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Out-of-time-order correlators (OTOCs) have become established as a tool to characterise quan-
tum information dynamics and thermalisation in interacting quantum many-body systems. It was
recently argued that the expected exponential growth of the OTOC is connected to the existence of
correlations beyond those encoded in the standard Eigenstate Thermalisation Hypothesis (ETH).
We show explicitly, by an extensive numerical analysis of the statistics of operator matrix elements
in conjunction with a detailed study of OTOC dynamics, that the OTOC is indeed a precise tool
to explore the fine details of the ETH. In particular, while short-time dynamics is dominated by
correlations, the long-time saturation behaviour gives clear indications of an operator-dependent
energy scale ωGOE associated to the emergence of an effective Gaussian random matrix theory. We
provide an estimation of the finite-size scaling of ωGOE for the general class of observables composed
of sums of local operators in the infinite-temperature regime and found linear behaviour for the
models considered.

I. INTRODUCTION

Understanding how isolated quantum systems ther-
malise under unitary evolution is a theme as old as quan-
tum mechanics itself [1, 2]. This line of study has seen
significant renewed interest in the past decades [3–7] pri-
marily due to advances in ultra-cold atom physics [8–10]
which have allowed the observation of coherent dynamics
over long times.

In isolated classical systems, thermalisation relies on
the emergence of chaos and ergodicity, which together
lead phase-space trajectories starting from the same en-
ergy to become indistinguishable when averaged over
time [11]. The equivalent notion of indistinguishabil-
ity in quantum many-body systems is provided by the
Eigenstate Thermalisation Hypothesis (ETH) [7, 12, 13],
which states that nearby energy eigenstates cannot be
distinguished by local observations. More precisely, the
ETH requires the matrix elements of few-body observ-
ables in the eigenbasis of a many-body Hamiltonian to
obey the following ansatz, which implies thermalisation
[7, 14]:

Onm = O(Ē)δnm + e−S(Ē)/2fÔ(Ē, ω)Rnm . (1)

Both O(Ē) and fÔ(Ē, ω) are smooth functions of their
arguments, Ē = (En+Em)/2, ω = Em−En, S(Ē) is the
microcanonical entropy and Rnm are the matrix elements
of a random statistical matrix with zero average and unit
variance.

More recently, thermalisation has been explored from a
new quantum information perspective, with emphasis on
the notion of scrambling [15]. Information scrambling is
a more primordial feature of quantum dynamical systems
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where information, initially stored locally, gets dynami-
cally distributed in global degrees of freedom [16]. This
process is explained as a consequence of the growth of op-
erator complexity under time evolution [17]. Although
traditional tools can hardly be of any help in studying
this phenomenon, a variety of ideas have emerged re-
cently for this task. Among them, the out-of-time-order
correlator (OTOC) [18], suggested to characterise syn-
thetic analogues of black-holes [15, 19, 20], has arisen
as an important figure of merit for scrambling, ergodic-
ity and quantum chaos in complex many-body quantum
systems. Several experimental studies with a variety of
platforms have demonstrated that OTOCs indeed char-
acterise scrambling following the operation of a unitary
circuit [21–24].

Recently, Foini and Kurchan [25] argued that corre-
lations between the matrix elements of operators in the
energy eigenbasis must exist in the ETH [Eq. (1)] to ac-
count for the positive exponential growth rate of OTOCs
in chaotic models [20]. Based on this result, Murthy
and Srednicki [26] were able to derive known bounds on
the growth rate from the ETH. Chan et al. [27] showed
that in locally interacting systems the butterfly effect for
OTOCs implies a universal form for these correlations.
The existence of frequency-dependent correlations has
recently been confirmed by Richter et al. [28] and a dis-
tinction with a regime in which these correlations vanish
was identified, by a numerical investigation of the statis-
tical distributions of matrix elements in non-integrable
systems.

It remains an open question to establish if these
frequency-dependent correlations can be observed in the
dynamics of OTOCs and if the timescales associated with
late-time chaos can be connected to the presence, or lack
thereof, of matrix-element correlations. It is still not clear
if temperature plays a role and, furthermore, the scaling
as a function of system size of the frequency scale that
divides correlated and uncorrelated regimes has yet to be
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estimated.
In this work, we carry out a thorough study of the

frequency and energy dependence of the statistics of
off-diagonal matrix elements and of the OTOCs of ex-
tensive observables in two experimentally relevant mod-
els: hardcore bosons with dipolar interactions in a har-
monic trap [29] and an Ising chain with longitudinal
and transverse fields [30]. In all instances, the statis-
tical matrix appears to have some common features.
The matrix elements Rnm at a given energy Ē and fre-
quency ω obey Gaussian statistics [28, 31–37], in con-
trast with non-ergodic systems [37–40]. We demon-
strate that this feature persists well-beyond the infinite-
temperature limit. We also further characterise the sta-
tistical correlations between Rnm at well-separated fre-
quencies. However, these correlations disappear between
matrix elements close to the diagonal, indicating the
emergence of random-matrix-like behaviour at small fre-
quencies |En−Em| < ωGOE, where ωGOE is a model- and
operator-dependent energy scale, as first demonstrated
for non-extensive observables in Ref. [28]. We show ex-
plicitly that this rich structure is naturally reflected in
the dynamics of OTOCs. A comparison between the
OTOCs computed on a thermal ensemble and those com-
puted assuming the ETH with a random uncorrelated
Gaussian statistical matrix shows convergence of the two
on time scales that appear to be related to ω−1

GOE. We use
this observation to provide an estimation of the scaling
as a function of the system size of ω−1

GOE in the infinite-
temperature regime. This suggests that an experimental
study of OTOCs could be an efficient way to probe the
energy scales beyond which a complex, interacting sys-
tem displays Gaussian random-matrix behaviour in local
observables.

II. MODELS AND OBSERVABLES

To address the generic behaviour of thermalising sys-
tems that is independent of microscopic details, we con-
sider two different non-integrable models: the first de-
scribing hard-core bosons with dipolar interactions in a
harmonic trap [29], while the second is a quantum Ising
chain with both transverse and longitudinal fields [30].
The Hamiltonian of the first model is (~ ..= 1)

ĤHB = −J
L−1∑
i=1

(
b̂†i b̂i+1 + H.c.

)
+
∑
i<l

V n̂in̂l
|i− l|3 +

∑
i

gx2
i n̂i

(2)

for a one-dimensional chain with L sites where b̂†i and

b̂i are hard-core bosonic creation and annihilation oper-

ators, respectively, at site i, n̂i = b̂†i b̂i and xi = |i−L/2|.
Hereafter, all energies are given in units of the hop-
ping amplitude J and we set the strength of the dipo-
lar interaction and confining potential to be V = 2 and
g = 16/(L − 1)2, respectively (parameters selected from

Ref. [29]). The system conserves the total number of

bosons, which is guaranteed from [ĤHB,
∑
i n̂i] = 0. This

symmetry is resolved throughout this work. We focus
on the half-filled sub-sector, in which the Hilbert space
dimension is D = L!/[(L/2)!(L/2)!]. To avoid parity
(spatial inversion) or reflection (spin inversion) symme-
tries, we add a small perturbation δn̂1 to the Hamiltonian
(δ = 0.1J).

