), while the remaining iterations converge very slowly,
corresponding to the convergence speed of the low frequencies in the solution (typical
of Richardson iterations). The estimator, on the other hand, stagnates after very few
Richardson iterations (around two or three), suggesting that J(u`h) is almost the same
as J(uh) for ` ≥ 3, i.e., the error estimator is mainly affected by the highly oscillatory
components of the discrete algebraic solution u`h.

In this respect, classical results of a posteriori error analysis do not provide sharp
bounds for the estimator evaluated on the smoothed algebraic approximation J(u`h),
and this closeness remains an open problem.

One can combine the upper bound (3.12) with a global lower bound [11] of the
estimator evaluated on a generic vh, i.e.,

(3.16) J2(vh) ≤ C?(|u− vh|21 + osc2) ∀vh ∈ Vh,

to relate J(u`h) with J(uh). However, the result (proved in the following lemma)
remains a worst-case estimate (similar to (3.14)) and fails to capture the behavior
that we observe, for example, in Figure 2.1, where J(uh) and J(u`h) are substantially
equivalent.

Lemma 3.1. There exist positive constants C1, C2, C3 that only depend on the
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minimum angle of the triangulation, on Ω, and on Γ, and that are independent of
f, u, uh, and of the mesh-sizes hT such that

(3.17) J2(vh) ≤ C1J
2(uh) + C2|uh − vh|21 + C3osc2 ∀vh ∈ Vh.

Proof. For a given function vh ∈ Vh, we decompose u−vh = (u−uh) + (uh−vh),
and we apply the equality |u − vh|21 = |u − uh|21 + |uh − vh|21 (see, e.g., [24]) to the
lower bound (3.16):

(3.18)

J2(vh) ≤ C?(|u− vh|21 + osc2)

= C?(|u− uh|21 + |uh − vh|21 + osc2)

≤ C?(C?2(osc2 + J2(uh)) + |uh − vh|21 + osc2)

= C?C
?2J2(uh) + C?|uh − vh|21 + C?(C

?2 + 1)osc2

= C1J
2(uh) + C2|uh − vh|21 + C3osc2,

where we have used the upper bound (3.12) in (3.18).

If we apply Lemma 3.1 with vh = u`h, we obtain an upper bound on J2(u`h) in
terms of J2(uh) and of the algebraic error. A similar result involving the full estimator
η(u`h) can be found in [4].

It is still unclear how to improve the upper bound (3.17) to explain why J(u`h)
and J(uh) are as close as the numerical evidence suggests. What remains to be proved
is that a sharper estimate on the constant C2 of (3.17) may be obtained, that depends
on the frequency content of vh, showing that C2 is small when vh = u`h stems from a
smoothing iteration, bringing J2(uh) close to J2(u`h) even though |u`h−uh|21 is in fact
not small at all.

What can be done, however, is an estimate of the evolution of |u`h − uh|1 in the
intermediate steps of S-AFEM, exploiting classical results of multigrid analysis. The
following theorem provides such result when the smoothing iteration is performed
using the Richardson method.

Theorem 3.2 (algebraic error propagation in S-AFEM). Let e
(`)
k := uk − u`k

denote the algebraic error after ` smoothing iterations at step k of S-AFEM for k =
2, . . . , k̄ − 1. Let a1 = 0, and let

(3.19) ak+1 := uk+1 − Ik+1
k uk ∈ RNk+1 , k = 1, . . . , k̄ − 1,

denote the difference between the exact algebraic solution uk+1 at level k + 1 and the
prolongation to level k + 1 of the exact algebraic solution uk at level k. Then, the
following error propagation formula holds true:

e
(`)
k+1 = Mk+1

`(ak+1 + Ik+1
k e

(`)
k ) for k = 1, . . . , k̄ − 1.(3.20)

Proof. In the Prolongate step of S-AFEM, the outcome u
(`)
k of the Smooth pro-

cedure at step k is prolongated to step k + 1 and used as an initial guess in the
Richardson iteration at step k + 1. We can write

