
 

 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

 

RISK-BASED EVALUATION AND MANAGEMENT OF CYBER-PHYSICAL-SOCIAL 

SYSTEMS DURING PANDEMIC CRISIS 

 

 

 

A DISSERTATION 

 SUBMITTED TO THE GRADUATE FACULTY 

 in partial fulfillment of the requirements for the 

Degree of 

DOCTOR OF PHILOSOPHY 

 

 

  

 

 By 

LEILI SOLTANISEHAT 

Norman, Oklahoma 

2022  



 

 

RISK-BASED EVALUATION AND MANAGEMENT OF CYBER-PHYSICAL-SOCIAL 

SYSTEMS DURING PANDEMIC CRISIS 

 

 

A DISSERTATION APPROVED FOR THE 

SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING 

 

 

 

 

BY THE COMMITTEE CONSISTING OF 

 

  

 

 

Dr. Kash Barker, Chair 

 

Dr. Andrés D. González 

 

Dr. Yang Hong,  

 

Dr. Theodore Trafalis 

 

Dr. Rui Zhu 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by LEILI SOLTANISEHAT 2022 

 All Rights Reserved.



 

iv 
 

To: 

Baba Gholamreza, my first role model and the light to the future 

Maman Sakineh, my first angel of unconditional love 

Khahar joon Azar, my wingless angel of hearts 

Dadash Yaser, my pure love-full support 

Abji Mozhgan, my lovely twin 

for their continuous unconditional love, support, and sacrifices for me 

 

&  

Reza, my life’s love  

for his continuous mentorship, support, and love 

 

  



 

v 
 

Acknowledgments 

This dissertation is a result of the continuous support, mentoring, and encouragement from 

several people involved in my academic life.  

I express my gratitude to Professor Kash Barker for his continuous encouragement, support, 

and faith in me. He supported me during my challenging time two years ago, challenged me 

to go beyond my comfort zones, to believe in myself again, dare to step into the new research 

thrusts, and elevate my standards as a scholar. The fundamental principles embodied within 

the Risk-Based Systems Analytics Laboratory that is directed by Dr. Barker is to focus on 

scholarship and collaboration. As I reflect upon myself, I realize that I have significantly 

grown as a person both professionally and personally in the last years with Dr. Barker’s 

research team.  

Secondly, I want to thank my committee, Dr. Andres Gonzalez, Dr. Yang Hong, Dr. Theodore 

Trafalis, and Dr. Rui Zhu, for all of their feedback. A sincere gratitude to Dr. Gonzalez, for his 

continuous support and collaboration beyond the duties of committee members.  A special 

thanks to Dr. Shivakumar Raman and Dr. Randa Shehab, who understood me in the 

challenging moments of my academic life and gave me the courage and support to continue.   

I am very appreciative of my husband, Reza Alizadeh, who has been mentoring me during 

the last six years, taught me how to be a researcher with his patience, supported me during 

ups and downs, and pushed me out of my comfort zone.   

Finally, I am also very appreciative of my friends Nafiseh, Ganeshvar, Safa, Bucket, and Deniz 

for their amazing support and encouragement as lab-mate.  



 

vi 
 

TABLE OF CONTENTS 

Acknowledgments ................................................................................................................................................ v 

List of Tables ....................................................................................................................................................... viii 

List of Figures ........................................................................................................................................................ ix 

Abstract ................................................................................................................................................................... xii 

Chapter 1: INTRODUCTION AND MOTIVATION ....................................................................................... 1 

1.1. Overview ..................................................................................................................................................... 1 

1.2. Modeling the pandemic policy decisions ........................................................................................ 2 

1.3. Structure of the Dissertation ............................................................................................................... 4 

Chapter 2: MODELING SOCIAL, ECONOMIC, AND HEALTH PERSPECTIVES FOR OPTIMAL 

PANDEMIC POLICY DECISION-MAKING ...................................................................................................... 5 

2.1. Introduction ............................................................................................................................................... 5 

2.2. Problem Formulation .......................................................................................................................... 12 

2.2.1. Maximum Network Flow Problem .........................................................................................15 

2.2.2. Modified SIRD Model ...................................................................................................................17 

2.2.3. Proposed MOMILP Model ..........................................................................................................19 

2.3. Illustrative Example ............................................................................................................................. 26 

2.3.1. Data .....................................................................................................................................................26 

2.3.2. Solution Approach ........................................................................................................................31 

2.4. Results ....................................................................................................................................................... 33 



 

vii 
 

2.5. Model Efficiency .................................................................................................................................... 41 

2.6. Concluding Remarks ............................................................................................................................ 42 

Chapter 3: MULTI-REGIONAL, MULTI-INDUSTRY IMPACTS OF FAIRNESS ON THE 

PANDEMIC POLICIES ........................................................................................................................................ 45 

3.1. Introduction ............................................................................................................................................ 45 

3.2. Problem Formulation .......................................................................................................................... 49 

3.2.1. Multi-Regional Inoperability Input-Output Model ...........................................................50 

3.2.2. Modified SIRD Model ...................................................................................................................54 

3.2.3. Proposed mathematical model ................................................................................................54 

3.3. Illustrative Example ............................................................................................................................. 62 

3.3.1. Data .....................................................................................................................................................62 

3.3.2. Solution Approach ........................................................................................................................70 

3.4. Results ....................................................................................................................................................... 70 

3.5. Concluding remarks ............................................................................................................................. 82 

Chapter 4: Concluding Remarks ................................................................................................................... 85 

4.1. Summary and Conclusions ................................................................................................................ 85 

4.2. Future Directions .................................................................................................................................. 86 

References ............................................................................................................................................................ 87 

 

  



 

viii 
 

List of Tables 

Table 2. 1. The literature on the analysis of COVID-19 impact on the economy and societal 

health. ........................................................................................................................................................................ 8 

Table 2. 2. Model indices and sets. ...............................................................................................................19 

Table 2. 3. Model parameters. ........................................................................................................................20 

Table 2. 4. Model decision variable. .............................................................................................................20 

Table 2. 5. The definition of the industries considered in this study. .............................................28 

Table 2. 6. The definition of the scenarios.................................................................................................33 

Table 2. 7. The normalized payoff matrix and range of three objective functions ....................34 

Table 3. 1. Model indices and sets 55 

Table 3. 2. Model parameters. ........................................................................................................................55 

Table 3. 3. Model decision variable. .............................................................................................................56 

Table 3. 4. The definition and information of the industries considered in this study. ...........63 

Table 3. 5. The normalized payoff matrix and range of three objective functions ....................71 

 

  



 

ix 
 

List of Figures 

Figure 2.1. COVID-19 impacts on the economy and societal health in the US: (a) cumulative 

active cases per 1000 people, (b) average inflation rate, (c) average unemployment rate, and 

(d) average percentage change in consumption (University of Maryland, 2020). ...................... 6 

Figure 2. 2. The dynamics of the relationship between pandemic policy and the economic and 

epidemiological impacts ...................................................................................................................................14 

Figure 2. 3. The conceptual schema for the relationship between susceptible S(t), infectious 

P(t), recovered R(t), and deceased D(t) cases in the modified dynamic SIRD model. .............19 

Figure 2. 4. The input variables at the state and industry levels. (a) The COVID-19 infection 

and death rate at the state level. (b) The size of each industry in each state, is based on the 

number of employees. .......................................................................................................................................29 

Figure 2. 5. The trade value of commodities of 19 industries from and to the 11 states ........30 

Figure 2. 6. The results of the proposed MOMILP for Scenario 4 consider (a) full grid Pareto 

optimal solutions, (b) selected 24 Pareto optimal solutions with the value of F1 equal to 0.4, 

0.6, 0.8, 1.0 .............................................................................................................................................................35 

Figure 2. 7. The results of the proposed model for (a) average percentage of patients in 

scenarios 1-4, (b) average percentage of local business impact in scenarios 1-4,  (c) average 

percentage of trade impact in scenarios 1-4 ............................................................................................38 

Figure 2. 8. Closure and reopening policies at the state and industry level over the time 

horizon of 𝑻 = 𝟏𝟎 in scenarios 1-4. .............................................................................................................40 



 

x 
 

Figure 2. 9. The number of variables and the computational time for scenarios 1-3. .............41 

Figure 3. 1. (a) The output (Gross Domestic Production) of various industries in each state 

($ billions) in 2019 (Bureau of Economic Analysis (BEA), 2018), (b) Technical coefficient 

data (Bureau of Economic Analysis (BEA), 2018) 64 

Figure 3. 2. The annual flow of goods using multi-modal transportation across different 

states ($ billions) .................................................................................................................................................65 

Figure 3. 3. The COVID Community Vulnerability Index (CCVI) across states in the US (Surgo 

Ventures, 2021b).................................................................................................................................................66 

Figure 3. 4. (a) Employment change by industry (1000), seasonality adjusted, Feb 2020- Feb 

2021. (b) The total number of employees of each industry in each state. (c) Share of the 

workforce as of February 2020 and share of job losses between February 2020-September 

