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CHAPTER I 
 

 

INTRODUCTION 

Disturbance is an influential and widespread phenomenon affecting the 

composition, dynamics, and function of vegetation communities across the globe 

(Attiwill 1994; Franklin et al. 2002; Thom and Seidl 2016). In forest and savanna 

ecosystems, fire, tree-fall, insects, wind, weather events, and other disturbances operate at 

various sizes, frequencies, and intensities forming disturbance regimes that are 

characteristic to these systems. Historically, these disturbance regimes have occurred 

naturally, determined by a number of endogenous and exogeneous factors (Attiwill 

1994). However, anthropogenic disturbances, suppression of disturbances, and 

modifications to the landscape are causing disruptions to the intensity and frequency of 

natural disturbance regimes (Thom and Seidl 2016), often having consequences for the 

composition and function of vegetation communities.  

Land managers are more frequently implementing adaptive management, building 

upon foundational knowledge of the natural disturbance regime of an area, to maintain 

forest biodiversity and increase community function and ecosystem services provided. 

The successful management of a forest system can become very complex when managers 

account for, or try to replicate, the system’s natural disturbance regimes (Thom and Seidl 

2016). Despite this, many researchers argue that forestry practices and management need 
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to more closely mimic natural disturbance patterns in order to manage heterogeneous, 

multi-functional landscapes for biodiversity, ecosystem services, and ecosystem function 

(Attiwill 1994; Bengtsson et al. 2000; Palik et al. 2002).  

Functional diversity serves as a link between vegetation diversity and ecosystem 

functioning (Díaz and Cabido 2001) and is a measure of the variation in organismal traits 

that determine the niches in a community and influence overall ecosystem functioning 

(Tilman 2001). Metrics of species diversity, such as richness and evenness, have 

frequently been used as primary measures of biodiversity; however recent works of 

literature suggest that functional diversity has emerged equally as a component of 

biodiversity and a valuable measure of ecosystem productivity and resilience to 

disturbance (Petchey et al. 2004; Cadotte et al. 2011). Measuring the functional diversity 

of a community relies on the measurement of species’ functional traits within it. In plant 

communities, functional traits are associated with a plant’s ability to acquire, utilize, and 

conserve resources and influence the establishment, survival, and fitness of species 

(Reich et al. 2003).  

Traditional field data collection methods have been used to collect data on 

vegetation functional traits of forest communities to assess functional diversity at small 

scales. Limitations arise at larger scales due to the time, effort, and costs required to 

collect detailed functional trait data. Recently, remote sensing techniques have been used 

to supplement field data collection methods to reduce costs and efficiently collect data at 

finer spatial and temporal resolutions for functional diversity studies.  
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Remote sensing techniques can be used to collect data over larger spatial extents 

and can offer cost-effective methods to monitor biodiversity in a variety of landscapes 

(Cavender-Bares et al. 2017; Jetz et al. 2016). Both passive and active remote sensing 

techniques of data collection have allowed scientists to measure functional traits of 

vegetation, including traits associated with plant biochemistry, physiology, and 

morphology, such as leaf chlorophyll content and foliage height diversity (Schneider et 

al. 2017). Utilizing remote sensing methodology, researchers can continue to fill gaps in 

knowledge of ecosystem functional diversity at a global scale (Jetz et al. 2016). 

While numerous studies have demonstrated the potential for using remote sensing 

methods to assess functional diversity of vegetation communities across a landscape (Jetz 

et al. 2016; Asner et al. 2017; Schneider et al. 2017), the relationships between functional 

diversity, management strategies, landscape heterogeneity, and resilience are not fully 

understood. The objective of this thesis research is to utilize environmental remote 

sensing techniques to examine the effects of forest management on functional diversity of 

vegetation. In this thesis, I present methodology utilizing two types of remotely sensed 

data, specifically multispectral imagery and light detection and ranging (LiDAR), to 

assess and map physiological and morphological functional diversity across a managed 

forest-savanna landscape in southeastern Oklahoma. Utilizing multispectral imagery and 

LiDAR point clouds, I calculate vegetation indices and morphological traits to assess 

three different metrics of functional diversity - functional richness (FRic), functional 

evenness (FEve), and functional divergence (FDiv). The results of this study provide 

insight on relationships between functional diversity and forest management practices 

such as prescribed fire, selective hardwood thinning, and timber harvest. The 
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methodology I utilize in the study serves as a basis for future research on the functional 

diversity and resilience of managed, heterogeneous landscapes across the globe. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

Natural disturbance regimes are known to be important drivers of forest 

ecosystem dynamics (Franklin et al. 2002; Kuuluvainen and Aakala 2011; Thom and 

Seidl 2016). Disturbance within forest communities and ecosystems is fundamental to the 

species composition, resilience, and overall function of that system (Bengtsson et al. 

2000). Across the globe, many disturbance regimes have been affected by climate change 

and anthropogenic modifications to the landscape (Thom and Seidl 2016). This 

intensification likely has implications for ecosystem diversity, resilience, and function, 

many of which are not fully understood. The role of specialized management is essential 

to maintaining stable ecosystems and communities for both wildlife and humans. With 

this thesis research, I explore the role of management strategy in the functional diversity 

of a forest-savanna landscape using remote sensing techniques. I discuss natural and 

anthropogenic disturbance within forests and the implementation of management 

strategies to replicate it. In addition, I demonstrate the use of remotely sensed data to 

measure functional traits and diversity to assess the impacts of disturbance and 

management on forests. Understanding the role of management and monitoring of 

vegetation condition is essential in sustaining overall ecosystem biodiversity. 
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2.1 Role of Disturbance in Forest Systems 

Disturbance has been an important concept discussed in ecological literature and 

has played a role in various ecological theories, such as patch dynamics (White and 

Pickett 1985; Kane et al. 2011). Disturbance has been examined in a number of different 

ecosystems (Graham et al. 2009; Jorgenson et al. 2010), at various levels of organization 

(Spagnuolo et al. 2009; Hotes et al. 2010), and as an impact on numerous organisms 

(Binh et al. 2007; Dornelas 2010; Bicknell and Peres 2010). Despite its pervasiveness in 

the literature, the term is often broad and ill-defined in many studies (Dornelas et al. 

2010). Disturbance is, however, characterized as a localized, temporary event or events, 

defined by its occurrence in a given space at a specific time (Dornelas 2010). Ecological 

phenomena such as fire, disease, storms, floods, and land-clearing are disturbances that 

are well-known to the public. Under many circumstances, authors consider these 

disturbances to be a negative shift in demographic rates, defined as “events that cause 

mortality, displacement or damage individuals” (Sousa 1984) or “events that kill or cause 

loss of biomass” (Huston 1994). Despite this negative connotation in some of the 

literature, disturbance can be viewed as any shift in demographics, as disturbance can 

also release resources previously stored within living organisms and increase habitat 

heterogeneity of a landscape (White and Pickett 1985). For the purpose of this review, I 

use the inclusive definition from the foundational piece by White and Pickett (1985) for 

disturbance – “a discrete event that has a significant effect on community composition, 

structure, or function” to account for  shifts in community demographics that can occur in 

a vegetation community such as a forest.  
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Natural disturbance is a crucial driver of ecosystem structure and function in 

forests (Franklin et al. 2002; Thom and Seidl 2016). While many different types of 

disturbances occur in forest systems, including storms, wind, fire, insects, and disease, in 

this literature review I will be focusing on two disturbances: fire and tree-fall. Fire and 

tree-fall in forest communities are important disturbances that can have an effect on 

species composition, diversity, biomass, and overall ecosystem function (Attiwill 1994; 

Bengtsson et al. 2000; Thom and Seidl 2016). Extensive research and reviews of the 

literature demonstrate the role of these disturbances in forest dynamics and the spatial 

and temporal patterns in forested landscapes (Rykiel 1985; Oliver and Larson 1990; 

Attiwill 1994; Seidl et al. 2011).  

The history of fires in forested systems is well established, especially in North 

America pre-European settlement (Attiwill 1994). However, the role of fire in specific 

systems and conditions needs to be examined further. Fire is an exceptionally dynamic 

process with extensive variation in time and space; its effects can vary significantly based 

on the fire’s size, intensity, frequency, and time of year, among other conditions (Ryan 

2002; Franklin et al. 2003). A fire’s spread and intensity are largely dependent on the 

climate (temperature, moisture, etc.) and the quantity and quality of fuel (Attiwill 1994). 

Fire frequency can have impacts on regeneration strategies, while fire intensity and 

severity have consequences for plant survival, forest morphology, and regeneration (Ryan 

2002).  

In addition to fire, tree-fall is another influential disturbance with consequences 

for forest community morphology and species composition (Attiwill 1994). Tree-fall is 

strongly associated with gap dynamics, the process by which gaps in a forest canopy are 
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created and then filled (Brokaw and Busing 2000). The rate of tree-fall and the size of the 

gap from a single or multiple tree-falls changes light penetration through the canopy, 

allowing for greater variation in species and growth rate of individuals that colonize those 

spaces (Martínez-Ramos et al. 1988; Poulson and Platt 1989).  

Many studies indicate that disturbances such as tree-fall and fire can have serious 

implications on a forest’s natural dynamics (Attiwill 1994; Runkle 1985; Poulson and 

Platt 1989). Understanding how natural disturbance regimes and forest dynamics relate to 

anthropogenic disturbance and management practices is key to preserving biodiversity 

and overall ecosystem function in forested landscapes worldwide (Attiwill 1994; Nilsson 

and Ericson, 1997).  

 

2.2 Forest Management 

Organisms have adapted to the disturbance regimes that are characteristic of the 

forest type they inhabit (Bengtsson et al. 2000). However, with human-induced 

disturbance or suppression of disturbance, the intensity and frequency of these events are 

being altered (Thom and Seidl 2016). Anthropogenic modifications to disturbance 

patterns can cause drastic changes in these systems, and as a result, issues arise in 

developing successful management strategies for the area. Knowledge of disturbance in 

maintaining diversity is vital to the management of any forest system.  

Forests provide a variety of ecosystem services to humans such as timber 

production, protection against erosion, carbon storage, nutrient cycling, and air 

purification (Bengtsson et al. 2000; Palik et al. 2002). Management practices that are 
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implemented typically fall along a gradient of tradeoffs between maximizing biodiversity 

and the total ecosystem services that a forest can sustainably provide to humans (Palik et 

al. 2002). Consequently, the management of these systems becomes complex and 

successful forest management requires a robust understanding of natural disturbance 

regimes and how they drive ecosystem dynamics (Thom and Seidl 2016).  

Many researchers argue that forestry practices and management need to more 

closely mimic natural disturbance patterns (Attiwill 1994; Bengtsson et al. 2000; Palik et 

al. 2002). In many systems where fire was historically a major disturbance, managers are 

encouraged to use prescribed burning to restore more natural conditions (Bergeron et al. 