(3.21)
u

(0)
k+1 = Ik+1

k u
(`)
k

= Ik+1
k uk − Ik+1

k e
(`)
k
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A2220 O. MULITA, S. GIANI, AND L. HELTAI

and therefore express the initial error at step k + 1 as

(3.22)

e
(0)
k+1 = uk+1 − u

(0)
k+1

= uk+1 − Ik+1
k uk + Ik+1

k e
(`)
k

= ak+1 + Ik+1
k e

(`)
k .

By applying directly the property of the error propagation formula for Richardson
iterations, we obtain the final algebraic error at level k + 1:

(3.23)
e

(`)
k+1 = Mk+1

`e
(0)
k+1

= Mk+1
`(ak+1 + Ik+1

k e
(`)
k ),

which proves the recursive formula.

Theorem 3.2 shows that the nature of the algebraic error in S-AFEM is the
result of ` smoothing iterations applied to a vector that accumulates the (smoothed)
prolongation of the exact algebraic solution coming from step zero.

The rationale behind S-AFEM is then that in the first step we perform a full
Solve, resulting in a negligible algebraic error, and the only components of the error
that we are introducing when prolongating from step k to step k+1 are high frequency
errors (introduced by local refinement). These, however, are reduced very quickly by
` steps of smoothing iterations.

The residual algebraic error that persists as S-AFEM proceeds (clearly visible in
Figure 2.1) seems not to have a detrimental effect on J(u`h). Such an algebraic error
is probably confined on medium to low frequencies and shows no noticeable effect on
the Estimate and Mark steps of S-AFEM.

Although the value we plot in Figure 3.1 for the estimator is a global one and
gives no information on the distribution of the local estimator on the grid, it is a good
hint that the overall behavior of such a distribution will not be changing too much
after the first few Richardson iterations. We show some numerical evidence that this
is actually the case in the numerical validation provided in section 4.

To summarize the idea behind S-AFEM, we argue that in the intermediate AFEM
cycles it is not necessary to solve exactly the discrete system. What matters instead is
to capture accurately the highly oscillatory components of the discrete approximation.
Low frequency components may have an influence on the error estimator; however,
this is mostly a global influence that has a small effect on the cells that will actually
be marked for refinement in the Mark step. As an example, consider Figure 4.11,
where a Peak problem in 3D is solved using both AFEM and S-AFEM. The estimator
evaluated on u`h in this case is farther away from the one evaluated on uh w.r.t. the
same problem in two dimensions, but the convergence rate of the solution obtained
with the sequence of grids constructed with S-AFEM is still the optimal one and is
comparable to the one obtained with AFEM at a fraction of the computational cost.

4. Numerical validation. We consider a class of drift-diffusion problems of the
following form:

(4.1)
−∆u+ β · ∇u = f in Ω,

u = ug on ∂Ω

in two and three dimensions.
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We compare the classical AFEM algorithm with S-AFEM based on three different
smoothing strategies: Richardson iterations (Richardson), conjugate gradient itera-
tions (CG), and generalized minimal residual iterations (GMRES) in the symmetric
case (β = 0), and GMRES alone in the nonsymmetric case (β 6= 0), and for different
discretization degrees.

We test two classical experiments used to benchmark AFEMs when β is zero, and
a simple drift-diffusion problem with constant transport term β to test S-AFEM in
general drift-diffusion problems.

The numerical results presented in this paper were realized using a custom C++

code based on the deal.II library [3, 6, 7] and on the deal2lkit library [33].
The open-source code is available on a public repository at https://github.com/luca-
heltai/sa-pinvit. In theMark step, we use the classical Dörfler marking strategy [18]:
for any level k we mark for refinement the subset of elements

(4.2) Mk := {T ∈ Tk : ηT ≥ L},

where L is a threshold error, defined as the largest value such that

(4.3) Θ
∑
T∈Tk

η2
T ≤

∑
T∈Mk

η2
T .