2020. (d) demographic distribution of employees in each state. .....................................................68 

Figure 3. 5. The normalized value of 𝝃𝒊 and  𝝀𝒊 for each state ..........................................................69 

Figure 3. 6. The Pareto-optimal solutions for the proposed MOMILP ...........................................71 

Figure 3. 7. The results of the proposed model for (a) Normalized average percentage of 

patients, (b) Normalized average social  impact, and (c) Normalized average inoperability

 ....................................................................................................................................................................................73 

Figure 3. 8. State and industry level policy for the selected Pareto optimum solution. (a) the 

percentage of time that each industry in each state is open, (b) the percentage of open 



 

xi 
 

industries over the planning time horizon, and (c) the state status over the planning time 

horizon ....................................................................................................................................................................74 

Figure 3. 9. State and industry level policy for the selected Pareto optimum solution. (a) the 

normalized average percentage of patients in each state over the planning time horizon, (b) 

the normalized average of the social vulnerability index in each state over the planning time 

horizon, and (c) the normalized average inoperability of each industry over the planning 

time horizon ..........................................................................................................................................................76 

Figure 3. 10. The status of industries in each state over the planning horizon from the 

selected Pareto optimum solution. ..............................................................................................................80 

Figure 3. 11. The normalized flow of commodities from California and Pennsylvania to 

different states .....................................................................................................................................................81 

Figure 3. 12. The normalized flow of commodities from different states to California and 

Pennsylvania .........................................................................................................................................................82 

  



 

xii 
 

Abstract 

This research focuses on risk-based evaluation and management of cyber-physical-social 

systems during a pandemic crisis. The ongoing novel coronavirus (COVID-19) epidemic has 

caused serious challenges for the world’s countries. The health and economic crisis caused 

by the COVID-19 pandemic highlights the necessity for a deeper understanding and 

investigation of the best mitigation policy. While different control strategies in the early 

stages, such as lockdowns and school and business closures, have helped decrease the 

number of infections, these strategies have had an adverse economic impact on businesses 

and some controversial impacts on social justice. Therefore, optimal timing and scale of 

closure and reopening strategies are required to prevent both different waves of the 

pandemic and the negative socio-economic impact of control strategies. To maximize the 

effectiveness of the controlling policies during a major crisis like a pandemic, we propose 

two mathematical frameworks which optimize the contorting policy while considering three 

sets of important factors, including the epidemiologic, economic, and social impact of the 

pandemic. Each formulation quantifies the epidemiologic impact using a modified SIRD 

(susceptible-infected-recovered-deceased) model which captures the number of infected, 

recovered, immune, and deceased populations. The two formulations propose different 

approaches for measuring the social and economic impacts of the pandemic. 

In the first formulation, the economic impact is a twofold measure, first the unmet 

demand because of supply perturbation (due to industry closure), and the second is the local 

business shrinkage because of demand perturbation (due to the state closure). The modified 

SIRD model is combined with a multi-commodity maximum network flow problem (MNFP) 

in which the unmet demand is measured in a network of states and industries. The proposed 
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formulation is implemented on a dataset that includes 11 states, the District of Columbia 

(including the states in New England and the mid-Atlantic), and 19 industries in the US. 

In the second formulation, the economic impact is measured using the supply side multi-

regional inoperability input-output model, accounting for the inoperability of each industry 

to satisfy the demand of final consumers and other industries, due to its closure. Also, the 

second formulation measures the social impact of the pandemic policy, by incorporating the 

vulnerability of social communities to get infected due to state opening or to lose their job 

due to the closure of the state.  We test the efficacy of proposed formulations on the real data 

set of COVID-19 applicable to 50 states, the District of Columbia, and 19 industries. 

Both formulations are multi-objective mixed integer programming with three objectives 

which are solved using the augmented ε-constraint approach. The final pandemic policy is 

selected from the set of Pareto-optimal solutions based on the least cubic distance of the 

solution from the optimal value of each objective. The Pareto-optimal solutions suggest that 

for any control decision (state and industry closure or reopening), the economic impact and 

the epidemiologic impact change in the opposite direction, and it is more effective to close 

most states while keeping the majority of industries open. For each Pareto optimal solution, 

the unmet demand and the propagation of inoperability to the industries and states can be 

tracked down. This will give a holistic view of the impact of the pandemic policy on the health, 

economy, and social justice aspects of the country.
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Chapter 1: INTRODUCTION AND MOTIVATION 

1.1. Overview 

As of June 2022, more than 543 million cases of COVID-19 disease and 6.33 million deaths 

have been confirmed and reported in the world, with 86.9 million infected cases and 1.01 

million deceased cases in the US. The pandemic has caused both a public health crisis and an 

economic crisis in the world. It threatened lives, disrupted the healthcare system by pushing 

hospitals and health centers to their capacity, and disrupted the economy by creating 

demand shock, supply shock, and financial shock (Bauer et al., 2020).  

First, the pandemic crisis has had a different impact on various socio-demographic 

communities. The inequality in access to healthcare, occupations, education, and housing 

among others, put certain communities such as Black, Hispanic, and Native Americans in a 

more vulnerable situation. For example, Black and Native American use communities’ public 

transit, which increases the infection rate. Also, Black and Hispanic populations live in dense 

urban area which has a higher rate of infection (Cowger et al., 2020).    

Second, the un-organized social distancing and the quarantine policies caused a 

significant demand shock in some industries. While the lack of employees and business 

closure reduced the economy’s capacity (Gupta et al., 2020).  The disrupted supply and 

demand equilibrium decreased the GDP of different countries and slowed down the economy 

(Routley, 2020).  COVID-19 pandemic and its associated shutdowns, also created an 

employment crisis, especially for the minor communities such as women, non-white workers, 

lower-wage workers, and less educated people (Stevenson, 2020). (Bauer et al., 2020) 
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summarized some of the early effects of COVID on the economy of the USA which include a 

20% drop in small businesses revenue, a decrease in new business formation, increased 

Layoffs up to 10.1 million and increased shutdowns, increased absentees at work, increased 

job seekers up to 4.5 million, income shock in low-income families, increased food insecurity, 

among others. 

While different control strategies in the early stages, such as lockdowns and school and 

business closures, and business closure, have helped with decreasing the number of 

infections, the adverse high economic impact on the businesses shows the necessity of a 

more comprehensive decision-making mechanism. More specifically, the optimal timing and 

scale of closure and reopening strategies are required to prevent both the pandemic's 

different waves and the negative social, economic and epidemiologic impact of control 

strategies. 

1.2. Modeling the pandemic policy decisions 

To model the pandemic policy, we focus on the two main decisions including the state 

closure and reopening and the industry closure and reopening.  The closure of states and 

industries would lead to adverse economic consequences while decreasing the adverse 

epidemiological impacts and affecting social fairness. The economic impact is quantified as 

the unmet demand in each industry due to supply shock, the inoperability of the various 

industry due to the demand and supply shock, and the economic impact on local businesses 

due to lack of demand. The met/unmet demand of each state from the commodity of each 

industry at each time represents the inability of industries to satisfy the inter-industry and 

consumer demand at the state level, caused by policy-driven closure or by workforce 
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productivity losses due to the pandemic. The inoperability of each industry represents how 

the industry is dependent on the output of other industries over the nation and how any lack 

of supply or demand propagates to the economic system and affects various industries and 

states.  

According to (Fairlie & Fossen, 2021), the pandemic and related social distancing, 

quarantine, and state closure policies have hurt different industries by shrinking the number 

of active businesses due to the shift in the demand for those industries. The drop in the 

number of active businesses causes a negative economic impact mainly by a higher 

unemployment rate. On the other hand, the increase in the negative epidemiological impact 

would result in workforce losses, leading to the inability of industries to have optimal 

productivity and may result in business closures. Since there is no reliable data available for 

such impact, the proposed model does not consider the later effect of the pandemic in the 

analysis. 

The epidemiological impact in terms of the percentage of the infected population is 

measured based on the proposed modified dynamic SIRD model. The modified dynamic SIRD 

model represents the changes in four main population categories: infectious, susceptible, 

recovered/immune, and deceased individuals. It is assumed that the pandemic growth rate 

differs by state and industry, as the population density and the employment density vary by 

state and industry. More adverse epidemiological impacts result in more industry and state 

closures, while more substantial economic impacts would result in more significant industry 

and state reopening. Therefore, the economic and epidemiological impacts compete for any 

control strategy, and the proposed model tries to find a balanced strategy that 
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simultaneously minimizes economic and epidemiological impacts while considering the 

fairness in closure and reopening between industries and states. 

