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Abstract

In this work, we present a new method of computation that we call zonoid calculus. It is based
on a particular class of convex bodies called zonoids and on a representation of zonoids using
random vectors. Concretely, this is a recipe to build multilinear maps on spaces of zonoids from
multilinear maps on the underlying vector spaces. We call this recipe the fundamental theorem
of zonoid calculus (FTZC).

Using this and the wedge product in the exterior algebra we build the zonoid algebra, that is a
structure of algebra on the space of convex bodies of the exterior algebra of a vector space. We
show how this relates to the notion of mixed volume on one side and to random determinants
on the other. This produces new inequalities on expected absolute determinants. We also show
how this applies in two detailed examples: fiber bodies and non centered Gaussian determinants.
We then use FTZC to produce a new function on zonoids of a complex vector space that we call
the mixed J-volume.

We uncover a link between the zonoid algebra and the algebra of valuations on convex bodies.
We prove that the wedge product of zonoids extends Alesker’s product of smooth valuations.

Finally we apply the previous results to integral geometry in two different context. First we
show how, in Riemannian homogeneous spaces, the expected volume of random intersections
can be computed in the zonoid algebra. We use this to produce a new inequality modelled
on the Alexandrov–Fenchel inequality, and to compute formulas for random intersection of real
submanifolds in complex projective space. Secondly, we prove how a Kac-Rice type formula can
relate to the zonoid algebra and a certain zonoid section. We use this to study the expected
volume of random submanifolds given as the zero set of a random function. We again produce an
inequality on the densities of expected volume modelled on the Alexandrov–Fenchel inequality,
as well as a general Crofton formula in Finsler geometry.
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Introduction

Introduction

The word calculus comes from the latin for pebbles, in its most general sense, it denotes “a method
of computation or calculation in a special notation” [65]. In this work, we present a new “method of
computation” involving special convex-shaped pebbles called zonoids.

In this introduction, we will give a general idea of the work presented here and give the main results
and ideas. The statements of the results are sometime simplified to be readable here. When in doubt,
the reader should always refer to the proper statement that is in the text.

Zonoids

Zonoids are a particular class of convex bodies. They are limits of special polytopes called zonotopes
that are finite Minkowski sum of segments, i.e. centrally symmetric polytopes with all faces centrally
symmetric, see Figure 1, a precise definition is given in Section 1.2.1.

Figure 1: A sequence of zonotopes and its limit: a zonoid.

Zonoids appear in different context in convex geometry, historically with the projection body [80,
Section 10.9] and Shephard’s problem [80, Section 10.11]. But also in many other domains such as
statistics with the lift zonoid [50, 67], probability [66, 86], quantum information theory [13], control
theory [94], and even physics of solids [59].

In particular zonoids are deeply linked with integral transforms and measure theory. Indeed there
is a bijection between the non negative measures on the unit sphere of a Euclidean space V and the
zonoids in V (up to translation). This bijection, called the cosine transform, associates to the dirac
delta measure supported on the points ±x and of total weight r ≥ 0 the segment (r/2)[−x, x] and
then is extended by linearity where the sum on the space of convex bodies is the Minkowski sum. This
connection is explained in detail in Section 1.2.3.

In this work we advocate for another point of view introduced by Richard Vitale in [86] that uses
random vectors. If X is a random vector in V that admits a first moment and X1, . . . , XN , . . . are iid
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copies of X then one can construct the Vitale zonoid associated to X as:

E[0, X] := lim
N→∞

1

N
([0, X1] + · · ·+ [0, XN ])

where the sum is the Minkowski sum (Definition 1.1.4). One can show that all zonoids can be obtained
in this way (Proposition 1.2.30), we explain this construction in detail in Section 1.2.2. Although the
correspondence between random vectors and zonoids is not one to one, it allows more flexibility than
the measures on the sphere. This flexibility will allow to build algebraic structures on the space on
zonoids and introduce the zonoid calculus. Moreover the simplicity of this point of view will allow to
do computations sometime rather easily.

Zonoid Calculus

The main result in this context is the Fundamental Theorem of Zonoid Calculus (FTZC, Theo-
rem 2.1.16), this is a joint work with Peter Bürgisser, Paul Breiding and Antonio Lerario [26]. It
allows to build multilinear maps on the spaces of zonoids from a multilinear map on the underlying
vector spaces, this is based on a tensor product of zonoids that apppears in [13].

We denote by Z (V) the space of zonoids in V, the precise definition is given in Section 1.2.

Theorem 2.1.16. Let M : V1 × · · · ×Vk →W be a multilinear map between finite dimensional real
vector spaces. Then there exists a unique continuous map

M̂ : Z (V1)× · · · × Z (Vk) → Z (W)

that is linear in each variable and that is such that for every x1 ∈ V1, . . . , xk ∈ Vk we have

M̂ ([0, x1], . . . , [0, xk]) = [0,M(x1, . . . , xk)].

Note that the actual statement of Theorem 2.1.16 involves the centered segments 1
2 [−xi, xi] rather

than [0, xi], the map is then extended to the non centered case in Definition 2.1.17. We omitted this
subtlety here to increase readability.

There is nothing mysterious in this construction: the hypotheses and multilinearity determine the
map on finite Minkowski sum of segments, namely zonotopes, then if we show that this is well defined
and continuous, it determines the map on zonoids. In fact this idea may have been implicit or hidden
in some argument involving zonoids in the past. However, having it explicitly stated like this is of
great help and allows to uncover this construction in already known convex geometry operations as
well as building new ones.

For example, if we consider the multilinear map

det : (Rm)
m → R

then it is not difficult to show (Theorem 2.2.6) that for all zonoids K1, . . . ,Km in Rm, we have that

d̂et(K1, . . . ,Km) ⊂ R is a segment of length m!MV(K1, . . . ,Km) where MV denotes the mixed volume
(Proposition 1.1.22).

A less trivial example is given in Section 2.5 where we explain, in a joint work with Chiara
Meroni [61], how the construction of fiber bodies, a generalization of the fiber polytopes introduced
by Louis J. Billera and Bernd Sturmfels [22], falls into the framework of zonoid calculus and FTZC.

Theorem 2.5.22. The fiber body of a zonoid is a zonoid. If K is a zonoid in Rn+m then

F̂π(K, . . . ,K) = (n+ 1)!Σπ(K)

where Σπ denotes the fiber body with respect to an orthogonal projection π : Rn+m → Rn (Defini-
tion 2.5.2) and Fπ is defined in Definition 2.5.21.



CONTENTS 9

This allows, for example, to give a new explicit formula for the fiber body of a zonotope in Corol-
lary 2.5.23, that generalizes a formula for the fiber body of a cube [22, Theorem 4.1].

The map M̂ behaves well under the Vitale construction as it satisfies for independent random
vectors X1, . . . , Xk,

M̂ (E[0, X1], . . . ,E[0, Xk]) = E[0,M(X1, . . . , Xk)].

Together with the example of the determinant given above, this allows to link random determinant
and convex geometry, generalizing what was done by Richard Vitale in [86]. In a joint work with Peter
Bürgisser, Paul Breiding and Antonio Lerario [26] we show the following.

Corollary 2.2.26. Let 1 ≤ k ≤ m, let X1, . . . , Xk be independent integrable random vectors of Rm
and let M := (X1, . . . , Xk) ∈ Rm×k be the random matrix whose columns are the vectors Xi. We have

E
√

det(M tM) =
m!

(m− k)!κm−k
MV(E[0, X1], . . . ,E[0, Xk], Bm[m− k])

where Bm := B(Rm) is the unit ball, Bm[m−k] denotes that it is repeated m−k times in the argument
of the mixed volume MV and κm−k := volm−k(Bm−k).

The application of zonoid calculus to absolute random determinants is explained in Section 2.2.3.
In particular, applying the Alexandrov–Fenchel inequality (Lemma 1.1.25) we get the following new
inequality for random determinants.

Corollary 2.2.29. Let X1, X
′
1, X2, X

′
2, Y1, . . . , Ym−2 be independent random vectors of Rm that admit

first moments and such that X1 and X ′
1, respectively X2 and X ′

2, have the same law. We have

(E|det(X1, X2, Y1, . . . , Ym−2)|)2 ≥ (E|det(X1, X
′
1, Y1, . . . , Ym−2)|) (E|det(X2, X

′
2, Y1, . . . , Ym−2)|) .

And similarly for the Brunn-Minkowski inequality, see Corollary 2.2.28.
In Section 2.6 we study this in the context of Gaussian vectors. Studying the Vitale zonoid asso-

ciated to a non centered Gaussian vector, we can show that it is very close to an ellipsoid.

Theorem 2.6.7. Let c ∈ Rm and let ξ be a standard Gaussian vector in Rm. There is an ellipsoid
E ⊂ Rm such that

b∞E ⊂ E[0, ξ + c] ⊂ E

where b∞ := min {φ∞(cos(t), sin(t)) | t ∈ [0, 2π]} ∼ 0.989 . . ., with φ∞ defined in (2.6.5).

The ellipsoid is precisely defined in the proper statement of Theorem 2.6.7 below and estimates and
asymptotics of its volume are computed. Moreover, applying this to random determinants, it gives an
estimate of the expected absolute determinants of a non centered Gaussian matrix in terms of mixed
volume of ellipsoids which corresponds to the centered case and was proved by Zakhar Kabluchko and
Dmitry Zaporozhets in [46].

Theorem 2.6.13. Let 0 < k ≤ m and let X1, . . . , Xk ∈ Rm be independent non degenerate Gaussian
vectors and consider the random matrix Γ := (X1, . . . , Xk) whose columns are the vectors Xi. There
are ellipsoids E1, . . . , Ek such that

(b∞)kαm,kMV(E1, . . . , Ek, Bm[m− k]) ≤ E
√
det (ΓtΓ) ≤ αm,kMV(E1, . . . , Ek, Bm[m− k])

where Bm[m − k] denotes the unit ball Bm ⊂ Rm repeated m − k times in the argument of the mixed
volume MV and αm,k := m!

(2π)k/2(m−k)!κm−k
.

All these results can be seen as operations in an algebra that we construct and call the zonoid
algebra. Given a real finite dimensional vector space V it is defined as

A (V) :=

m⊕
k=0

Z (ΛkV)
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with the sum being the Minkowski sum and the product is constructed from the wedge product in the
exterior algebra of V and using FTZC:

· ∧· : Z (ΛkV)× Z (ΛlV) → Z (Λk+lV).

In practice, using the Vitale construction, this product, that we call wedge product of zonoids, satisfies
for X,Y independent random vectors:

(E[0, X]) ∧ (E[0, Y ]) = E[0, X ∧ Y ].

The zonoid algebra is introduced and explained in Section 2.2. Note that this is not properly
speaking an algebra since the Minkowski sum doesn’t have an inverse. However, it is not difficult

to embed algebraically the space of zonoids Z (V) into a vector space Ẑ (V) via a Grothendieck

construction. The space Ẑ (V), that we call the space of virtual zonoids, consists of formal differences
K − L with K,L ∈ Z (V). This construction is purely algebraic and in particular does not give any
topology on the vector space of virtual zonoids.

There are, for zonoids, essentially two ways to realize Ẑ (V) as a topological vector space. The first
one is to embed it as a subspace of the continuous functions on the sphere with the help of the support
function. The second choice uses the correspondence between the zonoids and measures on the sphere
to identify the space of virtual zonoids with the space of even signed measures on the unit sphere. We
have two maps:

h : Ẑ0(V ) → C(S(V)) µ : Ẑ0(V ) → M(S(V))

K − L 7→ hK − hL K − L 7→ µK − µL

where the subscript in Z0 indicates that we consider centered zonoids (i.e. with the center of sym-
metry at the origin) and hK is the support function of K and µK its generating measure. When on
Ceven(S(V)) we consider the topology given by the supremum norm ∥·∥∞ and on M(S(V)) the weak-∗
topology we get two different topologies on the space Ẑ0(V) that both coincide, on the cone of zonoids

Z0(V) ⊂ Ẑ0(V), with the standard topology given by the Hausdorff distance.
Having a vector space can come handy and allows to use the tools of linear algebra. However

topological considerations here are very subtle and one should be careful when making continuity
statements. See for example Proposition 1.2.54 that summarizes some continuity and non continuity
properties of the cosine transform (which corresponds to the passage from measures to continuous
functions in the above identification).

Nevertheless, we show that Corollary 2.2.26 is a particular case of a more general statement in the
zonoid algebra.

Theorem 2.2.24. Let c1, . . . , ck ∈ N such that c := c1+. . .+ck ≤ m, let X1 ∈ Rm×c1 , . . . , Xk ∈ Rm×ck

be independent and integrable and let M := (X1, . . . , Xk) be the random m× c matrix whose columns
are the matrices Xi. Then we have

E
√
det(M tM) = ℓ(E[0, Y1] ∧ · · · ∧ E[0, Yk])

where ℓ(·) is the length or first intrinsic volume (Definition 1.2.31) and Yi is the random vector in
ΛciRm that is the image of Xi under the map Rm×ci → ΛciRm that maps (x1, . . . , xci) to x1∧ · · ·∧xci
for all x1, . . . , xci ∈ Rm.

There is a particular subalgebra of the zonoid algebra where most of the future computations
will take place. Recall that the Grassmannian of k dimensional vector subspaces of a vector space
V, denoted Gk(V), embeds in the projective space of ΛkV via the Plücker embedding. Thus signed
measures on the Grassmannian Gk(V) can be seen as a subspace of the even signed measures of
S(ΛkV).

Zonoids in ΛkV that have as generating measure a measure supported on the Grassmannian Gk(V)
will be called Grassmannian zonoids. It is not difficult to see that they form a subalgebra of A (V)
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that we call the Grassmannian zonoid algebra or simply Grassmannian algebra. One may think of it
as a product structure on the spaces of (signed) measures on the Grassmannian, although it is good
to keep in mind the point of view of random vectors, where the expression for the (wedge) product
is rather simple. We introduce and study Grassmannian zonoids in Section 2.2.2. We derive a few
formulas and lemmas that will be useful in the next chapters. In particular Lemma 2.2.17 for the
computation of length in the Grassmannian algebra that will be extensively used for computations in
the last chapter.

Finally, in a complex vector space Cn ∼= R2n we consider the (real and complex) multilinear map
complex determinant :

detC :
(
R2n

)n ∼= (Cn)n → C ∼= R2.

Mimicking the relation between mixed volume and real determinant, but this time with complex
determinant, we define a new function on zonoids of Cn that we call the mixed J–volume (here J refers
to the complex structure) and that is given for all K1, . . . ,Kn ∈ Z (Cn), by:

MVJ(K1, . . . ,Kn) :=
1

n!
ℓ
(
d̂etC(K1, . . . ,Kn)

)
where ℓ denotes the length or first intrinsic volume. The J–volume of a zonoid K ∈ Z (Cn) is then
defined to be volJn(K) := MVJ(K, . . . ,K).

It is not difficult to prove that the mixed J-volume shares some similar symmetries with the classical
mixed volume. In fact when restricted to a Lagrangian subspace it is equal to the classical volume.
In general, however, they are different, indeed note that the mixed J-volume takes n arguments in a
space of real dimension 2n.

The mixed J-volume shares many similarities with another function of degree n on convex bodies of
Cn called Kazarnovskii’s pseudo volume. However similar, we show that, surprisingly enough, they are
not the same. In fact we show in Section 3.1.2 that the mixed J-volume, defined on zonoids, extends
to polytope but does not extend continuously to all convex bodies. We introduce and study in detail
the J-volume in Section 2.3.

Valuations

A valuation on convex bodies is a map ϕ defined on convex bodies with values on a semigroup such
that for all convex bodies K,L it satisfies

ϕ(K) + ϕ(L) = ϕ(K ∪ L) + ϕ(K ∩ L)

whenever K∪L is a convex body. Valuations have been extensively studied since the time of Dehn who
solved Hilbert’s third problem using valuations [34]. In this work, we mostly focus on continuous real
translation invariant valuations. McMullen proved that the space val(V) of continuous real translation
invariant valuations on convex bodies of a real vector space V of dimension m decomposes as

val(V) =

m⊕
k=0

valk(V)

where valk(V) are the valuations of degree k, i.e. the valuations ϕ such that for all convex body K
and all t ≥ 0 we have ϕ(tK) = tkϕ(K), see Proposition 3.1.3 below.

More recently, in the 2000s, Semyon Alesker made two major breakthroughs in the study of val-
uations. First he proved in [3] that the spaces valk(V), when further decomposed in even and odd
valuations, is an irreducible representation of Gl(V). In infinite dimension, this means that every
invariant subspace is dense. Using this he was able to answer positively to a conjecture by McMullen
about the density of the subspace spanned by mixed volumes.

The second result was the construction in [5] of a product structure on a dense subspace of val(V),
namely the smooth valuations, that turns it into a graded algebra. In Section 3.3.2, we will show that
our wedge product of zonoids can extend Alesker’s product to a larger subspace of even valuations and
that this is a special case of a recent extension constructed by Nguyen-Bac Dang and Jian Xiao in [33].
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The idea is very simple. Given a signed measure µ on the Grassmannian Gk(V) one can construct
an even valuation ϕµ in valk(V) by letting, for every convex body K

ϕµ(K) :=

∫
Gk(V)

volk(K|E) dµ(E)

whereK|E denotes the orthogonal projection ofK onto the subspace E ∈ Gk(V). Recalling that signed
measures on the Grassmnnian correspond to Grassmannian zonoids in the terminology introduced
above, this defines a map Φ from the Grassmannian algebra to the space of translation invariant
continuous real even valuations:

Φ : K 7→ ϕµK
.

Next we show that the kernel of this map, which turns out to be the same as the kernel of the cosine
transform M(k,V), is a closed ideal for the wedge product of zonoids. Thus the wedge product of
zonoids gives a well defined product on the image of Φ. It is then not difficult to show that this
extends Alesker’s product of smooth valuations by showing that it is a special case of Dang and Xiao’s
extension. Moreover we show that other operations on valuations, such as convolution and a certain
duality, descend from operations on the Grassmannian algebra. We explain this in Section 3.3 in a
setting that does not depend on the choice of an Euclidean structure.

Theorem 3.3.18. The product defined by the map Φ and the wedge product of zonoids extends
Alesker’s product of smooth valuations.

The interest of this point of view is that, with zonoid calculus, the expressions appear simpler.
In fact we show that the valuations in the image of Φ take a special form on zonoids. For this we
introduce the exponential of a zonoid, that is given for every zonoid K in V by

eK :=

m∑
k=0

1

k!
K∧k

where m = dimV. This is a semigroup morphism between the zonoids with Minkowski sum and the
Grassmannian zonoids with the wedge product. Next, if V is endowed with a scalar product ⟨·, ·⟩, it
induces, using FTZC, a bilinear form on the space of zonoids that we denote (·, ·). Concretely, with
the Vitale construction, this bilinear form gives for random vectors X and Y :

(EX,EY ) = E|⟨X,Y ⟩|

where EX = E[0, X]+ 1
2 {−EX} is the centered version of the Vitale construction. With this, we show

in Proposition 3.3.10 that if A is a (virtual) Grassmannian zonoid with generating measure µ, then for
every zonoid K we have:

ϕµ(K) = (A, eK).

The author’s hope is that this point of view of zonoid calculus and random vectors will help with
the computation in the algebra of valuations. In the meantime, it certainly helps with the computation
in the Grassmannian algebra. Indeed certain operations, such as taking the length, can be done at
the level of valuations. Thus if one is interested in evaluating the length in the Grassmannian algebra,
one can work instead in the algebra of valuations which is smaller (it is the quotient by M(V)). In
some cases this is a considerable reduction of complexity. For example in the case of a complex vector
space, the space of unitary invariant Grassmannian zonoids (i.e. unitary invariant measures on the
real Grassmannian) is infinite dimensional while it was proved by Alesker (again!) in [3] that the
space of unitary invariant valuation is finite dimensional, generated, as an algebra, by two elements,
see Example 3.3.20 below.

Integral geometry

In the last chapter of this work, Chapter 4, we apply zonoid calculus to integral geometry, more
precisely to random intersection problems. Typically, the setting is as follows. Given X1, . . . , Xk

independent random submanifolds of a Riemannian manifold M , we want to evaluate the quantity

E vol(X1 ∩ · · · ∩Xk) = ?
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where the volume is the Riemannian volume in the appropriate dimension. In particular if the sum of
the codimensions of the submanifolds adds up to the dimension of M we want to evaluate the average
number of points in the intersection. Of course one has to specify how to take random submanifolds
in M .

Homogeneous spaces

We will first assume that M is a compact Riemannian homogeneous spaces. This means that there is
a compact Lie group G that acts on M by isometries. Then, if X ⊂M is a fixed submanifold and g is
a random element of G taken with the probability defined by the normalized Haar measure, it defines
a random submanifold by taking g ·X.

Now, to such a random submanifold, one can associate a Grassmannian zonoid in the cotangent
space at a point o ∈ M . The idea is the following: take a point x ∈ X and move it to o using
the group action. Then consider the normal space of X at o and its orbit under the isotropy group
H := FixG(o). This defines a measure (that is H-invariant) on the Grassmannian Gc(T

∗
oM) where

c is the codimension of the submanifold X. Then we average over all x ∈ X and normalize by the
quotient of volumes vol(X)/vol(M). We call the corresponding Grassmannian zonoid KX . The main
result, that is a joint work with Peter Bürgisser, Paul Breiding and Antonio Lerario, is that this zonoid
computes the volume of random intersections.

Theorem 4.1.4. Let X1, . . . , Xn ⊂ M be submanifolds, such that c :=
∑n
i=1 codim(Xi) ≤ m =

dim(M), and let KX1 , . . . ,KXn be their associated zonoids. Let g1, . . . , gn be independent random
elements of G taken with the normalized Haar measure. Then

1

volm(M)
E [vol(g1X1 ∩ · · · ∩ gnXn)] = ℓ(KX1

∧ · · · ∧KXn
).

In particular, in the case where c = m we obtain

E#(g1X1 ∩ · · · ∩ gnXn) = volm(M) ℓ(KX1 ∧ · · · ∧KXn).

In the last case this can be reformulated as an equality in the zonoid algebra with a nice cohomo-
logical flavor as follows.

KX1 ∧ · · · ∧KXn =

(
E#(g1X1 ∩ · · · ∩ gnXn)

)
K{o}

where K{o} is the zonoid associated to a point.
The link between wedge product of zonoids and mixed volumes allows then to interpret the

Alexandrov-Fenchel inequality in a new inequality in the context of random intersection.

Theorem 4.1.12. Let X,Y, Z3 . . . , Zm ⊂ M be hypersurfaces. Let g1, . . . , gm be independent and
uniform in G and denote the random surface Z := g3Z3 ∩ · · · ∩ gmZm. We have

E#(g1X ∩ g2Y ∩ Z) ≥
√
E#(g1X ∩ g2X ∩ Z) E#(g1Y ∩ g2Y ∩ Z).

Next, we use Theorem 4.1.4 to study intersection of real submanifolds of CPn. In particular, using
the reduction to valuations we produce the following formula that generalizes Bézout and which, to
the knowledge of the author, is new.

Theorem 4.1.26. Let n ≥ 2, let X ↪→ CPn be a real submanifold of real codimension 2, and consider

dX := E#(X ∩gCP1) where g is random and uniform in U(n+1) and ∆X := dX − (n−1)!
πn−1 vol2n−2(X).

Then, if g1, . . . , gn are uniform and independent random element in U(n+ 1), we have

E#(g1X ∩ · · · ∩ gnX) =

n∑
k=0

(
n

k

)
ck

4k(n− 1)k
∆k
Xd

n−k
X

where ck :=
∑k
j=0

(
k
j

)(
2j
j

)
2k−j .
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If X is a complex irreducible hypersurface then ∆X = 0 and dX is the degree of X in which case
the formula gives Bézout. Note that this formula could also presumably be proven by means of a
kinematic formula in complex space forms proved by Andreas Bernig, Joseph Fu and Gil Solanes in
[21], see the discussion at the end of Section 4.1.2.

For example, in the case where n = 2 and X is a real surface in CP2, this gives

E#(g1X ∩ g2X) = d2X + 2dX∆X +
9

8
∆2
X .

Then we show how to construct the zonoids KX in the special case where X is a Schubert variety
in the Grassmannian. Schubert varieties are particular subvarieties of the Grassmannian indexed by
Young diagrams. We explain in Section 4.1.3 how these Schubert diagrams can also be used to describe
the normal and tangent space at a point of a Schubert variety. We then explain how Peter Bürgisser
and Antonio Lerario in [29] and Antonio Lerario and the author in [54] use the invariance of the zonoid
KX to compute its volume.

In Section 4.1.4 we put this in a more general perspective. Given a group action on a vector space
V and a subspace Σ ⊂ V, we show how the convex bodies of V invariant under the group action can be
identified, under suitable conditions on the action and the subspace, with the convex bodies on Σ. The
map that goes from one to the other is the orthogonal projection π : V→ Σ. We study the necessary
conditions in detail and give some examples where this situation appeared, see Theorem 4.1.38 below.

Kac-Rice formula and zonoids

In the very last part of this work, Section 4.2, we present a joint work with Michele Stecconi where we
study a more general setting. In this case M is any Riemannian manifold and X := f−1(0) is the zero
set of a random C1 map f : M → Rk. We have again to specify how do we want to take the random
map, that we call random field, f . We collect a list of hypotheses that will make the Kac-Rice formula
work in Definition 4.2.3 and we call those the z-KRok hypotheses for “zonoid-Kac-Rice ok”.

There are 4 z-KRok hypotheses. The first one ensures that 0 is almost surely a regular value of f so
that X = f−1(0) does indeed define a random submanifold while z-KRok -ii and iii are some regularity
and absolute continuity assumptions. Then the difficulty in building the zonoid with respect to the
previous case is that there is no isotropy group. You would like to be able to fix a point p ∈ M
and look at all the random submanifold X that passes through p. The problem being that the event
“p ∈ X” or equivalently “f(p) = 0” has probability zero and thus conditioning to it is not well defined.
This problem can be solved with the concept of regular conditional probability, see Definition 4.2.1.
The condition z-KRok -iv ensures that there is a regular conditional probability that satisfies some
continuity and finiteness assumption.

Hence, given a random field f : M → Rk that is z-KRok (i.e. satisfies the z-KRok hypotheses),
writing f = (f1, . . . , fk), we can consider, for a given p ∈M , the random vector of ΛkT ∗

pM given by

(dpf
1 ∧ · · · ∧ dpf

k|f(p) = 0)

where ( · |f(p) = 0) denotes the conditioning defined by z-KRok -iv. The precise meaning is given in
Section 4.2.1. Then we can define, for every p ∈ M , a Grassmannian zonoid in ΛkT ∗

pM associated to
the z-KRok field f by letting

ζf (p) :=
(
[0,dpf

1 ∧ · · · ∧ dpf
k]|f(p) = 0

)
.

This zonoid will then, as in the previous case, allow to evaluate expectations of volumes. For this
we will use a Kac-Rice formula, see (4.2.23) which is based on one that was proved by Michele Stecconi
in [82]. We obtain from it the main theorem of this section.

Theorem 4.2.30. Let f : M → Rk be z-KRok and consider the random submanifold X := f−1(0).
Then for all open set U ⊂M we have

E [vol(X ∩ U)] =

∫
U

ℓ(ζf (p)) dM(p)

where ℓ is the length or first intrinsic volume.
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We also show two important features of the zonoid section. The first one is the pull-back property,
Lemma 4.2.17. In its simplest form, it states that given a submanifold S ⊂ M that is almost surely
transversal to X = f−1(0) then the restriction of f to S is again z-KRok and its associated zonoid
section is the pull back of ζf . Unfortunately this condition of being almost surely transversal to the
field f cannot be removed and there are some z-KRok fields that admit submanifold that do not satisfy
this, see (4.2.17). It would be convenient to have at least a sufficient condition to avoid these cases
but for now it is not clear to the author what this should be.

Nevertheless, this pull back property is helpful to compute the zonoid section in some examples.
We also use it to prove, in Proposition 4.2.21, that if M is endowed with any Riemannian metric then
there exists a z-KRok field f :M → R such that the zonoid section is given by the unit balls. We call
such fields AT-fields after Robert J. Adler and Jonathan E. Taylor [2] and they play a key role in the
proof of the Alpha formula.

The second property of the zonoid section is the fact that independent intersections correspond to
wedge products of the zonoids. More precisely, if f : M → Rk and f ′ : M → Rl are two independent
z-KRok fields then we construct a third field (f, f ′) : M → Rk+l whose zero set is the intersection of
the previous two zero set. We show in Lemma 4.2.26 that (f, f ′) is again z-KRok and that we have
for all p ∈M

ζ(f,f ′)(p) = ζf (p) ∧ ζf ′(p).

This allows to compute the expectation of number of points in intersection of independent z-KRok
fields in terms of mixed volumes in Corollary 4.2.32. Once again, we can then interpret the Alexandrov-
Fenchel inequality in this context to produce a Kac-Rice Alexandrov-Fenchel inequality (KRAF).

Theorem 4.2.33. Let g1, . . . , gm−2, f1, f
′
1, f2, f

′
2 :M → R be independent z-KRok fields, such that f ′1

is distributed as f1 and f ′2 is distributed as f2. Let Y := (g1)
−1(0)∩ . . .∩ (gm−2)

−1(0), Xi := (fi)
−1(0)

and X ′
i := (f ′i)

−1(0), i = 1, 2. Then we have for all open subset U ⊂M :

E [#(X1 ∩X2 ∩ Y ∩ U)] ≥
∫
U

√
δ#X1∩X′

1∩Y (p) · δ#X2∩X′
2∩Y (p) dM(p)

where for i = 1, 2 we wrote

δ#Xi∩X′
i∩Y (p) := ℓ(ζfi(p) ∧ ζf ′

i
(p) ∧ ζg1(p) ∧ · · · ∧ ζgm−2

(p)).

Note that, unlike in Theorem 4.1.12, we cannot directly relate this to the product of the expectation
of number of points on the right hand side. In fact by Hölder’s inequality, one sees that the right hand
side is smaller or equal than

√
E [#(X1 ∩X ′

1 ∩ Y ∩ U)]E [#(X2 ∩X ′
2 ∩ Y ∩ U)].

The zonoid section ζf contains more information than just the expectation of volume and one
could also count the number of points of intersection of independent z-KRok fields with sign, see
Corollary 4.2.36 and Theorem 4.2.35.

Finally we conclude this section, chapter and work by interpreting our results in the context of
Finsler geometry. The choice, for each point p ∈ M of a norm Fp : TpM → R that satisfies further
regularity assumptions is called a Finsler structure on M . Here these regularities will not always be
satisfied but, at least in this introduction, we will use the term Finsler anyway. In Finsler geometry,
the notion of length of smooth curves is well defined, if γ : [0, 1] → M is a C1 curve then, one simply
let

ℓF (γ) :=

∫ 1

0

Fγ(t)(γ̇(t))dt.

In our case, given a z-KRok field f : M → R, the zonoid ζf (p) defines a (semi) norm on TpM , by
the support function. If X := f−1(0), we obtain then a Finsler structure on M that we denote FX .
Concretely, this is given for every p ∈M and every v ∈ TpM by

FXp (v) :=
ρf(p)(0)

2
E
[
|dpf(v)|

∣∣f(p) = 0
]
.

With this, we are able to show a Crofton formula in Finsler geometry.
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Theorem 4.2.43. Let f : M → R be z-KRok and consider the random hypersurface X := f−1(0).
Let γ : [0, 1] → R be a C1 curve such that X is transversal to γ almost surely. Then

E#(γ ∩X) = 2 ℓF
X

(γ).

Furthermore, there is a notion of volume in Finsler geometry called the Holmes-Thompson volume,
see Definition 4.2.44. We show that this can be obtained using zonoid calculus in Lemma 4.2.45 to
obtain a more general Crofton formula for higher dimensional submanifold.

Theorem 4.2.46. Let 1 ≤ k ≤ m, let f1, . . . , fk : M → R be iid z-KRok fields, let Xi := f−1
i (0) and

let X(k) := X1 ∩ · · · ∩Xk. Let ι : S ↪→M be an embedded submanifold of dimension k such that X(k)

is transversal to S almost surely, then we have

E#
(
S ∩X(k)

)
= k!κk vol

FX1

k (S)

where volF
X1

k denotes the Holmes–Thompson volume for the Finsler structure FX1 .

Disclaimer on vocabulary

The names theorem, proposition, lemma, etc. . . are attributed to the results in accordance to their
position in this work and in no way to their importance in overall mathematics. The name “theorem”
is reserved to original results that the author is at least a coauthor of and that he considers of particular
importance among the other results, something that the reader can bring back home.

The name “lemma” is given to results that are used to prove theorems or that have more the flavor
of a tool in this work.
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sens du termes sont mes parents. Je les remercie de tout mon coeur et je suis incroyablement chanceux
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Chapter 1

Convex bodies and zonoids

Throughout this chapter, V will denote an Euclidean space of dimension m <∞. We will write V∗ for
the dual space of V, that is V∗ := Hom(V,R). We will write ⟨·, ·⟩ to denote both the scalar product
in V and the pairing V∗ ×V→ R.

We consider an Euclidean space in order to be able to talk about volumes but we will try to avoid
to identify V∗ ∼= V as much as possible.

In this chapter we recall a few facts from convex geometry. The results being standard we will
not give a proof most of the time but we will indicate a precise reference each time. The standard
reference in convex geometry is Rolf Schneider’s [80].

1.1 Basics of convex geometry

1.1.1 Convex bodies and representing functions

We start with the most basic definition.

Definition 1.1.1. A subset C ⊂ V is called convex if for any pair of points x, y ∈ C the segment
[x, y] is contained in C, that is if for all t ∈ [0, 1], we have (1− t)x+ ty ∈ C.

Definition 1.1.2. A convex body is a non empty compact convex set. The set of convex bodies of
V will be denoted K (V). We also define K0(V) := {C ∈ K (V) | (−1)C = C} the convex bodies
symmetric with respect to the origin.

The space K (V) is a monoid with a scalar multiplication with the following operations.

Definition 1.1.3. The scalar multiplication: ∀λ ∈ R, λC := {λx |x ∈ C}.

Definition 1.1.4. The Minkowski sum: C +D := {x+ y |x ∈ C, y ∈ D}.

Note that K0(V) ⊂ K (V) is a submonoid, i.e. it is closed under the two operations just defined.
Moreover, the neutral element for the Minkowski sum is {0}, the convex body consisting of only one
point: the origin.

Remark 1.1.5. Note also that the Minkowski sum is monotone with respect to inclusion, that is if
K ⊂ K ′ and L ⊂ L′ are convex bodies then K + L ⊂ K ′ + L′.

There is a natural distance on K (V) induced by the norm on V.

Definition 1.1.6. The Hausdorff distance is given for all K,L ∈ K (V) by

d(K,L) := inf {r ≥ 0 |K ⊂ L+ rB(V); L ⊂ K + rB(V)}

where B(V) is the unit ball of V. The norm of a convex body K is then defined to be

∥K∥ := d({0},K) = inf {r > 0 |K ⊂ rB(V)}

in other words it is the radius of the smallest ball containing K.
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Figure 1.1: Support and radial functions

Note that this norm satisfies the triangle inequality with the Minkowski sum. The space K (V)
will always be considered endowed with the topology induced by this distance. The Hausdorff distance
depends on the choice of a norm on V, but one can check that the induced topology doesn’t.

We now introduce two functions that characterize a convex body K. The first one is natural to
consider but the second one will turn out to be easier to work with, see Figure 1.1.

Definition 1.1.7. The radial function rK : V→ R is given for all v ∈ V by

rK(v) := sup {r > 0 | rv ∈ K} .

If K contains the origin in its interior, it defines a norm on V such that K is the unit ball of this norm.
It is given by

∥v∥K := inf
{
r > 0 | v

r
∈ K

}
=

1

rK(v)
.

Definition 1.1.8. The support function hK : V∗ → R is given for all u ∈ V∗ by

hK(u) := sup {⟨u, x⟩ |x ∈ K} .

The support function turns out to characterize the convex body meaning that one can reconstruct
a convex body from its support function. The following is [80, p.44].

Proposition 1.1.9. Let K ∈ K (V) then

K = {x ∈ V | ⟨u, x⟩ ≤ hK(u)∀u ∈ V∗} .

One can characterize the support functions, the following is [80, Theorem 1.7.1].

Proposition 1.1.10. A function h : V∗ → R is the support function of a convex body if and only if it is
sublinear, that is if for every λ ≥ 0 and every u, u′ ∈ V∗, h(λu) = λh(u) and h(u+u′) ≤ h(u)+h(u′).

Example 1.1.11. The support function of the unit ball B(V) is hB(V)(u) = ∥u∥.
Example 1.1.12. Let x ∈ V, the support function of the point {x} is h{x}(u) = ⟨u, x⟩. The support

function of the segment x := 1
2 [−x, x] is hx(u) =

1
2 |⟨u, x⟩|. The support function of the segment [0, x]

is h[0,x](u) = max{0, ⟨u, x⟩}.
Let us mention that the support and radial function are dual to each other.

Definition 1.1.13. Let K ∈ K (V) have non empty interior. Its polar body is defined to be

K◦ := {u ∈ V∗ |hK(u) ≤ 1} ∈ K (V∗).
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By [80, Theorem 1.6.2] we have that K◦◦ = K if, in addition, K contains the origin. Moreover the
following is [80, Lemma 1.7.13]

Proposition 1.1.14. Let K ∈ K (V) containing the origin in its interior and let K◦ ∈ K (V∗) be its
polar body then for all v ∈ V we have hK◦(V) = ∥v∥K .

In that case, we have, by duality, hK = ∥ · ∥K◦ . In other words, the support function defines a
norm on V∗ that is the dual norm to ∥ · ∥K .

The support function turns out to be very handy when manipulating convex bodies.

Proposition 1.1.15. Let K,L ∈ K (V) and let λ ≥ 0. The following holds.

(i) hλK+L = λhK + hL;

(ii) K ⊂ L if and only if hK ≤ hL;

(iii) Let T : V→W be a linear map and T t :W∗ → V∗ be its transpose we have hT (K) = hK ◦ T t;

(iv) d(K,L) = sup {|hK(u)− hL(u)| |u ∈ S(V∗)} .

Proof. Items (i) and (iii) are a direct consequence of the definition of the support function in Defini-
tion 1.1.8. Item (ii) follows from the expression of K from its support function in Proposition 1.1.9.
Finally, item (iv) is [80, Lemma 1.8.14].

We have the following bound for the support function.

Proposition 1.1.16. Let K ∈ K (V) and let u ∈ V∗, we have hK(u) ≤ ∥u∥∥K∥ with equality if and
only if K is a ball.

Proof. As mentioned above, ∥K∥B(V) is the smallest ball containingK, thus by Proposition 1.1.15-(ii)
we have hK ≤ ∥K∥hB(V). The result follows from the identity hB(V)(u) = ∥u∥.

Remark 1.1.17. If we write h̄K for the restriction of hK to the unit sphere S(V∗), item (iv) in the
last proposition reads d(K,L) = ∥h̄K − h̄L∥∞ where ∥ · ∥∞ is the supremum norm on the continuous
functions on S(V∗), i.e.

∥f∥∞ := sup {|f(u)| |u ∈ S(V∗)} .

This means that the map h̄· : K (V) → C(S(V∗)) that maps K 7→ h̄K is a linear isometric embedding.
Its image is a convex cone inside the vector space C(S(V∗)) (endowed with the supremum norm). We
will study in more detail this point of view in Section 1.2.4.

Since the Hausdorff distance corresponds to the supremum norm, we have that a sequence of convex
bodies converges if and only if their support functions (restricted to the sphere) converge uniformly.
Uniform convergence can be tricky to prove, luckily, for support functions, pointwise convergence turns
out to be sufficient, the following is [80, Theorem 1.8.15].

Lemma 1.1.18. Let (Kn)n∈N be a sequence of convex bodies and let h : V∗ → R be such that hKn

converges pointwise to h. Then h is the support function of a convex body K and Kn → K in the
Hausdorff distance topology.

Let us make the following definition.

Definition 1.1.19. Let K ∈ K (V) and let u ∈ V∗ \ {0}. The face of K in the direction u is
Ku := {x ∈ K | ⟨u, x⟩ = hK(u)} . If Ku consists of a single point we say that K is strictly convex in
the direction u and we denote this point xK(u). Finally we say that K is strictly convex if it is strictly
convex in every direction.

This is usually called an exposed face and the notion of face is strictly weaker in some cases but we
will abuse notation and make no distinction here.

An additional property of the support function is the following which is [80, Corollary 1.7.3]. We
denote by ∇h the gradient of the function h : V∗ → R.
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Proposition 1.1.20. Let K ∈ K (V) and let u ∈ V∗ \ {0}. The support function hK is differentiable
at u if and only if K is strictly convex in the direction u. In that case we have

∇hK(u) = xK(u).

where recall from Definition 1.1.19 that xK(u) is the point such that Ku = {xK(u)}.

Let us also mention that the faces of a convex body satisfy some additive properties, the following
is [80, Theorem 1.7.5.(c)].

Proposition 1.1.21. Let K,L ∈ K (V) and let u ∈ S(V∗), we have

(K + L)u = Ku + Lu.

1.1.2 Mixed volume and related concepts

The function volume on K (V) is homogeneous of degree m (where recall that m = dimV) meaning
that for all K ∈ K (V) and all t ≥ 0 we have volm(tK) = tm volm(K). Minkowski proved that it can
be polarized and gives rise to a multilinear form. The following is [80, Theorem 5.1.7].

Proposition 1.1.22 (and Definition). There is a nonnegative symmetric continuous function, called
the mixed volume, MV : K (V)m → R such that for all K1, . . . ,Kl ∈ K (V) and all t1, . . . , tm we have

volm(t1K1 + · · ·+ tlKl) =

l∑
i1,...,im=1

ti1 · · · timMV(Ki1 , . . . ,Kim).

The mixed volume satisfies the following properties, for details and proofs see [80, Section 5.1].

Proposition 1.1.23. Let K1, . . . ,Km,K, L ∈ K (V), the mixed volume satisfies the following.

(i) For all permutation σ, MV(Kσ(1), . . . ,Kσ(m)) = MV(K1, . . . ,Km);

(ii) for all λ ≥ 0, we have MV(λK+L,K2, . . . ,Km) = λMV(K,K2, . . . ,Km)+MV(L,K2, . . . ,Km);

(iii) we have MV(K, . . . ,K) = volm(K);

(iv) we have MV(K1, . . . ,Km) > 0 if and only if there are segments [x1, y1] ⊂ K1, . . . , [xm, ym] ⊂ Km

such that the vectors y1 − x1, . . . , ym − xm are linearly independent.

In the following we denote MV(K[k], . . .) for the repetition of K, k times in the argument of the
mixed volume.

A particular case is the mixed volume with the unit ball.

Definition 1.1.24. Let K ∈ K (V) and let 0 ≤ k ≤ m. The k-th intrinsic volume of K is defined to
be

Vk(K) :=

(
m
k

)
κm−k

MV(K[k], B(V)[m− k]).

Note that we have Vm = volm and V0 is constant equal to one. Moreover, by Proposition 1.1.22
the intrinsic volumes are the coefficients of the polynomial describing the volume of a neighbourhood
of a convex body K ∈ K (V), that is for all t ≥ 0, we have

volm(K + tB(V)) =

m∑
k=0

Vk(K)κm−kt
m−k.

This formula is called Steiner’s polynomial.
Mixed volume and intrisic volumes are the main objects of key inequalities in convex geometry.

One of the most important (if not the most important) is known as the Alexandrov–Fenchel inequality
(AF), see [80, Theorem 7.3.1].
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Lemma 1.1.25 (AF). Let K3, . . . ,Km ∈ K (V) and let us denote by K, the tuple (K3, . . . ,Km). For
all convex bodies K,L ∈ K (V) we have

MV(K,L,K) ≥
√

MV(K,K,K)MV(L,L,K).

Another inequality bounds from below the volume of the Minkowski sum of two convex bodies and
is known as the Brunn–Minkowski inequality (BM). It has several equivalent forms and we chose to
present here the multiplicative one, see [80, p.372 (e)].

Lemma 1.1.26 (BM). Let K0,K1 ∈ K (V). For all t ∈ [0, 1], we have

volm((1− t)K0 + tK1) ≥ volm(K0)
1−t volm(K1)

t.

There exists a local, measure theoretic version of the intrinsic volumes and Steiner’s polynomial.
To define it, let us introduce the following.

Definition 1.1.27. Let K ∈ K (V) and recall that ∂K denotes its boundary. The normal cone at
x ∈ ∂K is defined to be

NK(x) := {u ∈ V∗ | ⟨u, y − x⟩ ≤ 0, ∀y ∈ K}.
If K has a smooth boundary then the normal cone is the half line spanned by the outer normal.

We can now define the surface area measure, see [89] or [80, Section 4.2].

Definition 1.1.28. Let K ∈ K (V). The (m−1)–surface area measure (or just surface area measure),
is the nonnegative measure Sm−1(K, ·) on the unit sphere S(V∗) given for all Borelian η ⊂ S(V) by

Sm−1(K, η) := Hm−1 ({x ∈ ∂K | NK(x) ∩ η ̸= ∅})

where Hm−1 denotes the Hausdorff measure.

There are other surface area measure Sk(K, ·), 0 ≤ k ≤ m− 1 that can be obtained by means of a
Steiner-type formula, see [80, (4.27)], for t ≥ 0, this gives

Sm−1(K + tB(V), ·) =
m−1∑
k=0

(
m− 1

k

)
tm−1−kSk(K, ·).

Similarly there is a mixed version of the surface area measure. The following is [80, Theorem 5.1.7].

Proposition 1.1.29 (and Definition). There is a symmetric map MS, called the mixed area measure,
from K (V)m−1 into the space of finite Borel measures on S(V∗) such that for all K1, . . . ,Kl ∈ K (V)
and all t1, . . . , tl ≥ 0 we have

Sm−1(t1K1 + · · ·+ tlKl, ·) =
l∑

i1,...,im−1=1

ti1 · · · tim−1
MS(Ki1 , . . . ,Kim−1

, ·).

The mixed area measure satisfies similar properties as the mixed volume, for details and proofs
see [80, Section 5.1].

Proposition 1.1.30. Let K1, . . . ,Km−1,K, L ∈ K (V), and let λ ≥ 0. The mixed area measure
satisfies the following:

(i) For all permutation σ, MS(Kσ(1), . . . ,Kσ(m−1)) = MS(K1, . . . ,Km−1, ·);

(ii) we have MS(λK +L,K2, . . . ,Km−1, ·) = λMS(K,K2, . . . ,Km−1, ·)+MS(L,K2, . . . ,Km−1, ·);

(iii) we have MS(K, . . . ,K, ·) = Sm−1(K, ·);

(iv) for all 0 ≤ k ≤ m− 1, we have Sk(λK, ·) = λkSk(K, ·).
Moreover the mixed area measure allows to compute the mixed volume, the following is still [80,

Theorem 5.1.7].

Proposition 1.1.31. Let K1, . . . ,Km ∈ K (V), we have

MV(K1, . . . ,Km) =
1

m

∫
S(V∗)

hK1(u)MS(K2, . . . ,Km−1,du).
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1.1.3 Curved bodies and polytopes

Let us illustrate the concepts of the previous section in two cases where computations are doable.

Curved bodies

Recall that if a support function is differentiable its gradient restricted to the sphere parametrizes the
boundary of the convex body, see Proposition 1.1.20.

Definition 1.1.32. A convex body K is called curved if hK is C2 and the map

xK := (∇hK)|S(V∗) : S(V
∗) → ∂K

that maps u 7→ xK(u) the point of ∂K that admits u as an outer normal, is a C1 diffeomorphism. The
inverse of xK is the Gauss map uK : ∂K → S(V∗) which is such that for all x ∈ ∂K, uK(x) is the
outer unit normal of K at x.

Note that the property of being curved implies, in particular, that the convex body has nonempty
interior and that its boundary ∂K is a (closed) C2 hypersurface of V. Curved bodies can be dealt with
by using functional analysis tools on their support functions. They are dense in the space of convex
bodies, for more details see [80, Section 2.5] where curved bodies are called C2

+.
Let us observe that for all u ∈ S(V∗) the tangent space TuS(V

∗) and the tangent space TxK(u)∂K

can both be identified with u⊥. Thus the differential DuxK can be seen as an endomorphism of u⊥,
and as such is selfadjoint, see [80, p.116].

Definition 1.1.33. The reverse Weingarten map is the selfadjoint operatorWu := DuxK : u⊥ → u⊥.
Its eingenvalues denoted r1 ≥ · · · ≥ rn−1 > 0, are called the principal radii of curvature of K at u.

Then the surface area measure of a curved body admits a density that can be expressed in terms
of the principal radii of curvatures, see [80, (4.26)].

Proposition 1.1.34. Let K ∈ K (V) be a curved body and let η ⊂ S(V∗) be a Borelian. We have for
all 0 ≤ k ≤ m− 1

Sk(K, η) =
∫
η

sk(K,u)du

where sk(K,u) denotes the normalized k-th elementary symmetric polynomial in the principal radii of
curvature of K at u, i.e.

sk(K,u) =

(
m− 1

k

)−1 ∑
1≤i1≤···≤ik≤m−1

ri1 · · · rik .

In particular we have

volm(K) =
1

m

∫
S(V∗)

hK(u)sm−1(K,u)du.

Polytopes

At the other extreme there is another very important dense subset of convex bodies.

Definition 1.1.35. A convex body P is a polytope if it is the intersection of finitely many half spaces.
The space of polytopes of V will be denoted P(V).

Polytopes are handy because they are given by a finite amount of data. Indeed according to the
definition, for all P ∈ P(V) there exist u1, . . . , ul ∈ S(V∗) and a1, . . . , al ∈ R such that the polytope

P can be written P =
⋂l
i=1 {x ∈ V | ⟨ui, x⟩ ≤ ai}. Thus they often can be handled with combinatoric

tools.
Recall the definition of a face in Definition 1.1.19 and of the normal cone in Definition 1.1.27.
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Definition 1.1.36. Let P ∈ P(V), we denote by Fk(P ) the set of k-dimensional faces of P . If
F ∈ Fk(P ) we denote by NP (F ) := NP (x) where x is any point in the relative interior of F . Finally
for all F ∈ Fk(P ), we define its external angle

Θ(F, P ) := voln−k−1(NP (F ) ∩ S(V∗))/sn−k−1.

where sn := voln(S
n).

We can express the intrinsic volumes of a polytope in terms of volume of its faces and external
angles. The following is [80, (4.23)].

Proposition 1.1.37. For any P ∈ P(V) and all 0 ≤ k ≤ m we have

Vk(P ) =
∑

F∈Fk(P )

Θ(F, P ) volk(F ).

Similarly one can explicitly compute the surface area measure.

Proposition 1.1.38. Let P ∈ P(V) and for all F ∈ Fm−1(P ), let uP (F ) denote the outer unit normal
of P at any point in the relative interior of F . Then we have

Sm−1(P, ·) =
∑

F∈Fm−1(P )

volm−1(F )δuP (F )(·).

Proof. From the definition of the surface area measure in Definition 1.1.28 we see that if η ⊂ S(V∗)
is a Borelian then Sm−1(P, η) =

∑
volm−1(F ) where the sum runs over all F ∈ Fm−1(P ) such that

NP (F ) is spanned by a vector in η. Since the half line NP (F ) is spanned by uP (F ), this proves the
result.

1.2 Zonoids, definition(s)

We now come to our main object of study, namely zonoids, which are a special class of convex bodies.
When dealing with zonoids there are essentially four different points of view that we will detail in this
section.

First we will see the most geometric definition which builds zonoids using the Minkowski sum of
segments.

The second approach is the one introduced by Vitale in [86] which builds zonoids using random
segments. This approach plays a central role in this work and will often be our favourite choice.

The third point of view uses measures on the sphere and is classical when dealing with zonoids, it
is for example extensively used in [80].

Finally we can see zonoids as (continuous) functions on the sphere through their support functions.
This part is less developed, as characterizing such functions is a difficult problem (as we will see in the
next section).

As we mentioned, the second approach will often be the one we adopt in the following. However it
is the plurality of points of view that makes the space of zonoid rich and interesting. Switching from
one point of view to the other can often make proofs and/or computations easier and having many of
them is a great chance.

Let us also mention that there is a fifth point of view that characterizes zonoids as the range of
vector valued measures. This will not be discussed here since the author did not work on it. Maybe it
deserves more attention and can lead to something interesting, in the meantime one can refer to [24].

In the following, we will denote, for every x ∈ V

x := 1
2 [−x, x]. (1.2.1)
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1.2.1 Zonoids as limits of zonotopes

Definition 1.2.1. A convex body K ∈ K (V) is called a zonotope if it can be expressed as a finite
sum of segments, that is if there exist x1, y1, . . . , xN , yN ∈ V such that K = [x1, y1] + · · · + [xN , yN ].
A zonoid is a limit (in the Hausdorff distance topology) of zonotopes. The space of zonoids in V will
be denoted Z (V), moreover we let Z0(V) := Z (V) ∩ K0(V).

Note that segments are centrally symmetric, more precisely, for all x, y ∈ V, we have

[x, y] = z + 1
2{c}

where z := (x − y) and c := x + y (recall notation (1.2.1) for the segment z). Observing that
{c}+{c′} = {c+c′} for all c, c′ ∈ V this means that for every zonotope K, there exist z1, . . . , zN , c ∈ V
such that K = z1 + · · ·+ zN + 1

2{c}. In other words, this means that every zonotope, and thus every
zonoid, has a center of symmetry.

Proposition 1.2.2. Let K ∈ Z (V), there exists a unique K0 ∈ Z0(V) and a unique point o(K) ∈ V
such that

K = K0 +
1

2
{o(K)} .

Definition 1.2.3. The point o(K) ∈ K which is the symmetric of the origin with respect to the center
of symmetry of K (or equivalently 2 times the center of K) will be called the pole of K. Elements of
Z0(V) will be called centered zonoids.

By Proposition 1.2.2, we have the decomposition

Z (V) = Z0(V)⊕V

as monoids. Indeed if K,L ∈ Z (V) and K = K0 + 1
2{o(K)}, L = L0 + 1

2{o(L)} then we have
K + L = K0 + L0 +

1
2{o(K) + o(L)}. In particular o(K + L) = o(K) + o(L). This simple observation

will allow us to treat the centered zonoid and the pole separately.

Zonotopes

Zonotopes are polytopes that, as mentioned above, are centrally symmetric. However not all centrally
symmetric polytopes are zonotopes. The following characterization of zonotopes is [80, Theorem 3.5.2].

Proposition 1.2.4. A polytope is a zonotope if and only if all its two dimensional faces are centrally
symmetric.

In particular all centrally symmetric polytopes in R2 are zonotopes. By approximation we have
that all centrally symmetric bodies in dimension 2 are zonoids.

Corollary 1.2.5. In dimension 2 we have Z0(R2) = K0(R2).

In general for m > 2, the inclusion Z0(Rm) ⊂ K0(Rm) is strict. Let us describe more precisely the
face structure of zonotopes, the reader can also refer to [62]. Without loss of generality we can assume
that the zonotope is centered: let x1, . . . , xN ∈ V, we let

K := x1 + · · ·+ xN ∈ Z0(V). (1.2.2)

By Proposition 1.1.21 we have that every face of K is again a zonotope. More precisely we have the
following.