The parameter Θ is such that 0 ≤ Θ ≤ 1, where Θ = 1 corresponds to an almost
uniform refinement, while Θ = 0 corresponds to no refinement. In our numerical tests,
unless otherwise stated, we set Θ = 0.3. The refinement strategy that we adopt in
this work is based on the use of hanging nodes [9].

The results presented in this section are a subset of the full campaign of simula-
tions presented in [27].

4.1. Two-dimensional examples: Pure diffusion, bilinear case, Richard-
son smoother.

Smooth domain, peak right-hand side. The first example we consider consists in
solving the model problem with no transport term (β = 0) on a square domain, with
a custom forcing term that contains a peak in a specified point in the domain, forcing
the exact solution to be

(4.4) u(x, y) = x(x− 1)y(y − 1)e−100
(

(x−0.5)2+(y−0.117)2
)
,

as shown in Figure 4.1.
L-shaped domain, smooth right-hand side. In the second 2D test case in pure

diffusion, we consider an L-shaped domain, i.e., a square where the upper right corner
is removed, and the reentrant corner coincides with the origin. No forcing term is
added to the problem, but the boundary conditions are set so that the following exact
solution is obtained (when expressed in polar coordinates):

(4.5) u(r, θ) = r2/3 sin

(
2θ + 5π

3

)
,

as shown in Figure 4.2.
In both cases, we apply ten cycles of classical AFEM and of S-AFEM, respectively.

For the AFEM algorithm, we use the CG method as an iterative solver, with an
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Fig. 4.1. Solution to the Peak problem in 2D (4.4).

Fig. 4.2. Solution to the L-shaped domain problem in 2D (4.5).

algebraic multigrid preconditioner (AMG), and we iterate until the `2-norm of the
residual is below a tolerance of 10−12 for each cycle. For S-AFEM, we modify the
intermediate cycles, and we only apply three Richardson iterations. For reference, we
report a comparison between the cells marked for refinement by AFEM and S-AFEM
after four cycles for the Peak problem in Figure 4.3 and after nine cycles for the
L-shaped domain problem in Figure 4.4.
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S-AFEM A2223

Fig. 4.3. Comparison between the cells marked for refinement in AFEM (left) and S-AFEM
(right) after 9 cycles for the Peak problem in 2D.

Fig. 4.4. Comparison between the cells marked for refinement in AFEM (left) and S-AFEM
(right) after 5 cycles for the L-shaped domain problem in 2D.

In both cases, the sequence of generated grids by AFEM and S-AFEM is similar
(although not identical), and the accuracy of the final solution is comparable.

In Figures 4.5 and 4.7 we compare the values of the global estimators J(uh)
and J(u`h) and of the H1 seminorm of the total errors for each cycle for the Peak
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Fig. 4.5. Values of the total error in the H1 seminorm and of the error estimator for each
loop of the classical AFEM (|u − uh|1 and J(uh)) and S-AFEM with ` = 3 smoothing iterations
(|u− u`

h|1 and J(u`
h)) for the Peak problem in 2D.
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Fig. 4.6. Values of the total error |u − uh|1 and error estimator J(uh) for the Peak problem
in 2D, using classical AFEM.

problem, and for the L-shaped domain problem, respectively, when using S-AFEM.
For reference, Figures 4.6 and 4.8 show the error and the estimator in the classical
AFEM algorithm for the two examples. Notice that the first step of AFEM and
the first step of S-AFEM are the same. The last step in the S-AFEM case shows
comparable results as in the AFEM algorithm for both examples.