1.3. Structure of the Dissertation 

Following the introduction presented in Chapter 1, in Chapter 2 a multi-objective mixed-

integer linear programming formulation is presented to minimize the pandemic policy 

adverse impacts by integrating and optimizing three characteristics into the formulation: 

epidemiologic impact of the pandemic due to open states and growing infection rate, using 

the SIRD model, the economic impact on the trade due to industry closure (unmet demand) 

using the MNFP model and the economic impact on the local businesses (lack of demand and 

the local businesses shrinkage). The optimization formulation is applied to the data of 11 

states, the District of Columbia (including the states in New England and the mid-Atlantic,), 

and 19 industries. Chapter 3 provides a multi-objective mixed-integer linear programming 

formulation to incorporate important aspects: the epidemiologic impact using the SIRD 

model, the interdependencies between states and industries using the multi-regional 

Inoperability Input-output model, and the social fairness in the pandemic decision. The 

applicability of the proposed formulations are illustrated in the data of 50 states, the District 

of, and 19 industries in the USA. Finally, we discuss concluding remarks and prospective 

future work in Chapter 4. 
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Chapter 2: MODELING SOCIAL, ECONOMIC, AND HEALTH PERSPECTIVES 

FOR OPTIMAL PANDEMIC POLICY DECISION-MAKING 

2.1. Introduction 

Sudden Acute Respiratory Syndrome – Coronavirus-2 (SARS-Cov-2), which produces the 

resulting disease of COVID-19, was declared a pandemic by the World Health Organization 

(WHO) on January 9, 2020 (Organization, 2020). In the US, COVID-19 had its first confirmed 

case in Washington State on January 19, 2020 (Zimmermann et al., 2020) and as of June 20, 

2021, the US has seen over 33.5 million infected cases and around 603,000 deaths. Different 

states started the statewide stay-at-home in late March 2020 (Chowell & Mizumoto, 2020), 

and critical states have considered various control strategies such as quarantine, stay-at-

home, and lockdown. States, counties, and municipalities around the US have had to balance 

different adverse impacts of the pandemic: implement a few strategies to control the spread 

of the virus and potentially experience increased hospitalizations and deaths, or implement 

more stringent lockdown strategies and risk economic losses across several key industries. 

Lockdowns and business shutdowns in various states have led to business closures, 

increased unemployment (Blustein et al., 2020), workforce losses in critical businesses 

(Blustein & Guarino, 2020), and a lack of supply produced by specific industries (Chowell & 

Mizumoto, 2020).   

As shown in Figure 2.1, with the growth in the active COVID cases, the number of 

unemployment claims increased suddenly in late March and early April, when many states 

and businesses started to shut down. Also, consumer behavior has changed, and the inflation 
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rate has grown with two months delay in late July 2020. Figure 2.1 also shows that the 

shutdown of the states in late March, decreased the number of active COVID cases while 

reopening the states in late April triggered the second wave of the COVID-19 cases.  

  

(a) (b) 

  

(c) (d) 

Figure 2.1. COVID-19 impacts on the economy and societal health in the US: (a) 

cumulative active cases per 1000 people, (b) average inflation rate, (c) average 

unemployment rate, and (d) average percentage change in consumption (University 
of Maryland, 2020). 

 

Since the evolution of the COVID-19 pandemic, various research studies have analyzed 

the pandemic's social, economic, and epidemiologic impacts at international and national 

levels, as well as providing a wide range of policies to mitigate the crisis effect of this 

pandemic (Brodeur et al., 2020; Gros & Gros, 2021; Jackson et al., 2020; Nicola et al., 2020; 

Ocampo & Yamagishi, 2020; Principato et al., 2020; Soufi et al., 2022). Table 2. 1 summarizes 

selected non-clinical literature that offers a qualitative, quantitative, descriptive, and 

prescriptive analysis of the impact of COVID-19 on economic and societal health. According 
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to the literature, the epidemiological impact and the economic impact of the pandemic are 

tied to each other. Some research has focused on only epidemiological impact analyses 

through mathematical and simulation models such as different versions of the SIR 

(Susceptible-Infected-Recovered) model (Atkeson et al., 2020; Fernández-Villaverde & Jones, 

2020; Wang et al., 2020). Other groups of research only provided the descriptive analysis of 

the economic impact of the pandemic by focusing on the changes in important indices such 

as GDP (Ehlert, 2021; McKibbin & Fernando, 2020), workforce loss (Chetty et al., 2020), and 

trade interruptions (Baldwin & Tomiura, 2020; Barua, 2020), among others. 

According to the previous studies, lockdown and quarantine policies diminish the 

number of infected, hospitalized, and deceased cases. However, such policies also decrease 

the economic output of the closed industries, which leads to a disastrous cascading effect 

across other industries in the state where the strategy is enacted as well as in other states. 

On the other hand, opening states and industries may increase the risk of growth in infected, 

hospitalized, and deceased cases. Therefore, the main dilemma would be identifying an 

optimal control strategy and the time when it should be implemented such that the 

pandemic-related effects are minimized while maintaining some level of economic, health, 

and societal equity (Andersen et al., 2020; Ocampo & Yamagishi, 2020; Pronk & Kassler, 

2020). 
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Table 2. 1. The literature on the analysis of COVID-19 impact on the economy and 

societal health. 
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McKibbin and 
Fernando (2020)  

* * Multiple - * COVID cases, GDP  

Baldwin and 
Tomiura (2020) 

* - Multiple - * Trade  

Atkeson et al. 
(2020) 

- * USA SEIR - COVID cases 

Wang et al. (2020)  * China SEIR - COVID cases 
Ahmad et al. (2020) *  Multiple  * GDP 
Abiad et al. (2020) * * Multiple - * COVID cases, GDP, 

tourism, 
consumption, trade 

Demirguc-Kunt et 
al. (2020) 

* - Multiple - * COVID cases, 
electricity 
consumption, 
emissions 

Rahman et al. 
(2020) 

* * Malaysia Data-
driven 

clusterin
g 

- COVID cases 

(Cariappa et al., 
2021) 

* - India  * Agricultural 
commodity prices, 
food and waste 
management 

Chetty et al. (2020) * - USA - * Employment, 
revenue, 
consumption, 
stimulus payments, 
loans 

Suryahadi et al. 
(2020) 

* - Indonesi
a 

- * Poverty 

Inoue and Todo 
(2020) 

- * Japan Agent-
based 

modelin
g 

 COVID cases 

Hu (2020) * - UK - * Social well-being 
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Bonet‐Morón et al. 
(2020) 

* - Colombi
a 

Input-
output 
model 

- Trade  

Fernandes (2020) - - Multiple - * Various 
manufacturing and 
service indices  

Sumner et al. 
(2020) 

* - Global - * Poverty 

Maliszewska et al. 
(2020) 

* - Global Global 
general 
equilibri

um 

- GDP, trade 

(Naimoli, 2022) - * Italy HAR and 
ARIMA 
model 

- COVID cases 

Barua (2020) - -  Standard 
macroec
onomic 
AD-AS 
model 

- GDP, trade, 
exchange rates, 
economic growth 

Dev and Sengupta 
(2020) 

* - India - * COVID cases, GDP, 
trade, electricity 
demand 

Hevia and 
Neumeyer (2020) 

* - Multiple - * GDP, trade 

Fernández-
Villaverde and 
Jones (2020) 

- * Multiple SIRD * COVID cases 

Choi and Shim 
(2021) 

- * - Game-
theoretic 
epidemi

ologic 
model 

- COVID cases 

(Bertsimas et al., 
2021) 

- * Global Machine 
learning 
methods 

* COVID cases, 
deaths 

(Aspri et al., 2021) * *  SEAIRD - COVID death cases, 
GDP 
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(Chen et al., 2021) * * USA SIRD- 
input-
output 
model 

* COVID death cases, 
Economic loss 

(Lee et al., 2021)  * USA SIR  COVID cases 

List of the abbreviations used in Table 1 

GDP: Gross Domestic Product 

SEIR model: Susceptible-Exposed-Infectious-Recovered model 

SIRD model: Susceptible-Infected-Recovered-Deceased model 

SEAIRD model: Susceptible-Exposed-Asymptomatic-Infectious-Recovered-Deceased 

AD-AS model: Aggregate Demand-Aggregate Supply model 

HAR model: Heterogeneous Auto-Regressive model 

ARIMA model: Auto-Regressive Integrated Moving Average 

 

Various types of research analyzed the efficacy of control strategies, specifically the 

closure and reopening of businesses, schools, and borders (Dickens et al., 2020; Panovska-

Griffiths et al., 2020). (Zimmermann et al., 2020) quantified the economic and health risk 

tradeoffs of reopening industries in each state in the US. They considered income loss due to 

unemployment and profit loss as the economic index, which is affected by the global risk 

factor from the summation of four indices, including the workplace size, human interactions, 

inability to work from home, and industry size. The values of these four indices are impacted 

by the protocols designed to control the spread of the COVID pandemic. Control strategies 

are considered costly for firms and companies (Janiak et al., 2021; Panovska-Griffiths et al., 

2020), therefore the optimal timing and scale of closure and reopening strategies are 

required for preventing the next wave of pandemic needs as well as minimizing the economic 

impact of both the pandemic and the control strategies. 
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The majority of the available literature has prescribed control strategies based on the 

descriptive analysis of the available epidemiological and economic statistics (Balla-Elliott et 

al., 2020; Seyedin et al., 2020; Wang et al., 2020). Few pieces of research also measured the 

economic and epidemiological impact of the pandemic (Chen et al., 2021). This research has 

several contributions to the literature. First, to the best of the authors' knowledge, no 

published work has proposed a mathematical model to simulate the effect of control 

strategies and identify the optimal closure and reopening strategies at the state and industry 

levels.  The focus of decision-making is considered at the state and industry level because, 

according to the literature, the population density of states, the work environment, and the 

type of job can increase the chance of getting infected. The infection rate differs from one 

industry to another, and it depends on how people need to interact in that industry (Saidan 

et al., 2020; Zhou et al., 2020). Limiting close interactions in the workplace can contribute to 

the epidemiological impacts. Also, attending social activities, parties, and entertainment, for 

example, contributes to the infection rate growth (Saidan et al., 2020). State-level policies 

can decrease the number of such activities and the resulting chance of the spread of the virus. 