Proposition 1.2.6. Let K be the zonotope given by (1.2.2) and let u ∈ S(V∗). We have

Ku =
∑
xi∈u⊥

xi +
1

2

 ∑
xi /∈u⊥

ϵixi


where ϵi := sign⟨u, xi⟩.
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Proof. Apply Proposition 1.1.21 and note that xi
u is either the point ϵi

2 {xi} if xi /∈ u⊥ or xi
u = xi if

xi ∈ u⊥.

Thus faces that are parallel are translate of the same vectorial face. Let us be more precise
introducing a few notations. We denote by Gk(V) the Grassmannian of (vectorial) k-planes of V.

Definition 1.2.7. Let P ∈ P(V) be a polytope and let F ∈ Fk(P ), we denote by EF ∈ Gk(V) the
vector space parallel to the affine span of F . Moreover we define

Gk(P ) := {E ∈ Gk(V) | there exists a k-dim. face F of P such that E = EF } .

Note that if K is the zonotope defined by (1.2.2) then, by Proposition 1.2.6, this takes the form

Gk(K) = {E ∈ Gk(V) | there exist linearly independent xi1 , . . . , xik ∈ E} . (1.2.3)

Definition 1.2.8. LetK be the zonotope defined by (1.2.2) and let E ∈ Gk(K), we define the vectorial
face of K parallel to E to be

F (E,K) :=
∑
xi∈E

xi.

By Proposition 1.2.6 above, for every face F ∈ Fk(K) there is c ∈ V such that

F = F (EF ,K) + 1
2{c}. (1.2.4)

Moreover c is a combination of the summands xi with coefficient in {0,±1}.
The face structure of zonotopes imply an important property of their external angles (recall Defi-

nition 1.1.36).

Lemma 1.2.9. Let K ∈ Z0(V) be the zonotope defined by (1.2.2) and let E ∈ Gk(K). The external
angle satisfies ∑

EF=E

Θ(K,F ) = 1

where the sum runs over all the faces F ∈ Fk(K) such that EF = E.

Proof. We give a proof similar to what can be found in the proof of [26, Theorem 6.15]. Given
E ∈ Gk(K), pick a nonzero u ∈ E⊥. By the above discussion, the face Ku is a translate of

∑
xi∈u⊥ xi.

In addition, if F is a face of K such that EF = E, F is a translate of F (K,E) =
∑
xi∈E xi. Since

E ⊂ u⊥, the face Ku contains a translate of F . Moreover, dim(F ) = k and it follows that dim(Ku) ≥ k
which implies dim(NK(Ku)) ≤ m− k. In other words we proved that if E ∈ Gk(K) and u ∈ E⊥, then
dim(NK(Ku)) ≤ m− k.

We now show that for almost all u ∈ E⊥ we have dim(NK(Ku)) = m − k. Indeed, for this it is
enough to write E⊥ ⊆

⋃
u∈E⊥ NK(Ku), thus the set

{
u ∈ E⊥ | dim(NK(Ku)) < m− k

}
is contained

in a finite union of cones of dimension at most m− k − 1.
Let us now consider the unit sphere S(E⊥) ⊂ S(V∗), and denote by F the set of faces F of K such

that EF ⊃ E and dim(NK(F )) < m− k. Then, by the above reasoning,{
u ∈ S(E⊥) | dim(Ku) < m− k

}
⊆
⋃
F∈F

NK(F ) ∩ S(E⊥).

Each set NK(F ) ∩ S(E⊥) with F ∈ F has dimension at most n − k − 2. Since the set F is fi-
nite, it implies, as above, that

{
u ∈ S(E⊥) | dim(Ku) < m− k

}
is contained in a finite union of sets

of dimension at most m − k − 2, and in particular it has measure zero in S(E⊥). It follows that{
u ∈ S(E⊥) | dim(Ku) = k

}
⊂ S(E⊥) has full measure. Letting u vary in S(E⊥), the set {Ku}

exhausts all k–dimensional faces F with EF = E and therefore:∑
EF=E

Θ(K,F ) =
∑
EF=E

volm−k−1(NK(F ) ∩ S(V∗))

volm−k−1(Sm−k−1)
=

volm−k−1(S
m−k−1)

volm−k−1(Sm−k−1)
= 1.

This concludes the proof.
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It is possible that an analogous to Lemma 1.2.9 exists for curved zonoids, i.e. zonoids that are
curved bodies in the sense of Definition 1.1.32. It could be a result similar to [10, Theorem 2 and 3].
As far as the author knows, it remains an open problem.

This allows another expression for the intrinsic volumes of zonotopes.

Corollary 1.2.10. Let K ∈ Z (V) be a zonotope and let 0 ≤ k ≤ m. The k-th intrinsic volume of K
is given by

Vk(K) =
∑

E∈Gk(K)

volk(F (E,K)).

Proof. Since all parallel faces are translate of each other (see (1.2.4)), the formula in Proposition 1.1.37
yields Vk(K) =

∑
E∈Gk(K) volk(F (E,K))

∑
EF=E Θ(K,F ) where the internal sum runs over all the

faces F such that EF = E. The result then follows from Lemma 1.2.9.

Remark 1.2.11. Note that if K is the zonotope defined by (1.2.2) then the first intrisic volume takes
the following simple form:

V1(K) =

N∑
i=1

∥xi∥.

Generalized and virtual zonoids

By definition of zonoids, Z0(V) is a closed subset of K0(V) (in the topology induced by the Hausdorff
distance). Let us describe a larger class of convex bodies.

Definition 1.2.12. A (centrally symmetric) convex body K ∈ K0(V) is called a generalized zonoid
if there exist zonoids L1, L2 ∈ Z0(V) such that K + L1 = L2.

It turns out that the set of generalized zonoids is not a closed subset of K0(V). The following
is [80, Corollary 3.5.7]

Proposition 1.2.13. The set of generalized zonoids form a dense subset of K0(V), that is for every
K ∈ K0(V) there is a sequence of generalized zonoids (Kn) such that Kn → K in the Hausdorff
distance.

If K is a generalized zonoid, it can be thought of as the difference of two zonoids. In fact there is a
way to consider the group generated by differences of zonoids (or convex bodies) via the construction
of the Grothendieck group, see [51].

Indeed, the set of centered zonoids Z0(V) with the Minkowski sum forms a commutative monoid
with the so called cancellation rule, that is if A,B,C ∈ Z0(V) are such that A + B = C + B then
A = C. This implies that the monoid Z0(V) embedds into a commutative group that we denote

Ẑ0(V) that satisfies some universal property, see [51, p.39].
Concretely, each pair of zonoids K,L ∈ Z0(V) gives rise to an element of the Grothendieck group

that we denote by K −L ∈ Ẑ0(V) and is such that if K ′, L′ ∈ Z0(V) then K −L = K ′ −L′ in Ẑ0(V)
if and only if K + L′ = K ′ + L in Z0(V). The Grothendieck construction and the cancellation rule

ensures that Ẑ0(V) is a well defined commutative group. To each zonoid K ∈ Z0(V) corresponds the

element K − {0} ∈ Ẑ0(V). By a slight abuse of notation, we will still write K = K − {0} and we
denote −K := {0} −K.

In our case we also have the multiplication by a nonegative scalar λ ≥ 0 on Z0(V). This operation
carries on to the Grothendieck group by letting λ(K−L) := λK−λL. Moreover if we let (−1)(K−L) :=
(L−K) we obtain a multiplication by all scalars that turns Ẑ0(V) into a vector space. Similarly one

can construct the vector space K̂0(V).

Definition 1.2.14. The vector space of virtual zonoids is denoted Ẑ0(V) and is a subspace of the

virtual symmetric bodies denoted K̂0(V). Moreover we define Ẑ (V) := Ẑ0(V) ⊕V where the sum is
intended as vector spaces.
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Note that the expression K −L ∈ Ẑ (V) with K,L ∈ Z0(V) is not unique since for all A ∈ Z0(V)
we have K − L = (K +A)− (L+A).

Remark 1.2.15. The subset Z0(V) ⊂ Ẑ0(V) is a convex cone. Similarly for K0(V) ⊂ K̂0(V).

Remark 1.2.16. This abstract construction does not give a topology on the vector spaces. In fact two

different topologies can be defined on Ẑ0(V) that coincide on Z0(V) with the topology given by the
Hausdorff distance. These will be discussed in the next sections.

1.2.2 Zonoids as average segment: Vitale’s construction

Let us recall some elements of probability theory. If M is a measurable space, that is a set endowed
with a σ-algebra, a random element X of M is a measurable map X : Ω → M from some probability
space Ω, that is a measurable space endowed with a probability measure. The law of X is the push
forward of this probability measure on M. Probabilists are very rarely actually interested in the source
space Ω and we will make no exception. We thus introduce some convenient notation that is adapted
to this and was invented by Michele Stecconi.

Definition 1.2.17. If X is a random element of M a measurable space, we write X⊂⊂M.

If M is a topological space we always consider it endowed with the σ-algebra of the Borelians
generated by the open sets. If X⊂⊂M and f : M → R is a measurable map integrable with respect
to the law of X, we write Ef(X) for the integral of f with respect to the law of X. Finally we
say that a property P holds almost surely if it happens with probability one, that is if the set
{ω ∈ Ω |X(ω) has property P} has measure one with respect to the probability measure on Ω.

Let us now turn to the specific case of convex bodies.

Definition 1.2.18. Let Λ⊂⊂K (V) be a random convex body such that E∥Λ∥ < ∞. Then we define
EΛ ∈ K (V) to be the convex body whose support function is given for all u ∈ V∗ by

hEΛ(u) := EhΛ(u).

The fact that it indeed defines the support function of a convex body follows from the finiteness
assumption and Proposition 1.1.16 and from the characterization of support functions in Proposi-
tion 1.1.10.

There is a strong law of large number for compact sets proved by Zvi Artstein and Richard A.
Vitale in [11] that gives to this convex body a geometrical meaning. The following is [11, Theorem,
p.880].

Proposition 1.2.19. Let Λ1, . . . ,ΛN , . . . ⊂⊂K (V) be independent identically distributed (iid) random
convex bodies, then we have

1

N
(Λ1 + · · ·+ ΛN ) −−−−→

N→∞
EΛ1

almost surely.

Remark 1.2.20. Note that in the previous proposition we have a sequence of random convex bodies,
but the limit object EΛ is deterministic.

Since the sum of zonoids is a zonoid and the space of zonoids is closed in the space of convex bodies
we obtain the following.

Proposition 1.2.21. Let Λ⊂⊂Z (V) and Λ0
⊂⊂Z0(V) be such that E∥Λ∥,E∥Λ0∥ <∞, then EΛ ∈ Z (V)

and EΛ0 ∈ Z0(V).

In the following we will mainly consider two examples constructed from a random vector.

Definition 1.2.22. Let X⊂⊂V be a random vector, we say that X is integrable if E∥X∥ <∞. In such
case, the (centered) zonoid EX ∈ Z0(V) will be called the Vitale zonoid associated to X.
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The support function of the Vitale zonoid associated to a random integrable vector X⊂⊂V is com-
puted using Example 1.1.12. We obtain for all u ∈ V∗

hEX(u) =
1

2
E|⟨u,X⟩|. (1.2.5)

Remark 1.2.23. Note that the Vitale zonoid depends only on the law of X.

From an integrable random vector one can also consider the zonoid E[0, X]. It turns out that this
is just a translate of the Vitale zonoid associated to X.

Proposition 1.2.24. Let X⊂⊂V be integrable, we have

E[0, X] = EX + 1
2 {EX} .

In particular o(E[0, X]) = EX.

Proof. From Example 1.1.12, we have for all u ∈ V∗

hE[0,X](u) = E {max(0, ⟨u,X⟩)} . (1.2.6)

It is thus enough to note that for all t ∈ R, we have max(0, t) = 1
2 (|t|+ t) and use (1.2.5) and the fact

that for all x ∈ V, h{x} = ⟨·, x⟩.

Remark 1.2.25. This implies that E[0, X] = EX if and only if EX = 0 in particular this is the case if
X is symmetric, that is if X and −X have the same law.

Let us have a look at some examples.

Example 1.2.26. Let x1, . . . , xN ∈ V and let X⊂⊂V be the random vector that is equal to Nxi with
probability 1

N . Then using (1.2.5) and (1.2.6) we obtain

EX =

N∑
i=1

xi E[0, X] =

N∑
i=1

[0, xi].

Moreover, Let X̃⊂⊂V be equal to xi/pi with probability pi for any choice of 0 < pi < 1 such that∑N
i=1 pi = 1. Then we have again EX̃ = EX and E[0, X̃] = E[0, X].

Example 1.2.27. Let ξ⊂⊂V be a standard Gaussian vector, that is the law of ξ admits the density given
for all x ∈ V by 1

(2π)m/2 exp(−∥x∥2/2) (see Section 2.6.1). Then we have

EX =
1√
2π
B(V).

Indeed for all u ∈ V∗ with ∥u∥ = 1 the random variable ⟨u, ξ⟩⊂⊂R is a standard Gaussian variable and

thus we have E|⟨u, ξ⟩| =
√

2
π and the result follows from (1.2.5)

We see from Example 1.2.26 that the Vitale zonoid does not uniquely determine the integrable
random vector. This defines an equivalence relation on the integrable random vectors of V known as
the zonoid equivalence that was studied by Ilya Molchanov, Michael Schmutz, and Kaspar Stucki in
[66].

Definition 1.2.28. We say that two integrable random vectors X,Y ⊂⊂V are zonoid equivalent if
EX = EY .

A simple characterization of zonoid equivalence is proved in [66]. The following is [66, Theorem 2].

Proposition 1.2.29. Let X,Y ⊂⊂V be integrable. X is zonoid equivalent to Y if and only if for every
measurable f : V→ R that is nonnegative, positively homogeneous and even we have

Ef(X) = Ef(Y ).
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The application X 7→ EX is thus not injective. However it was proved in [86, Theorem 3.2] that
it is surjective, that is, every zonoid can be obtained as the Vitale zonoid associated to some random
vector. Because of the importance of this result we include a proof of it.

Proposition 1.2.30. Let K ∈ Z0(V), there exists X⊂⊂V integrable such that K = EX

Proof. If K is a zonotope then the random vector is given in Example 1.2.26. Else, there is a sequence
of zonotopes Ki such that Ki → K. Since K is centered, we can also assume that Ki is centered for

all i and write Ki = x
(i)
1 + · · ·+ x

(i)
Ni
. We define the random vector X̃i

⊂⊂V that is equal to x
(i)
j /∥x(i)j ∥

with probability p
(i)
j := ∥x(i)j ∥/V1(Ki). Recall from Remark 1.2.11 that V1(Ki) =

∑Ni

j=1 ∥x
(i)
j ∥ and

thus
∑Ni

j=1 p
(i)
j = 1 and this indeed defines a probability.

Now we have K̃i := EX̃i =
1

V1(Ki)
Ki. Moreover the sequence of random vector X̃i is uniformly

bounded. Thus , up to taking a subsequence, we can assume that X̃i converges weak-∗ to some
integrable random vector X̃⊂⊂V, we let K̃ := EX̃. Since X̃i converges weak-∗ to X̃, it follows that hEX̃i

converges pointwise to hEX̃ and thus, by Lemma 1.1.18, we have K̃i → K̃.

But by assumption and continuity of first intrisic volume we know that K̃i converges to 1
V1(K)K

and thus K = V1(K)K̃ = EX with X := V1(K)X̃⊂⊂V.

The characterization of the zonoid equivalence in Proposition 1.2.29 shows that the following is
well defined.

Definition 1.2.31. LetX⊂⊂V be an integrable random vector, let c ∈ V and considerK := EX+ 1
2{c}.

The length of K is defined to be

ℓ(K) := E∥X∥.

Following a similar idea as in the proof of Proposition 1.2.30, we can prove that the length is
something we already encountered.

Proposition 1.2.32. For all zonoid K ∈ Z (V) we have ℓ(K) = V1(K).

Proof. We assume without loss of generality that K is centered. Let Ki be a sequence of zonotope with
Ki → K. Let X̃i be as in the proof of Proposition 1.2.30 in such a way that K̃i := EX̃i =

1
V1(Ki)

Ki

and X̃i converges weak-∗ to X̃ with K = V1(K)EX̃. Note that ∥X̃i∥ = 1 almost surely and thus
∥X̃∥ = 1 almost surely and in particular E∥X̃∥ = 1. Now K = EX with X = V1(K)X̃ and thus
E∥X∥ = V1(K) which is what we wanted.

Since we will use the function length a lot on zonoids, we will continue to use this name and notation
despite the equality just shown to emphasize that we think about Definition 1.2.31.

Next we see that the Vitale construction behaves well with linear transformation.

Proposition 1.2.33. Let Λ⊂⊂K (V) be a random convex body with E∥Λ∥ <∞ and let T : V→W be
a linear map. Then E∥T (Λ)∥ <∞ and we have

ET (Λ) = T (EΛ).

In particular if X⊂⊂V is an integrable random vector

ET (X) = T (EX) E[0, T (X)] = T (E[0, X]).

Proof. The finiteness condition follows from the fact that T (B(V)) ⊂ ∥T∥opB(W) where ∥ · ∥op is the
operator norm. Next, by definition of EΛ and by Proposition 1.1.15-(iii), we have for all u ∈ W∗,
hET (Λ)(u) = EhT (Λ)(u) = EhΛ(T t(u)) = hEΛ(T

t(u)). Applying again Proposition 1.1.15-(iii) we get
hET (Λ)(u) = hT (EΛ)(u) which is what we wanted.

Next we show how to obtain the Minkowski sum with Vitale’s construction.
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Proposition 1.2.34 (The Bernoulli trick). Let X0, X1
⊂⊂V be integrable and ϵ⊂⊂{0, 1} be a Bernoulli

random variable of parameter 0 ≤ t ≤ 1 independent of the pair (X,Y ), that is ϵ = 0 with probability
(1− t) and equal to 1 with probability t. Let Xt := (1− ϵ)X0 + ϵX1, then we have

EXt = (1− t)EX0 + tEX1.

Proof. Writing down the support function, we have, using the independence assumption, for all u ∈ V∗:
hEXt

(u) = (1− t)hEX0
(u) + thEX1

(u) which is what we wanted.

Remark 1.2.35. It can be useful at this point to emphasize that the operation of taking the (centered)
segment is not linear, that is

x+ y ̸= x+ y

and thus EX + Y ̸= E(X + Y ) = EX + EY in general. This remark may seem trivial since x+ y is
one dimensional and x+y is (in general) of dimension 2, however, in the Vitale construction one could
be tempted to assume linearity without thinking about it. If, while manipulating Vitale zonoids, you
find yourself proving something that you think shouldn’t be true, try to see if somewhere along the
way you assumed that x+ y = x+ y.

If t ∈ R and x ∈ V then we have tx = |t|x and thus if X⊂⊂V is integrable we have EtX = |t|EX.
This can be generalized in the following way.

Proposition 1.2.36. Let X⊂⊂V be integrable and let ρ⊂⊂R be independent of X and integrable. Then
we have

EρX = E|ρ|EX.

Proof. Let u ∈ V∗, then hEρX(u) = 1
2E|ρ| |⟨u,X⟩|. Using the independence gives the result.

We illustrate how this can help to compute the Vitale zonoid in the next example.

Example 1.2.37. Let U⊂⊂S(V) be uniform on the unit sphere. Then we have

EU =
1√

2πρm
B(V)

where ρm = E∥ξ∥ with ξ⊂⊂V standard Gaussian vector, that is

ρm :=

√
2Γ
(
m+1
2

)
Γ
(
m
2

) =
mκm√
2πκm−1

. (1.2.7)

Indeed, ξ have the same law as ∥ξ∥U with ξ independent of U . As observed in Remark 1.2.23, the
Vitale zonoid only depends on the law of the random vector and thus Eξ = E∥ξ∥U = E∥ξ∥U = ρmEU .
The first term has been computed in Example 1.2.27 and it gives what we claimed.

Examples 1.2.27 and 1.2.37 gives another way to compute the length of a zonoid.

Proposition 1.2.38. Let K ∈ Z (V), let ξ⊂⊂V∗ be a standard Gaussian vector and let U⊂⊂S(V∗) be
uniform on the unit sphere S(V∗). We have

ℓ(K) =
√
2πEhK(ξ) =

√
2πρm EhK(U).

where the definition of ρm is given in (1.2.7).

Proof. First of all, we can assume that K is centered since ξ is symmetric. Suppose now X⊂⊂V is
independent of ξ and such that K = EX. then EhK(ξ) = 1

2E|⟨ξ,X⟩| = EhEξ(X). By Example 1.2.27,

we have hEξ(X) = 1√
2π

∥X∥ which gives the first equality. The second one is deduced similarly.

Corollary 1.2.39. The length is increasing with respect to inclusion, i.e. if K,L ∈ Z (V) are such
that K ⊂ L then ℓ(K) ≤ ℓ(L).

Proof. It is enough to apply Proposition 1.1.15-(ii) to the formula in Proposition 1.2.38.
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These provide an inequality between the length and the norm.

Proposition 1.2.40. Let K ∈ Z0(V), we have

2∥K∥ ≤ ℓ(K) ≤
√
2πρm∥K∥,

with equality on the left hand side if and only if K is a (centrally symmetric) segment, and equality
holding on the right hand side if and only if K is a ball.

Proof. Let X⊂⊂V be such that K = EX. Then by applying Cauchy-Schwartz to (1.2.5), we get for all
u ∈ S(V∗), hK(u) ≤ 1

2ℓ(K) and this proves the first inequality as well as the equality case. For the
second inequality, we apply Proposition 1.1.16 and 1.2.38. The equality in Proposition 1.1.16 happens
if and only if K is a ball.

Let us conclude this paragraph by mentioning that there is a variant of the Vitale construction
introduced by Karl Mosler called the lift Zonoid. Given a random vector X⊂⊂V, consider (1, X)⊂⊂R×V.
Then the lift zonoid ofX is E(1, X) ∈ Z0(R×V). Unlike the Vitale zonoid, the lift zonoid characterizes
the law of the random vector X, it has numerous applications in probability and statistics, see [67]

1.2.3 Zonoids as measures: the classical viewpoint

It is most common to approach centered zonoids with even measures on the sphere. This point of view
is extensively used in [80] for example. We recall it and describe how this approach relates to Vitale’s
construction. In the following, we denote the space of even signed measures on the uit sphere S(V)
by M(S(V)) and the cone of non negative measures M+(S(V)). Recall that M(S(V)) is dual to the
space of even continuous functions on the sphere, that we denote by Ceven(S(V)). In accordance to
this, we will write for every µ ∈ M(S(V)) and for every f ∈ Ceven(S(V)):

⟨µ, f⟩ :=
∫
S(V)

fdµ.

Moreover, recall that the spaceM(S(V)) admits a topology called the weak-∗ topology that is such that
a sequence µn converges to µ weak-∗ if and only if for every f ∈ Ceven(S(V)), we have ⟨µn, f⟩ → ⟨µ, f⟩.

The starting point is the following which is [80, Theorem 3.5.3].

Proposition 1.2.41. For every centered zonoid K ∈ Z0(V) there is a unique µK ∈ M+(S(V)) such
that

hK(u) =

∫
S(V)

|⟨u, x⟩| dµK(x). (1.2.8)

Definition 1.2.42. Given a centered zonoid K ∈ Z0(V) the measure µK is called the generating
measure of K. If X⊂⊂V is integrable, we write µX := µEX .

The generating measure of a Vitale zonoid can be computed.

Proposition 1.2.43. Let X⊂⊂V be integrable, then µX is the measure such that for every continuous
function f : S(V) → R we have∫

S(V)

fdµX :=
1

2
E
{
∥X∥f

(
X

∥X∥

)
1X ̸=0

}

Proof. The function x 7→ ∥x∥f
(

x
∥x∥

)
1x ̸=0 is a one homogeneous continuous function on V. Thus,

by Proposition 1.2.29, the term on the right only depends on the zonoid EX. To see that it satis-
fies Proposition 1.2.41 apply it to f = |⟨u, ·⟩| for any u ∈ V∗.

One can build the zonoid whose generating measure is the surface area measure of a given convex
body, see [80, (5.80)].
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Definition 1.2.44. Let K ∈ K (V). The projection body of K is the zonoid ΠK ∈ Z0(Λ
m−1V) whose

support function is given for all w ∈ Λm−1V∗ by

hΠK(w) =
1

2

∫
S(V∗)

|w ∧ u|dSm−1(K)(u).

Similarly one can define the mixed projection body. Using the formulas for the volume involving
the surface area measure, one finds for all w ∈ S(V∗) ([80, (5.80)])

hΠK(w) = volm−1(K|w⊥)

where (K|w⊥) denotes the orthogonal projection of K onto w⊥ identifying Λm−1V∗ ∼= V with the
volume form. It turns out that every zonoid is a projection body. This is called Minkowski’s existence
and uniqueness Theorem, see [80, Theorem 8.1.1 and 8.22 and Section 10.9]

Proposition 1.2.45. For every centered zonoid K ∈ Z0(Λ
m−1V) there is a unique L ∈ K0(V) such

that K = ΠL.

One can express the length (recall that this is how we call the first intrinsic volume see Defini-
tion 1.2.31) of a zonoid as the total mass of its generating measure.

Proposition 1.2.46. For all K ∈ Z0(V) we have

ℓ(K) = 2µK(S(V)).

Proof. Let X⊂⊂V integrable such that K = EX then by Proposition 1.2.43 we have that

µK(S(V)) =

∫
S(V)

1 dµK =
1

2
E {∥X∥1X ̸=0} =

1

2
E∥X∥,

which is what we wanted.

The main tool to consider the link between zonoids and measures is the following.

Definition 1.2.47. The cosine transform is the linear map H : M(S(V)) → Ceven(S(V
∗)) given for

all µ ∈ M(S(V)) and u ∈ S(V∗) by

H(µ)(u) :=

∫
S(V)

|⟨u, x⟩| dµ(x).

The image of the cosine transform will be denoted by H(V) and the image of M+(S(V))) by H+(V).

It was proven by Bolker in [24] that H is continuous on M+(S(V))). In fact we will prove in
the next section that the restriction of H to the non negative measures is a homeomorphism between
M+(S(V))) with the weak-∗ topology and H+(V) with the supremum norm. By Proposition 1.1.15-
(iv), it implies the following.

Proposition 1.2.48. Let K ∈ Z0(V) and let Kn ∈ Z0(V) be a sequence of centered zonoids. We
have Kn → K if and only if µKn

→ µK weak-∗.

With this point of view of the cosine transform, a (symmetric) convex body K ∈ K0(V) is a zonoid
if and only if its support function (restricted to the sphere) is in the image of the cosine transform
H+(V). When one considers instead signed measure the Hahn Jordan decomposition will allow us to
extend this point of view.

Proposition 1.2.49 (Hahn–Jordan decomposition). For every µ ∈ M(S(V)), there are unique non-
negative measures µ+, µ− ∈ M+(S(V)) such that µ = µ+ − µ− and such that (µ+ + µ−)(S(V)) is
minimal.

Corollary 1.2.50. Let K ∈ K0(V), then K is a generalized zonoid if and only if there is a signed
measure µK ∈ M(S(V)) such that H(µK) = hK |S(V∗).
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Proof. Suppose there is A,B ∈ Z0(V) such that K + A = B. Then hK = hB − hA, thus by linearity
of the cosine transform µK = µB − µA. Conversely if H(µK) = hK |S(V∗) then, by the Hahn–Jordan
decomposition, there are α, β ∈ M+(S(V)) such that µK = β − α. Then consider the zonoid A,
respectively B, whose generating measure is α, respectively β. By the linearity of the cosine transform
they satisfy K +A = B and thus K is a generalized zonoid.

Note that the Hahn–Jordan decomposition is unique, but the writing α = µ−ν for a signed measure
α is not. In fact for all µ, ν, µ′, ν′ ∈ M(S(V)) we have µ− ν = µ′ − ν′ if and only if µ+ ν′ = µ′ + ν.
By this simple remark we see that there is a bijection between the space of centered virtual zonoids

Ẑ0(V) and the space of signed measure M(S(V)). This gives a first topology on Ẑ0(V).

Definition 1.2.51. The pull back by the bijection Ẑ0(V) → M(S(V)), K − L 7→ µK − µL of the

weak-∗ topology on M(S(V)) will also be called the weak-∗ topology on Ẑ0(V).

Remark 1.2.52. By Proposition 1.2.48, we see that the restriction of the weak-∗ topology on Ẑ0(V)
on the cone Z0(V) coincides with the topology given by the Hausdorff distance.

1.2.4 Support functions of zonoids

In this section we detail the point of view of support functions. Let us recall that we denote by
Ceven(S(V

∗)) the space of continuous even functions on the unit sphere of V∗. On this space we have
the supremum norm given for all f ∈ Ceven(S(V

∗)) by

∥f∥∞ := sup {|f(u)| |u ∈ S(V∗)} .

As observed in Remark 1.1.17, we have an embedding

h· : K0(V) ↪→ Ceven(S(V
∗)) (1.2.9)

that sends K 7→ h̄K = hK |S(V∗). By by Proposition 1.1.15-(iv) this is an isometry whose image is a
convex cone and the image of Z0(V) is also a cone contained and closed in the previous one.

This map extends to an injective map on virtual symmetric bodies (recall Definition 1.2.14) by

mapping K −L ∈ K̂0(V) to (hK − hL)|S(V∗) ∈ Ceven(S(V
∗)). This allows to define a norm on K̂0(V)

and thus on Ẑ0(V).

Definition 1.2.53. Let K − L ∈ K̂0(V). We define its norm to be

∥K − L∥ := d(K,L).

By Proposition 1.1.15-(iv) this makes the map h· : K̂0(V) → Ceven(S(V
∗)) an isometry and, in

particular, a homeomorphism on its image. Moreover, note that for all K ∈ K0(V), ∥K∥ = ∥K−{0}∥
coincides with the norm of convex bodies already defined in Definition 1.1.6.

In the previous section, we saw that a convex body is a zonoid if and only if its support function
restricted to the sphere belongs to a certain subspace H+(V) that is the image of the linear operator
called the cosine transform, (Definition 1.2.47). In other words, the image of Z0(V) by the embedding

(1.2.9) is H+(V) and the image of Ẑ0(V) is what we called H(V).

Thus the relation between the weak-∗ topology on Ẑ0(V) defined in the previous section (Defini-
tion 1.2.51) and the topology given by the norm just defined is described by this operator: the cosine
transform. We already announced (and we will prove it below) that these two topologies coincide on
the cone Z0(V), since they both coincide with the topology given by the Hausdorff distance. However,
since the weak-∗ topology on the space of measures is in general not metrizable, they must be different

on the whole space Ẑ0(V).
We now prove some continuity result of the cosine transform. The space of signed measureM(S(V))

is considered endowed with the weak-∗ topology (see previous section) and the space of even continous
functions Ceven(S(V

∗)) with the supremum norm. The following is similar to [26, Theorem 2.26].
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Proposition 1.2.54. The cosine transform H: M(S(V)) → Ceven(S(V
∗)) satisfies the following prop-

erties.

(i) H is injective.

(ii) H(V) is a dense subspace of Ceven(S(V
∗)).

(iii) There exists cm > 0 such that for all µ ∈ M+(S(V)), cm∥H(µ)∥∞ ≤ µ(S(V)) ≤ ∥H(µ)∥∞.

(iv) H is sequentially continuous.

(v) The restriction H: M+(S(V)) → H+(V) is a homeomorphism.

(vi) The inverse H−1 : H(V) → M(S(V)) is not sequentially continuous for m > 1.

Proof of Proposition 1.2.54. Assertions (i) and (ii) are in (the proof of) [80, Theorem 3.5.4] and item
(iii) is just Proposition 1.2.40 restated in our context using the expression of the length as total mass
proved in Proposition 1.2.46.

As for assertion (iv): because H is linear it suffices to prove sequential continuity at 0. Suppose
that (µi) converges to 0 in M(S(V)) in the weak-∗ topology. Let hi := H(µi), in such a way that
hi(u) =

∫
S(V)

|⟨u, x⟩|µi(dx), and in particular hi(u) → 0 for all u ∈ S(V∗). So we have pointwise

convergence of the hi. Since those are signed measure, hi are not necessarily support functions and
we cannot apply Lemma 1.1.18. We are going to show that hi → 0 uniformly. Recall that every
measure µi has a unique Hahn–Jordan decomposition µi = µi,+ −µi,− (see Proposition 1.2.49), where
µi,+, µi,− ∈ M+(S(V)). We define |µi| := µi,++µi,−. The Banach–Steinhaus Theorem (e.g., see [74])
implies that κ := supi(|µi|(S(V))) <∞. Therefore, we have for any u ∈ S(V∗),

|hi(u)| ≤
∫
S(V)

|⟨u, x⟩|d|µi|(x) ≤ |µi|(S(V)) ≤ κ,

and hence supi ∥hi∥∞ ≤ κ. Moreover, for u1, u2 ∈ S(V∗),

|hi(v1)− hi(v2)| ≤
∫
S(V)

|⟨v1 − v2, x⟩|d|µi|(x) ≤ κ∥v1 − v2∥.

The Arzelà-Ascoli Theorem (e.g., see [74]) implies that (hi) has a uniformly convergent subsequence
(hij ). Thus hij → 0 uniformly since hij → 0 pointwise. By the same argument we see that any
subsequence of (hi) has a subsequence that uniformly converges to 0. This implies that hi → 0
uniformly. Therefore, it follows that the map H is sequentially continuous.

For assertion (V), Bolker [24, Theorem 5.2] showed that H: M+(S(V)) → Ceven(S(V
∗)) is contin-

uous. So we only need to show that the inverse H−1 : H+(V) → M+(S(V)) is continuous. For this it
suffices to show that H−1 is sequentially continuous on H+(V), because the topology on H+(V) is given
by a norm. We take a sequence (hi) ⊂ H+(V) that converges to h ∈ H+(V). Let (µi) ⊂ M+(S(V))
be such that H(µi) = hi and let µ be a measure with H(µ) = h. We have to show that µi converges
weak-∗ to µ. For this, we fix f ∈ Ceven(S(V

∗)) and show that ⟨µi − µ, f⟩ → 0. This would imply that
µi−µ→ 0. Let ε > 0, by assertion (ii), there are x1, . . . , xN ∈ S(V) and t1, . . . , tN ∈ R such that the

function g(u) :=
∑N
k=1 tk|⟨u, xk⟩| in Ceven(S(V∗)) satisfies ∥f − g∥∞ < ε/(2c). We decompose

⟨µi − µ, f⟩ = ⟨µi, f − g⟩+ ⟨µi − µ, g⟩+ ⟨µ, f − g⟩. (1.2.10)

The sequence of real numbers ∥hi∥∞ converges to ∥h∥∞ and is thus bounded so that there is c > 0
such that supi ∥hi∥∞ ≤ c and ∥h∥∞ ≤ c. An upper bound for the absolute value of third term in
(1.2.10) is |⟨µ, f − g⟩| = |

∫
S(V)

(f(x)− g(x)) dµ(x)| ≤ µ(S(V))∥f − g∥∞ where we used the Euclidean

structure to identify V∗ ∼= V and the fact that µ is nonnegative. By assertion (iii) and by taking
c = cm, this is bounded by c∥f − g∥∞ < ε/2. We get the same bound for the first term. The middle

term equals
∑N
k=1 tk(hi(xk)− h(xk)) and, by the pointwise convergence already proven, converges to

zero for i→ ∞. Therefore, lim supi |⟨µi − µ, f⟩| ≤ ε which proves assertion (V).
Assertion (vi) relies on the noncontinuity of the tensor product of zonoids that will be proven

below, see [26, Theorem 2.26-(6)].
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We thus proved that there are two different topologies on the space of virtual zonoids that coincide
on the cone of zonoids. It is unclear for now if there are others.

Open problem 1. Characterize the topologies on Ẑ0(V), respectively K̂ (V), that coincide with the
Hausdorff distance topology on Z0(V), respectively K (V).

The zonoid problem

So far we saw several ways to build zonoids but we didn’t see how to characterize zonoids. Indeed
one could ask: given a convex body K ⊂ V, how can I recognize if it’s a zonoid or not? We already
observed that the first necessary condition is that K is centrally symmetric. To determine further
characterization is in general a difficult problem and remains, in its whole generality, open.

Open problem 2 (The zonoid problem). Is there an algorithm that, given K ∈ K0(Rm), determines if
K ∈ Z0(Rm)?

Of course the answer to this question depends on a definition of an algorithm. Let us give some
partial answers. The first is that, as was observed in Corollary 1.2.5, this question is trivial in dimension
2 and all centrally symmetric convex bodies are zonoids. Whenm = dim(V) > 2 however, the inclusion
Z0(V) ⊂ K0(V) is strict. Indeed since a polytope is a zonoid if and only if it is a zonotope ([80,
Corollary 3.5.7]) then Proposition 1.2.4 provides examples of centrally symmetric polytopes that are
not zonoids.

Example 1.2.55. The octahedron in R3 is in K0(R3) \ Z0(R3).

This is not specific to polytopes and for example, Rolf Schneider in [80, p.203] provides a one
dimensional family of curved convex bodies in K0(R3) \ Z0(R3).

Wolfgang Weil proved in [88] that an answer to the zonoid problem cannot be strictly local. More
precisely he proved the following, see also [80, p.204].

Proposition 1.2.56. For all m > 2, there exists a convex body K ∈ K0(Rm) \ Z0(Rm), arbitrarily
smooth, that has the following property. For each u ∈ Sm−1 there exist a zonoid Z ∈ Z0(Rm) and a
neighbourhood U of u in Sm−1 such that the boundaries of K and Z coincide at all points where the
exterior unit normal vector belongs to U .

Weil conjectured a weaker characterization along great spheres that turned out to be true if and only
if the dimension is even. For a little tour d’horizon of zonoid characterization, see [80, p.204 note 9].

An equivalent formulation of the zonoid problem would be the following: given an even function
h : S(V∗) → R, that is a support function of a convex body, is there an algorithm to determines if
h ∈ H+(V)? Weil’s result shows that it cannot be answered by means of only local quantities such as
derivatives.

This is in contrast to the case of convex bodies in general. Indeed if h ∈ Ceven(S(V
∗)) is C2, then

the condition of h being the support function of a convex body can be characterized by a positivity
condition of its Hessian at each point which is a local condition.

We mention one last characterization that is due to Yossi Lonke in [58] and that will be used in
the next section. Let us first make a definition.

Definition 1.2.57. Let e ∈ Sm−1, we define O(e) ⊂ O(m) to be the subgroup of the orthogonal group
of Rm that fixes e, i.e. O(e) = {g ∈ O(m) | g(e) = e} ∼= O(m − 1). Moreover, we say that g⊂⊂O(e) is
uniform if its law is the normalized Haar measure on the compact Lie group O(e). If K ∈ K (Rm),
we define for each e ∈ Sm−1

SeK := Ege(K)

where ge⊂⊂O(e) uniform.

Note that SeK is a solid of revolution, that is, for all g ∈ O(e), g(SeK) = SeK. The following is
[58, Theorem 1].

Proposition 1.2.58 (Lonke’s criterion). Let K ∈ K0(Rm), then K ∈ Z0(Rm) if and only if for every
e ∈ Sm−1 we have

SeK ∈ Z0(Rm)
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In other words, hK ∈ H+(Rm) if and only if for all e ∈ Sm−1, E(hK ◦ gte) ∈ H+(Rm) with ge⊂⊂O(e)
uniform.

This characterization is nice and explicit but is this an algorithm? Some people would argue that
the only conditions that can be tested by an algorithm are the semi algebraic ones. In the next section
we prove that the condition of being a zonoid is definable in an o-minimal structure larger that the
semi algebraic one.

1.3 Tameness of zonoids

In this section we examine how nice the condition “being a zonoid” is in Rm. This is a joint work with
Antonio Lerario and, in particular, this section will be a shortened and introductory version of [55].
We invite the reader to refer to it for more details.

1.3.1 o-minimal structures

Polynomials are a finite data and thus easier to handle for a mathematician or a computer. Thus the
subsets defined by polynomial equations, namely the algebraic sets are easier to study. Unfortunately,
this class of sets is not stable by projection. One has also to consider the following.

Definition 1.3.1. A subset X ⊂ Rm is called basic semialgebraic if it is defined by a finite number
of polynomial equalities and inequalities, i.e. if there are P1, . . . , Pa, Q1, . . . , Qb ∈ R[x1, . . . , xm] such
that X = {x ∈ Rm |Pi(x) = 0, 1 ≤ i ≤ a and Qj(x) ≥ 0, 1 ≤ j ≤ b} . A set is semialgebraic if it is a
boolean combination (i.e. finite intersection, union and complementary) of basic semialgebraic sets.
Finally, if X,Y are semialgebraic, a function f : X → Y is said to be semialgebraic if its graph is
semialgebraic in X × Y.

The first observation is that, in dimension 1, the semialgebraic sets of R are finite unions of points
and intervals (possibly unbounded). In higher dimension, semialgebraic sets still have many finite-
ness properties such as bounded number of connected components or bounded homology. Moreover,
projections of semialgebraic sets are semialgebraic and, finally, all first order formulas involving semi-
algebraic objects define semialgebraic sets (this means that every set that you define with quantifiers
and semialgebraic sets and functions is again semialgebraic).

With this collection of nice properties (and many more), working in the semialgebraic category often
makes proofs easier. However, they are not stable with integration, i.e. the partial integration of a
semialgebraic function is not necessarily semialgebraic. This makes it difficult to work with conditions
such as Proposition 1.2.58.

One can generalize the notion of semialgebraicity and give a list of axioms for collections of subsets
in order to have similar properties.

Definition 1.3.2. An o-minimal structure is a collection Om of subsets of Rm for all m ≥ 0 such that

1. Om is a boolean algebra of Rm, i.e. ∅,Rm ∈ Om and if A,B ∈ Om then so does A∩B and A∪B;

2. if A ∈ Om then R×A,A× R ∈ Om+1;

3. we have for all m ≥ 1, {(x1, . . . , xm) ∈ Rm |x1 = xm} ∈ Om;

4. if A ∈ Om+1 and π : Rm+1 → Rm is the projection on the first m coordinates, then π(A) ∈ Om;

5. we have
{
(x, y) ∈ R2 |x < y

}
∈ O2;

6. the sets in O1 are precisely the finite union of points and intervals.

A set A ∈ Om is said to be definable in the o-minimal structure. A function f : A → B between two
definable sets is called definable if its graph is definable in A×B.
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It turns out that sets that are definable in some o-minimal structure share many properties with
the semialgebraic sets. This is why definable sets of functions are also called tame, as opposed to wild.

A subset of Rm is called semianalytic if it is locally defined by a finite number of analytic equalities
and inequalities. This does not define an o-minimal structure since this is not stable by projections.
One can then consider these together with the projections of semianalytic sets to form the subanalytic
sets and functions. Finally, globally subanalytic functions are functions that are subanalytic in the
ambient projective space and it gives a well defined an o-minimal structure, see [85] or [16] for a more
rigorous definition.

Definition 1.3.3. We denote by Ran the o-minimal structure generated by the globally subanalytic
sets and by Ran,exp the o-minimal structure generated by the globally subanalytic sets together with
the graph of the exponential function.

If P is a globally subanalytic set, following [31], we denote by C (P ) the R-algebra of real valued
functions generated by all globally subanalytic functions on X and all the functions of the form
x 7→ log f(x), where f : X → (0,∞) is globally subanalytic. A function in C (X) is called a constructible
function. Notice that functions definable in Ran are constructible and that constructible functions are
definable in Ran,exp.

In the sequel we will simply say that a set or a function definable in Ran is subanalytic (omitting
the word “global”).

We will use the following crucial result [31, Theorem 1.3], see also [32] and [57].

Proposition 1.3.4. Let P be subanalytic and F ∈ C (P × Rm). Suppose that for all p ∈ P the
function F (p, ·) : Rm → R is integrable. Then the the function I(F ) : P → R defined by I(F )(p) :=∫
Rm F (p, x)dx is constructible, and in particular definable in Ran,exp.

Remark 1.3.5. In the case F : P ×Rm → Rm is semialgebraic, then the parametrized integral function
I(F ) is definable in a structure strictly smaller than Ran,exp, see [47].

Let us make the following definition.

Definition 1.3.6. For every continuous h : Rm → R and e ∈ Sm−1 we define Seh := E(h ◦ gte) where
ge⊂⊂O(e) uniform.

This definition is made in such a way that for allK ∈ K0(Rm) and e ∈ Sm−1 we have hSeK = SehK .
The following result will allow us to use Lonke’s criterion.

Corollary 1.3.7. If h : P × Sm−1 → R is constructible, the function (e, p, u) 7→ Seh(p, u) is also
constructible.

Proof. Consider a subanalytic function F : Sm−1 × O(m − 1) → O(m) such that for almost all
e ∈ Sm−1 the function F (e, ·) is a subanalytic isomorphism between O(m−1) and O(e). (Since we are
only requiring that F is definable, such function can also be defined piecewise.) Then we can write:

Seh(p, u) =
∫
O(m−1)

h(p, (F (e, g̃)(u)) |det JF (e, ·)|dg̃,

where dg̃ is the normalized Haar measure on O(m − 1). Since the integrand is constructible, the
result follows by applying Theorem 1.3.4 after noticing that there is a diffeomorphism, definable in
Ran, between an open dense of subset of O(m − 1) and Rm, m = n(n − 1)/2 (for instance one can
take the restriction of the Riemannian exponential map at the identity on an appropriate subanalytic
domain).

1.3.2 Tame families of convex bodies and zonoids

Definition 1.3.8. Let P be a subanalytic set. A subanalytic family of convex bodies in Rm is a
subanalytic set T ⊂ P × Rm such that for every p ∈ P the set

Kp := {x ∈ Rm | (p, x) ∈ T}

is a convex body. For p ∈ P , we will denote by hp the support function of Kp (instead of hKp
).
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If T ⊂ P × Rm is a subanalytic family of convex bodies, the function H : T → R, given by
H(p, u) = hp(u), is subanalytic. Moreover, if P and T ⊆ P × Rm are subanalytic, denoting by
Tp := {x ∈ Rm | (p, x) ∈ T} , it is immediate to see that the following sets are subanalytic:

(i) K (P ) := {p ∈ P |Tp is a convex body} ;

(ii) K0(P ) := {p ∈ P |Tp is a centrally symmetric convex body, centered at the origin} .

Theorem 1.3.9 (Lerario–M). Let P be a subanalytic set and let {Kp | p ∈ P} be a subanalytic family
of convex bodies in Rm. Then the set Z0(P ) := {p ∈ P |Kp is a zonoid} is definable in Ran,exp.

Idea of the proof. Using the notation introduced in the previous section, one needs to show that the
set {p ∈ P |hp ∈ H+(Rm)} is definable. It turns out that one can always invert the cosine transform
of definable function in a distributional sense, so one has to show that the condition “H−1(hp) is a
nonnegative measure” is definable among the family of distributions H−1(hp).

The first step is to reduce the problem to a one dimensional one using Lonke’s criterion. Indeed
fixing e ∈ Sm−1 the function Seh(u) is a function of ⟨u, e⟩.

The second ingredient is an expression of the inverse of the cosine transform using another integral
operator called the Radon transform. For smooth functions this allows to express the inverse of the
cosine transform as a differential operator.

Then one considers that subanalytic functions are piecewise smooth and the pieces are definable.
Thus in dimension one a differential operator in the sense of distribution has a simple form: where the
function is smooth it is the classical differentiation, at points where it is not smooth there are some
jumps that produce deltas and derivative of deltas.

Since the points where a subanalytic function is not smooth form a definable sets, one shows that
“being a nonnegative measure” at those points is a definable condition.



Chapter 2

Zonoid calculus

In this chapter, we introduce explain and illustrate zonoid calculus. Concretely this is a recipe to build
multilinear maps on the spaces of zonoids from multilinear maps on the underlying vector spaces. We
call this recipe the Fundamental Theorem of Zonoid Calculus (FTZC), see Theorem 2.1.16 below. It
is based on a tensor product of zonoids that we define in Definition 2.1.3.

We then give a particular focus on the bilinear map given by the wedge product. Using this, we
build the zonoid algebra and Grassmannian algebra in Section 2.2. We investigate what happens in the
case of a complex vector space and construct a new function on zonoids that we call mixed J-volume
in Section 2.3. Finally we investigate some operations on the zonoid algebra that will be useful later
in Section 2.4 and we illustrate the zonoid algebra with two detailed examples in Section 2.5 and
Section 2.6.

Once again, in this chapter, V will denote a real vector space of dimensionm <∞. Sections 2.1, 2.2,
2.2.3 and 2.3 are a joint work with Peter Bürgisser, Paul Breiding and Antonio Lerario (abbreviated
B.B.L.M).

2.1 FTZC

Consider a linear map T : V → W. As was observed previously, the image of a convex body in V is
a convex body in W, in other words, T induces a map T̂ : K (V) → K (W). This map satisfies some
properties collected in the next result.

Proposition 2.1.1. Let T : V → W be a linear map and let T̂ : K (V) → K (W) the induced map

on convex bodies, that is for all K ∈ K (V), T̂ (K) = {T (x) |x ∈ K}. The following are satisfied.

(i) the map T̂ is linear, i.e for all K,L ∈ K (V) and t ≥ 0, we have T̂ (tK + L) = tT̂ (K) + T̂ (L);

(ii) the map T̂ is continuous;

(iii) for all x ∈ V, we have T̂ (x) = T (x) and T̂ ([0, x]) = [0, T (x)];

(iv) the map T̂ is increasing with respect to inclusion, that is if K ⊂ L then T̂ (K) ⊂ T̂ (L).

(v) the map T̂ extends uniquely to a linear map on virtual convex bodies that we also denote by

T̂ : K̂ (V) → K̂ (W) and this extension is continuous.

Proof. Item (i) and (ii) are a consequence of Proposition 1.1.15-(iii). Item (iii) and (iv) follow from

the definition of the map T̂ . As for item (v), the linear extension is defined as T̂ (K−L) := T̂ (K)−T̂ (L).
One can check that this is well defined. Continuity of this map follows again from Proposition 1.1.15-
(iii).

41
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Consider now a multilinear map M : V1 × · · · ×Vk →W. One would like to have a similar result
and be able to produce a map M̂ : K (V1) × · · · × K (Vk) → K (W) that is multilinear, continuous
and maybe also satisfies the other properties of Proposition 2.1.1.

Unfortunately a pointwise definition as before would not work here. In particular, the multilinear
image of convex bodies need not to be convex.

However, restricting to zonoids one can define such a map, this is the main result on this section
that we call the fundamental theorem of zonoid calculus (FTZC), Theorem 2.1.16. It relies on a notion
of tensor product of zonoids which already appeared in a work of Guillaume Aubrun and Cécilia
Lancien [13, Definition 3.2].

2.1.1 Tensor product of zonoids

In order to define the tensor product in terms of Vitale zonoids we need the following lemma.

Lemma 2.1.2. Let X,X ′⊂⊂V and Y, Y ′⊂⊂W be integrable random vectors such that (X,X ′) is indepen-
dent of (Y, Y ′). We have: if X is zonoid equivalent to X ′ and Y zonoid equivalent to Y ′ then X ⊗ Y
is zonoid equivalent to X ′ ⊗ Y ′.

Proof. Fixing y ∈ W, consider the linear map τy : V → V ⊗W defined by τy(x) := x ⊗ y. Then, for
all u ∈ V∗ ⊗W∗, we have

hEX⊗Y (u) =
1
2E|⟨X, (τY )

t(u)⟩| = E
[
hEX

(
(τY )

t(u)
)]
. (2.1.1)

where in the second equality we used the independence of X and Y and where in the last term, the
expectation is on the random vector Y . This shows that the zonoid EX ⊗ Y only depends on EX and
not on the random vector. A symmetric argument shows the same for Y and we get the result.

This shows that the following is well defined.

Definition 2.1.3. The tensor product of zonoids

· ⊗· : Z (V)× Z (W) → Z (V ⊗W)

is defined for all X⊂⊂V and Y ⊂⊂W integrable and independent by

EX ⊗ EY := EX ⊗ Y

and for all K ∈ Z0(V) and L ∈ Z0(W), and all x ∈ V, y ∈W by(
K + 1

2{x}
)
⊗
(
L+ 1

2{y}
)
:= K ⊗ L+ 1

2{x⊗ y}.

Remark 2.1.4. Notice that in the proof of the previous lemma, more precisely in (2.1.1) we have proved
that for every centered zonoid K ∈ Z0(V) and every integrable EY we have for all u ∈ V∗ ⊗W∗:

hK⊗EY (u) = EhK
(
(τY )

t(u)
)

(2.1.2)

where recall that for all y ∈W and all x ∈ V, we define τy(x) = x⊗ y. More precisely, in our case, we
get (τy)

t = IdV∗ ⊗⟨·, y⟩ : V∗ ⊗W∗ → V∗. Equivalently, one could write

K ⊗ EY = Eτ̂Y (K).

Notice that for this formula makes sense even if K is not a zonoid and this could be a definition of a
tensor product of a general convex body with a centered zonoid.

Let us give right away some examples.

Example 2.1.5. Let x ∈ V and y ∈W, we have

x⊗ y = x⊗ y, [0, x]⊗ [0, y] = [0, x⊗ y].

Indeed, the centered case is done using the fact that x = EX where X = x with probability one. For
the non centered segment, one compute it using that [0, x] = x+ 1

2{x}.
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Similarly one can prove the following.

Proposition 2.1.6. Let X⊂⊂V and Y ⊂⊂W be independent and integrable. We have

E[0, X]⊗ E[0, Y ] = E[0, X ⊗ Y ]

Proof. This is a straightforward computation using the fact that E[0, X] = EX + 1
2{EX} (Proposi-

tion 1.2.24).

Example 2.1.7. Let a, b ∈ N, we define the Segre Zonoid to be the tensor B(Ra)⊗B(Rb). If we identify
the space of matrices Ra ⊗Rb to the space of linear maps M : Rb → Ra, then the support function of
the Segre zonoid can be expressed as the first intrinsic volume of the ellipsoid defined by the matrix,
more precisely for all M ∈ Ra ⊗ Rb we have:

hB(Ra)⊗B(Rb)(M) = ℓ
(
M(B(Rb))

Indeed, let us first notice that in this identification, given y ∈ Rb and M ∈ Ra ⊗ Rb we have that
(τy)

t(M) =M(y), where recall the expression of (τy)
t in Remark 2.1.4. Let Y ⊂⊂Rb be integrable such

that B(Rb) = EY . Then, from (2.1.2) we get

hB(Ra)⊗B(Rb)(M) = E∥M(Y )∥.

We recognize on the right hand side the length of EM(Y ) = M(EY ) = M(B(Rb)) which proves the
claim.

This tensor product satisfies at least some of the desired properties.

Proposition 2.1.8. The tensor product of zonoids is associative, it is linear and positively homoge-
neous in each variable. Moreover, on centered zonoids, the tensor product is monotonically increasing
in each variable; that is, if K1 ⊂ K2 and L1 ⊂ L2 then K1 ⊗ L1 ⊂ K2 ⊗ L2.