Notice that in S-AFEM the value of the global estimator is almost the same as the
one that would be obtained by solving using CG preconditioned with AMG (J(uh)
in Figures 4.5 and 4.7), showing that in the 2D setting the error estimator (3.11)
is mainly affected by the high frequencies of the discrete solution, which are well
captured with just a few Richardson iterations. On the other hand, the total error
increases in the intermediate cycles, due to the algebraic error that has been accu-
mulated by applying smoothing iterations instead of solving the algebraic problem
until convergence, as quantified by Theorem 3.2. This error measures the distance
between the exact algebraic solution and the smooth nonoscillatory components of the
approximate solution that are not captured by Richardson iteration and have little
or no influence on the error estimator, and therefore on the generated grid. After ten
cycles, we solve the algebraic problem until convergence using CG and AMG, as in
the first cycle, and we obtain a solution whose error is controlled by the estimator, as
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Fig. 4.7. Values of the total error H1 seminorm and of the error estimator for each loop of
the classical AFEM (|u− uh|1 and J(uh)) and S-AFEM with ` = 3 smoothing iterations (|u− u`

h|1
and J(u`

h)) for the L-shaped domain problem in 2D.
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Fig. 4.8. Values of the total error |u−uh|1 and error estimator J(uh) for the L-shaped domain
problem in 2D, using classical AFEM.

expected.

4.2. Three-dimensional examples: Pure diffusion, bilinear case, Richard-
son smoother.

Smooth domain, peak right-hand side. The first 3D test case that we propose is
a model problem on a cube domain, where the forcing term contains a peak in a
specified point that forces the exact solution to be given by

(4.6) u(x, y, z) = x(x− 1)y(y − 1)z(z − 1)e−100
(

(x−0.5)2+(y−0.117)2+(z−0.331)2
)
,

as shown in Figure 4.9.
Fichera corner domain, smooth right-hand side. In the second 3D example, we

consider the classic Fichera corner domain, i.e., a cube where the upper right corner is
removed and the reentrant corner coincides with the origin. We set the exact solution
to be

(4.7) u(r, θ, φ) = r1/2,

and we add a forcing term that induces the above exact solution as shown in Fig-
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Fig. 4.9. Solution to the Peak problem (4.6) in 3D.

Fig. 4.10. Solution to the Fichera domain problem (4.7) in 3D.

ure 4.10.
In both examples, the estimator applied to the algebraic solution after three

smoothing steps (see Figures 4.11 and 4.13) seems to be more sensitive to the low
frequency content of u`h.
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Fig. 4.11. Values of the total error H1 seminorm and of the error estimator for each loop of
the classical AFEM (|u− uh|1 and J(uh)) and S-AFEM with ` = 3 smoothing iterations (|u− u`

h|1
and J(u`

h)) for the Peak problem in 3D.
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Fig. 4.12. Values of the total error |u− uh|1 and error estimator J(uh) for the Peak problem
in 3D, using classical AFEM.

For reference, Figures 4.12 and 4.14 show the error and the estimator in the
classical AFEM algorithm for the two examples. In the 3D case Lemma 3.1 and
Theorem 3.2 provide a sharper estimate, and we do not observe the same behavior as
in the 2D case (i.e., J(u`h) does not seem to remain close to J(uh)). Nonetheless, the
difference in accuracy at the final step between AFEM and S-AFEM is negligible also
in this case, showing that the differences in the refinement patterns between AFEM
and S-AFEM remain small and do not hinder the final accuracy.

4.3. Robustness with respect to approximation degree, smoothing al-
gorithms, and number of smoothing steps. We now consider different variants
of our S-AFEM algorithm, where we apply a different number of smoothing iterations,
and different smoother types in the intermediate steps (respectively, Richardson iter-
ation, CG, and GMRES smoothers), for high order finite element discretizations of
the pure diffusion case.