2002; Thom and Seidl 2016). However, managers must implement the correct intensity 

and frequency of fire or the results could be counterproductive. Selective thinning has 

been suggested to replace clear-cutting to maintain a sustainable timber harvest while 

partially mimicking a tree-fall disturbance in a natural system (Palik et al. 2002). While 

selective thinning creates gaps in the forest canopy, allowing increased light penetration, 

colonization of new species, and regeneration of individuals, it lacks the benefits of 

decomposing wood on the forest floor (Palik et al. 2002). Managing for timber 

production will inevitably cause some loss of natural dynamics, but many consider this 

tradeoff justifiable. Bengtsson et al. (2000) suggests that it will always be necessary to 

manage forests for both production and biodiversity. Monitoring how implemented 

management strategies affect forest communities and their diversity is vital to 

understanding their success.  
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2.3 Functional Diversity 

Biodiversity, or simply diversity, includes measures of both number and 

composition of species, phenotypes, genotypes, and other units of the landscape (Díaz 

and Cabido 2001). However, many people frequently associate diversity solely with 

species richness and overlook other measures such as functional diversity. Formally 

defined by Tilman (2001), functional diversity is the range in values of species traits that 

influence the operation and functioning of an ecosystem. Functional diversity, therefore, 

is understood as the differences in these traits amongst the species within a community. 

Due to its implications on ecosystem stability, productivity, and dynamics, functional 

diversity may be a more preferred method than traditional measures of species richness 

and composition (Díaz and Cabido 2001; Petchey and Gaston 2002; Roscher et al. 2013; 

McGill et al. 2006). 

Measuring the functional diversity of a community relies on the measurement of 

the functional traits of the species that comprise it. Cadotte et al. (2011) describe a 

functional trait as a measurable feature of an individual that has implications on the 

individual’s biological fitness. These traits are representative of the species’ niches and 

functions, suggesting that functional diversity represents the diversity of niches in a 

community or ecosystem (Petchey et al. 2004; Cadotte et al. 2011). In plant communities, 

functional traits influence the establishment, survival, and fitness of species and 

encompass a variety of chemical, physiological, and morphological characteristics of 

species (Reich et al. 2003). These traits are often associated with the ability of a plant to 

acquire, use, and conserve different resources (Reich et al. 2003; Jetz et al. 2016). While 

many studies examine a small number of traits specifically chosen to fit the needs of the 
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research project (Cingolani et al. 2005; Lohbeck et al. 2012; Roscher et al. 2013), 

Cornelissen et al. (2003) offer a much more complete list of plant functional traits, 

dividing them into whole-plant, leaf, stem, belowground, and regenerative categories.  

Often, the most direct functional traits are difficult to measure, requiring 

experimental studies or the quantification of attributes over extended periods of time. 

These traits are overtly termed “hard traits” by Weiher et al. (1999) because of their 

difficulty to measure, especially for the collective flora of a region. As a result, a number 

of other functional traits that are relatively easier to measure have become proxies for 

those hard traits. For example, relative growth rate of a plant is a hard functional trait, 

and specific leaf area (SLA) can be a proxy for this hard trait. SLA determines the ratio 

of leaf area to leaf dry mass, is associated with whole plant growth, and is much easier to 

quantify than its counterpart (Weiher et al. 1999; Liu et al. 2017).  

 To quantify the variation in functional trait data and assess functional diversity, 

researchers have employed a variety of statistical measures and indices. A number of 

studies utilize the idea of a multidimensional functional trait space for calculating metrics 

of functional diversity (Mouillot et al. 2013; Schneider et al. 2017). In this approach, 

traits correspond to axes, with values (i.e. pixels, points, or species) plotted in 

multivariate trait space. Researchers then use one or more metrics to measure the 

distribution of points within that functional space. Three commonly calculated metrics of 

functional diversity are functional richness, functional evenness, and functional 

divergence. Functional richness is a measure of the area or volume of functional space 

that is occupied (Villeger et al. 2008). Functional evenness, analogous to species 

evenness, quantifies the regularity of the point distribution within the functional space 
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occupied based on the minimum spanning tree among species in trait space (Villeger et 

al. 2008). Functional divergence is based on the divergence of abundance from the center 

of gravity of the occupied functional trait space (Villeger et al. 2008).    

 

2.4 Forest Monitoring via Remote Sensing Techniques 

Collecting data on physiological and morphological traits of a forest community 

is important to assess the results of various implemented management systems. 

Historically, researchers utilized field techniques and methods to measure the health and 

condition of forest stands. Timber cruising, one of the most traditional ways to collect 

data on vegetation morphology, gathers field measurements such as height, volume, total 

biomass, and density. Using a collection of simple tools such as a measuring tape, tree 

caliper, clinometer, prism, and angle gauge, foresters can collect data for a sample of 

random plots or quadrats. These methods provide stand-level estimates, and the field 

presence and time required for timber cruising can provide difficulties in collecting 

sufficient amounts of data. Many researchers look to the developing field of remote 

sensing for techniques that allow for more widespread monitoring of environmental 

change and vegetation health (Kerr and Ostrovsky 2003).  

Utilizing remote sensing techniques, plant biologists, ecologists, and natural 

resource managers alike can measure the morphology, phenology, physiology, and health 

of vegetation for broader spatial extents that is not feasible with field methods (Kerr and 

Ostrovsky 2003; Ustin and Gamon 2010). Advancements in sensor technology have 

allowed for finer spatial, spectral, radiometric, and temporal resolutions of data collected. 
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With the ability to collect data over large areas, remote sensing has furthered our 

understanding of biodiversity on a more global scale (Jetz et al. 2016).  

Both passive and active remote sensing techniques are methods that can 

effectively gather information on vegetation health and biodiversity. Passive remote 

sensing uses sensors that measure radiation that is naturally available, with the most 

common source of radiation being the sun. On the other hand, active remote sensing 

methods utilize sensors that provide their own source of energy sent in a pulse or wave 

and then measure the reflected radiation (Turner et al. 2003). I will discuss a few passive 

and active sensing methods and tools, focusing on multispectral imagery and light 

detection and ranging, which researchers use to study vegetation and remotely monitor 

the success of management.  

 

2.4.1 Optical Remote Sensing  

Optical remote sensing, techniques that target visible, infrared, and short-wave 

energy that are reflected (Turner et al. 2003), has served as one of the primary methods of 

monitoring the health of vegetation communities, predicting species distribution and 

richness, and detecting landscape-level changes (Rouse et al. 1973; Gould 2000; Achard 

et al. 2002; Kerr and Ostrovsky 2003; Glenn et al. 2008). Sensors, often mounted on 

satellite and airborne platforms, measure surface reflectance in different regions of the 

electromagnetic spectrum (Ustin and Gamon 2010). Hyperspectral sensors measure 

reflected light in fine spectral intervals, while multispectral sensors measure reflectance 

in fewer, broader spectral bands. Both types of sensors are used for measuring a number 
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of ecological variables, many of which are related to plant functional traits and health. 

Studies have used hyperspectral imagery to map differences in foliar chemistry (Asner et 

al. 2015), determine forest species composition (Martin et al. 1998), and assess 

equivalent water thickness (Schneider et al. 2017), amongst many other applications. 

Multispectral imagery is often more easily accessible than hyperspectral imagery and has 

been used similarly in various studies to determine plant community composition 

(Townsend and Walsh 2001), classify forest ecosystems (Johansen et al. 2007), and map 

stages of tree mortality (Meddens et al. 2011). 

The reflectance from specific bands and wavelengths of the imagery collected 

provides valuable information for vegetation monitoring. More specifically, combinations 

and calculations of bands from multispectral imagery provide a number of vegetation 

indices (VIs) that measure vegetation health and can monitor post-disturbance or 

management conditions. Researchers can use VIs to locate areas of disturbance and 

regeneration within forests and detect changes in leaf physiology, chlorophyll and 

nutrient content, and water uptake relatively easily (Glenn et al. 2008; Hunt et al. 2013). 

A few studies have also found correlations between remotely sensed VIs and fire severity 

estimates (Turner et al. 1994; Conard et al. 2002; Chafer et al. 2004). The simplicity of 

VIs and their applicability to assessing vegetation health have allowed them to become 

widely used as successful proxies for functional traits. 
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2.4.2 Light Detection and Ranging 

While the physiological data gained from passive aerial and satellite platforms are 

beneficial, the structural information that can be collected about the canopy and 

understory is limited (Alonzo et al. 2018). The morphology and composition of a forest, 

while difficult to assess and quantify, can provide additional understanding of system 

responses to various disturbances and guide the implementation of management strategies 

(Alonzo et al. 2018). Light detection and ranging (LiDAR) is being utilized to meet this 

demand for structural information and quantify the morphology of forests (Reutebuch et 

al. 2005; Alonzo et al. 2018).  

Unlike the passive remote sensing techniques discussed above, LiDAR is an 

active technique that utilizes a sensor to emit a laser pulse (Lim et al. 2003). Knowing the 

speed of light and the elapsed time from laser emission to reception, the sensor can 

measure ranges (i.e. distance) to objects and surfaces. While one of its most familiar uses 

is to create high-accuracy digital elevation models (DEMs), LiDAR has a significant 

number of applications including modelling floods (McArdle et al. 1999), mapping 

glaciers and ice-sheets (Krabill et al. 1995), studying bird biodiversity and populations 

(Davenport et al. 2000), and studying vegetation and forest morphology (Lim et al. 

2003). The ability of LiDAR to penetrate through the upper canopy to the understory and 

ground makes it one of the most powerful tools for scientists studying the morphology of 

forest species.  

LiDAR systems are categorized into two main types based on their horizontal and 

vertical sampling: full waveform systems and discrete return systems (Lim et al. 2003). 
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Full waveform LiDAR systems sense and record all of the emitted energy that returns to 

the sensor. This type of LiDAR captures the complete vertical distribution of a forest, but 

is expensive to collect, can be sensitive to backscatter, and is data intensive (Means 

1999). On the other hand, discrete return LiDAR measures a specific number of returns 

of the emitted energy pulses to gain limited detail on vegetation morphology (Nelson et 

al. 1984; Lim et al. 2003). The majority of commercial LiDAR systems capture between 

two and five returns, with a higher number of returns providing more structural detail 

(Lim et al. 2003). While discrete return LiDAR does not capture the entirety of vertical 

structure, it is the most common type of LiDAR collected, is often freely available, and 

can provide enough detail for numerous forestry applications. As a result, it is often 

sufficient for many forestry applications and thus is commonly used. 

LiDAR data can provide information on a number of vegetation and forest 

metrics, with one of the most common being canopy height. Using discrete return LiDAR 

data, a canopy height model can be calculated by subtracting the first returns by the 

corresponding ground points. Throughout the literature, studies have shown that canopy 

height can serve as a robust predictor of other forest morphological parameters such as 

volume and total aboveground biomass (Lefsky et al. 2001; Lim et al. 2003). Other 

metrics, such as Leaf Area Index (LAI) and Plant Area Index (PAI), which estimate the 

total one-sided area of leaf, or plant, tissue per unit of ground surface area, are calculated 

using LiDAR (Kwak et al. 2010). Jensen et al. (2008) successfully estimated LAI using 

discrete return LiDAR data for coniferous stands in the northern Rocky Mountains. In 

addition, Clawges et al. (2008) measured Foliage Height Diversity (FHD) and Total 

Vegetation Volume (TVV) from LiDAR data. All of these metrics derived from discrete 
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return LiDAR provide substantial information on forest morphology that is not accurately 

obtained with optical remote sensing alone. These LiDAR-derived metrics, in addition to 

vegetation indices, have allowed researchers and managers easier methods to monitor 

forest health after disturbance. Utilizing remote sensing methods, researchers can answer 

questions relating to the effects of management and disturbance on the functional 

diversity of a forest-savanna landscape. 
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CHAPTER III 
 

 

EXAMINING THE EFFECTS OF FOREST MANAGEMENT ON PHYSIOLOGICAL 

AND MORPHOLOGICAL FUNCTIONAL DIVERSITY USING REMOTE SENSING 

TECHNIQUES 

3.1 Introduction 

Natural disturbances play a critical role in the development, composition, 

dynamics, and function of forest ecosystems across the globe (Attiwill 1994; Franklin et 

al. 2002; Thom and Seidl 2016). Disturbances such as fire, wind, and insects, form 

disturbance regimes characteristic to a given forest type. The organisms inhabiting a 

forest system, both plants and animals, are assumed to adapt to those natural regimes 

(Bengtsson et al. 2000). However, global climate change and other anthropogenic 

disturbances, suppression of disturbances, and modifications to the landscape are causing 

disruptions to the intensity and frequency of these natural disturbances (Dale et al. 2001; 

Thom and Seidl 2016). In forest communities, the fitness of individual plants is often 

affected, leading to changes in biodiversity and community composition (Thom and Seidl 

2016). As disturbance patterns and regimes continue to change, land managers more 

frequently implement adaptive management plans to maintain forest biodiversity, and 

often increase community function and ecosystem 
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services provided (Attiwill 1994; Bengtsson et al. 2000; Palik et al. 2002; Messier et al. 