The second model has the following Hamiltonian:

ĤIS =

L∑
i=1

wσ̂xi +

L∑
i=1

hσ̂zi +

L−1∑
i=1

Jσ̂zi σ̂
z
i+1 . (3)

We measure energies in units J and set w =
√

5/2, h =

(
√

5 + 5)/8 (see Ref. [30]). The only known symmetry
associated to this model is parity. We consider the even
parity sub-sector for chains with an even number of sites,
with a corresponding Hilbert space dimension D = 2L −
[(2L − 2L/2)/2].

We consider extensive observables, composed of sums
of local operators spanning the entire system

B̂HB =
1

L

∑
i

[1 + (−1)i]n̂i , B̂IS =
1

L

∑
i

σ̂zi . (4)

A detailed study of the diagonal matrix elements and
two-point correlation functions of these operators demon-
strates the validity of the ETH in both models (see Ap-
pendix A1 for further details).

It is crucial to recognise that, within the ETH, the
one- and two-point correlation functions in time do not
depend on the details of the statistical matrix Rnm. In
particular, two-point correlators are determined by the
smooth function fÔ(Ē, ω) entering Eq. (1), which itself
depends on the variance of matrix elements Onm near a
given energy Ē and frequency ω [29, 31, 34, 35, 37, 41, 42].
We refer the reader to Appendix A2, where we observe
excellent agreement between the dynamics of two-point
functions computed with respect to a single eigenstate
and the canonical ensemble at the same average energy,
without any particular considerations about the statisti-
cal matrix Rnm, other than its mean and variance.

The precise distribution of these elements, as well as
correlations between matrix elements at different fre-
quencies, thus encode the fine structure of the ETH be-
yond linear-response theory [25]. In the following, we
investigate how this structure influences the dynamics of
higher-order correlators such as the OTOC.

III. GAUSSIAN STATISTICS

The first step towards a statistical characterisation
of Ô is to understand the distribution of its individual
matrix elements. Since the number of matrix elements
is very large even at small system sizes, we begin by
studying the distribution of off-diagonal matrix elements
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FIG. 1. Probability distributions of off-diagonal matrix el-
ements in a small frequency range ω <∼ 0.05. The average
energy Ē selected is consistent with a finite canonical tem-
perature T = 5J . The distributions are shown in (a) for B̂HB

and in (b) for B̂IS. Results obtained for finite-sized systems

of L = 20 for ĤHB and L = 18 for ĤIS. Dashed lines depict a
Gaussian distribution with the same mean and variance.

Onm = 〈En|Ô|Em〉 in a small frequency-resolved win-
dow ω <∼ 0.05 and a finite temperature T = β−1 = 5J
(kB ..= 1). The temperature is calculated by associating
the average energy Ē with a canonical density matrix

ρ̂ = e−βĤ/Z as Ē = Tr[ρ̂Ĥ], with Z = Tr[e−βĤ ]. The
probability distribution can then be inferred by creat-
ing a histogram of all the matrix elements that satisfy
Ē = Tr[ρ̂Ĥ] and ω < 0.05. In Fig. 1 we show the proba-
bility distributions obtained by this procedure. The ma-
trix elements are Gaussian-distributed for the extensive
operators in both of the models we have studied, as has
previously been found for other models and observables
in the infinite temperature regime [31–37].

In order to understand if this property pertains to the
entire spectrum away from zero frequency and if the same
distributions are observed at all temperatures where the
ETH is expected to hold, we proceed to evaluate the
frequency-dependent ratio [32]

ΓÔ(ω) ..= |Onm|2/|Onm|
2
, (5)

where the averages are performed over a small frequency
window δω = 0.05. Should the individual matrix ele-
ments be Gaussian-distributed with zero mean at a given
value of ω, then ΓÔ(ω) = π/2. For this particular analy-
sis, we consider ω = Em − En over the entire spectrum,
while the average energy Ē = (En + Em)/2 is chosen
to be compatible with a corresponding canonical tem-
perature. The quantity is computed over small bins in
ω of a given size and within a small energy window of
width 0.05ε, where ε ..= Emax − Emin is the bandwidth
of the Hamiltonian. The average over the small energy
window is carried out to account for finite-size eigenstate-
to-eigenstate fluctuations.

In Fig. 2 we show the ΓÔ(ω) ratio as a function of

ω and of the system size L for both ĤHB [panels (a)

and (b)] and ĤIS [panels (c) and (d)], evaluated for the

1

1.5

2

0 5 10 15 20 25

(a)

T = 5J

0 5 10 15 20 25
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FIG. 2. ΓÔ(ω), from Eq. (5), for operators B̂HB [(a) and

(b)] and B̂IS [(c) and (d)] in the eigenbasis of ĤHB and ĤIS,
respectively. Two different finite temperatures were chosen,
T = 5J [(a) and (c)] and T = 10J [(b) and (d)]. The black
horizontal line shows the value ΓÔ(ω) = π/2. The matrix
elements were computed in a small energy window 0.05ε where
ε ..= Emax − Emin, and a frequency window δω = 0.05.

operators B̂HB and B̂IS from Eq. (4) and for two dif-
ferent temperatures T = 5J and T = 10J . We have
chosen to display our results for values of temperature
away from the infinite-temperature regime, although we
have confirmed similar results for other temperature val-
ues (T = 3J and T = 1000J). Gaussian statistics emerge
at all frequencies, i.e. ΓÔ ≈ π/2 for increasing values of
ω as the system size increases. These findings, together
with recent results that have highlighted normality in
the distributions of off-diagonal matrix elements in the
high-temperature limit [32, 34, 35, 37], strongly suggest
that Gaussianity is ubiquitous in non-integrable models
for which the ETH is expected to hold, even at finite
temperature.

IV. MATRIX-ELEMENT CORRELATIONS

Let us now examine the overall structure of the statis-
tical matrix Rnm as a function of the mean energy Ē and
frequency ω. In particular, we are interested in correla-
tions between matrix elements at different frequencies,
which are encoded in the eigenvalue distribution of the
matrix Onm. In the absence of correlations, the eigen-
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value distribution should coincide with that of the Gaus-
sian orthogonal ensemble (GOE), where each matrix el-
ement is an independent, identically distributed random
variable [43]. Therefore, any deviation from the GOE
prediction heralds the presence of correlations between
matrix elements.