We apply both AFEM and S-AFEM to the 2D Corner problem (4.5), and we
show a comparison for different fixed FEM degrees, as deg = 1, 2, 3, and for different
choices of smoothers for the intermediate cycles, respectively, Richardson iteration,
the CG method, and the GMRES method. For all cases, we plot the value of the
error estimator J and the value of the | · |1 seminorm of the total error as the number
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Fig. 4.13. Values of the total error H1 seminorm and of the error estimator for each loop of
the classical AFEM (|u− uh|1 and J(uh)) and S-AFEM with ` = 3 smoothing iterations (|u− u`

h|1
and J(u`

h)) for the Fichera corner domain problem in 3D.
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Fig. 4.14. Values of the total error |u− uh|1 and error estimator J(uh) for the Fichera corner
problem in 3D, using classical AFEM.

of smoothing iterations ` increases from 1 to 5 in Figures 4.15–4.23.
For bilinear finite elements (cf. Figures 4.15–4.17), all considered smoothers

(Richardson, CG, and GMRES) turned out to be good. In all cases, the estima-
tor J(u`h) with ` = 1, 3, 5 exhibits the same behavior (same order of convergence) of
the estimator J(uh), showing that one or two smoothing iterations would be enough
for the intermediate cycles. When we look at the total error, the CG behaves better,
leading to less error accumulated at the intermediate levels as shown in Figure 4.16,
while Richardson behaves the worst (cf. Figure 4.15). Nevertheless, in all cases the
accuracy of the final approximation for the last cycle obtained by S-AFEM is almost
the same as the one that is generated by classical AFEM.

As the polynomial degree increases, we observed that the Dörfler marking strategy
does not provide good refinement patterns for the different problems, unless a fine
tuning is made on the marking parameter. Using the same value for Θ used for degree
one, no cells are marked for refinement in higher order finite elements, making the
choice for this parameter too problem dependent and polynomial degree dependent.
As an alternative marking strategy, we opted for a marking criterion where a fraction
of 1/3 of the cells with the largest error indicators are selected for refinement, leading
to an increase of the number of degrees of freedom of roughly a factor of two in each
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S-AFEM A2229
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Fig. 4.15. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the corner problem in 2D. The FEM discretization degree is deg = 1, and
we execute 10 cycles of AFEM and S-AFEM with ` = 1, 3, and 5 iterations of Richardson
method as a smoother. The initial global refinement is 3 and the Dörfler parameter for the
marking of the cells is Θ = 0.3.

refinement cycle, independently of the problem type.
For deg = 2, all smoothers work well, exhibiting a quasi-optimal convergence

order compared to classical AFEM, and the accuracy of the final approximation is
almost the same, as shown in Figures 4.18, 4.19, and 4.20.

For deg = 3 and higher (only deg = 3 is shown here; see [27] for the full set of
simulations), the Richardson iteration turns out to be a bad smoother for S-AFEM,
unless further tuning of the relaxation parameter ω is performed. Although J(u`h)
seems to exhibit the same behavior as J(uh), as the smoothing iteration count `
increases, contrarily to what one might expect, the value of the estimator increases
with increasing degrees of freedom (Figure 4.21), showing that our selection of ω may
not be correct for these problems, and we should estimate in a better way the spectral
radius of the final matrix A and modify ω accordingly. In our experience, Richardson’s
method performs badly for higher order elements.

On the other hand, both the CG method and the GMRES method turn out to be
good smoothers for S-AFEM, without the need to tune any parameter, as evidenced
in Figures 4.19, 4.20, 4.22, and 4.23. In all cases, in fact, J(u`h), for ` ≥ 2, shows
the same optimal convergence rate as the J(uh) obtained by the classical AFEM, and
although the total error at the intermediate cycles is evident, the accuracy of the final
approximations is almost the same.
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A2230 O. MULITA, S. GIANI, AND L. HELTAI
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Fig. 4.16. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the corner problem in 2D. The FEM discretization degree is deg = 1, and
we execute 10 cycles of AFEM and S-AFEM with ` = 1, 3, and 5 iterations of CG method
as a smoother. The initial global refinement is 3 and the Dörfler parameter for the marking
of the cells is Θ = 0.3.
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Fig. 4.17. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the corner problem in 2D. The FEM discretization degree is deg = 1, and we
execute 10 cycles of AFEM and S-AFEM with ` = 1, 3, and 5 iterations of GMRES method
as a smoother. The initial global refinement is 3 and the Dörfler parameter for the marking
of the cells is Θ = 0.3.