2019).  

Species diversity, measured using species richness and evenness, along with 

phylogenetic diversity, have historically been used as primary measures of biodiversity 

(Durán et al. 2019). More recently, functional diversity has been recognized as an 

important component of biodiversity that is related to ecosystem function (Díaz and 

Cabido 2001; Petchey and Gaston 2002; Villeger et al. 2008). Functional diversity, a 

measure of the variation in organismal traits within a community, has emerged as a 

metric of biodiversity and a valuable measure of ecosystem productivity and resilience to 

disturbance (Tilman 2001; Petchey et al. 2004; Cadotte et al. 2011).  

Measuring the functional diversity of a vegetation community requires the 

collection of functional trait data for species that occupy it, and researchers have largely 

focused on using field techniques and global datasets to gather trait data (Durán et al. 

2019). Fieldwork presents numerous challenges, including labor-intensive data collection 

often over rough or thickly-vegetated terrain, substantial time requirements, and high 

costs. Increasing numbers of researchers are realizing the practicality and efficiency of 

using remote sensing to collect functional trait data and enhance field data collection 

methods for studying various ecological systems. Remote sensing can improve the spatial 

and temporal resolution of studies and offer cost-effective methods to monitor functional 

diversity in a variety of landscapes (Cavender-Bares et al. 2017; Jetz et al. 2016). 

Utilizing a combination of passive and active remote sensing methods of data collection 

has allowed scientists to measure characteristics of plant morphology, biochemistry, 

physiology, and phenology (Ustin and Gamon 2010). Plant reflectance spectra serve as 
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effective indicators of canopy biochemistry and physiology, including water, pigment, 

and nutrient content (Ustin and Gamon 2010, Cavender-Bares et al. 2017), while 

terrestrial and airborne Light Detection and Ranging (LiDAR) offer powerful methods to 

measure various dimensions of vegetation morphology (Bergen et al. 2009).  

Geospatial technologies show utility for the assessment of functional diversity of 

forests (Schneider et al. 2017) and promising applications for studying the fundamental 

connections between functional diversity, disturbance, and forest management. The 

objective of this study is to use environmental remote sensing to investigate the effects of 

various forest management practices on functional diversity in an experimental pine-oak 

forest-savanna in southeastern Oklahoma. Specifically, I used multispectral imagery and 

LiDAR point clouds to assess indices of plant physiology and morphological functional 

traits for the Pushmataha Forest Habitat Research Demonstration Area (FHRA) and 

calculate three complementary metrics of functional diversity - functional richness 

(FRic), functional evenness (FEve), and functional divergence (FDiv; Mason et al. 2005). 

By making comparisons of functional traits and diversity between treatments within the 

FHRA, this study provides insight on relationships between functional traits, diversity, 

and contemporary forest management practices in the forest-grassland ecotone. 
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3.2 Materials and Methods 

3.2.1 Study Area 

 The study took place in southeastern Oklahoma, USA, at Pushmataha Forest 

Habitat Research Demonstration Area (FHRA) located within the Pushmataha Wildlife 

Management Area (PWMA) near Clayton, Oklahoma (Figure 3.1). The area is 

characterized by mixed pine/oak forest and savanna, with shallow, rocky soils, and semi-

humid climate (Masters and Waymire 2012). FHRA is a 52 ha land management 

experiment established in 1982 by the Oklahoma Department of Wildlife Conservation 

with the purpose of studying the response of herbaceous and woody vegetation to various 

management regimes (Feltrin et al. 2016; Masters et al. 2006). FHRA has a randomized 

experimental design with various treatments administered to units approximately 0.8-1.6 

ha in size. (Feltrin et al. 2016; Figure 3.2). For the purposes of this study, I used 23 of 

these units that represent 8 different treatments (Table 3.1); each treatment had three 

replicate units, with the exception of HT3, which had only two.  

 Treatments within the experimental forest consist of combinations of pine timber 

harvest (T), selective thinning of hardwoods (H), and prescribed fire (Table 3.1), and 

were originally applied to a homogeneous closed-canopy forest with dominant overstory 

species being Pinus echinata (shortleaf pine), Quercas stellata (post oak), and Carya 

tomentosa (mockernut hickory) (Masters et al. 1993). For all treatments with timber 

harvest, P. echinata with diameter at breast height (dbh) greater than 11.4 cm was 

harvested and thinning was completed on selected hardwoods using single-stem injection 

of 2,4-Dichlorophenoxyacetic acid in 1984 (Feltrin et al. 2016). Prescribed burns were 
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completed during the dormant season on variable return intervals, 1-4 years and no fire, 

from 1985 to the present. As a result of these treatments, units now range from savannas 

to closed canopy forest in various stages of development and structure. 

 

3.2.2 Data Acquisition  

 For the remotely sensed data, I acquired imagery collected via satellite-based 

multispectral sensor as well as aerially-acquired LiDAR point clouds. The multispectral 

imagery dataset was acquired from the MultiSpectral Instrument (MSI) sensor aboard the 

Sentinel 2 satellite on July 31, 2016. I obtained a single tile (100 km x 100 km) that 

encompassed the entirety of the study area from the European Space Agency’s (ESA) 

Sentinel-2 Pre Operations Hub (ESA 2020). Sentinel-2 imagery consists of 13 bands 

between 432-2,290 nm with spatial resolutions of 10, 20, and 60 m. I utilized the ESA’s 

free software, SNAP, with the Sen2Cor plugin to obtain Bottom of Atmosphere 

reflectance by correcting for atmospheric conditions within the original Sentinel Level 

1C product. The super-resolution plugin to SNAP (Brodu 2017) was then applied to the 

imagery to sharpen the spatial resolution of all bands to 10m using details from the high-

resolution bands, while preserving reflectance values. A subset of the 100 x 100 km tile 

covering the FHRA was used for the analysis of functional diversity. 

 Discrete-return LiDAR data was obtained to measure various aspects of the 

vegetation morphological. The Oklahoma FEMA QL2 LiDAR Project previously 

collected discrete-return LiDAR for the study area in January and February 2016. An 

Optech ALTM Galaxy T1000 sensor mounted on an aircraft collected points at a 
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maximum frequency of 550 kHz and up to 8 returns per pulse during leaf-off conditions 

(USGS 2017). Pre-processing was completed by USGS staff and included creating point 

clouds from the laser point data using Leica CloudPro software and using TerraScan and 

TerraModeler software programs to classify returns and clean up point cloud data (USGS 

2017). The final processed point cloud data for the study area had a point density of 7.1 

points/m2.   

 

3.2.3 Functional Traits 

 Data were collected on morphological, biochemical, and physiological traits for 

the entirety of the FHRA at a spatial grain of 10 meters. Without the collection of 

remotely sensed data from multiple dates, I was not able to measure plant phenological 

traits in this study. I used three vegetation indices as proxies for biochemical and 

physiological traits (Table 3.2), including Enhanced Vegetation Index (EVI; Huete et al. 

2002), Chlorophyll Vegetation Index (CVI; Vincini et al. 2008), and Normalized 

Difference Water Index (NDWI; Gao 1996), while morphological traits included canopy 

height (CH), Foliage Height Diversity (FHD), and Total Vegetation Density (TVD). In 

the selection of these traits, I considered vegetation traits used in other functional 

diversity studies (Maeshiro et al. 2013, Schneider et al. 2017, Lelli et al. 2019), 

emphasizing traits that are associated with plant growth, acquisition of resources, and 

overall health. While a number of traits were suitable, the spectral resolution of the 

available remotely sensed datasets limited the analysis to indices of plant physiological 

condition.  
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 To obtain data on the physiology and biochemistry of plant communities in the 

study area, I used vegetation indices, EVI, CVI, and NDWI, calculated from the Sentinel-

2 imagery. EVI measures photosynthetic activity and vegetation condition and is more 

responsive to variations in canopy structure when compared to traditional Normalized 

Difference Vegetation Index (Huete et al. 2002; Table 3.2). Studies have found strong 

correlations between EVI and processes associated with photosynthesis, such as primary 

productivity and net carbon fixation (Glenn et al. 2008). CVI is an index with specific 

sensitivity towards leaf chlorophyll content (Vincini et al. 2008; Table 3.2), while NDWI 

uses the shortwave and near infrared bands to calculate vegetation water content (Jackson 

et al. 2004; Table 3.2).  

 From the discrete return LiDAR point clouds, I calculated ecologically relevant 

morphological functional traits, including CH, FHD, and TVD. I used the BCAL Lidar 

Tools extension in ENVI (BCAL Lidar Tools) to calculate these selected traits. CH was 

obtained by subtracting the digital terrain model (DTM) of the study area from the digital 

surface model (DSM), producing a raster with the maximum height of vegetation from 

ground level within each pixel. FHD is a measure of the variation of canopy layers and 

overall canopy complexity (Schneider et al. 2017). The calculation of FHD for each pixel 

involved applying the Shannon-Wiener Index (MacArthur and MacArthur 1961) for the 

proportion of LiDAR returns in various foliage height categories (H'=−Σpi ln pi, where pi 

is the proportion of horizontal vegetation in the ith height layer). A bin height of 5 m was 

chosen to create foliage height categories of 0-5, 5-10, 10-15, 15-20, and 20+ m. The 

height was selected to divide the vegetation by understory, mid-story, upper-story and 

canopy (Clawges et al. 2008). TVD is determined by the percent ratio of vegetation point 
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returns to ground returns for each pixel, providing an estimation of total vegetation cover 

for the study area.  

 

3.2.4 Functional Diversity Analysis 

 Using trait data, I calculated morphological and physiological functional diversity 

for management units within the FHRA through three different metrics: functional 

richness (FRic), functional evenness (FEve), and functional divergence (FDiv; Table 3.3). 

FRic, FEve, and FDiv are the most commonly used metrics of functional diversity and 

measure aspects of the distribution of species in trait space directly (Mason et al. 2005). 

FRic is a measure of the total occupied functional space of a community (Villeger et al. 