In order to investigate the temperature- and frequency-
dependence of such correlations, we consider sub-
matrices of Ô restricted to a finite frequency window and
construct the corresponding eigenvalue distributions, fol-
lowing Ref. [28]. To fix the temperature, we first extract

a D′ × D′ sub-matrix from Ô, centred around the diag-
onal matrix element Onn such that En = Tr[ρ̂Ĥ]. The
size D′ of this sub-matrix is selected to encompass an
energy range of width 0.125ε, where ε ..= Emax −Emin is
the bandwidth. We then further restrict our attention to
frequencies |ω| < ωc by setting

Oωcnm
..=

{
Onm, if |Em − En| < ωc
0, otherwise.

(6)

To test for correlations between these matrix elements,
we follow the procedure introduced in Ref. [28]: we gen-
erate a sign-randomised matrix from the original sub-
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Ĥ
IS

:
P

ω
c
(λ

)

λ λ

O

Õ
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Õ

FIG. 3. Probability distributions Pωc(λ) of the eigenvalues
of the full and randomised sub-matrices [Eqs. (6) and (7)] in

an energy window 0.125ε for B̂HB [(a), (b)] and B̂IS [(e), (f)].
In [(c), (d)] and [(g), (h)] we show Pωc(λ) for the banded

operators B̂HB and B̂IS, respectively, with the smallest cutoff
frequency ωc such that the eigenvalue distribution follows the
GOE (see Appendix A4). All the panels on the left correspond
to T = 5, while T = 1000 for the panels on the right. We show
the results for L = 18 in ĤHB and L = 16 in ĤIS.

matrix

Õωcnm
..=

{
Oωcnm, probability = 1/2,

−Oωcnm, probability = 1/2,
(7)

where we apply the sign randomisation on the elements
n 6= m to retain the mean and support of the original sub-
matrix. The random sign destroys correlations between
matrix elements, leading to the semi-elliptical eigenvalue
distribution that is characteristic of the GOE [43, 44].

Comparing the eigenvalue distributions of Oωcnm and Õωcnm
thus probes correlations between the matrix elements of
Ô within a frequency range controlled by the cutoff ωc.

The distribution of all the D′ eigenvalues λωcα of Ôωc

is expressed as

Pωc(λ) =
1

D′
D′∑
α=1

δ (λ− λωcα ) , (8)

where all the individual δ(·) peaks are collected in small
bins to describe a given probability distribution. The
function Pωc(λ) can be studied as a function of ωc and
yields a semi-circular distribution if the eigenvalues are
uncorrelated. If correlations are to arise, deviations from
a semi-circle distribution are observed.

The eigenvalues {λ} of the sub-matrices in Eq. (6) and
Eq. (7) are evaluated numerically and the correspond-
ing distributions, Pωc(λ), are shown in Fig. 3 for exten-
sive operators. The eigenvalues of the entire sub-matrix
within the chosen energy window show a departure from
the semi-elliptical distribution (Fig. 3[(a),(b)] for B̂HB

and Fig. 3[(c),(d)] for B̂IS), signalling substantial cor-
relations between matrix elements at significantly dif-
ferent frequencies. These correlations are seen for high
(T = 1000J) [Fig. 3(b,d)] and low (T = 5J) [Fig. 3(a,c)]
temperatures alike. For smaller values of the cutoff ωc,
however, the eigenvalue distributions begin to resemble
the GOE prediction (Fig. 3[(a),(b)] insets for B̂HB and

Fig. 3[(c),(d)] insets for B̂IS). Our data are therefore con-
sistent with a crossover to Gaussian random-matrix-like
behaviour at low frequencies [28]. The frequency scale
of the crossover can be estimated from the value of ωc
at which the distributions appear to coincide with the
GOE prediction, ωc = ωGOE. Note that, for even smaller
values of ωc, the eigenvalue statistics eventually become
Poissonian due to well-known localisation effects [7]. The
insets in Fig. 3 display the eigenvalue distributions for
smallest frequency values which are still above the lo-
calised regime (see Appendix A4 for details). This indi-
cates that ωGOE refers to a different frequency scale, as
first denoted in Ref. [28].

V. OTOC DYNAMICS

We now study the implications of the results from the
previous section for the observable dynamics. As dis-
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cussed above, two-point correlation functions are inde-
pendent of the statistical correlations between matrix el-
ements. It is thus crucial to examine higher-order corre-
lators and the OTOC is a natural example. We focus in
particular on the squared commutator

c(t) ..= −
(
〈[Ô(t), Ô]2〉 − 〈[Ô(t), Ô]〉2

)
. (9)

To detect the dynamical effect of matrix-element correla-
tions, we compute c(t) in two different ways: i) by a ther-
mal average in the canonical ensemble at temperature T ,
and ii) using a single eigenstate |En〉 and assuming inde-
pendent, identically distributed (IID) Gaussian statistics
for Rnm in the ETH Eq. (1) [25, 26, 45], which leads to an
expression for the OTOC in terms of two-point functions.
Under this approximation, we have

[c(t)]ETH Unc. ≈ 2|F2(0)|2 − 2|F2(t)|2, (10)

where

F2(t) ..= 〈Ô(t)Ô(0)〉c ..= 〈Ô(t)Ô(0)〉 − 〈Ô(t)〉〈Ô(0)〉.
(11)

We refer the reader to Appendix A5 for details on the
derivation leading to this approximation.

The OTOC dynamics in the canonical ensemble are
computed by exact diagonalisation, representing Ô(t) as
a time-dependent matrix in the Heisenberg picture fol-
lowing the computation of the commutators in Eq. (9).
On the other hand, the dynamical evaluation of c(t) as-
suming IID Gaussian statistics in the ETH is done by ob-
taining the two-point functions from fÔ(Ē, ω). Further
details are included in Appendix A2 and Appendix A5.

The result of this comparison is shown in Fig. 4 for
sums of local operators. A discrepancy between the two
predictions at short times signals that this regime is in-
deed governed by correlations between the matrix ele-
ments. However, the curves saturate to a similar value
at longer times, differing in some cases by a small cor-
rection that we attribute to energy fluctuations in the
canonical ensemble at finite size (see Appendix A3), given
that these deviations are less prominent for larger system
sizes. Fig. 4 shows that the time ts at which saturation
occurs qualitatively increases with system size.

Interestingly, our data suggest that this saturation
time is related to the frequency ωGOE by ts ≈ 2π/ωGOE.
The procedure employed so far only allows one to study
system sizes available to exact diagonalisation tech-
niques. Regardless, we can proceed visually by showing
the distribution of eigenvalues of the matrix Ôωc=2π/t at
different times (insets of Fig. 4). While at short times
the distribution deviates from the GOE prediction, these
deviations are strongly reduced when the OTOC nears
saturation, approximately leading to semi-circular dis-
tributions. This behaviour indicates that the OTOC’s
long-time dynamics encodes the statistical properties of
Rnm and the emergence of random-matrix behaviour at
low frequencies.
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J
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10

2
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B̂
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Time Jt Time Jt
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ETH Unc. L = 12

Can. L = 16
ETH Unc. L = 16

FIG. 4. Time-dependent square-commutator (9) for the op-

erators B̂HB [(a),(b)] and B̂IS [(c),(d)] for ĤHB and ĤIS at
temperatures T = 5J [(a) and (c)] and T = 1000J [(b) and
(d)]. The expectation value obtained for a canonical state is
compared with the one obtained assuming the ETH and un-
correlated Rnm for increasing system size L. Insets show the
distribution of eigenvalues of the matrix Ôωc=2π/t (6) for the
largest system size displayed in each case.