4.4. Two-dimensional drift-diffusion problem. We proceed with testing the
accuracy of S-AFEM for a class of drift-diffusion problems where the transport term
β is nonnegligible. We consider a 2D problem, where β = (β, β)T , and the scalar
parameter β takes the values 1, 10, and 50. In particular, we impose boundary
conditions and forcing terms so that the exact solution is

(4.8) x+ y +
−eβx + 1

eβ − 1
− eβy − 1

eβ − 1
.
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S-AFEM A2231
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Fig. 4.18. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the corner problem in 2D. The FEM discretization degree is deg = 2, and
we execute 10 cycles of AFEM and S-AFEM with ` = 1, 3, and 5 iterations of Richardson
method as a smoother. The initial global refinement is 3 and we select a fraction of 1/3 of
cells for refinement at each cycle.
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Fig. 4.19. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the corner problem in 2D. The FEM discretization degree is deg = 2, and
we execute 10 cycles of AFEM and S-AFEM with ` = 1, 3, and 5 iterations of CG method
as a smoother. The initial global refinement is 3 and we select a fraction of 1/3 of cells for
refinement at each cycle.

Since the linear system associated to problem (4.1) when β 6= 0 is not symmet-
ric, we use as a solver and as a smoother the GMRES method (cf., e.g., [24]). We
apply classic AFEM and S-AFEM for both bilinear and higher order finite element
discretizations for deg = 1, 2, 3. We plot the value of the estimator J and the value
of the | · |1 seminorm of the total error, using a fixed number of GMRES iterations as
a smoother, with ` = 1, 3, 5.

For all the cases where the transport term β = (1, 1)T is small, the behavior of
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A2232 O. MULITA, S. GIANI, AND L. HELTAI
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Fig. 4.20. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the corner problem in 2D. The FEM discretization degree is deg = 2, and we
execute 10 cycles of AFEM and S-AFEM with ` = 1, 3, and 5 iterations of GMRES method
as a smoother. The initial global refinement is 3 and we select a fraction of 1/3 of cells for
refinement at each cycle.
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Fig. 4.21. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the corner problem in 2D. The FEM discretization degree is deg = 3, and
we execute 10 cycles of AFEM and S-AFEM with ` = 1, 3, and 5 iterations of Richardson
method as a smoother. The initial global refinement is 3 and we select a fraction of 1/3 of
cells for refinement at each cycle.

the estimator for S-AFEM is exactly the same as the one given by AFEM, for the case
deg = 1, as shown in Figure 4.24, while it approaches it as the GMRES smoothing
iteration count increases for higher order FEM discretizations (i.e., for deg ≥ 2),
as shown in Figures 4.25 and 4.26. However, in all cases, the accuracy of the final
approximations is almost the same.

For the choices of the transport term β = (10, 10)T (corresponding to moderate
transport) and β = (50, 50)T (corresponding to large transport), again the behavior
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S-AFEM A2233
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Fig. 4.22. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the corner problem in 2D. The FEM discretization degree is deg = 3, and
we execute 10 cycles of AFEM and S-AFEM with ` = 1, 3, and 5 iterations of CG method
as a smoother. The initial global refinement is 3 and we select a fraction of 1/3 of cells for
refinement at each cycle.
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Fig. 4.23. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the corner problem in 2D. The FEM discretization degree is deg = 3, and we
execute 10 cycles of AFEM and S-AFEM with ` = 1, 3, and 5 iterations of GMRES method
as a smoother. The initial global refinement is 3 and we select a fraction of 1/3 of cells for
refinement at each cycle.