2008). In this study, FRic values represent the total occupied functional space for each of 

the FHRA units standardized by the total functional space for all units. FEve measures 

the regularity of the distribution of species within multidimensional functional space 

(Mouillot et al. 2013), while FDiv measures the extent to which the most extreme species 

trait values represent the total abundance within a community (Mouillot et al. 2013). For 

this analysis of functional diversity, each individual FHRA unit was considered a 

community, while pixels served as ‘species’ with six different functional trait 

measurements. With a spatial resolution of 10m, trait values for each pixel are 

representative of all individuals and species found within that space.  

 I calculated the three metrics of physiological and morphological functional 

diversity for each unit in the FHRA using the dbFD function from the FD package 

(Laliberté et al. 2014) in R Statistical Software (R Core Team 2018). All traits were 
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standardized to mean 0 and unit variance. I performed a Principal Coordinates Analysis 

(PCoA) on the functional trait matrix, from which the resulting PCoA axes were used as 

new traits for the calculation of the three functional diversity indices (Laliberté et al. 

2014).  

 

3.2.5 Statistical Analyses 

The statistical analyses were completed at the treatment level to determine how 

forest management practices affect functional traits and diversity. I used a Multiple 

Response Permutation Procedure (MRPP) to test for differences between treatments in 

multivariate trait space. MRPP calculates a distance matrix and compares within-group 

distances to between-group distances (McCune and Grace 2002). The analysis also 

determines an effect size independent of sample size (A) that describes within-group 

homogeneity compared to expected homogeneity due to chance. Values of A range from 

0-1, with 1 indicating identical items within a group and 0 indicating heterogeneity within 

groups equal to random expectation (McCune and Grace 2002). I conducted two separate 

MRPP analyses to determine differences in vegetation physiology and morphology 

between treatments. In addition, the means of the six functional traits, EVI, CVI, NDWI, 

CH, FHD, and TVD, were calculated for each FHRA unit, and Kruskal-Wallis analyses 

of variance were performed to determine which functional traits were affected by 

management.  

I conducted Kruskal-Wallis one-way analyses of variance to determine if there 

were significant differences in functional diversity by treatment. Each of the three 
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functional diversity metrics, FRic, FEve, and FDiv, for both morphological and 

physiological diversity, were tested to assess any differences. Post-hoc tests included 

pairwise comparisons. With small sample sizes of replicates for each treatment, the use of 

a non-parametric test was appropriate.  

 

3.3 Results 

3.3.1 Functional Traits 

Treatments differed in multivariate vegetation morphology and physiology at 

FHRA based on the MRPP analysis (morphology: A = 0.273, p < 0.001; physiology: A = 

0.0786, p < 0.001). Examining vegetation community morphology, treatments with high 

fire frequency were associated with more open, simplified canopies and show low values 

for CH, FHD, and TVD in morphological trait space (Figure 3.3). Treatments with low 

frequency fire show taller, more complex canopies with higher values for CH, FHD, and 

TVD (Figure 3.3). In terms of community physiology and biochemistry, individual 

treatments showed a higher variation in vegetation indices, EVI, CVI, and NDWI, in 

physiological trait space (Figure 3.4). Pixels in physiological functional space display 

more dispersion and less within-treatment clustering, representative of a low A value 

(Figure 3.4; A = 0.0786).  

Differences in individual functional traits were detected between treatments using 

Kruskal-Wallis tests. Treatments varied most in vegetation morphology, with all three 

structural traits differing by the treatment applied (CH, c2 = 18.536, df = 7, p value = 
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0.01; FHD, c2 = 18.435, df = 7, p value = 0.01; TVD, c2 = 19.319, df = 7, p value = 

0.007; Figure 3.5). CH ranged from 9.08 ± 1.33 meters (HT1) to 19.81 ± 0.29 meters 

(RRB). Highest mean CH was detected in RRB and CONT units with low frequency fire 

and no fire, respectively, while the lowest averages were detected in units with fire every 

year, HNT1 and HT1 (Figure 3.5). FHD ranged from 0.59 ± 0.11 (HT1) to 1.23 ± 0.02 

(CONT) and showed similar patterns between treatments as CH (Figure 3.5). The CONT 

and RRB treatment had the highest mean FHD, while units with high frequency fire 

(HNT1 and HT1) had the lowest mean. Mean TVD values ranged from 53.08 ± 17.16 

(HT1) to 216.11 ± 6.13 (HT). Similar trends in TVD appear between treatments, with the 

highest mean values in HT, RRB, and CONT treatments and lowest mean values in HT1 

and HNT1 (Figure 3.5). 

Indices of vegetation physiology, as measured by EVI, CVI, and NDWI, saw less 

variation than morphology between treatments. I detected differences in NDWI (c2 = 

16.496, df = 7, p value = 0.021), while EVI and CVI were not significantly different 

between treatments (EVI, c2 = 7.638, df = 7, p value = 0.366; CVI, c2 = 10.130, df = 7, p 

value = 0.181; Figure 3.5). Distinct trends in vegetation indices were also less apparent 

than in morphological traits. The control treatment had the highest mean values for all 

three indices (EVI = 0.50 ± 0.01, CVI = 3.87 ± 0.13, NDWI = 0.33 ± 0.01; Figure 3.5). 

Means for EVI showed little variation, ranging from 0.46 ± 0.01 (HT3) to 0.50 ± 0.01 

(CONT), while means for CVI and NDWI ranged from 3.46 ± 0.10 (HT1) to 3.87 ± 0.13 

(CONT) and 0.20 ± 0.04 (HT2) to 0.33 ± 0.01 (CONT), respectively (Figure 3.5).  
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Figure 3.6 represents a visualization of differences in morphological and 

physiological traits across the study area. Within the morphological trait map, yellow-

green areas are characterized by high canopy height and vertical diversity, with the 

brightest pixels also indicating high vegetation density as well. Units with low canopy 

height and vertical diversity are represented by blue-green areas, while units with a pink 

hue indicate higher canopy height with little vertical diversity (Figure 3.6). In the map of 

vegetation indices, larger, purple patches of pixels depict high NDWI and EVI and low 

CVI. Patches of pink indicate high EVI with moderate NDWI, while green indicates high 

CVI values. Brightest pixels again represent high values for CVI, EVI, and NDWI.  

 

3.3.2 Morphological Functional Diversity  

For the calculation of morphological diversity indices, functional traits were 

reduced to two principal axes, which accounted for 97% of the variation in morphological 

data. Axis 1 was negatively correlated with canopy height, vertical diversity, and density 

(CH, rt = -0.82; FHD, rt = -0.76; TVD, rt = -0.713). Axis 2 was weakly correlated with 

canopy vertical diversity (rt = 0.18) and density (rt = -0.30; Figure 3.3). 

I detected no differences in morphological FRic by FHRA treatment (c2 = 1.554, 

df = 7, p value = 0.980). Average morphological FRic ranged from 0.211 ± 0.037 

(HNT1) to 0.327 ± 0.232 (HT3). Trends in FRic do not appear to be present based on fire 

frequency, pine timber harvest, or hardwood thinning. 
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Morphological FEve was affected by treatment (c2 = 15.656, df = 7, p = 0.028). 

Treatment HT1 had the lowest mean FEve value of all treatments (0.652 ± 0.059), while 

the control treatment had the highest mean FEve value (0.804 ± 0.004; Figure 3.7). Post-

hoc tests confirm that treatments with high fire frequency, HT1 and HNT1, had 

significantly lower FEve values than the control and RRB treatments, with no fire and a 

4-year fire return interval, respectively (See Appendix; Table A.1). However, the HT 

treatment with no fire had a significantly lower FEve than the CONT and RRB treatments 

(See Appendix A; Table A.1), indicating other factors affecting FEve in addition to fire 

such as thinning and pine harvest. 

Morphological FDiv differed among management units with respect to forest 

management (test statistic = 15.696, df = 7, p value = 0.028). Morphological FDiv values 

ranged from 0.620 ± 0.031 (HNT1) to 0.719 ± 0.018 (RRB; Figure 3.7). FDiv values 

were greater in the CONT, RRB, and HT4 treatments compared to the HNT1 treatment 

(See Appendix; Table A.2). In addition, the CONT and RRB treatments were 

significantly higher in morphological FDiv compared to the HT1 and HT2 treatments 

(See Appendix; Table A.2).  

 

3.3.3 Physiological Functional Diversity 

In the calculation of physiological diversity indices, functional traits were reduced 

to two principal axes, which accounted for 86% of the variation in physiological data. 

Physiological indices EVI and NDWI were negatively correlated with Axis 1 (EVI, rt = -
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0.69; NDWI, rt = -0.70), while Axis 2 had a strong, positive correlation with CVI (rt = 

0.94; Figure 3.4).  

I detected no differences between management units with respect to treatment for 

any of the three physiological functional diversity indices (FRic, c2 = 3.641, df = 7, p 

value = 0.820; FEve, c2 = 6.670, df = 7, p value = 0.464; FDiv, c2 = 10.754, df = 7, p 

value = 0.150; Figure 3.7). Physiological FRic values ranged from 0.309 ± 0.078 (HT4) 

to 0.410 ± 0.076 (HNT1), with no significant differences between treatments. FEve 

values ranged from 0.774 ± 0.018 (HNT1) to 0.819 ± 0.021 (HT3), while FDiv ranged 

from 0.691 ± 0.013 (HT3) to 0.752 ± 0.025 (HT; Figure 3.7).  

 

3.4 Discussion 

3.4.1 Functional Traits and Diversity Metrics 

 The results of this study demonstrated that management regime has an impact on 

functional traits obtained from remote sensing in forest communities at FHRA, whereas 

the effects on metrics of functional diversity are more varied. Analysis of multivariate 

space demonstrated differences in vegetation morphology and physiology by treatment, 

and management practices affected the canopy height (CH), vertical diversity (FHD), 

density (TVD), and water content (NDWI) of plots. While differences in multivariate 

vegetation physiology were statistically significant, the relatively low A value and 

dispersion of within-group pixels in trait space indicate that differences in vegetation 

physiology across FHRA measured using EVI, CVI, and NDWI, are not likely to be 
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ecologically significant. The higher value of A for multivariate analysis of vegetation 

morphology suggests an ecologically significant and stronger response in plant 

community morphology to various silvicultural practices and disturbances within FHRA 

compared to physiology. 

 Fire frequency appeared to have the biggest impact on average trait and index 

values for treatments and played a critical role in vegetation community morphology. 

Lower mean CH, FHD, and TVD, were associated with frequent prescribed burning. 

Units with a fire return interval of 1 year had the lowest CH, FHD, and TVD, while the 

control treatment had the highest canopy height and vertical diversity. Various life-

history traits such as regeneration time, ability to resprout, seed production and dispersal, 

and time to reach maturation, impact species response to fire (Noble and Slatyer 1980). In 

high-frequency fire units, fire acts as a constraint on community assembly to allow 

species with quick postfire regeneration, and species resistant or tolerant to fire, 

successful establishment and persistence (Peterson and Reich 2001; Pausas and Verdú 

2008). With less frequent fire or no fire, forest succession occurs as woody vegetation, 

with decreased resistance to fire, greater canopy height, and density, establish and grow. 

