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Quantum scars are non-thermal eigenstates characterized by low entanglement entropy, initially
detected in systems subject to nearest-neighbor Rydberg blockade, the so called PXP model. While
most of these special eigenstates elude an analytical description and seem to hybridize with nearby
thermal eigenstates for large systems, some of them can be written as matrix product states (MPS)
with size-independent bond dimension. We study the response of these exact quantum scars to
perturbations by analysing the scaling of the fidelity susceptibility with system size. We find that
some of them are anomalously stable at first order in perturbation theory, in sharp contrast to the
eigenstate thermalization hypothesis. However, this stability seems to breakdown when all orders
are taken into account. We further investigate models with larger blockade radius and find a novel
set of exact quantum scars, that we write down analytically and compare with the PXP exact
eigenstates. We show that they exhibit the same robustness against perturbations at first order.

I. INTRODUCTION

The eigenstate thermalization hypothesis
(ETH)1,2 legitimises the use of quantum stat-
istical mechanics to describe the equilibrium
properties of isolated many-body systems emerging
from their coherent dynamics. In a nutshell, it
states that the expectation values of physical
observables on finite-energy density eigenstates of
the Hamiltonian yield a smooth function of the
energy for large systems, the off-diagonal matrix
elements being pseudo-random numbers. The range
of validity of this assumption encompasses a wide
variety of interacting systems, but non-generic
exceptions have been found. In fact, the presence
of conservation laws is known to prevent thermaliz-
ation in integrable systems, due to a breakdown of
ETH3. A similar scenario occurs in the presence of
strong disorder, when energy eigenstates localize4–8.

More recently, ETH violations have been detec-
ted in systems whose long-time steady state looks
thermal for most of the initial states. Only when
specific initial conditions are chosen, the dynamics
is anomalously slow (when compared to the major-
ity of other choices of initial states) and thermal-
ization is not observed on experimentally accessible
time-scales9. The origin of this phenomenology is
the presence in the energy spectrum of a few ei-
genstates, dubbed many-body quantum scars, that
do not obey ETH and possess a large overlap with
the initial state at hand. They are characterized by
expectation values of local observables that do not
agree with the canonical ensemble at their energy
and by a sub-extensive entanglement entropy10–19.

The archetypal model in which these special ei-
genstates arise is the PXP model20,21, introduced as

a simplified description of the Rydberg atom chain
realized in Ref. 9. As a consequence of the effect-
ive interaction between Rydberg states, the exper-
imental setup simulates a spin-1/2 system with a
tunable parameter –the blockade radius Rb– that
describes how certain states, where two spins up are
separated by less than Rb lattice sites, are never ex-
plored by the dynamics due to a large energy pen-
alty. In the simplified description Rb becomes a dis-
crete parameter which we will call α in what follows,
where α = 1 is the PXP model.

Quantum scars in the PXP model were origin-
ally used to explain the slow dynamics observed
by evolving a charge-density wave (CDW) initial
state in the above-mentioned experiment with Ry-
dberg atoms: for a chain of length L, there are
L + 1 scar eigenstates, with a large overlap with
the CDW, spread throughout the spectrum and (ap-
proximately) equally spaced in energy. Crucially,
numerical results reveal hybridization of these scars
with thermal eigenstates, implying that they are not
stable in the thermodynamic limit11. Therefore the
resulting dynamics from this initial state is expected
to eventually thermalize. However, two exact uni-
form matrix product eigenstates have been found for
all (even) system sizes15. This fact demonstrated the
existence of ETH violating eigenstates that survive
in the infinite size limit, and motivated the study of
their stability against perturbation. In Ref. 22 the
authors address this problem by using perturbation
theory: from the scaling of the averaged matrix ele-
ments, they find no qualitative difference between
the scars and thermal eigenstates, and thus deduce
that the scars are not stable against perturbations.
Nonetheless, they claim that thermalization is slow,
because of parametrically small matrix elements.
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Here, we analyse a different quantity (the fidel-
ity susceptibility), which is a renowned probe of
quantum chaos23–25, and is not subject to the ar-
bitrariness of the averaging procedure. Part of our
results contrast with Ref. 22, showing that the scars
with zero energy have a completely different beha-
vior from thermal eigenstates and are anomalously
stable to first order in perturbation theory. These
findings suggest that thermalization of quantum
scars is even slower than previously expected, being
originated from effects beyond the first perturbative
order.

We remark that this anomalous stability is ob-
served only for scars with zero energy, so we cannot
conjecture a similar mechanism for explaining the
persistence of non-exact scars at finite energy in the
PXP model. In fact, although a construction based
on a "single mode approximation" suggests a pos-
sible connection between the band of L+1 quantum
scars at all energies to the MPS quantum scars at
zero energy15, these two sets of low-entropy eigen-
states appear to have different origin. For example,
while the former are stabilized by a specific fine-
tuned perturbation13 and have logarithmic scaling
of entanglement entropy with system size, the latter
are destroyed by the same perturbation and have
finite entanglement entropy in the thermodynamic
limit.

In order to frame our finding about scar stabil-
ity in the broader picture of ETH violations in con-
strained quantum systems, we prove that a novel
set of exact eigenstates arising at zero energy (and
at non-zero energy, when open boundary conditions
are imposed) exists in generalized PXP models with
α > 1. We do not find a band of eigenstates equally
spaced in energy like the one observed in the PXP
model. These results suggest that exact scars are
a generic property of one-dimensional models con-
strained by Rydberg blockade. We then extend our
stability analysis to this second set of scars, and
show how, in analogy with the α = 1 case, they
display anomalous stability.

The paper is structured as follows. In Sec. II,
we introduce the PXP model and the scar eigen-
states, and we set the notation for the following
sections. In Sec. III we introduce the fidelity sus-
ceptibility and the eigenstate thermalization hypo-
thesis, and put forward a link between such observ-
able and a recently proposed spectral version of the
adiabatic gauge potential25,26. In Sec. IV we focus
on the models with radius of constraints α > 1:
we discuss their properties in light of the ETH, we
show that they obey Wigner-Dyson spectral stat-
istics (Sec. IVA); we describe the exact scars with
E = 0 as product states of "dimers" (Sec. IVB), and
the exact scars with E 6= 0 as matrix product states

(Sec. IVC); finally, we show that the exact scars with
E = 0 are anomalously stable against perturbations
(Sec. IVE).