VI. ESTIMATION OF THE SCALING OF ωGOE

WITH SYSTEM SIZE IN THE
INFINITE-TEMPERATURE REGIME

Our previous results strongly suggests that the fre-
quency scales divided by ωGOE, studied from the spec-
trum of banded matrices, have a connection to the sat-
uration timescales of the OTOCs, denoted by ts. This
connection could be used to estimate the behaviour of
ωGOE as a function of the system size L from the satu-
ration point of the dynamics of the OTOCs. Notice that
the saturation time ts is not related to the relaxation
time of two-point correlations, the dephasing time tϕ,
which is expected to be an intensive quantity on general
grounds [46]. The saturation time ts is also generically
larger than tϕ. This observation is verified by Fig. 4, since
tϕ determines the fast saturation of the OTOC computed
according to the uncorrelated approximation in Eq. (10).

In our previous calculations, establishing the connec-
tion between ts and ωGOE entailed the computation of
the unitary operator Û that renders the Hamiltonian di-
agonal, i.e., H̃ = Û†ĤÛ , where H̃ is a diagonal matrix
with the eigenvalues in its entries. This exact diagonal-
isation procedure is computationally costly due to the
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rapid increase of D as a function of the system size.
Having established the relation between ωGOE and ts,
we could evaluate the saturation point in the dynamics
of the OTOCs using a different approach to provide and
estimation of the scaling of ωGOE.

For this purpose, we employ the concept of dynami-
cal quantum typicality [47–51]. In this framework, it is
possible to approximate the unitary dynamics of a given
system within an equilibrium ensemble from a single pure
state |ψ〉, which is drawn at random from the Haar mea-
sure [49] on an arbitrary basis {|φ〉k}Dk=1. We start with

|ψ〉 = R̂

D∑
k=1

ck |φk〉 , ck ..= ak + ibk, (12)

where R̂ is an arbitrary operator on the Hilbert space and
ak and bk are independent random variables drawn from
a normal distribution. The averaged expectation value
of an operator Ô in the typical state is equivalent to the
expectation value computed with respect to a density

matrix ρ̂, such that O ..= 〈ψ|Ô|ψ〉 ≈ Tr[ρ̂Ô]. In this

particular case, ρ̂ = R̂R̂†. It can be shown that the
approximation is more accurate as D increases [50].

We now focus on the infinite-temperature regime, in
which we can write

ρ̂ =
1

D and |ψ〉 =
1√
D

D∑
k=1

ck |φk〉 . (13)

With this procedure, we may approximate the dynamics
of c(t) from Eq. (9) in the infinite-temperature regime by

c(t) ≈ −
(
〈ψ|[Ô(t), Ô]2|ψ〉 − 〈ψ|[Ô(t), Ô]|ψ〉2

)
, (14)

where the approximation becomes more accurate as L is
increased. To provide a better approximation for smaller
values of L we carry out an averaging procedure using
several different random states |ψ〉. The dynamics is
evaluated in the Schrödinger picture, using the method
of Krylov subspaces to evaluate time-evolved states (see
Appendix A6 for further details).

In Fig. 5 we show the results of c(t) averaged over sev-

eral typical states using the procedure above for the ĤHB

[Fig. 5(a)] and the ĤIS [Fig. 5(b)] models for their re-
spective extensive observables. The numerical approach
described before allows us to study much larger system
sizes (up to L = 28 for ĤHB and L = 24 for ĤIS). The
dynamics displayed correspond to the average between
many different typical states, which range from 1000 for
the smallest values of L, to 2 for the largest values. The
number of realisations is chosen such that the standard
deviation along each point in the time trajectory does
not surpass 1% of the mean value.

The circles marked in the main panels correspond to
the saturation points of the OTOCs. The values of c(Jt)
have been scaled by a factor of L4 for visualisation pur-
poses and do not affect the saturation times. To eval-
uate these saturation values, we first estimate the long-
time value of the OTOCs c(Jt → ∞) from the average

0

20

40

60

80

100

5 10 15 20 25 30

T → ∞
(a)

L

0

200

400

600

10 20 30 40 50

T → ∞
(b)

L

12
15

20 25 30

20

30

15 20 25
Ĥ
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t s
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FIG. 5. Dynamics of the OTOC averaged over many typical
states (see Sec. VI) in the infinite-temperature regime for the

(a) ĤHB (L = 18, · · · , 28 increasing for even L) and (b) ĤIS

(L = 14, · · · , 24 increasing for even L) models and their cor-
responding observables composed of sums of local operators.
The circles denote our estimation of the saturation time ts
using the procedure described in Sec. VI. The insets exhibit
the finite-size scaling analysis of the saturation time ts as a
function of L, where the dashed lines depict a fit to a linear
function aL+ b.

of the late dynamics (we use Jt ∈ [28, 30] for ĤHB and

Jt ∈ [48, 50] for ĤIS). The saturation time is then se-
lected at the value for which c(Jts) = εc(Jt → ∞) is
reached, where ε is a certain threshold parameter. The
saturation times are highlighted by the circles in the main
panels of Fig. 5. There exist some very small finite-size
oscillations throughout the dynamics, which introduce a
level of uncertainty into the estimation of ts. To account
for these, we compare c(Jt → ∞) against a running-
average value in the vicinity of Jt. Explicitly so, we
compare the long-time estimation of c(Jt → ∞) against
the average within the set [Jt− 0.5, Jt+ 0.5] to approxi-
mate ts more accurately. The insets in Fig. 5 display the
scaling of the saturation time ts as a function of the sys-
tem size L. In both cases, the saturation time appears to
scale linearly with L. This behaviour is robust to changes
on the parameter ε, as long as ε ≈ 1. The displayed ts
results in Fig. 5 were obtained with ε = 0.99.

The observed linear scaling of the saturation time ts,
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reminiscent of ballistic transport, is qualitatively consis-
tent with the linear front propagation at the butterfly
velocity expected in chaotic systems [19, 52]. This obser-
vation and the results obtained for both models would
imply that, consequently, ωGOE ∝ 1/L for extensive op-
erators in chaotic many-body systems. The connection
of this energy scale to the Thouless energy ωTh, char-
acterising random matrix behaviour in the spectrum of
the Hamiltonian, depends on the details of the system.
For standard diffusive scaling, ωTh ∝ 1/L2, one observes
ωGOE > ωTh (in apparent contrast with Ref. [53], in
which strictly local operators were considered). The care-
ful numerical study of the scaling of ωTh with system size
required to clarify this issue is beyond the scope of this
paper and it is left for future studies.