Peterson and Reich (2001) found similar results in stand structure when examining the 

effects of fire frequency in oak savannas, observing differences in species composition, 

lower seedling densities, reduction in overstory density, and higher mortality rates with 

increasing fire frequency. Likewise, in the FHRA, units with high fire frequency 

treatments implemented had low canopy density and are predominately occupied by grass 

species such as Andropogon gerardii (big bluestem), Schizachyrium scoparium (little 

bluestem), Panicum spp., Carex spp., and Scleria spp. (Masters et al. 1993). The lower 
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canopy height, vertical diversity, and cover associated with these species and open 

savannas were successfully detected using the discrete-return LiDAR. 

 My results indicate that forest management had an effect on the morphology of 

plant communities, but less impact on overall function, as seen by the differences in 

functional traits and minimal variability in metrics of functional diversity. Within 

multivariate functional trait space, no treatment occupied a significantly larger or smaller area, 

despite significant differences in location between treatments (Figure 3.3 and Figure 3.4), as 

indicated by the MRPP analysis. Overall, morphological and physiological FRic values 

were low across all treatments, with pixels plotted in limited areas or clusters within trait 

space when compared to total occupied community trait space. Reduced morphological 

functional trait space has been associated with fire frequency (Pausas and Verdú 2008). 

Frequent fire has the ability to act as a habitat filter on vegetation communities, allowing 

species with certain life history or functional traits to occupy a given habitat, leaving a 

community’s morphospace restricted to encompass these select species (Pausas and 

Verdú 2008).  

 High average morphological FEve was associated with low frequency fire, 

suggesting a more even distribution of biomass in niche space for units with no fire or 

fire every 4 years and a more equal utilization of resources available in those 

communities compared to units with high frequency fire (Mason et al. 2005). Units 

undisturbed or minimally disturbed by fire are comprised of forest communities with a 

higher vertical distribution of vegetation with greater vertical diversity between 

understory, mid-story, and overstory species that is absent in frequently burned units. In 

FHRA units with low FEve, gaps in niche space may allow for introduced species to 
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establish, fill unoccupied niches, and potentially encroach on niches of native species 

(Mason et al. 2005). Similarly, I detected differences in morphological FDiv between 

treatments, with differences appearing to be related to fire return interval. Throughout the 

FHRA, units with low frequency fire had higher morphological FDiv than units with fire 

every 1-2 years, indicating higher niche differentiation and low resource competition in 

those units (Mason et al. 2005).  

 The effect of fire interval and intensity on the structure and stand composition of 

various vegetation communities has been widely studied, but the role fire plays in 

species’ functional traits and communities’ functional diversity is not thoroughly 

understood across systems. In this study, fire return interval seems to be the most 

influential disturbance on morphological functional diversity indices across treatments, 

with lower average structural functional traits and diversity associated with high fire 

frequency. In addition to fire, many treatments at FHRA included pine timber harvest and 

selective hardwood thinning completed in the initial years of the experiment. Due to low 

replicate numbers and interaction effects between other implemented management 

regimes, I was not able to explicitly test the effects of pine timber harvest or selective 

hardwood thinning on metrics of functional diversity. Patterns in functional diversity 

metrics in response to the presence or absence of these regimes are difficult to 

distinguish, and previous research shows disagreement in the effects of various 

disturbance and silvicultural regimes on functional diversity indices. Significant 

differences in community-weighted means of functional traits and functional diversity 

indices in response to high intensity disturbance regimes have been documented in oak 

forest and riparian systems (Lavorel et al. 2008; Vandewalle et al. 2010). In contrast, 
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Carreño-Rocabado et al. (2012) found no significant differences in functional diversity 

indices on a disturbance gradient ranging from undisturbed, control treatments to intense 

silvicultural practices and logging. More research is needed to understand the complexity 

and influence various disturbances and management practices have on the functional 

diversity of pine-oak forests. 

 Changes in functional diversity have been shown to affect a community’s overall 

function, productivity, and resilience (Tilman 2001, Durán et al. 2019). At FHRA, I 

found management regimes with moderate levels of disturbance had some of the highest 

functional diversity values, indicating that vegetation communities managed with 

disturbance, such as fire, and silviculture practices like pine harvest and selective 

thinning, applied at intermediate levels have the potential to maximize functional 

diversity and services provided by that community. Biswas and Mallik (2010) report 

similar results for plant communities in a temperate riparian system, finding peak 

functional diversity at moderate intensity of anthropogenic disturbance. In addition, 

implementing multiple management practices can increase the functional richness of that 

community. When pixels from any combination of two treatments at FHRA are used for 

the calculation of functional diversity, FRic is greater than either of those treatments 

alone (Table 3.4 and 3.5).  In some cases, FEve and FDiv increase as well, creating 

landscapes with a higher diversity of functional traits and a more even distribution of 

biomass in the community. Applying this at the landscape scale, implementing a diverse 

mosaic of management regimes across the system has the potential to form more 

heterogeneous landscapes with increased functional diversity, productivity, and resilience 

to disturbance. Managers can utilize this information to create multi-functional 
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landscapes that are more resilient to unpredictable and extreme disturbance, offer services 

such as timber production, nutrient cycling, and game species habitat, and maintain 

biodiversity for conservation (Puettmann et al. 2015; Murray et al. 2017; Messier et al. 

2019). 

 

3.4.2 Remote Sensing Methodology 

 Utilizing remote sensing to study functional traits and functional diversity is a 

relatively new methodology that has been applied to a limited number of systems 

(Schneider et al. 2017, Durán et al. 2019). Here, I demonstrate the use of openly available 

remotely sensed data to study functional diversity of a pine-oak forest-savanna 

community. Applying remote sensing techniques to measure functional traits across the 

vegetation communities of FHRA, I was able to assess functional diversity without 

identifying species and using mean trait values and species abundances. The use of 

remote sensing to measure functional traits inherently includes inter- and intra-specific 

variability (Schneider et al. 2017) and provides an ideal methodology for studying the 

effects of management regimes on functional diversity. 

 When determining the remotely sensed data to obtain for a study of functional 

diversity, tradeoffs arise between cost of data collection, availability, and the level of 

detail in spectral and spatial resolution. For this study, I used multispectral satellite 

imagery and discrete-return LiDAR to gather information on functional traits. These 

methods offer considerably lower costs, higher availability, and moderate resolution 

when compared to other types of passive and active remote sensing. 
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 With numerous satellite-borne sensors capturing imagery daily and open-access to 

that collected data, multispectral imagery is often readily available for public use at 

moderate spatial resolutions. The wide spectral bands of multispectral imagery can be 

used effectively to monitor aspects of vegetation health. Broadband vegetation indices, 

such as the three I use in this study, make use of multispectral imagery with coarser 

spectral resolutions and relatively easy band math. However, they represent proxies for 

functional traits and the generalization of spectral wavelengths may lack sufficient 

resolution needed to detect differences in biochemical properties and nutrient content of 

the canopy and individual trees and leaves (Jetz et al. 2016). Failure to detect differences 

in physiological functional diversity indices between treatments could be a result of 

limited spectral resolution in the multispectral imagery and the functional traits 

calculated. While I was able to detect some differences in vegetation physiology, 

hyperspectral imagery would improve the ability to capture spectral detail (Jetz et al. 

2016). Current spaceborne hyperspectral imagers such as JAXA’s Hyperspectral Imager 

Suite (HISUI; Iwasaki et al. 2011) and German DLR Earth Sensing Imaging 

Spectrometer (DESIS; Krutz et al. 2018), along with future missions, such as NASA’s 

Surface Biology and Geology (Schneider et al. 2019), will improve the accessibility of 

hyperspectral imagery with moderate spatial resolution for more direct measures of 

physiological and biochemical traits of plant communities.  

 Previous studies have demonstrated how LiDAR may be used to accurately 

measure 3D structure of various vegetation communities and its promise for studying 

functional traits across the landscape (Vierling et al. 2008, Davies and Asner 2014). 

Discrete-return LiDAR point clouds are often easier to obtain and less computationally 
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demanding than full-waveform LiDAR, but structural detail is often compromised for 

availability. The effects are seen especially in gathering data on understory species, 

where detail can be lost. As a result, limitations can emerge when measuring 

morphological functional traits and diversity in some systems. Despite this, I was able to 

use discrete-return LiDAR with 4-5 returns to capture differences in morphological traits 

and functional diversity at FHRA. Methodology used by Schneider et al. (2017) utilized 

full-waveform LiDAR and was successfully adapted for this study to use discrete-return 

LiDAR and results from the study coincide with the findings presented here. 

 Remote sensing applications and the availability of high quality remotely sensed 

data are continually increasing (Lausch et al. 2016). The methodology provided in this 

study establishes a base for future research to expand upon and can be adapted to utilize 

data of improved spectral and spatial resolutions. The advancement of remote sensing 

technologies will allow for a more complete understanding of the physiological and 

morphological functional diversity of various vegetation communities.  
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3.5 Tables and Figures 

Table 3.1 Management Regimes of Pushmataha FHRA. Eight management regimes at 

Pushmataha Forest Habitat Research Demonstration Area used in this study. Treatments 

are listed by name, with indication of whether pine timber harvest and selective 

hardwood thinning were completed, fire return interval, and number of replicate units.  

Treatment Harvest 
Pine 

Thin 
Hardwoods 

Fire Return 
Interval 

Number of 
Replicate Plots 

CONTROL No No No fire 3 
HT Yes Yes No fire 3 

RRB No No 4 3 
HT4 Yes Yes 4 3 
HT3 Yes Yes 3 2 
HT2 Yes Yes 2 3 
HT1 Yes Yes 1 3 

HNT1 Yes No 1 3 
 

 

Table 3.2 Vegetation Indices. Vegetation indices used as proxies for physiological 

functional diversity. 

Index Name Abbreviation Equation Reference 
Enhanced Vegetation 
Index EVI 2.5(RNIR – RR)/(RNIR + 

6*RR - 7.5*RB +1) Huete et al. 2002 

Chlorophyll Vegetation 
Index CVI RNIR*RR/(RG^2) Vincini et al. 2008 

Normalized Difference 
Water Index NDWI (RNIR – RSWIR)/(RNIR + 

RSWIR) Jackson et al. 2004 
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Table 3.3 Functional Diversity Metrics. Functional diversity metrics used to quantify 

various aspects of functional diversity for each management plot at Pushmataha Forest 

Habitat Research Demonstration Area. Abbreviations and descriptions for each index 

from Villeger et al. 2008. 

 

Functional Diversity Index Name Abbreviation Description 

Functional Richness FRic Measures the total occupied 
functional space 

Functional Divergence FDiv Measures the divergence of 
abundance in functional space 

Functional Evenness FEve Quantifies regularity of point 
distribution within the 
occupied functional space 
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Table 3.4 Physiological Functional Richness for Management Regime Combinations 

at Pushmataha FHRA. Physiological functional richness (FRic) for all possible two-

treatment combinations of treatments at Pushmataha Forest Habitat Research 

Demonstration Area (FHRA). Treatment names are indicative of management practices 

implemented, including selective hardwood thinning (H), pine timber harvest (T), and 

fire return interval (1-4), with CONT and RRB representing the control and rough 

reduction treatment with 4-year fire return interval, respectively. All pixels within 

management units where either treatment in the pair were implemented were compiled 

and used in the calculation of physiological FRic. 