II. PXP MODEL

The model we consider is the PXP model. This
model was first introduced in the context of con-
strained quantum models that can be directly re-
lated, in some parameter regimes, to exactly soluble
classical statistical mechanics systems20. In Ref. 27,
it was shown how the same type of dynamics de-
scribes Rydberg excitations in an atomic chain in the
regime of nearest-neighbour blockade. Each atom of
the chain is modelled by a spin 1/2: the state |0〉 cor-
responds to the ground state and the state |1〉 is an
excited Rydberg state with high principal quantum
number. A laser can couple the two states, indu-
cing single-atom Rabi oscillations (in most experi-
mental scenarios, such transition is actually driven
by a pair of laser fields, via an intermediate, low-
lying excited state). In the nearest-neighbour block-
ade regime, the interaction between Rydberg states
on neighbouring sites is so large that the dynamics
is effectively constrained to the subspace generated
by the states with no consecutive "1"s.

Defining Xi, Yi, Zi as the Pauli matrices at site i
and Pi = (1− Zi)/2, ni = (1 + Zi)/2, the dynamics
in the constrained space is described by

H0 = X1P2 +

L−1∑
j=2

Pj−1XjPj+1 + PL−1XL (1)

for open boundary conditions and

H0 =

L∑
j=1

Pj−1XjPj+1 (2)

with the identification of the sites j ≡ j + L for
periodic boundary conditions. Because of Rydberg
blockade, the Hamiltonian acts on the space con-
strained by the conditions nini+1 = 0 for every i.

We are interested in the effects induced by a per-
turbation V that has the same symmetries of H0.
More concretely, the Hamiltonian is H = H0 + λV ,
where

V = X1P2Z3 +

L−2∑
j=2

Pj−1XjPj+1Zj+2

+

L−1∑
j=3

Zj−2Pj−1XjPj+1 + ZL−2PL−1XL (3)
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for the case of open boundary conditions and

V =

L∑
j=1

(Pj−1XjPj+1Zj+2+Zj−2Pj−1XjPj+1) (4)

for periodic boundary conditions.
Both H0 and V commute with the space reflec-

tion symmetry I and anticommute with the particle-
hole symmetry Cph =

∏
i σ

z
i . As a consequence, the

spectrum is symmetric with respect to the eigen-
value E = 0 and the energy zero eigenspace has a
dimension growing exponentially with system size28.
For more details about the peculiar properties of the
spectrum we refer to Appendix A.

1. Many-body scars

As stated above, many-body scars are states that
do not satisfy ETH. It was shown in Ref. 10 that
the spectrum of the PXP model exhibits a band of
equally-spaced many-body scars. These scars were
responsible for the observation of long-lived oscil-
lation in a Rydberg atom experiment9. Their exact
form is not known analytically, and their persistence
in the thermodynamic limit is still an open question.
However, as was shown in Ref. 15, H0 has also some
exact scars in the form of MPS eigenstates at finite
energy density. For open boundary conditions they
are defined as

|Γi,j〉 =
∑
{σ}

vTi Aσ1σ2 . . . AσL−1σL
vj |σ1σ2 . . . σL−1σL〉

(5)
with

A00 =

(
0 −1
1 0

)
, A01 =

(√
2 0

0 0

)
, A10 =

(
0 0

0 −
√

2

)
,

(6)
i, j = 1, 2 and v1 = (1, 1)T , v2 = (1,−1)T . Γ12

has energy
√

2, Γ21 has energy −
√

2, whereas Γ11

and Γ22 have energy 0. In the next sections,
we will focus on scars with well-defined inversion
quantum number, so we define |ΓI〉 = (|Γ11〉 −
|Γ22〉)/

√
2− 2 〈Γ11|Γ22〉.

For periodic boundary conditions, the two scarred
eigenstates |Φ1〉 and |Φ2〉 are defined as

|Φ1〉 =
∑
{σ}

Tr[Aσ1σ2
. . . AσL−1σL

] |σ1σ2 . . . σL−1σL〉

(7)
and |Φ2〉 = Tx |Φ1〉, where Tx is the translation
operator. Both have energy 0. Their properties
under the symmetries are the following: I |Φi〉 =

(−1)L/2 |Φi〉 and Cph |Φi〉 = (−1)L/2 |Φi〉 for i =
1, 2. We will work with the linear combinations
|ΦK=0,π〉 = (|Φ1〉 ± |Φ2〉)/

√
2± 2 〈Φ1|Φ2〉. Even

though these are not responsible for the persistent
oscillations observed in experiments, their putative
stability in the thermodynamic limit outlines their
importance.

III. PERTURBATION THEORY AND ETH

It is crucial to understand how to define stability
for these kind of eigenstates. In general, we will
say that an eigenstate of H0 is stable if it can be
deformed to an eigenstate of H0 + λV with a local
unitary transformation in the thermodynamic limit.
Usually this criterion is satisfied by ground states
in gapped systems. Here we are interested in the
scars |Γαβ〉 and |Φi〉 which are in the middle of a
dense spectrum, in the absence of a gap to protect
them. The local character of the transformation, if
it exists, should guarantee that a stable scar retains
its character (no ETH and area law entanglement)
in the thermodynamic limit. For generic eigenstates,
no stability is expected. This can be understood
as a consequence of the Eigenstate Thermalization
Hypothesis (ETH): to first order in the perturbation
strength λ, the perturbed eigenstate can be written
as

|n0〉+ λ |n1〉 = |n0〉+ λ
∑
m6=n

〈m0|V |n0〉
E0
n − E0

m

|m0〉 . (8)

According to ETH, the off-diagonal matrix element
〈m0|V |n0〉 scales as exp(−S/2), where S is the ex-
tensive thermodynamic entropy of the system. The
energy denominator, on the other hand, scales as
exp(−S) for nearby eigenstates. This simple argu-
ment implies that the first order correction diverges
exponentially in the system size L.

Hence, a natural question to answer is whether the
first order correction to the scars behaves according
to the scaling predicted by ETH or not. In Ref. 22,
it was found that the matrix elements 〈m0|V |Γ〉 av-
eraged over a certain set of eigenstates {|m0〉} close
in energy to |Γ〉 do indeed scale as exp(−S/2), where
|Γ〉 is one of the scars for the case of open boundary
conditions. This is however not sufficient to claim in-
stability: the matrix elements which are responsible
for the divergence are the ones involving states that
are very close in energy. As can be seen in Fig. 1,
the matrix elements weighted with the inverse en-
ergy gaps behave very differently for the scars and
for generic thermal states: the vanishing denomin-
ator produces a peak in the case of a thermal state;
the scars, despite the vanishing energy gaps, do not
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Figure 1. Absolute value of the ratio between the matrix element and the energy difference between a target state
and a state of the spectrum. The same data are represented in a larger (first row) and in a smaller (second row) range
of energy difference. The target states are the scars eigenstates |Γ21〉 (a,d), |ΓI〉 (b,e) defined in Sec. II and a thermal
eigenstate |Γth〉 (c,f) taken as the third eigenstate after |Γ21〉 in order of increasing energy. The clear peak observed
when a thermal eigenstate |Γth〉 is considered is not present for the scars eigenstates, pointing at a suppression of the
matrix elements of the perturbation for the latter states.

exhibit this peak, signalling a suppression of matrix
elements for small gaps. Moreover, the averaging
procedure of matrix elements introduces some arbit-
rariness in this respect: the result depends on the
choice of the set of eigenstates that are included in
the average.