Proof. The associativity and homogeneity follow from the definition and the associativity and homo-
geneity of the classical tensor product. For linearity, we use the Bernoulli trick (Proposition 1.2.34).
Indeed let X0, X1

⊂⊂V, Y ⊂⊂W independent of X,X ′ and let ϵ⊂⊂{0, 1} be a Bernoulli variable of param-
eter 1/2 independent of X,X ′ and Y . Then by Proposition 1.2.34, if Z = (1− ϵ)2X0 + ϵ2X1 we then
have EZ = EX0 + EX1. Moreover, Z ⊗ Y = (1 − ϵ)2X0 ⊗ Y + ϵ2X1 ⊗ Y so, by the same argument,
EZ ⊗ Y = EX0 ⊗ Y + EX1 ⊗ Y = EX0 ⊗ EY + EX1 ⊗ EY . But by definition of the tensor product
and by the independence of the variables, EZ ⊗ Y = EZ ⊗ EY = (EX0 + EX1) ⊗ EY . This shows
linearity in the first variable, the same argument shows linearity in the second variable. Monotonicity
is a consequence of (2.1.2) and Proposition 1.1.15-(ii).

Example 2.1.9. Let x1, . . . , xN ∈ V and y1, . . . , yM ∈W, we have(
N∑
i=1

xi

)
⊗

(
M∑
i=1

yj

)
=

N∑
i=1

M∑
j=1

xi ⊗ yj ,(
N∑
i=1

[0, xi]

)
⊗

(
M∑
i=1

[0, yj ]

)
=

N∑
i=1

M∑
j=1

[0, xi ⊗ yj ].

Indeed, this is a conscequence of the multilinearity and Example 2.1.5.

We now show how the length and norm behave well under the tensor product.

Proposition 2.1.10. For all K ∈ Z (V) and L ∈ Z (W) we have

ℓ(K ⊗ L) = ℓ(K)ℓ(L).

Moreover, if K and L are centered then

∥K ⊗ L∥ ≤ 2
√
m ∥K∥∥L∥.
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Proof. Since the length is translation invariant, we can suppose for the first assertion thatK = EX and
L = EY with independent random vector X⊂⊂V and Y ⊂⊂W. Then, by Definition 1.2.31, ℓ(K ⊗ L) =
E∥X ⊗ Y ∥ = E∥X∥E∥Y ∥ = ℓ(K)ℓ(L), which is what we want.

For the norm inequality, assume V = Rm andW = Rn and w.l.o.g. m ≤ n. Recall that the nuclear
norm of a matrix M ∈ Rm×n is defined as the sum of its singular values. The corresponding unit
ball Bnuc equals the convex hull of the rank one matrices V ⊗W such that v ∈ Rm and w ∈ Rn have
norm one, e.g., see [35]. If we denote by B the unit ball with respect to the Frobenius norm, we get
B ⊂

√
mBnuc, where we used that m ≤ n. We obtain

∥K ⊗ L∥ = max
u∈B

hK⊗L(u) ≤
√
m max
u∈Bnuc

hK⊗L(u) =
1
2

√
mmax

u
E|⟨u,X ⊗ Y ⟩|.

But for u = V ⊗W with unit vectors v, w, we have

E|⟨V ⊗W, X ⊗ Y ⟩| = E|⟨v,X⟩| · E|⟨w, Y )⟩| = 4hK(V)hL(W) ≤ 4∥K∥ · ∥L∥.

Using the convexity of hK⊗L, implies the second assertion.

It is straightforward to extend the tensor product of zonoids to a bilinear map between spaces of
virtual zonoids.

Proposition 2.1.11 (Tensor product of virtual zonoids). The tensor product of zonoids from Defi-

nition 2.1.3 uniquely extends to a bilinear map · ⊗ · : Ẑ (V) × Ẑ (W) → Ẑ (V ⊗W). The resulting
tensor product of virtual zonoids is associative.

Proof. The only possible way to define it is by setting

(K1 −K2)⊗ (L1 − L2) := (K1 ⊗ L1 +K2 ⊗ L2)− (K1 ⊗ L2 +K2 ⊗ L1).

Using the multilinearity of the tensor product of zonoids, it is straightforward to check that this is
well defined and defines a bilinear map. The associativity follows from the associativity of the tensor
product of zonoids.

Notice that we haven’t talked about continuity yet. We will prove that the tensor product is
continuous on zonoids but that this is not true for its extension to virtual zonoids. In order to do that,
it is convenient to use the point of view of measures introduced in Section 1.2.3.

Recall that the Segre map is the map S(V)× S(W) → S(V ⊗W) that sends (u, v) 7→ u⊗ v.

Definition 2.1.12. We define the map T̃ : M(S(V))×M(S(W)) → M(S(V⊗W)) to be the tensor
product of measures composed with the pushforward of the Segre map.

Proposition 2.1.13. Let K ∈ Z0(V) and L ∈ Z0(W), we have

µK⊗L = T̃ (µK , µL).

Proof. Since the map T̃ is bilinear we can assume without loss of generality that µK and µL are
probability measures; the general case then follows by homogeneity and linearity. In that case, by
Proposition 1.2.43, K = EX where X⊂⊂S(V) ⊂ V is a random vector of law µK . Similarly, L = EY ,
where Y ⊂⊂S(W) ⊂W is a random vector of law µL, that we can assume to be independent of X. By
definition, we have K ⊗ L = EX ⊗ Y . The law of X ⊗ Y is the pushforward by the Segre map of the
tensor product of measures µK ⊗ µL ∈ M+(S(V)× S(W)), and this concludes the proof.

One could take Proposition 2.1.13 as the definition of the tensor product of zonoids, as it may
appear simpler. This simplicity however entirely relies on the fact that the tensor product on vectors
(the Segre map) sends the product of spheres to the sphere. When later in Section 2.1.2, we will deal
with multilinear maps that do not have this property, the point of view of random vectors will be
easier to handle.

We see that the tensor product of zonoid is well understood in the point of view of measures and
in the point of view of the Vitale zonoid. However for the two other point of view this is less clear and
this is the reason why it is not obvious how to generalize this tensor product to general convex bodies.
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In particular we lack a description of the support function of the tensor product in terms of the
support functions of the arguments. The best we have is (2.1.2) which express the support function of
the tensor product in terms of the support function of the first variable. We saw in different proofs how
useful was this expression but it still requires to know the Vitale construction for the second argument.

Open problem 3. Find an expression of hK⊗L directly in terms of hK and hL.

Continuity of the tensor product

Let us start by proving an inequality.

Lemma 2.1.14. Let K1,K2 ∈ Z0(V) and L ∈ Z0(W) and let n := dimW, we have

∥K1 ⊗ L−K2 ⊗ L∥ ≤
√
2πρn∥L∥∥K1 −K2∥,

where recall the definition of ρn in (1.2.7).

Proof. Let u ∈ V∗ ⊗W∗ be such that ∥u∥ = 1 and ∥K1 ⊗L−K2 ⊗L∥ = |hK1⊗L(u)− hK2⊗L(u)|. Let
L = EY . From (2.1.2) we get

hK1⊗L(u)− hK2⊗L(u) = E
(
hK1

− hK2

)
((τY )

t(u)),

hence,

|hK1⊗L(u)− hK2⊗L(u)| ≤ E |
(
hK1

− hK2

)
(((τY )

t(u))|
≤ ∥hK1 − hK2∥∞ E∥(τY )t(u))∥
≤ ∥K1 −K2∥ E∥Y ∥ = ∥K1 −K2∥ ℓ(L)

where, for the third inequality, we used the fact that ∥(τy)t∥op = ∥τy∥op = ∥y∥ with ∥ ·∥op the operator
norm. Applying Proposition 1.2.40 completes the proof.

The main continuity properties are summarized in the following result.

Proposition 2.1.15. Suppose that dimV,dimW ≥ 2. Then, the tensor product map satisfies the
following.

(i) · ⊗ · : Z (V) × Z (W) → Z (V ⊗W) is continuous. More specifically, for K1,K2 ∈ Z0(V) and
L1, L2 ∈ Z0(W), we have

dH (K1 ⊗ L1,K2 ⊗ L2) ≤
√
2π (ρm∥K2∥+ ρn∥L1∥) (d (K1,K2) + d (L1, L2)) ,

where m := dimV and n := dimW;

(ii) the extension to virtual zonoids · ⊗ · : Ẑ (V)× Ẑ (W) → Ẑ (V ⊗W) with the norm topology on
both sides is not sequentially continuous, but separately (i.e., componentwise) continuous;

(iii) the extension to virtual zonoids · ⊗ · : Ẑ (V) × Ẑ (W) → Ẑ (V ⊗W) with the weak–∗ topology
on both sides is sequentially continuous.

Proof. In this whole proof, without loss of generality, we assume that the zonoids are centered. For
proving (1), recall that d(K,L) = ∥K − L∥. From the multilinearity of the tensor product and the
triangle inequality of the norm, we get

∥K1 ⊗ L1 −K2 ⊗ L2∥ ≤ ∥K1 ⊗ L1 −K2 ⊗ L1∥+ ∥K2 ⊗ L1 −K2 ⊗ L2∥.

Combined with Lemma 2.1.14, this yields

∥K1 ⊗ L1 −K2 ⊗ L2∥ ≤
√
2πρm∥L1∥∥K1 −K2∥+

√
2πρn∥K2∥∥L1 − L2∥,

which proves the first assertion.
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As for (2), the separate continuity follows directly from Lemma 2.1.14. To prove that it is not
(sequential) continuous, we begin with a general observation. Let φ : E ×F → G be a bilinear map of
real normed vector spaces. Then φ is (sequential) continuous if and only if it has finite operator norm:

∥φ∥op := sup
∥x∥≤1,∥y∥≤1

∥φ(x, y)∥ < ∞.

We show now that the tensor product of virtual (centered) zonoids has infinite operator norm. It
suffices to prove this for V = W = R2. Consider the sequence of vectors an := (n, 1), bn := (n, 0)
and the corresponding sequence of segments an, bn in R2. This defines the sequence of virtual zonoids

an − bn ∈ Ẑ (R2). It is immediate to check that

∥an − bn∥ = d
(
an, bn

)
=

1

2
.

Consider Pn := (an − bn)⊗ (an − bn) ∈ Ẑ (R2 ⊗ R2). It suffices to show that limn→∞ ∥Pn∥ = ∞. For
this, we compute

an ⊗ an =

[
n2 n
n 1

]
, bn ⊗ bn =

[
n2 0
0 0

]
, an ⊗ bn =

[
n2 0
n 0

]
, bn ⊗ an =

[
n2 n
0 0

]
.

Their inner product with the matrix wn :=

[
1 −n
−n 0

]
is given by

⟨an ⊗ an, wn⟩ = −n2, ⟨bn ⊗ bn, wn⟩ = n2, ⟨an ⊗ bn, wn⟩ = ⟨bn ⊗ an, wn⟩ = 0,

We obtain han⊗an(wn) =
1
2 |⟨an⊗an, wn⟩| =

n2

2 , hbn⊗bn(wn) =
n2

2 , and han⊗bn(wn) = hbn⊗an(wn) = 0.
Therefore,

hPn

(
wn
∥wn∥

)
=
hPn

(wn)

∥wn∥
=

n2

∥wn∥
. (2.1.3)

But since ∥wn∥ =
√
1 + 2n2, (2.1.3) explodes as n → ∞ and this completes the proof of the second

item.
For item (3) we recall from Proposition 2.1.13 that at the level of measures, the tensor product of

(centered) zonoids equals the tensor product of measures composed with the pushforward of the Segre
map. The pushforward of a measure under a continuous map is weak–∗ continuous. Mapping two
measures to their product measure is sequentially continuous by [23, Theorem 2.8]. This finishes the
proof for the third assertion.

2.1.2 Multilinear maps induced on zonoids

We are now ready to state and prove our main result.

Theorem 2.1.16 (The Fundamental Theorem of Zonoid Calculus, B.B.L.M.). LetM : V1×· · ·×Vk →
W be a multilinear map. There is a unique multilinear map

M̂ : Ẑ0(V1)× · · · × Ẑ0(Vk) → Ẑ0(W),

that is continuous on zonoids and such that for every x1 ∈ V1, . . . , xk ∈ Vk

M̂
(
x1, . . . , xk

)
=M(x1, . . . , xk).

Moreover, M̂ sends zonoids to zonoids and is continuous in each variable for the norm topology and
sequentially continuous for the weak-∗ topology.

Proof. To show existence, we rely on the universal property of tensor product: there is a unique linear
map L : V1 ⊗ · · · ⊗ Vk → W such that L(x1 ⊗ · · · ⊗ xk) = M(x1, . . . , xk). Consider the induced
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linear continuous map L̂ : Ẑ0(V1 ⊗ · · · ⊗Vk) → Ẑ0(W). For (K1, . . . ,Kp) ∈ Ẑ0(V1)× · · · × Ẑ (Vk),

we define the map M̂ by
M̂(K1, . . . ,Kk) := L̂(K1 ⊗ · · · ⊗Kk).

This is the composition of the linear map L̂ with the multilinear tensor product defined in Defini-
tion 2.1.3, therefore it is multilinear.

Restricting to zonoids, we see that M̂(Z0(V1) × · · · × Z0(Vk)) ⊆ Z0(W). The asserted formula

for the image of M̂ on tuples of segments is a direct consequence of Example 2.1.5 and the definition
of the map M̂ .

Since L̂ is continuous and the tensor product map from Proposition 2.1.11 is separate continuous,
M̂ is separate continuous. Similarly, M̂ |Z0(V1)×···×Z0(Vk) is continuous since the tensor product map

on zonoids is continuous (Proposition 2.1.8) and L̂ is continuous (Proposition 2.1.1).

For the uniqueness of the map M̂ we argue as follows. Since by definition, any zonoid in Vi can be
approximated by symmetric segments and the values of M̂ are determined on tuples of segments, the
componentwise continuity of M̂ determines M̂ on Z0(V1)× · · ·×Z0(Vk). In turn, this determines M̂
by multilinearity.

By Proposition 2.1.8, the tensor product of zonoids preserves the componentwise order. Moreover,
L̂ preserves the order as shown in Proposition 2.1.1. This implies that M̂ preserves the componentwise
order.

The last statement about the sequential continuity with respect to the weak-∗ topology follows
from Proposition 2.1.15-(iii).

Let us extend this map to non centered zonoids. We use the same symbol to denote it.

Definition 2.1.17. Let M : V1 × · · · × Vk → W be a multilinear map. We define the multilinear

map M̂ : Ẑ (V1) × · · · × Ẑ (Vk) → Ẑ (W) to be given for all K1 ∈ Z0(V1), . . . ,K1 ∈ Z0(V1) and
x1 ∈ V1, . . . , xk ∈ Vk by

M̂
(
K1 +

1
2{x1}, . . . ,Kk +

1
2{xk}

)
:= M̂ (K1, . . . ,Kk) +

1
2{M(x1, . . . , xk)}.

Note that with this definition we have

M̂ ([0, x1], . . . , [0, xk]) = [0,M(x1, . . . , xk)].

In fact this could be a justification of why we carry this 1
2 term everywhere.

Finally, we show that FTZC (Theorem 2.1.16) behaves well with the Vitale construction.

Proposition 2.1.18. Let M : V1 × · · · ×Vk →W be a multilinear map and let X1
⊂⊂V1, . . . , Xk

⊂⊂Vk
be integrable independent random vectors. Then, M(X1, . . . , Xk)⊂⊂W is integrable and we have

M̂
(
EX1, . . . ,EXk

)
= EM(X1, . . . , Xk)

M̂ (E[0, X1], . . . ,E[0, Xk]) = E[0,M(X1, . . . , Xk)].

Proof. The fact that it is integrable follows from the fact that M has a finite operator norm and
integrability and independence of the random vectors. Moreover let us note that the second equality
follows from the first and Definition 2.1.17 using the fact that E[0, Xi] = EXi +

1
2{EXi}.

To prove the first equality, consider, as in the proof of Theorem 2.1.16, the linear map L : V1 ⊗ ·⊗
Vk →W induced by the universal mapping property of the tensor product. Then recall that M̂ is the
composition of the tensor product with L̂. We obtain

M̂
(
EX1, . . . ,EXk

)
= L̂

(
EX1 ⊗ · · · ⊗ EXk

)
= L̂

(
EX1 ⊗ · · · ⊗Xk

)
.

Moreover, we have L̂
(
EX1 ⊗ · · · ⊗Xk

)
= EL(X1 ⊗ · · · ⊗Xk) = EM(X1, . . . , Xk) which is what we

wanted.

Open problem 4. Is the image of generalized zonoids in Theorem 2.1.16 a generalized zonoid? What
is the preimage of zonoids?
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2.2 The zonoid algebra

For this section, recall that an Euclidean structure on V induces an Euclidean structure on the exterior
product ΛkV given for all v1, . . . , vk, w1, . . . , wk ∈ V by

⟨v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk⟩ := det(⟨vi, wj⟩)1≤i,j≤k. (2.2.1)

Equivalently this can be seen as an identification Λk(V∗) ∼= (ΛkV)∗.

2.2.1 The algebra

In the exterior algebra, we have a collection of bilinear maps wedgek,l : Λ
kV × ΛlV → Λk+lV that

is given by wedgek,l(a, b) = a ∧ b. We consider the bilinear map induced on zonoids and if A ∈
Z (ΛkV ), A′ ∈ Z (ΛlV ) we write

A ∧A′ := ̂wedgek,l(A,A′). (2.2.2)

We will call this operation the wedge product of zonoids. Using Proposition 2.1.18 we have for X and
Y independent integrable random vectors:

EX ∧ EY = EX ∧ Y ; E[0, X] ∧ E[0, Y ] = E[0, X ∧ Y ]. (2.2.3)

Remark 2.2.1. Note that the wedge product on centered zonoids is commutative, this follows from (2.2.3)
and the fact that x = −x.

Definition 2.2.2. The zonoid algebra and respectively the centered zonoid algebra are defined as
vector spaces to be

Â (V) :=

m⊕
k=0

Ẑ (ΛkV), Â0(V) :=

m⊕
k=0

Ẑ0(Λ
kV),

and endowed with the multiplication given by the wedge product of zonoids. Similarly we define

A (V) :=

m⊕
k=0

Z (ΛkV) ⊂ Â (V), A0(V) :=

m⊕
k=0

Z0(Λ
kV) ⊂ Â0(V).

We will abuse notation and often also refer to those as the (centered) zonoid algebra. Finally, an

element of Ẑ (ΛkV) ⊂ Â (V) will be said to have degree k.

Remark 2.2.3. Definition 2.2.2 defines the zonoid algebra as an algebra, but remember that if we
want a topology we have essentially two choices: the norm topology and the weak-∗ topology (see
Section 1.2.4) and they have different implication in terms of continuity of the wedge product, see
Theorem 2.1.16. If instead we restrict to A (V) with the Hausdorff distance topology, the wedge
product is continuous.

Note that we have, as algebras,

Â (V) ∼= Â0(V)⊕ ΛV

where ΛV :=
⊕m

k=0 Λ
kV. Therefore we can often reduce to the study of the centered case.

Proposition 2.2.4. The algebra A (V) is an associative real graded algebra and the subalgebra A0(V)
is in addition commutative. The wedge maps of zonoids

Z (Λd1V)× · · · × Z (ΛdpV) → Z (Λd1+···+dpV ), (A1, . . . , Ap) 7→ A1 ∧ · · · ∧Ap

are continuous. These maps preserve the inclusion order of zonoids: if we have A′
j ⊂ Aj for zonoids

in Z (ΛdjV ), then
A′

1 ∧ · · · ∧A′
p ⊂ A1 ∧ · · · ∧Ap.

Moreover, the wedge product of zonoids does not increase the length:

ℓ(A1 ∧ · · · ∧Ap) ≤ ℓ(A1) · · · ℓ(Ap).
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Proof. The associativity follows from the associativity of the wedge product and (2.2.3). The dis-
tributivity is equivalent to say that the wedge product is bilinear which is guaranteed by Theo-
rem 2.1.16. The gradedness follows from the definition of A (V ). The multiplicative unit lies in

Ẑ (Λ0V ) = Ẑ (R) ≃ R. The commutativity of the wedge product of centered zonoids was already
observed in Remark 2.2.1.

The continuity of the wedge product of zonoids and the monotonicity with respect to inclusion are
features of Theorem 2.1.16.

For the length inequality, we use that the antisymmetrization map ⊗jΛdjV → Λd1+···+dpV is an
orthogonal projection. Hence ℓ(A1∧· · ·∧Ap) ≤ ℓ(A1⊗· · ·⊗Ap) = ℓ(A1) · · · ℓ(Ap) by Proposition 2.1.10.

Here is an immediate yet important observation about wedge products of zonoids.

Lemma 2.2.5. Let K ∈ Z (V), we have K∧k = 0 for all k > dim(K).

Proof. Without loss of generality, we can assume that K is centered. Let us write K = EX. By (2.2.3)
we have K∧k = EX1 ∧ · · · ∧Xk, where X1, . . . , Xk are independent copies of X. With probability
one we have that X belongs to the linear span of K which is of the same dimension of K, and so
with probability one the Xi are linearly dependent. Hence, X1 ∧ · · · ∧Xk = 0 almost surely, so that
K∧k = 0.

The zonoid algebra is deeply linked with the notion of mixed volume and intrisic volumes.

Theorem 2.2.6 (B.B.L.M.). For every K1, . . . ,Km ∈ Z (V), we have

K1 ∧ · · · ∧Km = m!MV(K1, . . . ,Km) +
1

2
{det(o(K1), . . . , o(Km))} ∈ Z (ΛmV)

where recall that o(Ki) ∈ V is the pole, that is the unique point such that Ki +
1
2{−o(Ki)} ∈ Z0(V).

In particular composed with the length we get

ℓ(K1 ∧ · · · ∧Km) = m!MV(K1, . . . ,Km). (2.2.4)

Moreover, if K ∈ Z (V) we have for every 0 ≤ k ≤ m:

ℓ(K∧k) = k! Vk(K) (2.2.5)

where recall that Vk denotes the k-th intrisic volume (Definition 1.1.24).

Proof. Let us first assume that the zonoids are centered, that is that o(Ki) = 0 ∀i. Then, let
x1, . . . , xk ∈ V and notice that det(x1, . . . , xk) = volm(x1 + · · · + xm). Moreover, by the proper-
ties of the mixed volume (Proposition 1.1.23), we have volm(x1 + · · · + xm) = m!MV(x1, . . . , xm).
Since the mixed volume is continuous and linear in each variable, and since in dimension 1 we have
x+ y = x + y, this implies the result for centered zonoids. For the non centered case, simply apply
Definition 2.1.17.

For the second part, since the length is translation invariant, we can assume that K is centered.
Moreover for simplicity, let us assume V = Rm and write Bm := B(Rm). Let us take the independent
integrable random vectors X1, . . . , Xk, Y1, . . . , Ym−k⊂⊂V such that K = EXi and Yj are Gaussian of

variance
√
2π in such a way that Bm = EYj . By the first part of the proposition, we can write

MV(K[k], Bm[m− k]) =
1

m!
ℓ(K∧k ∧B∧(m−k)

m ) =
1

m!
E|X1 ∧ · · · ∧Xk ∧ Y1 ∧ · · · ∧ Ym−k|.

Using the independence, we first integrate over the Yj while leaving the Xi fixed. By orthogonal
invariance of Y := Y1 ∧ · · · ∧ Ym−k, we can assume that the space spanned by the Xi is the span of a
fixed orthonormal frame e1, . . . , ek. Then, X1 ∧ · · · ∧Xk = ∥X1 ∧ · · · ∧Xk∥ e1 ∧ · · · ∧ ek and so, using
that Y is independent of the Xi:

MV(K[k], Bm[m− k]) =
c

m!
E∥X1 ∧ · · · ∧Xk∥ =

c

m!
ℓ(K∧k),



50 CHAPTER 2. ZONOID CALCULUS

with the constant c := EY ∥e1 ∧ · · · ∧ ek ∧ Y ∥. In order to determine this constant, we use that
∥e1 ∧ · · · ∧ ek ∧ Y ∥ = ∥Ỹ1 ∧ . . . ∧ Ỹk∥, where Ỹj denotes the orthogonal projection of Yj onto the
orthogonal complement Rm−k of Rk = Span{e1, . . . , ek}. Since the unit ball Bm−k is the projection of
the unit ball Bm we have that Bm−k = EỸj , we obtain with the first part of the proposition:

E|Ỹ1 ∧ · · · ∧ Ỹm−k| = ℓ
(
B

∧(m−k)
m−k

)
= (m− k)! volm−k(Bm−k).

We therefore conclude that MV(K[k], Bm[m − k]) = 1
m! volm−k(Bm−k)ℓ(K

∧k), which finishes the
proof.

Thus we can think of the wedge product of zonoids as an intermediate term, when computing the
mixed volume, and the study of the zonoid algebra, the study of these intermediate terms.

When computing products of zonoids in V we obtain a particular class of elements.

Definition 2.2.7. An element of the zonoid algebra A ∈ Z (ΛkV) is called fully decomposable if there
are K1, . . . ,Km ∈ Z (V) such that we can write A = K1 ∧ · · · ∧Kk.

As we see in Theorem 2.2.6, only fully decomposable zonoids are involved in the computation of
mixed volumes. It turns out that they span a proper subalgebra of the zonoid algebra that we describe
in the next section.

2.2.2 Grassmannian zonoids

We will call simple vectors of ΛkV all vectors of the form x1∧· · ·∧xk with x1, . . . , xk ∈ V. Recall that
we denote by Gk(V) the Grassmannian of k vectorial subspaces of V. Recall that the Grassmannian
embeds in the projective space of ΛkV via the Plücker embedding that sends E ∈ Gk(V) to the class
[e1∧ · · ·∧ ek] ∈ P(ΛkV), where e1, . . . , ek is a basis of E. In particular the set of simple vectors in ΛkV
can be viewed as the cone over the Grassmannian and a measure on Gk(V) can be identified with an
even measure on S(V) supported on the simple vectors. Similarly functions on the Grassmannian can
(and will) be identified with even homogeneous functions on simple vectors.

Let us begin with a notation.

Definition 2.2.8. Let E ∈ Gk(V), we define the segment

E := e1 ∧ · · · ∧ ek ⊂ ΛkV

where e1, . . . , ek is an orthonormal basis of E.

This allows to make the following definition.

Definition 2.2.9. A zonoid K ∈ Z (ΛkV) is a Grassmannian zonotope if there exists subspaces
E1, . . . , En ∈ Gk(V), scalars λ1, . . . , λn ≥ 0 and a simple vector c = c1 ∧ · · · ∧ ck ∈ ΛkV such that

K = λ1E1 + · · ·+ λnEn + 1
2{c}

A Grassmannian zonoid is a limit of Grassmannian zonotopes. We denote the set of Grassmannian
zonoids in ΛkV by G (k,V) ⊂ Z (ΛkV), and we define the set of centered Grassmannian zonoids to be

G0(k,V) := G (k,V) ∩ Z0(Λ
kV). Similarly we define the virtual Grassmannian zonoids Ĝ (k,V) and

virtual centered Grassmannian zonoids Ĝ0(k,V).

Remark 2.2.10. For k ∈ {0, 1,m− 1,m}, where recall m := dimV, all zonoids are Grassmannian.

Remark 2.2.11. Note that for all k, G (k,V) is closed under Minkowski addition and multiplication by
a non negative scalar.

From the random vector and measure point of view Grassmannian zonoids can be characterized.
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Lemma 2.2.12. Let K ∈ Z0(Λ
kV). The following are equivalent.

(i) K ∈ G0(k,V);

(ii) There is an integrable random vector X⊂⊂ΛkV that is almost surely simple, i.e. such that almost
surely X = X1 ∧ · · · ∧Xk (the vectors X1, . . . , Xk can be dependent), such that K = EX

(iii) There is a random subspace E⊂⊂Gk(V) and a random scalar ρ⊂⊂R such that ρ ≥ 0 almost surely
(E and ρ be dependent) and such that K = EρE.

(iv) The support of the measure µK ∈ M+(S(V)) is contained in the intersection of S(V) with the
set of simple vectors, i.e. µK ∈ M+(Gk(V)).

Proof. The equivalence (ii) ⇐⇒ (iv) follows from Proposition 1.2.43. The equivalence (i) ⇐⇒ (ii)
follows from the fact that Hausdorff convergence of zonoids corresponds to weak–∗ convergence of
measures which is Proposition 1.2.48.

To see (ii) ⇒ (iii), let ρ := ∥X1 ∧ · · · ∧ Xk∥ and E := Span(X1, . . . , Xk) if X1 ∧ · ∧ Xk ̸= 0 and
whatever if X1 ∧ · · · ∧Xk = 0.

Finally one can see that (iii) ⇒ (ii) by choosing a measurable map that sends E ∈ Gk(V) to a
simple vector e1 ∧ · · · ∧ ek and thus we get a random vector X := ρe1 ∧ · · · ∧ ek⊂⊂ΛkV. By definition,
X is almost surely simple and K = EX which concludes the proof.

Finally from this we get the following.

Lemma 2.2.13. The wedge product of two Grassmannian zonoids is a Grassmannian zonoid.

Proof. If the zonoids are centered, this follows from Lemma 2.2.12-(ii) and (2.2.3). The noncentered
case follows then from the fact that the wedge product of two simple vectors is again simple.

This allows to define this special subalgebra of the zonoid algebra.

Definition 2.2.14. The Grassmannian zonoid algebra and the centered Grassmannian zonoid algebra
are defined to be

Ĝ (V) :=

d⊕
k=0

Ĝ (k,V); Ĝ0(V) :=

d⊕
k=0

Ĝ0(k,V)

which are subalgebra of Â (V) and Â0(V) respectively. Similarly we define

G (V) :=

d⊕
k=0

G (k,V); G0(V) :=

d⊕
k=0

G0(k,V)

we will again sometimes abuse notation and call those (centered) Grassmannian zonoid algebra more-
over we will sometimes use simply the term Grassmannian algebra to denote any of them.

One can describe the wedge product operation directly in terms of measure. As one can see, the
description is significantly more involved compared to (2.2.3) and this is precisely why we often prefer
the point of view of random vectors.

Proposition 2.2.15. Let A ∈ Ĝ0(k,V) and A′ ∈ Ĝ0(l,V) where k + l ≤ d, and let µ := µA and
µ′ := µA′ . Then µ ∧ µ′ is the (signed) measure such that for all continuous f : Gk+l(V) → R we have

⟨µ ∧ µ′, f⟩ = 1

2

∫
Gk(V)×Gl(V)\Ξ

|E ∧ F | f(E + F ) d(µ⊗ µ′)(E,F ), (2.2.6)

where |E ∧F | := ∥e1 ∧ · · · ∧ ek ∧ f1 ∧ · · · ∧ fl∥ with e1, . . . , ek an orthonormal basis of E and f1, . . . , fl
an orthonormal basis of F , and Ξ is the subset where the planes E and F intersect non transversally.
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Proof. Since both sides are bilinear we can assume the measures are probabilities. In that case A = EX
with X following the law µ (remember that we identify measures on the Grassmannian with even
measures on the sphere supported on simple vectors) and A′ = EX ′ with X ′ following the law µ′ and
that we can assume independent of X. Then from Proposition 1.2.43 we get

⟨µ ∧ µ′, f⟩ =
∫
Gk+l(V)

f d(µ ∧ µ′) =
1

2
E
[
∥X ∧X ′∥f

(
X ∧X ′

∥X ∧X ′∥

)
1X∧X′ ̸=0

]
.

If X represents in Plücker a subspace E and X ′ a subspace F and X ∧X ′ ̸= 0 then the unit vector
X∧X′

∥X∧X′∥ represents the subspace E + F . Moreover then ∥X ∧ X ′∥ = |E ∧ F |. Finally note that

X ∧X ′ = 0 if and only if E and F intersect non transversally and the result follows.

We have of course that Ĝ0(V) with the weak-∗ topology is homeomorphic to
⊕m

k=0 M(Gk(V)).
With this point of view, one can see the centered Grassmannian algebra as an algebra structure on the
space of signed measures of the Grassmannian, with the product given by (2.2.6). As we said before,
the reason why we do not adopt this point of view is because the definition in terms of random vectors
is much simpler and more flexible. For example the associativity of the wedge product is immediate
from (2.2.3) while it is less obvious on (2.2.6).

A particular case of Grassmannian zonoids are the fully decomposable ones (Definition 2.2.7). This
corresponds to the case in Lemma 2.2.12-(ii) where X1, . . . , Xk are independent random vectors.

Proposition 2.2.16. Finite sums of zonoids of fully decomposable zonoids are dense in G (k,V).
Hence the set {K1 ∧ · · · ∧Kk |K1, . . . ,Kk ∈ Z (V)} spans a sequentially dense subspace in the virtual

Grassmannian zonoids Ĝ (k,V) in both the norm and weak-∗ topology.

Proof. It is enough to show the centered case. By definition, any zonoid in G0(k,V) is the limit of
finite sums of segments of the form x1 ∧ · · · ∧ xk. It is then enough to see that such segments are fully
decomposable. Indeed we have x1 ∧ · · · ∧ xk = x1 ∧ · · · ∧ xk.

Next we see that the length of a Grassmannian zonoid can be computed inside the Grassmannian
algebra.

Lemma 2.2.17. Let C ∈ G (k,V). Then we have

ℓ(C) =
1

(m− k)!κm−k
ℓ
(
C ∧B(V)∧(m−k)

)
where recall κd := vold(B(Rd)).

Proof. Since the length is translation invariant, we can assume C is centered. Moreover let us assume
V = Rm and write Bm := B(Rm). Let C = EX1 ∧ · · · ∧Xk, let b⊂⊂Rm be a Gaussian vector of mean

0 and variance
√
2π in such a way that Bm = Eb and let b1, . . . , bm−k be iid copies of b that are

independent of X1 ∧ · · · ∧Xk. Then, using the independence of the random variables and the fact that
b1 ∧ · · · ∧ bm−k is orthogonal invariant, we have

ℓ
(
C ∧B∧(d−k)

d

)
= E∥X1 ∧ · · · ∧Xk ∧ b1 ∧ · · · ∧ bd−k∥

= E∥X1 ∧ · · · ∧Xk∥ · E∥e1 ∧ · · · ∧ ek ∧ b1 ∧ · · · ∧ bm−k∥,

where e1, . . . , em denotes the standard basis of Rm. We obtain

ℓ
(
C ∧B∧(m−k)

m

)
= ℓ(C) · E∥π(b1) ∧ · · · ∧ π(bm−k)∥

where π : Rm → Rm−k is the orthogonal projection onto Span(ek+1, . . . , em). Then it remains only to
see, using Theorem 2.2.6, that E∥π(b1) ∧ · · · ∧ π(bm−k)∥ = ℓ

(
π(Bm)∧(m−k)) = ℓ

(
(Bm−k)

∧(m−k)) =
(m− k)!κm−k.

Let us give two examples that show how this can be useful to do computations.
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Example 2.2.18. If Bm := B(Rm) is the unit ball we have

ℓ(Bm) = m
κm
κm−1

.

Indeed by the previous lemma we have ℓ(Bm) = 1
(m−1)!κm−1

ℓ(B∧m
m ). Then the result follows by (2.2.4).

Example 2.2.19. Let O(V) be the orthogonal group of V. Note that O(V) acts on Gk(V) transitively.
Let g⊂⊂O(V) be a random element that has as law the normalized Haar measure on O(V); we will say
that g is uniform. Let E ∈ Gk(V) be any fixed k-subspace of V. We have

EgE =
(m− k)!κm−k

m!κm
B(V)∧k.

Indeed both sides admit as generating measure a (nonnegative) measure on Gk(V) that is invariant
under the action of O(V). Since such a measure is unique up to a scalar multiple, it is enough to
compute the length of both zonoids to prove the equality. On the left hand side we have ℓ(gE) =
ℓ(E) = 1 and thus the zonoid on the left have length 1. On the right hand side, by Lemma 2.2.17, we
have

ℓ(B(V)∧k) =
1

(m− k)!κm−k
ℓ(B(V)∧m) =

m!κm
(m− k)!κm−k

(2.2.7)

Note that this gives an example of a Grassmannian zonoid that is fully decomposable although it was
not immediately clear from the definition EgE.

In the particular case of the powers of a zonoid in V the support function on simple vectors have
a simple interpretation.

Lemma 2.2.20. Let K ∈ Z0(V) be a centered zonoid and let u = u1 ∧ · · · ∧ uk ∈ ΛkV∗ be a simple
vector. We have

hK∧k(u1 ∧ · · · ∧ uk) =
∥u1 ∧ · · · ∧ uk∥

2
k! volk(πu(K))

where πu : V → Span(u1, . . . , uk) denotes the orthogonal projection, identifying V∗ ∼= V with the
Euclidean structure.

Proof. Let X⊂⊂V be such that K = EX and let X1, . . . , Xk be iid copies of X. Then we have

hK∧k(u) =
1

2
E|⟨X1 ∧ · · · ∧Xk, u1 ∧ · · · ∧ uk⟩|

=
∥u1 ∧ · · · ∧ uk∥

2
E∥πu(X1) ∧ · · · ∧ πu(Xk)∥

=
∥u1 ∧ · · · ∧ uk∥

2
ℓ(πu(K)∧k).

Finally, by Theorem 2.2.6, we have ℓ(πu(K)∧k) = k! volk(πu(K)) which concludes the proof.

In the case k = m−1, this completely determines the support function, since all vectors are simple
in Λm−1V. In this case in Lemma 2.2.20 we find the support function of the projection body of K, see
Definition 1.2.44.

Corollary 2.2.21. Let K ∈ Z (V) and let ΠK ∈ Z0(Λ
m−1V) denotes its projection body. We have

K∧(m−1) =
(m− 1)!

2
ΠK.

This implies that the surface area measure is the wedge product of the generating measure; this
was also proven in [80, Theorem 5.3.3].

Corollary 2.2.22. Let K ∈ Z0(V) and identify Λm−1V ∼= V∗ with the Euclidean structure. We have

Sm−1(K) =
4

(m− 1)!
µ
∧(m−1)
K .
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This last example together with Minkowski’s uniqueness Theorem (Proposition 1.2.45) shows that
the map K 7→ K∧(m−1) is injective. Thus the following.

Proposition 2.2.23. For all 1 ≤ k ≤ m− 1, the map Z0(V) → G (k,V); K 7→ K∧k is injective.

Note that, for k = m− 1, it is not surjective since some zonoids in Λm−1V are the projection body
of centrally symmetric bodies that are not zonoids [80, Theorem 8.2.2].

The Alexandrov–Fenchel inequality (Lemma 1.1.25) also interprets as a statement in the Grass-
mannian zonoid algebra. More precisely it states that if A ∈ Z (ΛkV) is a fully decomposable zonoid
(Definition 2.2.7) then for all K,L ∈ Z (V) we have

ℓ(K ∧ L ∧A)2 ≥ ℓ(K ∧K ∧A)ℓ(L ∧ L ∧A). (2.2.8)

This immediately rises the question if this still holds more generally in the (Grassmannian) zonoid
algebra. The following conjecture is more a shot in the dark than something based on hard evidence.

Conjecture 5. The Alexandrov–Fenchel inequality (2.2.8) is still true if A ∈ G (k,V) but is not true in
general for A ∈ Z (ΛkV).

Finally let us remark that the Brunn–Minkowski inequality (Lemma 1.1.26) can also be seen as an
inequality in the Grassmannian zonoid algebra. More precisely, it states that for all K0,K1 ∈ Z (V)
and all t ∈ [0, 1] we have

ℓ
(
((1− t)K0 + tK1)

∧m) ≥ ℓ(K∧m
0 )(1−t)ℓ(K∧m

1 )t.

2.2.3 Random determinants and mixed volume

In this section we explain how statements in the (Grassmannian) zonoid algebra such as Theorem 2.2.6
interpret in terms of expected absolute determinants in the spirit of [86]. We start with the most general
form.

Theorem 2.2.24 (B.B.L.M.). Let c1, . . . , ck ∈ N such that c := c1 + . . . + ck ≤ m, consider
X1

⊂⊂Rm×c1 , . . . , Xk
⊂⊂Rm×ck independent and integrable and let M := (X1, . . . , Xk)⊂⊂Rm×c be the ran-

dom matrix whose columns are the matrices Xi. Then we have

E
√
det(M tM) = ℓ(EY1 ∧ · · · ∧ EYk)

where Yk⊂⊂Λ
ciRm is the image of Xi under the map Rm×ci → ΛciRm that maps (x1, . . . , xci) to

x1 ∧ · · · ∧ xci for all x1, . . . , xci ∈ Rm in particular EYi ∈ G0(ci,Rm) ⊂ Z0(Λ
ciRm).

Proof. First of all, let us remark that the right hand side is equal to E∥Y1 ∧ · · · ∧ Yk∥. Then the
rest is a matter of translating in terms of matrices what we saw before in the zonoid algebra. Let us
write M := (Z1, . . . , Zc) with Zi⊂⊂R

m in such a way that Xi = (Zc̃i−1+1, . . . , Zc̃i) where c̃0 := 0 and
c̃i = c1 + · · ·+ ci for 0 < i ≤ k. Note that, by construction, Y1 ∧ · · · ∧ Yk = Z1 ∧ · · · ∧ Zc. Finally it is
enough to see that

det(M tM) = det(⟨Zi, Zj⟩1≤i,j≤c)

which, by definition of the Euclidean structure on ΛcRm, see (2.2.1), is equal to ∥Z1 ∧ · · · ∧ Zc∥2 =
∥Y1 ∧ · · · ∧ Yk∥2 and this concludes the proof.

Remark 2.2.25. Note that, since the length is translation invariant, we can replace on the right hand
side, each EYi by E[0, Yi].

In the case where c1 + · · ·+ ck = m the matrix M is a square matrix and we obtain

E|det(M)| = ℓ(EY1 ∧ · · · ∧ EYk). (2.2.9)

Another special case is when the blocks Xi are just columns, in this case this gives a generalization of
Vitale’s Theorem [86, Theorem 3.2].



2.2. THE ZONOID ALGEBRA 55

Corollary 2.2.26. Let 1 ≤ k ≤ m, let X1, . . . , Xk
⊂⊂Rm be independent and integrable and consider

M := (X1, . . . , Xk)⊂⊂Rm×k, the random matrix whose columns are the vectors Xi. We have

E
√
det(M tM) =

m!

(m− k)!κm−k
MV(EX1, . . . ,EXk, Bm[m− k])

where recall that Bm := B(Rm) is the unit ball and Bm[m− k] denotes that it is repeated m− k times
in the argument of the mixed volume MV. In particular, if all columns are identically distributed we
have

E
√
det(M tM) = k!Vk(EX1).

where recall that Vk denotes the k-th intrisic volume (Definition 1.1.24).

Proof. By Theorem 2.2.24, we have E
√
det(M tM) = ℓ(EX1 ∧ · · · ∧EXk). Applying Lemma 2.2.17 we

find ℓ(EX1 ∧ · · · ∧EXk) =
1

(m−k)!κm−k
ℓ(EX1 ∧ · · · ∧EXk ∧B∧m−k

m ), the result follows from (2.2.4).

In the case k = m, M is a square matrix and we obtain

E|det(M)| = m!MV(EX1, . . . ,EXm).

If in addition all columns are identically distributed, we find Vitale’s Theorem [86, Theorem 3.2]:

E|det(M)| = m! volm(EX1). (2.2.10)

Example 2.2.27 (Centered Gaussian vectors and ellipsoids). Recall that a Gaussian vector X⊂⊂Rm is
a random vector such that for all u ∈ Rm, ⟨u,X⟩⊂⊂R is a Gaussian variable, see Section 2.6.1. If it is
centered, i.e. if EX = 0 then there is a linear map T : Rm → Rm such that X has the same law as
T (ξ) where ξ⊂⊂Rm is a standard Gaussian vector. The variance of X is then given by

√
T tT , moreover,

by Proposition 1.2.33 we have that EX = 1√
2π
T (Bm) where Bm = B(Rm). In other words the Vitale

zonoid of a centered Gaussain vector is an ellipsoid.
In the case where T is invertible, the ellipsoid EX := T (Bm) is also called the dispersion ellipsoid

of X (see [46, (1.1)]) and can be described, using Proposition 1.1.9 for K = T (Bm), by:

EX =
{
x ∈ Rm | ⟨u, T−1(x)⟩ ≤ 1∀u ∈ Sm−1

}
.

Now letX1, . . . , Xk
⊂⊂Rm, k ≤ m, be independent centered Gaussian vectors, letM := (X1, . . . , Xk)⊂⊂Rm×k

be the Gaussian matrix whose columns are the Xi and write Ei := EXi
in such a way that we have

EXi = (2π)−1/2Ei. Applying Corollary 2.2.26, we find a new proof of the result of Zakhar Kabluchko
and Dmitry Zaporozhets, [46, Theorem 1.1], namely :

E
√

det(M tM) =
m!

(m− k)!κm−k(2π)
k
2

MV(E1, . . . , Ek, Bm[mk]).

We will see later in Section 2.6, in a more developed example what happens when the Gaussian vector
is not centered.

Corollary 2.2.26 allows also to translate the Brunn–Minkowski (Lemma 1.1.26) and Alexandrov–
Fenchel (Lemma 1.1.25) inequalities in term of random matrices.

Corollary 2.2.28 (BM for random determinants). Let X0, X1
⊂⊂Rm be integrable, let ϵ⊂⊂{0, 1} be a

Bernoulli variable of parameter t ∈ [0, 1], i.e. ϵ = 1 with probability t, independent of X0, X1 and let
Xt := (1− ϵ)X0+ ϵX1. Let Mt

⊂⊂Rm×m be a random square matrix whose columns are iid copies of Xt.
We have

E|detMt| ≥ (E|detM0|)(1−t) (E|detM1|)t .

Corollary 2.2.29 (AF for random determinants). Let X1, X
′
1, X2, X

′
2, Y1, . . . , Ym−2

⊂⊂Rm be indepen-
dent and integrable and such that X1 and X ′

1 (respectively X2 and X ′
2) have the same law. We have

(E|det(X1, X2, Y1, . . . , Ym−2)|)2 ≥ (E|det(X1, X
′
1, Y1, . . . , Ym−2)|) (E|det(X2, X

′
2, Y1, . . . , Ym−2)|) .
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Remark 2.2.30. Note that the generalization of Alexandrov–Fenchel for Grassmannian zonoids, that
is the first part of Conjecture 5, is equivalent to the fact that the previous result is still valid if the Yi
are dependent.

Remark 2.2.31. The equality case of Alexandrov–Fenchel for zonoids was described in [79]. From this,
one can deduce the equality case for random determinants in Corollary 2.2.29.

We conclude by an example.

Example 2.2.32. Let Z1, . . . , Zn ∈ Cn be integrable random vectors and L := (Z1, . . . , Zn) ∈ Cn×n be
the random complex matrix whose columns are the complex vectors Zj . We show how to “compute”
E(|det(L)|2) with Theorem 2.2.24 (in the next section we will examine the case E|det(L)|, see (2.3.1)
below). To this end, we decompose Zj = Xj + iYj with real random vectors Xj , Yj⊂⊂Rn (possibly
dependent) and where i =

√
−1. We let m := 2n and we consider the random real matrix given by

M = (M1, . . . ,Mn)⊂⊂Rm×m, whereMj =
(
Xj −Yj

Yj Xj

)
. It satisfies the hypothesis of Theorem 2.2.24 with

all cj = 2, k = n and c = m. Observe that |det(L)|2 = |det(M)|. If we define the integrable random
vector

Qj :=

(
Xj

Yj

)
∧
(
−Yj
Xj

)
∈ Λ2(Rm),

we get then by (2.2.9) that
E(|detL|2) = ℓ(EQ1 ∧ · · · ∧ EQn).

2.3 Mixed J-volume

In this section we assume that our vector space V is endowed with a complex structure, that is a linear
endomorphism J : V→ V that is such that J2 = − IdV . This implies that the dimension of V is even
and we let m =: 2n and it turns V into a complex vector space by letting for all x ∈ V and a, b ∈ R,
(a+ ib) · x := ax+ bJ(x).

Given a complex structure, we can mimic all the construction of the zonoid algebra with complex
linearity (which in particular implies real linearity). In particular mimicking (2.2.4) with complex
wedge product leads to a new multilinear function on zonoids that we call the mixed J-volume and
denote by MVJ . It takes n zonoids in a 2n–dimensional real vector space, while the ordinary mixed
volume is instead a function of 2n arguments. This notion turns out to be closely related but different
from Kazarnovskii’s pseudovolume (see Definition 2.3.17 below).

Before going into more details, let us describe the setting more precisely. We assume that J is an
isometry for the Euclidean structure of V. This implies that the complex bilinear form V ×V → C,
(x, y) 7→ ⟨x, y⟩ − i⟨x, Jy⟩ is a hermitian form.

In such a setting, a Lagrangian plane is a subspace E ∈ Gn(V) such that JE = E⊥, i.e. such that
the bilinear form ⟨·, J ·⟩ is identically zero on E. In other words we have V = E⊕JE. Thus, the choice
of an orthonormal basis on E induces an isomorphism V ∼= Cn that sends E to Rn.

We denote ΛkC(V) the complex exterior algebra and, given vectors v1, . . . , vk ∈ V, we denote by
v1 ∧C · · · ∧C vk ∈ ΛkC(V) their complex exterior product. Note that this construction depends on the
choice of the complex structure J , however we prefer the notation with “C” that we find easier to
read. Note that the hermitian structure on V implies an hermitian structure on the complex exterior
algebra in a similar fashion as (2.2.1). In particular, taking the real part, it induces an Euclidean norm
on each ΛkC(V) and consequently we have a length functional ℓ : Z (ΛkC(V)) → R; see Definition 1.2.31.

Finally, for simplicity, we will reduce our study to the centered case, that is to Z0(V).

2.3.1 The mixed J–volume of zonoids

The complex wedge product is, in particular, a real multilinear map. Therefore we can apply Theo-
rem 2.1.16 to obtain a well-defined notion of complex product of virtual zonoids.

Definition 2.3.1. Consider the (real and) complex multilinear map F : Vn → ΛnC(V) defined by the

complex wedge F (v1, . . . , vn) := v1 ∧C · · · ∧C vn. For any K1, . . . ,Kn ∈ Ẑ0(V), we define:

K1 ∧C · · · ∧C Kn := F̂ (K1, . . . ,Kn).
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The next definition uses this construction to define the mixed J–volume, this is to be compared
with (2.2.4).

Definition 2.3.2. We define the mixed J–volume MVJ : Ẑ0(V)n → R to be the R–multilinear map

given, for all K1, . . . ,Kn ∈ Ẑ0(V), by:

MVJ(K1, . . . ,Kn) :=
1

n!
ℓ (K1 ∧C · · · ∧C Kn) .

The J–volume of a zonoid K ∈ Ẑ0(V) is defined to be:

volJn(K) := MVJ(K, . . . ,K).

Remark 2.3.3. Notice that, since Λ2n(V) ≃ R is of real dimension one, zonoids in Λ2n(V) are just
segments. By contrast, the top complex exterior power ΛnC(V) ≃ C is of real dimension two and
centered zonoids in this space are more than segments (in fact they are precisely the centrally symmetric
convex bodies; see [80, Theorem 3.5.2]). Thus K1 ∧C · · · ∧C Kn is a zonoid in ΛnC(V) ≃ R2. Then
taking its length loses some information. However, one can see using Definition 2.3.1, that if one of
the Ki is invariant under the U(1) action on V, then K1 ∧C · · · ∧CKn is also U(1) invariant and hence
must be a disc centered at the origin which in this case is completely determined by its length. We
compute the length of a disc in Lemma 2.3.5 below.

Let us study some of the properties of the mixed J−volume. On some classes of zonoids of the
complex space V it behaves particularly well. The first case is when V = Cn and all the zonoids are
contained in the real n−plane Rn ⊂ Cn. In that case, we will show that the mixed J−volume is equal
to the classical mixed volume (see Proposition 2.3.6 (2)).

Next, we consider complex discs.

Definition 2.3.4. Let z ∈ V. We define ∆z to be the closed centered disc of radius |z| in the complex
line Cz ∼= R2.

In order to describe a random vector representing ∆z, let us introduce the following notation. For
θ ∈ R we denote by eθJ : V→ V the linear operator

eθJ := cos(θ) IdV+sin(θ)J.

We then have the following lemma.

Lemma 2.3.5. Let θ ∈ [0, 2π] be a uniformly distributed random variable and z ∈ V nonzero. Consider
the random vector Xz ∈ V defined by Xz := πeθJz. Then:

∆z = EXz; ℓ(∆z) = π∥z∥.

Proof. Since for every θ ∈ [0, 2π] the vector eθJz belongs to Cz, we have hEXz
(u) = 0 for every

u ∈ (Cz)⊥. This implies that EXz is contained in Cz. Moreover, we have E|⟨eθJz, z⟩| = ∥z∥2 E| cos θ| =
2
π∥z∥

2. This implies for λ ∈ C that

hEXz (λz) =
1

2
E|⟨Xz, λz⟩| =

1

2
π|λ|E|⟨eθJz, z⟩| = |λ|∥z∥2 = ∥z∥ · |λz|.

On the other hand, h∆z (λz) = ∥z∥·|λz|, hence the first assertion follows. The second statement follows
immediately from the fact that ∥Xz∥ = π∥z∥ almost surely.

Proposition 2.3.6 (Properties of the mixed J–volume). The following properties hold:

(i) The mixed J–volume of zonoids MVJ : Z0(V)n → R is symmetric, multilinear, and monotonically
increasing in each variable.

(ii) Let E ∈ Gn(V) be a Lagrangian plane and let K1, . . . ,Kn ∈ Z0(E) ⊂ Z0(V). Then:

MVJ(K1, . . . ,Kn) = MV(K1, . . . ,Kn).
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(iii) Let T : V → V be a C–linear transformation (i.e., such that TJ = JT ), and denote by detC(T )
its complex determinant. Then, for all K1, . . . ,Kn ∈ Z0(V),

MVJ(TK1, . . . , TKn) = |detC(T )|MVJ(K1, . . . ,Kn).

(iv) For every z1, . . . , zn ∈ V we have MVJ(∆z1 , · · · ,∆zn) =
πn

n! |z1 ∧C · · · ∧C zn|

(v) For every θ ∈ R and every K1, . . . ,Kn ∈ Z0(V) we have

MVJ(eθJK1,K2, . . . ,Kn) = MVJ(K1, . . . ,Kn).

(vi) Let K1, . . . ,Kn ∈ Z0(V), we have MVJ(K1, . . . ,Kn) > 0 if and only if there are z1 ∈ K1, . . . , zn ∈
Kn such that z1, . . . , zn form a C–basis of V.

Proof. Multilinearity of MVJ follows from the definition and Theorem 2.1.16. To see that MVJ is
symmetric, given zonoids K1, . . . ,Kn in V, let X1, . . . , Xn ∈ V be independent integrable random
vectors such that Kj = EXj . We have

K1 ∧C K2 ∧C · · · ∧C Kn = EX1 ∧C X2 ∧C · · · ∧C Xn

= E−X2 ∧C X1 ∧C · · · ∧C Xn

= EX2 ∧C X1 ∧C · · · ∧C Xn

= K2 ∧C K1 ∧C · · · ∧C Kn.