VII. CONCLUSIONS AND OUTLOOK

We have performed a systematic analysis of statis-
tical correlations within the ETH and explored their
consequences for the dynamics of quantum information
scrambling. Remarkably, we find that correlations be-
tween off-diagonal matrix elements indicate the timescale
for the onset of random-matrix dynamics in the corre-
sponding OTOC, an experimentally observable quantity.
This operator- and temperature-dependent timescale is
not apparently connected to hydrodynamic behaviour
of linear-response functions, given that the dynamics of
stationary two-point correlation functions are indepen-
dent of statistical matrix-element correlations (see Ap-
pendix A2). Moreover we have provided an estimation
of the scaling of the timescale ts as a function of the
system size L, which appears to behave linearly with
L, consistently with the expected ballistic propagation
of combustion-like waves associated to the butterfly ef-
fect [19, 52]. This timescale appears to be connected to
the frequency scale ωGOE ∼ t−1

s where random-matrix
behaviour is observed from the analysis of banded sub-
matrices. The estimation of the scaling as a function of
the system size was possible by employing the concept of
dynamical typicality in conjunction with computation-
ally optimised Krylov subspace techniques for time evo-
lution. Our results lie at the limit of system size that can
be achieved with this numerical approach using parallel
algorithms in supercomputers, due to the long timescales
required to study saturation of the OTOCs. Finite sys-
tem size thus remains a limitation to our estimations,
despite the fact that the exposed technique allows us to
access much larger systems than possible with exact di-
agonalisation techniques.
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APPENDIX

In this appendix, we provide additional information
on the numerical computations and on the analytical es-
timates discussed in the main text.

In Sec. A1, we study the diagonal matrix elements of
local and collective observables in the energy eigenbasis,
showing that the two models under analysis obey ETH.
In Sec. A2, we consider the real-time dynamics of two
point functions and we compare the exact calculation for
a thermal state with the result predicted by ETH. Finite-
size corrections are evaluated in Sec. A3. In Sec. A4 we
study the localisation effects on the eigenvalues distribu-
tion of Ôωc below a given frequency threshold. We follow
with Sec. A5, in which we describe the expression of the
square-commutator with the assumption of uncorrelated
statistics and further details. Finally, Sec. A6 briefly de-
scribes the method of Krylov subspaces to evaluate uni-
tary time evolution.

Appendix A1: Diagonal matrix elements of
observables

A strong indication of eigenstate thermalisation is the
behaviour of diagonal matrix elements of observables in
the eigenbasis of the Hamiltonian [7, 32, 34]. In Fig. 6

we show the diagonal matrix elements of B̂HB [panel

(a)] and of B̂IS [panel (b)] for the non-integrable mod-
els studied in this work. We defined the energy density
εn ..= (En − Emin)/(Emax − Emin) and computed all the
matrix elements in the eigenbasis of the Hamiltonian by
full diagonalisation. It can be observed that, as the sys-
tem size L is increased, the support over which the matrix
elements exist shrink. This observation strongly suggests
that in the thermodynamic limit, the diagonal matrix el-
ements can be described by a smooth function O(Ē) cor-
responding to the microcanonical prediction (note that
the second term in Eq. (1) is exponentially suppressed
in Hilbert space dimension D). The black lines in Fig. 6
depict an approximation of the smooth function O(Ē),
obtained from a coarse-grained average of the data for
the largest system size.

The insets in Fig. 6 highlight the trend of the absolute
value of the eigenstate-to-eigenstate fluctuations, defined
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FIG. 6. Diagonal matrix elements of B̂HB (a) and B̂IS (b) as
a function of the energy density εn ..= (En − Emin)/(Emax −
Emin) and of the system size L. The black lines depict an
approximation of the smooth function O(Ē) obtained from
a coarse-grained average of the data for the largest system
size. The insets show the eigenstate-to-eigenstate fluctuations
for different systems sizes, obtained from the eigenvalues in
the central region. The dashed lines on the insets show the
(LD)−1/2 scaling.

as

|δOnn| ..= |Onn −On+1n+1|, (A1.1)

computed for 20% of the total eigenvalues in the cen-
tre of the spectrum. The dashed line on the insets in
Fig. 6 corresponds to the scaling LD−1/2, expected in
the high-temperature regime of non-integrable models.
We remark that the eigenstate-to-eigenstate fluctuations
for sums of local observables scales like LD−1/2, as op-
posed to the more common D−1/2 scaling observed for
local observables. This behaviour can be attributed to
the 1/

√
L scaling of the Schmidt norm for this class of

observables [32, 34, 54, 55].
The results shown in Fig. 6 indicate that the ETH is

obeyed by the models and observables considered in the
main text for the parameters selected, away from non-
generic features observed at the edges of the spectrum.

Appendix A2: Dynamics of two-point correlation
functions

The ETH in Eq. (1) provides the form of the off-
diagonal matrix elements required to predict the dynam-
ics of two-point correlation functions at thermal equilib-

rium. We are interested in correlation functions of the
form

F2(t) ..= 〈Ô(t)Ô(0)〉c ..= 〈Ô(t)Ô(0)〉 − 〈Ô(t)〉〈Ô(0)〉,
(A2.1)

where the expectation values are evaluated in one of the
ensembles of statistical mechanics. One could, for in-
stance, consider the canonical ensemble. For an opera-
tor Â in such case, we have that 〈Â〉 = Tr[ρ̂Â], where

ρ̂ = e−βĤ/Z is the density matrix operator for a system

with Hamiltonian Ĥ, partition function Z = Tr[e−βĤ ]
and inverse temperature β = 1/T . In Eq. (A2.1), the

operators are written in the Heisenberg picture Ô(t) =

eiĤtÔ(0)e−iĤt.
On the other hand, eigenstate thermalisation suggests

that such expectation values could be evaluated for a
single eigenstate |En〉. The evaluation is simpler if one
instead considers the symmetric and anti-symmetric re-
sponse functions which yield, respectively, the real and
imaginary parts of F2(t). Written in such fashion we have

S+

Ô
(En, t) ..= 〈En|{Ô(t), Ô(0)}|En〉c = 2 Re[F2(En, t)]

S−
Ô

(En, t) ..= 〈En| [Ô(t), Ô(0) ]|En〉c = 2i Im[F2(En, t)],

(A2.2)

where {·, ·} and [·, ·] stand for the anti-commutator and
commutator, respectively. In this notation, F2(t) is the
one considered in the canonical ensemble, while F2(En, t)
is the one evaluated for a single energy eigenstate.