In this work, we propose to diagnose the stability
of scar eigenstates by studying the fidelity suscept-
ibility, defined as29

χF
[
|n0〉

]
= lim
λ→0

−2 ln | 〈n0|nλ〉 |
λ2

(9)

where |n0〉 is an eigenstate of H0 and |nλ〉 is the
eigenstate of H0 + λV obtained from |n0〉 with a
perturbative construction in λ. From the explicit
construction of the state, one finds30

χF
[
|n0〉

]
=
∑
m6=n

∣∣∣∣ 〈m0|V |n0〉
E0
n − E0

m

∣∣∣∣2 . (10)

The fidelity susceptibility is a measure of the re-
sponse of an eigenstate to perturbations: when
averaged over different eigenstates, for example,
it has been very recently used as a measure of
quantum chaos25,26. For gapped ground states of
local Hamiltonians, it is expected to scale as χF ∼ L

with the system size L. On the other hand, as ar-
gued above, ETH implies a scaling χF ∼ exp(L) for
eigenstates at finite energy density.

Note that, due to the special properties of this
perturbation, all the matrix elements of V between
zero energy states vanish (see Appendix A): as a con-
sequence, the fidelity susceptibility is well-defined
even for states in the exponentially degenerate zero-
energy manifold and can be computed for all the
scarred eigenstates.

We obtain that only a subset of the exact scars
appear to be stable. Indeed the scaling of the fidel-
ity susceptibility for the scars |ΦK=0〉 (for the case
of periodic boundary conditions) and |ΓI〉 (for the
case of open boundary conditions) shown in Fig. 2
suggests a linear dependence31 χF ∼ L, as evid-
enced by the solid lines. On the contrary, the scal-
ing for |Γ21〉 and for the generic thermal eigenstates
|Γth〉 and |Φth〉32 are compatible with an exponential
growth (dashed lines), as predicted by ETH. These
results show that |ΦK=0〉 and |ΓI〉 are perturbatively
stable to an infinitesimal perturbation. We note that
these differences are not only qualitatively manifest
(power versus exponential scaling), but also quantit-
atively striking, so that the different scaling regimes
can be diagnosed despite the fact that our analysis
is limited to modest system sizes up to L = 32 spins.
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Figure 2. Scaling of the fidelity susceptibility with sys-
tem size. The results shown refer to the states (a) |Γth〉,
|Γ21〉 and |ΓI〉 with open boundary conditions and to
the states (c) |Φth〉 and |ΦK=0〉 with periodic boundary
conditions. As can be seen in the panels with linear y-
scale (b), (d), the scaling of the fidelity susceptibility of
a zero energy scar eigenstate is polynomial with the sys-
tem size, in sharp contrast to what happens for thermal
eigenstates or scars at non-zero energy (a),(c). Solid lines
are fits for the linear scalings (the two different lines for
ΦK=0 capture the even-odd effect), dashed lines are fits
for exponential scalings.

We now want to understand if they are also stable
to a finite strength λ of the perturbation. If these
states were akin to gapped ground states, we would
have expected stability to hold in the thermody-
namic limit for a finite λ as long as it is much smaller
than the gap. The absence of a gap makes the quest
for an energy scale associated with scars much less
obvious.

To address this problem, we compute the states
|ΦλK=0〉 and |Γλi 〉 obtained by perturbing the scars
|ΦK=0〉 and |ΓI〉 in the following way

|ΦλK=0〉 =
1

N λ
Φ

1

1 + λQH−1
0 QV

|ΦK=0〉 (11)

|ΓλI 〉 =
1

N λ
Γ

1

1 + λQH−1
0 QV

|ΓI〉 (12)

where Q projects on the subspace with E0 6= 0, and
N λ

Φ , N λ
Γ are normalizing factors. The states |ΦλK=0〉

and |ΓλI 〉 are the perturbed eigenstates to infinite

order in perturbation theory. We numerically com-
pute the von Neumann bipartite entanglement en-
tropy S(λ) of these states for different system sizes
(Fig. 3). This quantity exhibits peaks that get closer
to λ = 0 as L increases, indicating a stronger and
stronger hybridization with other eigenstates in the
spectrum. This fact strongly suggests that, despite
the stability observed to first order in perturbation
theory, the scars are ultimately not stable for finite
λ 6= 033.
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0.00
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24
26
28
30

0.00 0.02 0.04 0.06
0

1

2

3
S(

)
S(

0)
(b)

18
20
22
24

Figure 3. Bipartite entanglement entropy of the states
(a) |ΦλK=0〉 and (b) |ΓλI 〉 as a function of λ. Peaks in
this quantity signal hybridization of the perturbed state
with thermal eigenstates. By increasing the system size,
we find peaks closer and closer to λ = 0, suggesting that
the scar eigenstates are not stable in the thermodynamic
limit.

IV. MODELS WITH RADIUS OF
CONSTRAINT α > 1

Since the first studies on the PXP model, several
other instances of quantum many-body scars have
been put forward34–50. While it is tempting to ex-
tend some of the findings above to a general setting,
we refrain from this for the very simple reason that
PXP models have a characteristic feature - a con-
strainted Hilbert space that cannot be reduced in
tensor product form - that is not present in other
instances of quantum scars. We pursue instead an
alternative route, based on investigating the stability
of quantum scars in an enlarged class of constrained
models.
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In concrete, we consider a generalization of the
PXP model, where we extend the constraint to the
sites within an integer radius α, i.e. ninj = 0

whenever |i−j| ≤ α, with nj =
Zj+1

2 . The Hamilto-
nian has the form:

Hα
0 =

∑
i

Pi−α . . . Pi−1XiPi+1 . . . Pi+α, (13)

where Pj is the projector on the state |0〉. The
Hamiltonian (13) coincides with the PXP model for
α = 1 and arises as an effective approximation of the
long-range Hamiltonian describing Rydberg atoms
arrays when the (continuous) blockade radius is in-
creased (by e.g. tuning the distance between the
atoms). Similarly to the PXP model, this Hamilto-
nian commutes with the reflection symmetry I and
anticommutes with the particle-hole symmetry Cph,
and the spectrum has the same properties (see Ap-
pendix A).