The same argument gives symmetry in each pairs of variables. The fact that the mixed J–volume is
monotonically increasing in each variable is a direct cosequence of the definition, Theorem 2.1.16 and
the monotonicity of the length (Corollary 1.2.39) .

Let us prove point (ii). Let K1, . . . ,Kn ∈ Z0(E) ⊂ Z0(V) and let X1, . . . , Xn
⊂⊂E be independent

and such that Kj = EXj , 1 ≤ j ≤ n. By Definition 2.3.2 the mixed J–volume is MVJ(K1, . . . ,Kn) =
1
n!ℓ (K1 ∧C · · · ∧C Kn) =

1
n!E∥X1∧C · · ·∧CXn∥. We have, by Lemma 2.3.12 below, ∥X1∧C · · ·∧CXn∥ =

∥X1 ∧ · · · ∧Xn∥. We get MVJ(K1, . . . ,Kn) =
1
n!E∥X1 ∧ · · · ∧Xn∥. We conclude from (2.2.4) that the

latter is equal to MV(K1, . . . ,Kn).

In order to prove (iii), let K1, . . . ,Kn ∈ Z0(V) be zonoids and let again X1, . . . , Xn
⊂⊂V be inde-

pendent and such that Kj = EXj . Then TKj = ET (Xj) and we have

MVJ(TK1, . . . , TKn) =
1

n!
E|TX1 ∧C · · · ∧C TXn|

=
1

n!
E|(detC(T ))X1 ∧C · · · ∧C Xn|

=
1

n!
|detC(T )|E|X1 ∧C · · · ∧C Xn|

= |detC(T )|MVJ(K1, . . . ,Kn).

To show point (iv) we use Lemma 2.3.5 and write, for θ1, . . . , θn⊂⊂[0, 2π] independent and uniformly
distributed:

MVJ(∆z1 , . . . ,∆zn) =
1

n!
ℓ(∆z1 ∧C · · · ∧C ∆zn)

=
1

n!
ℓ

(
EπeJθ1z1 ∧C · · · ∧C EπeJθ1zn

)
=

1

n!
E
∣∣(πeJθ1z1) ∧C · · · ∧C (πeJθnzn)

∣∣ = πn

n!
|z1 ∧C · · · ∧C zn|,

which is what we wanted.
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For point (v), let again X1, . . . , Xn
⊂⊂V be independents and such that Kj = EXj . Then eθJKj =

EeθJXj and we have

MVJ(eθJK1,K2, . . . ,Kn) =
1

n!
E|eθJX1 ∧C X2 ∧C · · · ∧C Xn|

=
1

n!
E|X1 ∧C · · · ∧C Xn| = MVJ(K1, . . . ,Kn).

Finally for the last item, let again X1, . . . , Xn
⊂⊂V be independents and such that Kj = EXj . Then

MVJ(K1,K2, . . . ,Kn) = 0 if and only if X1 ∧C · · · ∧CXn = 0 almost surely. This is true if and only if
the C-span of X1, . . . , Xn is contained almost surely in a complex hyperplane and thus K1, . . . ,Kn are
contained in a complex hyperplane. In other words, for all choice z1 ∈ K1, . . . , zn ∈ Kn, the vectors
z1, . . . , zn are C-linearly dependent and this concludes the proof.

Conjecture 6. The mixed J-volume satisfy an Alexandrov–Fenchel inequality.

Maybe one could try to prove this conjecture with the method of combinatorial atlas as explained
in [30] as it seems adapted to the algebraic nature of the J-volume of zonoids and the combinatorial
nature of the J-volume of zonotopes.

2.3.2 Random complex determinants and J-volume

Here we state and prove a complex version of Theorem 2.2.24 which gives a way to describe the
expectation of the modulus of the determinant of a random complex matrix with independent blocks
(to compare with Example 2.2.32 where we used Theorem 2.2.24 to compute instead the expectation
of the square of the modulus of the determinant). To do that, mimicking the definition of the wedge
product of zonoids (2.2.2), we associate with each complex wedge product ∧C : Λ

k
CV×ΛlCV→ Λk+lC V

the componentwise continuous bilinear map

∧C : Ẑ0

(
ΛkCV

)
× Ẑ0

(
ΛlCV

)
→ Ẑ0

(
Λk+lC V

)
.

induced from it by Theorem 2.1.16. We then have the following.

Theorem 2.3.7 (B.B.L.M.). Let c1, . . . , ck ∈ N be such that c := c1 + . . . + ck ≤ n, consider
X1

⊂⊂Cn×c1 , . . . , Xk
⊂⊂Cn×ck independent integrable and let M := (X1, . . . , Xk)⊂⊂Cn×c be the random

complex matrix whose columns are the matrices Xi. Then we have

E
√
det(M∗M) = ℓ(EY1 ∧C · · · ∧C EYk)

where M∗ =M
t
denotes the adjoint of M and Yk⊂⊂Λ

ciCm is the image of Xi under the map Cm×ci →
ΛciC Cm that maps (z1, . . . , zci) to z1∧C · · ·∧Czci for all z1, . . . , zci ∈ Cm in particular EYi ∈ Z0(Λ

ci
C Cm).

Proof. First note that M∗M is hermitian and in particular its determinant is real and nonnegative
thus

√
det(M∗M) is well defined. Then the proof is the same as the proof of Theorem 2.2.24 noticing

that M∗M is the Gramm matrix of the columns of M for the hermitian form and thus
√
det(M∗M)

gives the norm of the complex wedge of the columns of M .

As before we can derive some special cases. First, in the case where c1 + · · · + ck = n the matrix
M is a square complex matrix and we obtain

E|detC(M)| = ℓ(EY1 ∧C · · · ∧C EYk).

Another special case is when the blocks Xi are just columns, in this case it relates to the J-volume.

Corollary 2.3.8. Let 1 ≤ k ≤ n, let X1, . . . , Xk
⊂⊂Cn be independent and integrable and consider

M := (X1, . . . , Xk)⊂⊂Cn×k, the random complex matrix whose columns are the complex vectors Xi. We
have

E
√
det(M∗M) =

n!

(n− k)!κJn−k
MVJ(EX1, . . . ,EXk, B2n[n− k])

where κJn−k := volJn−k(B2(n−k)) (computed in Corollary 2.3.9 below).
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Proof. Once again, the proof is the same as Corollary 2.2.26, we just need to prove that

ℓ(EX1 ∧C · · · ∧C EXk) =
n!

(n− k)!κJn−k
MVJ(EX1, . . . ,EXk, B2n[n− k]).

We let ξ1, . . . , ξnk
⊂⊂Cn ∼= R2n be iid Gaussian vectors of mean 0 and variance

√
2π in such a way that

Eξj = Bm, we assume that they are independent of the Xi and we let e1, . . . , en ∈ Cn be a unitary
basis. Then we have

MVJ(EX1, . . . ,EXk, B2n[n− k]) =
1

n!
ℓ(EX1 ∧C · · · ∧C EXk ∧C ξ1 ∧C · · · ∧C ξn−k)

=
1

n!
E∥X1 ∧C · · · ∧C Xk∥E|e1 ∧C · · · ∧C ek ∧C ξ1 ∧C · · · ∧C ξn−k|

Where we used the unitary invariance of ξ1∧C · · ·∧C ξn−k and the independence of the random vectors.
Denoting by π : Cn → Span{ek+1, . . . , en} ∼= Cn−k the orthogonal projection, we get

MVJ(EX1, . . . ,EXk, B2n[n− k]) =
1

n!
ℓ(EX1 ∧C · · · ∧C EXk)E∥π(ξ1) ∧C · · · ∧C π(ξn−k))

=
1

n!
ℓ(EX1 ∧C · · · ∧C EXk)(n− k)! volJn−k(B2(n−k)

which is what we wanted.

In the case where k = n, M is a square complex matrix and we obtain

E|detC(M)| = n!MVJ(EX1, . . . ,EXn). (2.3.1)

If in addition all columns are identically distributed, we find:

E|detC(M)| = n! volJn(EX1). (2.3.2)

As an application, we compute the J–volume of balls.

Corollary 2.3.9. The J–volume of the unit ball B2n ⊂ Cn equals:

κJn := volJn(B2n) =
πn

2n2

n∏
j=1

(
2j

j

)
.

Proof. Let Z = (z1, . . . , zn)⊂⊂Cn be a random vector filled with independent standard complex Gaus-
sians zj =

1√
2
(ξj,1+ iξj,2), that is, ξj,1, ξj,2, . . . , ξn,1, ξn,2 are independent standard real Gaussians. We

claim that

EZ =
1

2
√
π
B2n.

Indeed, let u ∈ Cn. By definition, we have hEZ(u) =
1
2E|⟨Z, u⟩|. Using the U(n)–invariance of Z, we

can then assume that u = ∥u∥e1 where e1 is the first vector of the standard basis of Cn. We obtain

hEU (u) =
1

2
E
∣∣Re(ZTu)∣∣ = 1

2
√
2
∥u∥E|ξ1,1| =

1

2
√
2
∥u∥
√

2

π
=

1

2
√
π
∥u∥.

which is what we wanted.
Let now M ∈ Cn×n be a random complex matrix whose columns are i.i.d. copies of Z. Then, the

complex version of Vitale’s Theorem, that is (2.3.2), gives

E|detC(M)| = n!

(2
√
π)n

volJn(B2n).

Now, we show that E|det(M)| =
∏n
j=1 Γ(j +

1
2 )/Γ(j). Indeed, note that |detM | has the same law as

det(W )
1
2 where W =MM∗ is a complex Wishart matrix. Following [28, p. 83-84], we see that det(W )
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Figure 2.1: κJn and κ2n as a function of n

is distributed as 1
2nχ

2
2n ·χ2

2n−2 · · ·χ2
2, where each χ

2
2j denotes a chi–square distribution with 2j degrees

of freedom and the χ2
2j are independent. Therefore, |det(M)| has the same law as 1

2n/2χ2n ·χ2n−2 · · ·χ2.

Recall from (1.2.7) that Eχ2j =
√
2Γ(j+ 1

2 )

Γ(j) . Using independence, we have proved that:

κJn = volJn(B2n) =
(4π)n/2

n!

n∏
j=1

Γ(j + 1
2 )

Γ(j)
. (2.3.3)

The half integer value of the Gamma function are computed in Lemma A.3 and we get

Γ(j + 1
2 )

Γ(j)
= j

π
1
2

22j

(
2j

j

)
.

Thus the product gives
n∏
j=1

Γ
(
j + 1

2

)
Γ(j)

= n!
π

n
2

2n(n+1)

n∏
j=1

(
2j

j

)
.

Reintroducing in (2.3.3) gives the result.

Notice that applying Corollary 2.3.9 when n = 1 we get volJ1 (B2) = π = vol2(B2), but already

when n = 2 we get volJ2 (B4) =
3π2

4 ̸= π2

2 = vol4(B4). In general volJn and vol2n are different, starting
by the fact that the first is homogeneous of degree n while the other is of degree 2n, see also Figure 2.1.

2.3.3 The J–volume of polytopes

In this section we show that it is possible to extend the notion of J–volume to polytopes in Cn ∼= R2n.
To do so, we give an alternative formula for the J–volume of zonotopes that makes sense for any
polytope (Theorem 2.3.14). To obtain this formula, we rely on the special property of normal cones
of a zonotope that is given by Lemma 1.2.9. We will see later that this connects to the theory of
valuations. However, as we will see, it is not possible to continuously extend the J–volume continuously
from polytopes to all convex bodies.

As a first step, we will give in Proposition 2.3.13 below an alternative way of writing the J–volume
of zonotopes. This involves the following quantity, from now on we will denote by G(k,m) := Gk(Rm).

Definition 2.3.10. For every E ∈ G(n, 2n), we define

σJ(E) := |E ∧ JE| = |e1 ∧ · · · ∧ en ∧ Je1 ∧ · · · ∧ Jen| ∈ [0, 1]

where {e1, . . . , en} is an orthonormal basis of E.

One can check that this definition does not depend on the choice of an orthonormal basis. Moreover,
σJ is invariant under the action of U(n) on G(n, 2n). Note that σJ(E) = 1 if and only if E is
Lagrangian, and σJ(E) = 0 if and only if E contains a complex line.
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Remark 2.3.11. Denoting by θ1(E) ≤ · · · ≤ θ⌊n
2 ⌋(E) the Kähler angles of E, introduced by Tasaki in

[84], one can check that

σJ(E) =
∏⌊n

2 ⌋
j=1(sin θi(E))2.

In general, σJ(E) can be computed using the following lemma.

Lemma 2.3.12. Let z1, . . . , zn ∈ Cn be R-linearly independent and denote by E ∈ G(n, 2n) its real
span. Then, writing zj = xj + iyj with xj , yj ∈ Rn, we have

|z1 ∧C · · · ∧C zn| =
∥∥∥∥[x1y1

]
∧ · · · ∧

[
xn
yn

]∥∥∥∥ · σJ(E)
1
2 .

Proof. Consider the matrices X = (x1, . . . , xn) ∈ Rn×n and Y = (y1, . . . , yn) ∈ Rn×n with the columns
xj , yj . One can check that det

(
X −Y
Y X

)
= |det(X + iY )|2, see [17, Lemma 5]. In particular, we can

write

|z1 ∧C · · · ∧C zn|2 = |det(X + iY )|2 =

∣∣∣∣det [X −Y
Y X

]∣∣∣∣
=

∣∣∣∣[x1y1
]
∧ · · · ∧

[
xn
yn

]
∧
[
−y1
x1

]
∧ · · · ∧

[
−yn
xn

]∣∣∣∣
=

∥∥∥∥[x1y1
]
∧ · · · ∧

[
xn
yn

]∥∥∥∥2 · |e1 ∧ · · · ∧ en ∧ Je1 ∧ · · · Jen| ,

where {e1, . . . , en} is an orthonormal basis for E, and the last equality follows from:[
x1
y1

]
∧ · · · ∧

[
xn
yn

]
=

∥∥∥∥[x1y1
]
∧ · · · ∧

[
xn
yn

]∥∥∥∥ · e1 ∧ · · · ∧ en.

The conclusion follows from Definition 2.3.10.

Recall the notation from Section 1.2.1: for a k-dimensional face F of a polytope P in Rm, we
denote by EF ∈ G(k,m) the vector space parallel to the affine span of F . For 0 ≤ k ≤ m recall
Definition 1.2.7 Gk(P ) := {E ∈ G(k,m) | there exists a k-dim. face F of P such that E = EF } and its
particular form (1.2.3) in the case of a zonotope P = x1 + · · · + xn for some x1, . . . xn ∈ Rm. Recall
also in that case Definition 1.2.8 of the “vectorial” face F (E,P ) =

∑
xi∈E xi.

The next result gives an explicit expression of the J–volume of a zonotope.

Proposition 2.3.13. Let P ⊂ Cn be a centered zonotope. Then

volJn(P ) =
∑

E∈Gn(P )

voln(F (E,P )) · σJ(E)
1
2 .

Proof. We write P =
∑p
j=1 zj . By definition, we have volJn(P ) =

1
n!ℓ(P

∧Cn). Using multilinearity and
Theorem 2.1.16, we can write( p∑

j=1

zj

)
∧C · · · ∧C

( p∑
j=1

zj

)
=

∑
1≤j1,...,jn≤p

wj1,...,jn ,

where wj1,...,jn := zj1 ∧C · · · ∧C zjn . Therefore, using the linearity of the length,

volJn(P ) =
1

n!

∑
1≤j1,...,jn≤p

|wj1,...,jn | =
∑

j1<...<jn

|wj1,...,jn |.

We may assume the sum runs only over the j1 < . . . < jn such that the real span Ej1,...,jn of zj1 , . . . , zjn
has dimension n. We write zj = xj + iyj with xj , yj ∈ Rn and use Lemma 2.3.12 to obtain

|wj1,...,jn | =
∥∥∥∥[xj1yj1

]
∧ · · · ∧

[
xjn
yjn

]∥∥∥∥ · σJ(Ej1,...,jn) 1
2 .
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Combining this and exchanging the order of summation, we arrive at

volJn(P ) =
∑

E∈Gn(P )

σJ(E)
1
2 ·

∑
Ej1,...,jn=E

∥∥∥∥[xj1yj1
]
∧ · · · ∧

[
xjn
yjn

]∥∥∥∥ , (2.3.4)

where for fixed E ∈ Gn(P ), the second sum runs over all j1 < . . . < jn such that E = Ej1,...,jn .
Shephard’s formula [81, (57)] applied to the zonotope F (E,P ) (see Definition 1.2.8) tells us that

∑
Ej1,...,jn=E

∥∥∥∥[xj1yj1
]
∧ · · · ∧

[
xjn
yjn

]∥∥∥∥ = voln(F (E,P )).

Substituting this into (2.3.4) gives the statement.

We now turn to a key result of this section. Based on the property of the external angle of a
zonotope given by Lemma 1.2.9 we can give an alternate formula for the J–volume of zonotopes.

Theorem 2.3.14 (B.B.L.M.). Let P ⊂ Cn be a zonotope. Then

volJn(P ) =
∑

F∈Fn(P )

voln(F ) ·Θ(P, F ) · σJ(EF )
1
2 ,

where recall that Fn(P ) denotes the set of n–dimensional faces of P .

Proof. We will prove that the right hand side in this theorem is equal to the right hand side in
Proposition 2.3.13. Let z1, . . . , zp ∈ Cn be such that P =

∑p
j=1

1
2 [−zj , zj ] and let E ∈ Gn(P ). As we

discussed in Section 1.2.1 (see (1.2.4)), all the faces F of P such that EF = E are translates of the
vectorial face F (E,P ) =

∑
zj∈E zj , we can thus write:∑

F∈Fn(P )

voln(F )Θ(P, F )σJ(EF )
1
2 =

∑
E∈Gn(P )

voln(F (E,P ))σ
J(EF )

1
2

∑
EF=E

Θ(P, F ).

But, by Lemma 1.2.9
∑
EF=E Θ(P, F ) = 1 and this gives what we wanted.

We now note that the formula in Theorem 2.3.14 still makes sense for polytopes that are not
zonotopes. We use this to define the J–volume on polytopes.

Definition 2.3.15. Let P be polytope in Cn. We define its J–volume to be

volJn(P ) :=
∑

F∈Fn(P )

voln(F ) ·Θ(P, F ) · σJ(EF )
1
2

where Fn(P ) denotes the set of n–dimensional faces of P .

We will later study the J–volume in the framework of the theory of valuations on polytopes. For
now, let us show some properties of the J–volume on polytopes.

Proposition 2.3.16. The J–volume on P(Cn) has the following properties.

(i) The valuation volJn is n–homogeneous and U(n)–invariant.

(ii) Let P ⊂ Rn ⊂ Cn be a polytope. Then volJn(P ) = voln(P ).

Proof. The first item follows from the U(n)-invariance of σJ and Definition 2.3.15. For the second item,
if P is of dimension less than n, both volumes are zero and there is nothing to prove. If dim(P ) = n, its
only face of dimension n is P itself and EP = Rn. Moreover σJ(Rn) = 1. Finally since NP (P ) = (Rn)⊥
we have Θ(P, P ) = 1. The claim follows with Definition 2.3.15.
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We will see later that it is not possible to extend the J–volume continuously on the whole K (Cn). In
particular, Andreas Bernig observed that this implies that the J–volume is not increasing on polytopes
since this property would imply the extension.

We conclude with the notion of Kazarnovskii’s pseudovolume [48]. We use the expression found
in [4] in the proof of his Proposition 3.3.1. The normalization constant can be determined using the
fact that it agrees with the classical volume on Rn ⊂ Cn just like the J–volume.

Definition 2.3.17. The Kazarnovskii’s pseudovolume volKn is given for any polytope P ⊂ Cn by the
formula

volKn (P ) =
∑

F∈Fn(P )

voln(F ) ·Θ(P, F ) · 1

(κn)2
vol2n (B(EF ) + JB(EF )) ,

where recall that Fn(P ) denotes the set of n-dimensional faces of P , B(EF ) denotes the unit ball of
EF , and κn := voln(B(Rn)).

In our setting we prove the following, to be compared to Definition 2.3.15.

Proposition 2.3.18. For any polytope P ∈ P(Cn) the Kazarnovskii pseudovolume is given by

volKn (P ) =
∑

F∈Fn(P )

voln(F ) ·Θ(P, F ) · σJ(EF ),

where Fn(P ) denotes the set of n-dimensional faces of P ;

Proof. We need to prove that for any E ∈ G(n, 2n) we have

vol2n(B(E) + JB(E)) = (ωn)
2σJ(E). (2.3.5)

Using (2.2.4) we write

vol2n(B(E) + JB(E)) =
1

(2n)!
ℓ
((
B(E) + JB(E)

)∧2n
)

=
1

(2n)!

2n∑
j=0

(
2n

j

)
ℓ
(
(B(E))∧j ∧ (JB(E))∧(2n−j)

)
where we used that ℓ is linear. Since dim(B(E)) = dim(JB(E)) = n, we see from Lemma 2.2.5 that
(B(E))∧j = 0 whenever j > n and that (JB(E))∧(2n−j) = 0 whenever j < n. In other words, only the
index j = n contributes to the sum and we get

vol2n(B(E) + JB(E)) =
1

(n!)2
ℓ ((B(E))∧n ∧ (JB(E))∧n) . (2.3.6)

Next let X⊂⊂E be such that EX = B(E) (for instance, a Gaussian vector in E of variance
√
2π) and

let X1, . . . , Xn be i.i.d. copies of X. Let e1, . . . , en be an orthonormal basis of E. Note that we have

X1 ∧ · · · ∧Xn = ±∥X1 ∧ · · · ∧Xn∥ e1 ∧ · · · ∧ en.

With this in mind, (2.3.6) gives

vol2n(B(E) + JB(E)) =
1

(n!)2
E|X1 ∧ · · · ∧Xn ∧ JXn+1 ∧ · · · ∧X2n|

=
1

(n!)2
(E∥X1 ∧ · · · ∧Xn∥)2 σJ(E)

Again, by (2.2.4), we have E∥X1 ∧ · · · ∧ Xn∥ = n! voln(B(E)) = n!ωn and this gives (2.3.5), which
concludes the proof.
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2.4 Operations in the zonoid algebra

In this section we describe several operations that one can do in the zonoid algebra and in the Grass-
mannian algebra. It will be of great help in the next chapter when studying the valuations induced
from zonoids.

2.4.1 Hodge star

In the exterior algebra of V there is a collection of linear maps called the Hodge star denoted

∗ : ΛkV→ Λm−kV∗

that is given for all x ∈ ΛkV and y ∈ Λm−kV by

⟨∗x, y⟩ := ⟨ωV∗ , x ∧ y⟩.

Where ωV∗ ∈ ΛmV∗ denotes the volume form of V∗. Note that the Euclidean structure determines
the volume form only up to sign, so we fix one. This choice will not matter for centered zonoids.

It can be shown that the Hodge star is a linear isometry and that it is an involution up to sign, in
the sense that for all x ∈ ΛkV, ∗ ∗ x = (−1)kx.

Moreover, the Hodge star preserves the simple vectors and sends a vector space E ∈ Gk(V) to its
orthogonal E⊥ ∈ Gm−k(V

∗).
The Hodge star induces a map in the zonoid algebras and since it preserves the Grassman-

nian/simple vectors also on the Grassmannian zonoid algebras:

∗ : Â (V) → Â (V∗); ∗ : Ĝ (V) → Ĝ (V∗).

Note that it reverse the grading in the sense that if A is an element of degree k then ∗A is of degree
m− k. Moreover note that when restricted to centered zonoid we have ∗∗ = IdÂ0(V).

This allows us to define a dual to the wedge product on the zonoid algebra.

Definition 2.4.1. Let A,A′ ∈ Â0(V), we define their convolution to be

A ∨A′ := ∗ ((∗A) ∧ (∗A′)) .

This operation respects the dual grading, i.e. if A is of degree m− k and A′ of degree m− l then
A ∨A′ is of degree m− (k + l) and the neutral element is ωV where ωV ∈ ΛmV is the volume form.

Because the Hodge star preserves the Grassmannian zonoids, Ĝ0(V) is also a subalgebra of Â0(V),
for the convolution ∨.

2.4.2 The pairing

Definition 2.4.2. Consider the bilinear map V∗ ×V→ R. By FTZC (Theorem 2.1.16), it induces a

map Ẑ0(V
∗)× Ẑ0(V) → Ẑ0(R). Composed with the length this defines a bilinear form:

Ẑ0(V
∗)× Ẑ0(V) → R.

For all A ∈ Ẑ0(V
∗), B ∈ Ẑ0(V), we denote their image by this bilinear form by (A,B) ∈ R.

For Vitale zonoids this pairing is quite explicit. Indeed, by Proposition 2.1.18, for all U⊂⊂V∗ and
X⊂⊂V integrable and independent we have

(EU,EX) = E|⟨U,X⟩|. (2.4.1)

From this we obtain the following.
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Lemma 2.4.3. For all K ∈ Z0(V) and u ∈ V∗, we have

(u,K) = 2hK(u);

(B(V∗),K) = 2ℓ(K).

Proof. The first statement is a direct consequence of (2.4.1) letting U = u almost surely. The second
one follows from the first and Proposition 1.2.38, considering U to be a standard Gaussian vector.

Corollary 2.4.4. The pairing defined in Definition 2.4.2 is non degenerate.

Proof. Suppose that K−L ∈ Ẑ0(V) is such that (·,K−L) is identically zero on Ẑ0(V
∗). In particular

for all u ∈ V∗, hK−L(u) = hK(u) − hL(u) = 0. This implies that K − L = 0 in Ẑ0(V). A similar
argument shows it for the first variable

Fixing L ∈ Z (V∗) we thus get a linear map (L, ·) : Ẑ (V) → R. By FTZC the pairing is continuous
in each variable for the strong topology so this defines an element of the dual space. Since it is non
degenerate, this means that it defines an injective map

Ẑ0(V
∗) → Ẑ0(V)∗ (2.4.2)

where on the right we have the dual of the vector space Ẑ0(V) with norm topology. The continuity
of this map is related to the continuity of the pairing as a function of two variable, which we saw in
general is not always guaranteed and depends on the choice of topology. The next lemma gives another
interpretation of the pairing which will make the choice of topology natural.

Lemma 2.4.5. Let B ∈ Ẑ0(V) and A ∈ Ẑ0(V
∗) and recall that µA ∈ M(S(V∗)) denotes the gener-

ating measure of A and h̄B ∈ C(S(V∗)) the restriction of the support function of B to the unit sphere
S(V∗). We have

⟨µA, h̄B⟩ =
∫
S(V∗)

hB(u)dµA(u) =
1

4
(A,B).

Proof. Suppose A = EU for some integrable U⊂⊂V∗. Then by Proposition 1.2.43, we have that
⟨µA, h̄B⟩ = 1

2EhB(U). Now assume that K = EX for some X⊂⊂V integrable and independent from U ,
we obtain ⟨µA, h̄B⟩ = 1

4E|⟨U,X⟩| and we conclude by (2.4.1).

Corollary 2.4.6. The pairing

Ẑ0(V
∗)× Ẑ0(V) → R

is continuous when Ẑ0(V
∗) is endowed with the weak-∗ topology and Ẑ (V) with the norm topology.

Remark 2.4.7. Maybe at this point the reader start feeling dizzy about the choices of topology. There
is nothing really mysterious here. The space Z0(V) with the norm topology is a subspace of C(S(V∗)).
This subspace is dense in the even continuous functions and thus its dual Z0(V)∗ is Ceven(S(V

∗))∗

which is again the space of signed even measures M(S(V∗)). Then, Lemma 2.4.5 tells us that the map
(2.4.2) takes a (virtual) zonoid and gives its generating measure. This is of course continuous in the
weak-∗ topology since it is the very definition of this topology.

Next we see how this pairing behaves in the zonoid algebra with the wedge product and the Hodge
star.

Proposition 2.4.8. Let A,A′ ∈ Â0(V
∗), B,B′ ∈ Â0(V) remember that ωV ∈ ΛmV denotes the

volume form of V and consider 1 and any other scalar as part of Λ0V = R. The following holds.

(i) (A,B) = (∗B, ∗A);

(ii) (A ∧A′, B) = (A, ∗A′ ∨B) and (A,B ∧B′) = (A ∨ ∗B′, B);

(iii) (∗B,B′) =
(
ωV∗ , B ∧B′) = (∗B ∨ ∗B′, 1)
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Proof. Point (i) follows from the fact that |⟨u, x⟩| = |⟨∗x, ∗u⟩|.
Point (ii) is derived from the identity |⟨x ∧ y, z⟩| = |⟨x, ∗(y ∧ ∗z)⟩|.
To prove point (iii) write ∗B = ωV∗ ∨ ∗B or B′ = B′ ∧ 1 and apply point (ii).

Remark 2.4.9. Point (iii) could be reformulated by saying that (∗B,B′) is the (length of) the term of
degree m in B ∧B′ or the term of degree 0 in ∗B ∨ ∗B′.

2.4.3 Invariant zonoids: measure theoretic approach

The standard action Gl(V) ↷ V induces an action on the exterior algebra given for all g ∈ Gl(V) and
simple vectors x1 ∧ · · · ∧ xk ∈ ΛkV by

g · (x1 ∧ · · · ∧ xk) := g(x1) ∧ · · · ∧ g(xk). (2.4.3)

In particular this action preserves simple vectors. In other words this gives a group morphism

ρ∧k : Gl(V) → Gl(ΛkV).

In our case, this map preserves orthogonality in the sense that the image of the the orthogonal group
O(V) is contained in O(ΛkV). This is because for all g ∈ Gl(V), (ρ∧k(g))t = ρ∧k(gt).

This action induces an action on the zonoid algebra Gl(V) ↷ Â (V) and on the Grassmannian

algebras Ĝ (V), Ĝ0(V). From (2.4.3), we see that it satisfies for all A,B ∈ Ĝ (V)

g · (A ∧B) = (g ·A) ∧ (g ·B). (2.4.4)

Moreover we have the following.

Proposition 2.4.10. Let A ∈ Â0(V
∗), B ∈ Â0(V), for all g ∈ Gl(V) we have

(A, g ·B) = (gt ·A,B).

Thus if g ∈ O(V) (g ·A, g ·B) = (A,B) and in particular ℓ(g ·B) = ℓ(B).

Of course the action of Gl(V) on the Grassmannian algebra splits into Ĝ0(V) =
⊕m

k=0 Ĝ0(k,V).We

will see in the next section that for 1 < k < m−1, Ĝ0(k,V) admits a closed Gl(V)-invariant subspace.
Let us say a word about invariant zonoids.

Definition 2.4.11. Let G be a group acting on a space S. We denote by SG the subset of the points
fixed by the action of G, that is SG := {x ∈ S | g · x = x∀g ∈ G} .

LetH ⊂ O(V) be a closed subgroup and consider the action on S(ΛkV) induced by theGl(V) action
(2.4.3). By definition of the quotient topology we have an identification of the spaces of continuous
functions C(S(ΛkV))H ∼= C

(
S(ΛkV)/H

)
. Dualizing we get

M(S(ΛkV))H ∼= M
(
S(ΛkV)/H

)
.

In particular, since O(V), and thus H, preserves the Grassmannian, we have

(Ĝ0(k,V)H ,weak-∗) ∼= (M (Gk(V)/H) ,weak-∗)

and
(Ĝ0(k,V)H , ∥ · ∥) ↪→ (C

(
S(ΛkV)/H

)
, ∥ · ∥∞)

Remark 2.4.12. There is a unique normalized Haar measure on H, recall that a random element g⊂⊂V
is called uniform if its law is this Haar measure of probability. This induces a projection

prH : Â (V) → Â (V)H

given for all K ∈ Z (ΛkV) by
prH(K) := Eg ·K

where g⊂⊂H is uniform. This projection preserves the Grassmannian algebra because of (2.4.3).
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The space Gk(V)/H is the space of H-orbits. For every x ∈ Gk(V) we have a point in the orbit

space H · x ∈ Gk(V)/H. The Dirac delta measures δH·x are dense in M (Gk(V)/H) ∼= M (Gk(V))
H

they are the analogous of the segments for the invariant zonoids.

Definition 2.4.13. For every x ∈ Gk(V) we define H · x ∈ G (k,V) to be the zonoid whose generating

measure is δH·x ∈ M (Gk(V)/H) ∼= M (Gk(V))
H

One can see that we have

H · x = prH(x).

Because of (2.4.4), the product of invariant zonoids is again invariant. Thus the wedge product
defines an algebra structure on

⊕
kM (Gk(V)/H). The structure constants of this algebra are given

by the measures

µH·x∧H·y = δH·x ∧ δH·y

for all x ∈ Gk(V) and y ∈ Gl(V).

Example 2.4.14. If we let H = O(V) be the whole group then the action is transitive on every
Grassmannian and the orbits spaces are all reduced to a point. Indeed we have

Ĝ0(V)O(V) =
⊕
k≥0

RB(V)∧k ∼= R[t]/(tm+1).

Example 2.4.15. Let m = 2n and let V = R2n = Cn. Consider the action of U(n) on Gk(R2n). Then
Tasaki showed in [84] that, for 1 ≤ k ≤ n, given E ∈ Gk(R2n), a complete invariant of the orbit
U(n) · E are the Kähler angles 2π ≥ θ1(E) ≥ · · · ≥ θ

⌊k2 ⌋
(E) ≥ 0. Hence the orbit space is

Gk(R2n)/U(n) ∼=
{
θ ∈ [0, 2π]⌊

k
2 ⌋ | θ1 ≥ · · · ≥ θ

⌊k2 ⌋

}
.

Hence the vector spaces Ĝ0(k,Cn)U(n) ∼= M(Gk(R2n)/U(n)) are one dimensional for k = 0, 1,m−1,m
and infinite dimensional if 1 < k < m− 1.

Example 2.4.16. Let V = Ra ⊗ Rb assuming a ≤ b and consider the action of H = O(a)×O(b) on V.
If we identify Ra ⊗ Rb with the a × b rectangular matrices then this action is given for all (g1, g2) ∈
O(a)×O(b) and allM ∈ Ra⊗Rb by (g1, g2) ·M = g1Mgt2. The singular value decomposition (svd) tells
us that the complete invariants of this orbits are the singular values of M : σ1(M) ≥ · · · ≥ σa(M) ≥ 0.
Note that instead of ordering the singular values we can consider them as elements of the quotient
space Ra/Ea where Ea := Sa ⋊ (Z/2)a is acting on Ra by permutation of coordinates and change of
sign of coordinates. Thus we have

Ẑ0(Ra ⊗ Rb)O(a)×O(b) ∼= Ẑ0(Ra)E
a

.

It is not clear, at least to the author, what are the orbit spaces on the higher Grassmannians.

Open problem 7. Describe the orbit spaces Gk(Ra ⊗ Rb)/O(a)×O(b) for k > 1.

In Section 4.1.4, we will see another approach to invariant zonoids that is more adapted to the
computation of geometric quantities.

2.4.4 The kernel of the cosine transform

We already introduced the cosine transform in Definition 1.2.47. One can generalize that replacing
measures on the sphere by measures on the Grassmannian and looking at its cosine transform as a
function on the Grassmannian.

In our context this corresponds to a map that takes the generating measure µA ∈ M(Gk(V)) of a

virtual (centered) Grassmannian zonoid A ∈ Ĝ0(V) and maps it to hA|Gk(V∗). Where recall that even
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functions on the sphere of the exterior algebra induce functions on the Grassmannian via the Plücker
embedding. In the following let us write

gA := hA|Gk(V∗) : Gk(V
∗) → R.

It was first conjectured by Georges Matheron in [60] that this is still injective and he proved the
cases k = 1,m−1 (which are clear in our context given the injectivity of the classical cosine transform).
However, this was disproved by Goodey and Weil who showed in [43, Theorem 2.1] that its kernel is
non trivial for 1 < k < m.

Definition 2.4.17. We define the kernel of the cosine transform (KoCT) to be

M(k,V) :=
{
A ∈ Ĝ0(k,V) | gA ≡ 0

}
.

Moreover we write

M(V) :=

m⊕
k=0

M(k,V).

Proposition 2.4.18. The subspace M(V) is an ideal of Ĝ0(V) invariant by ∗ and closed in the weak–∗
topology.

Proof. By definition, M(k,V) is a subspace of Ĝ0(k,V), to prove it is an ideal, we need to show that

given A ∈ Ĝ0(k,V) and κ ∈ M(l,V) their wedge product is in the KoCT. Suppose A = EX −EY and
κ = Eα−Eβ for some random integrable simple vectors X,Y, α, β all independents. Let u1, . . . , uk+l ∈
V∗ ∼= V and write w := u1 ∧ · · · ∧ uk+l. Then we have

hκ∧A(w) =
1

2
(E|⟨α ∧X,w⟩|+ E|⟨β ∧ Y,w⟩| − E|⟨β ∧X,w⟩| − E|⟨α ∧ Y,w⟩|) .

We now observe that |⟨x∧ y, z⟩| = |⟨x, ∗(y∧∗z)⟩|. Using this identity and the independence we obtain

hκ∧A(w) = E [hκ(∗(X ∧ ∗w))]− E [hκ(∗(Y ∧ ∗w))] .

Since X,Y , and w are (almost surely) simple vectors, so are ∗(X ∧∗w) and ∗(Y ∧∗w). Moreover since
κ is in the KoCT, by definition, hκ vanishes on simple vectors. Thus we have proved that hκ∧A(w) = 0
for all w simple, i.e κ ∧A is in the KoCT.

To see that it is closed, let us write for all E ∈ Gk(V), fE := |⟨E, ·⟩| ∈ C(Gk(V)). Then we have
by definition

M(k,V) =
⋂

E∈Gk(V)

{
A ∈ Ĝ (k,V) |

∫
Gk(V)

fE dµA = 0

}
.

By definition of the weak–∗ topology, each of the sets on the right are closed and thus the intersection
is closed.

The fact that it is Hodge star invariant follows from the fact that the Hodge star preserves the
simple vectors.

Remark 2.4.19. Since it is Hodge star invariant, M(V) is also an ideal for the convolution ∨ (see
Definition 2.4.1).

Next we see that the KoCT is related to the pairing from Section 2.4.2.

Proposition 2.4.20. Let A ∈ Ĝ0(V
∗). Then A ∈ M(V∗) if and only if for every B ∈ Ĝ0(V) we have

(A,B) = 0.

Proof. We can assume A is of degree k. Let w ∈ ΛkV be simple. Then, by Lemma 2.4.3, we have
(A,w) = 2hA(w). If (A, ·) ≡ 0 on Grassmannian zonoids, in particular it vanishes on segments and

thus A ∈ M(k, V ). Now suppose A ∈ M(k, V ) and let B = EX − EY ∈ Ĝ0(k,V) with X,Y almost
surely simple. We have (A,B) = 2E [hA(X)− hA(Y )] = 0 and this proves the result.
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Remark 2.4.21. This last result means that the pairing (·, ·) when restricted to Grassmannian zonoids
is degenerate: there are nonzero elements A such that (A, ·) is identically zero (on Grassmannian
zonoids). In particular it implies that the pairing on the whole zonoid algebra is not positive definite.

Of course if one has an algebra and a closed ideal, one immediately wants to take a quotient.
Indeed we shall do so in Chapter 3 and see how Ĝ0(V

∗)/M(V∗) injects in the space of even continuous
translation invariant valuations on K (V), see Corollary 3.3.8.

Finally since theGl(V) action on the exterior algebra preserves simple vectors we have the following.

Proposition 2.4.22. The subspace M(V) ⊂ Ĝ (V) is a Gl(V)-invariant subspace.

Proof. If A ∈ M(k,V), g ∈ Gl(V) and E ∈ Gk(V
∗) then gg·A(E) = gA(g

t · E) = 0.

2.4.5 Radon Transform and wedge with balls

We introduce the following integral transform.

Definition 2.4.23. The Radon Transform is the linear map R : Ceven(S(V)) → Ceven(S(V
∗)) given

for all f ∈ Ceven(S(V)) and u ∈ V∗ by

(Rf)(u) := E[f(Xu)]

where Xu
⊂⊂S(u⊥) is uniform.

We connect this transform with an operation on the zonoid algebra.

Definition 2.4.24. We define the map β : Ẑ0(V) → Ẑ0(Λ
m−1V) given for all A ∈ Ẑ0(V) by

β(A) := A ∧B(V)∧(m−2).

We can show the following.

Proposition 2.4.25. For all A ∈ Ẑ0(V), identifying with the Hodge star ∗(Λm−1V∗) = V, we have

h̄∗β(A) =
(m− 1)!κm−1

2
Rh̄A

where recall that h̄A denotes the support function restricted to the sphere.

Proof. We can assume A = K = EX ∈ Z0(V), moreover, let b1, . . . , bm−1
⊂⊂V be iid independent of X

such that Ebi = B(V). Then for all x ∈ S(V) we have

h∗βK(x) =
1

2
E|⟨x, ∗(X ∧ b1 ∧ · · · ∧ bm−2)⟩|

=
1

2
E|⟨X, ∗(x ∧ b1 ∧ · · · ∧ bm−2)⟩|

= E [hK(∗(x ∧ b1 ∧ · · · ∧ bm−2))]

where in the second line we used the properties of the Hodge star and in the last line the independence
of the variables. Next we want to compute the law of the random vector Y := ∗(x ∧ b1 ∧ · · · ∧ bm−2).
Assume that ∥x∥ = 1, we see that x∧b1∧· · ·∧bm−2 = πx(b1)∧· · ·∧πx(bm−2) where πx is the orthogonal
projection on x⊥. Thus Y ∈ x⊥ almost surely and Y is invariant under the action of O(x⊥). Since
hA is homogeneous, we can replace Y by anything zonoid equivalent to it (see Proposition 1.2.29). By
what we just said Y is zonoid equivalent to a constant times Xx uniform on the unit sphere of x⊥. To
compute this constant we see that

E∥Y ∥ = ℓ(πx(B(V))∧(m−2)) = ℓ(B
∧(m−2)
m−1 ).

We use Lemma 2.2.17 to compute it, giving

ℓ(B
∧(m−2)
m−1 ) =

1

2
ℓ(B

∧(m−1)
m−1 ) =

(m− 1)!κm−1

2

which gives what we wanted.
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Remark 2.4.26. Note that for all g ∈ O(V) and all K ∈ Z0(V) we have β(g ·K) = g · β(K).

Example 2.4.27. Let x ∈ V we get

∗ β(x) = (m− 2)!κm−2

2
∥x∥B(x⊥).

Indeed by the previous remark β(x) is invariant under the action of O(x⊥) thus to prove the equality
we claim it is enough to compute the length.

ℓ(x ∧B(V)∧(m−2)) =
1

2
ℓ(x ∧B(V)∧(m−1))

=
(m− 1)!κm−1

2
∥x∥

=
(m− 2)!κm−2

2
∥x∥ℓ(Bm−1)

where we used Lemma 2.2.17 in the case k = m− 1 for the first equality and in the other direction in
the case k = 1 for the second equation and in the third equality we used the expression for the length
of balls computed in Example 2.2.18.

The Radon transform has been extensively studied and in particular is known to be injective. Thus
it proves the following.

Proposition 2.4.28. For all 0 ≤ k ≤ m− 2, the map Ẑ0(V) → Ĝ0(k+1,V) given for all K ∈ Z0(V)
by K 7→ K ∧B(V)∧k is injective.

Open problem 8. Is the previous proposition still true if we replace B(V) by any curved/full dimensional
zonoid of V?

2.5 Example 1: Fiber bodies

In this section we give an example where the zonoid algebra naturally appears and helps with compu-
tations. This is a joint work with Chiara Meroni and this section is based on [61].

In this section we consider the Euclidean vector space Rn+m endowed with the standard Euclidean
structure and we let E ⊂ Rn+m be a subspace of dimensions n. Denote by F its orthogonal complement,
in such a way that Rn+m = E ⊕ F . Let π : Rn+m → E be the orthogonal projection onto E.
Throughout this section we will canonically identify the Euclidean space with its dual.

If K ∈ K (Rn+m) we write Kx for the orthogonal projection onto F of the fiber of π|K over x,
namely

Kx := {y ∈ F | (x, y) ∈ K} .

The fiber body of K with respect to π is the average of the fibers of K under this projection:

ΣπK =

∫
π(K)

Kx dx. (2.5.1)

Where this integral is defined in a similar way as the expected convex body in Definition 1.2.18. We
will make it more rigorous below.

Such a notion was introduced for polytopes by Billera and Sturmfels in [22]. It has been investigated
in many different contexts, from combinatorics such as in [12] to algebraic geometry and even tropical
geometry in the context of polynomial systems [38, 37, 83].

We propose here to study the fiber body of zonoids. After a quick investigation of the fiber body
of general convex bodies, we will show how the fiber body of a zonoid can be computed using zonoid
calculus.
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2.5.1 Definition and first considerations

Let us first define the fiber body of a general convex body in K (Rn+m) and study some basic properties.
We will need the following notion.

Definition 2.5.1. A map γ : π(K) → F such that for all x ∈ π(K), γ(x) ∈ Kx is called a section of
π. When there is no ambiguity on the map π we will simply say that γ is a section.

Using this notion we are now able to define our main object of study for this section.

Definition 2.5.2. The fiber body of K with respect to the projection π is the convex body

ΣπK :=

{∫
π(K)

γ(x) dx | γ : π(K) → F measurable section

}
∈ K (F ).

Here dx denotes the integration with respect to the n–dimensional Lebesgue measure on E. We say
that a section γ represents y ∈ ΣπK if y =

∫
π(K)

γ(x)dx.

Remark 2.5.3. Note that, with this setting, if π(K) is of dimension < n, then its fiber body is
ΣπK = {0}.

This definition of fiber bodies, that can be found for example in [37] under the name Minkowski
integral, extends the classic construction of fiber polytopes [22], up to a constant. Here, we choose
to omit the normalization 1

voln(π(K)) in front of the integral used by Billera and Sturmfels in order to

make apparent the degree of the map Σπ seen in (2.5.2). This degree becomes clear with the notion of
mixed fiber body, see [37, Theorem 1.2].

Proposition 2.5.4. For any λ ∈ R we have Σπ(λK) = λ|λ|nΣπK. In particular if λ ≥ 0

Σπ(λK) = λn+1ΣπK. (2.5.2)

Proof. If λ = 0 it is clear that the fiber body of {0} is {0}. Suppose now that λ ̸= 0 and let
γ : π(K) → F be a section. We can define another section γ̃ : π(λK) → F by γ̃(x) := λγ

(
x
λ

)
. Using

the change of variables y = x/λ, we get that∫
λπ(K)

γ̃(x) dx = λ|λ|n
∫
π(K)

γ(y) dy.

This proves that ΣπλK ⊆ λ|λ|nΣπK. Repeating the same argument for λ−1 instead of λ, the other
inclusion follows.

Corollary 2.5.5. If K ∈ K0(Rn+m) then ΣπK ∈ K0(F ).

Proof. Apply the previous proposition with λ = −1 to get Σπ ((−1)K) = (−1)ΣπK. If K is centrally
symmetric with respect to the origin then (−1)K = K and the result follows.

As a consequence of the definition, it is possible to deduce a formula for the support function of
the fiber body. This is the rigorous version of equation (2.5.1).

Proposition 2.5.6. For any u ∈ F we have

hΣπK(u) =

∫
π(K)

hKx
(u)dx. (2.5.3)

Proof. By definition

hΣπK(u) = sup

{∫
π(K)

⟨u, γ(x)⟩ dx | γ measurable section

}
≤
∫
π(K)

hKx
(u)dx.

To obtain the equality, it is enough to show that there exists a measurable section γu : π(K) → F
with the following property: for all x ∈ π(K) the point γu(x) maximizes the linear form ⟨u, ·⟩ on Kx.
In other words for all x ∈ π(K), ⟨u, γu(x)⟩ = hKx

(u). This is due to [14, Proposition 2.1].
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Remark 2.5.7. In the terminology of Section 1.2.2 and Definition 1.2.18 we could write this last result
as ΣπK = voln(π(K))EKX where X⊂⊂π(K) is uniformly distributed.

A similar result can be shown for the faces of the fiber body.

Definition 2.5.8. Let K ∈ K (Rn+m), if U = {u1, . . . , uk} is an ordered family of vectors of Rn+m,
we write

KU := (· · · (Ku1)
u2 · · · )uk

where recall that Ku denotes the face of K in the direction u, see Definition 1.1.19.

In the following, we show that the face of the fiber body is, in some sense, the fiber body of the
faces.

Lemma 2.5.9. Let U = {u1, . . . , uk} be a an ordered family of linearly independent vectors of F , take

y ∈ ΣπK and let γ : π(K) → F be a section that represents y. Then y ∈ (ΣπK)
U

if and only if

γ(x) ∈ (Kx)
U
for almost all x ∈ π(K). In particular we have that

(ΣπK)
U
=

{∫
π(K)

γ(x)dx | γ section such that γ(x) ∈ (Kx)
U

for all x

}
. (2.5.4)

Proof. Suppose first that U = {u}. Assume that γ(x) is not in (Kx)
u
for all x in a set of non–zero

measure O ⊂ π(K). Then there exists a measurable function ξ : π(K) → F with ⟨u, ξ⟩ ≥ 0 and
⟨u, ξ(x)⟩ > 0 for all x ∈ O, such that γ̃ := γ + ξ is a section (for example you can take γ̃(x) to be the
nearest point on Kx of γ(x) + u). Let ỹ :=

∫
π(K)

γ̃ . Then ⟨u, ỹ⟩ = ⟨u, y⟩+
∫
π(K)

⟨u, ξ⟩ > ⟨u, y⟩. Thus
y does not belong to the face (ΣπK)

u
.

Suppose now that y is not in the face (ΣπK)
u
. Then there exists ỹ ∈ ΣπK such that ⟨u, ỹ⟩ > ⟨u, y⟩.

Let γ̃ be a section that represents ỹ. It follows that
∫
π(K)

⟨u, γ̃⟩ >
∫
π(K)

⟨u, γ⟩. This implies the existence

of a set O ⊂ π(K) of non–zero measure where ⟨u, γ̃(x)⟩ > ⟨u, γ(x)⟩ for all x ∈ O. Thus for all x ∈ O,
γ(x) does not belong to the face (Kx)

u
.

In the case U = {u1, . . . , uk+1} we can apply inductively the same argument. Replace ΣπK by

(ΣπK)
{u1,...,uk} and u by uk+1, and use the representation of (ΣπK)

{u1,...,uk} given by (2.5.4).

Using the same strategy in the proof of Proposition 2.5.6 we obtain the following formula.

Lemma 2.5.10. For every u, v ∈ F , h(ΣπK)u(v) =
∫
π(K)

h(Kx)u(v) dx.

By definition, a point y of the fiber body ΣπK is the integral y =
∫
π(K)

γ(x)dx of a measurable

section γ. Thus γ can be modified on a set of measure zero without changing the point y, i.e. y only
depends on the L1 class of γ. It is natural to ask what our favourite representative in this L1 class will
be and how regular can it be. In the case where K is a polytope, γ can always be chosen continuous.
However if K is not a polytope and if y belongs to the boundary of ΣπK, a continuous representative
may not exist. This is due to the fact that, in general, the map x 7→ Kx is only upper semicontinuous,
see [49, Section 6].

Example 2.5.11. Consider the function f : S1 → R such that

f(x, y) =

{
0 x < 0

1 x ≥ 0

and let K ∈ K (R3) be the convex hull of the graph of f , see Figure 2.2. Let π : R3 → R be the
projection on the first coordinate π(x, y, z) = x. Then the point p ∈ ΣπK ⊂ R2 maximizing the linear
form associated to (y, z) = (1, 0) must have only non–continuous sections. This can be proved using
the representation of a face given by (2.5.4).

Open problem 9. What regularity can we ask to the section needed to represent all points of the fiber
body?
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Figure 2.2: The convex body of Example 2.5.11. In its boundary there are 2 green half–discs, 2 red
triangles and 4 blue cones.

2.5.2 Fiber bodies of curved bodies

In this section we are interested in the case where K is a curved body in the sense of Definition 1.1.32.
This, a priori, does not concerns zonoids nor zonoid calculus but the author found the result short and
interesting enough to be included. We prove Theorem 2.5.14 which is a formula to compute support
function of the fiber body directly in terms of the support function of K, without having to compute
those of the fibers.

IfK is a curved body then in particular it is full–dimensional and its boundary is a C2 hypersurface.
Moreover we have the following which is [80, p.116], where curved convex bodies are said to be “of
class C2

+” and the differential dv∇hK is denoted by W v.

Lemma 2.5.12. Let K ⊂ Rn+m be a curved convex body and let v ∈ Sn+m−1. Then the differential
dv∇hK is a symmetric positive definite automorphism of v⊥.

Recall that in the curved case the gradient of the support function gives is equal to the face, see
Proposition 1.1.20. The following gives an expression for the face of the fiber body. This is to be
compared with the case of polytopes which is given in [38, Lemma 11].

Lemma 2.5.13. If K is a curved convex body and u ∈ F with ∥u∥ = 1, then

∇hΣπK(u) =

∫
E

∇hK(u+ ξ) · Jψu(ξ) dξ

where ψu : E → E is given by ψu(ξ) = (π ◦ ∇hK) (u + ξ) and Jψu
(ξ) denotes its Jacobian (i.e. the

determinant of its differential) at the point ξ.

Proof. From (2.5.4) we have that ∇hΣπK(u) =
∫
π(K)

γu(x)dx, where γu(x) = ∇hKx(u). Assume that

x = ψu(ξ) is a change of variables. We get γu(x) = (γu ◦π ◦∇hK)(u+ ξ) = ∇hK(u+ ξ) and the result
follows.

It remains to prove that it is indeed a change of variables. Note that ∇hK(u + ξ) = ∇hK(v)
where v = u+ξ

∥u+ξ∥ ∈ Sn+m−1. The differential of the map ξ 7→ E maps E to (E + Ru) ∩ v⊥. Moreover

∇hK restricted to the sphere is a C1 diffeomorphism by assumption. Thus it only remains to prove
that its differential dv∇hK sends (E + Ru) ∩ v⊥ to a subspace that does not intersect ker (π|v⊥). To

see this, note that ker (π|v⊥)
⊥

= (E + Ru) ∩ v⊥. Moreover, by the previous lemma, we have that

⟨w,dv∇hK ·w⟩ = 0 if and only if w = 0. Thus if w ∈ ker (π|v⊥)
⊥

and w ̸= 0, then π (dv∇hK · w) ̸= 0.
Putting everything together, this proves that dξψu has no kernel which is what we wanted.

As a direct consequence we derive a formula for the support function.

Theorem 2.5.14 (M–Meroni). Let K ⊂ Rn+m be a curved convex body. Then the support function
of ΣπK is for all u ∈ F

hΣπK(u) =

∫
E

⟨u,∇hK(u+ ξ)⟩ · Jψu
(ξ) dξ
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where ψu : E → E is given by ψu(ξ) = (π ◦ ∇hK) (u+ ξ) and Jψu
(ξ) denotes its Jacobian at the point

ξ.

Proof. Apply the previous lemma to hΣπK(u) = ⟨u,∇hΣπK(u)⟩.