Second, this paper proposes a novel multi-objective mixed-integer linear programming 

(MOMILP) model that integrates a modified version of the susceptible-infected-recovered-

deceased (SIRD) epidemiological model, a modified maximum network flow problem, and a 

model to measure the economic impact on local businesses. The three models are connected 

through state-level and industry-level decisions. The optimization-based model provides 

prescriptive solutions which can control specified aspects of the pandemic impact. Also, the 

integration allows decision-makers to emulate and analyze the dynamic competition 

between the economic and epidemiological aspects of the controlling policy. Third, the 
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proposed model results in a temporal decision and allows decision-makers to identify the 

optimum pandemic policy for a desired planning time horizon. 

2.2. Problem Formulation 

The proposed MOMILP evaluates and minimizes the effects of the dynamic closure and 

reopening strategies during the pandemic crisis, providing the optimal control strategies to 

decision-makers for (i) each industry, (ii) each state, and (iii) each period. With such an 

optimization framework, we look to address different decision-making perspectives: state-

level decisions, national-level decisions, industry-level decisions, and how any of these 

trade-offs with each other.  

The proposed model considers three objectives including (i) the epidemiological impact 

of the pandemic in terms of the percentage of the infected population, (ii) the economic 

impact of the pandemic on the local businesses in terms of the percentage of decrease in the 

business's employees, and (iii) the economic impact of the pandemic on the amount of 

commodity traded between industries in terms of the unmet demand percentage in 

industries and states. The epidemiological and economic impacts on businesses and 

industries are the very first tangible impact of the pandemic (Alsharef et al., 2021; Fairlie & 

Fossen, 2021). A non-comprehensive state and industry level policy for controlling 

pandemics would propagate the epidemiological and economic impact of a pandemic to the 

other aspects of socio-economic systems, causing other negative impacts such as social in-

equity, unequal poverty changes, unbalanced vaccination distribution, adverse change in 

education systems, among others (Martin et al., 2020; Mishra et al., 2020). Each of these 

impacts can be considered an individual objective when one tries to optimize the pandemic 
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policy. However, controlling the early impacts can help with minimizing the later impacts. 

Therefore, in this study, we are only considering the two impacts caused by state and 

industry closure and reopening, as the building blocks for early analysis and a decision tool 

that provide short-term emergency actions. 

Figure 2. 2 shows the dynamics of the impacts created by the state- and industry-level 

decisions on the economic and epidemiological aspects. The closure of states and industries 

would lead to adverse economic consequences while decreasing the adverse epidemiological 

impacts. The economic impact is measured here as a two-fold effect, including (i) the 

economic impact on trade and (ii) the economic impact on local businesses. The economic 

impact of industry closure is measured by the met/unmet demand of each state from the 

commodity of each industry at each time. This measure represents the inability of industries 

to satisfy the inter-industry and consumer demand at the state level, caused by policy-driven 

closure or by workforce productivity losses due to the pandemic. In this paper, we refer to 

this effect as the economic impact on trade. Also, the state closure would decrease the 

demand for certain service businesses such as entertainment, accommodation and food 

services, hotels, transportation, and education, among others. According to (Fairlie & Fossen, 

2021), the pandemic and related social distancing, quarantine, and state closure policies 

have hurt different industries by shrinking the number of active businesses due to the shift 

in the demand for those industries. The drop in the number of active businesses causes a 

negative economic impact mainly by a higher unemployment rate. We measure the economic 

impact of the state closure policies by the percentage of shrinkage in these local businesses 

in terms of the percentage of employees whose jobs were lost. In this paper, we refer to this 

effect as the economic impact on local businesses. On the other hand, the increase in the 
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negative epidemiological impact would result in workforce losses, leading to the inability of 

industries to have optimal productivity and may result in business closures. Since there is no 

reliable data available for such impact, the proposed model does not consider the later effect 

of the pandemic in the analysis. 

The epidemiological impact in terms of the percentage of the infected population is 

measured based on the proposed modified dynamic SIRD model. The modified dynamic SIRD 

model represents the changes in four main population categories: infectious, susceptible, 

recovered/immune, and deceased individuals. It is assumed that the pandemic growth rate 

differs by state and industry, as the population density and the employment density vary by 

state and industry. More adverse epidemiological impacts result in more industry and state 

closures, while more substantial economic impacts would result in more significant industry 

and state reopening. Therefore, the economic and epidemiological impacts compete for any 

control strategy, and the proposed model tries to find a balanced strategy that 

simultaneously minimizes economic and epidemiological impacts. 

 

Figure 2. 2. The dynamics of the relationship between pandemic policy and the 

economic and epidemiological impacts. 
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To measure the economic impact on trade due to an industry closure, we are using the 

multi-commodity maximum network problem. Also, the economic impact on local 

businesses is caused by a state closure and is measured by the number of employees that 

lose their job in local businesses. The epidemiological impact of industry and state reopening 

strategies is measured with the modified SIRD model. To depict the economic and 

epidemiological impact of state and industry closure and reopening, the three models are 

combined with two decision variables: state status and industry status. In the following, we 

explain the concepts of the MNFP and the SIRD models that are used later in the proposed 

mixed-integer programming model. 

2.2.1. Maximum Network Flow Problem 

Let 𝐺 = (𝑁, 𝐿)  be an undirected connected network, where  𝑁  is the set of states 

represented by nodes, and 𝐿 is the set of trade links between each pair of states. 𝐾 is a set of 

industries producing specific commodities divided into two subsets. The first subset is the 

set of industries producing commodities traded between two states (𝐾1 ⊆ 𝐾 and 𝐾1 is the 

set of industries producing tradable commodities). The second subset is the set of industries 

producing commodities consumed only inside the state ( 𝐾2 ⊆ 𝐾  and 𝐾2  is the set of 

industries producing non-tradable commodities, including the local businesses such as 

restaurants and theaters, among others). Each state can be considered either a supply, 

demand, or transshipment node in the MNFP model, for each commodity of industry 𝑘 ∈ 𝐾 

and at each time. Therefore, one dummy supply node is capacitated with the state production 

level for each commodity, and one dummy demand node is defined for every state. In the 

MNFP,  𝑁  denotes the set of nodes that consist of  𝑁=  as the actual states and the 
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transshipment nodes, 𝑁+ as the set of dummy supply nodes, and 𝑁− as the set of dummy 

demand nodes. Each link (𝑖, 𝑗) ∈ 𝐿 has a specified capacity 𝑢𝑖𝑗  for transferring the flow of 

materials of any kind, shown in constraint (2.2), in which 𝑥𝑖𝑗
𝑘  denotes the flow of commodity 

of industry 𝑘 between state 𝑖 and 𝑗. The multi-commodity maximum network flow problem 

tries to maximize the flow between two nodes (Iri, 1971) such that it satisfies the demand of 

each node from each commodity, considering the constraints of the link capacity, 𝑢𝑖𝑗 , supply 

capacities, 𝑐𝑖
𝑘, and demand 𝑑𝑖

𝑘, shown in constraints (2.2)-(2.4). This formulation can also be 

equivalent to an optimization problem that minimizes the total unmet demand in the 

network stemming from the non-optimum flow between every two nodes, as shown in the 

objective function in Eq. (2. 1). in Eq. (2. 1) measures the total unmet demand over all 

commodities and all states by quantifying the difference between the inflow of each 

commodity into each state at each time ( ∑  𝑥𝑗𝑖𝑡
𝑘

𝑗∈𝑁 ) and the state’s demand for that 

commodity (𝑑𝑖
𝑘), then summing over all calculated unmet demands over states, commodities, 

and the time horizon. In addition, in our proposed MNFP problem, the supply capacity, 𝑐𝑖
𝑘, 

will be forced to be zero for closed industries. Constraint (2.5) shows the flow balance in 

transshipment nodes. Constraint (2.6) ensures that in a balanced economic system, the total 

supply of each commodity of industry 𝑘 ∈ 𝐾 should be equal to the total demand for that 

commodity. We add one more constraint to the MNFP model to ensure that the trade of non-

tradable commodities, 𝑘 ∈ 𝐾2, between states is not allowable, as shown by constraint (2.7). 