A. Spectral statistics

In this section we analyze the spectral statistics of
the Hamiltonian in Eq. (13) for different values of α.
We use as a measure the ratio between nearby gaps:

r =
〈Min{∆En,∆En+1}

Max{∆En,∆En+1}

〉
, (14)

where the average is taken over the full spectrum.
For an ergodic system, this quantity is expected to
flow to the value rWD ' 0.53 associated with a
Wigner-Dyson statistics. While for α = 1 ergodi-
city has been already verified in various works11,12,
we check this assumption when α > 1 in Figs. 4,
where we show the values of r for different α and
system sizes. In all the cases considered (reflection
sector I = +1 with open boundary condition, reflec-
tion sectors I = +1 and I = −1 with momentum
K = 0 and periodic boundary conditions) we find a
clear flow to rWD for increasing system sizes. We
can therefore argue that the system has a spectral
statistics that is compatible with ergodicity.

B. Exact scars with E = 0

We now show that, although the models con-
sidered here satisfy the Wigner-Dyson spectral stat-
istics, some states in the spectrum have finite en-
tanglement entropy in the thermodynamic limit and
hence violate the eigenstate thermalization hypo-
thesis.

20 30 40
L

0.50

0.55
r

obc, I = + 1

1
2

3
4

5

20 30 40 50 60
L

0.45

0.50

0.55

r

pbc, I = + 1

20 30 40 50 60
L

0.4

0.5

0.6
r

pbc, I = 1

Figure 4. Ratio r of nearby gaps averaged over the full
spectrum. The colors label different values of α. The
dashed horizontal line is the value rWD associated with
Wigner-Dyson statistics, that appears to be satisfied for
all the values of α considered.

For a system with L = (α+ 2)n (with n integer),
consider the following state

|φα〉 =

n−1⊗
i=0

[
(|01〉 − |10〉) |0 . . . 0︸ ︷︷ ︸

α

〉
]
bi

(15)

where the index bi labels blocks of α + 2 sites. The
state of the first two sites of a block is an anti-
symmetric superposition (that we call a dimer) and
hence is annihilated by the spin flip. All the other
sites of a block cannot be flipped: they are "frozen"
by the previous or the next dimer. Therefore, the
state |φα〉 (and all the states obtained from it by
translations) is a scar with energy E = 0 for generic
α > 1.

We can construct many exact scars with E = 0
by placing dimers (depicted in red in Fig. 5) on the
chain. Two dimers must be separated by a number
` of zeros in the range α ≤ ` ≤ 2α− 2. We can also
have longer-range dimers involving sites that are not
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nearest neighbours. In this case, the number ` of
zeros between two dimers of range r1 and r2 must
be in the interval α ≤ ` ≤ 2α − r1 − r2. This last
condition implies that the ranges of two consecutive
dimers are bounded by r1 + r2 ≤ α.

This construction works also in the case of open
boundary conditions, with the following rules for the
boundaries: if the first (last) dimer of the chain has
range r, then the number of zeros preceding (follow-
ing) it must be ` ≤ α− r.

𝛼

l

(a)

r

(b)

r1

(c)

r2

Figure 5. Some eigenstates with E = 0. (a) The state
|φα〉 is made of dimers (in red) separated by sequences
of 0s of length α. (b) Dimers can have range r > 1. (c)
Dimers can be separated by any distance `, such that
α ≤ ` ≤ 2α− r1 − r2.

We note that the structure of these states, that
we write as product states of dimers, is reminiscent
of the construction of scar eigenstates found in other
constrained models46,51.

C. Exact scars with E 6= 0

In the following, we will show that the models
of Eq. (13) have scars also at E 6= 0 when open
boundary conditions are imposed. While, as we have
shown in Sec. IVB, it is possible to write many ex-
act E = 0 eigenstates as product states of dimers, for
these scars we need to resort to a more involved con-
struction: we write them as matrix product states
with finite bond dimension, independent of the sys-
tem size.

1. Exact scars with E = ±
√

3

For system sizes L = (α+ 2)n+ 3, with n integer,
we are able to write two exact scars with energy
E = ±

√
3 as matrix product states. To define these

states, we divide the chain in blocks labelled from 1
to 2n+1: the blocks labelled by odd numbers contain
3 sites, while the blocks labelled by even number

contain α− 1 sites. As we prove in Appendix D, the
following state is an exact eigenstate with energy
E =

√
3:

|ψ(3)
α 〉 =

∑
~s

[
(1, 0)T ·Ns1Ms2 . . .

. . .Ms2nNs2n+1 · (0, 1)
]
|~s〉 (16)

where s1, s2, . . . , s2n+1 label the states of the blocks
and

Ms =

{
1 if s = 00 . . . 00

0 otherwise,
(17)

N000 =

(
0
√

3
0 0

)
, N100 =

(
0 1
0 1

)
, (18)

N010 =

(
1 1
0 −1

)
, N001 =

(
−1 1
0 0

)
. (19)

From the relation CphH
α
0 = −Hα

0 Cph we imme-
diately find that the state |ψ(−3)

α 〉 = Cph |ψ(3)
α 〉 is

another eigenstate of Hα
0 with eigenvalue E = −

√
3.

We also note that the state obtained by taking the
trace in Eq. (16) is a zero energy eigenstate for
L = (α + 2)n + 3 when open boundary conditions
are imposed. Moreover, removing the matrix N at
one of the two boundaries we can construct an MPS
that is invariant under translations of α+ 2 sites

|ϕα〉 =
∑
~s

Tr(Bs1Bs2 . . . Bsn) |~s〉 , (20)

where B = MN and si runs through the 3 allowed
states of the i-th block, made of α + 2 sites. This
state is a zero energy eigenstate for periodic bound-
ary conditions and system sizes L = (α + 2)n, and
it has non-vanishing overlap with the dimer eigen-
states of Sec. IVB; however, for generic α it has a
component that is independent of those states. The
matrix B yields a non-injective MPS, whose par-
ent Hamiltonian has a degenerate groundspace52. In
fact, the state in Eq. (20) can be written as a cat
state

|ϕα〉 =

(|L〉+
1

2
|R〉 − 3

2
|C〉
)
|0 . . . 0︸ ︷︷ ︸
α−1

〉

⊗n

+

(1

2
|L〉+ |R〉 − 3

2
|C〉
)
|0 . . . 0︸ ︷︷ ︸
α−1

〉

⊗n

= |ϕ1
α〉+ |ϕ2

α〉 , (21)
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where |L〉 = |100〉, |C〉 = |010〉 and |R〉 = |001〉. The
parent Hamiltonian of this state have |ϕ1

α〉± |ϕ2
α〉 as

the two degenerate ground states. This is in contrast
with the eigenstates of Ref. 15 (|Φ1〉 and |Φ2〉 in
Sec. II) which are injective MPSs, and thus unique
ground states of their parent Hamiltonian.