Assume that the support function hK is algebraic, i.e. it is a root of some polynomial equation.
Then, the integrand in Lemma 2.5.13 and in Theorem 2.5.14 is also algebraic. Indeed, it is simply
∇hK(u+ ξ) times the Jacobian of ψu which is a composition of algebraic functions. We can generalize
this concept in the direction of D–modules (see [95], or [77] for a text with a view towards applied
nonlinear algebra). One can define what it means for a D–ideal of the Weyl algebra D to be holonomic.
Then a function is holonomic if its annihilator, a D–ideal, is holonomic. Intuitively, this means
that such function satisfies a system of linear homogeneous differential equations with polynomial
coefficients, plus a suitable dimension condition. Holonomicity can be seen as a generalization of
algebraicity which is closed under integration. We say that a convex body K is holonomic if its
support function hK is holonomic. In this setting, the fiber body satisfies the following property.

Corollary 2.5.15. If K is a curved holonomic convex body, then its fiber body is again holonomic.

Proof. We prove that the integrand in Theorem 2.5.14 is a holonomic function of u and ξ. Then the
result follows from the fact that the integral of a holonomic function is holonomic [77, Proposition 2.11].
If hK is holonomic then ∇hK(u+ ξ) is a holonomic function of u and ξ, as well as its scalar product
with u. It remains to prove that the Jacobian of ψu is holonomic. But ψu is the projection of a
holonomic function and thus holonomic, so the result follows.

It is probable that the assumption of being curved is not needed for Corollary 2.5.15 but we needed
it to write down the formula in Theorem 2.5.14.

2.5.3 Fiber bodies of zonoids

We saw in Corollary 2.5.5 that the fiber body of a centrally symmetric convex body is again centrally
symmetric. However, it is not clear from the definition, nor from (2.5.3) that the fiber body of a zonoid
is a zonoid. Indeed, if K ∈ Z0(Rn+m), the section Kx is not in general a zonoid.

We will show however that it is the case and that the operation of taking the fiber body is actually
an instance of zonoid calculus. Let us first introduce some of the tools used by Esterov in [37].

Definition 2.5.16. For any u ∈ F define Tu := IdE ⊕⟨u, ·⟩ : E ⊕ F → E ⊕ R.

Definition 2.5.17. Let C ∈ K (E⊕R). The shadow volume V+(C) of C is defined to be the integral
of the maximal function on π(C) ⊂ E such that its graph is contained in C, i.e.

V+(C) =

∫
π(C)

φ(x)dx,

where φ(x) = sup {t | (x, t) ∈ C}. In particular if (−1)C = C, then the shadow volume is V+(C) =
1
2 voln+1(C).

The shadow volume can then be used to express the support function of the fiber body.

Lemma 2.5.18. For u ∈ F and K ∈ K (Rn+m), we have

hΣπK(u) = V+ (Tu(K)) .

In particular if (−1)K = K,

hΣπK(u) =
1

2
voln+1 (Tu(K)) . (2.5.5)

Proof. We also denote by π : E⊕R → E the projection onto E. The shadow volume is the integral on
π(Tu(K)) = π(K) of the function φ(x) = sup {t | (x, t) ∈ Tu(K)} = sup {⟨u, y⟩ | (x, y) ∈ K} = hKx

(u).
Thus the result follows from Proposition 2.5.6.
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Remark 2.5.19. Note that if m = 2 then Tu is the projection onto the hyperplane spanned by E and
u. In that case (2.5.5) is the formula for the support function of the projection body ΠK of K at Ju,
where J is a rotation by π/2 in F , see [80, Section 10.9]. Thus in that case, ΣπK is the projection of
ΠK onto F rotated by π/2.

At this point, the reader familiar with zonoid calculus starts to see the signs that indicates its
presence such as volume and projection body. But before going any further, let us note that Esterov
shows in [37] that the map Σπ : K (Rn+m) → K (F ) comes from another map, which is (Minkowski)
multilinear in each variable: the mixed fiber body. The following is [37, Theorem 1.2].

Proposition 2.5.20. There is a unique symmetric multilinear map

MΣπ :
(
K (Rn+m)

)n+1 → K (F )

such that for all K ∈ K (Rn+m), MΣπ(K, . . . ,K) = Σπ(K).

As announced, we will show that on zonoids this maps comes from FTZC (Theorem 2.1.16). To
describe the corresponding multilinear map, let us observe that the splitting Rn+m = E ⊕ F induces
a splitting

Λk(E ⊕ F ) =
⊕
a+b=k

Λa,b(E ⊕ F ) (2.5.6)

where Λa,b(E ⊕ F ) ∼= ΛaE ⊗ ΛbF . This induces a collection of multilinear maps

F a,bπ : (E ⊕ F )a+b → ΛaE ⊗ ΛbF (2.5.7)

given by the wedge product (E ⊕ F )k → Λk(E ⊕ F ) composed with the orthogonal projection on one
of the components of the splitting (2.5.6).

In our context we will be interested in the case where (a, b) = (n, 1).

Definition 2.5.21. We write Fπ := Fn,1π , more explicitely, it is given for all x1, . . . , xn+1 ∈ E and
y1, . . . , yn+1 ∈ F by:

Fπ ((x1, y1), . . . , (xn+1, yn+1)) :=

n+1∑
i=1

(−1)n+1−i(x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn+1)yi

where x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn+1 denotes the determinant of the chosen vectors omitting xi.

We are now able to prove the main result of this section, here stated in the language of the zonoid
calculus introduced in Section 2.1.2 and Theorem 2.1.16.

Theorem 2.5.22 (M–Meroni). The mixed fiber body of a zonoid is a zonoid. Moreover, if K1, . . .Kn+1 ∈
Z0(Rn+m) then

F̂π(K1, . . . ,Kn+1) = (n+ 1)!MΣπ(K1, . . . ,Kn+1)

where F̂π : Z0(Rn+m)n+1 → Z0(F ) denotes the maps induced on zonoids from Fπ by FTZC (Theo-
rem 2.1.16).

Proof. Suppose first that all zonoids are equal that is Ki = K for all i and let K = EX and u ∈ F .
Note that Tu(K) = ETu(X1). Thus by (2.5.5) and Vitale’s Theorem (2.2.10) we get

hΣπK(u) = 1
2 voln+1

(
ETu(X)

)
= 1

2
1

(n+1)!E|Tu(X1) ∧ · · · ∧ Tu(Xn+1)| (2.5.8)

where X1, . . . , Xn+1 ∈ Rn+m are iid copies of X.
Now let us write Xi := (αi, βi) with αi⊂⊂E and βi⊂⊂F . Then

|Tu(X1) ∧ · · · ∧ Tu(Xn+1)| = |(α1, ⟨u, β1⟩) ∧ · · · ∧ (αn+1, ⟨u, βn+1⟩)|

=

∣∣∣∣∣
n+1∑
i=1

(−1)n+1−i(α1 ∧ · · · ∧ α̂i ∧ · · · ∧ αn+1)⟨u, βi⟩

∣∣∣∣∣
= |⟨u, Fπ ((α1, β1), . . . , (αn+1, βn+1))⟩| .
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Reintroducing this in (2.5.8) we obtain:

hΣπK(u) =
1

(n+ 1)!

1

2
E |⟨u, Fπ (X1, . . . , Xn+1)⟩|

which is what we want. The general case follows by expanding Σπ(t1K1 + · · ·+ tn+1Kn+1).

Applying it to zonotopes, this allows to generalize [22, Theorem 4.1].

Corollary 2.5.23. For all z1, . . . , zN ∈ Rn+m, the fiber body of the zonotope
∑N
i=1 zi is the zonotope

given by

Σπ

(
N∑
i=1

zi

)
= (n+ 1)!

∑
1≤i1<···<in+1≤N

Fπ(zi1 , . . . , zin+1). (2.5.9)

Proof. This follows from the defining property of F̂π, namely F̂π(zi1 , . . . , zin+1
) = Fπ(zi1 , . . . , zin+1

),

the fact that if any two zi are equal this is zero and the symmetry of F̂π which both follow from its
definition.

Formula (2.5.9) was implemented by Chiara Meroni for OSCAR 0.8.2-DEV [71] and SageMath 9.2 [75]
and is available at https://mathrepo.mis.mpg.de/FiberZonotopes.

Remark 2.5.24. In Definition 2.5.21, we have defined the map Fπ as the composition of the wedge prod-
uct and a projection. It follows that the (mixed) fiber body enters the framework of the zonoid algebra.
More precisely if K ∈ Z0(Rn+m) then ΣπK is a projection of 1

(n+1)!K
∧(n+1) ∈ Z0(Λ

n+1Rn+m).

Considering the splitting (2.5.6), the fiber body can be seen as a particular case of a collection

of maps F̂ a,bπ : Z0(E ⊕ F )a+b → Z0(Λ
aE ⊗ ΛbF ) induced from the maps (2.5.7). Indeed from

Definition 2.5.21, it corresponds to the case (a, b) = (n, 1). Moreover from Corollary 2.2.21 we see
that if a + b = n + m − 1, i.e (a, b) = (n,m − 1) or (n − 1,m) then we obtain a projection of the
projection body ΠK. It remains the question to what correspond the other cases. Is there something
that already appeared in convex geometry? A rapid count of dimensions shows that in most of the
other cases, the target space ΛaE ⊗ ΛbF has a bigger dimension than the source space Rn+m. There
are however exceptions for instance n = m = 2 and a = b = 1. In that case we obtain a bilinear map
F 1,1
π : (R4)2 → R2 ⊗ R2 ∼= R4.

Open problem 10. Investigate, in the case n = m = 2, the map

F̂ 1,1
π : Z0(R4)2 → Z0(R4).

From this point of view and using basic zonoid calculus techniques, we can deduce the following.

Proposition 2.5.25. Let K ∈ Z0(Rn+m), for all L1, . . . , Lm−1 ∈ Z0(F ), we have

MV(L1, . . . , Lm−1,K[n+ 1]) =
(n+ 1)!m!

(m+ n)!
MV(L1, . . . , Lm−1,ΣπK)

where on the left the mixed volume is on the whole space Rn+m while on the right we consider the
mixed volume on the subspace F .

Proof. Let X⊂⊂Rn+m and Y1, . . . , Yn−1
⊂⊂F be integrable all independent such that K = EX and

Li = EYi and let X1, . . . , Xn+1 be iid copies of X. Then by (2.2.4) we have

MV(L1, . . . , Lm−1,K[n+ 1]) =
1

(m+ n)!
E|Y1 ∧ · · · ∧ Ym−1 ∧X1 ∧ · · · ∧Xn+1|.

In the decomposition (2.5.6), Y1 ∧ · · · ∧ Ym−1 ∈ Λ0,m−1Rn+m thus in the wedge product above, the
only non zero term in the decomposition of X1 ∧ · · · ∧Xn+1 is the one in Λn,1Rn+m. In other words

E|Y1 ∧ · · · ∧ Ym−1 ∧X1 ∧ · · · ∧Xn+1| = E|Y1 ∧ · · · ∧ Ym−1 ∧ Fπ(X1, . . . , Xn+1)|.

 https://mathrepo.mis.mpg.de/FiberZonotopes
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By Theorem 2.5.22, this yields

MV(L1, . . . , Lm−1,K[n+ 1]) =
(n+ 1)!

(n+m)!
ℓ(L1 ∧ · · · ∧ Lm1

∧ ΣπK)

and the result follows by (2.2.4).

Next, we illustrate how Theorem 2.5.22 can be useful to explicitely compute the fiber body.

Definition 2.5.26. Let e1, e2, e3 be the standard basis of R3 and let Di := B(e⊥i ) be the unit disc in
e⊥i

∼= R2. We define the dice to be the zonoid D := D1 +D2 +D3. See Figure 2.3a.

The dice is a special case of what is called a discotope, that is a finite Minkowski sum of discs. For
more on discotopes see [1, 42] or [61, Section 5.2].

Consider the projection π := ⟨e1, ·⟩ : R ⊕ R2 → R. Even in this simple example the fibers of the
dice under this projection can be tricky to describe. However, using zonoid calculus, one can compute
explicitly the fiber body without much effort (see Figure 2.3b).

(a)
(b)

Figure 2.3: Left: the dice. Right: its fiber body.

Proposition 2.5.27. With respect to this projection π, the fiber body of D is

Σπ(D) = D1 +
π

4

(
e2 + e3

)
+

1

2
Λ

where Λ is the convex body whose support function is given by

hΛ(u2, u3) =
1

2

∫ π

0

√
cos(θ)2 (u2)

2
+ sin(θ)2 (u3)

2
dθ.

Proof. First of all let us note that by expanding the mixed fiber body MΣπ(D ,D) we have

Σπ(D) = Σπ(D1) + Σπ(D2) + Σπ(D3) + 2 (MΣπ(D1, D2) +MΣπ(D1, D3) +MΣπ(D2, D3)) .

Now let σ1(θ) := (0, cos(θ), sin(θ)), σ2(θ) := (cos(θ), 0, sin(θ)) and σ3(θ) := (cos(θ), sin(θ), 0) in such a
way that hDi

(u) = π
2E|⟨u, σi(θ)⟩| (see Lemma 2.3.5).

We then want to use Theorem 2.5.22 to compute all the summands of the expansion. Using this

and Proposition 2.1.18 we have that MΣπ(Di, Dj) =
π2

8 EFπ(σi(θ), σj(ϕ)) with θ, ϕ ∈ [0, 2π] uniform

and independent. In our case, Fπ(x, y) = (x1y2 − y1x2, x1y3 − y1x3). We obtain

Fπ(σ1(θ), σ1(ϕ)) = 0, Fπ(σ2(θ), σ2(ϕ)) = (0, sin(ϕ− θ)),

Fπ(σ3(θ), σ3(ϕ)) = (sin(ϕ− θ), 0), Fπ(σ1(θ), σ2(ϕ)) = − cos(ϕ) · (cos(θ), sin(θ)),
Fπ(σ1(θ), σ3(ϕ)) = − cos(ϕ) · (cos(θ), sin(θ)), Fπ(σ2(θ), σ3(ϕ)) = (cos(θ) sin(ϕ), sin(θ) cos(ϕ)).
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Computing the support function hπ2/8EFπ(σi(θ),σj(ϕ))(u) = (π/4)2E|⟨u, Fπ(σi(θ), σj(ϕ))⟩| and using

that E| cos(ϕ)| = 2/π, we get

Σπ(D1) = 0; Σπ(D2) =
π

4
e2; Σπ(D3) =

π

4
e3;

MΣπ(D1, D2) = MΣπ(D1, D3) =
1

4
D1

It only remains to compute MΣπ(D2, D3). We have

hMΣπ(D2,D3)(u) =
1

2

π2

8
E|⟨u, Fπ(σ2(θ), σ3(ϕ))⟩| =

π2

16
E|u2 cos(θ) sin(ϕ) + u3 sin(θ) cos(ϕ)|.

We use then the independence of θ and ϕ to find

hMΣπ(D2,D3)(u) =
π

8
E
√

cos(θ)2 (u2)
2
+ sin(θ)2 (u3)

2
=

1

4
hΛ(u)

Puting back together everything we obtain the result.

Remark 2.5.28. In the case where u2 ̸= 0 we have

hΛ(u) = |u2|E

√1−
(
u3
u2

)2


where E(s) =
∫ π/2
0

√
1− s2 sin(θ)2dθ is the complete elliptic integral of the second kind. This function

is not semialgebraic thus the example of the dice (which is semialgebraic, see [61, section 5.3]) shows
that the fiber body of a semialgebraic convex body is not necessarily semialgebraic. However E is
holonomic. This suggests as mentioned before that the curved assumption in Corollary 2.5.15 may not
be needed.

Conjecture 11. Let M be a multilinear map between finite dimensional vector spaces and let M̂ be
the induced map on zonoids by FTZC. Then M̂ maps holonomic bodies to holonomic bodies.

2.6 Example 2: Gaussian zonoids

This example is less about zonoid calculus and more about an application of the generalizations of
Vitale’s Theorem presented in Section 2.2.3.

We will see how the point of view of convex geometry can help the study of random determinants.
For example suppose we have two integrable vectors X,Y ⊂⊂V such that EX ⊂ EY . This implies
numerous inequalities in random matrices, for instance for any X2, . . . Xm

⊂⊂V integrable, independent
of X,Y we have E|det(X,X2, . . . , Xm)| ≤ E|det(Y,X2, . . . , Xm)|. But also many more, for rectangle
matrices, complex determinants, etc. The statement EX ⊂ EY is a concise way to express all these
inequalities.

In this example, we illustrate this with Gaussian vectors.

2.6.1 Gaussian vectors

Recall that a Gaussian random variable of mean c ∈ R and variance σ > 0 is a random real number
whose law has the density t 7→ 1√

2πσ2
exp(−(t − c)2/(2σ2)). Moreover, one can see the Dirac delta

measure δc as a degenerate Gaussian variable obtained from the general case letting σ → 0.

Definition 2.6.1. Let X⊂⊂V. We say that X is Gaussian is for every u ∈ V∗ \ {0}, the random
variable ⟨u,X⟩⊂⊂R is Gaussian. We say that X is non degenerate if for all u ∈ V∗ \ {0}, the random
variable ⟨u,X⟩⊂⊂R is non degenerate.
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If a Gaussian vector X⊂⊂Rm is non degenerate, then there is a positive definite Σ ∈ Rm×m and a
vector c ∈ Rm such that the law of X admits the density

x 7→ 1

det(2πΣ)
1
2

exp

(
−1

2
⟨(x− c),Σ−1(x− c)⟩

)
. (2.6.1)

In that case, c is the mean of X while Σ is its variance (sometime also called covariance matrix). We
say that a Gaussian vector is centered if its mean is c = 0, otherwise we call it non centered.

In this section we want to study the Vitale zonoid associated to Gaussian vectors.

Definition 2.6.2. A zonoid K ∈ Z0(V) is called a Gaussian zonoid if there is a Gaussian vector
X⊂⊂V such that K = EX.

In the following, we assume, for simplicity, that V = Rm and that all Gaussian vectors are non
degenerate.

A particular case is the standard Gaussian vector ξ ∈ Rm which admits a density given for all

x ∈ Rm by ρ(x) = (2π)−
m
2 exp

(
−∥x∥2

2

)
i.e. the centered Gaussian vector with variance Σ = Id .

One can prove, using for example the general expression of the density of a Gaussian vector (2.6.1),
that for every (non degenerate) Gaussian vector X⊂⊂Rm there is a linear map M : Rm → Rm and a
vector c ∈ Rm such that X has the same law asM(c+ξ). In that case, X has meanM(c) and variance
M tM .

We use this fact and Proposition 1.2.33 to reduce our study to the case where the Gaussian vector
is of the form c+ ξ, i.e. has variance the identity, hence the following definition.

Definition 2.6.3. For every c ∈ Rm we define

G(c) := Ec+ ξ

where ξ⊂⊂Rm is a standard Gaussian vector.

Hence, a convex body K ⊂ Rm is a (non degenerate) Gaussian zonoid if and only if there exists a
linear map M : Rm → Rm and a vector c ∈ Rm such that K =M(G(c)).

We already saw in Example 1.2.27 that, in the case c = 0, we have:

G(0) =
1√
2π
Bm

where recall that Bm = B(Rm) denotes the unit ball. Thus centered Gaussian zonoids are linear
images of the unit ball, that is ellipsoids.

2.6.2 Non centered Gaussian zonoids

In general, we can compute the support function of G(c) explicitly, see Figure 2.4. Note that, by
Proposition 1.2.33 and the invariance of ξ, G(c) is invariant by O(c⊥), the stabilizer of c in the
orthogonal group O(m), that is G(c) is a solid of revolution around the axis spanned by c ∈ Rm.

Proposition 2.6.4. Let c ∈ Rm \ {0} and let us write every u ∈ Rm as u = (x, y) ∈ R × Rm−1 with
x = ⟨u, c/∥c∥⟩ and y ∈ c⊥. Then the support function of G(c) is given by

hG(c)(x, y) =

√
x2(1 + ∥c∥2) + ∥y∥2√

2π
e

−x2∥c∥2

2(x2(1+∥c∥2)+∥y∥2) +
x∥c∥
2

erf

(
x∥c∥√

2
√
x2(1 + ∥c∥2) + ∥y∥2

)

where erf(t) := 2√
π

∫ t
0
e−s

2

ds is the error function.

Proof. The random variable ⟨(x, y), c+ξ⟩ is a Gaussian variable with mean x∥c∥ and variance equal to√
x2(1 + ∥c∥2) + ∥y∥2. Computing the first absolute moment of a Gaussian gives the result, see [53,

(3)] or [90].
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Figure 2.4: The Gaussian eye: the zonoids G(c) for ∥c∥ = 0, 1, 2 and 3.

Proposition 2.6.5. The map G : Rm → Z0(Rm) given by c 7→ G(c) is continuous. Moreover for all
c ̸= 0 the map t 7→ G(tc) is strictly increasing with respect to inclusion on t > 0.

Proof. Continuity follows from the fact that the function hG(·)(·) : Rm × Rm → R given by (c, u) 7→
hG(c)(u) is continuous and Lemma 1.1.18.

For the second part, we can assume without loss of generality that ∥c∥ = 1. It is enough to show
that given a fixed non zero point (x, y) ∈ R×Rm−1, the function t 7→ hG(tc)(x, y) is strictly increasing.
We get from Proposition 2.6.4:

d

dt
hG(tc)(x, y) =

tx2e
−x2t2

2(x2(1+t2)+∥y∥2)

√
2π
√
x2(1 + t2) + ∥y∥2

+
x

2
erf

(
xt√

2
√
x2(1 + t2) + ∥y∥2

)
which is positive on t > 0 and this concludes the proof.

For c ̸= 0 the Gaussian zonoid G(c) is not an ellipsoid. However we shall show that it remains
close to one, in a certain sense that we describe in Theorem 2.6.7 below, see also Figure 2.5. In order
to state the main result, let us first introduce a few definitions.

First we define λ : R → R to be given for all s ∈ R by

λ(s) :=
√

1 + s2 e
−s2

2(1+s2) + s

√
π

2
erf

(
s√

2
√
1 + s2

)
. (2.6.2)

Note that, by Proposition 2.6.4 and following the same notation, for all c ∈ Rm, we have

hG(c)(1, 0) =
λ(∥c∥)√

2π
. (2.6.3)

Using that and we find a first naive bound.

Proposition 2.6.6. For all c ̸= 0, the zonoid G(c) is contained in the following cylinder:

G(c) ⊂ 1√
2π
B(c⊥) +

√
2

π

λ(∥c∥)
∥c∥

c

and in particular we have

ℓ(G(c)) ≤ (m− 1)κm−1

κm−2

√
2π

+

√
2

π
λ(∥c∥).

Proof. We use the fact that hG(c)(x, y) ≤ hG(c)(0, y) + hG(c)(x, 0) and then use (2.6.3) and the ex-
pression of the support function in Proposition 2.6.4 to get the first statement. The second statement
follows from the linearity of the length and the computation of the length of a ball of dimension m−1,
see Example 2.2.18.

Then we define the constant

a∞ := e−
1
2 +

√
π

2
erf

(
1√
2

)
∼ 1.462 . . . (2.6.4)
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and the function φ∞ : R2 → R given for all (x, z) ∈ R2 by

φ∞(x, z) :=

√
x2 + a2∞z

2

a∞
exp

(
−x2

2(x2 + a2∞z
2)

)
+

x
√
π

a∞
√
2
erf

(
x√

2
√
x2 + a2∞z

2

)
. (2.6.5)

Finally, given c ∈ Rm, we define the linear map Tc : Rm → Rm that is the identity if c = 0 and
that sends c 7→ λ(∥c∥)c and is the identity on c⊥ if c ̸= 0. In other words, in an orthonormal basis
e1, . . . , em such that c = ∥c∥e1, it is given by the matrix:

Tc :=


λ(∥c∥) 0

1
. . .

0 1

 (2.6.6)

Theorem 2.6.7 (M.). For all c ∈ Rm, we have

b∞Tc

(
1√
2π
Bm

)
⊂ G(c) ⊂ Tc

(
1√
2π
Bm

)
where b∞ := min {φ∞(cos(t), sin(t)) | t ∈ [0, 2π]} ∼ 0.989 . . .

Proof. If c = 0, G(0) is equal to the upper bound and there is nothing to prove. Thus we can assume
without loss of generality that c = se1 where e1 is the first standard basis vector of Rm and s > 0. Let
G̃(s) :=

√
2πT−1

se1G(se1). The idea of the proof is to show that the map s 7→ G̃(s) is strictly decreasing
with respect to inclusion for s > 0. Once this is established, it is enough to show that the limit object
G̃(∞) exists and contains a ball of radius b∞.

Let us first show that s 7→ G̃(s) is decreasing. Let (x, z) ∈ R2 and consider the function

φx,z(s) :=
σ(s)√
2π
e−

τ2(s)
2 +

µ(s)

2
erf

(
τ(s)√

2

)
where

µ(s) :=
sx

λ(s)
; σ(s) :=

√
s2 + 1

λ2(s)
x2 + 2πz2; τ(s) :=

µ(s)

σ(s)
.

Then hG̃(s)(u) = φx,∥y∥(s) where, as in Proposition 2.6.4, x = ⟨u, e1⟩ and y is the orthogonal projection
of u onto e⊥1 . It is enough to show that for all x ∈ R and z ≥ 0, the function s 7→ φx,z(s) is decreasing
on s > 0. One can check that φ0,z = |z| and φx,0 = |x| which are constants in s. Moreover since
φ±x,±z = φx,z, we can assume x, z > 0. Thus in the following we fix x, z > 0 and omit them in the
notation, writing φ := φx,z.

Consider now the change of variable s̃ := s√
s2+1

. One can write φ(s) as a function of the variable

s̃. Since s̃ is strictly increasing on s > 0 it is enough to show that φ is decreasing in s̃ on 0 < s̃ < 1.
Writing φ′ for the derivative of φ with respect to s̃ at s̃, we obtain for 0 < s̃ < 1 (we omit the
dependence on s in the notation):

(1− s̃2)s̃λ2

x erf
(
s̃√
2

)
erf
(
τ√
2

)φ′ = ρ

(
s̃√
2

)
− ρ

(
τ√
2

)
(2.6.7)

where

ρ(t) := t
erf ′(t)

erf(t)
=

2te−t
2

√
π erf(t)

.

One can show that ρ(t) is strictly decreasing for t > 0, see [9, Lemma 2.1]. Moreover, since x, z > 0,
we have

τ =
x√

x2 + 2π(1− s̃2)λ2z2
s̃ < s̃.
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Figure 2.5: The boundary of G̃(∞) and G̃(0) = B2 in the positive orthant

And thus ρ
(
s̃√
2

)
< ρ

(
τ√
2

)
. The coefficient in front of φ′ in (2.6.7) is positive on 0 < s̃ < 1 and thus

this shows that φ′ < 0 on 0 < s̃ < 1. In definitive we have shown that for all s > 0 the map s 7→ G̃(s)
is (strictly) decreasing with respect to inclusion.

We now note that for all fixed (x, z) ∈ R2 and as s → ∞, φx,z(s) tends to φ∞(x, z) defined
in (2.6.5). Writing as before u = (x, y) ∈ R×Rm−1, by Lemma 1.1.18, the function φ∞(x, ∥y∥) is the
support function of a zonoid that we denote by G̃(∞). By what we just proved, for all s > 0 we have

G̃(∞) ⊂ G̃(s) ⊂ G̃(0).

Since T0 is the identity, we have that G̃(0) = Bm. Moreover, G̃(∞) contains a ball of radius b∞ since
it is the minimum of its support function on the sphere. Mapping everything through 1√

2π
Tse1 (which

preserves inclusion) gives the result.

From Theorem 2.6.7 and the fact that det(Tc) = λ(∥c∥), we get as an immediate corollary an
estimate on the volume of the Gaussian zonoids G(c).

Corollary 2.6.8. For every c ∈ Rm we have

(b∞)m
λ(∥c∥)
(2π)

m
2
κm ≤ volm(G(c)) ≤ λ(∥c∥)

(2π)
m
2
κm

where recall the definition of λ in (2.6.2) and of b∞ in Theorem 2.6.7.

The function λ is explicit and is expressed in terms of special functions. However, one can get a
simpler expression in the asymptotic cases s → 0 and s → ∞. In these cases we have the following
expansions:

λ(s) = 1 + s2 +O
(
s4
)
; λ(s) = a∞s+O

(
1

s

)
(2.6.8)

where recall the constant a∞ defined in (2.6.4). We see that, when c is close to 0, the volume of G(c)
tends to the upper bound in Corollary 2.6.8 and the lower bound is far from being sharp. In fact in
that case we have a better estimate from below that comes from the following inequality.

Lemma 2.6.9. For any t ≥ 0 we have

t erf(t) ≥ 1√
π

(
1− e−t

2
)
.

Proof. It is enough to see that t erf(t) ≥ 1√
π

∫ t
0
2se−s

2

ds.



84 CHAPTER 2. ZONOID CALCULUS

For all c ∈ Rm we define Lc : Rm → Rm to be the identity if c = 0 and to be the map that sends
c 7→

√
1 + ∥c∥2c and is the identity on c⊥ if c ̸= 0. In other words, in an orthonormal basis e1, . . . , em

such that c = ∥c∥e1, it is given by the matrix:

Lc :=


√
1 + ∥c∥2 0

1
. . .

0 1


Proposition 2.6.10. For all c ∈ Rm, we have

Lc

(
1√
2π
Bm

)
⊂ G(c).

Proof. Applying Lemma 2.6.9 to the support function of G(c) computed in Proposition 2.6.4 we find

hG(c)(x, y) ≥
1√
2π

√
x2(1 + ∥c∥2) + ∥y∥2.

The right hand side is equal to 1√
2π

∥Lc(u)∥ when, as before, x = ⟨u, c/∥c∥⟩ and y is the orthogonal

projection of u onto c⊥. Since Lc = Ltc, by Proposition 1.1.15–(iii), this is the support function of

Lc

(
1√
2π
Bm

)
and the result follows by Proposition 1.1.15–(ii).

Noting that det(Lc) =
√
1 + ∥c∥2, we get the following.

Corollary 2.6.11. For every c ∈ Rm, we have:

κm
(2π)

m
2

√
1 + ∥c∥2 ≤ volm(G(c)).

Combining this result with Corollary 2.6.8 and the expansion (2.6.8) we find the following.

Proposition 2.6.12. When ∥c∥ → 0, we have

1 +
1

2
∥c∥2 +O

(
∥c∥4

)
≤ (2π)

m
2

κm
volm (G(c)) ≤ 1 + ∥c∥2 +O

(
∥c∥4

)
.

2.6.3 Random Gaussian determinants

We now apply the previous results and the results of Section 2.2.3 to estimate the expectation of
the absolute determinant of a random matrix whose columns are non centered Gaussian vectors.
As mentioned in Example 2.2.27 the centered case was proved by Zakhar Kabluchko and Dmitry
Zaporozhets in [46] to be equal to the mixed volume of ellipsoids. We now show that the non centered
case is not far from that. This is an application of Corollary 2.2.26.

Theorem 2.6.13 (M.). Let 0 < k ≤ m and let X1, . . . , Xk ∈ Rm be independent Gaussian vectors
such that Xi =Mi(ci+ξi) with Mi : Rm → Rm a linear map, ci ∈ Rm fixed vectors and ξi iid standard
Gaussian vectors of Rm. Consider the random matrix Γ := (X1, . . . , Xk) whose columns are the vectors
Xi and define the ellipsoids Ei := (Mi ◦ Tci) (Bm) for i = 1, . . . , k where Bm ⊂ Rm is the unit ball and
recall the definition of Tc in (2.6.6). We have

(b∞)kαm,kMV(E1, . . . , Ek, Bm[m− k]) ≤ E
√
det (ΓtΓ) ≤ αm,kMV(E1, . . . , Ek, Bm[m− k])

where Bm[m − k] denotes the unit ball Bm ⊂ Rm repeated m − k times in the argument of the mixed
volume MV, αm,k := m!

(2π)k/2(m−k)!κm−k
and b∞ is defined in Theorem 2.6.7.
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Proof. We have EXi = Mi(G(ci)). Since the maps Mi preserve inclusion, Theorem 2.6.7 gives the

inclusions b∞(Mi◦Tci)
(

1√
2π
Bm

)
⊂Mi(G(ci)) ⊂ (Mi◦Tci)

(
1√
2π
Bm

)
. Then we apply Corollary 2.2.26

and the result follows by the monotonicity of the mixed volume.

This result is to be compared with [46, Theorem 1.1] which says that, in the centered case (i.e.
the case where ci = 0 for all i) this is equal to the upper bound. In some sense one can interpret
Theorem 2.6.7 by saying that, for each non centered Gaussian vector of the form X =M(ξ+ c), there
is a centered Gaussian vector Y = (M ◦ Tc)(ξ) such that, for random determinants, X is ”trapped”
between b∞Y and Y .

As before, in the case where some ci are close to zero, the lower bound in Theorem 2.6.13 is not
very good. Applying Proposition 2.6.10 and building the ellipsoids with Lc instead of Tc we get a
better estimate.

Proposition 2.6.14. Let 0 < l ≤ k ≤ m and let X1, . . . , Xk ∈ Rm be independent Gaussian vectors
such that Xi = Mi(ci + ξi) with Mi : Rm → Rm a linear map, ci ∈ Rm fixed vectors and ξi iid
standard Gaussian vectors of Rm. Consider the random matrix Γ := (X1, . . . , Xk) whose columns are
the vectors Xi and define the ellipsoids E ′

i := (Mi ◦Lci) (Bm) for i = 1, . . . , l and Ei := (Mi ◦Tci) (Bm)
for i = l + 1, . . . , k. We have

(b∞)k−lαm,kMV(E ′
1, . . . , E ′

l , El+1, . . . , Ek, Bm[m− k]) ≤ E
√

det (ΓtΓ)

where αm,k := m!
(2π)k/2(m−k)!κm−k

and b∞ is defined in Theorem 2.6.7.
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Chapter 3

Zonoids and valuations

In this chapter we introduce the theory of valuations on convex bodies. The goal of this chapter is then
to show that we can extend the product of smooth (even) valuations introduced by Semyon Alesker
using the wedge product of zonoids.

We first introduce the general theory in Section 3.1. We then build the exponential of zonoids in
Section 3.2 that will be used in the next section. Finally, in Section 3.3, we explain how to build a map
from the Grassmannian algebra to the algebra of even continuous real translation invariant valuations
such that the kernel is a ideal. We then show in Theorem 3.3.18 that the product thus defined extends
Alesker’s product by showing that this is a special case of a recent extension built by Nguyen-Bac
Dang and Jian Xiao in [33].

As before, V denotes an Euclidean space of dimension m <∞.

3.1 Theory of valuations

Let us start with the general definition.

Definition 3.1.1. A valuation on a subclass C ⊂ K (V) of convex bodies with values on a semi group
(S,+) is a map ϕ : C → S, such that for all K,L ∈ C such that K ∪ L,K ∩ L ∈ C we have

ϕ(K) + ϕ(L) = ϕ(K ∪ L) + ϕ(K ∩ L) (3.1.1)

We will be particularly interested in real valuations on convex bodies or polytopes that are trans-
lation invariant and sometimes continuous.

3.1.1 Translation invariant continuous even valuations

Definition 3.1.2. We denote by val+(V) the space of translation invariant continuous real valuations
on K (V) that are even (i.e ϕ(K) = ϕ((−1) ·K). We write val+k (V) ⊂ val+(V) the valuations that
are positively homogeneous of degree k.

McMullen proved that translation invariant continuous valuation can only have integer degree of
homogeneity. More precisely, we have the following, see [80, (6.22)].

Proposition 3.1.3. We have

val+(V) =

m⊕
k=0

val+k (V).

Moreover, val+k (V) is one dimensional for k = 0,m and infinite dimensional otherwise.

There is a classical norm on the space of valuations given for all ϕ ∈ val+(V) by

∥ϕ∥ := sup {ϕ(K) |K ⊂ B(V)} .

87
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We will call the topology induced by this norm on val+(V) the standard topology. Endowed with this
norm, val+(V) is a Banach space, see [80, Section 6.5].

Since the space val+m(V) is one dimensional spanned by volm if we restrict a valuation of degree k
to a subspace of dimension k it is a multiple of the volume volk on that space. This gives rise to the
following definition.

Definition 3.1.4. for a valuation ϕ ∈ val+k (V), its Klain function is the map Klϕ : Gk(V) → R such
that for all E ∈ Gk(V) we have

ϕ|E = Klϕ(E) volk(·)

It turns out that the Klain function is continuous and uniquely determine the valuation, see [80,
Theorem 6.4.11].

Proposition 3.1.5. The map val+k (V) → C(Gk(V)), ϕ 7→ Klϕ is injective.

Thus another possible topology on val+k (V) is given by pulling back the sup norm topology by the
Klain embedding. In other words we define

∥ϕ∥Kl := ∥Klϕ ∥∞.

We call the induced topology the Klain topology on val+(V), for more on this topology one can check
[19, Section 3].

The fact that the Klain function detemines the valuation implies that to check equality of valuations,
it is enough to check it on zonoids.

Lemma 3.1.6. Let ϕ1, ϕ2 ∈ val+(V) then ϕ1 = ϕ2 if and only if for all K ∈ Z0(V) , ϕ1(K) = ϕ2(K).

Proof. It is enough to see that for every ϕ ∈ val+k (V) and every E ∈ Gk(V), we have

Klϕ(E) = ϕ
(
e1 + · · ·+ ek

)
where e1, . . . , ek is an orthonormal basis of E.

Moreover for a valuation ϕ ∈ val+k (V) we have

Klϕ(E) =
1

κk
ϕ(B(E)).

Thus, since B(E) ⊂ B(V) we have that there is a constant 0 < c <∞ such that for all ϕ ∈ val+(V)

∥ϕ∥Kl ≤ c∥ϕ∥. (3.1.2)

Example 3.1.7. One can check that for all K,L ∈ K0(V) we have K + L = K ∪ L+K ∩ L. It follows
that any linear function is a valuation of degree one.

Example 3.1.8. Let L1, . . . , Lk ∈ K0(V) and define the function ϕL1,...,Lk
: K (V) → R that is given

for all K ∈ K0(V) by
ϕL1,...,Lk

(K) := MV(K[m− k], L1, . . . , Lk).

Then ϕL1,...,Lk
∈ val+(m− k,V). In particular the intrinsic volumes Vk are valuations.

Example 3.1.9. If ϕ ∈ val+(V) is a valuation and L ∈ K0(V) then the map

K 7→ ϕ(K + L)

is also a valuation. In particular volm(·+ L) is a valuation.

Another example that will be of particular importance to us is the following.

Example 3.1.10. For every signed measure µ ∈ M(Gk(V)), we can associate a valuation ϕµ ∈ val+k (V)
given for all K ∈ K (V) by

ϕµ(K) =

∫
Gk(V)

volk(K|E) dµ(E)

where (K|E) denotes the orthogonal projection of K onto E.
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3.1.2 Valuations on polytopes and non extendability of J-volume

On polytopes we have a weaker notion of continuity that corresponds to continuity on the set of
polytopes that have parallel faces.

Definition 3.1.11. A valuation ϕ : P(V) → R is said to be weakly continuous if for every finite set
U = {u1, . . . , ur} ⊂ S(V∗) of unit vectors positively spanning V∗, i.e.,

∑
iR+ui = V, the function

(t1, . . . , tr) 7→ ϕ ({v ∈ V | ⟨v, ui⟩ ≤ ti, i = 1, . . . , r})

is continuous on the set (t1, . . . , tr) for which the argument of ϕ is nonempty.

One can check that a continuous valuation is weakly continuous. The general form of weakly
continuous, translation invariant valuations on P(V ) was described in [63]. In particular, applying [63,
Theorem 1] to the J-volume (Definition 2.3.15) we get.

Proposition 3.1.12. The map volJn : P(Cn) → R is a weakly continuous, translation invariant
valuation.

The valuation volJn is a special case of an angular valuation, see [87].

Definition 3.1.13. Let f : Gk(V) → R be a measurable function. The angular valuation associated
to f is ϕf : P(V) → R, defined for all P ∈ P(V) by

ϕf (P ) :=
∑

F∈Fk(P )

volk(F ) ·Θ(F, P ) · f(EF ),

where recall the notation of Section 1.1.3 on polytopes.

It is known [63] that ϕf is a weakly continuous valuation.
The possibility of continuously extending an angular valuation from polytopes to convex bodies

was studied by Wannerer in [87]. The following is [87, Theorem 1.2]. We recall that an even function
on the sphere of ΛkV induces a function on the Grassmannian Gk(V) via the Plücker embedding.

Proposition 3.1.14. The angular valuation ϕf : P(V) → R can be extended to a continuous valuation
on K (V), if and only if f is the restriction to Gk(V) of a homogeneous quadratic polynomial on ΛkV.

We see from Definition 2.3.15 that the J-volume is the angular valuation associated to the function
(σJ)1/2 : Gn(Cn) → R.

If n = 1, then σJ is constant and equal to 1. The previous proposition implies that in this case we
can extend volJ1 to a continuous valuation on K (C). In fact one can see that in that case we obtain
the classical first intrinsic volume. If n ≥ 2, however, it is not possible as we will show next.

Corollary 3.1.15. If n ≥ 2, there is no continuous valuation on K (Cn) that is equal to volJn on P(Cn).

Proof. Using the notation of Proposition 3.1.14, we have volJn = ϕ(σJ )1/2 . We identify Cn ∼= R2n

and let J be the standard complex structure on it. Consider the homogeneous quadratic polynomial
p : ΛnR2n → Λ2nR2n, w 7→ w ∧ Jw. From Definition 2.3.10, σJ(w) = |p(w)| for w ∈ G(n, 2n) (in the
Plücker embedding). Suppose there were a homogeneous quadratic polynomial q : ΛnR2n → R such

that we have |p(w)| 12 = q(w) for all w ∈ G(n, 2n). Let us show that this leads to a contradiction, which
will complete the proof by Proposition 3.1.14. First of all, we notice that q(w) must be a nonnegative
polynomial and that we have |p(w)| = q(w)2 on G(n, 2n).

Let e1, . . . , en ∈ Cn be the standard basis, so that |e1∧· · ·∧en∧Je1∧· · ·∧Jen| = 1. We define the
curve w(θ) := (cos(θ)e1 + sin(θ)Je2) ∧ e2 ∧ · · · ∧ en in G(n, 2n) for θ ∈ [0, π]. This curve interpolates
between a Lagrangian plane (for θ = 0) and a plane, which contains a complex line (for θ = π). We
have that

p(w(θ)) = (cos(θ)e1 + sin(θ)Je2) ∧ e2 ∧ · · · ∧ en ∧ (cos(θ)Je1 − sin(θ)e2) ∧ e2 ∧ · · · ∧ en
= cos(θ)2(e1 ∧ · · · ∧ en ∧ Je1 ∧ · · · ∧ Jen),
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and so |p(w(θ))| = cos(θ)2. If we have |p(w(θ))| = q(w(θ))2, then q(w(θ)) = cos(θ), because q is
nonnegative. Since q is a quadratic form and by the definition of w(θ), there are a, b, c ∈ R such
that q(w(θ)) = a cos(θ)2 + b cos(θ) sin(θ) + c sin(θ)2 for all θ. Thus, we have an equality of functions
a cos(θ)2 + b cos(θ) sin(θ) + c sin(θ)2 = cos(θ). It can be checked that such an equality is not possible,
so our assumption was wrong and (σJ)1/2 cannot be the restriction of the square of a quadratic form
to G(n, 2n) and this completes the proof.

Remark 3.1.16. Note that for all continuous f : Gk(V) → R there is a continuous extension of ϕf to
zonoids given for all K ∈ Z0(V) by

ϕf (K) :=

∫
Gk(V)

f dµK∧k .

Open problem 12. Let d ≥ 4 be even. What is the biggest subclass Cd ⊂ K0(V) containing Z0(V)
such that, for every f that is the restriction of a polynomial of degree d on ΛkV to Gk(V), the angular
valuation ϕf extends continuously to Cd?

3.1.3 Modern theory of valuation

In the modern theory of valuations there are two breakthroughs made by Alesker that we will present
here. The first one is the irreducibility theorem and the second one is the discovery of a product on a
subclass of valuations that respects the grading.

These results concern the study of the action of Gl(V∗) on val+(V) given for all g ∈ Gl(V∗),
ϕ ∈ val+(V) and K ∈ K (V) by

(g · ϕ)(K) := ϕ(gt(K)). (3.1.3)

It is in general more common to consider the action of Gl(V) given by (g · ϕ) = ϕ ◦ g−1 but this
makes no difference since the map g 7→ g−t is a Lie group isomorphism between Gl(V∗) and Gl(V).
Moreover, it will be clear later that the action given by (3.1.3) is more natural in our context.

The following is [80, Theorem 6.5.1].

Proposition 3.1.17 (Alesker’s irreducibility Theorem). The representation of Gl(V∗) on val+k (V) is
irreducible for every 0 ≤ k ≤ m meaning that each invariant subspace is dense in the standard topology.

Note that because of inequality (3.1.2), a subspace dense in the standard topology is also dense in
the Klain topology.

Example 3.1.18. The valuations of the form ϕL1,...,Lk
of Example 3.1.8 span a dense subspace of

val+m−k(V). Indeed, it is enough to note that for all g ∈ Gl(V∗)

g · ϕL1,...,Lk
= |det(g)|−1ϕg−t(L1),...,g−t(Lk).

Thus the subspace spanned by such valuations is Gl(V∗) invariant. By Alesker’s irreducibility theorem,
this is also dense.

In order to define the product and convolution of valuations, we need to restrict to a certain
subclass.

Definition 3.1.19. A valuation ϕ ∈ val+(V) is called smooth if the map Gl(V∗) → val+(V) given
by g 7→ (g · ϕ) is smooth. We denote the subspace of smooth valuations by val+,∞(V) ⊂ val+(V).
Siminarly we write val+,∞k (V) ⊂ val+k (V).

Example 3.1.20. Consider the inclusion C∞
even(Gk(V)) ↪→ M(Gk(V)) that identifies a smooth function

f on the Grassmannian with the measure whose density is f . Then we can consider the valuation ϕf
as in Example 3.1.10: it is given for all K ∈ K (V) by

ϕf (K) :=

∫
Gk(V)

volk(K|E)f(E) dE

where K|E denotes the orthogonal projection of K onto E and dE denotes integration with respect
to the normalized Haar measure. It turns out that such valuation are smooth and furthermore that
every smooth valuation admits such a form, see [20].



3.1. THEORY OF VALUATIONS 91

Example 3.1.21. If L1, . . . , Lk ∈ K0(V) are curved with smooth boundary then the valuation ϕL1,...,Lk

defined in Example 3.1.8 is smooth.

In [5], Semyon Alesker constructed a product of smooth valuations.

Proposition 3.1.22 (Alesker’s product). There is a bilinear map val+,∞k (V)×val+,∞l (V) → val+,∞k+l (V)
that is continuous for the standard topology and that turns the space val+,∞(V) into a graded algebra.
For every k, the product val+,∞k (V) × val+,∞m−k(V) → val+,∞m (V) = R volm is a perfect pairing. We
denote the product of two valuations ϕ1, ϕ2 by ϕ1 ∧ ϕ2.

We will not need a precise description of this product since we will rather use the point of view
of convolution that has a simpler characterization. The perfect pairing gives rise to a duality in this
graded algebra, see [4, Theorem 1.2.1].

Proposition 3.1.23 (Poincaré-Alesker duality). There is an involution isomorphism of vector spaces
∗ : val+,∞k (V)

∼−→ val+,∞m−k(V
∗) uniquely determined by the fact that for every E ∈ Gm−k(V

∗) we have

Kl∗ϕ(E) = Klϕ(E
⊥).

With this duality we can define a convolution product.

Definition 3.1.24. The convolution ∨ : val+,∞m−k(V) × val+,∞m−l (V) → val+,∞m−(k+l)(V) is defined for all

valuations ϕ1, ϕ2 by

ϕ1 ∨ ϕ2 := ∗((∗ϕ1) ∧ (∗ϕ2))

The convolution just defined is uniquely determined by continuity (for standard topology) and the
fact that for every L1, . . . , Lk, L

′
1, . . . , L

′
l ∈ K0(V) we have (see [33, Definition 1.12] and also [20])

ϕL1,...,Lk
∨ ϕL′

1,...,L
′
k
= ϕL1,...,Lk,L′

1,...,L
′
k

where recall the definition of the valuation ϕL1,...,Lk
in Example 3.1.8.

The intrinsic volumes are valuations that are invariant by theO(V∗) action (3.1.3). In fact Hadwiger
showed that these are the only one, see [80, Theorem 6.4.14].

Proposition 3.1.25 (Hadwiger’s Theorem). For all 0 ≤ k ≤ m, we have

val+(V)O(V∗) = RVk.

A remarkable refinement of this Theorem was given by Alesker, see [80, Theorem 6.5.3].

Proposition 3.1.26. Let H ⊂ O(V∗) be a compact subgroup. The space val+(V)H is finite dimen-
sional if and only if H acts transitively on the sphere S(V∗).

3.1.4 P−positive valuations

Recently Nguyen-Bac Dang and Jian Xiao in [33] extended the product and convolution of smooth
valuations to a larger subspace of val+(V) (they do not restrict to even valuations but we will).

Definition 3.1.27. A valuation ϕ ∈ val+k (V) is P−positive if there exists a Radon measure M on
K (V)m−k such that for every convex body K we have

ϕ(K) =

∫
K (V)m−k

MV(K[k], L1, . . . , Lm−k)dM(L1, . . . , Lm−k). (3.1.4)

We denote by P+
k ⊂ val+k (V) the cone of P−positive valuations and by Pk ⊂ val+k (V) the subspace it

generates, i.e Pk = P+
k − P+

k .
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Radon measures M on K (V)m−k such that (3.1.4) is finite for every K ∈ K (V) (and thus give
rise to a well defined P−positive valuation) are characterized by the fact that∫

K (V)m−k

MV(B(V)[k], L1, . . . , Lm−k)dM(L1, . . . , Lm−k) <∞. (3.1.5)

The smooth valuations are dense in Pk, see [33, Theorem 2.19]. Moreover, one can then show that
there is a well defined extension of the convolution product on the completion of the space Pk for a
certain norm, see [33, Section 2.3].

Proposition 3.1.28. There is a well defined extension of the convolution product of smooth valuations
that is such that if M1, respectively M2, is a Radon measure on K (V)k1 , respectively K (V)k2 , that
satisfy (3.1.5) and if ϕ1 ∈ P+

m−k1 , respectively ϕ2 ∈ P+
m−k2 is its associated P−positive valuation then

ϕ1 ∨ ϕ2 ∈ P+
m−(k1+k2)

is the P−positive valuation associated to the product measure M1 ⊗ M2 on

K (V)k1+k2 , in other words, it is given for all K ∈ K (V) by

(ϕ1 ∨ ϕ2)(K) =

∫
MV(K[m− (k1 + k2)], L1, . . . , Lk1+k2) dM1(L1, . . . , Lk1)dM2(Lk1+1, . . . , Lk1+k2)

where the integration is over K (V)k1 × K (V)k2 = K (V)k1+k2 .

3.2 The exponential map on zonoids

Before going on to the part where we show the link between the Grassmannian zonoid algebra and
valuations (that the reader may have guessed at this point), we need a last little tool of zonoid calculus.
We present in this section an exponential map from zonoids to the Grassmannian zonoid algebra and
show how this shares similarities with Peter McMullen’s polytope algebra [64].

3.2.1 Exponential and logarithm

Definition 3.2.1. We define the map exp : Ẑ0(V) → Ĝ0(V) to be given for all A ∈ Ẑ0(V) by

exp(A) :=

m∑
k=0

1

k!
A∧k.

We also write eA := exp(A).

Note that exp maps the cone Z0(V) to the cone G0(V). Moreover, since the wedge product is
commutative on centered zonoids, we have the following.

Proposition 3.2.2. The map exp : (Ẑ0(V),+) → (G0(V),∧) is a group morphism, i.e. we have

e{0} = 1 and for all A,A′ ∈ Ẑ0(V) we have

eA+A′
= eA ∧ eA

′
. (3.2.1)

In particular every element in the image of the exponential is invertible for the wedge product
and the inverse of eA is e−A. Note that moreover for the Gl(V) action defined in Section 2.4.3 the

exponential is a Gl(V) morphism, meaning that for all g ∈ Gl(V) and all A ∈ Ẑ0(V) we have

exp(g ·A) = g · exp(A). (3.2.2)

Proposition 3.2.3. The image of the exponential map spans a sequentially dense subspace of Ĝ0(V)
for both the weak-∗ and norm topology.
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Proof. It is enough to see that we can obtain all segments of degree k for all k = 1, . . . ,m. Indeed if
x ∈ V then ex = 1 + x thus,

x = ex − e{0}.

We go by induction, suppose we can obtain all segments of degree≤ k− 1 and let x1, . . . , xk ∈ V then

ex1+···+xk = (1 + x1) ∧ · · · ∧ (1 + xk) = {segments of deg ≤ k − 1}+ x1 ∧ · · · ∧ xk

and this proves the induction.

One can invert algebraically the exponential but in order to do so we need to restrict to a subclass
of Grassmannian zonoids.

Definition 3.2.4. We define

Ĝ0(V)1 :=

m⊕
k=1

Ĝ0(k,V)

i.e. elements of Ĝ0(V)1 are elements of Ĝ0(V) that have no term of degree 0.

Note that Ĝ0(V)1 is a subalgebra and that 1+ Ĝ0(V)1 is closed under the wedge product operation.

Moreover note that for all A ∈ Ẑ0(V), eA ∈ 1 + Ĝ0(V)1.

Definition 3.2.5. We define the map log : 1 + Ĝ0(V)1 → Ĝ0(V)1 to be given for all A ∈ Ĝ0(V)1 by

log(1 +A) :=
∑
k≥1

(−1)k

k
A∧k.

Once again, because our algebra is commutative, we have for all A,B ∈ Ĝ0(V)1,

log((1 +A) ∧ (1 +B)) = log(1 + (A+B +A ∧B)) = log(1 +A) + log(1 +B)

and for all A ∈ Ẑ0(V)

log(eA) = A.

Note that all these definition could be made using the convolution ∨ instead of the wedge product.

If we define for all A ∈ Ẑ0(Λ
m−1V)

eA :=

m∑
k=0

1

k!
A∨k

with the convention that A∨0 = ω where ω ∈ ΛmV is the volume form. Then since A∨k = ∗((∗A)∧k),
we have

eA = ∗e∗A.

3.2.2 Zonoid vs polytope algebra

Peter McMullen, in [64] introduced the polytope algebra. Formally it is the group generated by [P ] for
all P ∈ P(V) with the product defined for all P,Q ∈ P(V) by

[P ] · [Q] := [P +Q] (3.2.3)

and with the relations

(i) [P + {x}] = [P ] ∀x ∈ V;

(ii) [P ] + [Q] = [P ∪Q] + [P ∩Q], ∀P,Q ∈ P(V) such that , P ∪Q ∈ P(V)
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The relation (i) means that the polytope algebra is actually generated by the translation class of
polytopes while in (ii) we recognize the valuation property (3.1.1).