 CONT HNT1 HT HT1 HT2 HT3 HT4 RRB 
CONT 0.525857 0.810611 0.725662 0.835513 0.695162 0.635072 0.622672 0.658532 
HNT1  0.67322 0.730082 0.780749 0.85989 0.691338 0.706799 0.773681 
HT   0.56411 0.73205 0.756732 0.591069 0.607111 0.69869 
HT1    0.639083 0.860793 0.684401 0.655629 0.770748 
HT2     0.597512 0.722503 0.670644 0.745888 
HT3      0.41156 0.515244 0.592403 
HT4       0.434496 0.588981 
RRB        0.536217 
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Table 3.5 Morphological Functional Richness for Management Regime 

Combinations at Pushmataha FHRA. Morphological functional richness (FRic) for all 

possible two-treatment combinations of treatments at Pushmataha Forest Habitat 

Research Demonstration Area (FHRA). Treatment names are indicative of management 

practices implemented, including selective hardwood thinning (H), pine timber harvest 

(T), and fire return interval (1-4), with CONT and RRB representing the control and 

rough reduction treatment with 4-year fire return interval, respectively. All pixels within 

management units where either treatment in the pair were implemented were compiled 

and used in the calculation of morphological FEve. 

 CONT HNT1 HT HT1 HT2 HT3 HT4 RRB 
CONT 0.323119 0.474985 0.683344 0.487912 0.474306 0.54104 0.45023 0.415251 
HNT1  0.281488 0.810438 0.401822 0.36348 0.500611 0.362011 0.608533 
HT   0.536967 0.849724 0.825471 0.873683 0.790615 0.753669 
HT1    0.381591 0.407084 0.511384 0.403843 0.613096 
HT2     0.341242 0.518928 0.350227 0.607436 
HT3      0.491177 0.500735 0.65688 
HT4       0.301393 0.57318 
RRB        0.400061 
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Figure 3.1 Map of Study Area in Southeastern Oklahoma. Pushmataha Forest Habitat 

Research Demonstration Area (FHRA) within the Pushmataha Wildlife Management 

Area. The approximately 130-acre site is located outside of Clayton, Oklahoma in 

Pushmataha County and is characterized by mixed pine-oak forest and savanna.  
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Figure 3.2 Map of Pushmataha FHRA. Pushmataha Forest Habitat Research 

Demonstration Area (FHRA) with plot boundaries and treatments delineated. Treatment 

names are indicative of management practices implemented, including selective 

hardwood thinning (H), pine timber harvest (T), and fire return interval (1-4), with CONT 

and RRB representing the control and rough reduction treatment with 4-year fire return 

interval, respectively. Plot size ranges from 0.8 to 1.6 ha in size and are composed of 

savanna and pine-oak forest of different structure and age class. 
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Figure 3.3 Morphological Functional Trait Space. Morphological functional trait 
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space for treatments (CONT, HT, RRB, HT4, HT3, HT2, HNT1, HT1) at Pushmataha 

Forest Habitat Research Demonstration Area. Treatment names are indicative of 

management practices implemented, including selective hardwood thinning (H), pine 

timber harvest (T), and fire return interval (1-4), with CONT and RRB representing the 

control and rough reduction treatment with 4-year fire return interval, respectively. The 

first and second axes from the Principal Coordinates Analysis (PCoA) represent the x and 

y axes, respectively, with pixels plotted in functional space. Pixel color is assigned based 

on treatment implemented. Significant Kendall’s tau correlation values between traits and 

PCoA axes are displayed for the x and y axes. 
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Figure 3.4 Physiological Functional Trait Space. Physiological functional trait space 

for treatments (CONT, HT, RRB, HT4, HT3, HT2, HNT1, HT1) at Pushmataha Forest 
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Habitat Research Demonstration Area. Treatment names are indicative of management 

practices implemented, including selective hardwood thinning (H), pine timber harvest 

(T), and fire return interval (1-4), with CONT and RRB representing the control and 

rough reduction treatment with 4-year fire return interval, respectively. The first and 

second axes from the Principal Coordinates Analysis (PCoA) represent the x and y axes, 

respectively, with pixels plotted in functional space. Pixel color is assigned based on 

treatment implemented. Significant Kendall’s tau correlation values between traits and 

PCoA axes are displayed for the x and y axes. 
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Figure 3.5 Bar Graphs of Functional Traits and Vegetation Indices. Bar graphs 

displaying average Enhanced Vegetation Index (EVI), Chlorophyll Vegetation Index 

(CVI), Normalized Difference Water Index (NDWI), Canopy Height (CH), Foliage 

Height Diversity (FHD), and Total Vegetation Density (TVD) by treatment at 

Pushmataha Forest Habitat Research Demonstration Area (FHRA). Treatment names are 

indicative of management practices implemented, including selective hardwood thinning 

(H), pine timber harvest (T), and fire return interval (1-4), with CONT and RRB 

representing the control and rough reduction treatment with 4-year fire return interval, 

respectively. An analysis of variance and Tukey’s HSD post-hoc test were completed, 

and groupings are indicated with letters a-d, often corresponding with fire return interval. 
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Figure 3.6 False Color Composites of Functional Traits and Vegetation Indices. 

RGB color composites of physiological indices and morphological functional traits across 

the Pushmataha Forest Habitat Research Demonstration Area. Physiological indices are 

plotted (left panel) as Enhanced Vegetation Index (EVI, red), Chlorophyll Vegetation 

Index (CVI, green), and Normalized Difference Water Index (NDWI, blue). 

Morphological traits are plotted as canopy height (CH, red), Foliage Height Diversity 

(FHD, green), and Total Vegetation Density (TVD, blue). 

  



 
 
 

 52 

 



 
 
 

 53 

Figure 3.7 Bar Graphs of Functional Diversity Metrics. Metrics of functional diversity 

- functional richness (FRic), functional evenness (FEve), and functional divergence 

(FDiv) - were calculated from morphological and physiological functional traits for 23 

units within the Pushmataha Forest Habitat Research Demonstration Area. FRic, FEve, 

and FDiv values were averaged by treatment applied (CONT, HNT1, HT, HT1, HT2, 

HT3, HT4, RRB) and are reported with standard error. Panels A-C display metrics of 

physiological functional diversity, and panels D-F show metrics of morphological 

functional diversity. Treatment names are indicative of management practices 

implemented, including selective hardwood thinning (H), pine timber harvest (T), and 

fire return interval (1-4), with CONT and RRB representing the control and rough 

reduction treatment with 4-year fire return interval, respectively. Results of the Kruskal 

Wallis analysis of variance and post-hoc test show significant differences between 

treatments for morphological functional evenness and divergence, and treatment 

groupings are indicated using letters a-c. 
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CHAPTER IV 
 

 

MAPPING PHYSIOLOGICAL FUNCTIONAL DIVERSITY OF VEGETATION 

USING SENTINEL-2 IMAGERY  

 

4.1 Introduction 

The modification of landscapes due to anthropogenic development, altered 

nutrient and water cycles, habitat fragmentation, changing disturbance regimes, and 

unstable weather patterns and climate are having significant effects on biological 

communities across the globe. Understanding and mitigating biodiversity loss and its 

effects on ecosystem function is a key challenge in ecology (Schneider et al. 2017; Durán 

et al. 2019). While much scientific research has focused on examining the effects of 

species biodiversity loss, there is increasing agreement within ecological research that 

utilizing trait-based approaches to examine biodiversity loss in terms of ecosystem 

function is critical to maintaining ecosystem health and productivity (Petchey and Gaston 

2002; Díaz et al. 2004; Villeger et al. 2008). As a multifaceted, trait-based component of 

biodiversity, functional diversity reflects the variation in species’ functional 

characteristics associated with their ecological niche, and its metrics therefore offer 

improved methods of quantifying biodiversity in relation to ecosystem function (Tilman 

2001). Measuring functional traits for species in a given community, rather than 
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abundance alone, has been shown to provide a more complete understanding of 

ecosystem productivity and stability (Díaz et al. 2007; Cadotte et al. 2011; Durán et al. 

2019). Complementary metrics of functional diversity such as functional richness, 

functional evenness, and functional divergence quantify the value, range, and abundance 

of organismal traits in a given community, in addition to providing valuable information 

on resilience, competition, and resource utilization (Tilman 2001; Mason et al. 2005; 

Villeger et al. 2008).  

Despite increased efforts to use functional trait approaches to study biodiversity 

of vegetation communities at local scales, there remain large gaps in high-resolution data 

on functional diversity of vegetation communities at the landscape and global scales 

(Tittensor et al. 2014; Jetz et al. 2016). Collecting data on functional traits across large 

scales requires substantial time, effort, and funds when completed with traditional 

fieldwork. The application of remote sensing techniques to collect functional trait data 

has the potential to alleviate some of these costs, while providing nondestructive methods 

for gathering data at various spatial scales across large environmental gradients (Durán et 

al. 2019; Schneider et al. 2017).  

Advancements in satellite remote sensing technologies and increased access to 

remotely sensed datasets are beginning to fill gaps in continuous, global functional 

diversity data. Passive remote sensors are capable of measuring vegetation reflectance 

spectra to assess physiological, biochemical, and phenological traits of vegetation (Ustin 

and Gamon 2010; Cavender-Bares et al. 2017). Imaging spectroscopy captures light 

reflectance in a continuous spectrum, allowing data collection of foliar and canopy 

properties and has been used to study vegetation physiology in various landscapes (Asner 
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et al. 2017; Schneider et al. 2017; Moreno-Martínez et al. 2018). Similarly, broadband 

multispectral imagery, with coarser spectral resolution, shows potential for use in 

collection of biochemical and physiological functional trait data and expanding global 

coverage of biodiversity data.  

The aim of my study was to demonstrate the potential for using multispectral 

satellite remote sensing to calculate functional traits and map metrics of physiological 

functional diversity continuously at the landscape scale. To do this, I selected a study area 

in southeastern Oklahoma, the Pushmataha Wildlife Management Area (PWMA), 

characterized by a pine-oak forest and savanna landscape and an elevation and soil 

gradient. Utilizing multispectral imagery, I calculated indices of plant physiology and 

biochemistry across the PWMA to map three metrics of functional diversity - functional 

richness (FRic), functional evenness (FEve), and functional divergence (FDiv; Mason et 

al. 2005). The methodology used in this study provides a basis for future utilization of 

broadband imagery to assess functional diversity at the landscape scale and monitor 

biodiversity loss and changes in ecosystem function, stability, and resilience across 

Earth’s ecosystems.  

 

4.2 Materials and Methods 

4.2.1 Study Area 

 The study was conducted in southeastern Oklahoma, USA, at Pushmataha 

Wildlife Management Area (PWMA) near Clayton, Oklahoma (Figure 4.1). PWMA is an 

approximately 7,690 ha area comprised of mixed pine/oak forest and savanna. Located in 
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the Kiamichi Mountains, the landscape is characterized by sloping land, with shallow, 

rocky soils, and a semi-humid climate (Feltrin et al. 2016; Masters and Waymire 2012). 

The vegetation communities within PWMA are largely dominated with the overstory 

species Pinus echinata (shortleaf pine), Quercas stellata (post oak), Quercas marilandica 

(blackjack oak), and Carya tomentosa (mockernut hickory) (Masters et al. 1993; Feltrin 

et al. 2016). Understory species consist of both woody and herbaceous plants including 

Vaccinium arboreum (sparkleberry), Toxicodendron radicans (poison ivy), Smilax spp. 

(greenbriers), Andropogon gerardii (big bluestem), Schizachyrium scoparium (little 

bluestem), Panicum spp., Carex spp., and Scleria spp., amongst others. 