of the estimator for S-AFEM is exactly the same as that given by AFEM for the case
deg = 1, as shown in Figures 4.27 and 4.30, while it approaches it as the GMRES
smoothing iteration count increases for higher order FEM discretizations, as evidenced
in Figures 4.28, 4.29, 4.31, and 4.32. In all cases, however, the accuracy of the final
approximations is almost the same, showing that S-AFEM turns out to be a good
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A2234 O. MULITA, S. GIANI, AND L. HELTAI
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Fig. 4.24. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the drift-diffusion problem in 2D, with transport β = (1, 1). The FEM
discretization degree is deg = 1, and we execute 10 cycles of AFEM and S-AFEM with
` = 1, 3, and 5 iterations of GMRES method as a smoother. The initial global refinement is
3 and the Dörfler parameter for the marking of the cells is Θ = 0.3.
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Fig. 4.25. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the drift-diffusion problem in 2D, with transport β = (1, 1). The FEM
discretization degree is deg = 2, and we execute 10 cycles of AFEM and S-AFEM with
` = 1, 3, and 5 iterations of GMRES method as a smoother. The initial global refinement is
3 and we select a fraction of 1/3 of cells for refinement at each cycle.

method also for drift-diffusion problems.

D
ow

nl
oa

de
d 

07
/0

4/
21

 to
 1

95
.2

9.
12

6.
15

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S-AFEM A2235
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Fig. 4.26. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the drift-diffusion problem in 2D, with transport β = (1, 1). The FEM
discretization degree is deg = 3, and we execute 10 cycles of AFEM and S-AFEM with
` = 1, 3, and 5 iterations of GMRES method as a smoother. The initial global refinement is
3 and we select a fraction of 1/3 of cells for refinement at each cycle.
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Fig. 4.27. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the drift-diffusion problem in 2D, with transport β = (10, 10). The FEM
discretization degree is deg = 1, and we execute 10 cycles of AFEM and S-AFEM with
` = 1, 3, and 5 iterations of GMRES method as a smoother. The initial global refinement is
3 and the Dörfler parameter for the marking of the cells is Θ = 0.3.D
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A2236 O. MULITA, S. GIANI, AND L. HELTAI
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Fig. 4.28. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the drift-diffusion problem in 2D, with transport β = (10, 10). The FEM
discretization degree is deg = 2, and we execute 10 cycles of AFEM and S-AFEM with
` = 1, 3, and 5 iterations of GMRES method as a smoother. The initial global refinement is
3 and we select a fraction of 1/3 of cells for refinement at each cycle.
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Fig. 4.29. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the drift-diffusion problem in 2D, with transport β = (10, 10). The FEM
discretization degree is deg = 3, and we execute 10 cycles of AFEM and S-AFEM with
` = 1, 3, and 5 iterations of GMRES method as a smoother. The initial global refinement is
3 and we select a fraction of 1/3 of cells for refinement at each cycle.D
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S-AFEM A2237
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Fig. 4.30. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the drift-diffusion problem in 2D, with transport β = (50, 50). The FEM
discretization degree is deg = 1, and we execute 10 cycles of AFEM and S-AFEM with
` = 1, 3, and 5 iterations of GMRES method as a smoother. The initial global refinement is
3 and the Dörfler parameter for the marking of the cells is Θ = 0.3.
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Fig. 4.31. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the drift-diffusion problem in 2D, with transport β = (50, 50). The FEM
discretization degree is deg = 2, and we execute 10 cycles of AFEM and S-AFEM with
` = 1, 3, and 5 iterations of GMRES method as a smoother. The initial global refinement is
3 and we select a fraction of 1/3 of cells for refinement at each cycle.D
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A2238 O. MULITA, S. GIANI, AND L. HELTAI
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Fig. 4.32. Value of the error estimator J (left) and of the total error in the | · |1 semi-
norm (right) for the drift-diffusion problem in 2D, with transport β = (50, 50). The FEM
discretization degree is deg = 3, and we execute 10 cycles of AFEM and S-AFEM with
` = 1, 3, and 5 iterations of GMRES method as a smoother. The initial global refinement is
3 and we select a fraction of 1/3 of cells for refinement at each cycle.
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Table 4.1
Comparison of the computational cost of the solution stage for ten cycles of adaptive refinement

using classical AFEM and S-AFEM on bilinear elements for the pure diffusion case.