2. Exact scars with E = ±√q

We find that other (possibly degenerate) MPS
scars appear at energies E = ±√q with q integer.
This property is a consequence of the structure of
these matrix product states. Similarly to the case
of periodic boundary conditions, the action of the
Hamiltonian on these states is such that the com-
plicated interaction is decoupled into smaller non-
interacting blocks. Their energies are therefore de-
termined by the energy of a single block: in the cases
we consider, the energy of a block can be 0 or ±√q
where q ≤ α + 1 is the size of the block. In Ap-
pendix E we write down explicitly some exact eigen-
states of Hα

0 with energy E = ±
√

2 for α = 3.

D. Relation with exact scars for α = 1

The exact scars described here are reminiscent of
the ones found in Ref. 15: there, it was shown that
the PXP model (α = 1) has exact MPS scars at
E = 0 for periodic boundary conditions, and both
at E = 0 and E = ±

√
2 when open boundary con-

ditions are imposed. The states we study for α ≥ 2,
however, show a qualitative difference with respect
to them: in the case of open boundary conditions,
the energy density profile does not have peaks at
the edges, but has a pattern that is uniformly re-
peated in the full system. This can be understood
from the MPS structure of these states. The scars
in Eq. (5) have the form of AKLT states in which
two-site blocks play the role of S = 1 spin variables.
As we show in Appendix C, the energy density of the
PXP model corresponds to the local magnetization
of the AKLT state in the z direction. The bound-
ary properties of the scars can be interpreted using
the "dilute antiferromagnet" representation of the
AKLT state: in the Sz basis, the state is a super-
position of configurations with alternating + and −,
and with an arbitrary number of 0 placed in between.
The different boundary vectors α, β of |Γαβ〉 fix the
sign of the first and last non-zero spins of the config-
urations. Therefore, the local magnetization is non-
zero close to the boundaries but goes to 0 far from
them. The state in Eq. (16), on the other hand,
has a very different structure: if we use, once again,
a basis in which the local energy corresponds to a

local magnetization, we can write |ψ(3)
α 〉 as a super-

position of configurations with a single + (on one of
the 3-site blocks), and 0 magnetization everywhere
else. Therefore, in contrast with the dilute antiferro-
magnet of the scars |Γαβ〉, this state is reminiscent
of a spin wave, with a single magnetic excitation
uniformly spread in the chain.

E. Stability

We now analyse the response of the exact scars
described above to a perturbation. The perturbation
we apply is

V α =
∑
i

Zi−α−1Pi−α . . . Pi−1XiPi+1 . . . Pi+α+

Pi−α . . . Pi−1XiPi+1 . . . Pi+αZi+α+1. (22)

This term has the same symmetries of Hα
0 , namely it

commutes with I and anticommutes with Cph. Sim-
ilarly to the PXP case, we use the fidelity susceptib-
ility to check whether these states are stable to first
order in perturbation theory.

In Fig. 6, we present the results of the stability
analysis. In the upper panel, we plot the fidelity
susceptibility of a generic (thermal) eigenstate of the
spectrum |φth〉 (chosen as the eigenstate with energy
closest to 1.9, 1.7, 1.35 for α = 2, 3, 4 respectively):
for every α, the scaling with system size is exponen-
tial, as expected from ETH (dashed lines). In the
lower panels, we plot instead the fidelity susceptibil-
ity of the scars |φα〉 defined in Eq. (15): the scaling
here is linear53 (solid lines) for every α, signalling
a clear violation of ETH. These results suggest that
the anomalous stability of the scars with E = 0 is a
generic feature of this class of one-dimensional mod-
els constrained by Rydberg blockade.

V. CONCLUSIONS

In this work, we investigated the stability against
perturbations of exact quantum scars arising in spin
chains constrained by Rydberg blockade. We first
analysed the PXP model and found that some of
the MPS scars found in Ref. 15 exhibit a power law
scaling of the fidelity susceptibility with system size.
This result is a signature of their stability, a remark-
able feature for eigenstates in the middle of a dense
many-body spectrum. This fact is however limited
to first order in perturbation theory, as a numerical
analysis of the higher-order perturbative corrections
reveals hybridization of exact scars eigenstates with
thermal eigenstates. This behavior is reminiscent
of the many-body "dark states" observed in Ref. 54
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Figure 6. Scaling of the fidelity susceptibility with sys-
tem size. The results shown refer to the generic states
φth (upper panel) and the scarred eigenstates φα (lower
panels). Dashed lines are obtained from fits with an ex-
ponential scaling, solid lines with linear scaling. The
result points at the same behavior occuring in the PXP
model.

and 55. We find the anomalous scaling of the fidelity
susceptibility only for scars with zero energy, sug-
gesting that the properties of the E = 0 subspace,
such as the exponential degeneracy enforced by the
invariance of this subspace under particle-hole and
inversion symmetries, may be a key factor in stabil-

izing these states. Although not shown here, if we
perturb with a term that breaks these properties,
we find no signatures of stability for any of these
low-entropy eigenstates.

To validate these conclusions, we extended our
discussion to models with larger blockade radius α.
First, we constructed novel classes of states that are
exact scars eigenstates for any α and have energy
eigenvalues E = 0 and E = ±√q (with q integer).
The construction is based on an effective decoup-
ling of the sites of the chain into "non-interacting
blocks", and allows us to write these states into
simple matrix product form. We then studied their
fidelity susceptibility under perturbations that do
not spoil the exponential degeneracy of the zero-
energy eigenspace, a common property of the fam-
ily of constrained models we analysed. Also in this
case, we found these eigenstates to be stable at first
perturbative order when they belong to the E = 0
subspace.

Our results suggest that an increasing number of
exact MPS scars appear in the spectrum for larger
values of α, and their complete classification is bey-
ond the scope of this work. It is also worth noticing
that, contrarily to the α = 1 case (PXP model), no
"approximate scars" eigenstates – akin to the ones
found in Ref. 10 – appear for α > 1, as can be seen
from an inspection of the bipartite entanglement en-
tropy of each eigenstate as a function of the energy.
This fact provides strong indications that there is, in
general, no relationship between the appearance of
eigenstates with low entanglement entropy, equally
spread uniformly in the energy spectrum, and the
existence of exact MPS eigenstates in spin models
constrained by Rydberg blockade. It stands as an
open question whether these new exact MPS states
can lead to clear experimental signatures, since, hav-
ing no recurrent spectral structure, they are not ex-
pected to play any role in anomalous oscillations ob-
served in experiments (that, indeed, were not repor-
ted for larger constraint radii).