Following the standard derivation [7, 14, 56] from the
ETH in Eq. (1), one obtains the correlation functions in
frequency domain in the thermodynamic limit

S+

Ô
(En, ω) ≈ 4π cosh(βω/2)|fÔ(En, ω)|2,

S−
Ô

(En, ω) ≈ 4π sinh(βω/2)|fÔ(En, ω)|2. (A2.3)

Given that these relations are symmetric and anti-
symmetric, respectively, their Fourier transforms to yield
the correlation functions in the time domain are simpli-
fied to

Re[F2(En, t)] =

∫ ∞
0

dω cos(ωt)S+

Ô
(En, ω),

Im[F2(En, t)] =

∫ ∞
0

dω sin(ωt)S−
Ô

(En, ω). (A2.4)

At this point is important to make two observations
with respect to Eq. (A2.4). First, in the thermodynamic
limit we expect F2(En, t) = F2(t). This immediately
follows from the association of the energy En to a cor-
responding canonical inverse temperature β by assigning

En = 〈E〉 = Tr[Ĥe−βĤ ]/Z. Second, in Eq. (A2.3), there
is no dependency of the random variable Rnm. This fol-
lows from the fact that this term enters the dynamical
correlations in the form of the average of |Rnm|2, which
is unity by assumption [7, 14]. Indeed, it suffices that
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H
B

:
2I

m
[F

2
(J

t)
]
×

10
2

Ĥ
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FIG. 7. Dynamics of the two-point correlation function evaluated in the canonical ensemble at temperature T and in the ETH
with a compatible energy density for sums of local operators. In [(a)-(d)] we show the results for ĤHB and in [(e)-(h)] the

corresponding results for ĤIS at different temperatures for different system sizes as highlighted in the figure.

this random variable has a well-defined variance for the
|Rnm|2 term to vanish from the final expressions.

The equivalency between the dynamics of two-point
correlation functions in statistical mechanics and the cor-
responding dynamics of the same object predicted by
the ETH can be observed in generic systems. Follow-
ing Eqs. (A2.3) and (A2.4), the dynamics of the correla-
tion functions depend solely on the function of fÔ(En, ω);
which is, in general, system- and observable-dependent.
A commonly-used procedure [29, 34, 37, 41, 42, 54] to iso-
late this function in generic systems involves a frequency-
resolved analysis of the matrix elements of a given ob-
servable in the energy eigenbasis. One focuses on a small
window of energies and extracts the off-diagonal matrix
elements of an operator Ô in the eigenbasis of the Hamil-
tonian. For finite-size systems, the fluctuations present
are accounted for by considering not a single eigenstate,
but a collection of eigenstates around a given energy En.
A coarse-grained average then leads to a smooth func-
tion e−S(En)/2fÔ(En, ω). The entropy term, e−S(En)/2,
is not a function of ω and in principle needs to be eval-
uated. Instead of evaluating this term directly, we first
compute the symmetric correlation function S+

Ô
(En, ω)

and normalise it by the sum rule∫ ∞
−∞

dωS+

Ô
(En, ω) = 4π

[
〈En|Ô2|En〉 − 〈En|Ô|En〉

2
]
,

(A2.5)

while the anti-symmetric correlation function S−
Ô

(En, ω)

follows from Eq. (A2.3), which is the manifestation of the
fluctuation-dissipation theorem.

This procedure can be applied to the models and ob-
servables described in the main text. In Fig. 7, we
show the dynamics of both the real and imaginary parts
of the two-time correlation function in Eq. (A2.1), for
sums of local observables [Eq. (4)]. The dynamics of
the two-point correlation function in the canonical en-
semble were evaluated by direct diagonalisation of the

propagator e−iĤt acting on the density operator ρ̂, while
the dynamics from the ETH were evaluated using the
procedure described above. For the latter, we com-
puted e−S(En)/2fÔ(En, ω) by considering a target en-

ergy Ē = Tr[ρ̂Ĥ] consistent with the canonical temper-
ature T and averaging all the off-diagonal matrix ele-
ments within an energy window of width 0.075ε, where
ε ..= Emax − Emin [see Refs. [29, 34, 41, 42] for further
details on the extraction of fÔ(En, ω)].

For finite-size systems, the connected symmetric cor-
relation function contains a time-independent term that
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is not present if one evaluates the same object on a sin-
gle eigenstate. This term is expected to vanish in the
thermodynamic limit, see Sec. A3 for an extended dis-
cussion. The difference stems from the fluctuations in
the canonical ensemble, a term which is already small
for B̂HB in Fig. 7[(a),(c)], but not as much for B̂IS in
Fig. 7[(e),(g)]. The difference, however, as highlighted
in Fig. 7[(e),(g)], becomes smaller as the system size is
increased. The dynamics observed strongly suggest that
such seemingly-constant discrepancy can be attributed
to finite-size corrections.

Though the fine details and the actual form of the de-
cay of F2(t) depend on the system being considered, it
can be observed from Fig. 7 that F2(En, t) ≈ F2(t), an
approximation that becomes more accurate as the ther-
modynamic limit is approached. It is important to re-
mark that such prediction is accurate not only at high
temperature (bottom panels in Fig. 7), but at finite tem-
perature (top panels in Fig. 7) as well.

Appendix A3: Finite-size term in symmetric
correlation functions

The symmetric correlation function evaluated on a
thermal state F2(t) [Eq. (A2.1)] differs from the one com-
puted on a single eigenstate F2(En, t) by a sub-leading
term in the thermodynamic limit [7].

The expectation value computed in the canonical en-
semble is defined as 〈·〉 ..= Tr[ρ̂ ·] =

∑
n pn 〈En| · |En〉,

where in the case of a canonical density matrix one has
pn = e−βEn/Z. In general, other ensembles can be con-
sidered, provided that the distribution of the pn is suffi-
ciently peaked around some average energy E = 〈Ĥ〉 with

small variance δE2 = 〈Ĥ2〉 − 〈Ĥ〉2, i.e. δE2/E2 ∼ 1/L.

Defining Onm ..= 〈En| Ô |Em〉, the two-point function
reads

F2(t) =
∑
nm

pne
−i(Em−En)tOnmOmn −

(∑
n

pnOnn

)2

=
∑
n 6=m

pne
−i(Em−En)tOnmOmn + 〈Ô2〉 − 〈Ô〉2

=
∑
n

pn 〈En| Ô(t)Ô |En〉c + δÔ2 , (A3.1)

where in the second line we have identified 〈Ô2〉 =∑
n pn[Onn]2, 〈Ô〉 =

∑
n pnOnn and defined δÔ2 ..=

〈Ô2〉 − 〈Ô〉2. The first term in Eq. (A3.1) coincides with
the two-point function evaluated on a single eigenstate
F2(En, t), while the second one is a time-independent
quantity that can be shown to be sub-leading, i.e.,

F2(t) ∼ F2(E, t) +O(1/L) for L� 1 .