Similarly as what we did in the Grassmannian algebra, one can define the exponential and logarithm
as power series in a subspace of the polytope algebra, see [64, Lemma 18]. The logarithm of a class
[P ] can be thought of as the polytope P itself and thus the map P 7→ [P ] can be thought of as an
exponential map, the reader can check [27] to see how this statements can be made more rigorous in
terms of support function. This is coherent with the definition of the product in the polytope algebra
(3.2.3).

In the Grassmannian algebra we saw a very similar situation. If we consider the image of the
exponential exp : Z0(V) → G0(V) (which spans a dense subspace by Proposition 3.2.3) then for each
centered zonoid K ∈ Z0(V) we have a class eK in the algebra. It indeed satisfies for all K,L ∈ Z0(V),
eK ∧ eL = eK+L which is the analogous of (3.2.3).

Moreover the centered zonoids Z0(V) can be thought of as the translation classes of the space of
all zonoids Z (V) which would be the analogous of relations (i) in the polytope algebra.

It remains to see if we have an analogous of the relations (ii) in the zonoid algebra. That is, do we
have eK + eL = eK∪L+ eK∪L whenever K,L ∈ Z0(V) are such that K ∩L and K ∪L ∈ Z0(V)? This
amounts to ask if the map Z0(V) → Z0(Λ

kV) given by K 7→ K∧k is a valuation.
For k = 0, 1,m−1,m we already know that this is the case. Indeed k = 0, 1 are trivial, k = m is the

volume and k = m− 1 is the projection body (see Corollary 2.2.21). However for all the other k, the
mapK 7→ K∧k is not the restriction of a continuous translation invariant valuation K (V) → K (ΛkV).
Indeed our map is equivariant (see (3.2.2)) and recently Jacob Henkel and Thomas Wannerer showed
in a yet unpublished work that such equivariant valuation do not exist for 1 < k < m− 1. It could be
however that the exponential is a valuation on the set of zonoids only.

Despite this fact, we will see below in Section 3.3 how Ĝ0(V
∗) is deeply linked to the algebra

val+(V).
Finally, William Fulton and Bernd Sturmfels showed in [41] that the Chow ring of a toric variety

embedds into the polytope algebra. The Chow ring of a toric variety computes the complete intersection
of divisors in a toric variety, see also [25] for an extension of this fact to a more general algebra generated
by convex bodies. We will see in Chapter 4 that the Grassmannian zonoid algebra will help compute
random intersection in real manifolds, which strengthen the link between polytope and zonoid algebra.

3.2.3 Exponential of a polytope

One can extend the definition of the exponential to polytopes in a similar fashion as the extension of
J-volume that was presented in Section 2.3.3. This is based on the property of the external angle of
a zonotope showed in Lemma 1.2.9. However, we will show here that it fails to satisfy the axiom of a
group morphism (3.2.1).

As for J-volume we start by giving a formula for zonotopes. Recall all the notation introduced in
Section 1.1.3 and Section 1.2.1. The reader is also encouraged to compare this section to Section 2.3.3.

Proposition 3.2.6. Let x1, . . . , xn ∈ V and let K :=
∑n
i=1 xi be a zonotope. Then for all 0 ≤ k ≤ m

we have
1

k!
K∧k =

∑
E∈Gk(K)

volk(F (E,K))E

where recall that Gk(K) denotes the k-subspaces parallel to k-faces of K (Definition 1.2.7), F (E,K)
is the vectorial face defined in Definition 1.2.8 and E ⊂ ΛkV is the segment defined by a representent
in Plücker of the subspace E (Definition 2.2.8).

Proof. We have

1

k!
K∧k =

∑
i1<···<ik

xi1 ∧ · · · ∧ xik

=
∑

E∈Gk(K)

(∑
∥xi1 ∧ · · · ∧ xik∥

)
E
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where the internal sum on the second line runs over the i1 < · · · < ik such that xi1 , . . . , xik ∈ E. We
then just apply Shephard’s formula [81, Equation (57)] to see that this is equal to volk(F (E,K)).

Of course this sum only makes sense for zonotopes since it refers to the vectorial face. However,
using Lemma 1.2.9, we find another expression.

Proposition 3.2.7. Let x1, . . . , xn ∈ V and let K :=
∑n
i=1 xi be a zonotope. Then for all 0 ≤ k ≤ m

we have
1

k!
K∧k =

∑
F∈Fk(K)

volk(F )Θ(K,F )EF .

Proof. The proof is the same as in Theorem 2.3.14.

This allows us to carry over the definition of exp on polytopes.

Definition 3.2.8. for all 0 ≤ k ≤ m we define ϵk : P(V) → G0(k,V) for all P ∈ P(V) by

ϵk(P ) :=
∑

F∈Fk(P )

volk(F )Θ(P, F )EF .

Moreover we let exp : P(V) → G0(V) be defined as exp :=
∑m
k=0 ϵk.

Note that, in particular, ϵ1 is a map that associate to each polytope a zonotope and that is the
identity on zonotopes. The case k = m− 1 is something we already encountered.

Lemma 3.2.9. For every P ∈ P(V) we have

ϵm−1(P ) =
1

2
ΠP.

Proof. This follows from the definition of the projection body in Definition 1.2.44 and the expression
of the surface area measure of a polytope in Proposition 1.1.38.

Remark 3.2.10. In general, we can show with the same proof that ℓ(ϵk(P )) = Vk(P ).

By Proposition 1.1.21, the k-faces of a sum P1+P2 can be decomposed into the sum of i-faces of P1

and (k − i)-faces of P2 for 0 ≤ i ≤ k, it follows that there is a mixed version of ϵk : P(V)k → G0(k,V)
that is Minkowski multilinear and such that ϵk(P ) = ϵk(P, . . . , P ) for all P ∈ P(V). For the exponential
to be a group morphism we would need for all 0 ≤ i ≤ k that

(
k
i

)
ϵk(P1[i], P2[k− i]) = ϵi(P1)∧ϵk−i(P2).

Unfortunately this is impossible because of the next result.

Lemma 3.2.11. Let P ⊂ V be a centrally symmetric polytope that is not a zonotope. Then

ϵm−1(P ) ̸= ϵm−1(ϵ1(P ))

Proof. This follows from Lemma 3.2.9 and the unicity of the solution to the Minkowski problem [80,
Theorem 8.1.1].

3.3 Valuation associated to a zonoid

In this section we describe how the algebra Ĝ0(V
∗) surjects on a dense subalgebra of val+(V). From the

point of view of measures, the correspondence between our convolution product and the convolution of
valuations was described in [20]. We show here how this correspondence connects to the exponential
just defined and hope to convince the reader that the flexibility of the point of view of random vectors
helps to simplify the expressions and computations.
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3.3.1 Valuations with Crofton measures

We start with the definition of the main object of this section. Remember that to each A ∈ Ĝ0(k,V)
there is a generating (signed) measure associated µA ∈ M(Gk(V)), see Section 2.6.

Definition 3.3.1. For every A ∈ Ĝ0(V
∗), we define ϕA : K (V) → R to be the map given for any

K ∈ K (V) by

ϕA(K) :=

∫
Gk(V∗)

volk(K|Ẽ)dµA(E) (3.3.1)

where Ẽ ∼= E under the identification V∗ ∼= V given by the Euclidean structure and K|Ẽ denotes the
orthogonal projection of K onto E. We also define a mixed version, that we also denote ϕA, that is
defined for all K1, . . . ,Kk ∈ K (V) by

ϕA(K1, . . . ,Kk) :=

∫
Gk(V∗)

MV(K1|Ẽ, . . . ,Kk|Ẽ)dµA(E).

Finally if A ∈ Ĝ0(V) and A :=
∑m
i=0Ai with Ai ∈ Ĝ0(i,V) we define ϕA :=

∑m
i=0 ϕAi

.

The measure µA is somtimes called a Crofton measure for the valuation ϕA.

Remark 3.3.2. The choice in the definition of taking a measure on the dual space and then identify
the subspaces Ẽ ∼= E may seem strange and arbitrary. However we will see that this definition is
independent of the choice of the Euclidean structure which should convince the reader of its naturality.

Lemma 3.3.3. For every A ∈ Ĝ0(k,V
∗), the map ϕA belongs to val+k (V).

Proof. Suppose Kn → K in K (V), the projection onto a subspace and the volume are continuous
thus volk(Kn|Ẽ) → volk(K|Ẽ). Moreover since Kn converges, it follows that volk(Kn|Ẽ) is bounded
uniformly on Ẽ and thus we obtain ϕA(Kn) → ϕA(K) by dominated convergence.

We denote by
Φ : Ĝ0(V

∗) → val+(V)

the map given for all A ∈ Ĝ0(V
∗) by Φ(A) := ϕA. We denote the image of Φ by

V (V) := Φ(Ĝ0(V
∗)) ⊂ val+(V) (3.3.2)

and we write V +(V) := Φ(G0(V
∗)), V (k,V) := Φ(Ĝ0(k,V

∗)) and V +(k,V) := Φ(G0(k,V
∗)).

It follows from the definition that Φ is linear. Moreover we will prove later that it is a Gl(V) map
for the representation (3.1.3). Let us prove something a bit weaker for now. It is easier in this case to
identify V∗ ∼= V and consider the action given by the inverse rather than the transpose.

Proposition 3.3.4. For all 0 ≤ k ≤ m, the space V (k,V) is Gl(V)–invariant under the action given
by (g̃·ϕ)(K) := ϕ(g−1K) and thus it is also invariant for the action given by (3.1.3).

Proof. Let ϕ := ϕA for A ∈ Ĝ (k,V∗). Then identifying V∗ ∼= V we have:

ϕA(g
−1K) :=

∫
Gk(V)

volk(g
−1K|E)dµA(E).

Now we prove that

volk(g
−1K|E) =

1

∥g(E)∥
volk(K|g(E)) (3.3.3)

Where ∥g(E)∥ := ∥g(e1)∧· · ·∧g(ek)∥ for e1, . . . , ek an orthornormal basis of E. We use the decomposi-
tion g = QR whereQ is orthogonal andR preserves E. Then volk(g

−1K|E) = |det(R−1|E)| volk(Q−1K|E).
Next we note that |det(R−1|E)| = |det(R|E)|−1 = ∥R(E)∥−1 = ∥g(E)∥−1. Moreover since Q is orthog-
onal and R(E) = E, we have Q−1K|E = K|Q(E) = K|g(E) and this proves (3.3.3). Now considering
the measure µ′ such that for all f ∈ C(Gk(V)) we have∫

Gk(V)

f(E)dν(E) :=

∫
Gk(V)

1

∥g(E)∥
f(g(E))dµA(E).
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It follows that

(g · ϕA)(K) =

∫
Gk(V)

volk(K|g(E))dν(E) = ϕA′(K)

where A′ is the zonoid generated by ν.

From Alesker’s irreducibility Theorem (Proposition 3.1.17) we deduce then the following.

Corollary 3.3.5. The subspace V (V) ⊂ val+(V) is dense for the standard topology.

The following is a key result that will allow us, in some sense, to identify Φ with the cosine transform
on the Grassmannian. Recall from Section 2.4.4 that for every A ∈ Ĝ0(k,V

∗), we write gA = hA|Gk(V)

for the restriction of the support function on the Grassmannian.

Lemma 3.3.6. For every A ∈ Ĝ0(k,V
∗) we have

KlϕA
= gA.

Proof. Let F ∈ Gk(V), we want to compute KlϕA
(F ). To do this consider K ∈ K (F ). We need only

to observe that in that case for every E ∈ Gk(V), volk(K|Ẽ) = volk(K)|⟨E,F ⟩|. Then using (3.3.1)
and (1.2.8), we find ϕA(K) = volk(A) · hA(F ).

It follows that we have

∥ϕA∥Kl ≤ ∥A∥.

In other words, the map

Φ : (Ĝ0(V
∗), ∥ · ∥) → (val+(V), ∥ · ∥Kl)

is continuous. The cosine transform can be seen as the map Id : (Ĝ0(V
∗),weak-∗) → (Ĝ0(V

∗), ∥ · ∥).
Since it is sequentially continuous (Proposition 1.2.54-(iv)), we have that

Φ : (Ĝ0(V
∗),weak-∗) → (val+(V), ∥ · ∥Kl)

is sequentially continuous.

Remark 3.3.7. Note that from the definition we have immediately that weak–∗ convergence implies
pointwise convergence of the corresponding valuation. However sequential continuity is stronger.

Recall the definition of the kernel of the cosine transform (KoCT) in Section 2.4.4. It follows from
Lemma 3.3.6 that this corresponds to the kernel of Φ.

Corollary 3.3.8. The kernel of the map Φ is the KoCT, i.e. for all A ∈ Ĝ0(V
∗) we have

ϕA ≡ 0 ⇐⇒ A ∈ M(V∗).

This allows us to identify the spaces

V (V) ∼= Ĝ0(V
∗)/M(V∗).

Since M(V∗) is an ideal, the wedge product is a well defined product on the quotient. Moreover
remember that it is preserved by the Hodge star and thus is also an ideal for the convolution, see
Section 2.4.4. This implies that the following is well defined.

Definition 3.3.9. Let A,A′ ∈ G(V∗), we define

ϕA ∧ ϕA′ := ϕA∧A′ ∗ϕA := ϕ∗A ϕA ∨ ϕA′ := ϕA∨A′ .

As the reader may expect, we will see that this notation does not contradict the one introduced
in the previous section with Alesker’s product. For this it will be handy to use the zonoid calculus to
prove it on zonoids and then use Lemma 3.1.6 to conclude.



98 CHAPTER 3. ZONOIDS AND VALUATIONS

3.3.2 Exponential and valuations

On zonoids the valuations of V (V) take a very nice form. Recall the definition of the exponential of
a zonoid in Section 3.2 and the definition of the pairing in Section 2.4.2.

Proposition 3.3.10. For every A ∈ Ĝ0(V
∗) and K ∈ Z0(V) we have

ϕA(K) = (A, eK). (3.3.4)

Proof. Since both sides are linear in A, we can assume that A is of degree k and that µA is a probability
measure on Gk(V

∗). Let Y = Y1 ∧ · · · ∧ Yk be of law µA and let EY be the k–space represented by Y
in Plücker. Let K = EX with X⊂⊂V integrable and let X1, . . . , Xk be iid copies of X that we assume
independent of Y . We have by (2.2.4)

ϕA(K) =
1

k!

∫
Gk(V∗)

E∥πE(X1) ∧ · · · ∧ πE(Xk)∥dµA(E)

where πE is the orthogonal projection onto Ẽ. Since Y is of law µA, we can rewrite it as

ϕA(K) =
1

k!
E∥πEY

(X1) ∧ · · · ∧ πEY
(Xk)∥

=
1

k!
E|⟨Y,X1 ∧ · · · ∧Xk⟩|

= (A,
1

k!
K∧k).

Since A is of degree k, the last term is equal to (A, eK) and this concludes the proof.

Note that, as promised in Remark 3.3.2, the expression (3.3.4) is independent of the choice of any
Euclidean structure.

Lemma 3.3.11. Let A1, A2 ∈ Ĝ (V∗). Then, ϕA1 = ϕA2 if and only if for every C ∈ Ĝ (V∗),
ℓ(A1 ∧ C) = ℓ(A2 ∧ C).

Proof. We can assume A1 and A2 are of degree k. Let us write ϕi := ϕAi . From Lemma 3.1.6 ϕ1 = ϕ2
if and only if for all K ∈ Z0(V) , ϕ1(K) = ϕ2(K). From Proposition 3.3.10 this is the case if and only
if (A1 − A2, e

K) = 0 for all K ∈ Z0(V). Since they are of degree k, we get that ϕ1 = ϕ2 if and only
if ℓ((A1 −A2) ∧ ∗(K∧k)) = 0 for all K ∈ Z0(V). The result follows by the (sequential) density of the
image of the exponential, that is Proposition 3.2.3.

Corollary 3.3.12. For every g ∈ Gl(V∗), A ∈ Ĝ0(V
∗), K ∈ K (V), we have

ϕg·A(K) = ϕA(g
tK).

In other words, Φ is a Gl(V) map and we have g · ϕA = ϕg·A

Proof. For zonoids this is almost immediate since (g · A, eK) = (A, gteK) = (A, eg
tK). Then we use

Lemma 3.1.6 to conclude in general.

Example 3.3.13. Using Lemma 3.3.6 one can prove that

ϕB(V∗)∧k = k!κkVk.

We can easily compute another example.

Lemma 3.3.14. Let L ∈ Z (V), then for all K ∈ K (V) we have

ϕ∗eL(K) = volm(L+K).
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Proof. As before, by Lemma 3.1.6, it is enough to prove it for K a zonoid. In that case we use the
expression of Proposition 3.3.10 and the rules in Proposition 2.4.8 to obtain

ϕ∗eL(K) = (∗eL, eK) = (ω, eL ∧ eK) = (ω, eL+K) =
1

m!
ℓ ((K + L)∧m)

where ω ∈ ΛmV∗ is the volume form. We conclude by (2.2.4).

With the same proof we find the following, to be compared with Example 3.1.8.

Example 3.3.15. Let L1, . . . , Lk ∈ Z0(V). Then for all K ∈ K (V) we have:

ϕ∗(L1∧···∧Lk)(K) =
m!

(m− k)!
MV(K[m− k], L1, . . . , Lk).

Finally one can compute the length of a Grassmannian zonoid just knowing the associated valuation.

Lemma 3.3.16. Let A ∈ Ĝ0(k,V
∗) and let ϕA ∈ V (k,V) be the associated valuation. We have

ℓ(A) =
1

κk
ϕA(B(V)).

Proof. The unit ball is a zonoid thus, by Proposition 3.3.10 and because A is of degree k, we have
ϕA(B(V)) = 1

k! (A,B(V)∧k). Using the rules of the pairing Proposition 2.4.8 we find ϕA(B(V)) =
1
k!ℓ(∗A ∧ B(V)∧k) and by Lemma 2.2.17 1

k!ℓ(∗A ∧ B(V)∧k) = κkℓ(∗A) = κkℓ(A) which is what we
wanted.

Let us now show that the valuations obtained from zonoids are a particular case of P-positive
valuations in the sense of Definition 3.1.27.

Proposition 3.3.17. Let X1∧ · · ·∧Xk
⊂⊂ΛkV∗ be integrable and let A := EX1 ∧ · · · ∧Xk ∈ G0(k,V

∗).
Let us write Xk+1 ∧ · · · ∧Xm := ∗(X1 ∧ · · · ∧Xk)⊂⊂Λ

m−kV. Then for every convex body K ⊂ V, we
have:

ϕA(K) =
1

k!
E
[
MV

(
K[k], Xk+1, . . . , Xm

)]
.

In particular, V +(k,V) ⊂ P+
k and thus V (k,V) is a subspace of Pk.

Proof. Both sides define a continuous even translation invariant valuation of degree k. Thus it is
enough to prove the equality for zonoids, in which case it follows from Proposition 3.3.10.

It is now not difficult to show that our product and convolution correspond to those already defined
on valuations.

Theorem 3.3.18 (M.). The convolution ∨ on V (V) in Definition 3.3.9 corresponds to the convolution
product of P-positive valuations from Proposition 3.1.28, and the Hodge star ∗ to the Poincaré–Alesker
duality. Thus the wedge product ∧ corresponds to the usual product of valuations.

Proof. The duality follows from Proposition 3.1.23 and Lemma 3.3.6.
Let us prove the convolution. Let A := EX1 ∧ · · · ∧Xk ∈ G0(k,V

∗), B := EY1 ∧ · · · ∧ Yl ∈
G0(l,V

∗). Let us write Xk+1 ∧ · · · ∧ Xm := ∗(X1 ∧ · · · ∧ Xk)⊂⊂Λ
m−kV and Yl+1 ∧ · · · ∧ Ym :=

∗(Y1 ∧ · · · ∧ Yl)⊂⊂Λm−lV. By definition ϕA ∨ ϕB = ϕA∨B and

A ∨B = ∗((∗A) ∧ (∗B)) = ∗EXk+1 ∧ · · · ∧Xm ∧ Yl+1 ∧ · · · ∧ Ym.

Thus by Proposition 3.3.17 we have for every convex body K

(ϕA ∨ ϕB)(K) =
1

(k + l −m)!
E
[
MV

(
K[k + l −m], Xk+1, . . . , Xm, Yl+1, . . . , Ym

)]
which is what we wanted.
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Later, we will want to evaluate length of wedge products in the Grassmannian algebra. Lemma 3.3.11
tells us that for this purpose we can reduce to the quotient Ĝ0(V

∗)/M(V∗) ∼= val+(V). The last result
Theorem 3.3.18 tells us that this equality is also an equality of algebras.

This quotient can reduce the ring significantly specially in the case of invariant zonoids. Since the
map Φ is a Gl(V∗) map, if H ⊂ O(V∗) is a closed subgroup, it maps Ĝ0(V

∗)H to val+(V)H .

Example 3.3.19. Using Example 3.3.13 and Example 2.4.14 we get Hadwiger’s Theorem (Proposi-
tion 3.1.25) and we get that as algebra

val+(V)O(V∗) ∼= R[t]/(tm+1)

where the generator is t = ϕB(V). In this case there is no reduction and M(V∗)O(V∗) = {0}.
Example 3.3.20. Let H = U(n) acting on Cn ∼= R2n. Since U(n) acts transitively on the sphere S2n−1,
by Proposition 3.1.26, val+(Cn)U(n) is finite dimensional. As an algebra, it was described by Joseph
Fu, see [40, Theorem 3.1]:

val+(Cn)U(n) ∼= R[t, s]/(fn+1, fn+2),

where deg t = 1, deg s = 2, and

log(1 + t+ s) =
∑
i≥1

fi(t, s)

is the decomposition into homogeneous components. The generators are given (up to multiples) by
t = ϕB(R2n) and s = ϕPn where Pn ∈ G0(2,Cn) is the Grassmannian zonoid whose generating measure
is the uniform measure on CPn ⊂ G2(R2n). In that case this is a considerable reduction, since the

algebra Ĝ0(Cn)U(n) is infinite dimensional, see Example 2.4.15. Note also that, as was explained in
Section 3.2, log(1+B(R2n) +Pn) is a well defined element of the Grassmannian algebra. It is unclear
to the author what exactly is happening here.



Chapter 4

Integral geometry

In this chapter we apply the techniques developed in the previous chapters to the study of random
intersection in Riemannian manifolds. The general setting is as follows. Let M be a Riemannian
manifold and let X1, . . . , Xd ↪→ M be independent random submanifolds. We want to compute in
general the quantity

E vol(X1 ∩ · · · ∩Xd) (4.0.1)

where the volume is the Riemannian volume in the appropriate dimension. For example when we have∑d
i=1 codim(Xi) = dimM we should expect a finite number of points in the intersection and we want

to compute the number
E#(X1 ∩ · · · ∩Xd)

We will see this in two different situation. The first case is a joint work with Peter Bürgisser,
Paul Breiding and Antonio Lerario (abbreviated B.B.L.M.) and is still partly ongoing. We let M be
a compact Riemannian homogeneous space meaning that its group of isometries G acts transitively.
The random submanifolds considered are then built taking a fixed submanifold X̃ ↪→M and a uniform
random g⊂⊂G and considering X = g ·X. We will see that in that case one can associate to each such
X a zonoid KX ∈ G0(V

∗) where V∗ = T ∗
oM is the cotangent at a point M . This zonoid computes

(4.0.1) in the sense that we have:

E vol(X1 ∩ · · · ∩Xd) = ℓ(KX1
∧ · · · ∧KXd

).

In some sense the Grassmannian zonoid algebra and the algebra of valuation behave as a probabilistic
Chow ring on Riemannian homogeneous spaces. We will see how in that case the action of the isotropy
group and the invariance of the zonoid will help to reduce the complexity.

The second case is a joint work with Michele Stecconi. In this situation M is a Riemannian
manifold and X = f−1(0) where f⊂⊂C1(M,Rk) is a random differentiable function whose law satisfy
some suitable condition. In that case we build a zonoid in each cotangent space at each point, i.e. we
build a section ζ : p 7→ ζ(p) ∈ G (T ∗

p ,M) of the fiber bundle whose fibers are spaces of zonoids in the
cotangent space. Then we show that for each open set U ⊂M we have

E vol(X1 ∩ · · · ∩Xd ∩ U) =

∫
U

ℓ(ζX1
(p) ∧ · · · ∧ ζXd

(p))dM(p)

where dM(p) indicates integration with respect to the Riemannian density on M . In other words the
map U 7→ E vol(X1 ∩ · · · ∩Xd ∩ U) is a measure on M which is absolutely continuous with respect to
the Riemannian density and whose density is given by p 7→ ℓ(ζX1

(p) ∧ · · · ∧ ζXd
(p)). We will see how

this interprets nicely in the context of Finsler geometry.

4.1 Homogeneous spaces

In this section, the global approach presented in Section 4.1.1 and the probabilistic Schubert calculus
of Section 4.1.3 is a joint work with Peter Bürgisser, Paul Breiding and Antonio Lerario. The reduction
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to valuations (Proposition 4.1.15 and 4.1.16), the computations in CPn presented in Section 4.1.2 and
the geometry of invariant bodies in Section 4.1.4 are the work of the author.

In this section, G will be a compact Lie group, endowed with a left and right invariant Riemannian
metric. We denote by Id ∈ G the identity and by Lg : G → G the left translation by g ∈ G. If
H ⊆ G is a closed Lie subgroup, the homogeneous space M := G/H inherits a Riemannian structure,
by declaring the quotient map p : G→ G/H to be a Riemannian submersion (this is well defined since
H acts on G by isometries). We let m := dimM . We denote by o ∈ M the image of Id under the
projection map and by Lg : M → M the map induced by left translation by an element g ∈ G. For
the left translations, we will use use the notation Lg(x) = g · x (when the base point is clear from the
context, we will simply denote by g∗ the differential of Lg). Finally, we denote by g

∗
x : T ∗

g(x)M → T ∗
xM

the pull-back given for all α ∈ T ∗
g(x)M by g∗x(α) := α ◦ g∗. We refer the reader to [45] for more details

on these constructions.
Below, when talking about “volume” of a submanifold of a Riemannian manifold, we will mean

the Riemannian volume (for the induced Riemannian structure). When a smooth manifold has finite
volume, we can turn it into a probability space by normalizing the volume to 1; we will call the
resulting distribution the uniform distribution. Recall also that on compact Lie groups there is a
unique normalized Haar measure and that we call random elements with such law uniform.

4.1.1 Submanifolds and associated zonoid

In the following, submanifolds are assumed to be relatively compact and of finite volume. The Rie-
mannian structure induced on a submanifold X ⊂M gives rise to a measure and a random point x⊂⊂X
will be called uniform if its law is this measure normalized to be a probability measure.

In all this section, the isotropy group H is the subgroup of G that fixes o ∈ M . Thus we have an
action of H on ToM by g · v := g∗(v) and on T ∗

oM by g · α := g∗(α).

Definition 4.1.1. In the following we will write V := ToM and V∗ := T ∗
oM .

Recall, from Section 2.4.3, that the linear action of H on V∗ induces an action on all the exterior
powers ΛkV∗. Moreover, G acts by isometries on M and thus the action of H is orthogonal. This
implies that H acts on the Grassmannians Gc(V

∗). For the following definition, recall also that given
a subspace E ∈ Gc(V

∗), we denote by E the segment of length 1 in ΛcV∗ that is supported by a
representant of E in the Plücker embedding, see Definition 2.2.8.

Definition 4.1.2. Let X ⊂ M be a submanifold of codimension c and let x ∈ X and let g ∈ G be
such that g(o) = x. Then we define the following Grassmannian zonoid of V∗.

KX(x) :=
volm−c(X)

volm(M)
Eh∗g∗NxX ∈ G (c,V∗) (4.1.1)

where h⊂⊂H is uniform. Moreover we let

KX := EKX(ξ) ∈ G (c,V∗)

where ξ⊂⊂X is uniform.

Note that this definition is independent of the choice of g ∈ G. Moreover observe that we have

ℓ(KX) =
volm−c(X)

volm(M)
.

Example 4.1.3. Points are submanifolds of codimension m = dimM and, as one can see from the
definition, for all x ∈M we have

K{x} = K{o} =
1

volm(M)
ωo ∈ Z0(Λ

mV∗) (4.1.2)

where ωo ∈ ΛmV∗ is the volume form at o.
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In general, products of these zonoids compute the average volume of intersection. This is based on a
kinematic formula in Riemannian homogeneous spaces proved by Ralph Howard in [45] and generalized
by Peter Bürgisser and Antonio Lerario in [29]. The following is [29, Theorem 7.2] translated in our
context.

Theorem 4.1.4 (B.B.L.M.). Let X1, . . . , Xn ⊂M be submanifolds, such that c :=
∑n
i=1 codim(Xi) ≤

m where recall that m = dim(M), and let KX1 , . . . ,KXn be their associated zonoids defined in Defini-
tion 4.1.2. Let g1, . . . , gn⊂⊂G be independent and uniform. Then

1

volm(M)
E [volm−c(g1X1 ∩ · · · ∩ gnXn)] = ℓ(KX1

∧ · · · ∧KXn
). (4.1.3)

In particular, in the case where c = m we obtain

E#(g1X1 ∩ · · · ∩ gnXn) = volm(M) ℓ(KX1 ∧ · · · ∧KXn). (4.1.4)

In this case, since KX1 ∧ · · · ∧KXn ∈ Z0(Λ
mV∗) ∼= R is a segment, it is determined by its length thus,

this is equivalent to

KX1 ∧ · · · ∧KXn =

(
E#(g1X1 ∩ · · · ∩ gnXn)

)
K{o} ∈ Z0(Λ

mV∗), (4.1.5)

where K{o} is the zonoid associated to a point, see (4.1.2).

Notice the nice cohomological flavour of (4.1.5).
There is an important class of submanifolds for which the associated zonoid is easier to compute.

This notion of was introduced in [29] in the case of hypersurfaces.

Definition 4.1.5. A submanifold X ⊂ M is said to be cohomogeneous if for all x1, x2 ∈ X, there is
g ∈ G such that g(x1) = x2 and

g∗Nx2X = Nx1X.

With the help of our Riemannian structure one can see that, since G acts by isometries, this is
equivalent to ask the same property on tangent spaces rather than normal spaces. Moreover, one can
see that a submanifold X is cohomogeneous if and only if for every x1, x2 ∈ X and every g1, g2 ∈ G
such that gi(o) = xi, i = 1, 2, the subspaces (g1)

∗Nx1
X and (g2)

∗Nx2
X are in the same H-orbit in

Gc(V
∗). This implies that in that case, the zonoid KX(x) does not depend on x.

Proposition 4.1.6. Let X ⊂M be a cohomogeneous submanifold. Then for every x ∈ X we have

KX = KX(x).

Example 4.1.7. Orbits of subgroups of G are cohomogeneous submanifolds of G. In fact if H = {Id}
is trivial one can see that those are the only cohomogeneous submanifold.

Example 4.1.8 (The sphere). Let us consider the example M = Sm as a sanity check. The sphere is a
Riemannian homogeneous manifold that can be presented as

Sm ∼= O(m+ 1)/O(m).

In that case the isotropy group is the whole orthogonal group, H ∼= O(V∗) and thus every submanifold
is cohomogeneous. Similarly in the real projective space RPm.

Let X ⊂ Sm be a submanifold of codimension c. Its associated zonoid is given by:

KX =
volm−c(X)

sm−c

1

(2π)c
B(V∗)∧c (4.1.6)

where recall that κd = vold(B(Rd)) and where sm := volm(Sm). Indeed, because the isotropy group is
the whole orthogonal group, the random segment in (4.1.1) has the same law as g · E where g⊂⊂O(V∗)
is uniform and E ∈ Gc(V

∗) is any fixed subspace. In that case, it was computed in Example 2.2.19
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that Eg · E = (m−c)!κm−c

m!κm
B(V∗)∧c. Then we use the identity m!κmsm = 2(2π)m, see Lemma A.4. In

particular if X = H is an hyperplane section, we find

KH =
1

2π
B(V∗). (4.1.7)

Using zonoid calculus (see (2.2.4)), we see that m-th power of this zonoid gives

ℓ(K∧m
H ) =

1

(2π)m
m!κm =

2

sm

which is coherent with the fact that m independent random hyperplanes intersect (on the sphere)
almost surely on exactly two points. Note that on the sphere, since G0(k,V

∗)O(V∗) = R≥0B(V)∧k all
zonoids obtained from Definition 4.1.2 are proportional. In fact if X ⊂ Sm is a hypersurface we see

from Definition 4.1.2 that we have KX = volm−1(X)
sm−1

KH. More generally, if X is of codimension c, by

(4.1.6) and (4.1.7):

KX =
volm−c(X)

sm−c
K∧c

H .

In particular, if γ ↪→ Sm is a curve, we find by letting c = m− 1

ℓ(Kγ ∧KH) =
1

sm

vol1(γ)

π
.

Using our results, this gives

E#(γ ∩ gH) =
vol1(γ)

π
. (4.1.8)

where g⊂⊂O(m+ 1) is uniform. This is the well known Crofton formula. Similarly one can prove with
this technique the fact that the random intersection of submanifolds is proportional to the product of
volumes and compute the constant.

Of course everything is easier on the sphere because, as was observed in Example 2.4.14, the algebra
Ĝ (V∗)O(V∗) ∼= R[t]/(tm+1) is very simple. In general, not all zonoids obtained from cohomogeneous
submanifolds are proportional.

Definition 4.1.9. We say that two cohomogeneous submanifolds X,Y ⊂ M of codimension c are of
the same H-type if for one (and thus any) (x, y) ∈ X × Y and g, g′ ∈ G such that g(o) = x, g′(o) = y,
we have that g∗(NxX) and (g′)∗(NyY ) are in the same H-orbit in Gc(V

∗).

Proposition 4.1.10. Let X,Y ⊂ M be cohomogeneous submanifolds of codimension c. Then X and
Y are of the same H-type if and only if

KX =
volm−c(X)

volm−c(Y )
KY .

Proof. Recall from Section 2.4.3 that we can identify invariant Grassmannian zonoids with measures
on the orbit space : G0(c,V

∗)H ∼= M+(Gc(V
∗)/H). Zonoids obtained from Definition 4.1.2 all have

as generating measure a Dirac delta measure on this orbit space. These have the same support if and
only if they are of the same H-type and this concludes the proof.

Remember that for zonoids in V∗ (i.e. of degree 1), the length of the wedge product corresponds
to the mixed volume, see (2.2.4). Thus, in the particular case of hypersurfaces, Theorem 4.1.4 gives
the following.

Corollary 4.1.11. Let X1, . . . , Xm ↪→ M be hypersurfaces and let KX1 , . . . ,KXm ∈ Z0(V
∗) be their

associated zonoids defined in Definition 4.1.2. Let g1, . . . , gm⊂⊂G be independent and uniform. Then

E#(g1X1 ∩ · · · ∩ gmXm) = m! volm(M)MV(KX1
, . . . ,KXm

).
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This allows to interpret the Alexandrov-Fenchel inequality (Lemma 1.1.25) as an inequality in
random intersection.

Theorem 4.1.12 (Kinematic AF, B.B.L.M.). Let X,Y, Z3 . . . , Zm ⊂M be hypersurfaces. Let g1, . . . , gm⊂⊂G
be independent and uniform and denote the random surface Z := g3Z3 ∩ · · · ∩ gmZm. We have

E#(g1X ∩ g2Y ∩ Z) ≥
√

E#(g1X ∩ g2X ∩ Z) E#(g1Y ∩ g2Y ∩ Z).

Remark 4.1.13. Note that a positive answer to Conjecture 5 would mean that we can replace Z by
any submanifold of dimension 2 translated uniformly by G.

Recall that the the c-th intrisic volume of a zonoid K ∈ V∗ is given by Vc(K) = ℓ(K∧c)/c!, see
(2.2.5). Thus, in the case of self intersection, Theorem 4.1.4 gives the following.

Corollary 4.1.14. Let X ⊂ M be a hypersurface and let g1, . . . , gc⊂⊂G be uniform and independent.
Then we have

E volm−c(g1X ∩ · · · ∩ gcX) = volm(M)c! Vc(KX)

where recall that Vc denotes the c-th intrinsic volume.

Recall the link between the Grassmannian algebra and the algebra of valuations that was detailed
in Section 3.3 and recall Definition 3.3.1 where we define the (translation invariant continuous real
even) valuation ϕA ∈ val+(V) associated to a Grassmannian zonoid A ∈ G0(V

∗) (equivalently to a
measure on the Grassmannian). Because of Lemma 3.3.11 to compute the length of wedge product
of Grassmannian zonoids such as in (4.1.3), one can reduce to the algebra of valuation V (V) ∼=
Ĝ0(V

∗)/M(V∗), see (3.3.2). In fact, in the light of Lemma 3.3.16 and with the product of valuations
defined in Definition 3.3.9 (which extends Alesker’s product by Theorem 3.3.18) we can rewrite (4.1.3)
as follows.

Proposition 4.1.15. Let X1, . . . , Xn ⊂M be submanifolds of codimension ci := codim(Xi), such that
c :=

∑n
i=1 ci ≤ m. and let ϕXi

∈ V +(ci,V)H ⊂ val+ci(V)H be the valuation associated to the zonoid
KXi

using Definition 3.3.1. Let g1, . . . , gn⊂⊂G be independent and uniform. Then we have

E [volm−c(g1X1 ∩ · · · ∩ gnXn)] =
volm(M)

κc
(ϕX1 ∧ · · · ∧ ϕXn)(B(V)).

Similarly intersection of independent copies of a hypersurface with a fixed submanifold can be
interpreted as a valuation operation on the zonoids.

Proposition 4.1.16. Let X ↪→ M be a hypersurface and let Y ↪→ M be a submanifold of dimension
c (and thus of codimension m − c) and let ϕY ∈ V (c,V)H be the valuation associated to KY from
Definition 3.3.1. Let g1, . . . , gc⊂⊂G be independent and uniform. Then we have

E#(Y ∩ g1X ∩ · · · ∩ gcX) = volm(M)c! (∗ϕY )(KX)

where recall ∗ : V (m− c,V) → V (c,V∗) denotes Poincaré-Alesker duality (see Proposition 3.1.23 and
Definition 3.3.9).

Proof. First note that the left hand side is equal to E#(gY ∩g1X∩· · ·∩gcX) where g⊂⊂G is uniform, in-
dependent of g1, . . . , gc. Now, by (4.1.3), this is equal to volm(M)ℓ(KY ∧K∧c

X ). Using Proposition 2.4.8
we find

E#(gY ∩ g1X ∩ · · · ∩ gcX) = volm(M)(∗KY ,K
∧c
X ).

We conclude by (3.3.4).

To conclude, let us note that we have seen that to each cohomogeneous submanifold of codimension
c corresponds an H-orbit in the Grassmannian Gc(V

∗). It is not clear if for each orbit there exists a
cohomogeneous submanifold with the normal in this orbit.

Open problem 13. Given an orbit H · E ∈ Gc(V
∗)/H, is there a cohomogeneous submanifold X of

codimension c such that for all x ∈ X and all g ∈ G such that g(o) = x, we have g∗NxX ∈ H · E?
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4.1.2 A case study: complex projective space

Consider the case M = CPn ∼= U(n+1)/(U(n)×U(1)). In homogeneous coordinates [z0 : · · · : zn], we
can assume that o = [1 : 0 : · · · : 0]. In that case the tangent space identifies V ∼= Cn and the action
of the isotropy group H on it is just the regular action of U(n) on Cn. The Fubini-Study metric is
precisely the one that corresponds to the usual scalar product in this identification.

The first observation is the following.

Proposition 4.1.17. Every real hypersurface X ⊂ CPn is cohomogeneous. Its associated zonoid is

KX = vol2n−1(X)
2n−1(n− 1)!

πn−1
(
2n
n

) B(V∗)

Proof. Because U(n) acts transitively on S(V∗) ∼= S2n−1, X is cohomogeneous. Using the fact that
vol2n(CPn) = πn/n! we find that its zonoid is given by

KX = vol2n−1(X)
n!

πn
EU (4.1.9)

where U⊂⊂S2n−1 is uniform. We can then use Example 2.2.19 in the case k = 1,m = 2n to find that

EU =
κ2n−1

2nκ2n
B(V∗)

Then we use the identity κ2n−1/κ2n = 2nπ/(n
(
2n
n

)
), see (A.1), and reintroduce in (4.1.9) to get the

result.

Before giving the second example let us define a zonoid (the most careful readers will notice that
it already appeared in Example 3.3.20).

Definition 4.1.18. In the identification V∗ ∼= Cn, consider the first complex coordinate line C ⊂ V∗

seen as a real plane. Then we define

Pn := Eg · C ∈ G0(2,V
∗)

where g ∈ U(n) is uniform and where recall that g · C denotes the segment supported by a Plücker
coordinate of g · C, see Definition 2.2.8.

Since the group U(n) acts transitively on the complex Grassmannians, we have that complex
subspaces in CPn are cohomogeneous. We have the following.

Proposition 4.1.19. For every 1 ≤ k ≤ n, the complex plane CPn−k ↪→ CPn is a cohomogeneous
submanifold (of real codimension 2k). For k = 1, the zonoid associated to the complex hyperplane is
given by

KCPn−1 =
n

π
Pn.

Using integral geometry we can then compute the length of the powers of the zonoid Pn.

Corollary 4.1.20. For every 1 ≤ k ≤ n we have

1

k!
ℓ((Pn)

∧k) =
1

nk

(
n

k

)
. (4.1.10)

Proof. First notice that if g1, . . . , gk ∈ U(n + 1) are independent and uniform then the intersection
g1CPn−1∩· · ·∩gkCPn−1 is almost surely a CPn−k. In particular E vol2n−2k(g1CPn−1∩· · ·∩gkCPn−1) =
πn−k/(n− k)!. By (4.1.3) we obtain(n

π

)k
ℓ((Pn)

∧k) =
n!

πn
πn−k

(n− k)!
.

Dividing by k! gives the result.
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Notice that Pn is of degree 2 > 1 thus Corollary 4.1.20 is not the computation of the k-th intrinsic
volume. From the previous result we obtain the following.

Corollary 4.1.21. For all 1 ≤ k ≤ n we have

KCPn−k = (KCPn−1)∧k

Proof. The zonoid KCPn−k ∈ G0(2k,V
∗) has a generating measure that is a multiple of the uniform

measure on the complex Grassmannian, thus there is a constant c ≥ 0 such that KCPn−k = c (Pn)
∧k.

To compute this constant, notice that, by definition of the associated zonoid, we have

ℓ(KCPn−k) =
vol2n−2k(CPn−k)

vol2n(CPn)
=

n!

(n− k)!

1

πk
.

Then we obtain c = n!
(n−k)!πkℓ(P∧k

n )
and we conclude by Corollary 4.1.20.

Once again, because U(n) acts transitively on the complex Grassmannians, every complex sub-
manifolds in CPn is cohomogeneous and they all are of the same U(n)-type (in the sense of Defini-
tion 4.1.9). In complex algebraic geometry, the volume of a subvariety is given by its degree, more
precisely if X ↪→ CPn is a complex irreducible variety of complex codiension k then we have (see [68,
Section 5.C]):

vol2n−2k(X) = deg(X) vol2n−2k(CPn−k) = deg(X)
πn−k

(n− k)!
. (4.1.11)

It follows that the associated zonoids are integer multiples of the zonoids associated to to the
complex planes. More precisely we have the following.

Proposition 4.1.22. Let X ↪→ CPn be a complex irreducible variety of complex codiension k and
degree d, we have

KX = dKCPn−k .

Proof. Since X and CPn−k are of the same U(n)-type, it follows from Proposition 4.1.10 and (4.1.11).

Thus we realize the cohomology ring of CPn as a subring of Ĝ0(V
∗)U(n).

As detailed in Example 2.4.15, Hiroyuki Tasaki proved in [84] that the U(n)-orbit in the real
Grassmannian Gc(Cn) are characterized by the Kähler angles 2π ≥ θ1(E) ≥ · · · ≥ θ⌊ c2 ⌋

(E) ≥ 0. Let

us remind the reader that these are the angles between a plane and its image under multiplication by
the complex structure. In particular for a complex plane they are all zero and for a Lagrangian plane
they are all π/2.

As observed in Example 2.4.15 there are many more zonoids in G0(V
∗)U(n) as it is infinite di-

mensional, in particular there is a different zonoid for each Kähler angle. However, as shown in
Proposition 4.1.15, we only care about the valuation induced by zonoids. In the particular case of
U(n) invariant valuations, as explained in Example 3.3.20, they are exactly generated by the two pre-
vious examples. That is, for each Grassmannian zonoid K ∈ G0(c,V

∗)U(n), there are real numbers
xj,k such that

ϕK =
∑

j+2k=c

xj,k (ϕB(V∗))
∧j ∧ (ϕPn−1)

∧k.

Be careful that in general the coefficients xj,k can be negative even when we start with a zonoid and
not a virtual zonoid. In particular for c = 2 we can compute these coefficients with a simple linear
system.

Proposition 4.1.23. Let n ≥ 2 and let K ∈ G0(2,V)U(n). The coefficients xR, xC ∈ R such that

ϕK = xR ϕB(V∗)∧2 + xC ϕCPn−1
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where ϕCPn−1 is the valuation associated to KCPn−1 = (n/π)Pn, are given by
xR = 1

(2π)2(n−1)

(
π
nℓ(K)− dK

)
xC = 1

2(n−1)

(
(2n− 1)dK − π

nℓ(K)
)

where dK = πn

n! ℓ(K ∧KCP1) and where recall that KCP1 = (n/π)n−1P
∧(n−1)
n .

Proof. By Lemma 3.3.11 and using the fact that ϕCPn−1 = (n/π)ϕPn
, we have that

ℓ(K) = xRℓ
(
B(V∗)∧2

)
+ xC(n/π)ℓ(Pn)

ℓ
(
K ∧K∧(n−1)

CPn−1

)
= xR(n/π)

n−1ℓ
(
B(V∗)∧2 ∧ P∧(n−1)

n

)
+ xC(n/π)

nℓ(P∧n
n )

The length of the powers of the unit ball was computed in (2.2.7) and we find

ℓ(B(V∗)∧2) = (2n)(2n− 1)
κ2n
κ2n−2

= (2π)(2n− 1)

where in the second equality, we used κ2n = πn/n!. Next, using the useful Lemma 2.2.17 and the
length of powers of Pn computed in (4.1.10), we have

ℓ
(
B(V∗)∧2 ∧ P∧(n−1)

n

)
= (2π)ℓ

(
P∧(n−1)
n

)
= (2π)

n!

nn−1
.

Then using ℓ(Pn) = 1 and ℓ(P∧n
n ) = n!/nn, and the fact that K

∧(n−1)
CPn−1 = KCP1 , we find that xR and

xC are solution of the linear system{
2π2(2n− 1) xR + xC = π

nℓ(K)

2π2 xR + xC = πn

n! ℓ(K ∧KCP1)
.

Inverting the system gives the result.

Applied to zonoids associated to submanifolds of codimension 2 this gives the following.

Proposition 4.1.24. Let n ≥ 2, let X ↪→ CPn be a submanifold of real codimension 2, let ϕX ∈
val+2 (V) be the valuation associated to the zonoid KX . Then the coefficients xR, xC ∈ R such that

ϕX = xR ϕB(V∗)∧2 + xC ϕCPn−1

are given by 
xR = 1

(2π)2(n−1)

(
dX − (n−1)!

πn−1 vol2n−2(X)
)

xC = 1
2(n−1)

(
(2n− 1)dX − (n−1)!

πn−1 vol2n−2(X)
) (4.1.12)

where

dX := E#(X ∩ gCP1)

with g⊂⊂U(n+ 1) uniform.

Proof. We simply apply the previous result to K = KX , noticing that π
nℓ(K) = (n−1)!

πn−1 vol2n−2(X) and

that, by (4.1.3) we have πn

n! ℓ(K ∧KCP1) = E#(X ∩ gCP1).

Remark 4.1.25. In particular if X is an irreducible complex hypersurface of degree d then dX = d and,

by (4.1.11), we have also (n−1)!
πn−1 vol2n−2(X) = d. Thus we find xR = 0 and xC = d which coincides

with what was found in Proposition 4.1.22.

This interprets nicely in terms of self intersections.
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Theorem 4.1.26 (M.). Let n ≥ 2, let X ↪→ CPn be a submanifold of real codimension 2, and let

dX := E#(X ∩ gCP1) where g⊂⊂U(n + 1) uniform and ∆X := dX − (n−1)!
πn−1 vol2n−2(X). Then, if

g1, . . . , gn⊂⊂U(n+ 1) are uniform and independent, we have

E#(g1X ∩ · · · ∩ gnX) =

n∑
k=0

(
n

k

)
ck

4k(n− 1)k
∆k
Xd

n−k
X

where

ck :=

k∑
j=0

(
k

j

)(
2j

j

)
2k−j . (4.1.13)

Proof. By our general formula (4.1.4), we have that E#(g1X ∩ · · · ∩ gnXn) = (πn/n!)ℓ(K∧n
X ). By

Lemma 3.3.11 and (4.1.12), we can replace KX by xRB(V)∧2 + xCKCPn−1 where xR, xC ∈ R are given
by (4.1.12). Next we note that

xR =
1

(2π)2(n− 1)
∆X

xC = dX +
1

2(n− 1)
∆X .

Then we have:

xRB(V)∧2 + xCKCPn−1 = dXKCPn−1 +
∆X

2(n− 1)

(
KCPn−1 +

1

2π2
B(V∗)∧2

)
We obtain the following.

E#(g1X ∩ · · · ∩ gnX) =
πn

n!
ℓ
(
(xRB(V)∧2 + xCKCPn−1)∧n

)
=
πn

n!

n∑
k=0

(
k

n

)
∆k
Xd

n−k
X

2k(n− 1)k

k∑
j=0

(
k

j

)
1

2jπ2j
ℓ
(
KCPj ∧B(V∗)∧2j

)
(4.1.14)

where, in the second equality, we used the fact that K
∧(n−j)
CPn−1 = KCPj (Corollary 4.1.21). Then we use

our favourite lemma: Lemma 2.2.17 to compute

ℓ
(
KCPj ∧B(V∗)∧2j

)
= (2j)!

πj

j!
ℓ (KCPj )

=

(
2j

j

)
π2j

πn
n!

where for the first equality we used κ2j = πj/j! and for the second equality the fact that ℓ (KCPj ) =
(n!πj)/(j!πn). Reintroducing in (4.1.14) above, we get

E#(g1X ∩ · · · ∩ gnX) =

n∑
k=0

(
k

n

)
∆k
Xd

n−k
X

2k(n− 1)k

k∑
j=0

(
k

j

)(
2j

j

)
1

2j
.

In the internal sum, we recognize ck/2
k and this gives what we wanted.

The sequence ck defined in (4.1.13) is listed in the Online Encyclopedia of Integer Sequences (OEIS)
[70] as [A081671], the first terms starting from k = 0 are 1, 4, 18, 88, 454, 2424, . . .

In the case where X is a complex irreducible hypersurface of degree d, as noticed in Remark 4.1.25,
we have dX = d and ∆X = 0. Theorem 4.1.26 then tells us that the self intersection E#(g1X ∩ · · · ∩
gnX) = dn which in that case is given by Bézout’s Theorem. When X is close to a complex irreducible
hypersurface, the quantity ∆X is small and we can see Theorem 4.1.26 as a perturbation of Bézout:

E#(g1X ∩ · · · ∩ gnX) = dnX +
n

n− 1
dn−1
X ∆X +

9n

16
dn−2
X ∆2

X +O(∆3
X).
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The formula in Theorem 4.1.26 could also presumably be obtained by means of a kinematic formula
in CPn as developped by Andreas Bernig, Joseph Fu and Gil Solanes in [21]. Let us say a word about
this point of view. There is a notion of valuations on manifolds developped by Semyon Alesker
(see [6]), those are functions on the submanifolds with corner (also called differentiable polyhedra)
of M , that satisfy the valuation property (3.1.1). Similarly as for the case of convex valuations in
Proposition 3.1.26, the space of U(n+ 1) invariant valuation in CPn is finite dimensional. The Euler
characteristic χ is an example of such valuation (which in dimension 0 coincide with the number of
points). The kinematic formula in that case says that for every submanifolds X,Y ⊂ CPn and if
g⊂⊂U(n+ 1), we have (see [21, Section 2.3])

E [χ (X ∩ gY )] =
∑
i,j

cijϕi(X)ϕj(Y ) (4.1.15)

where ϕi is a basis of the U(n+1) invariant valuations on CPn and ci,j ∈ R are constants that does not
depend on X and Y . By taking X of codimension 2 and Y = g1X ∩· · ·∩gn−1X we can iterate (4.1.15)
to obtain a formula for the number of points E#(g1X ∩ · · · ∩ gnX). Next, one can relate valuations
on CPn to the valuations on Cn by means of a transfer principle, see [21, Section 2.4]. It would then
remain to compute the constants which could require some work but in principle is doable.

4.1.3 Probabilistic Schubert Calculus

We now study the case of the real Grassmannian. We fix 0 ≤ a ≤ b integers and consider the
homogeneous space M = G(a, a+ b) = Ga(Ra+b) ∼= O(a+ b)/(O(a)×O(b)). This is a smooth manifold
of dimension ab. We fix our favourite point to be o := Ra the plane spanned by the a first coordinates
in Ra+b. The tangent space at o is given by V = ToG(a, a + b) = Hom(Ra, (Ra)⊥). We sometime
identify V ∼= Ra ⊗ Rb that we think of as the space of a × b real matrices. The action the isotropy
group H = O(a)×O(b) is given for every φ ∈ V and every (g, h) ∈ O(a)×O(b) by

(g, h) · φ = g ◦ φ ◦ ht

where we used the natural identification ((Ra)⊥)∗ = Rb where Rb ⊂ Ra+b is the space spanned by the
last b coordinates. We use the standard scalar product on V. It is such that the Plücker embedding
(see the beginning of Section 2.2.2):

Pl : G(a, a+ b) ↪→ P(ΛaRa+b)

is a Riemannian immersion. Indeed fixing an orthonormal basis e1, . . . , ea of Ra and an orthonormal
basis f1, . . . , fb of (Ra)⊥ ∼= Rb, then an orthonormal basis of V is given by the maps φi,j , 1 ≤ i ≤ a,
1 ≤ j ≤ b, that are given by

φi,j(ek) = δi,kfj . (4.1.16)

A simple computation yields

doPl(φi,j) = e1 ∧ · · · ∧ ei−1 ∧ fj ∧ ei+1 ∧ · · · ∧ ea

which is again an orthonormal frame and this proves the claim.
We want, in this section, to apply our integral geometry and zonoid calculus framework to the

intersection of Schubert varieties. These are special subvarieties of the Grassmannian that play a
central role in the understanding of these spaces. It is convenient to index them by Young diagrams.
Let us make a few definitions.

Definition 4.1.27. A Young diagram that fits in a× b is a collection of boxes in the grid with a rows
and b columns such that if a box is selected then all the boxes on the left of the same row and above
in the same columns are also selected, see Figure 4.1. We sometime omit to say that a Young diagram
fits in a× b if it is clear from the context or if it has no importance. If λ is a Young diagram, we call
the codimension of λ the number of boxes in the Young diagram and we denote it by |λ|.
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: All the Young diagrams that fit in 2 × 2: one of codimension 0, 1, 3 and 4 and two of
codimension 2.