 

17 
 

min ∑ ∑ ( di
k − ∑  xji

k

j∈N

)

k∈Ki∈N

  (2. 1) 

∑  xijt
k

k∈K ≤ uij       ∀ (i, j) ∈ L ,  t = 1, … , T (2.2) 

∑  xijt
k

j:(i, j)∈L ≤ ci
k           ∀i ∈ N+,  t = 1, … , T, ∀ k ∈ K (2.3) 

∑  xjit
k

j:(j,i)∈L ≤ di
k         ∀i ∈ N−,   t = 1, … , T, ∀ k ∈ K (2.4) 

∑  xijt
k

j:(i, j)∈L − ∑  xjit
k

j:(i, j)∈L  =0 ∀i ∈ N,  t = 1, … , T, ∀ k ∈ K (2.5) 

∑ ∑  xijt
k

j:(i, j)∈L
∀  i∈N+

k∈K

− ∑ ∑  xjit
k

j:(j,i)∈L
∀  i∈N−

k∈K

= 0 
t = 1, … , T, ∀ k ∈ K (2.6) 

∑  xijt
k

j≠i:(i, j)∈L

= 0 ∀i, j ∈ N=,  t = 1, … , T, ∀ k ∈ K2 (2.7) 

2.2.2. Modified SIRD Model 

The susceptible-infected-recovered-deceased (SIRD) model is a well-known 

mathematical representation of the dynamics of an epidemic or a pandemic (Zhu et al., 2019). 

The SIRD model is governed by ordinary differential equations or fractional differential 

derivatives (Kermack & McKendrick, 1927). According to this model, a susceptible person is 

a person prone to infection when coming in contact with an infected person. The infected 

person can either recover from the infection or die after the infection. It is assumed that there 

is no latent time between exposure to the disease and getting infected. The SIRD model is 

governed by ordinary differential equations or fractional differential derivatives (Kermack 

& McKendrick, 1927). It formulates the relation between the numbers of susceptible cases 

𝑆(𝑡), infected cases 𝐼(𝑡), recovered cases 𝑅(𝑡), and deceased cases 𝐷(𝑡) at each time and in 

a certain population. The differential equations of the SIRD model, shown in Eqs. (2.8)-(2.11), 
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describe the changes in each of the four categories of cases based on the infection rate, 𝛼, 

recovery rate, 𝜌 , and mortality rate, 𝛾 , while 𝜂  is the sum of the susceptible cases 𝑆(𝑡) , 

infected cases 𝐼(𝑡) and recovered cases 𝑅(𝑡).  

𝑑𝑆(𝑡)

𝑑𝑡
=  −

𝛼

𝜂
 𝐼(𝑡)𝑆(𝑡) 

(2.8) 

𝑑𝐼(𝑡)

𝑑𝑡
=  −

𝛼

𝜂
 𝐼(𝑡)𝑆(𝑡) − 𝜌𝐼(𝑡) − 𝛾𝐼(𝑡)  

(2.9) 

𝑑𝑅(𝑡)

𝑑𝑡
=  𝜌𝐼(𝑡) 

(2.10) 

𝑑𝐷(𝑡)

𝑑𝑡
=  𝛾𝐼(𝑡) 

(2.11) 

The SIRD model is a highly nonlinear and complex model that simulates the pandemic 

dynamics considering the initial infectious and the infection, recovery, and mortality rate. To 

adapt the SIRD model to the COVID pandemic specifications in our proposed MOMILP, we 

add the following assumptions to the SIRD model.  

1. The susceptible population gets infected with a specific infection rate of 𝛼 in state 𝑖. 

2. The infected population is recovered with a recovery rate 𝜌 and after a specific time 

of 𝑡𝑅 since infection, or they die at a specific time 𝑡𝐷 periods after their infection, 

with a death rate of 𝛾. 

3. The recovered population maintains immunity status for a specific immunity time of 

𝑡𝐼 before they go back to the susceptible population.  

Figure 2. 3 shows the schematic of the relationship between susceptible 𝑆(𝑡), infectious 

𝐼(𝑡), recovered 𝑅(𝑡), and deceased 𝐷(𝑡) cases considering the required modifications in the 

time concepts. By incorporating the recovery time and the immunity time, the infected 
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population who will recover from the disease would enter the susceptible population after 

(𝑡𝑅 +  𝑡𝐼).  

 

 

 

Figure 2. 3. The conceptual schema for the relationship between susceptible S(t), 

infectious P(t), recovered R(t), and deceased D(t) cases in the modified dynamic 

SIRD model. 

 

2.2.3. Proposed MOMILP Model 

The proposed model combines the modified MNFP and the modified SIRD model to 

optimize the timing of the implementation of control strategies. Eqs. (2.12)-) show the 

proposed MOMILP model in the form of a mixed-integer program. The definition of sets and 

the notation of the parameters and decision variables are shown in Table 2. 2, Table 2. 3, and 

Table 2. 4, respectively 

Table 2. 2. Model indices and sets. 

Set Definition 
N Set of all states indexed by 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐼 (e.g., state 2) 

𝑁+ Set of all dummy supply nodes indexed by 𝑖 ∈ 𝑁 
𝑁− Set of all dummy demand nodes indexed by 𝑖 ∈ 𝑁 
𝐾 Set of all industries indexed by 𝑘 ∈ 𝐾 , such that 𝐾1, 𝐾2 ⊆ 𝐾  and 𝑘 ∈ 𝐾1 

indexes the industry producing tradable commodities and 𝑘 ∈ 𝐾2 indexes 
the industry producing non-tradable commodities. 

𝐿 Set of all links connecting two states indexed by (𝑖, 𝑗 ) ∈ 𝐿 
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Table 2. 3. Model parameters. 

Parameters Definition 

𝒄𝒊
𝒌 The supply capacity of the state 𝑖 for the commodity of industry 𝑘 

𝒅𝒊
𝒌 The demand of state 𝑖 from the commodity of industry 𝑘 

𝒖𝒊𝒋 The capacity of the link (𝑖, 𝑗 ) ∈ 𝐿 

𝜶𝒊 The infection rate in state 𝑖  
𝜷𝒌 The infection rate in industry 𝑘  
𝝆 Recovery rate in the country 
𝜸𝒊 COVID death rate in state 𝑖  
𝒂𝒊 The initial susceptible population in state 𝑖 (equal to the initial population 

of state 𝑖 ) 
𝒃𝒊 The initial number of patients in state 𝑖  
𝒈𝒊 The initial status of the state 𝑖  

𝒇𝒊
𝒌 The initial status of the state 𝑖 for industry 𝑘  

𝒆𝒊
𝒌 The initial number of employees in state 𝑖 for industry 𝑘 

𝒒𝒌 The shrinkage of industry  𝑘 ∈ 𝐾2  (local businesses) in terms of the 
percentage of employees whose jobs were lost due to the state closure. 

𝒕𝑹 The average recovery period (~ 20 days) 
𝒕𝑰 The average immunity period (~ 90 days) 
𝒕𝑫 The average death period (~ 10 days) 
𝒎 Large number 
𝒕 The index of time ranging from 1 to time horizon 𝑇  

 Table 2. 4. Model decision variable. 

Variable Definition 
𝑥𝑖𝑗𝑡

𝑘  The flow of commodity of industry 𝑘 on link (𝑖, 𝑗 ) ∈ 𝐿 at time  𝑡 = 1, … , 𝑇, 
continuous 

𝑣𝑖𝑡
𝑘  The met demand of commodity of industry 𝑘  in the state  𝑖  at time  𝑡 =

1, … , 𝑇, continuous 
𝑝𝑖𝑡 Number of patients in state 𝑖 at time 𝑡 = 1, … , 𝑇, integer 
𝑤𝑖𝑡 Number of new patients in state 𝑖 at time 𝑡 = 1, … , 𝑇, integer 
𝑠𝑖𝑡 Number of total susceptible people in state  𝑖 at time 𝑡 = 1, … , 𝑇, integer  
𝑟𝑖𝑡 Number of susceptible people to infection in state 𝑖  at time 𝑡 = 1, … , 𝑇 , 

integer 
𝑜𝑖𝑡

𝑘  Number of total susceptible employees in state  𝑖 and industry 𝑘 at time 𝑡 =
1, … , 𝑇, integer 

𝑛𝑖𝑡
𝑘  Number of total susceptible employees to infection in state  𝑖 and industry 𝑘 

at time 𝑡 = 1, … , 𝑇, integer 
𝑦𝑖𝑡

𝑘  Equal to 1 if industry 𝑘 in state 𝑖 is open at time 𝑡 = 1, … , 𝑇, binary 

𝑧𝑖𝑡 Equal to 1 if state 𝑖 is open at time 𝑡 = 1, … , 𝑇, binary 
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The proposed MOMILP model contains three distinct objective functions shown in Eqs. 