Using the ETH in Eq. (1) and the fact that pn is peaked
around energy E, one can write down a Taylor expansion

around E and the diagonal elements Onn = O(En) as

O(En) = O(E)+(En−E)O′(E)+
(En − E)2

2
O′′(E)+. . . ,

(A3.2)
where O′(E) and O′′(E) are respectively the first and
second derivatives with respect to energy of the micro-
canonical smooth function O(E) in Eq. (1). It then fol-
lows that, to leading order,

δO2 =

(
∂O

∂E

)2

δE2. (A3.3)

We require δE2/E2 ∼ 1/L, then δO2 is sub-leading in the
thermodynamic limit. For finite-size systems, however,
this term corresponds to the time-independent finite-size
correction discussed in the previous section, observed in
Fig. 7.

Appendix A4: Inferring GOE- and
Poisson-distributed frequency regimes from the

mean ratio of level spacings

Throughout this work, we considered banded sub-
matrices to determine the degree of correlations within
the statistical matrix Rnm. From Eq. (6), ωc determines
the frequency value associated to a given banded sub-
matrix. We considered ωc only above a given threshold,
due to the fact that below this threshold the eigenval-
ues of Ôωc become uncorrelated because of localisation
effects [28]. In this frequency regime, the adjacent eigen-

value level spacings of Ôωc are Poisson-distributed.
The relevant frequency regime in our work is the one

dictated by the largest ωc where the eigenvalues λωcα are
still uncorrelated. This implies that there are resonant
timescales t ∼ 2π/ωc for which the dynamics are dictated
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FIG. 8. Mean ratio of adjacent level spacings 〈rωc〉 as a func-

tion of the cutoff frequency ωc for the (a) ĤHB and (b) ĤIS

models, at fixed system size for two different values of tem-
perature T = 5J and T = 1000J .
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by uncorrelated energy modes. In Ref. [28], it was shown

that the eigenvalues of Ôωc are uncorrelated even in the
regime where the distribution of level spacings follows
the GOE. For these reasons, it is important to restrict
ourselves to values of ωc for which the eigenvalues of Ôωc

are uncorrelated and the level spacings follow the GOE.
These regimes can be probed by studying the mean ratio
of adjacent level spacings, defined as

〈rωc〉 ..=
1

M

∑
α

min{∆α,∆α+1}
max{∆α,∆α+1}

, (A4.1)

where ∆α = |λωcα+1−λωcα |. We performed the average over
all adjacent level spacings, i.e., M ≈ D′. We have that
〈rωc〉 ≈ 0.53 for a distribution following the GOE and
〈rωc〉 ≈ 0.39 for Poisson-distributed random variables.

In Fig. 8(a) we show the mean ratio of adjacent level

spacings for the ĤHB model as a function of ωc. It can be
observed that the value of ωc for which the onset of the
GOE is observed is rather similar between the values of
temperature T = 5J and T = 1000J chosen. We do not
expect this behaviour to be generic. On the contrary,
the onset of the GOE is typically observed at different
values of ωc for different system sizes L and observables.
To avoid the aforementioned localisation effects, we re-
stricted our analyses to the values of ωc above the ωmin

c

denoted in Fig. 8. For all ωc > ωmin
c , the associated sub-

matrices exhibit a value of 〈rωc〉 ≈ 0.53. This, however,
does not imply that the matrix elements display correla-
tions or lack thereof. As we have shown in the main text,
there exist a regime for which correlations build up as ωc
is increased above ωmin

c . Similar results are observed for

the ĤIS model in Fig. 8(b), with the only difference no-
ticed at the specific ωmin

c values for which the onset of
the GOE mean ratio of level spacings is obtained.

Appendix A5: Out-of-time-order correlators

In this section, we evaluate the dynamics of four-point
functions to investigate whether correlations translate
into an observable effect. We will start by computing the
expectation values of time-dependent correlation func-
tions on a single eigenstate, while neglecting any effect of
correlations. We will then proceed to evaluate the same
objects in the canonical ensemble. The difference in the
dynamics will allow us to probe the effect of the correla-
tions exposed in the main text.

1. Four-point functions within Gaussian statistics

In Ref. [26], the ETH result for the thermally-regulated
OTOC was computed. It was done by interlacing frac-
tional powers of the density matrix with each operator.
The case studied in Ref. [26] had a feature for which the

diagonal expectation values vanish, i.e., Onn = O(En) =
0.

In this work, we considered multi-time correlation
functions evaluated on standard thermal states and we
generalised the result for cases in which Onn is non-zero.
Consider the following four point connected correlator

Fc(t1, t2, t3, t4) ..= 〈Ô(t1) Ô(t2) Ô(t3) Ô(t4)〉
− 〈Ô(t1) Ô(t2)〉 〈Ô(t3) Ô(t4)〉

(A5.1)

where all operators are written in the Heisenberg repre-

sentation, Ô(t) = eiĤtÔe−iĤt. All time-ordered and out-
of-time-ordered correlation functions can be constructed
from Fc with a suitable choice of arguments. In particu-
lar, we focus on the standard OTOC

FOTO(t) ..= 〈Ô(t)ÔÔ(t)Ô〉 − 〈Ô(t)Ô〉2 = Fc(t, 0, t, 0),
(A5.2)

and the square commutator

c(t) ..= −
(
〈[Ô(t), Ô]2〉 − 〈[Ô(t), Ô]〉2

)
(A5.3)

= Fc(t, 0, 0, t) + Fc(0, t, t, 0)− 2ReFc(t, 0, t, 0) .

We now restrict our analysis with the assumption that
the matrix elements in the ETH from Eq. (1) are uncor-
related Gaussian variables, i.e.

Rαβ Rγδ = δαδ δβγ (A5.4a)

Rαβ Rβγ Rγδ Rδα = Rαβ Rβγ Rγδ Rδα

+Rαβ Rγδ Rβγ Rδα

+Rαβ Rδα Rβγ Rγδ .

(A5.4b)

This allows us to re-write the four point function
Eq. (A5.1) evaluated over ρ̂ =

∑
n pn |En〉 〈En| as

Fc(t1, t2, t3, t4) =
∑
n

pn Fc(En, t1, t2, t3, t4) , (A5.5)

where Fc(En, t1, t2, t3, t4) is the micro-canonical expec-
tation value, i.e., Eq. (A5.1) computed over a single
eigenstate |En〉. One can observe that the same re-
sult holds from a purely out-of-equilibrium calculation,
where the expectation value in Eq. (A5.1) is taken over
an initial pure state |Ψ〉. In this case, the distribution
of the pn is given by the overlaps with the initial state
pn = |〈En|Ψ〉|2. Similar to the procedure undertaken
in Sec. A3, one can show that if pn is compatible with
statistical mechanics — with average energy E and small
variance δE2/E2 ∼ 1/L — the leading term of Eq. (A5.1)
is given by the single-eigenstate expectation value. One
can, however, expect finite size effects, as shown in Fig. 7.
In the following, we consider only the microcanonical sin-
gle eigenstate four-point functions and omit En in the
notations.