From a methodological standpoint, our results
suggest that generalizations of the fidelity susceptib-
ility to spectral properties can provide useful quant-
itative insights on the stability of ETH, in agreement
to recent applications to quantum chaos diagnostics
proposed in Ref. 25 and 26.
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Appendix A: Properties of the PXP and the
other constrained models

In this section, we summarize the properties of
the spectrum of the PXP (α = 1) and the other
constrained model with α > 1 of their pertuba-
tions. For any α ≥ 1, the Hamiltonian Hα

0 and the
perturbation V α commute with the space reflection
symmetry I and anticommute with the particle-hole
symmetry Cph =

∏
i σ

z
i . This fact has some im-

portant consequences, that hold for any Hamiltonian
with these symmetries:

• all the eigenstates with E 6= 0 are found in
pairs of opposite energies (doublets), related
by particle-hole symmetry (Cph |E〉 = |−E〉);

• states with E = 0 can be classified as eigen-
states of Cph (singlets);

• the subspace of zero-energy eigenstates is ex-
ponentially large in L;

• the singlets have same eigenvalue with respect
to Cph and I: this means that the zero-energy
space is the direct sum of two subspaces with
Cph = I = ±1;

• if |ψ〉 and |φ〉 are two singlet eigenstates of H0,
then 〈φ|V |ψ〉 = 0. This holds even if 〈φ|ψ〉 6= 0
(or even if |ψ〉 = |φ〉).

1. Scars

Here we report the properties of the scars under
the action of I and Cph. For the PXP model (α = 1),
they satisfy:

I |Γ12〉 = (−1)L/2−1 |Γ12〉 (A1)

I |Γ11〉 = (−1)L/2 |Γ11〉 (A2)

Cph |Γ11〉 = (−1)L/2 |Γ11〉 (A3)

I |Γ21〉 = (−1)L/2−1 |Γ21〉 (A4)

I |Γ22〉 = (−1)L/2 |Γ22〉 (A5)

Cph |Γ22〉 = (−1)L/2 |Γ22〉 . (A6)

The scars defined in Section IVC1 for α > 1 and
L = (α+ 2)n+ 3 satisfy

I |ψ(±3)
α 〉 = (−1)n |ψ(±3)

α 〉 (A7)

Cph |ψ(±3)
α 〉 = |ψ(∓3)

α 〉 . (A8)

Appendix B: Stability to other perturbations

We report here the data of the fidelity susceptib-
ility of the scars and of a generic thermal eigenstate
in the PXP model for a different perturbation V ′,
defined as

V ′ =

L−3∑
i=2

Pi−2 σ
+
i−1σ

−
i σ

+
i+1Pi+2 + H.c. (B1)

The perturbation is again chosen in such a way to
have the same properties under symmetry trans-
formations as the PXP Hamiltonian H0, i.e. IV ′I =
V , CphV ′Cph = −V ′. The results in Fig. 7 show the
same behaviour that we observed for the perturba-
tion V in the main text: the fidelity susceptibility
grows exponentially with system size for the states
|Γth〉, |Γ21〉 and linearly for the state |Γth〉.

Appendix C: Exact scars in the PXP model –
properties of the edges

In this section we recall some properties of the
scars of Eq. (5) and (7), and we comment on the pro-
file of the energy density. As was noticed in Ref. 15,
the PXP Hamiltonian can be written as a sum of
two parts: a part which contains two-body inter-
actions between blocks, and one with single-block
terms only. The two-body terms annihilate the scars
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Figure 7. Scaling of the fidelity susceptibility with sys-
tem size, for the perturbation V ′. The results shown
refer to the states (a) |Γth〉, |Γ21〉 and (b) |ΓI〉 with open
boundary conditions. Dashed lines are obtained from
fits with an exponential scaling, solid lines with linear
scaling. Similarly to the results for the perturbation V
shown in Fig. 2, also in this case the scaling is exponen-
tial for the states |Γth〉, |Γ21〉 (in agreement with ETH)
and is linear for the state |ΓI〉.

(we refer to the appendix of Ref. 15 for the proof),
while the remaining terms are

H ′ =
∑
b

[|10〉 〈00|+ |01〉 〈00|+ h.c.]b. (C1)

A more convenient expression is obtained by defining
the states

|±〉 =
1

2
(|01〉+ |10〉+

√
2 |00〉), (C2)

|0〉 =
1√
2

(|10〉 − |01〉). (C3)

The Hamiltonian H ′ has the form

H ′ =
√

2
∑
b

(|+〉 〈+| − |−〉 〈−|). (C4)

This expression is useful to interpret the profile of
the energy density of the scars. After this change of
basis and a gauge transformation with the unitary

matrix V = 1√
2

(
1 1
1 −1

)
, the new matrices have the

form

A+ = V
1

2
(A01 +A10 +

√
2A00)V −1 =

(
0
√

2
0 0

)
,

(C5)

A− = V
1

2
(A01 +A10 −

√
2A00)V −1 =

(
0 0√
2 0

)
,

(C6)

A0 = V
1√
2

(A10 −A01)V −1 =

(
1 0
0 1

)
, (C7)

and the new boundary vectors are

v′1 = V v1 =

(
1
0

)
, (C8)

v′2 = V v2 =

(
0
1

)
. (C9)

Now each block can be interpreted as a spin-1
variable with states +,0,− indicating the Sz com-
ponent, and the Hamiltonian H ′ corresponds to the
magnetization in the z direction. The form of the
matrices A+, A−, A0, allows to easily see which are
the non-zero components in the local Sz basis: they
are the ones with the structure of a "dilute antifer-
romagnet", i.e. with alternating + and − and an
arbitrary number of 0s in between. This structure
is a renowned feature of the AKLT state, whose re-
lation with the MPS scars has been already pointed
out in Ref. 15. In open boundary conditions, the
boundary vectors fix the sign of the first non-zero
spin: on the left v′1 (v′2) constrains it to be in a +
(−) state and viceversa for the vector on the right.
Therefore, the components of the state Γ12 have a
number of +s that exceeds the number of −s by one,
so its energy is E =

√
2 (and viceversa for Γ21, with

E = −
√

2). The states Γ11 and Γ22, on the other
hand, have the same number of −s and +s, so they
have energy E = 0. The energy density profiles re-
ported in Ref. 15 can be understood as well from this
construction: they correspond to the magnetization
profile of the dilute antiferromagnet. In the bulk,
the local magnetization averages to 0, while on the
boundary it is affected by the choice of the boundary
vector.

Appendix D: Exact scars with E =
√

3 – Proof

In this section we prove that the following state is
an exact scar with energy E =

√
3

|ψ(3)
α 〉 =

∑
~s

[
(1, 0)T ·Ns1Ms2 . . .