(2.12)-(2.14), including: (i) the epidemiological impact in terms of the percentage of the 

infected population across the states (F1), (ii) the economic impact on local businesses (LB) 

in terms of the percentage of total unemployment due to the state closure across industries 

and states (F2), and (iii) the economic impact on trade in terms of the percentage of total 

unmet demand across industries and states (F3). As shown in Figure 2. 2, the epidemiological 

impact (F1) and the economic impacts (F2 and F3) compete such that any strategy that 

decreases the epidemiological impact by state and industries closure would result in an 

increase in economic impact due to a higher percentage of unmet demand and shrinkage of 

local businesses, and vice versa. Therefore, the MOMILP model balances all three objectives 

simultaneously: Eqs. (2.12), (2.13), and (2.14).  

The epidemiologic impact measures the number of infected people who are infected 

either in their social life or during their work time. Depending on the status of the states and 

industries, the number of new patients can be calculated using Eq. (2.45) and being used as 

a constraint in the MOMILP model to update the number of infected people. However, this 

equation makes the MOMILP model nonlinear optimization programming. Therefore, new 

decision variables 𝑟𝑖(𝑡) and 𝑛𝑖(𝑡)
𝑘  are defined to linearize Eq. (2.45) and turn it into multiple 

linear equations shown in constraints (2.24)-(2.31). 

F1: min   ∑ ∑ (
𝑝𝑖𝑡

𝑎𝑖
) 

𝑖∈𝑁

𝑇

𝑡=1

  (2.12) 

F2: min   ∑ ∑ ( 
∑ 𝑞𝑘𝑒𝑖

𝑘 (1 − 𝑧𝑖𝑡)𝑘∈𝐾  

∑ 𝑒𝑖
𝑘

𝑘∈𝐾

)

𝑖∈𝑁

𝑇

𝑡=1

 (2.13) 
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F3: min   ∑ ∑ ∑ (1 −
𝑣𝑖𝑡

𝑘

𝑑𝑖
𝑘) 

𝑘∈𝐾𝑖∈𝑁

𝑇

𝑡=1

 (2.14) 

s. t. 
 

 

∑  𝑥𝑗𝑖𝑡
𝑘

𝑘∈𝐾

≤ 𝑢𝑖𝑗  ∀(𝑖, 𝑗) ∈ 𝐿 ,  𝑡 = 1, … , 𝑇 
(2.15) 

∑  𝑥𝑖𝑗𝑡
𝑘

𝑗:(𝑖, 𝑗)∈𝐿 = 𝑐𝑖
𝑘 𝑦𝑖𝑡

𝑘           ∀𝑖 ∈ 𝑁+, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (2.16) 

∑  𝑥𝑗𝑖𝑡
𝑘

𝑗:(𝑗,𝑖)∈𝐿 = 𝑣𝑖𝑡
𝑘          ∀𝑖 ∈ 𝑁−, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (2.17) 

𝑣𝑖𝑡
𝑘 ≤ 𝑑𝑖

𝑘 ∀𝑖 ∈ 𝑁−, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (2.18) 

∑  𝑥𝑖𝑗𝑡
𝑘

𝑗:(𝑖, 𝑗)∈𝐿

− ∑  𝑥𝑗𝑖𝑡
𝑘

𝑗:(𝑖, 𝑗)∈𝐿

= 0 
∀𝑖 ∈ 𝑁, 

∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 
(2.19) 

∑  𝑥𝑖𝑗𝑡
𝑘

𝑗≠𝑖:(𝑖, 𝑗)∈𝐿

= 0 ∀𝑖 ∈ 𝑁=, ∀ 𝑘 ∈ 𝐾2,  𝑡 = 1, … , 𝑇 (2.20) 

∑ ∑ ∑  𝑥𝑖𝑗𝑡
𝑘

𝑗:(𝑖, 𝑗)∈𝐿
𝑖∈𝑁+

𝑘∈𝐾𝑖∈𝑁+

− ∑ ∑ ∑  𝑥𝑗𝑖𝑡
𝑘

𝑗:(𝑗,𝑖)∈𝐿
𝑖∈𝑁−

𝑘∈𝐾𝑖∈𝑁−

= 0 

𝑡 = 1, … , 𝑇 (2.21) 

𝑝𝑖𝑡 = 𝑝𝑖(𝑡−1) + 𝑤𝑖(𝑡−1) − 𝛾𝑖𝑤𝑖(𝑡−𝑡𝐷)

− (1 − 𝛾𝑖)𝑤𝑖(𝑡−𝑡𝑅) 
∀𝑖 ∈ 𝑁+,  𝑡 = 1, … , 𝑇 (2.22) 

𝑤𝑖𝑡 = 𝛼𝑖 (𝑟𝑖𝑡 − ∑ 𝑛𝑖𝑡
𝑘

𝑘∈𝐾

) + (1

− (1 − 𝛼𝑖 )(1 − 𝛽𝑖
𝑘)) ∑ 𝑛𝑖𝑡

𝑘

𝑘∈𝐾

 

∀𝑖 ∈ 𝑁+,  𝑡 = 1, … , 𝑇 (2.23) 

𝑠𝑖𝑡 = 𝑠𝑖(𝑡−1) + (1 − 𝛾𝑖)𝑤𝑖(𝑡−𝑡𝑅−𝑡𝐼) − 𝑤𝑖(𝑡−1) ∀𝑖 ∈ 𝑁+,  𝑡 = 1, … , 𝑇 (2.24) 

𝑠𝑖𝑡 ≤ 𝑟𝑖𝑡 + 𝑚(1 − 𝑧𝑖𝑡) ∀𝑖 ∈ 𝑁+,  𝑡 = 1, … , 𝑇 (2.25) 



 

23 
 

𝑠𝑖𝑡 ≥ 𝑟𝑖𝑡 ∀𝑖 ∈ 𝑁+,  𝑡 = 1, … , 𝑇 (2.26) 

𝑟𝑖𝑡 ≤ 𝑚 𝑧𝑖𝑡 ∀𝑖 ∈ 𝑁+,  𝑡 = 1, … , 𝑇 (2.27) 

𝑜𝑖𝑡
𝑘 = 𝑜𝑖(𝑡−1)

𝑘 − (1 − 𝛾𝑖) 𝛽𝑖
𝑘𝑛𝑖(𝑡−𝑡𝑅−𝑡𝐼)

𝑘

− 𝛽𝑖
𝑘𝑛𝑖(𝑡−(𝑡𝑅+𝑡𝐼))

𝑘  

∀𝑖 ∈ 𝑁+, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1,  … , 𝑇 (2.28) 

𝑜𝑖𝑡
𝑘 ≤ 𝑛𝑖𝑡

𝑘 + 𝑚(1 − 𝑦𝑖𝑡
𝑘 ) ∀ 𝑖 ∈ 𝑁+, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (2.29) 

𝑜𝑖𝑡
𝑘  ≥ 𝑛𝑖𝑡

𝑘  ∀ 𝑖 ∈ 𝑁+, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (2.30) 

𝑛𝑖𝑡
𝑘 ≤ 𝑚 𝑦𝑖𝑡

𝑘  ∀ 𝑖 ∈ 𝑁+, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (2.31) 

𝑝𝑖𝑡 ≤ 𝑎𝑖 ∀𝑖 ∈ 𝑁+,  𝑡 = 1,  … , 𝑇 (2.32) 

𝑠𝑖𝑡 ≤ 𝑎𝑖 ∀𝑖 ∈ 𝑁+,  𝑡 = 1,  … , 𝑇 (2.33) 

𝑜𝑖𝑡
𝑘 ≤ 𝑒𝑖

𝑘 ∀ 𝑖 ∈ 𝑁+, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (2.34) 

𝑠𝑖𝑡 = 𝑟𝑖𝑡 = 𝑎𝑖 ∀𝑖 ∈ 𝑁+,  𝑡 = 0 (2.35) 

𝑜𝑖𝑡
𝑘 =  𝑛𝑖𝑡

𝑘 = 𝑒𝑖
𝑘      ∀ 𝑖 ∈ 𝑁+, ∀ 𝑘 ∈ 𝐾,  𝑡 = 0 (2.36) 

𝑝𝑖𝑡 = 𝑏𝑖 ∀𝑖 ∈ 𝑁+,  𝑡 = 0 (2.37) 

𝑧𝑖𝑡 = 𝑔𝑖    ∀𝑖 ∈ 𝑁+,  𝑡 = 0 (2.38) 

𝑦𝑖𝑡
𝑘 = 𝑓𝑖

𝑘 ∀ 𝑖 ∈ 𝑁+, ∀ 𝑘 ∈ 𝐾,  𝑡 = 0 (2.39) 

𝑦𝑖𝑡
𝑘 ∈ {0,1} ∀𝑖 ∈ 𝑁+, ∀ 𝑘 ∈ 𝐾, 𝑡 = 1, … , 𝑇 (2.40) 

𝑧𝑖𝑡 ∈ {0,1} ∀𝑖 ∈ 𝑁+, 𝑡 = 1, … , 𝑇 (2.41) 