Using Eq. (A5.4), one can re-write the four-point func-
tion in Eq. (A5.1) directly in terms of the two-point func-
tions from Eq. (A2.1) as
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Fc(t1, t2, t3, t4) = f1(t1, t2, t3, t4) + c1(t2 − t3) + c2(t1 − t4, t2 − t3) , (A5.6)

with

c1(t2 − t3) = O′2F ′′2 (t2 − t3), (A5.7)

c2(t1 − t4, t3 − t2) = F2(t1 − t4) F2(t2 − t3) + F ′2(t1 − t4)
∂F2(t2 − t3)

∂E
, (A5.8)

and

f1(t1, t2, t3, t4) = O2 [F2(t1 − t3) + F2(t2 − t4) + F2(t1 − t4) + F2(t2 − t3)] (A5.9)

+OO′ [F ′2(t1 − t3) + F ′2(t2 − t4) + 2F ′2(t2 − t3)] +
1

2
OO′′ [F ′′2 (t1 − t3) + F ′′2 (t2 − t4) + 2F ′′2 (t2 − t3)] ,

where F2(t) is written as defined in Eq. (A2.1) O , O ′ and
O ′′ are obtained from the diagonal expectation value of
the operator Ô and its first and second derivative with
respect to energy evaluated at En.

The functions F ′2(t) and F ′′2 (t) can be written as

2ReF ′2(t) ≡ −
∑
β 6=n

ωnβ(eiωnβt + e−iωnβt) |fnβ |2 e−Snβ

= − 1

2π

∫
dω ω SÔ(En, ω)eiωt , (A5.10a)

2ReF ′′2 (t) ≡
∑
β 6=n

ω2
nβ(eiωnβt + e−iωnβt) |fnβ |2 e−Snβ

=
1

2π

∫
dω ω2 SÔ(En, ω)eiωt , (A5.10b)

where in the second line of Eq. (A5.10) we have identi-
fied sums with integrals and expanded the entropy terms
around energy En. The resulting SÔ(En, ω) is the sym-
metric response function which can be computed within
ETH as stated in Eq. (A2.3). Note that f1 and c1 vanish
when O(En) = 0, and do not contain information about
the distribution of the Rnβ in the ETH.

To derive Eq. (A5.6), we first write down Fc in
the energy eigenbasis and, after invoking the ETH in
Eq. (1) and the Gaussian uncorrelated approximation in
Eq. (A5.4), we express Oβ = O(Eβ) as a Taylor expan-
sion around the energy En at second order in frequen-
cies ωnβ . Then, upon substituting discrete sums with
integrals, we expand the exponential of entropy terms as
done before in Eqs. (A5.10), to obtain the final result in
Eq. (A5.6).

Therefore, the OTOC and square-commutator can
be directly written as combinations of f1, c1 and c2
[Eqs. (A5.7), (A5.8) and (A5.9)] as

FOTO(t) = f1(t, 0, t, 0) + c1(t) + c2(t,−t) (A5.11)

c(t) = 2 [c1(0) + c2(0, 0)− c1(t)− c2(t,−t)] .
(A5.12)

Within this approximation, the leading terms in the sys-
tem size of the square-commutator and of the OTOC
read

FOTO = |F2(t)|2 + 2O(En)2 Re[F2(t) + F2(0)] ,
(A5.13)

c(t) = 2|F2(0)|2 − 2|F2(t)|2 . (A5.14)

In fact, all the terms containing derivatives with respect
to energy are proportional to 1/L and are therefore sub-
leading in L with respect to |F2(t)|2, both for local or
sums of local operators. Note, however, that these terms
could be relevant in large-L chaotic models at interme-
diate times, where the square-commutator is expected
to grow exponentially as ∼ e2λt/L2, with λ the classical
Lyapunov exponent [57].

The square commutator as defined in Eq. (A5.3) can be
directly evaluated from the ETH assuming uncorrelated
Rnm from Eq. (1) using the procedure described above.
The resulting expression depends only on the dynamics
of two-point functions which can be evaluated using the
procedure described in Sec. A2.

Appendix A6: Method of Krylov subspaces for time
evolution

The dynamics of c(t) in Eq. (14) can be approximated
accurately in the Schrödinger picture by the method of
Krylov subspaces. The idea is to evaluate the action
of the propagator onto a pure state to obtain a time-

evolved state, i.e., |ψ(t)〉 = e−iĤt |ψ(0)〉. We address this
by employing a computationally-optimised approach to
the method of Krylov subspaces. With this method, we

evaluate |ψ(t)〉 by computing the action of e−iĤt onto
|ψ(0)〉. This is done by a polynomial approximation to
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|ψ(t)〉 from within the Krylov subspace

Km = span
{
|ψ(0)〉 , Ĥ |ψ(0)〉 , Ĥ2 |ψ(0)〉 , . . . ,

Ĥm−1 |ψ(0)〉
}
. (A6.1)

The optimal approximation is obtained by an Arnoldi
decomposition procedure of the upper Hessenberg matrix
Am, defined as Am ..= V TmHVm, where Vm corresponds to
the orthonormal basis resulting from the decomposition.
Am can be seen as the projection of Ĥ onto Km with
respect to the basis Vm. In the previous description m is
the dimension of the Krylov subspace. In principle, the
Arnoldi decomposition procedure can be replaced by a
three-term Lanczos recursion for the specific case of Her-
mitian matrices. The latter amounts to a more efficient
algorithm, yet to one that may suffer from numerical in-
stabilities for ill-conditioned matrices.

The desired solution is then approximated by

|ψ(t)〉 ≈ Vm exp(−itAm) |e1〉 , (A6.2)

where |e1〉 is the first unit vector of the Krylov subspace.
The approximation becomes an exact solution when m ≥

D, however, the method has been proven to be accurate
even if m� D for short enough time-steps [58, 59]. For
the particular case when m � D, the much smaller ma-
trix exponential exp(−itAm) can be evaluated using stan-
dard numerical techniques, such as a Padè approxima-
tion with a scaling-and-squaring algorithm. The error in
the method behaves like O(em−t||A||2(t||A||2/m)m) when
m ≤ 2t||A||2, which indicates that the technique can be
applied successfully if a time-stepping strategy is imple-
mented along with error estimations [60]. In practice, the
dimension of the Krylov subspace m is a free parameter
of the simulation, while the time-step is estimated such
that the above a priori error estimation is kept under
control.

We finalise this discussion by remarking that for
the specific case of c(t), evaluating terms of the form

〈ψ|[Ô(t), Ô]2|ψ〉 is more complicated, since it requires
running both forwards and backwards time evolution of
operators Ô acting on pure states |ψ〉, where the |ψ〉 are
typical states introduced in Sec. VI. Yet, this procedure
can be carried out efficiently dividing the entire time evo-
lution into several time-steps [49].
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