. . .Ms2nNs2n+1 · (0, 1)
]
|~s〉 (D1)

where s1, s2, . . . s2n+1 label the states of the blocks
and

Ms =

{
1 if s = 00 . . . 00

0 otherwise,
(D2)
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N0 =

(
0
√

3
0 0

)
, NL =

(
0 1
0 1

)
, (D3)

NC =

(
1 1
0 −1

)
, NR =

(
−1 1
0 0

)
. (D4)

The indices 0, L, C,R are the state of three-site
block, with the following notation: |0〉 = |000〉,
|L〉 = |100〉, |C〉 = |010〉, |R〉 = |001〉.

The matrices in Eqs. D3 and D4 satisfy

NRNL = 0, (N0 +NL)(NR +N0) = 0. (D5)

The first equation implies that the state satisfies the
blockade constraint. We can split the Hamiltonian
in two parts: H = HM +HN where HM (HN ) flips
only sites in the M (N) blocks.

We first prove that HM |ψ(3)
α 〉 = 0. Consider a

single term Pi−α . . . Pi−1XiPi+1 . . . Pi+α where i be-
longs to a block of typeM : if i is not the first or last
site of the block, it can only be flipped if both neigh-
bouring N blocks are in the state 0. However, this
never happens because N0MsN0 = 0. If i is the first
site of the blocks, these two conditions must hold for
it to be flippable: (i) the previous block must be in
state 0; (ii) the following block must be either in
state 0 or R. But N0MsN0 = N0MsNR = 0, so
this Hamiltonian term annihilates the state. Sim-
ilarly, using N0MsN0 = NLMsN0 = 0, we find
that the last site of the block cannot be flipped.
This means that the sites in the M blocks are all
"frozen" in the 0 state and concludes the proof that
HM |ψ(3)

α 〉 = 0.
We now consider HN :

HN |ψ(3)
α 〉 =

∑
b

[(
|0〉 〈R|

)
b

(
1− |L〉 〈L|

)
b+1

+(
1− |R〉 〈R|

)
b−1

)
(
|0〉 〈L|

)
b
+(

|0〉 〈R|
)
b

+ h.c.
]
|ψ(3)
α 〉 (D6)

where b = 1, . . . n + 1 labels the blocks of type N .
From the relations NRNL = N0NL + NRN0 = 0,
we find that all the terms involving more than one
block cancel and we are left with

HN |ψ(3)
α 〉 = H ′ |ψ(3)

α 〉 . (D7)

H ′ =
∑
b

[
|0〉
(
〈R|+ 〈C|+ 〈L|

)
+ h.c.

]
b
. (D8)

Now, to prove that H ′ |ψ(3)
α 〉 =

√
3 |ψ(3)

α 〉, it is useful
to change basis and define:

|±〉 =
|L〉+ |C〉+ |R〉 ±

√
3 |0〉√

6
, (D9)

|l〉 =
|C〉 − |L〉√

2
, |r〉 =

|C〉 − |R〉√
2

. (D10)

In this new basis the matrices have the form

N+ =

(
0
√

6
0 0

)
, N− = 0, (D11)

N l =

(
1/
√

2 0

0 −
√

2

)
, Nr =

(√
2 0

0 −1/
√

2

)
.

(D12)
and the Hamiltonian H ′

H ′ =
∑
b

[√
3 |+〉 〈+| −

√
3 |−〉 〈−|

]
b

(D13)

H ′ is diagonal in the new basis {|+〉 , |−〉 , |l〉 , |r〉}.
It is now sufficient to prove that all the non zero-
components of |ψ〉 in the new basis have a one and
only one block in |+〉 and all the others are in |l〉 or
|r〉. This can be understood from the fact that (i)
N+Nα1 . . . NαpN+ = 0 (for any string in between)
and that (ii) any string of matrices without N+ is
diagonal, so it annihilates when contracted with the
boundary vectors (1, 0)T , (0, 1). The energy dens-
ity profile of this state is then easy to understand in
these basis: all the three-site blocks have the same
energy density, because the ’+’ can be located any-
where in the chain, while the other sites have energy
density 0. This contrasts with the MPS scars found
in Ref. 15: while there the energy density is local-
ized on the edges because of the structure of dilute
antiferromagnet, here the construction resembles a
spin wave with a delocalized excitation.

Appendix E: Exact scars with E =
√

2, α = 3

We now consider the case α = 3 and construct
exact eigenstates with E = ±

√
2 as matrix product

states with finite bond dimensions. They are con-
structed by assembling position dependent matrices
in a periodic pattern, illustrated in Fig. 8.

The matrices A,B,C are defined on two-site
blocks and have bond dimension 2. The dots rep-
resent empty sites. The pattern (0BC0CA0) that is
repeated periodically consists of 11 sites. The first
and last two sites of the open chain have to be in a
block of type A or B. Therefore we have 4 possible
states, labelled by the first and last block:
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A AB BC C AC C

Figure 8. Structure of an MPS for L = 24. The blocks
are made of two sites. Empty dots are sites in the
state 0. The structure of the state for generic system
sizes is based on the periodic repetition of the pattern
0BC0CA0 (highlighted in the picture).

• |φ(2)
AB〉, for L = 6 + 11n;

• |φ(2)
BA〉, for L = 9 + 11n;

• |φ(2)
AA〉 and |φ

(2)
BB〉, for L = 13 + 11n.

The matrices for the eigenvalue E =
√

2 are
defined as

A00 =

(
0 1/

√
2

0 1

)
, A10 =

(
1/
√

2 1/2
0 0

)
,

(E1)

A01 =

(
−1/
√

2 1/2
0 0

)
(E2)

B00 =

(
1 1/

√
2

0 0

)
, B10 =

(
0 1/2

0 1/
√

2

)
, (E3)

B01 =

(
0 1/2

0 −1/
√

2

)
(E4)

C00 =

(
0 0
1 0

)
, C10 =

(
0 1/

√
2

0 0

)
, (E5)

C01 =

(
0 −1/

√
2

0 0

)
(E6)

The boundary vectors are obtained by contracting
the extremal matrices with (1, 0)T on the left and
(0, 1) on the right. The states |φ(−2)

rs 〉 = Cph |φ(2)
rs 〉

(r, s = A,B) are other exact scars with energy E =

−
√

2.
These scars satisfy the following properties:

I |φ(±2)
AB 〉 = − |φ(±2)

AB 〉 (E7)

I |φ(±2)
BA 〉 = − |φ(±2)

BA 〉 (E8)

I |φ(±2)
AA 〉 = |φ(±2)

BB 〉 (E9)

I |φ(±2)
BB 〉 = |φ(±2)

AA 〉 . (E10)

1. Proof

We first prove that the state above satisfies the
constraints. The conditions are: BrCs = CrAs = 0
for r = 01, 10 and s = 01, 10, C01C01 = C01C10 =
C10C10 = 0, and A01B10 = 0. It is straightforward
to check that all of them are satisfied by the matrices
A,B and C.