𝑝𝑖𝑡, , 𝑠𝑖𝑡, 𝑟𝑖𝑡 ≥ 0  ∀𝑖 ∈ 𝑁+, 𝑡 = 1, … , 𝑇 (2.42) 

𝑜𝑖𝑡
𝑘 , 𝑛𝑖𝑡

𝑘 , 𝑣𝑖𝑡
𝑘 ≥ 0 ∀𝑖 ∈ 𝑁+, ∀ 𝑘 ∈ 𝐾, 𝑡 = 1, … , 𝑇 (2.43) 

 𝑥𝑖𝑗𝑡
𝑘 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐿 , ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (2.44) 

The modified MNFP is represented in constraints (2.15)-(2.21). Constraints (2.15)-(2.18) 

generate the bounds on supply, demand, and trade between states. When the objective 



 

24 
 

function F3 minimizes the unmet demand in each state at each time, the flow of commodities 

between states is maximized to its upper bound level. Constraint (2.15) limits the amount of 

trade of commodity of industry 𝑘  between states 𝑖  and 𝑗  up to the capacity of the 

transportation channel between two states. The upper bound for the trade capacity, 𝑢𝑖𝑗 , is 

calculated from the amount of actual trade between two states. Constraint (2.16) balances 

the supply of industry 𝑘 in each state 𝑖, if and only if the industry 𝑘 is open in that state. The 

binary variable 𝑦𝑖𝑡
𝑘  forces the constraint (2.16) to consider the supply capacity of industry 𝑘 

in state 𝑖, if that industry is open at time 𝑡. If industry 𝑘 in state 𝑖 does not exist or is not open, 

then the state 𝑖 demands or transships the commodity of industry 𝑘. In this case, the net 

input of commodity of industry 𝑘 onto state 𝑖 cannot surpass the actual demand of state 𝑖 for 

the commodity of industry 𝑘. These conditions are shown in constraints (2.17) and (2.18). 

Constraint (2.19) ensures the flow balance for all nodes, and constraint (2.20) ensures that 

for non-tradable industries, the flow of commodity of industry 𝑘  between states is zero. 

Constraint (2.21) guarantees that the total produced commodity of industry 𝑘 in the entire 

network of states is equal to the total consumed commodity of industry 𝑘. 

Constraints (2.23)-(2.34) generate the bounds for the modified SIRD model and the 

linearization process of this model. Constraint (2.22) updates the number of patients at each 

time based on the number of patients in the previous period, the newly infected people (𝑊𝑖𝑡), 

the number of recovered cases at the time 𝑡 − 𝑡𝑅 and the number of deceased cases at the 

time 𝑡 − 𝑡𝐷 . Constraint (2.23) updates the number of new infectious (patients) based on the 

status of industries and states. It is assumed that every susceptible person may become 

infected during their work life or social life (except during work hours). Constraint (2.23) is 

formulated to avoid double counting an employee’s chance of infection during their work life 
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and social life. In constraint (2.23), if the states are open (𝑧𝑖𝑡 = 1) and the industries are open 

(𝑦𝑖𝑡
𝑘 = 1), then there will be some new infections in each state equal to 𝛼𝑖𝑠𝑖(𝑡−1)𝑧𝑖𝑡, and there 

will be some new infections in each industry equal to ∑ 𝛽𝑖
𝑘𝑜𝑖(𝑡−1)

𝑘
𝑘 𝑦𝑖𝑡

𝑘 . With this logic, the 

number of new patients could be calculated using Eq.(2.45). 

𝑊𝑖𝑡 = 𝛼𝑖 (𝛼𝑖𝑠𝑖(𝑡−1)𝑧𝑖𝑡 − ∑ ∑ 𝛽𝑖
𝑘𝑜𝑖(𝑡−1)

𝑘 𝑦𝑖𝑡
𝑘

𝑘∈𝐾𝑘∈𝐾

)

+ 

(1 − (1 − 𝛼𝑖 )(1 − 𝛽𝑖
𝑘)) ∑ 𝛽𝑖

𝑘𝑜𝑖(𝑡−1)
𝑘 𝑦𝑖𝑡

𝑘

𝑘∈𝐾

 

∀𝑖 ∈ 𝑁,  𝑡 = 1, … , 𝑇 (2.45) 

However, the above formulation is nonlinear. To linearize this constraint, we introduce 

constraints (2.24)-(2.31) and new decision variables 𝑟𝑖𝑡 and 𝑛𝑖𝑡
𝑘 . We replace decision 

variables𝑠𝑖𝑡 and 𝑜𝑖𝑡
𝑘  in constraint (2.45) with new decision variables 𝑟𝑖(𝑡) and 𝑛𝑖(𝑡)

𝑘  and turn 

this constraint into the constraint (2.23). Constraints (2.24)-(2.27) update the number of 

susceptible populations in each state at each time, considering the status of that state. If the 

state  𝑖  is open at time 𝑡 , then 𝑟𝑖(𝑡−1) = 𝑠𝑖(𝑡−1)  will be used in constraint (2.24)-(2.27), 

otherwise 𝑟𝑖(𝑡−1) = 0 and there are no new infections in state 𝑖 . Constraints (2.28)-(2.31) 

update the number of available workforces in industry 𝑘  in each state at each time 

considering the status of that industry. If industry 𝑘 in state 𝑖 is open at time 𝑡, then 𝑛𝑖(𝑡−1)
𝑘 =

𝑜𝑖(𝑡−1)
𝑘  being used in constraints )-(2.31), otherwise 𝑛𝑖(𝑡−1)

𝑘 = 0 and there will be no new 

infections in industry 𝑘 in state 𝑖.  

Constraints (2.32)-(2.34) limit the infected and susceptible populations in each state to 

its total population and the infected workforce of industry 𝑘 in state 𝑖 to its total number of 
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employees. Constraints (2.35)-(2.41) define the initial value for each decision variable at 

time 𝑡 = 0, and constraints )-(2.44) denote the nature of decision variables. 

2.3.  Illustrative Example 

The proposed model is illustrated with several sources of data describing industry 

productivity, as well as state and COVID pandemic characteristics. 

2.3.1. Data 

The data used in this research are divided into two categories as follows. 

1. COVID-19 data: These data include the COVID-19-related rates, including the 

infection, recovery, and death rate at the state level in the United States. These data 

are gathered from the COVID-19 Impact Analysis Platform compiled by the 

University of Maryland(University of Maryland, 2020).  The average proportion of 

the total recovery to the total active cases all around the US is equal to 0.6. Data 

related to the recovery time, death time, and immunity time frame are gathered 

from the literature and reports from the Centers for Disease Control and Prevention 

(CDC)1. The infection rate in each industry is derived from the Washington state 

department of health report(Department of Health, 2020). These data show the 

COVID infection rate in different industries in Washington state, and we have used 

the same rate for similar industries in all other states. 

 

1 https://www.cdc.gov  

https://www.cdc.gov/
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2. Economic data: The required data for the MNFP model is derived from the 

Commodity Flow Survey published by the Bureau of Transportation 

Statistics(Bureau of Transportation Statistics, 2020). These data show the yearly 

trade from each commodity/industry and between each pair of states in 2017. It is 

assumed that the links between two states can handle the flow of commodities up to 

their yearly trade. Each state’s supply and demand capacity for each industry is also 

calculated from the same survey such that Eqs. (2.46) and (2.47) hold, where 𝑓𝑖𝑗
𝑘 is 

the actual flow of commodity produced by industry 𝑘 ($ 1/1000), traded between 

from state 𝑖 to state 𝑗.  

𝑐𝑖
𝑘 = ∑  𝑓𝑖𝑗

𝑘

𝑗:(𝑖, 𝑗)∈𝐿

  ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾 
(2.46) 

𝑑𝑖
𝑘 = ∑  𝑓𝑗𝑖

𝑘

𝑗:(𝑖, 𝑗)∈𝐿

 ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (2.47) 

 

Note that to consider the supply of each state from the commodity of the industries which 

exist in that state, we need to consider all nodes as supply nodes (using dummy supply 

nodes). Therefore, we do not calculate pure supply and demand nodes by subtracting the 

output flow from the input flow of each commodity in each state; alternatively, we use the 

results of Eqs. (2.46) and (2.47) calculate the actual supply and demand capacity. 

Employment statistics at the state and industry levels are derived from the US Bureau of 

Labor Statistics(Bureau of Labor Statistics, 2022). 

In this study, the data of 11 states, the District of Columbia (including the states in New 

England and the mid-Atlantic,), and 19 industries are considered. Table 2. 5 shows the 

definition of the industries and their North American Industry Classification System (NAICS) 



 

28 
 

code, along with their industry-specific rate of COVID-19 infection and the rate of local 

business shrinkage due to state closure.  

Table 2. 5. The definition of the industries considered in this study. 