 Vegetation management practices have played an integral part in the 

conservation and management goals of PWMA since its beginnings in the 1940s. 

Throughout the PWMA, various vegetation management strategies have been 

implemented by the Oklahoma Department of Wildlife Conservation, including selective 

thinning of hardwoods, pine timber harvest, and controlled burning (Masters et al. 1993). 

Management implemented within the PWMA focus on establishing a mixed shortleaf 

pine-oak woodland and savanna, with thinning to 60 square feet/acre basal area and 

prescribed fire every 1-2 years (Shortleaf Pine Initiative, 2019). Within the boundaries of 

the PWMA, the Pushmataha Forest Habitat Research Demonstration Area (FHRA) was 

established in 1982 with the purpose of studying the response of herbaceous and woody 

vegetation to various timber harvest and prescribed fire regimes (Masters et al. 2006). 

FHRA is an approximately 52 ha experimental forest consisting of 28 units, 0.8-1.6 ha in 

size, with various management regimes applied in a randomized fashion. Treatments are 

combinations of selective hardwood thinning, pine timber harvest, and prescribed fire at 
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various fire return intervals. As a result of these management practices, the vegetation 

communities at the FHRA and across the entirety of the PWMA range from savanna to 

closed canopy forest in various stages of development and structure. 

     

4.2.2 Data Acquisition  

  Multispectral imagery for the study area was captured by the MultiSpectral 

Instrument (MSI) sensor aboard the Sentinel 2 satellite on July 31, 2016. I downloaded a 

single tile (100 km x 100 km), consisting of 13 bands between 432-2,290 nm with spatial 

resolutions of 10, 20, and 60 m, from the European Space Agency’s (ESA) Sentinel 2 Pre 

Operations Hub (ESA 2020). I corrected the original Sentinel Level 1C product for 

atmospheric conditions using the ESA’s software, SNAP, with the Sen2Cor plugin to 

obtain Bottom of Atmosphere reflectance. Spatial resolution of all bands was improved to 

10m using details from the high-resolution bands, while preserving reflectance values 

(Super-resolution Plugin; Brodu 2017). A section of this tile was used for the analysis 

that encompassed an approximate 6,500 ha area and covered a significant portion of the 

PWMA (Figure 4.1).  

 

4.2.3 Functional Traits 

  Vegetation indices were used as proxies for biochemical and physiological traits 

of plant communities and were calculated across the study area at a spatial grain of 10 m. 

I calculated Enhanced Vegetation Index (EVI; Huete et al. 2002), Chlorophyll Vegetation 



 
 
 

 59 

Index (CVI; Vincini et al. 2008), and Normalized Difference Water Index (NDWI; Gao 

1996), from the Sentinel-2 imagery. EVI is a measure of photosynthetic activity and 

vegetation condition responsive to variations in canopy structure (Huete et al. 2002; 

Table 4.1) and is correlated with primary productivity and net carbon fixation (Glenn et 

al. 2008). CVI is an index with specific sensitivity towards leaf chlorophyll content 

(Vincini et al. 2008; Table 4.1), while the NDWI is a measure of vegetation water content 

(Jackson et al. 2004; Table 4.1).  

  In the selection of vegetation indices, I emphasized indices that are associated 

with plant growth, acquisition of resources, and overall health, and considered vegetation 

traits used in other functional diversity studies (Maeshiro et al. 2013, Schneider et al. 

2017, Lelli et al. 2019). Ultimately, the spectral resolution of the available remotely 

sensed datasets limited the analysis to indices of plant physiological condition. 

    

4.2.4 Functional Diversity Analysis 

  Utilizing the data from vegetation indices, I calculated functional diversity across 

PWMA using three different metrics: functional richness (FRic), functional evenness 

(FEve), and functional divergence (FDiv). FRic, FEve, and FDiv measure aspects of the 

distribution of species in trait space directly and are the most commonly used indices in 

functional diversity studies (Mason et al. 2005). FRic is a measure of the total occupied 

functional space of a community (Villeger et al. 2008), while FEve measures the 

regularity of the distribution of species within multidimensional functional space 

(Mouillot 2013). FDiv measures the extent to which the most extreme species trait values 

represent the total abundance within a community (Mouillot 2013).   
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  Given the large extent of PWMA and a moderate spatial resolution of 10m, I 

included over 600,000 pixels in my analysis of functional diversity. Moving window 

analyses were used to calculate functional diversity across the landscape with varying 

neighborhood sizes in R Statistical Software (FD package; Laliberté et al. 2014; R Core 

Team 2018). To determine the effects of spatial extent on functional diversity, 

neighborhood size increased from 3x3 pixels (900 m2) to 11x11 pixels (12,100 m2; Figure 

4.2). All pixels within a designated neighborhood window were considered a community 

in the calculation of functional diversity indices. Individual pixels served as ‘species’, 

with three different functional trait measurements. With a spatial resolution of 10m, the 

vegetation index values for each pixel are representative of all individuals and species 

found within that space.   

 

4.3 Results 

4.3.1 Functional Traits 

Vegetation indices calculated using remotely sensed data showed variation across 

the landscape, indicating differences in vegetation physiology and biochemistry at 

PWMA. The mean EVI value across the study area was 0.479 ± 0.0791 (mean ± standard 

deviation), while the mean CVI and NDWI values were 3.591 ± 0.502 and 0.195 ± 0.109, 

respectively (Figure 4.3).  

Across the landscape of PWMA, a false color composite map revealed substantial 

differences in vegetation index values in large patches dispersed across the landscape 

(Figure 4.4). Purple patches of pixels depicted high NDWI and EVI and low CVI. 
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Patches of pink indicated high EVI with moderate NDWI, while green indicated high 

CVI values and lower EVI and NDWI values. Brightest pixels represented high values 

for all vegetation indices, and dark pixels indicated low values for all three indices. The 

darkest pixels often corresponded with dirt roads found throughout the wildlife area, 

where vegetation was not present.  

 

4.3.2 Functional Diversity  

Functional diversity metrics, FRic, FEve, and FDiv, assessed using remotely 

sensed vegetation indices varied across the landscape of PWMA (Figure 4.5). FRic 

values represented total occupied functional space not standardized by total community 

richness and are low across the entirety of the study area. At the smallest window size of 

900 m2, FRic values ranged from 1.27x10-7 to 0.00465, and ranged from 2.75x10-5 to 

0.0176 at the largest window size of 12,100 m2. FEve and FDiv also showed considerable 

variation by pixels across the landscape, each with a wide range in values assessed. FEve 

values ranged from 0.316 to 0.980 at the smallest window size of 900 m2 and 0.585 to 

0.880 with a neighborhood of 12,100m2, while FDiv ranged from 0.509 to 0.957 and 

0.584 to 0.866 at 900 m2 and 12,100 m2 neighborhood sizes, respectively. 

The spatial extent of analysis, modified by neighborhood size, had an effect on all 

functional diversity metrics (Figure 4.5), although the relationship between functional 

diversity and extent differed between FRic, FEve, and FDiv. In general, mean FRic 

showed a positive relationship with spatial extent of analysis, with the highest values of 

FRic calculated at the largest window size (Figure 4.6). In addition, areas of high FRic at 
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smaller spatial extents increased in size to include more pixels with moderate to high 

FRic values at larger extents (Figure 4.5). Responses in mean FEve and FDiv to 

increasing spatial extent of analysis are minimal (Figure 4.7 and Figure 4.8). As window 

size increased, mean FEve and FDiv remained consistent (Figure 4.7 and Figure 4.8). 

However, when FEve and FDiv were mapped across the landscape, areas of high FEve 

and FDiv showed an increase in value and in number of pixels, while areas of low FEve 

and FDiv decreased in value and size.  

 

4.4 Discussion 

  In this study, I utilized multispectral imagery to calculate and map indices of 

vegetation physiology and biochemistry and metrics of functional diversity at the 

landscape level. Vegetation indices, EVI, CVI, and NDWI, showed considerable 

variation across PWMA. Metrics of functional diversity, FRic, FEve, and FDiv, assessed 

using these vegetation indices, also varied across the landscape. Areas of highest 

functional richness included the FHRA, edge habitat throughout the PWMA, and areas 

next to roads. The FHRA covers a 52-ha area, where a number of management regimes 

are implemented, and forest and savanna vegetation communities are in various stages of 

development. The higher heterogeneity of canopy and species composition of the plots 

could account for increased functional richness. It is worthwhile to note that the high 

FRic values in some areas are likely affected by the differences in image texture and 

sudden changes in reflectance values for soil and roads included in the study area. 

Avoidance of non-vegetated pixels in remote sensing vegetation traits presents challenges 
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but is likely needed to minimize spectral variation that is not directly due to functional 

trait variation (Dahlin 2016) 

 Taking advantage of the continuous nature of remotely sensed vegetation data, I 

calculated functional diversity metrics using various neighborhood sizes. Results show 

that mean FRic was affected by the spatial extent of analysis, whereas mean FEve and 

FDiv show few differences with increasing spatial extent. However, the mean values for 

functional diversity metrics are the mathematical averages of all pixels covering the 

landscape and may not be representative of all spatial extent dependency relationships of 

the functional diversity, which likely vary throughout the PWMA. In mapping the metrics 

of functional diversity calculated from various window sizes (Figure 4.5), rather than 

looking at the overall mean functional diversity values for the entire study area, 

relationships and patterns in functional diversity metrics can be seen with increasing size 

of spatial extent. Areas of high functional diversity tend to increase in size and functional 

diversity metric value, while areas of low functional diversity also become more 

pronounced and show decreased metric values (Figure 4.5). Schneider et al. (2017) used 

similar methodology to map FRic, FEve, and FDiv with different scales across their study 

area in a temperate mixed forest site in Switzerland. They report congruent findings in 

the response of functional diversity metrics at increasing scales mapped across the 

landscape. In addition to mapping functional diversity metrics, spatial dependency was 

examined for various sub-regions of the study area using a single-pixel approach 

(Schneider et al. 2017) and offers potential methodology for continued research on spatial 

relationships of functional diversity at the PWMA. 
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 While I illustrate some differences in continuous functional diversity data 

associated with increasing window size of analysis, scale dependency of functional 

diversity metrics at PWMA is not completely understood. The relationship between 

functional diversity, specifically functional richness, and area is thought to be related to 

the species-area relationship, a fundamental concept in spatial ecology (Preston 1960) 

relating the size of the ecosystem or sample area and the number of species found there. 

The species-area relationship has been used as a tool to determine optimal sample sizes 

and predict patterns in biodiversity and species extinction (Connor and McCoy 1979; 

Gerstner et al. 2014). Smith et al. (2013) extend this relationship to functional traits with 

the functional diversity-area relationship, and Dalman (2016) uses spectral diversity data 

from remote sensing to examine area relationships, biodiversity, and provide insight on 

community assembly processes. Continued analysis of remotely sensed functional traits 

and diversity at increasing scales is needed to better understand the functional diversity-

area relationships of the three metrics of physiological functional diversity at various 

locations throughout PWMA. In addition, future analysis in the area could explore 

differences in functional diversity related to disturbance, forest management 

implemented, and environmental gradients that play an important role in the assembly 

and composition of vegetation communities in the area. 