We think of the a × b grid with the rows labelled from top to bottom and the columns labelled
from left to right. In this context if λ is a Young diagram that fits in a× b, for each (i, j) ∈ a× b we
write (i, j) ∈ λ if the box in the ith row and jth column belongs to λ. Moreover, if (i, j) ∈ λ is such
that (i+ 1, j), (i, j + 1) /∈ λ, we say that it is an outer corner of λ.

Remark 4.1.28. We can think of the vector space V ∼= Ra ⊗ Rb as the space spanned by the boxes in
the a× b grid. To the box (i, j) we can associate the map φi,j given by (4.1.16).

Finally in Ra+b we fix the complete flag:

{0} =:W0 ⊂W1 ⊂ · · · ⊂Wa+b := Ra+b

where for all 1 ≤ k ≤ a + b, Wk := Rk is the space spanned by the k first coordinates. We are now
ready to define our favourite varieties for this section.

Definition 4.1.29. To every Young diagram λ that fits in a × b, we associate the Schubert variety
Ωλ ⊆ G(a, a+ b), defined by:

Ωλ := {E ∈ G(a, a+ b) | dim(E ∩Wb−j+i) ≥ i ∀(i, j) ∈ λ}.

Each Ωλ ⊆ G(a, a + b) is a subvariety of codimension |λ|, the codimension of λ. It is possibly
singular but of finite volume.

One can check that if E ∈ G(a, a+ b) is such that dim(E∩Wb−j+i) ≥ i for some (i, j) ∈ a× b then,
because of the inclusion condition of the spaces Wk, it is automatic that the same holds for (i− 1, j)
and (i, j − 1). It follows that only the boxes at the outer corners of the Young diagram are needed
to define the Schubert variety. In other words, if λ is a Young diagram that fits in a × b with outer
corners (m1, p1), . . . , (mr, pr) then we have

Ωλ = {E ∈ G(a, a+ b) | dim(E ∩Wb−pi+mi
) ≥ mi 1 ≤ i ≤ r}.

The smooth part of Ωλ is obtained by replacing inequalities by equalities in this definition:

Ωsmλ = {E ∈ G(a, a+ b) | dim(E ∩Wb−pi+mi
) = mi 1 ≤ i ≤ r}.

In the complex setting, Schubert varieties form a basis of the cohomology spaces of the Grassman-
nian. Hence intersection problems in the complex Grassmannian can be reduced to computing the cup
product of cohomology classes of Schubert varieties. At the level of Young diagrams, the laws that
rules these products are known as Schubert calculus.

In the real setting, in general, the cohomology ring can only compute intersections modulo 2. We
will try here to apply thecniques developed above to compute average random intersection. For this
we will first show that they are cohomogeneous and thus we need to understand better the tangent
and normal spaces of Schubert varieties.

The following lemma gives a description of tangent spaces to Schubert varieties (at smooth points).
In the case of simple Schubert varieties, i.e. varieties associated to a Young diagram with a unique
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outer corner, it was proved by László Fehér and Ákos Matszangosz in [39, Proposition 4.3]. Recall
that the tangent space at E ∈ G(a, a+ b) is identified with the morphisms E → E⊥. Moreover, let us
identify in the following Ra+b with its dual using the Euclidean structure and in particular we consider
E⊥ as a subspace of Ra+b.

Lemma 4.1.30. Let λ be a Young diagram that fits in a×b and Ωλ ⊂ G(a, a+b) be the corresponding
Schubert variety. Denote by (m1, p1), . . . , (mr, pr) the outer corners of λ. We have for all E ∈ Ωsm

λ :

TEΩ
sm
λ =

{
φ : E → E⊥ |φ (E ∩Wb−pi+mi

) ⊂ E⊥ ∩Wb−pi+mi
∀ i = 1, . . . , r

}
(4.1.17)

Proof. First suppose r = 1 so that Ωsmλ := {E ∈ G(a, a+ b) | dim(E ∩Wb−p+m) = m} . We prove
that the right hand side of (4.1.17) is included in the left hand side. The equality follows by a count
of dimensions (this can also be seen, a posteriori, using (4.1.20)).

Let φ ∈ Hom(E,E⊥) and consider the curve γφ : (−ε, ε) → G(a, a+ b) given by

γφ(t) = {x+ tφ(x) |x ∈ E} ∈ G(a, a+ b).

Then γφ satisfies γφ(0) = E and γ̇φ(0) = φ.
Now suppose φ (E ∩Wb−p+m) ⊂ E⊥ ∩Wb−p+m. Then we have that the image of E ∩Wb−p+m

under the map Id+tφ is included in γφ(t) ∩Wb−p+m and, since dimension can only locally decrease,
and, for small t ∈ (−ϵ, ϵ), the map Id+tφ is invertible, it means that for t small enough we have
dim (γφ(t) ∩Wb−p+m) = m, i.e. γφ(t) ∈ Ωsmλ . Thus φ ∈ TEΩ

sm
λ and we have the inclusion we wanted.

Now let r ≥ 2. Then

Ωsmλ =

r⋂
i=1

Ωsmλi

where λi is the Young diagram with unique outer corner (mi, pi) and thus

Ωsmλi
:= {E ∈ G(a, b) | dim(E ∩Wb−pi+mi

) = mi} .

Then for all E ∈ Ωsmλ we have TEΩ
sm
λ =

⋂r
i=1 TEΩ

sm
λi

and in the right hand side each term falls into
the case already dealt with r = 1. The result follows.

This description of the tangent space given in Lemma 4.1.30 can be interpreted in terms of the
Young diagrams once we choose an appropriate basis. More precisely, let λ be a Young diagram that
fit in a× b with outer corners (m1, p1), . . . , (mr, pr) with m1 ≤ · · · ≤ mr (and thus p1 ≥ · · · ≥ pr) and
let E ∈ Ωsmλ . Choose an orthonormal basis e1, . . . , ea of E such that

E ∩Wb−pi+mi
= Span{e1, . . . , emi

} (4.1.18)

and choose f1, . . . , fb an orthonormal basis of E⊥ such that

E⊥ ∩Wb−pi+mi = Span{f1, . . . , fpi}. (4.1.19)

Such a basis exists because of the relations of inclusion of the flag and because of the ordering we chose
on the outer corners.

Then let φij ∈ Hom(E,E⊥) be the map defined by (4.1.16). The set {φij | 1 ≤ i ≤ a, 1 ≤ j ≤ b}
forms an orthogonal basis of Hom(E,E⊥). The previous lemma states precisely that, in this basis,

TEΩ
sm
λ = Span {φij | 1 ≤ i ≤ k, 1 ≤ j ≤ n− k, (i, j) /∈ λ} . (4.1.20)

Note that the dual to the space Hom(E,E⊥) is identified with

Hom(E,E⊥)∗ = Hom(E⊥, E)

by letting for every ψ ∈ Hom(E⊥, E), and every φ ∈ Hom(E,E⊥):

⟨ψ,φ⟩ := tr(ψ ◦ φ).
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In the light of this, we let φ∗
i,j ∈ Hom(E⊥, E) be the map given by

φ∗
i,j(fk) = δj,kei.

They form an orthonormal basis of the normal space NEG(a, a + b) (the dual basis of {φi,j}). One
can then identify the normal space of the Schubert variety as

NEΩ
sm
λ = Span

{
φ∗
ij | (i, j) ∈ λ

}
. (4.1.21)

Definition 4.1.31. Let λ be a Youg diagram that fits a× b and let E ∈ Ωsmλ . An orthonormal basis
{e1, . . . , ea, f1, . . . , fb} of Ra+b that satisfies (4.1.18) and (4.1.19) is called adapted to the couple (λ,E).

Theorem 4.1.32 (M.). Schubert varieties are cohomogeneous.

Proof. Let E,E′ ∈ Ωsmλ and let e1, . . . , ea, f1, . . . , fb be a basis adapted to (λ,E) and e′1, . . . , e
′
a, f

′
1, . . . , f

′
b

a basis adapted to (λ,E′). Then we let g ∈ O(a + b) be the element that satisfies g(ei) = e′i and
g(fj) = f ′j . Then it is clear using the description (4.1.20) that g∗ sends TEΩ

sm
λ to TE′Ωsmλ .

We can now consider zonoids associated to Schubert varieties.

Definition 4.1.33. Let λ be a Young diagram that fits a × b. We define the Schubert zonoid to be
Kλ := KΩλ

∈ G0(|λ|,V∗) ∼= G0(|λ|,Ra⊗Rb) where KΩλ
is the zonoid associated to the cohomogeneous

submanifold Ωsmλ ↪→ G(a, a+ b) from Definition 4.1.2.

Let us describe these zonoids in the identification V∗ ∼= Ra ⊗ Rb. Let e1, . . . , ea, respectively
f1, . . . , fb, be an orthonormal basis for Ra, respectively Rb. For each λ Young diagram that fits a× b,
we define the simple vector

vλ :=
∧

(i,j)∈λ

ei ⊗ fj ∈ Λ|λ| (Ra ⊗ Rb
)

where the wedge product is done in lexicographic order (a different ordering will just change the sign
and this won’t matter in the end). Then, using the description of the normal space (4.1.21) and the
definition of the associated zonoid Definition 4.1.2, we see that

Kλ =
volab−|λ| (Ωλ)

volab (G(a, a+ b))
Eh · vλ (4.1.22)

where h⊂⊂O(a)×O(b) is uniform.
The volume of the Grassmannian G(a, a+b) can be computing using known formulas for the volume

of orthogonal groups and we obtain, see [29, (2.11)]:

volab(G(a, a+ b)) = π
ab
2

Γ
(
a
2

)
Γ
(
a−1
2

)
· · ·Γ

(
1
2

)
Γ
(
a+b
2

)
Γ
(
a+b−1

2

)
· · ·Γ

(
b+1
2

) .
The first difficulty is to compute in all generality the volume of the Schubert varieties.

Open problem 14. Compute the volume of Ωλ ↪→ G(a, a+ b) for any Young diagram λ that fits a× b.

In the case of the Young diagram consisting of a single box, this was computed by Peter Bürgisser
and Antonio Lerario in [29, Theorem 4.2], they obtain:

volab−1 (Ω□)

volab (G(a, a+ b))
=

Γ
(
a+1
2

)
Γ
(
b+1
2

)
Γ
(
a
2

)
Γ
(
b
2

) (4.1.23)

We then can compute its associated zonoid.

Proposition 4.1.34. Let λ := □ be the Young diagram consisting of one box in the a× b grid. Then
the Schubert zonoid associated to it is

K□ =
1

4π
Ba ⊗Bb ∈ Z0(Ra ⊗ Rb)O(a)×O(b).
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Proof. We have v□ = e1⊗f1 and thus if h = (g1, g2)⊂⊂O(a)×O(b) is uniform then h·v□ = g1(e1)⊗g2(f1)
have the same law as U ⊗ V ∈ Ra ⊗ Rb where U⊂⊂Sa−1 and V ⊂⊂Sb−1 are uniform and independent.
Thus we have Eh · v□ = EU ⊗ EV . Using Example 2.2.19 in the case k = 1,m = a we find

EU =
κa−1

aκa
Ba =

Γ
(
a
2

)
√
πΓ
(
a−1
2

)Ba
and similarly for EV . Reintroducing in (4.1.22) and using (4.1.23) gives the result.

In [29], it is called the Segre zonoid. Using Corollary 4.1.11, we can then express the volume of the
tensor of balls as an average intersection number in the Grassmannian.

Corollary 4.1.35. We have

volab(Ba ⊗Bb) =
(4π)ab

(ab)! volab(G(a, a+ b))
E#(g1Ω□ ∩ · · · ∩ gabΩ□)

where g1, . . . , gab ∈ O(a+b) are uniform and independent and Ω□ ↪→ G(a, a+b) is the Schubert variety
associated to the Young diagram consisting of just one box.

To compute volumes of zonoids in Z0(Ra ⊗ Rb)O(a)×O(b), one can use the symmetry given by the
group action to reduce the complexity. Recall that we assumed a ≤ b and consider the space

Σ := Span {ei ⊗ fi | 1 ≤ i ≤ a} ⊂ Ra ⊗ Rb.

When thinking of Ra⊗Rb as the space of rectangular a×b matrices, Σ ∼= Ra is the subspace of diagonal
matrices. The complete invariants of the O(a) × O(b) is given by the singular value decomposition.
Before the statement, let us define

Ea := Sa ⋉ (Z/2)a .

Together with the action Ea ↷ Σ ∼= Ra that acts by permutation and change of sign of coordinates in
the basis.

Lemma 4.1.36 (SVD). For all x ∈ Ra ⊗ Rb, there is a unique σ(x) = (σ1(x), . . . , σa(x)) ∈ Σ ∼= Ra
such that σ1(x) ≥ · · · ≥ σa(x) ≥ 0 that is in the same O(a)×O(b) of x. Moreover in that case

(O(a)×O(b) · x) ∩ Σ = Ea · σ(x).

We use SVD to reduce the computation of a mixed volume of invariant zonoids.

Lemma 4.1.37. Let K1, . . . ,Kab ∈ Z0(Ra⊗Rb)O(a)×O(b) and let X2, . . . , Xab
⊂⊂Ra⊗Rb be independent

random vectors such that Ki = EXi. Then we have

MV(K1,K2, . . . ,Kab) =
2

(ab)!
E
[
hπ(K1)(Y )

]
where Y := σ(∗(X2 ∧ · · · ∧ Xab))⊂⊂Σ with ∗ : Λab−1Ra ⊗ Rb → Ra ⊗ Rb the Hodge star and where
π : Ra ⊗ Rb → Σ is the orthogonal projection.

Proof. Suppose that K = EX1 with X1 independent of the other Xi. Then by basic zonoid calculus
we have

MV(K1,K2, . . . ,Kab) =
1

(ab)!
E |⟨X1, ∗X2 ∧ · · · ∧Xab⟩| =

2

(ab)!
E [hK1

(∗X2 ∧ · · · ∧Xab)] .

Since K ∈ Z0(Ra ⊗ Rb)O(a)×O(b), the support function hK is O(a) × O(b)-invariant. Thus the last
term is equal to 2

(ab)!E [hK(σ(∗X2 ∧ · · · ∧Xab))] which is what we wanted
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In terms of measures, if we denote by µY the generating measure of EY ⊂ Σ, we can reformulate
the previous result, using Proposition 1.2.43, as follows:

MV(K1,K2, . . . ,Kab) =
4

(ab)!

∫
S(Σ)

hK1
dµY .

We see that we reduced the computation of a volume in Rab to an integral on the sphere of Σ ∼= Ra
which is a considerable reduction of dimension although one of course still needs to compute the
measures µY .

Peter Bürgisser and Antonio Lerario in [29] and Antonio Lerario with the author in [54] use this
to compute asymptoticf of the number

δa−1,a+b := E#(g1Ω□ ∩ · · · ∩ gabΩ□)

where g1, . . . , gab ∈ O(a+ b) are uniform and independent, as b→ ∞.
The link with the O(a)×O(b) invariant zonoids and Ea invariant zonoids is actualy stronger than

just computation of mixed volume. Let us detail this in a more general setting in the following.

4.1.4 Invariant zonoids: geometric approach

In this section let us consider again our m dimensional Euclidean space V. We suppose we have a
subspace Σ with a linear Euclidean injection:

ι : Σ ↪→ V.

Writing this injection explicitely may seem pedantic but it actually helps to make things more clear
when dualizing. We suppose it is Euclidean in the sense that it preserves the Euclidean structure or
equivalentely ι(S(Σ)) ⊂ S(V). We also consider the projection

π := ιt : V∗ → Σ∗.

Suppose that we have closed subgroups H ⊂ O(V) and E ⊂ O(Σ) such that their action satisfy the
following property:

∀ε ∈ E , s ∈ Σ,∃h ∈ H such that ι(ε · s) = h · ι(s). (HE-1)

We have the following.

Theorem 4.1.38 (M.). The projection π induces a linear map

π̂ : K̂ (V∗)H → K̂ (Σ∗)E

that is continuous in the norm topology. If the action of H satisfies

H · ι(Σ) = V (HE-2)

then this is an isometric embedding: π̂ : K̂ (V∗)H ↪→ K̂ (Σ∗)E and for every A ∈ Ẑ0(V
∗)H we have

∥π(A)∥ = ∥A∥. Finally, if, in addition, we have the property that for all s, s′ ∈ Σ:

ι(s′) ∈ H · ι(s) ⇐⇒ s′ ∈ E · s (HE-3)

then π̂ is an isomorphism of normed vector spaces: π̂ : K̂ (V∗)H ∼= K̂ (Σ∗)E .

Proof. We need first to prove that if K ∈ K (V∗)H then π(K) ∈ K (Σ)E . Indeed, let s ∈ Σ and ε ∈ E .
Then hπ(K)(ε · s) = hK(ι(ε · s)). By assumption (HE-1), there exists g ∈ H such that ι(ε · s) = g · ι(s).
Thus hπ(K)(ε · s) = hK(g · ι(s)). By H-invariance, this is equal to hK(ι(s)) = hπ(K)(s) and this proves
that π(K) is indeed E-invariant.
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To prove continuity, we need to prove that for every A ∈ Ẑ0(V
∗)H , we have ∥π(A)∥ ≤ ∥A∥. The

norm of a (virtual) convex body is given by the supremum of its support function. Using again that
hπ(K) = hK ◦ ι, we obtain

∥π(A)∥ = sup {|hA(x)| |x ∈ ι(S(Σ))} .

Since ι(S(Σ)) ⊂ S(V) we get ∥π(A)∥ ≤ ∥A∥ which is what we wanted.
Now suppose that we have (HE-2). It implies that H · ι(S(Σ)) = S(V). By H-invariance of A we

have
∥π(A)∥ = sup {|hA(g · x)| |x ∈ ι(S(Σ)), g ∈ H}

which is equal to ∥A∥ as we claimed and this shows that the map preserves the norm and in particular
is injective.

We need to show that if we assume (HE-3) it is invertible. Let K ∈ K (Σ∗)E . We define the convex
body L ∈ K (V∗) by letting for all x ∈ V:

hL(x) := sup {hK(s) | s ∈ Σ, ι(s) ∈ H · x} . (4.1.24)

It is sublinear and thus defines a support function and it is H-invariant thus L ∈ K (V∗)H . Now
applying π, we get for all s ∈ Σ:

hπ(L)(s) = sup {hK(s′) | s′ ∈ Σ, ι(s′) ∈ H · ι(s)} = hK(s)

where in the last equality we used the property (HE-3) and the E-invariance of K. Thus we have
π(L) = K and since it preserves the norm this inverse is unique and the inverse map is continuous.

Remark 4.1.39. Since π is linear, the map π̂ sends zonoids to zonoids. However, be careful that even
in the case where we have properties (HE-2) and (HE-3) the restriction to zonoids of the isomorphism
π̂ is not in general an isomorphism of the spaces of zonoids. In other words there might be zonoids
K ∈ Z0(Σ

∗)E such that the preimage π̂−1(K) ∈ K (V∗)H is not a zonoid. In that case it only gives
an embedding of normed vector spaces

π̂ : Ẑ0(V
∗)H ↪→ Ẑ0(Σ

∗)E

Remark 4.1.40. Note that if we have properties (HE-1), (HE-2) and (HE-3) then the inverse of
K ∈ K (Σ∗)E , L = π̂−1(K) has support function given for any x ∈ V by hL(x) = hK(s) for any
s ∈ Σ such that ι(s) ∈ H · x. Indeed, it is given by (4.1.24) but because of (HE-3), we have that
ι(s′) ∈ H · ι(s) if and only if s′ ∈ E and thus, because of the invariance of K, the argument in the sup
is constant.

As the reader may expect, the first nontrivial example is given by the O(a)×O(b) action on a× b
matrices and SVD.

Corollary 4.1.41. The projection π : Ra⊗Rb → Σ on the space of diagonal matrices, induces a linear
isometry

π̂ : K̂ (Ra ⊗ Rb)O(a)×O(b) ∼= K̂ (Σ)E
a

and a map

π̂ : Ẑ0(Ra ⊗ Rb)O(a)×O(b) ↪→ Ẑ0(Σ)
Ea

that is an isometric embedding of normed vector space.

Proof. Properties (HE-1),(HE-2) and (HE-3), are all features of SVD (Lemma 4.1.36).

Example 4.1.42. Another example is given by Raman Sanyal and James Saunderson in [76] where they
consider the following case. V := Symn(R) is the space of n × n symmetric matrices and H = O(n)
acts by conjugation. Σ = Rn and E = Sn is the group of permutations acting by permutation of
coordinate. Then the inclusion ι : Rn ↪→ Symn(R) is given by the diagonal matrices. We can see that
(HE-1) holds because if x ∈ Rn and p ∈ Sn then the diagonal matrix ι(p · x) can be obtained from
ι(x) conjugating by a permutation matrix (which is also orthogonal). Property (HE-2) follows from
the fact that every symmetric matrix is diagonalizable in orthonormal basis. Finally property (HE-3)
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is equivalent to the fact that the only diagonal matrices in the orbit of a diagonal matrix are given by
permutation of the entries on the diagonal.

Sanyal and Saunderson call preimages of zonoids by the map π̂, spectral zonoids and they show
that they are not always zonoids. This is an instance of what was anticipated in Remark 4.1.39.

This approach is a priori different from the one presented in Section 2.4.3 that consisted in identi-
fying the orbit spaces and then consider invariant measures as measures on the orbit spaces. In term
of measures, the map π̂ presented here is dual to the restriction map that take a continuous function
on V and restrict it to Σ, i.e. the map f 7→ f ◦ ι. In particular we have also continuity in the weak-∗
topology.

Proposition 4.1.43. If the action satisfies (HE-1), the map π̂ : Ẑ0(V
∗)H → Ẑ0(Σ

∗)E is continuous
in the weak-∗ topology.

This geometric approach has the advantage to be more adapted to the computation of geometric
quantities such as volume or mixed volume. Indeed, suppose we have a continuous map (not necessarily
linear)

σ : V→ Σ

such that for all x ∈ V we have
ι(σ(x)) ∈ H · x.

Then with the exact same proof as Lemma 4.1.37 we can prove the following.

Lemma 4.1.44. Let K1, . . . ,Km ∈ Z0(V
∗)H and let X2, . . . , Xm ∈ V∗ be independent random vectors

such that Ki = EXi. Then we have

MV(K1,K2, . . . ,Km) =
2

m!
E
[
hπ(K1)(Y )

]
where Y := σ(∗(X2 ∧ · · · ∧Xm))⊂⊂Σ with ∗ : Λm−1V∗ → V the Hodge star.

One could use this and the description by Sanyal and Saunderson in [76] for symmetric matrices
to compute random intersection in the Lagrangian Grassmannian and this will be the object of future
works.

4.2 Kac-Rice and the zonoid section

Results in this section are a joint work with Michele Stecconi.
In the following, M will denote a smooth Riemannian manifold of dimension m. This time the

random submanifolds we consider are given by random maps f⊂⊂C1(M,Rk) that we call random fields
(where recall the notation x⊂⊂X for a random element x of X see Definition 1.2.17). Indeed, if 0 ∈ Rk
is almost surely a regular value of f then the zero set X := f−1(0) defines a random submanifold of
M of codimension k.

We will ask additional regularity condition on the law of the random function f⊂⊂C1(M,Rk) that
we call the z-KRok conditions (this stands for “zonoid-Kac-Rice ok”). They are a bit technical but
the idea is to be able to give a sense, for every p ∈ M , to conditioning to the event f(p) = 0 which
in general is of probability zero and then to have that the differential dpf conditioned to f(p) = 0 is
integrable.

Given a z-KRok random field f⊂⊂C1(M,Rk), we build a zonoid section in the k-th exterior power of
the cotangent bundle ofM. That is, for every p ∈M we build a zonoid ζX(p) ∈ Z0(Λ

kT ∗
pM). Then we

prove that this zonoid section satisfies nice pullback and intersection property. Most importantly, by
adapting the Kac-Rice formula, we prove that its length computes the density of volume of the random
submanifold X = f−1(0). We deduce inequalities for densities of random intersection of z-KRok fields.

Given a z-KRok random field f⊂⊂C1(M,R), the support function of its zonoid ζX(p) ∈ Z0(T
∗M)

defines a (semi)norm hζ(p) : TpM → R. If this norm is regular enough this is called a Finsler structure
on the manifold M . In the last part we interpret our results in this context to produce a Crofton
formula in Finsler geometry.
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4.2.1 The z-KRok condition

In this section we are going to describe a class of random functions for which Kac-Rice formula works
well and it can be written in terms of a field of zonoids as we will explain later. The space of
Cr functions between two manifolds M and N is denoted by Cr(M,N) and we consider it to be a
topological space endowed with the weak Whitney topology (see [44]). Spaces of measures are, as
usual, considered endowed with the weak-∗ topology.

The definition of the z-KRok conditions are based on a notion in probability that formalizes the
notion of conditioning, see [36] or [52, Definition 2.1-1].

Definition 4.2.1. Let f⊂⊂C1(M,Rk) and let p ∈ M , suppose that the law of f(p)⊂⊂Rk is absolutely
continuous with density ρf(p) : Rk → [0,+∞). Then, a regular conditional probability of f given f(p)
is a function

µ(p, ·)(·) : Rk × B → [0, 1]

(x,B) 7→ µ(p, x)(B)

where B denotes the Borelians of C1(M,Rk), that satisfies the following two properties.

(i) For every Borelian B ⊂ C1(M,N), the function µ(p, ·)(B) : Rk → [0, 1] is measurable and for
every Borelian V ⊂ Rk, we have

P (f ∈ B; f(p) ∈ V ) =

∫
V

µ(p, x)(B) ρf(p)(x)dx.

(ii) For all x ∈ Rk, µ(p, x) is a Borel probability measure on C1(M,N).

One more geometric definition. For this, recall that our manifold M is Riemannian.

Definition 4.2.2. Let φ : M → Rk be a differentiable function and write φ = (φ1, . . . , φk). The
Jacobian of φ at p ∈M , denoted Jpφ, is defined to be

Jpφ := ∥dpφ1 ∧ · · · ∧ dpφ
k∥.

This is sometimes called the normal Jacobian of φ. We are now ready for our main definition,
namely the z-KRok hypoteses. The name z-KRok1 stands for “zonoid-Kac-Rice ok”.

Definition 4.2.3 (z-KRok hypotheses). Let f⊂⊂C1(M,Rk) be a random field. We say that f is z-KRok
if the following properties hold.

z-KRok -i: Almost surely, 0 is a regular value of f .

z-KRok -ii: For any p ∈ M the law of f(p)⊂⊂Rk is absolutely continuous and thus admits a density
ρf(p) : Rk → [0,+∞).

z-KRok -iii: The function ρf(·)(·) : M ×R → R given by (p, x) 7→ ρf(p)(x) is continuous at (p, 0) for all
p ∈M .

z-KRok -iv: There exists a regular conditional probability µ(p, x) ∈ P(C1(M,Rk)) of f given f(p)
such that the following holds. Let Jp · µ(p, x) ∈ M+

(
C1(M,Rk)

)
be the measure defined

for every continuous Ψ : C1(M,Rk) → R by

⟨Jp · µ(p, x),Ψ⟩ := ⟨µ(p, x),Ψ Jp⟩ =
∫

Ψ(φ) Jpφd (µ(p, x)) (φ).

Then we ask that Jp · µ(p, x) is a finite measure and that the function

J · µ :M × Rk → M+
(
C1(M,Rk)

)
(p, x) 7→ Jp · µ(p, x)

is continuous at (p, 0) for all p ∈M .
1The author pronounces it “zkrok” or “zee krok”.
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By definition, for every p ∈M,x ∈ Rk, µ(p, x) is a probability measure on C1(M,Rk). We denote
by

(f |f(p) = x)⊂⊂C1(M,Rk)

a random function that has law µ(p, x). Note that this is not properly defined as a random variable
but in the following we will only care about the law. If Φ : C1(M,Rk) → R is a µ(p, x)-integrable
function then we write

E [Φ(f)|f(p) = x] := E
[
Φ
(
(f |f(p) = x)

)]
=

∫
C1(M,Rk)

Φ(φ) dµ(x, p)(φ).

Similarly if Ψ : C1(M,Rk) → A is a Borel map to a topological space A, we write

(Ψ(f)|f(p) = x) := Ψ
(
(f |f(p))

)
⊂⊂A

i.e. (Ψ(f)|f(p) = x) has law the push forward of µ(x, p) by Ψ. In particular, if we write f =
(f1, . . . , fk), in the following we will be interested in the random vector

(dpf
1 ∧ · · · ∧ dpf

k|f(p) = 0)⊂⊂ΛkT ∗
pM. (4.2.1)

Notice that the finiteness assumption in z-KRok -iv is equivalent to say that the random vector
(dpf

1 ∧ · · · ∧ dpf
k|f(p) = 0)⊂⊂ΛkT ∗

pM is integrable. Of course if we have an integrable random vector
in an m dimensional vector space we feel the urge of taking the Vitale zonoid and that is what we will
do in the next section. But first let us give a few examples of z-KRok fields. The first one, still rather
general, should help the reader not familiar with the technical probabilistic concepts introduced, to
understand better the z-KRok conditions.

Proposition 4.2.4. Let F ⊂ C1(M,Rk) be a subspace of dimension n < ∞ endowed with a scalar
product and such that for all p ∈ M, the map evp : F → Rk, φ 7→ φ(p) is surjective. Let f⊂⊂F be a
random function whose law admits a continuous density ρf : F → R such that ρf (0) > 0 and such
that when ∥φ∥ → ∞, we have ρf (φ) = O(∥φ∥−α) for some α > n. Then f is z-KRok.

Proof. Let us detail the z-KRok conditions one by one.
For the first one, the trick is to use the parametric transversality theorem, see [44, Theorem 2.7].

Indeed, consider the function Φ : F ×M → R given by Φ(φ, p) = φ(p). Then its differential at (φ, p) is
given by evp ⊕ dpφ. By assumption this is surjective and thus the map Φ is transversal to zero, i.e. 0
is a regular value of Φ. The parametric transversality theorem then tells us that for almost all φ ∈ F ,
the map φ 7→ φ(p) is transversal to 0, i.e. for almost all φ ∈ F , 0 is a regular value of φ which is what
we wanted.

The law of f(p) is the push forward of the law of f by the linear map evp : F → Rk. Suppose
B ⊂ Rk is a Borel subset of measure 0. Then P (f(p) ∈ B) = P (f ∈ ev−1

p (B)). Let us denote

Fp := ker(evp) = {φ ∈ F |φ(p) = 0} .

Then the space ev−1
p (x) is an affine subspace parallel to Fp which, by the surjectivity of evp, is of

dimension n − k. Thus ev−1
p (B) ∼= B × Fp is of Lebesgue measure zero in F . Since the law of f

is, by assumption, absolutely continuous with respect to the Lebesgue measure on f , we obtain that
P (f ∈ ev−1

p (B)) = 0 and thus P (f(p) ∈ B) = 0. This proves that the law of f(p) is absolutely

continuous with respect to Lebesgue on Rk and thus admits a density ρf(p) : Rk → R and this proves
the property z-KRok -ii.

We can compute this density, we have for all p ∈M and x ∈ Rk:

ρf(p)(x) =

∫
ev−1

p (x)

ρf (φ)dφ. (4.2.2)

To prove continuity, we can use the assumption of the behaviour at infinity of ρf and dominated
convergence. Indeed, with the Euclidean structure, we can assume F = Rn. Let p ∈ M , we can
assume that Fp = Rn−k ⊂ Rn is the space spanned by the n − k first coordinates. Then we write
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ρf (y, x) with y ∈ Rn−k and x ∈ Rk. Let now pj → p and xj → 0, let gj ∈ O(n) be such that
g−1
j (Fpj ) = Fp = Rn−k then we have

ρf(pj)(xj) =

∫
Rn−k

ρf (gj(y), xj)dy.

On Rn−k, the function y 7→ ∥y∥−α is integrable at infinity if and only if α > n − k. Thus under our
assumption y 7→ ρf (gj(y), xj) is dominated by an integrable function uniformly on j and by dominated
convergence we get z-KRok -iii.

We define µ(p, x) to be the probability measure on F with support on the affine space ev−1
p (x) that

admits the continuous density ρf,p,x : ev−1
p (x) → R that is 0 if ρf(p)(x) = 0 and else is given by

ρf,p,x :=
1

ρf(p)(x)
ρf |ev−1

p (x). (4.2.3)

Then µ(p, x) defines a regular conditional probability for f given f(p). Now let us note that for all
p ∈M , there exists a constant c = c(p) > 0 such that Jpφ ≤ c∥φ∥k. Thus the function φ 7→ Jpφρf (φ)
is at infinity an O

(
∥φ∥−(α−k)) and this is integrable on ev−1

p (x) ∼= Rn−k if and only if α > n which is
precisely our assumption and this gives us the finiteness condition in z-KRok -iv. To see the continuity,
let Ψ : F → R be a bounded continuous function. Let pj → p and xj → 0, we repeat the argument of
the previous item to write

⟨Jp · µ(pj , xj),Ψ⟩ = 1

ρf(pj)(xj)

∫
Rn−k

Ψ(gj(y), xj)Jp(gj(y), xj) ρf (gj(y), xj)dy

for some sequence gj ∈ O(n) converging to Id. Since ρf (0) > 0 we get from (4.2.2) that ρf(p)(0) > 0

for every p ∈M and we can argue similarly as before: this is dominated by a O
(
∥φ∥−(α−k)) at infinity

which is integrable and we conclude by dominated convergence to obtain z-KRok -iv.

Definition 4.2.5. We will call a random field f⊂⊂F ⊂ C1(M,Rk) that satisfies the hypotheses of
Proposition 4.2.4, a random field of (F , α)-type. If there exists n > 0 such that f is of (F , α)-type for
every α > n then we say that f is of (F ,∞)-type.

Example 4.2.6 (Gaussian random fields). A smooth Gaussian random field (GRF) is a random map
f⊂⊂C∞(M,Rk) such that for every finite tuple of points p1, . . . , pj ∈ M , the random vector given
by (f(p1), . . . , f(pj))⊂⊂Rk×j is a Gaussian vector (in the sense of Definition 2.6.1). For example, if
φ1, . . . , φn ∈ C∞(M,Rk) are fixed smooth functions and if λ1, . . . , λn⊂⊂R are Gaussian variables then

f := λ1φ1 + · · ·+ λnφn⊂⊂C
∞(M,Rk) (4.2.4)

is a GRF. Not all GRF can be built this way, some naturally live in an infinite dimensional space. For
a deeper treatment of GRF, the reader can refer to [56].

If f⊂⊂C∞(M,Rk) is a GRF and if for all p ∈ M , the support of the law of f(p)⊂⊂Rk is the whole
Rk, i.e. if the Gaussian vector f(p)⊂⊂Rk is non degenerate, then f is z-KRok . In the finite dimensional
case of a GRF of the form (4.2.4), this is given by Proposition 4.2.4, indeed, one can see that such
GRF is of (F ,∞)-type for F := Span{φ1, . . . , φn}. In all generality, this is [82, Theorem 3.2]. In that
case and if k = 1, for all p ∈M , the random vector

(dpf |f(p) = 0)⊂⊂T ∗
pM

is also a Gaussian vector. In the case of a GRF of the form (4.2.3), it follows from the fact that the
restriction of a Gaussian density to a hyperplane is again (the multiple of) a Gaussian density on this
hyperplane.

Example 4.2.7 (Random level sets). Let φ ∈ C1(M,Rk) be a fixed function and let λ⊂⊂Rk be a random
vector whose law admits a continuous density ρλ : Rk → R. Then the random field

f := φ− λ⊂⊂C1(M,Rk)



4.2. KAC-RICE AND THE ZONOID SECTION 121

is z-KRok . Indeed, to see z-KRok -i we see that 0 is a critical value of φ−x if and only if x is a critical
value of φ. By Sard’s theorem, those are of Lebesgue measure zero and since the law of λ is absolutely
continuous with respect to Lebesgue, this gives z-KRok -i.

Then we see that f(p) admits the density given for every x ∈ Rk by ρf(p)(x) = ρλ(φ(p) − x) and
this gives z-KRok -ii.

z-KRok -iii is a consequence of the continuity of ρλ.
Finally to prove z-KRok -iv, we let µ(p, x) be the Dirac delta measure µ(p, x) = δφ−φ(p)+x. One

can check that this is a regular conditional probability for f given f(p) and that it satisfies z-KRok -iv.
Note that in that case, we have

(dpf
1 ∧ · · · ∧ dpf

k|f(p) = 0) = dpφ
1 ∧ · · · ∧ dpφ

k (4.2.5)

almost surely.

Before going to geometric considerations, we need one more probabilistic technicality. Indeed, it will
be useful to have another formulation of the continuity statement in z-KRok -iv. This formulation which
seems stronger turns out to be equivalent. A similar generalization was proved in [82, Proposition 2.4],
and with a slight modification of the same argument we can show the following.

Lemma 4.2.8. Let f⊂⊂C1(M,Rk) be a random map satisfying z-KRok-i to iii and let µ(p, ·)(·) be a
regular conditional probability of f given f(p) such that Jp · µ(p, x) is a finite measure. The following
statements are equivalent:

(i) ( z-KRok-iv) The function J · µ :M ×Rk → M+(C1(M,Rk)), (p, x) 7→ Jp · µ(p, x) is continuous
at (p, 0) for all p ∈ M . That is, for any bounded continuous function Ψ : C1(M,Rk) → R and
any convergent sequence (pn, xn) → (p, 0) in M × Rk we have

E
[
Ψ(f)Jpnf

∣∣∣f(pn) = xn

]
→ E

[
Ψ(f)Jpf

∣∣∣f(p) = 0
]
.

(ii) For any sequence of continuous functions Ψn : C1(M,Rk) → R that converges in the compact-
open topology to a continuous function Ψ0 : C1(M,Rk) → R and any sequence (pn, xn) → (p0, 0)
converging in M × Rk such that for all n ≥ 0, Ψn(f) ≤ CJpnf for some C > 0, we have that

E
[
Ψn(f)

∣∣∣f(pn) = xn

]
→ E

[
Ψ0(f)

∣∣∣f(p0) = 0
]
. (4.2.6)

Proof. We need only to prove (i) =⇒ (ii).
Assume (i) and let Ψn, pn, xn → Ψ0, p0, 0 as in the statement of (ii). Observe that for all n ≥ 0, if

Jpnφ = 0, then Ψn(φ) = 0, so that

E
[
Ψn(f)

∣∣∣Ψn(pn) = x
]
=

∫
C1(M,Rk)

Ψn(φ)dµ(pn, x)(φ) =

=

∫
C1(M,Rk)\{Jpn=0}

Ψn(φ)
Jpnφ

Jpnφ
dµ(pn, x)(φ) +

∫
C1(M,Rk)∩{Jpn=0}

Ψn(φ)dµ(p, x)(φ)

=

∫
C1(M,Rk)

Ψn(φ)

Jpnφ
d (Jpn · µ(pn, x)) (φ)

where on the last line, the integral is over all C1(M,Rk) because {Jp = 0} is of measure zero for the
measure Jp · µ(p, x).

Let E(p, x) := E [Jpf |f(p) = x] be the total mass of the measure Jp · µ(p, x). By z-KRok .iv, the
number E(p, 0) ≥ 0 is finite, though notice that it could be zero. The hypothesis (i) implies that
E(pn, xn) → E(p0, 0). If E(p0, 0) = 0, then the limit (4.2.6) holds since∣∣∣E [Ψn(f)∣∣∣f(pn) = xn

]∣∣∣ ≤ C E(pn, xn) → 0 = E
[
Ψ0(f)

∣∣∣f(p0) = 0
]

where the equality on the right holds because we assumed Ψ0(φ) ≤ CJp0φ.
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Assume that E(p0, 0) > 0, then we can assume that E(pn, xn) > 0 for all n ∈ N. In this case, the
following sequence of probability measures converges:

Pn := E(pn, xn)
−1Jpn · µ(pn, xn) → P0 := E(p0, 0)

−1Jp0 · µ(p0, 0).

Thus by Skorohod’s Theorem (See [23, 73]) there exists a sequence of random functions Yn, Y0⊂⊂C
1(M,Rk)

defined on a common probability space such that Yn has law Pn for all n ≥ 0 and such that Yn → Y0
in C1(M,Rk) almost surely. Then

E
[
Ψn(f)

∣∣∣f(pn) = xn

]
= E(pn, xn)

∫
C1(M,Rk)

Ψn(φ)

Jpnφ
dPn(φ)

= E(pn, xn)E
[
Ψn(Yn)

Jpnφ

]
−−−−→
n→∞

E(p0, 0)E
[
Ψ0(Y0)

Jp0φ

]
= E(p0, 0)

∫
C1(M,Rk)

Ψ0(φ)

Jp0φ
dP0(φ)

= E
[
Ψ0(f)

∣∣∣f(p) = 0
]
.

Here the limit holds by dominated convergence, since Ψn(Yn)
Jpnφ

≤ C and Ψn(Yn)
Jpnφ

→ Ψ0(Y0)
Jp0φ

almost

surely.

4.2.2 The zonoid section

Let us start with a short comment on zonoid bundles. Let π : E → M be a vector bundle of rank k
over M . The structure of vector bundle is given by the trivialization maps χU : E|U

∼−→ U ×Rk which
are homeomorphisms that are linear isomorphism on the fibers.

We can define the zonoid bundle Z (E) whose fiber at a point p ∈ M is defined to be the space
Z (E)p := Z (Ep) where Ep = π−1(p) is the fiber of E at p, and whose bundle structure is given

by the collection of maps χ̂U : Z (E)|U
∼−→ U × Z (Rk) in particular the topology on Z (E) is the

smallest topology that makes all χ̂U homeomorphisms. Similarly one can define Z0(E), G (k,E), G (E),
G0(k,E), G0(E) and all the virtual counterparts.

Given a fiber bundle π : F → M we denote by Γ(F ) the space of continuous sections of F , that
is γ ∈ Γ(F ) if and only if γ : M → F is a continuous map such that for every p ∈ M , π(γ(p)) = p.
In particular a section ζ ∈ Γ(Z (E)) is the choice of a zonoid at each point p of the manifold M
in the vector space Ep such that this zonoid depends continuously on the point p. Locally, on the
trivialization charts, this is just a continuous map

ζ : U → Z (Rk)

The first observation is that, as vector bundles, we have Z (E) ∼= Z0(E)⊕E with the decomposition
given by the pole (Proposition 1.2.2) recall that the pole of a zonoid K ∈ Z (V) is the unique point
o(K) ∈ V such that K + 1

2{−o(K)} ∈ Z0(V). Thus we have

Γ(Z (E)) ∼= Γ(Z0(E))⊕ Γ(E) (4.2.7)

Therefore we can, as before, treat the pole of a zonoid and the zonoid as separate sections.
Let us also note that a zonoid section ζ :M → Z0(E) defines a seminorm on each fibers E∗

p of the
dual through the support function hζ(p) : E

∗
p → R.

We are now ready to define the main object of this section.

Definition 4.2.9. Let f⊂⊂C1(M,Rk) be z-KRok . We define ζf : M → G (k, T ∗M) to be the zonoid
section given for all p ∈M by

ζf (p) := ρf(p)(0)E
(
[0,dpf

1 ∧ · · · ∧ dpf
k]|f(p) = 0

)
That is the zonoid ρf(p)(0)E[0, Y ] for the random vector Y =

(
dpf

1 ∧ · · · ∧ dpf
k|f(p) = 0

)
⊂⊂ΛkT ∗

pM ,
see (4.2.1) .
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Similarly, we define ζf :M → G0(k, T
∗M) to be the section given for all p ∈M by

ζf (p) := ρf(p)(0)E
(
dpf

1 ∧ · · · ∧ dpf
k|f(p) = 0

)
.

We also denote

of (p) := o(ζf (p)) = ρf(p)(0)E
(
dpf

1 ∧ · · · ∧ dpf
k|f(p) = 0

)
∈ ΛkT ∗

pM.

Note that we have for all p ∈M , ζf (p) = ζf (p) +
1
2 {of (p)}, i.e. in the splitting (4.2.7), we have

ζf = ζf ⊕ 1
2of

Note also that, as observed earlier, the finiteness condition in z-KRok -iv guarantees that the random
vector

(
dpf

1 ∧ · · · ∧ dpf
k|f(p) = 0

)
⊂⊂ΛkT ∗

pM is integrable hence the zonoids are well defined. Note

also that of is a section of ΛkT ∗M , i.e. a differential form of degree k on M . Finally, observe that we
have for all p ∈M :

ℓ (ζf (p)) = ℓ
(
ζf (p)

)
= ρf(p)(0)E [Jpf |f(p) = 0] . (4.2.8)

Lemma 4.2.10. The sections ζf , ζf and of are continuous.

Proof. Since this is a local statement, we can assume M = Rm. Let pn ∈ Rm be a sequence that
converges to p0 ∈ Rm and let Yn :=

(
dpnf

1 ∧ · · · ∧ dpnf
k|f(pn) = 0

)
⊂⊂ΛkRm. For any v ∈ ΛkRm we

have

hζf (pn)(v) =
ρf(pn)(0)

2
E|⟨v, Yn⟩|.

By z-KRok -iii we have ρf(pn)(0) → ρf(p0)(0). Moreover let us also consider the continuous function

Ψv : C
1(M,Rm) → R given by Ψv(φ) := |⟨v,dpnφ1 ∧ · · · ∧ dpnφ

k⟩|. Then we have

E|⟨v, Yn⟩| = ⟨µ(pn, 0),Ψv⟩

where µ(pn, 0) ∈ M+(C1(M,Rk)) is the regular conditional probability of f given f(pn) from property
z-KRok -iv. Note that for all φ ∈ C1(M,Rk) we have by Cauchy-Schwartz Ψv(φ) ≤ ∥v∥Jpφ. Thus we
can apply the technical lemma, Lemma 4.2.8 and obtain that

hζf (pn)(v) → hζf (p0)(v)

i.e., we have pointwise convergence of the support function. We use Lemma 1.1.18 to conclude that
ζf (pn) → ζf (p0) in the Hausdorff distance topology. The case of of is done similarly and ζf = ζf ⊕ 1

2of
follows.

Let us compute this zonoid in some example, starting with the (F , α)-type, recall Definition 4.2.5.

Proposition 4.2.11. Let f⊂⊂F ⊂ C1(M,Rk) be a z-KRok field of (F , α)-type where (F , α) satisfy the
hypotheses of Proposition 4.2.4. For every p ∈M and every w ∈ ΛkTpM we have

hζf (p)(w) =
1

2

∫
Fp

∣∣(dpφ1 ∧ · · · ∧ dpφ
k)(w)

∣∣ ρf (φ)dφ (4.2.9)

of (p)(w) =

∫
Fp

(dpφ
1 ∧ · · · ∧ dpφ

k)(w)ρf (φ)dφ

where recall that Fp = ker(evp) = {φ ∈ F |φ(p) = 0} and ρf : F → R is the density of the law of f⊂⊂F .

Proof. We already did all the work in the proof of Proposition 4.2.4. In particular we computed the
measure µ(p, x) in (4.2.3). Letting x = 0 and multiplying by ρf(p)(0) gives the result.
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Remark 4.2.12. Notice in this case, and if λ ∈ R, λ ̸= 0, using Proposition 4.2.11 and the fact that
ρλf (φ) = ρf (φ/λ)/|λ|d we have

ζλf = ζf .

One can also show that this is true in general but we will not do it here.

We apply this to compute the zonoid section in a particular example.

Proposition 4.2.13. Let M = Rm \ {0} and let f⊂⊂C1(M,R) be given for all p ∈ Rm \ {0} by

f(p) := ⟨ξ, p⟩

where ξ⊂⊂Rm is a standard Gaussian vector. Then f is z-KRok and the zonoid section is given for all
p ∈ Rm \ {0} by

ζf (p) =
1

2π
B(p⊥) (4.2.10)

where recall that B(p⊥) is the unit ball of p⊥.

Proof. The field is z-KRok because it is of (F ,∞)-type with F = Span{⟨e1, ·⟩, . . . , ⟨em, ·⟩} where
e1, . . . , em is the standard basis of Rm. Indeed, using the basis ⟨e1, ·⟩, . . . , ⟨em, ·⟩, that we declare to
be orthonormal, we identify F ∼= Rm. Then we have for all y ∈ F ∼= Rm,

ρf (y) =
1

(2π)
m
2
e

−∥y∥2
2

and this decays faster than any polynomial at infinity.
Now to compute the zonoid, we will use Proposition 4.2.11. First note that under our identification,

we have Fp = p⊥. Now since ρf |p⊥ is even, we get that of (p) = 0 and thus ζf (p) = ζf (p). Now we use
Proposition 4.2.11 to find for every v ∈ Rm:

hζf (p)(v) =
1

2
√
2π

∫
p⊥

|⟨v, y⟩| e
−∥y∥2

2

(2π)
m−1

2

dy.

We recognize the density of a standard Gaussian vector ξ̃⊂⊂p⊥ ∼= Rm−1. Remembering that we have
Eξ̃ = B(p⊥)/

√
2π, we get that

ζf (p) =
1√
2π

Eξ̃ =
1

2π
B(p⊥)

which is what we wanted.

Example 4.2.14 (GRF and Gaussian zonoid section). Let f⊂⊂C∞(M,R) be a Gaussian random field
(GRF). Then, as mentioned in Example 4.2.6, the random vector (dpf |f(p) = 0)⊂⊂T ∗

pM is Gaussian
and thus ζf (p) is a Gaussian zonoid in the sense of Definition 2.6.2. If it is non degenerate, it follows

that there are sections γ ∈ Γ(T ∗M) and Λ ∈ Γ(Hom(T ∗M,T ∗M)) such that

ζf (p) = Λ(p)
(
G(γ(p))

)
where recall (Definition 2.6.3) that G(γ(p)) = Eξ + γ(p) where ξ⊂⊂T ∗

pM is a standard Gaussian vector
(standard for the Riemannian scalar product). In particular, if f(p) is a centered Gaussian variable
then γ(p) = 0 and ζf (p) is an ellipsoid. If we are not centered, we can use Theorem 2.6.7. Let
Bp ⊂ T ∗

pM be the unit ball for the Riemannian metric, then we have

b∞(Λ(p) ◦ Tγ(p))
(

1√
2π
Bp

)
⊂ ζf (p) ⊂ (Λ(p) ◦ Tγ(p))

(
1√
2π
Bp

)
with Tγ(p) ∈ Gl(T ∗

pM) and b∞ ∼ 0.989 . . . are defined in Theorem 2.6.7.
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Example 4.2.15 (Segment section). Let us consider again the case of Example 4.2.7: let φ ∈ C1(M,Rk)
be a fixed differentiable function and let λ⊂⊂R be a random variable with a continuous density ρλ :
R → R and let f := φ− λ. We computed already the “random” vector (4.2.5) and the density ρf(p).
We obtain then for all p ∈M :

ζf (p) = ρλ(φ(p))[0,dpφ
1 ∧ · · · ∧ dpφ

k].

In particular, notice that if φ is constant then the zonoid is {0} at each point.

A natural question is then to ask what are exactly the zonoid sections that we can obtain from
z-KRok fields.

Open problem 15. Characterize the zonoid sections ζf ∈ Γ(G0(T
∗M)) that come from z-KRok fields

from Definition 4.2.9.

Later in Proposition 4.2.21, we will see that we can obtain every ellipsoid section. Moreover, note
that at least some of the topological obstructions could be solved by replacing Rk by a co-oriented
vector bundle of rank k and taking random z-KRok sections in a similar fashion.

A very partial answer to Open Problem 15 is the following.

Proposition 4.2.16. Let M = Rm and let K ∈ G0(k, T
∗
0M) ∼= G0(k,Rm). Then there exists a z-KRok

field f⊂⊂C1(M,Rk) such that ζf (0) = K.

Proof. If K = {0} then this was done in Example 4.2.15. Else, let Y1, . . . , Yk⊂⊂Rk be such that K =
Y1 ∧ · · · ∧ Yk.We can assume that Y1∧· · ·∧Yk ̸= 0 almost surely. Let λ⊂⊂Rk be independent of Y1, . . . , Yk
and with a continuous bounded density ρλ : Rk → R. We also assume that for all x ∈ Rk, ρλ(x) > 0.
Then let us consider the map TY : Rm → Rk given for all p ∈ Rm by TY (p) := (⟨Y1, p⟩, . . . , ⟨Yk, p⟩).
We define the random field f⊂⊂C1(Rm,Rk) by

f := TY − λ

where λ is intended as the constant function. We shall prove that this is z-KRok . First, note that
Jpf = ∥Y1 ∧ · · · ∧ Yk∥ and we assumed that this is almost surely non zero thus almost surely 0 is a
regular value and this gives z-KRok -i. For z-KRok -ii one finds for all x ∈ Rk:

ρf(p)(x) = E [ρλ(TY (p)− x)] . (4.2.11)

Since ρλ is bounded, the continuity z-KRok -iii follows by dominated convergence. Now for z-KRok -iv,
one finds that a regular conditional probability for f given f(p) is the measure µ(p, x) such that for
every Ψ : C1(Rm,Rk) continuous and bounded, we have

⟨µ(p, x),Ψ⟩ = E
[
Ψ(TY − TY (p) + x)

ρλ(TY (p)− x)

ρf(p)(x)

]
. (4.2.12)

Note that because of (4.2.11) and because we assumed ρλ > 0 we get that ρf(p) > 0 and this is well
defined. Moreover note that because of (4.2.11) this is indeed a probability measure. To check for
finiteness, we can apply this with Ψ = Jp. Then, since Jp(TY −TY (p)+x) = Jp(TY ) = ∥Y1∧ · · ·∧Yk∥,
we get that the total mass of Jp · µ(p, x) is

E
[
∥Y1 ∧ · · · ∧ Yk∥

ρλ(TY (p)− x)

ρf(p)(x)

]
and this is finite since ρλ(TY (p)−x) is bounded and Y1∧· · ·∧Yk is integrable. Again, we get continuity
by dominated convergence and this proves that f is z-KRok .

Now applying (4.2.12) when x = 0 and multiplying by ρf(p)(0), we get that for every w ∈ ΛkRm
we have

hζf (p)(w) =
1

2
E [ρλ(TY (p)) |⟨w, Y1 ∧ · · · ∧ Yk⟩|]

Since TY (0) = 0 almost surely, if we assume that ρλ(0) = 1 then in p = 0 we get ζf (0) = K and this
concludes the proof.
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The Pull-Back property

We will now show one of the most important properties of the zonoid section and z-KRok fields, namely
that it satisfies a pull-back property. Recall that if N is a smooth manifold and φ : N → M is a C1

map then for each q ∈ N the differential is a map dqφ : TqN → Tφ(q)M and thus its transpose, denoted
dqφ

∗ is a map between the cotangent spaces:

dqφ
∗ : T ∗

φ(q)M → T ∗
qN.