We now define the local Hamiltonian term
hi = Pi−3Pi−2Pi−1XiPi+1Pi+2Pi+3 and prove
that hi |ψα=3〉 = 0 when i is one of the sites
between two C blocks. To prove this, we note
that C00C00 = 0, which immediately implies
Pi−2Pi−1Pi+1Pi+2 |ψα=3〉 = 0. Similarly, we can
prove that hi |ψα=3〉 = 0 when i is one of the
sites between an A and a B block by noting that
A00B00 = 0 so the projectors in hi annihilate the
state |ψα=3〉.

The next step is proving hi |ψα=3〉 = 0 for i be-
longing to the C blocks. To set the notation, we
label the two-site blocks (of types A, B, C) in the
chains with indices b = 0, 1, 2, . . . , Nb from left to
right. We define ΓA as the set of integers b such
that the b-th block is of type A, and similarly for
ΓB and ΓC . We also define the operator P sb which
projects the block b in the state |s〉.

With this notation, we obtain the following equa-
tion∑

b∈ΓC

∑
i∈b

hi =
∑

b,b+1∈ΓC

P 00
b−1 |00〉b (〈10|+〈01|)bP 00

b+1

+ P 00
b |00〉b+1 (〈10|+ 〈01|)b+1P

00
b+2

+ P 00
b−1(|10〉+ |01〉)b 〈00|b P

00
b+1

+ P 00
b (|10〉+ |01〉)b+1 〈00|b+1 P

00
b+2. (E11)

The sum in the right hand side runs over the indices
such that both b and b + 1 are blocks of type C.
The first two terms of the sum annihilate |ψα=3〉
because C01 + C10 = 0, the last two terms because
C00C00 = 0.

From the observations we made so far, we have
now obtained that

H |ψα=3〉 =
∑

b∈ΓA∪ΓB

∑
i∈b

hi |ψα=3〉 . (E12)

We can rewrite the action of these terms as∑
b∈ΓA∪ΓB

∑
i∈b

hi |ψα=3〉 = (Hnon−int −Hint) |ψα=3〉 .

(E13)
The Hamiltonian Hnon−int contains the terms

Hnon−int =
∑
b∈ΓA

P 00
b−1[|00〉 (〈10|+ 〈01|) + h.c.]b

+
∑
b∈ΓB

[|00〉 (〈10|+ 〈01|) + h.c.]bP
00
b+1, (E14)
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where, for the sake of brevity, in our notation for
the boundary terms we choose to define P 00

−1 ≡ 1,
P 00
Nb+1 ≡ 1. The Hamiltonian Hint reads

Hint =
∑
b∈ΓA
b+1∈ΓB

P 00
b−1[|00〉 〈01|+ h.c.]bP

10
b+1

+ P 01
b [|00〉 〈10|+ h.c.]b+1P

00
b+2. (E15)

By noting that A01B10 = 0 and C00(A00B10 +
A01B00)C00 = 0, we find that Hint |ψα=3〉 = 0.

To conclude our proof, we now have to demon-
strate that Hnon−int |ψα=3〉 =

√
2 |ψα=3〉. We define

the states

|e〉 =
|10〉+ |01〉√

2
|o〉 =

|10〉 − |01〉√
2

, (E16)

|±〉 =
|00〉 ± |e〉√

2
, |0〉 = |00〉 . (E17)

We now perform the following changes of basis:
on the A and B blocks, we use the (non-orthogonal)
states |+〉 , |o〉 , |0〉, such that the new matrices of the
MPS have the form

Ã+ =

(
0 1
0 0

)
, Ão =

(
1 0
0 0

)
, (E18)

Ã0 =

(
0 0
0 1

)
(E19)

B̃+ =

(
0 1
0 0

)
, B̃o =

(
0 0
0 1

)
, (E20)

B̃0 =

(
1 0
0 0

)
, (E21)

while on the C blocks we use |0〉, |e〉 and |o〉, with
the matrices

C̃0 =

(
0 0
1 0

)
, C̃e = 0, C̃o =

(
0 1
0 0

)
.

(E22)
We now merge the pairs of consecutive C blocks.

The only non-zero matrices for the superblock are

G̃0,o =

(
0 0
0 1

)
, G̃o,0 =

(
1 0
0 0

)
. (E23)

The components of |ψα=3〉 now have the form

|ψα=3〉 =
∑

~s=(s0,...,sNb
)

c~s |s0〉⊗|s1〉 · · ·⊗|sNb
〉 (E24)

where the sum runs over the three new states of the
basis for each component sb and

c~s =
(
1 0

) (
. . . B̃sb−1G̃sb,sb+1Ãsb+2B̃sb+3 . . .

)(
0
1

)
.

(E25)
From the simple structure of the matrices, it is

now easy to see that the only cases that give c~s 6= 0
are the ones where the product of matrices in par-
entheses is a sequence of Ão, B̃0, G̃o,0, followed by
a single matrix Ã+ or B̃+ and then by a sequence
of Ã0, B̃o, G̃0,o. Consider now a state ~s that satis-
fies this condition and let b∗ be the index that cor-
responds to the Ã+ or B̃+ matrix. All the terms
in Hnon−int annihilate |~s〉, except for the one with
b = b∗: to prove this, it is sufficient to note that,
for b ∈ ΓA if (i) b < b∗ then sb−1 = o and hence
P 0
b−1 |sb−1〉 = 0, while if (ii) b > b∗ then sb = o and

[|00〉 (〈10|+ 〈01|)+h.c.]b |sb〉 = 0; similarly, if (i) b <
b∗ then sb = o and [|00〉 (〈10|+ 〈01|)+h.c.]b |sb〉 = 0,
while if (ii) b > b∗ then sb+1 = o and P 0

b+1 |sb+1〉 = 0.
The term of Hnon−int with b = b∗, on the other hand
gives a non-zero term: if b∗ ∈ ΓA, then sb∗−1 = 0
and sb∗ = +, so P 0

b∗−1[|00〉 (〈10|+ 〈01|) +h.c.]b |~s〉 =√
2 |~s〉, while if b∗ ∈ ΓB , then sb∗+1 = 0 and sb∗ = +,

so [|00〉 (〈10|+〈01|)+h.c.]bP
0
b∗+1 |~s〉 =

√
2 |~s〉. There-

fore, we conclude that for each ~s such that c~s 6= 0
Hnon−int |~s〉 =

√
2 |~s〉, and using Eq. (E24), we have

Hnon−int |ψα=3〉 =
√

2ψα=3.
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