 Utilizing remote sensing techniques in the study of functional diversity of 

landscapes provides a number of advantages. The continuity of remote sensing traits 

allows for a pixel-based approach, rather than a species- or individual-based one, and 

accounts for intraspecific variability that is often overlooked in functional diversity 

studies that utilize taxonomic data (Schneider et al. 2017). Remote sensing offers 
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methodology to collect functional trait data over entire landscapes, which would be 

infeasible with field methods. However, limitations arise when collecting, storing, and 

analyzing large amounts of remotely sensed data for increasingly larger spatial extents. 

The computational power and processing time required for analysis of large quantities of 

functional trait data present challenges to using these methods. In my study, I found 

increasing the window size used in analyses greatly increased the processing time 

required. Developments in remotely sensed data processing and raster analysis will allow 

for continued progress in studying functional diversity across entire landscapes. 

 Ecological research emphasizes the importance of understanding and developing 

metrics to predict how biological communities will respond to various environmental 

changes (Jetz et al. 2016). Innovative tools and methodology are needed to increase the 

availability of functional diversity data to fill in gaps of our understanding of biodiversity 

and ecosystem function at a global scale. In this study, I establish a methodology utilizing 

widely accessible satellite multispectral imagery to assess characteristics of vegetation 

physiology and functional diversity. Initial success in applying these techniques to a large 

area shows promise for its utilization to study variation in functional diversity of other 

ecosystems and regions as well. The methodology presented here offers a suitable tool for 

land managers and researchers to effectively measure metrics of functional diversity and 

monitor the impacts of changing disturbance or management regimes across entire 

landscapes. As global biodiversity continues to change, this tool can be used to provide 

insight into the ecosystem function, productivity, and resilience of heterogeneous 

landscapes. 
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4.5 Tables and Figures 

Table 4.1 Vegetation Indices. Vegetation indices used as proxies for physiological 

functional traits. 

Index Name Abbreviation Equation Reference 
Enhanced Vegetation 
Index EVI 2.5(RNIR – RR)/(RNIR + 

6*RR - 7.5*RB +1) Huete et al. 2002 

Chlorophyll Vegetation 
Index CVI RNIR*RR/(RG^2) Vincini et al. 2008 

Normalized Difference 
Water Index NDWI (RNIR – RSWIR)/(RNIR + 

RSWIR) Jackson et al. 2004 
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Figure 4.1 Map of Study Area at Pushmataha Wildlife Management Area. The study 

area of Pushmataha Wildlife Management Area (PWMA) and Pushmataha Forest Habitat 

Research Demonstration Area (FHRA) located outside of Clayton, Oklahoma in 

Pushmataha County. The extent of remotely sensed data coverage used in the study is 

indicated and includes approximately 6,500 ha. 
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Figure 4.2 Moving Window Analysis for Assessing Functional Diversity. 

Demonstration of moving window analysis to calculate functional diversity at various 

scales. False color composite of vegetation indices covering approximately 6,500 ha 

across the Pushmataha Wildlife Management Area in southeastern Oklahoma is displayed 

(A) with a subset covering an approximate 15 ha (B). Indices are plotted as Enhanced 

Vegetation Index (EVI, red), Chlorophyll Vegetation Index (CVI, green), and 

Normalized Difference Water Index (NDWI, blue). Pixel size is 10 m for all rasters. 

Moving window analysis was used to calculate metrics of functional diversity with 

various window sizes, ranging from 3 x 3 neighborhood of pixels (900 m2) to a 

neighborhood of 11 x 11 pixels (12,100 m2; C). Window sizes with total square meters 

(m2) covered in each analysis are displayed in B and C. 
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Figure 4.3 Boxplots of Vegetation Indices. Boxplots of Enhanced Vegetation Index 

(EVI), Chlorophyll Vegetation Index (CVI), and Normalized Difference Water Index 

(NDWI), including all pixels in the study area at Pushmataha Wildlife Management Area. 

For each box, the center line represents the median, while the upper and lower extents of 

the box represent the 3rd and 1st quartiles, respectively. Outliers are indicated by black 

circles above and below the whiskers.
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Figure 4.4 False Color Composite of Vegetation Indices. RGB color composite of 

vegetation indices across the Pushmataha Forest Habitat Research Demonstration Area. 

Indices are plotted as Enhanced Vegetation Index (EVI, red), Chlorophyll Vegetation 

Index (CVI, green), and Normalized Difference Water Index (NDWI, blue).  
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Figure 4.6 Spatial Extent Dependency of Physiological Functional Richness. Spatial 

extent dependency of physiological functional richness (FRic) across Pushmataha 

Wildlife Management Area. Mean FRic values for the study area are displayed with 

standard error. Standard errors are less than 1.32 x 10-6 for all five FRic values. 

Neighborhood size is reported as the total area in square meters (m2) included in the 

moving window analysis to calculate FRic.  
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Figure 4.7 Spatial Extent Dependency of Physiological Functional Evenness. Spatial 

extent dependency of physiological functional evenness (FEve) across Pushmataha 

Wildlife Management Area. Mean FEve values for the study area are displayed with 

standard error. Standard errors are less than 9.03 x 10-5 for all five FEve values. 

Neighborhood size is reported as the total area in square meters (m2) included in the 

moving window analysis to calculate FEve.  
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Figure 4.8 Spatial Extent Dependency of Physiological Functional Divergence. 

Spatial extent dependency of physiological functional divergence (FDiv) across 

Pushmataha Wildlife Management Area. Mean FDiv values for the study area are 

displayed with standard error. Standard errors are less than 6.99 x 10-5 for all five FDiv 

values. Neighborhood size is reported as the total area in square meters (m2) included in 

the moving window analysis to calculate FDiv.  
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CHAPTER V 

 

 

CONCLUSION 

 

 Biodiversity loss, land-use change, and modified disturbance regimes, amongst 

other effects of human development, are having significant consequences for the function 

and overall productivity of biological communities (Carreño-Rocabado et al. 2012). 

Functional diversity is a component of biodiversity that can provide valuable insight into 

a community’s function, resilience, and response to environmental change (Tilman 

2001). In plant communities, such as forests and savannas, measuring functional diversity 

often relies on the collection of functional trait data, examining plant characteristics 

associated with the plant’s ability to obtain, utilize, and conserve resources (Reich et al. 

2003). Assessing functional diversity of vegetation across a landscape is a time and labor-

intensive process when completed with traditional field data collection, which can be 

improved with remote sensing methods. Satellite-borne sensors provide global 

multispectral imagery coverage and are capable of collecting valuable information on 

plant physiology and biochemistry (Ustin and Gamon 2010), while LiDAR can be used to 

capture variation in vegetation morphology (Reutebuch et al. 2005). The methodology I 

provide in this study utilizes both multispectral imagery and LiDAR to continuously map 

functional traits and metrics of functional diversity across a landscape with large 
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environmental gradients. I demonstrate the utilization of this remote sensing 

methodology to examine the effects of various forest management practices on the 

functional diversity of mixed pine-oak forests in southeastern Oklahoma at the 

Pushmataha Forest Habitat Research Demonstration Area (FHRA). I detected differences 

in vegetation morphology and physiology, assessed using environmental remote sensing, 

between treatments with an analysis of multivariate space. At FHRA, management 

practices affected the canopy height (CH), vertical diversity (FHD), density (TVD), water 

content (NDWI), and morphological functional evenness and divergence of plots. Fire 

frequency appeared to have the biggest impact on average trait and functional diversity 

values for treatments, with lower mean CH, FHD, and TVD, and lower morphological 

functional evenness and divergence associated with frequent prescribed burning.  

 Building upon the initial study, I extended these techniques to map metrics of 

functional diversity across the much larger Pushmataha Wildlife Management Area 

(PWMA). While the PWMA, and the FHRA within it, provided a suitable study area for 

the development of the methodology, the applications are not limited to the study of 

functional diversity in Oklahoma or forest-savanna landscapes. The methodology can be 

applied to a variety of vegetation communities and regions, limited only by the 

availability and resolution of the remotely sensed data. Increasing access to publicly-

available multispectral and hyperspectral imagery from spaceborne missions is expanding 

the potential for global coverage of functional diversity monitoring. Capturing and 

visualizing the variation in functional diversity across landscapes is vital to understanding 

the resilience of Earth’s ecosystems and predicting responses to future environmental 

change (Jetz et al. 2016).  
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APPENDICES 
 

Table A.1 Post-hoc Test Results for Morphological Functional Evenness. Table 

containing the results of Mann-Whitney U pairwise comparison post-hoc tests for 

morphological functional evenness. The two treatments being compared, the test statistic, 

and associated significance value is listed, with * designating significance values less 

than 0.05. 

Treatments Compared Mann-Whitney U Test Statistic P-value 
CONT-HNT1 14.000 0.011* 

CONT-HT 13.000 0.019* 
CONT-HT1 17.000 0.002* 
CONT-HT2 6.333 0.253 
CONT-HT3 6.833 0.270 
CONT-HT4 6.333 0.253 
CONT-RRB 2.667 0.630 
HNT1-HT -1.000 0.857 

HNT1-HT1 3.000 0.588 
HNT1-HT2 -7.677 0.166 
HNT1-HT3 -7.167 0.247 
HNT1-HT4 -7.677 0.166 
HNT1-RRB -11.333 0.041* 

HT-HT1 4.000 0.470 
HT-HT2 -6.667 0.229 
HT-HT3 -6.167 0.319 
HT-HT4 -6.667 0.229 
HT-RRB -10.333 0.062 
HT1-HT2 -10.667 0.054 
HT1-HT3 -10.167 0.101 
HT1-HT4 -10.667 0.054 
HT1-RRB -14.333 0.010* 
HT2-HT3 0.500 0.936 
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HT2-HT4 0.000 1.000 
HT2-RRB -3.667 0.508 
HT3-HT4 -0.500 0.936 
HT3-RRB -4.167 0.501 
HT4-RRB -3.667 0.508 
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Table A.2 Post-hoc Test Results for Morphological Functional Divergence. Table 

containing the results of Mann-Whitney U pairwise comparison post-hoc tests for 

morphological functional divergence. The two treatments being compared, the test 

statistic, and associated significance value is listed, with * designating significance values 

less than 0.05. 

Treatments Compared Mann-Whitney U Test Statistic P-value 
CONT-HNT1 13.333 0.016* 

CONT-HT 4.333 0.434 
CONT-HT1 11.000 0.047* 
CONT-HT2 12.333 0.026* 
CONT-HT3 6.167 0.319 
CONT-HT4 1.667 0.763 
CONT-RRB -3.333 0.547 
HNT1-HT -9.000 0.104 

HNT1-HT1 -2.333 0.673 
HNT1-HT2 -1.000 0.857 
HNT1-HT3 -7.167 0.247 
HNT1-HT4 -11.667 0.035* 
HNT1-RRB -16.667 0.003* 

HT-HT1 6.667 0.229 
HT-HT2 8.000 0.149 
HT-HT3 1.833 0.767 
HT-HT4 -2.667 0.630 
HT-RRB -7.667 0.166 
HT1-HT2 1.333 0.810 
HT1-HT3 -4.833 0.435 
HT1-HT4 -9.333 0.092 
HT1-RRB -14.333 0.01* 
HT2-HT3 -6.167 0.319 
HT2-HT4 -10.667 0.054 
HT2-RRB -15.667 0.005* 
HT3-HT4 -4.500 0.467 
HT3-RRB -9.500 0.125 
HT4-RRB -5.000 0.367 
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