Peak 2D L-shaped 2D Peak 3D Fichera 3D
First and last solve (same for AFEM and S-AFEM) 0.0187s 0.0601s 32s 101s

AFEM Intermediate solves (CG) 0.0663s 0.219s 76.4s 185s
S-AFEM Intermediate smoothing steps (Richardson) 0.005s 0.00892s 0.252s 0.426s
S-AFEM intermediate speedup 13.26 24.6 303.7 434.3
S-AFEM total speedup 3.59 4.045 3.361 2.819

4.5. Computational costs. In Table 4.1 we show a comparison of the compu-
tational cost associated to the classical AFEM and to the smoothed AFEM in the
pure diffusion case for the first four examples we presented in this section.

The results were obtained on a 2.8 GHz Intel Core i7 with 4 cores and 16GB of
RAM, using MPI parallelization on all 4 cores.

Table 4.1 only shows the comparison between AFEM and S-AFEM in the solve
phase, where S-AFEM is always faster than AFEM, offering an average speedup of a
factor three. In the table we compare the computational cost of all intermediate cycles
in S-AFEM (“Intermediate smoothing steps (Richardson)” in the table), with the
corresponding computational cost for standard AFEM (“Intermediate solves (CG)”
in the table). The first and last solves are the same in the two algorithms and are
reported to provide a scaling with respect to the total computational cost of the
solution phase in the program. Other phases (like graphical output, mesh setup,
assembling setup, and error estimation) are not shown since they are identical in the
two algorithms.

5. Conclusions. This work proposes a new smoothed algorithm for adaptive
finite element methods (S-AFEM), inspired by multilevel techniques, where the exact
algebraic solution in intermediate steps is replaced by the application of a prolongation
step, followed by a fixed number of smoothing steps.

The main argument behind the S-AFEM algorithm is that the combined ap-
plication of the Estimate–Mark steps of AFEM is largely insensitive to substantial
algebraic errors in low frequencies. Indeed, even though the intermediate solutions
produced by S-AFEM are far from the exact algebraic solutions, we show that their
a posteriori error estimation produces a refinement pattern for each cycle that is sub-
stantially equivalent to the one that would be generated by classical AFEM, leading
roughly to the same set of cells marked for refinement.

Our strategy is based on solving exactly the problem at the coarsest level and at
the finest level, and then applying the Estimate–Mark–Refine steps directly to the
result of a smoother (Smooth) in intermediate levels.

We provide numerical evidence that the S-AFEM strategy is competitive in cost
and accuracy by considering some variants of our algorithm, where different smoothers
are used in the intermediate cycles (respectively, the Richardson iteration, the CG
method, and the GMRES method).

We conclude that, in general, CG and GMRES act as robust smoothers in S-
AFEM also for high order approximations, and for nonsymmetric problems, like, for
example, drift-diffusion problems with dominant transport.

Our numerical evidence shows that two or three smoothing iterations are enough
for the 2D case, while 3D problems require from five up to seven smoothing iterations
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in order to produce good final approximations, independently of the polynomial degree
of the finite element approximation.

We analyzed the error propagation properties of the S-AFEM algorithm and pro-
vided a bound on the a posteriori error estimator applied to the approximated alge-
braic solution. The results are not sharp, and do not provide a definitive answer on
the convergence of the final S-AFEM solution to the AFEM one, but could be used
as a ground state for further investigation, which is currently ongoing.

Acknowledgment. The first author is thankful to Durham University for the
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