It is sometimes called the pull back of φ at q. Note that it also induces a map between the exterior
algebras that we denote in the same way. Moreover, recall that if X ⊂ M is a submanifold then we
say that φ is transversal to X if for every q ∈ φ−1(X) ⊂ M we have that the sum of Tφ(q)X and the
image of dqφ span the whole space Tφ(q)N . In particular if φ is an embedding this means that the two
submanifolds X and φ(N) intersect transversally. Note that this implies that the dimension of M is
at least the codimension of X

Lemma 4.2.17. Let f⊂⊂C1(M,Rk) be z-KRok. Let N be a smooth manifold and let φ : N →M be a
C1 map such that φ is transversal to f−1(0) almost surely. Then f ◦φ⊂⊂C1(M,Rk) is z-KRok and for
all q ∈ N we have

ζf◦φ(q) = dqφ
∗ζf (φ(q)). (4.2.13)

Proof. If we know that f ◦ φ is z-KRok , then (4.2.13) is immediate from the definition. The difficulty
is to prove that the random map f ◦ φ is indeed z-KRok . Let us detail them one by one. We assume
that N is endowed with any Riemannian metric.

Firstly, under the condition that 0 is a regular value of f , we have that 0 is a regular value of f ◦φ
if and only if φ is transversal to f−1(0) and this proves z-KRok -i.

For q ∈ N , the law of (f ◦ φ)(q)⊂⊂Rk has density given by ρ(f◦φ)(q) = ρf(φ(q)) and this gives
z-KRok -ii.

Since φ is continuous and ρf is continuous at (p, 0), it follows that ρf◦φ is continuous at (q, 0) for
any q ∈ N which proves z-KRok -iii.

Let µ(p, x) ∈ P(C1(M,Rk)) be the regular conditional probability of f given f(p) given by z-
KRok -iv for f . Thus the function

J · µ :M × Rk → M+
(
C1(M,Rk)

)
is continuous at (p, 0). Let φ∗ : C1(M,Rk) → C1(N,Rk) be the function given for all functions
ψ ∈ C1(M,Rk) by φ∗(ψ) = ψ ◦ φ. This is continuous with respect to the C1 topologies and we define
ν(q, x) ∈ P(C1(M,Rk)) to be the push-forward of the probability measure µ(φ(q), x) via the function
φ∗. So ν(q, x) is the probability such that for every continuous bounded function Ψ : C1(M,Rk) → R,
we have

⟨ν(q, x),Ψ⟩ = ⟨µ(q, x),Ψ ◦ φ∗⟩ = E [Ψ(φ∗(f))|f(φ(p)) = x]

where the second equality is simply the definition of the notation introduced after Definition 4.2.3.
From this, one can check that ν(q, ·)(·) is a regular conditional probability of f ◦ φ given (f ◦ φ)(q)
(see Definition 4.2.1). Indeed for every Borelian B ⊂ C1(M,Rk), we see that

ν(q, x)(B) = P ((f ◦ φ) ∈ B|f(φ(p)) = x)

is a Borel measurable function of x ∈ Rk and for any Borelian V ⊂ Rk, we obtain

P (f ◦ φ ∈ B; (f ◦ φ)(q) ∈ V ) = P (f ∈ φ∗(B); f(φ(q)) ∈ V )

=

∫
Rk

µ(φ(q), x)(φ∗(B))ρf(φ(q))(x)dx

=

∫
Rk

ν(q, x)(B)ρ(f◦φ)(q)(x)dx,

where the second inequality holds because µ(φ(q), x) is a regular conditional probability of f given
f(φ(q)) and the third is by definition of ν(q, x). This proves that ν(q, x) is a regular conditional
probability for f ◦ φ given (f ◦ φ)(q).
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We now have to show that it satisfies z-KRok -iv. For the finiteness condition, observe that the
Jacobians satisfy for all q ∈ N :

Jq(f ◦ φ) ≤ Jφ(q)f · Jqφ. (4.2.14)

It follows that the total mass of Jq · ν(q, x) is bounded by the total mass of Jφ(q) ·µ(φ(q), x) times Jqφ
and thus is finite.

It remains to prove the continuity of Jq · ν(q, x) at (q, 0) for all q ∈ N . Let Ψ : C1(N,Rk) → R
be bounded and continuous. Let (qj , xj) → (q0, 0) be a converging sequence in N × Rk. Then in our
notation, we have

⟨Jqj · ν(qj , x),Ψ⟩ = E
[
Ψ(f ◦ φ)

(
Jqj (f ◦ φ)

)
|(f ◦ φ)(qj) = xj

]
(4.2.15)

Now, since the sequence qj is contained in a compact subset of N and since Jqφ is continuous in q,
(because φ is C1) we can bound dqjφ uniformly on j and thus (4.2.14) implies that there is a constant
C > 0 such that for all j ≥ 0,

Jq(f ◦ φ) ≤ C Jφ(q)f. (4.2.16)

Thus if we define Φj : C
1(N,Rk) → R for all ψ ∈ C1(N,Rk) by

Φj(ψ) := Ψ (ψ ◦ φ) Jqj (ψ ◦ φ).

We will want to apply Lemma 4.2.8 to the sequences Φj , pj := φ(qj), xj . By (4.2.16) and since Ψ is

bounded, we have that Φj(ψ) ≤ C̃Jpjψ for some C̃ > 0 where pj := φ(qj). Moreover (4.2.15) becomes:

E
[
Ψ(f ◦ φ)

(
Jqj (f ◦ φ)

)
|(f ◦ φ)(qj) = xj

]
= E [Φj(f)|f(pj) = xj ]

The sequence Φj converges to the function Φ0 in the compact-open topology of continuous functions on
C1(M,Rk). Indeed this is equivalent to say that for every converging sequence ψj → ψ0 in C1(M,Rk),
Φj(ψj) → Φ0(ψ0). Moreover, in C1(M,Rk), ψj → ψ0 if and only if dpjψj → dp0ψ0 for every converging
sequence pj → p0 in M , thus, in particular, Jpjψj → Jp0ψ0, since Jpψ depends continuously on dpψ.
This proves that Φj → Φ0. Then, applying Lemma 4.2.8 we get

E [Φj(f)|f(pj) = xj ] → E [Ψ(f ◦ φ)Jq0(f ◦ φ)|(f ◦ φ)(q0) = 0] ,

which proves the continuity in z-KRok -iv. Thus we proved that the random field f ◦ φ is z-KRok and
this concludes the proof.

Notice that (4.2.13) also implies that for all q ∈ N :

ζf◦φ(q) = dqφ
∗ζf (φ(q)); of◦φ(q) = dqφ

∗of (φ(q)).

Example 4.2.18 (Pre-sheaf property). In the case where N = U ⊂ M is an open subset of M and
φ : U ↪→M is just the inclusion, then f ◦ φ = f |U is the restriction of f to the subset U . In that case
Lemma 4.2.17 tells us that the restriction of a z-KRok field to an open subset is again z-KRok and
since the pull-back of φ is the identity, the zonoid section of f |U is just the restriction of the zonoid
section of f . In fancy words, one would say that the z-KRok fields have the pre-sheaf property. It is
however not clear if they form a sheaf. That is if we have two z-KRok fields defined on two open subset
on M that “agree” (it is not even clear what this should mean here) on the intersection, can we glue
them to make a z-KRok field on the union? This difficulty, is one of the reason why Open Problem 15
seems to be a difficult problem.

Example 4.2.19 (Submanifolds). More generally, let N be a submanifold of M and let φ : N ↪→M be
the inclusion. Then again f ◦ φ = f |N is the restriction to N . Thus if N is almost surely transversal
to f−1(0), Lemma 4.2.17 tells us that the restriction f |N is a z-KRok field on N .

This time, for all p ∈ N , the pull-back is the projection

dpφ
∗ : T ∗

pM → T ∗
pN.
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Thus the zonoid ζf |N (p) is the projection of the zonoid ζf (p) onto the subspace T ∗
pN by the map

dpφ
∗. Note that the submanifold needs not to be embedded and this still works if φ is a (Riemannian)

immersion.
We can have some submanifold that are not almost surely transversal to f−1(0). For example,

consider the random field f⊂⊂C1(R2,R) defined for all (x, y) ∈ R2 by

f(x, y) = (ax+ b)2 + cy, (4.2.17)

for suitable a, b, c⊂⊂R this is z-KRok and one can see that f−1(0) is almost surely not transversal to
the curve {y = 0}. It is not clear in general, what condition to impose on the random field to avoid
these pathological cases.

Corollary 4.2.20. Let M = Sm ⊂ Rm+1 and let f⊂⊂C1(Sm,R) be given for all p ∈ Sm ⊂ Rm+1 by

f(p) = ⟨ξ, p⟩

where ξ⊂⊂Rm+1 is a standard Gaussian. Then f is z-KRok and we have for all p ∈ Sm

ζf (p) =
1

2π
B(T ∗

p S
m). (4.2.18)

Proof. It is enough to consider Sm as a submanifold of Rm+1 \ {0}. Then f is the restriction of the
z-KRok field defined in Proposition 4.2.13. The zero set of this field is a random uniform hyperplane
and thus the sphere is almost surely transversal to it. As we discussed in Example 4.2.19, this implies
that ζf (p) is the projection onto T ∗

p S
m of the previous zonoid section on Rm+1 computed in (4.2.10).

But in our case we can identify T ∗
p S

m ∼= p⊥ and this gives the result.

From this, one can deduce the general case of any Riemannian manifold, this gives a partial answer
to Open Problem 15.

Proposition 4.2.21. For any Riemannian manifold M , there exists a z-KRok field f⊂⊂C1(M,R) such
that for all p ∈M , the zonoid section is given by

ζf (p) =
1

2π
B(T ∗

pM) (4.2.19)

where B(T ∗
pM) is the unit ball of T ∗

pM for the Riemannian metric.

Proof. Let us first do it for Rm with the standard Euclidean metric. Consider the map φ̃ : R → 1√
m
S1,

that is given for all t ∈ R by φ̃(t) := 1√
m
(cos(

√
mt), sin(

√
mt)). Computing for all t ∈ R, ∥dtφ̃∥ = 1, it

follows that φ̃ is an isometric immersion. Now consider the map φ that is the direct sum of m copies
of φ̃:

φ := φ̃⊕ · · · ⊕ φ̃ : Rm →
(

1√
m
S1
)m

.

As the direct sum of isometric immersion, φ is also an isometric immersion. Now it remains to see that(
1√
m
S1
)m

is a submanifold of S2m−1. Thus φ is an isometric immersion of Rm into S2m−1. Now on

the sphere S2m−1 we consider the z-KRok field f̃ given by Corollary 4.2.20, that is the scalar product
with a standard Gaussian vector. As we already observed, f̃−1(0) is almost surely transversal to any
map and in particular to φ. Thus we can use the pull-back property and get that the random field
f := f̃ ◦ φ is z-KRok and that the zonoid section ζf is the pull-back by φ of the zonoid section of ζf̃ .
Since φ is isometric, the pull-back is an isometry, and the result for the zonoid section follows from
(4.2.18) and this concludes the case M = Rm.

Now if M is any manifold we use Nash’s isometric embedding Theorem [69] to get an isometric
embedding M ↪→ Rn and proceed as before.

Of course the (2π)−1 in (4.2.19) is only cosmetic because we started with any Riemannian met-
ric, but because of the situation on the sphere on Corollary 4.2.20, it seems more natural, see also
Example 4.2.25 where this appears naturally.
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Figure 4.2: The zero sets of two sample of an AT field for R2 in the square [−5, 5]2

Definition 4.2.22. A z-KRok random field satisfying (4.2.19), will be called an Adler-Taylor field,
abbreviated AT field, for the Riemannian manifold M .

Remark 4.2.23. Note that from the construction of the AT field in the proof of (4.2.19), we can assume
that given any submanifold S ⊂ M an AT field f for M is almost surely transversal to S. Moreover,
by the pull-back property and Example 4.2.19 we see that the restriction of f to S, i.e. the z-KRok
field f |S is an AT field for S.

Remark 4.2.24. Following the proof of Proposition 4.2.21, we see that an AT field for Rm is given for
all p = (p1, . . . , pm) ∈ Rm by

f(p) =
1√
m

m∑
i=1

ξi cos(
√
mpi) + ξ′i sin(

√
mpi)

where ξ1, . . . , ξm, ξ
′
1, . . . , ξ

′
m

⊂⊂R are iid standard Gaussian variables, see Figure 4.2. Note that this is
an eigenfunction of the Laplacian of eigenvalue m.

Let’s consider the case in Lemma 4.2.17 where N =M and φ :M →M is an isometric diffeomor-
phism. Then Lemma 4.2.17 tells us that if the field f is invariant by φ, meaning that f and f ◦φ have
the same law then the zonoid section is also invariant under φ. In the case where we have a Lie group
G acting by isometries on M , then if f is invariant under this action, so is the zonoid section ζf . With
this point of view we could find the cases covered in the previous section.

Example 4.2.25 (Kostlan polynomials). Let M = Sm and let F (d) be the space of homogeneous
polynomials of degree d in m+ 1 variables restricted to the sphere. We choose the basis of F (d) that
is given by the monomials

φα(x) :=

√(
d

α

)
xα

where α = (α0, . . . , αm) ∈ Nm+1 is a multiindex with |α| := α0 + · · · + αm = d and where recall
that

(
d
α

)
:= d!/(α0! · · ·αm!) and xα = xα0

0 · · ·xαm
m . We endow the space F (d) with the scalar product

that makes this basis orthonormal. Then, as the reader can check, the action of the orthogonal group
O(m+ 1) on the sphere Sm induces an action on F (d) that is also orthogonal, i.e. that preserves this
scalar product. We define the random field fm,d⊂⊂C

1(Sm,R) by

fm,d :=
∑
|α|=d

ξαφα

where ξα⊂⊂R are iid standard Gaussian variables, i.e fm,d is a standard Gaussian vector of F (d). The
random polynomials fm,d are called Kostlan polynomials. They are of course z-KRok for all d ≥ 1
since they are of (F (d), α)-type for any α big enough. Now because of what we said, this random field
is invariant by the action of O(m+1) on Sm. Thus, by the pull-back property, as observed above, the
zonoid section is also invariant by this action. It follows that at each point they are balls of the same
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radius. To compute this radius, we place ourselves at the north pole pN = (1, 0, . . . , 0) ∈ Sm. Then at
this point, the kernel of the evaluation map is given by

F (d)
pN = (φ(d,0,...,0))

⊥

where recall φ(d,0,...,0)(x) = xd0. We need now to compute the differential of the elements on this
subspace. The only monomials of the basis whose differential at pN will be non zero are

φj(x) =
√
d xd−1

0 xj

where we abused notation in the index indicating j instead of the appropriate multiindex. To compute
its differential on the sphere at pN , one can compute it on Rn+1 and kill the component in dx0. We
obtain

dpNφj =
√
ddxj . (4.2.20)

Now, we use (4.2.9). The density of fm,d restricted to F (d)
pN is the density of a standard Gaussian vector

on this space multiplied by 1/
√
2π. Now remember that the Vitale zonoid of a standard Gaussian vector

is the ball of radius 1/
√
2π. In the light of this and (4.2.20), we obtain at this point and thus at every

p ∈ Sm:

ζfm,d
(p) =

√
d

2π
B
(
T ∗
p S

m
)
.

Note that this implies that the Kostlan polynomials fm,d are an AT field for the standard metric on

Sm rescaled by 1/
√
d.

Independent intersection and wedge product

Let us give one last important property of the zonoid section. If f1⊂⊂C
1(M,Rk) and f2⊂⊂C1(M,Rl) are

two z-KRok fields, one can build another random field f := (f1, f2)⊂⊂C
1(M,Rk+l), given for all p ∈M

by f(p) = (f1(p), f2(p)). Note that in that case, the zero set of f is the intersection of the previous
two zero sets: f−1(0) = f−1

1 (0) ∩ f−1
2 (0). In the case where f1 and f2 are independent, we show that

the zonoid section of the new field is the wedge product of the previous zonoid sections.

Lemma 4.2.26. Let f1⊂⊂C
1(M,Rk) and f2⊂⊂C1(M,Rl) be independent z-KRok fields with k+ l ≤ m.

Then the random field f := (f1, f2)⊂⊂C
1(M,Rk+l) is z-KRok and we have for all p ∈M

ζf (p) = ζf1(p) ∧ ζf2(p). (4.2.21)

Proof. First let us prove that f is z-KRok . We proceed, as usual, to prove the z-KRok conditions one
by one.

By definition, zero is a critical value of f if and only if there exists p ∈M such that f(p) = 0 and
the differential dpf is not surjective. Since f = 0 if and only if f1(p) = 0 and f2(p) = 0 and since the
differential of f is the direct sum of the differential of f1 and the differential of f2, this can only happen
if zero is a critical value of f1 or f2. Since they are z-KRok and independent this is of probability zero
and this proves z-KRok -i.

Since f1 and f2 are independent we have that, for all p ∈ M , the law of f(p)⊂⊂Rk+l admits the
density given for all x1 ∈ Rk, x2 ∈ Rl by:

ρf(p)(x1, x2) = ρf1(p)(x1)ρf2(p)(x2).

This proves that f satisfies z-KRok -ii and iii.
As usual, the most delicate property to prove is z-KRok -iv. For all p ∈ M and x1 ∈ Rk, x2 ∈ Rl,

let µi(p, xi) be the regular conditional probability of fi given fi(p), i = 1, 2 given by z-KRok -iv.
Identifying the spaces C1(M,Rk+l) ∼= C1(M,Rk)⊕ C1(M,Rl), we define the probability measure:

µ(p, (x1, x2)) := µ1(p, x1)⊗ µ2(p, x2). (4.2.22)

Then this is a regular conditional probability for f given f(p). Indeed, it is enough to check property
(i) in Definition 4.2.1 on products of Borelians, and in this case this follows from the independence of
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f1 and f2. Now, since Jpf ≤ Jpf1 Jpf2 we get that the total mass of Jp · µ(p, (x1, x2)) is bounded by
the product of the total masses of Jp ·µ(p, x1) and Jp ·µ2(p, x2) and thus is finite. To prove continuity,
let Φ : C1(M,Rk+l) → R be continuous and bounded and consider sequences pj → p0 in M , (x1)j → 0

in Rk and (x2)j → 0 in Rl. Then, if we write µj := µ(pj , ((x1)j , (x2)j)) and µji := µi(pj , (xi)j) for
i = 1, 2, we have for all j ≥ 0

⟨Jpj · µj ,Φ⟩ =
∫
C1(M,Rk)

∫
C1(M,Rl)

Φ(φ1, φ2)Jpj (φ1, φ2) dµ
j
2(φ2)dµ

j
1(φ1)

=

∫
C1(M,Rk)

Ψj(φ1) dµ
j
1(φ1)

where

Ψj(φ1) :=

∫
C1(M,Rl)

Φ(φ1, φ2)Jpj (φ1, φ2) dµ
j
2(φ2).

Since Φ is bounded, we have:

Φ(φ1, φ2)Jpj (φ1, φ2) ≤ Φ(φ1, φ2)Jpjφ1Jpjφ2 ≤ C Jpjφ2

where C ≥ 0 depends only on φ1. We apply the technical lemma (Lemma 4.2.8) to get that Ψj → Ψ0.
Similarly, we have that

Ψj(φ1) ≤

(∫
C1(M,Rl)

Φ(φ1, φ2)Jpjφ2dµ
j
2(φ2)

)
Jpjφ1

Since the expression between parentheses converges and since Φ is bounded we obtain that Ψj(φ1) ≤
CJpjφ1 for some C > 0 and we can again apply Lemma 4.2.8 to get that

⟨Jpj · µj ,Φ⟩ = ⟨Jpj · µ
j
1,Ψj⟩ → ⟨Jp0 · µ0

1,Ψ0⟩ = ⟨Jp0 · µ0,Φ⟩

which is what we wanted and this finishes to prove that f is z-KRok .
It remains only to compute the zonoid. To do that, note that for every p ∈M , we have:

dpf
1 ∧ · · · ∧ dpf

k+l = (dpf
1
1 ∧ · · · ∧ dpf

k
1 ) ∧ (dpf

1
2 ∧ · · · ∧ dpf

l
2).

Now because the regular conditional probability of f given f(p) is the product of the previous ones
(see (4.2.22)) we obtain that

(dpf
1 ∧ · · · ∧ dpf

k+l|f(p) = 0) = (dpf
1
1 ∧ · · · ∧ dpf

k
1 |f1(p) = 0) ∧ (dpf

1
2 ∧ · · · ∧ dpf

l
2|f2(p) = 0)

where the two random vectors on the right hand side are independent. Multiplying both sides by
ρf(p)(0) = ρf1(p)(0)ρf2(p)(0) and taking the associated zonoid gives the result.

Note again that (4.2.21) also implies that for all p ∈M we have

ζf (p) = ζf1(p) ∧ ζf2(p); of (p) = of1(p) ∧ of2(p).

4.2.3 The Alpha formula and density of volume

We now proceed to use the zonoid section we defined to compute expected volumes of the zero set
of z-KRok fields. We will use the following version of Kac-Rice formula to deduce all our results.
This is obtained as a particular case of [82]. The only differences with more standard statements of
Kac-Rice formula are in the hypotheses, in particular the statement below is almost identical to [15,
Theorem 6.7]. If f⊂⊂C1(M,Rm) is z-KRok (where recall m = dim(M)), then, in the language of [82,
Definition 2.1], the pair (f, {0}) is a KROK couple. Thus we get the following which is [82, Theorem
4.1].
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Lemma 4.2.27 (α-Kac-Rice formula). Let f⊂⊂C1(M,Rm) be a z-KRok field. Let

α : C1(M,Rm)×M → R

be a Borel measurable function. Then

E

 ∑
p∈f−1(0)

α(f, p)

 =

∫
M

δαf (p) dM(p).

Where dM(p) indicates integration with respect to the Riemannian volume form on M and where

δαf (p) := ρf(p)(0)E
[
α(f, p)Jpf

∣∣∣f(p) = 0
]
.

The name “Kac-Rice formula” is often used to denote also a more general version which allows
to deal with the case in which f−1(0) is not zero dimensional, see [15, Theorem 6.8]. The additional
flexibility provided by Lemma 4.2.29 below is crucial for us, since we want to be able to compute
average volume (and other quantities) of random submanifolds f−1(0) of arbitrary codimension.

Let us prove a lemma that will be a key point in this reduction with AT fields.

Lemma 4.2.28. Let g1, . . . , gm⊂⊂C1(M,R) be i.i.d. AT fields for M and define the random discrete
subset Σ := g−1

1 (0) ∩ · · · ∩ g−1
m (0). Let α :M → R be Borel with compact support. Then we have

∫
M

α(p) dM(p) =
sm
2

E

∑
p∈Σ

α(p)


where recall that sm is the volume of the unit sphere Sm ⊂ Rm+1.

Proof. We apply the α-Kac-Rice Formula (Lemma 4.2.27) to f = (g1, . . . , gm)⊂⊂C1(M,Rm), that is
z-KRok because of Lemma 4.2.26, and with a function α(f, p) = α(p) that only depends on p. We
obtain:

E

∑
p∈Σ

α(p)

 =

∫
M

ρf(p)(0)E
[
Jpf

∣∣∣f(p) = 0
]
α(p) dM(p).

As observed in (4.2.8) we have

ρf(p)(0)E
[
Jpf

∣∣∣f(p) = 0
]
= ℓ (ζf (p)) = ℓ (ζg1(p) ∧ · · · ∧ ζgm(p))

where the second equality holds because of the formula for the zonoid section of independant z-
KRok fields computed in Lemma 4.2.26. Since gi are AT fields for M , we have for all p ∈ M ,
ζg1(p) = (2π)−1B(T ∗

pM). Remembering the basic zonoid calculus fact that the length of the wedge
product of m zonoids is m! times their mixed volume (see (2.2.4)) we obtain:

ρf(p)(0)E
[
Jpf

∣∣∣f(p) = 0
]
=
m!κm
(2π)m

.

Using the identity m!κm = 2(2π)m/sm (see Lemma A.4) this gives what we wanted.

Lemma 4.2.29 (Alpha Formula). Let 1 ≤ k ≤ m, let f⊂⊂C1(M,Rk) be a z-KRok random field and
define the random submanifold X := f−1(0). Let α : C1(M,Rk) ×M → R be a Borel measurable
function. Then

E
[∫

X

α(f, p) dX(p)

]
=

∫
M

δαf (p) dM(p) (4.2.23)

where dN(p) denotes integration with respect to the Riemannian volume form on N and where

δαf (p) := ρf(p)(0)E
[
α(f, p)Jpf

∣∣∣f(p) = 0
]
. (4.2.24)
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Proof. We are going to prove that, with little work, this is a natural consequence of Lemma 4.2.27.
This method of proof shows how it’s always possible to reduce everything to the zero dimensional case,
thanks to the construction, by Adler and Taylor [2], of Gaussian fields that represent the Riemannian
structure, our AT fields defined earlier (Definition 4.2.22).

Let g1, . . . , gm−k⊂⊂C
1(M,R) be iid z-KRok fields independent of f that are also AT fields for M.

Let us define F := (f, g1, . . . , gm−k)⊂⊂C
1(M,Rm). By Lemma 4.2.26, we have that F is z-KRok . Let

X := f−1(0) and Y := g−1
1 (0) ∩ · · · ∩ g−1

m−k(0). We start with the left hand side of (4.2.23). Since f
is independent of the gi, we can integrate first in gi pretending f is fixed. As we already observed,
the restriction of an AT field to a submanifold is an AT field (see Remark 4.2.23), we can thus apply
Lemma 4.2.28 to X to deduce the following:

E
[∫

X

α(f, p) dX(p)

]
=
sm−k

2
E

 ∑
p∈Y ∩X

α(f, p)


Now we apply Lemma 4.2.27 to the right hand side of this equation with the function α(F, p) := α(f, p)
that depends only on the first factor of F = (f, g1, . . . , gm−k) to find:

E
[∫

X

α(f, p) dX(p)

]
=
sm−k

2

∫
M

δαF (p)dM(p).

It remains only to show that sm−k

2 δαF = δαf . In order to do that, first observe that, since f and
(g1, . . . , gm−k) are independent, we have for all p ∈M :

ρF (p)(0) = ρf (p)(0) ρ(g1,...,gm−k)(p)(0).

Moreover, recall that in the proof of the formula for independent intersection (Lemma 4.2.26) we
proved that the regular conditional probability of the direct sum of two independent z-KRok fields is
the product of the two regular conditional probabilities, see (4.2.22). In probabilistic notation, this
means that we can use Fubini’s Theorem to write for all p ∈M :

δαF (p) = ρF (p)(0)E [α(f, p)JpF |F (p) = 0]

= ρf (p)(0) ρg(p)(0)E
[
α(f, p)E [Jp(f, g)|g(p) = 0]

∣∣∣∣f(p) = 0

]
(4.2.25)

where we wrote g := (g1, . . . , gm−k). By definition, we have

Jp(f, g) = ∥dpf1 ∧ · · · ∧ dpf
k ∧ dpg1 ∧ · · · ∧ dpgm−k∥.

Moreover, we have ρg(p)(0) = ρg1(p)(0) · · · ρgm−k(p)(0). Let us write bi := ρgi(p)(0)(dpgi|gi(p) = 0).
Using the independence of the gi we find

ρg(p)(0)E [Jp(f, g)|g(p) = 0] = E∥dpf1 ∧ · · · ∧ dpf
k ∧ b1 ∧ · · · ∧ bm−k∥ (4.2.26)

Now gi are AT fields so, by definition, we have Ebi = B(T ∗
pM)/(2π). This allows us to rewrite (4.2.26)

as follows.

ρg(p)(0)E [Jp(f, g)|g(p) = 0] =
1

(2π)m−k ℓ
(
dpf

1 ∧ · · · ∧ dpf
k ∧ (Bm)∧(m−k)

)
where, abusing notation, we wrote Bm for the unit ball B(T ∗

pM). Now we can compute this using
basic zonoid calculus and in particular our favourite lemma: Lemma 2.2.17, to get:

ρg(p)(0)E [Jp(f, g)|g(p) = 0] =
(m− k)!κm−k

(2π)m−k ℓ
(
dpf

1 ∧ · · · ∧ dpf
k
)
=

(m− k)!κm−k

(2π)m−k Jpf.

Using the identity (m − k)!κm−ksm−k = 2(2π)m−k (see Lemma A.4) and reintroducing in (4.2.25)
gives what we want.



134 CHAPTER 4. INTEGRAL GEOMETRY

Expected volume density

Of course we would like to relate the alpha formula to the zonoid section defined earlier. The first case
and the one we will use the most is the following.

Theorem 4.2.30 (M–Stecconi). Let f⊂⊂C1(M,Rk) be z-KRok and consider the random submanifold
of codimension k given by X := f−1(0). Then for all open set U ⊂M we have

E [volm−k(X ∩ U)] =

∫
U

ℓ(ζf (p)) dM(p)

where ζf (p) is the zonoid section defined in Definition 4.2.9.

Proof. This is a direct application of the alpha formula Lemma 4.2.29 with α(f, p) = 1U (p) where 1U
is the indicator function of the subset U .

A way of seeing this result is to say that the measure on M given by U 7→ E [volm−k(X ∩ U)]
admits a density and this density is p 7→ ℓ(ζf (p)). Applying this to the random intersections of z-KRok
fields (see Lemma 4.2.26) we get the following.

Corollary 4.2.31. Let f1⊂⊂C
1(M,Rc1), . . . , fk⊂⊂C1(M,Rck) be independent z-KRok fields such that

we have c := c1 + · · · + ck ≤ m and consider the random submanifolds Xi := f−1
i (0), i = 1, . . . , k.

Then for any open subset U ⊂M we have

E [volm−c(X1 ∩ · · · ∩Xk ∩ U)] =

∫
U

ℓ(ζf1(p) ∧ · · · ∧ ζfk(p)) dM(p).

Specializing again to the case where all the codimensions are one we get the following.

Corollary 4.2.32. Let f1⊂⊂C
1(M,R), . . . , fk⊂⊂C1(M,R) be independent z-KRok fields and consider

the random hypersurfaces Xi := f−1
i (0), i = 1, . . . , k. Then for any open subset U ⊂M we have

E [volm−k(X1 ∩ · · · ∩Xk ∩ U)] =
m!

(m− k)!κm−k

∫
U

MV
(
ζf1(p), . . . , ζfk(p), B(T ∗

pM)[m− k]
)
dM(p)

where MV denotes the mixed volume (see Section 1.1.2) and B(T ∗
pM)[m− k] denotes that the convex

body B(T ∗
pM) is repeated m− k times in the argument. In particular, when k = m we get

E [#(X1 ∩ · · · ∩Xm ∩ U)] = m!

∫
U

MV(ζf1(p), . . . , ζfm(p)) dM(p). (4.2.27)

Proof. Once again, we apply our useful lemma, Lemma 2.2.17 to find that

ℓ(ζf1(p) ∧ · · · ∧ ζfk(p)) =
1

(m− k)!κm−k
ℓ(ζf1(p) ∧ · · · ∧ ζfk(p) ∧B∧m−k

m )

where, abusing notation, we wrote Bm := B(T ∗
pM). Then the result follows from the previous one

(Corollary 4.2.31) and the fact that the wedge product of m zonoids is equal to m! times their mixed
volume (see (2.2.4)).

Now the Alexandrov-Fenchel inequality can be interpreted in terms of random intersection (see
(2.2.8)). We call the following the Kac-Rice Alexandrov-Fenchel inequality, abbreviated KRAF.

Theorem 4.2.33 (KRAF,M–Stecconi). Let g1, . . . , gm−2, f1, f
′
1, f2, f

′
2
⊂⊂C1(M,R) be independent z-

KRok fields, such that f ′1 is distributed as f1 and f ′2 is distributed as f2. Let Y := (g1)
−1(0) ∩ . . . ∩

(gm−2)
−1(0), Xi := (fi)

−1(0) and X ′
i := (f ′i)

−1(0), i = 1, 2. Then we have for all open subset U ⊂M :

E [#(X1 ∩X2 ∩ Y ∩ U)] ≥
∫
U

√
δ#X1∩X′

1∩Y (p) · δ#X2∩X′
2∩Y (p) dM(p)

where for i = 1, 2 we wrote

δ#Xi∩X′
i∩Y (p) := ℓ(ζfi(p) ∧ ζf ′

i
(p) ∧ ζg1(p) ∧ · · · ∧ ζgm−2(p)).

Remark 4.2.34. Note that a positive answer to Conjecture 5 would mean that we can replace the
random field (g1, . . . , gm−2) by any z-KRok field g⊂⊂C1(M,Rm−2) independent of the other random
fields.
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Current of expected integration

We are now going to show that the differential form of ∈ Γ(ΛkT ∗
pM), defined in Definition 4.2.9,

computes the average of integration of differential forms. IfM is orientable, given a differentiable form
η ∈ Γ(ΛdT ∗M) of degree d and an oriented submanifold S ⊂ M of dimension d, one can integrate η
on S. Formally, if ι : S ↪→ M is the inclusion, then the pull-back dι∗η ∈ Γ(λdS) defines a top degree
differential form that can be integrated on S (we insist that S and M are assumed oriented). We
denote

η|S := dι∗η.

In local coordinates, if for q ∈ S, we have ν1(q), . . . , νm−d(q) an orthonormal basis of NqS ⊂ T ∗
qM

then the integral is given by ∫
S

η|S =

∫
S

ν1(q) ∧ · · · ∧ νc(q) ∧ η(q) dS(q) (4.2.28)

where, using the orientation, the map q 7→ ν1(q) ∧ · · · ∧ νm−d(q) ∧ η(q) ∈ ΛmT ∗
qM

∼= R is considered
as a real valued function.

We are now ready to give a precise statement.

Theorem 4.2.35 (M–Stecconi). Assume that M is orientable. Let 1 ≤ k ≤ m, let f⊂⊂C1(M,Rk) be
a z-KRok field, let X := f−1(0) and let η ∈ Γ(Λm−kT ∗

pM) be a continuous differential form of degree
m− k. Then we have

E
[∫

X

η|X
]
=

∫
M

of ∧ η.

Proof. We will apply the Alpha formula Lemma 4.2.29 with αη : C1(M,Rk) ×M → R given by 0 if
Jpφ = 0 and else by

αη : (φ, p) 7→ 1

Jpφ
dpφ

1 ∧ · · · ∧ dpφ
k ∧ η

where we used the orientation to identify ΛmT ∗
pM

∼= R. Note that αη is uniformly bounded in φ,

indeed for all (φ, p) ∈ C1(M,Rk)×M , we have |αη(φ, p)| ≤ ∥η(p)∥. In the left hand side of the Alpha
formula (4.2.23), we get

E
[∫

X

α(f, p) dX(p)

]
= E

[∫
X

ν(p) ∧ η dX(p)

]
where ν(p) := 1

Jpφ
dpφ

1 ∧ · · · ∧ dpφ
k. Now it is enough to see that ν(p) ∈ ΛkT ∗

pM represents the

subspace NpX ⊂ T ∗
pM in Plücker coordinates and thus applying (4.2.28) we get:

E
[∫

X

α(f, p) dX(p)

]
= E

[∫
X

η|X
]
.

Now it remains to compute the density δ
αη

f . By definition (see (4.2.24)) this is given for all p ∈M by:

δ
αη

f (p) = ρf (0)E [α(f, p)Jpf | f(p) = 0]

= ρf (0)E
[
dpφ

1 ∧ · · · ∧ dpφ
k ∧ η | f(p) = 0

]
= ρf (0)E

[
dpφ

1 ∧ · · · ∧ dpφ
k | f(p) = 0

]
∧ η

where on the third equality we used the linearity of the map ν 7→ ν ∧ η. Now we recognize in the last
line of (p) ∧ η and this concludes the proof.

This formula when k = m allows to do an expected sign count of points of intersection. The
following is a direct consequence of the previous result.
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Corollary 4.2.36. Let M be oriented and let f1, . . . , fm⊂⊂C1(M,R) be independent z-KRok fields and
let Xi := f−1

i (0), i = 1, . . . ,m. Then for all open set U ⊂M , we have

E [#±(X1 ∩ · · · ∩Xm ∩ U)] =

∫
U

of1 ∧ · · · ∧ ofm

where #±(X1 ∩ · · · ∩Xm ∩ U) is the number of points of intersections in U counted with sign, i.e.

#±(X1 ∩ · · · ∩Xm ∩ U) =
∑

p∈X1∩···∩Xm∩U
sign(dpf1 ∧ · · · ∧ dpfm).

Note that under the hypotheses of Corollary 4.2.36, for all p ∈M , the zonoid ζf1(p) ∧ · · · ∧ ζfm(p)
is a zonoid in ΛmT ∗

pM
∼= R and thus a segment in R. This segment contains the information of both

the count of points of intersection with or without sign. Indeed, its length gives the count without
sign by Theorem 4.2.30 and its center is 1

2of1 ∧ · · ·∧ofm which, as we just showed, computes the count
with sign.

What does the zonoid section know?

We have seen two cases of the Alpha formula (Lemma 4.2.29) where the density δαf was a function of
the zonoid section ζf . We can ask what are the conditions on the function α for this to be the case.

Proposition 4.2.37. Let α : C1(M,Rk) ×M → R be a measurable function that is given for every
(φ, p) ∈ C1(M,Rk)×M by 0 if Jpφ = 0 and else by:

α(φ, p) = (Jpφ)
−1T (dpφ

1 ∧ · · · ∧ dpφ
k) + (Jpφ)

−1F (dpφ
1 ∧ · · · ∧ dpφ

k)

where T : ΛkT ∗M → R is linear on the fibers and F : ΛkT ∗M → R is positively homogeneous on the
fibers. Then for every z-KRok field f⊂⊂C1(M,Rk) and every p ∈M , the density δαf (p) is a function of
the zonoid ζf (p).

Proof. Let f⊂⊂C1(M,Rk) be z-KRok and let p ∈M . By definition, see (4.2.24), the density is given by

δαf (p) = ρf(p)(0)E
[
T
(
dpf

1 ∧ · · · ∧ dpf
k
)
|f(p) = 0

]
+ ρf(p)(0)E

[
F
(
dpf

1 ∧ · · · ∧ dpf
k
)
|f(p) = 0

]
.

The first summand gives

ρf(p)(0)E
[
T (dpf

1 ∧ · · · ∧ dpf
k)|f(p) = 0

]
= T

(
ρf(p)(0)E

[
dpf

1 ∧ · · · ∧ dpf
k|f(p) = 0

])
= T (of (p)).

For the second term, if we call Y := ρf(p)(0)(dpf
1 ∧ · · · ∧ dpf

k|f(p) = 0) then we have tautologically

ρf(p)(0)E
[
F (dpf

1 ∧ · · · ∧ dpf
k)|f(p) = 0

]
= E [F (Y )]

But since F is positively homogeneous, by Proposition 1.2.29, this does not depend on the random
vector Y but this is a function of the zonoid EY = ζf (p) and this concludes the proof.

The current of expected integration treated in Theorem 4.2.35 is the case where F ≡ 0 and T is
the map given for each p ∈ M and for each β ∈ ΛkT ∗

pM by T (β) = β ∧ η(p). The case of density of
volume covered in Theorem 4.2.30 is the case where T ≡ 0 and F is the norm (given by the Riemannian
structure).

In the latter, we actually need less than the zonoid section and we can reduce to valuations. For
each point p, recall that the space val+(TpM) denotes the translation invariant continuous valuations
on convex bodies of TpM , see Section 3.1. Recall that to each Grassmannian zonoids ζ ∈ G (k, T ∗

pM)
(equivalentely to each measure on the Grassmannian Gk(T

∗
pM)) we associate a valuation in val+(TpM)

and that this map is an algebra map, see Section 3.3. Thus for each z-KRok field f⊂⊂C1(M,Rk), the
zonoid section ζf ∈ Γ(Ĝ (k, T ∗M)) gives rise to a section ϕf ∈ Γ(val+k (TM)) where val+k (TM) is
the (infinite dimensional) vector bundle whose fiber at the point p ∈ M is val+k (TpM). Now since
length of wedge product of Grassmannian zonoids can be evaluated in the algebra of valuations (see
Lemma 3.3.16), we can argue as in Proposition 4.1.15 to obtain the following.
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Theorem 4.2.38 (M–Stecconi). Let f⊂⊂C1(M,Rk) be z-KRok, let X := f−1(0) and let ϕf ∈ Γ(val+k (TM))
be the valuation section associated to the zonoid section ζf as explained just above. Then for every
open set U ⊂M , we have

E [volm−k (X ∩ U)] =
1

κk

∫
U

ϕf (p)(B(TpM)) dM(p).

Moreover, let f1⊂⊂C
1(M,Rc1), . . . , fn⊂⊂C1(M,Rcn) be independent z-KRok fields that satisfy c :=∑n

i=1 ci ≤ m, let Xi := f−1
i (0) and let ϕfi be the valuation section associated to the zonoid section ζfi ,

i = 1, . . . , n, then for every open set U ⊂M , we have:

E [volm−c (X1 ∩ · · · ∩Xn ∩ U)] =
1

κc

∫
U

(ϕf1(p) ∧ · · · ∧ ϕfn(p)) (B(TpM)) dM(p).

Similarly as we did in the end of Section 4.1.2, we can relate this to the theory of valuations on
manifolds, see [6]. Indeed, Alesker showed in [6, Section 3.1] that the space of smooth valuations on a
manifold M admits a filtration whose corresponding graded algebra is the vector bundle of valuations
on TM , i.e. the vector bundle whose fiber at a point p ∈M are the smooth valuations on the convex
bodies of TpM and this construction is compatible with the various products of smooth valuations
defined. It is clear that the link between the theory presented here and the theory of valuations on
manifold runs deeper than this and understanding it better will be the subject of future works of the
author.

4.2.4 Crofton formula in Finsler geometry

A Finsler structure on a manifold M is the choice, for every point p ∈ M , of a norm Fp on each
tangent space TpM that depends continuously on p and such that the unit ball in TpM is curved for
all p. This gives a well defined notion of length of curves. Indeed, given γ : [0, 1] →M a smooth curve,
one defines

ℓF (γ) :=

∫ 1

0

Fγ(t)(γ̇(t))dt.

In our case, the choice of a full dimensional convex body in each cotangent space induces a norm
on the tangent space. Indeed if ζ(p) ⊂ T ∗

pM is a convex body containing the origin in its interior
then hζ(p) : TpM → R defines a norm (not necessarily symmetric). In our case the convex body
can be taken centrally symmetric (by taking the centered the zonoid section, ζf ) but it is not always
full dimensional, let alone curved. In the case where it is not full dimensional it only defines a semi
norm.Note that Finsler structure such that the dual of the unit balls are zonoids are sometimes called
hypermetric.

Definition 4.2.39. We call semi Finsler structure a collection of semi norm Fp : TpM → R such that
there exists ζ(p) ⊂ T ∗

pM a convex body containing the origin depending continuously on p ∈ M such
that Fp = hζ(p).

Remark 4.2.40. The convex body ζ(p) ⊂ T ∗
pM is contained in an hyperplane v⊥, with v ∈ TpM if and

only if hζ(p)(v) = 0. For the semi Finsler structure, it means that travelling along the direction v is
free and curves that passes at p tangent to v have locally length zero. In the case where the zonoid is
ζ(p) = ζf (p), the centered zonoid section of a z-KRok field, this happens if and only if (dpf |f(p) = 0)

is in v⊥ almost surely.

The (centered) zonoid section of a z-KRok field with value in R defines a semi Finsler structure.

Definition 4.2.41. Let f⊂⊂C1(M,R) be a z-KRok field and condsider the random hypersurface given
by X := f−1(0). We denote by FX the semi Finsler structure induced by ζf (·) that is the centered
zonoid section of f defined in Definition 4.2.9. More explicitely, this is defined for all p ∈ M and all
v ∈ TpM by

FXp (v) :=
ρf(p)(0)

2
E
[
|dpf(v)|

∣∣∣f(p) = 0
]
. (4.2.29)
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Remark 4.2.42. Note that we abused notation and wrote FX while a priori this could depend on the
choice of f .

Our previous results interpret in this context as follows. This is to be compared with the classical
Crofton formula (4.1.8).

Theorem 4.2.43 (Crofton formula in Finsler geometry, M–Stecconi). Let f⊂⊂C1(M,R) be z-KRok
and consider the random hypersurface X := f−1(0). Let γ : [0, 1] → R be a C1 curve such that X is
transversal to γ almost surely. Then

E#(γ ∩X) = 2 ℓF
X

(γ).

Proof. Consider the random field f ◦ γ⊂⊂C1([0, 1],R) and apply the pull-back property Lemma 4.2.17.
By (4.2.13), we have

hζf◦γ(t)(∂t) = hζf(γ(t))
(γ̇(t)).

Remember that ζf◦γ(t) lives in a space of dimension 1 (formally the cotangent to [0, 1] at t) and thus
its length is given by

ℓ(ζf◦γ(t)) = hζf◦γ(t)(∂t) + hζf◦γ(t)(−∂t)
= hζf(γ(t))

(γ̇(t)) + hζf(γ(t))
(−γ̇(t))

= 2hζf(γ(t))
(γ̇(t)) = 2FX(γ̇(t)).

Applying Theorem 4.2.30 to the random z-KRok field f ◦ γ, we obtain

E#(f ◦ γ)−1(0) =

∫ 1

0

ℓ (ζf◦γ(t)) dt = 2

∫ 1

0

FX(γ̇(t)) dt

We recognize on the right 2ℓF
X

(γ). To conclude, note that (f ◦ γ)−1(0) = γ−1(γ ∩ X) and thus
#(f ◦ γ)−1(0) = #(γ ∩X).

Constructions of Finsler structures that admits a Crofton formula are known for random hyper-
planes in projective space, see [18, 72, 78]. Moreover, a more general result very similar to The-
orem 4.2.43 can be found in [8, Theorem A] although the z-KRok hypothesis is significantly less
restrictive and the construction of the metric FX explicit with (4.2.29).

Unlike for the length, there are several definitions of volume in Finsler manifolds. One way to define
k-dimensional volumes of submanifolds is to define a k-density, that is a nonnegative homogeneous
function φk on the simple vectors of ΛkTM . The k-densities satisfy a pull-back property and thus,
given an embedded submanifold ι : S ↪→M , ι∗φk defines a density (in the classical sense) and can be
integrated. The k-volume of S is then defined to be

volφk
(S) :=

∫
S

ι∗φk.

See [7] for the possible choices of k-densities and more details. One of the most common choice is the
Holmes-Thompson density. To define it, it is convenient for us to use the Riemannian metric on our
manifoldM and assume that the semi Finsler structure is given at each point p ∈M by a convex body
ζ(p) ⊂ T ∗

pM in such a way that Fp = hζ(p).

Definition 4.2.44. The kth Holmes-Thompson density φhtk is given for all p ∈ M , and all simple
vectors v = v1 ∧ · · · ∧ vk ∈ ΛkTpM

φhtk (v1 ∧ · · · ∧ vk) :=
∥v1 ∧ · · · ∧ vk∥

κk
volk(πv(ζ(p)))

where ∥·∥ is the norm on ΛkTpM induced by the Riemannian structure, πv is the orthogonal projection
onto Span(v1, . . . , vk) (identifying the space and its dual) and volk is the k-dimensional volume for the
Riemannian metric in TpM .
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The reader can refer to [7, p.19]. One can also show that this definition doesn’t depend on the
choice of the Riemannian metric, however, in our case this becomes clear with the next lemma.

Lemma 4.2.45. If the semi Finsler structure is given at each point p ∈ M by a zonoid ζ(p) ⊂ T ∗
pM

then the Holmes–Thompson density is given by

φhtk =
2

k!κk
hζ(p)∧k .

Proof. This is a consequence of the definition and Lemma 2.2.20.

With this notion, we obtain a Crofton formula for higher dimensional volumes.

Theorem 4.2.46 (M–Stecconi). Let 1 ≤ k ≤ m, let f1, . . . , fk⊂⊂C
1(M,R) be iid z-KRok fields, let

Xi := f−1
i (0) and let X(k) := X1 ∩ · · · ∩Xk. Let ι : S ↪→M be an embedded submanifold of dimension

k such that X(k) is transversal to S almost surely, then we have

E#
(
S ∩X(k)

)
= k!κk vol

FX1

k (S)

where volF
X1

k denotes the Holmes–Thompson volume for the semi Finsler structure FX1 defined by
(4.2.29).

Proof. The proof is almost identical to the proof of Theorem 4.2.43 but let us repeat it, if only to
compute the constant. Let f (k) := (f1, . . . , fk)⊂⊂C

1(M,Rk) and consider f (k) ◦ ι⊂⊂C1(S,Rk). Since
S is almost surely transversal to X(k) = (f (k))−1(0), by the pull-back property (Lemma 4.2.17) it is
z-KRok and we have for all q ∈ S

ζf(k)◦ι(q) = dqι
∗ζf(k)(ι(q)) = dqι

∗ ((ζf1(ι(q)))∧k) = (dqι
∗ζf1(ι(q)))

∧k
.

where the second equality holds because f (k) := (f1, . . . , fk) and f1, . . . , fk are iid and the third equality
is by definition of the linear maps induced in the exterior algebra. We fix a Riemannian structure on
S such that ι is a Riemannian embedding and we let ωq ∈ ΛkT qS be the choice of a volume form (if S
is not orientable we can work locally). Now we note that ζf(k)◦ι(q) lives in the one dimensional space

ΛkTqS thus its length is given by:

ℓ
(
ζf(k)◦ι(q)

)
= hζ

f(k)◦ι(q)
(ωq) + hζ

f(k)◦ι(q)
(−ωq)

= hζ
f(k) (ι(q))(dqι(ωq)) + hζ

f(k) (ι(q))(dqι(−ωq))

= 2hζ
f(k) (ι(q))(dqι(ωq))

= 2hζf1 (ι(q))∧k(dqι(ωq)) = k!κkφ
ht
k (dqι(ωq)).

Where here φhtk denotes the Holmes Thompson density for the semi finsler structure defined by ζf1 .

To conclude, we note that #(f (k) ◦ ι)−1(0) = #(S ∩X(k)) and thus applying (4.2.27) to the z-KRok
field (f (k) ◦ ι) we get

E#(S ∩X(k)) =

∫
S

ℓ
(
ζf(k)◦ι(q)

)
dS(q) = k!κk

∫
S

φhtk (dqι(ωq)) dS(q)

which is what we wanted.

In the case where the random field is an AT field for M we obtain the following Crofton formula
in Riemannian geometry.

Corollary 4.2.47. Let f⊂⊂C1(M,R) be an AT field for M , let f1, . . . , fk be iid copies of f and let
X(k) := f−1

1 (0) ∩ · · · ∩ f−1
k (0). Then for any submanifold S ↪→M of dimension k, we have

E#
(
S ∩X(k)

)
=

2

sk
volk(S)

where volk(S) denotes the Riemmannian volume of S.
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Proof. As observed in Remark 4.2.23, any submanifold is almost surely transversal to the zero set of
the AT field. By definition, the Finsler structure obtained from an AT field is the Riemannian metric
multiplied by 1/(2π). Now the result follows from Theorem 4.2.46 and the identity k!skκk = 2(2π)k,
see Lemma A.4.

If we consider the submanifold S in Theorem 4.2.46 to be again random, given by z-KRok fields,
we obtain the following funny formula.

Corollary 4.2.48. Let f1, . . . , fk, g1, . . . , gm−k⊂⊂C
1(M,R) be independent z-KRok fields with f1, . . . , fk,

respectively g1, . . . , gm−k, identically distributed. Consider X(k) := (f1)
−1(0) ∩ · · · ∩ (fk)

−1(0) and
Y (m−k) := (g1)

−1(0) ∩ · · · ∩ (gm−k)
−1(0). Then we have

k!κkE
[
volF

X

k

(
Y (m−k)

)]
= (m− k)!κm−kE

[
volF

Y

m−k

(
X(k)

)]
where volF

X

k , respectively volF
Y

m−k, denotes the Holmes-Thompson volume for the semi Finsler structure
defined by ζf1 , respectively by ζg1 .

Proof. Applying the previous result Theorem 4.2.46 successively to f1, . . . , fk, fixing Y
(m−k) and to

g1, . . . , gm−k fixing X(k), we get, using the independence assumption, that both sides are equal to
E#(X(k) ∩ Y (m−k)).



Appendix A

Gamma function, spheres and balls

In this appendix, we present the Gamma function and formulas involving this function and volumes
of spheres and balls. The reader can refer to the Wikipedia pages “n-sphere” [93], “Gamma function”
[91] and “Multiplication theorem” [92].

Definition A.1. The Gamma function is the function given for all complex number z with non
negative real part by:

Γ(z) =

∫ ∞

0

tz−1e−t dt.

In what follows we will only be interested in the value at real points. The Gamma fuction is a
famous analytic generalization of the factorial as it satisfies for all non negative integers n ≥ 0:

Γ(n+ 1) = n!.

More generally, we have for all x > 0:

Γ(x+ 1) = xΓ(x).

Another useful formula is the following.

Lemma A.2 (Legendre duplication formula). For all x ≥ 0, we have:

Γ(x)Γ

(
x+

1

2

)
= 21−2x

√
π Γ(2x)

Applying it to x = m an integer, we deduce the value of the Gamma function at half-integers
points.

Lemma A.3. For all m ≥ 0, integer, we have:

Γ

(
m+

1

2

)
=

√
π

2m
(2m)!

m!

The volume of spheres and balls can be expressed with the Gamma function. Recall that Bm =
B(Rm) is the unit ball of Rm and that we denote Sm = S(Rm+1) the unit sphere in Rm+1. Moreover,
recall that we denote their volume by

κm := volm(Bm); sm := volm(Sm).

We have for all m ≥ 0:

κm =
2π

m
2

mΓ
(
m
2

) sm =
2π

m+1
2

Γ
(
m+1
2

)
141
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Note that in even dimension, this gives for all n ≥ 0:

κ2n =
πn

n!
; s2n = 2(2π)n

n!

(2n)!

and in odd dimension, for all n ≥ 0:

κ2n+1 = 2(2π)n
n!

(2n+ 1)!
; s2n+1 = 2

πn+1

n!
.

We find that the quotient gives for all n ≥ 0

κ2n
κ2n−1

=
1

2π2n

(
2n

n

)
;

s2n+1

s2n
=

π

2n

(
2n

n

)
. (A.1)

Using Legendre duplication formula we also find the following.

Lemma A.4. For all m ≥ 0, we have:

m!κmsm = 2(2π)m.



Bibliography

[1] Karim A. Adiprasito and Raman Sanyal. Whitney numbers of arrangements via measure concen-
tration of intrinsic volumes. arXiv:1606.09412, 2016. (Cited on p. 78)

[2] R. J. Adler and J. E. Taylor. Random fields and geometry. Springer Monographs in Mathematics.
Springer, New York, 2007. (Cited on p. 15, 133)

[3] Semyon Alesker. Description of translation invariant valuations on convex sets with solution of p.
mcmullen’s conjecture. Geometric & Functional Analysis GAFA, 11(2):244–272, Jul 2001. (Cited
on p. 11, 12)

[4] Semyon Alesker. Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily
invariant valuations. J. Differential Geom., 63(1):63–95, 2003. (Cited on p. 64, 91)

[5] Semyon Alesker. The multiplicative structure on continuous polynomial valuations. Geometric &
Functional Analysis GAFA, 14(1):1–26, Feb 2004. (Cited on p. 11, 91)

[6] Semyon Alesker. Theory of valuations on manifolds, ii. Advances in Mathematics, 207(1):420–454,
2006. (Cited on p. 110, 137)
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