NAICS 
code 

Industry definition Infection 
rate (%) 

Business 
shrinkage (%) 

Tradable industries (𝐾1) 

21  
Mining, Quarrying, and Oil and Gas 
Extraction 1 

- 

31-33 Manufacturing 9 - 
42 Wholesaler’s trade 3 - 
45 Retail trade  10 - 
49 Transportation and Warehousing 5 - 
51 Information  1 - 

55 
Management of Companies and 
Enterprises 2 

- 

Non-tradable industries (𝐾2 or local businesses) 

11 
Local Agriculture, Forestry, Fishing, 
and Hunting 9 

-0.875 

23 Local Construction 8 3.375 
48 Local Transportation and Warehousing 5 2.75 
52 Finance and Insurance 2 1.5 
53 Real Estate and Rental and Leasing 2 2.125 

56 
Administrative and Support, and Waste 
Management and Remediation Services 4 

2.125 

54 
The Professional, Scientific, and 
Technical Services 4 

2.25 

61 Educational Services 4 4.875 
62 Health Care and Social Assistance 24 2 
71 Arts, Entertainment, and Recreation 1 4.375 
72 Accommodation and Food Services 5 2.75 

81 
Other Services (except Public 
Administration) 3 

6.5 

 

Table 2. 5 shows the infection and death rate at the state level and the size of 

each industry in each state based on the number of employees of that industry. It is 

assumed that industries only use the freight network within the US to trade 
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commodities. Therefore, each state is connected to its closest neighboring states, 

and 352 arcs are considered in the modified MNFP model.   

 
(a) 

 

(b) 

Figure 2. 4. The input variables at the state and industry levels. (a) The COVID-19 

infection and death rate at the state level. (b) The size of each industry in each state 

is based on the number of employees. 

 

Figure 2. 5 shows the value of traded commodities of 19 industries from each state to the 

other states. According to these data, Pennsylvania and New York are the states with the 

highest export and import of commodities. Also, the Manufacturing industry has the highest 

value of products being traded between states, followed by the Wholesale trade and 

Warehouse and storage. Therefore, the closure of these industries is expected to cause a high 

rate of unmet demand systems. 
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Figure 2. 5. The trade value of commodities of 19 industries from and to the 11 
states. 

  

According to Kyrychko et al. (2020), the mean value of time to recovery, 𝑡𝑅 , is 15.3 days, 

and the mean value of the time to death, 𝑡𝐷 , is nine days. Therefore, the time interval in our 

analysis is equivalent to 10 days. Therefore, we assume that 𝑡𝑅 = 2 (equivalent to 20 days) 

and 𝑡𝐷 = 1 (equivalent to 10 days). According to the CDC2 (Center for Disease Control and 

Prevention), evidence suggests that reinfection is uncommon 90 days after the initial 

infection. Therefore, we consider the immunity time 𝑡𝑉 = 9 in the model. At the initial time 

𝑡 = 0, all industries, and states are considered open. 

 
2 https://www.cdc.gov/  

https://www.cdc.gov/
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2.3.2. Solution Approach 

There are three solution approaches for solving a multi-objective optimization problem 

(Hwang & Masud, 2012), including (i) a-priori methods (e.g., weighted-sum method); (ii) 

interactive methods, and (iii) the generation (or a-posteriori) methods (e.g., ε-constraint 

method). Recall that in the proposed objective function in Eq. (2.12)-(2.14), there are three 

different objectives with different ranges and scales. Therefore, in this study, we utilize the 

augmented ε-constraint method proposed by (Mavrotas & Florios, 2013) to solve the 

proposed multi-objective MOMILP model. The augmented ε-constraint method (AUGMECON) 

is an efficient version of the ε-constraint method, which accelerates the process of generating 

Pareto-optimal solutions by avoiding redundant iterations. By individually considering each 

objective as the primary objective and the other two objectives as secondary objectives, we 

formulate, solve, and compare the results of three different versions of AUGMECON models. 

For example, the AUGMECON formulation of considering epidemiological impact (F1) as the 

primary objective function and considering the economic impact on local businesses (F2) 

and economic impact on trade (F3) as two secondary objectives will be represented as 

follows, in which 𝑠𝑙 is the non-negative slack variable showing the amount of deviation of the 

secondary objective function 𝑙 from its optimum value. The RHS value of constraint (2.49) is 

𝑒𝑙 =  𝑢𝑏𝑙 − (𝐿𝑙 × 𝑟𝑙)/𝑔𝑙 where 𝑢𝑏𝑙  is the upper bound of the secondary objective function 𝑙 

and 𝐿𝑙  is the iteration counter of the grid points in the solution grid of 𝑔𝑙. Term 𝑟𝑙 is the range 

of the secondary objective function 𝑙 in the payoff matrix (upper bound, 𝑢𝑏𝑙 , to lower bound, 

𝑙𝑏𝑙), respectively. 𝑋 is the feasibility area for the original MOMILP. A similar structure is built 

for the cases in which the economic impact on local businesses (F2) or the economic impact 

on trade (F3) is considered the primary objective.  
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min   ∑ ∑ ∑ (1 −
𝑣𝑖𝑡

𝑘

𝑑𝑖
𝑘) −  𝑒𝑝𝑠 (

𝑠1

𝑟1
+

𝑠2

𝑟2
)

𝑘∈𝐾𝑖∈𝑁

𝑇

𝑡=1

 
(2.48) 

s.t.  

∑ ∑ (
𝑝𝑖𝑡

𝑎𝑖
) +  𝑠1 = 𝑒1

𝑖∈𝑁

𝑇

𝑡=1

  
(2.49) 

 

∑ ∑ (
∑ 𝑞𝑘𝑒𝑖

𝑘 (1 − 𝑧𝑖𝑡)𝑘∈𝐾

∑ 𝑒𝑖
𝑘

𝑘∈𝐾

 ) +  𝑠2 = 𝑒2

𝑖∈𝑁

𝑇

𝑡=1

 
(2.50) 

𝑦𝑖𝑡
𝑘 , 𝑧𝑖𝑡, 𝑝𝑖𝑡, , 𝑠𝑖𝑡, 𝑟𝑖𝑡, 𝑜𝑖𝑡

𝑘 , 𝑛𝑖𝑡
𝑘 , 𝑣𝑖𝑡

𝑘 ,  𝑥𝑖𝑗𝑡
𝑘 ∈ 𝑋 (2.51) 

Practically, the AUGMECON algorithm (Mavrotas & Florios, 2013)is as follows: (i) 

Generate the payoff matrix using conventional or lexicographic optimization (the table with 

the results from the optimization of each function individually). (ii) Calculate the range of 

values of each objective function 𝑙, denoted as 𝑟𝑙. (iii) Divide each 𝑟𝑙 into equal intervals ℎ𝑙  

using the intermediate equidistant grid point such that we have the total (ℎ𝑙 + 1) grid points 

that are used to vary the RHS values of 𝑒𝑙  parametrically. The number of grid points will 

determine the density of the efficient set of the solution as well as the computation time. (iv) 

Solve the model by choosing each point in the grid and determining the value of 𝑒𝑙. If the 

model becomes infeasible for a specific point of the grid, the model avoids running for the 

lower values of 𝑒𝑙 in that specific direction. More detail on the AUGMECON method can be 

found in (Mavrotas & Florios, 2013). 

All the implementations in this study are performed on a 64-bit desktop system with 12.0 

GB RAM and the Core-i7-6500U CPU@2.5GHz. The proposed framework is modeled and 
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solved by Gurobi in Python, and for the selected time horizon 𝑇, the average run time is 

reported in the next section.  

2.4. Results 

In this study, we consider six different scenarios, as shown in Table 2. 6, in which we 

analyze the quality of calculated solutions by solving the model for different objective 

functions. The proposed model considers only one objective in the first three scenarios and 

is solved as a single objective MILP. In the latter three scenarios, the proposed model will be 

solved as a multi-objective MILP using the AUGMECON method by considering one of the 

objectives as the primary objective function one at a time.  

Table 2. 6. The definition of the scenarios 

Scenario Objective 

function 

Objective 

1 Min F1 Minimizing the epidemiological impact (F1) 

2 Min F2 Minimizing the economic impact on local businesses 

(F2) 

3 Min F3 Minimizing the economic impact on trade (F3) 

4 Min MOMILP  Minimizing the MOMILP using the AUGMECON method 

The MOMILP model will result in a set of Pareto-optimal solutions instead of a single 

optimal solution. To generate the Pareto optimum solutions, we consider 6 × 6 grid points 

and solve scenarios 4-6. Table 2. 7 shows the payoff matrix and the parameters required for 

implementing the AUGMECON algorithm. Figure 2. 6-a shows the result of the AUGMECON 

algorithm used to solve the proposed MOMILP, considering each objective as the primary. 

Figure 2. 6-b magnifies the Pareto optimal solutions for the last four values of F1 (0.4, 0.6, 

0.8, and 1.0) from Figure 2. 6-a. As shown in Figure 2. 6-a (and Figure 2. 6-b), the 
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epidemiological impact (F1) and the economic impact on local businesses (F3) are negatively 

correlated. As more states open local activities, the impact on local businesses decreases 

while the number of patients increases. While the model tries to minimize the adverse 

economic impact on trade (F2), it opens more industries in each city, which will increase the 

number of infected employees, thereby increasing the number of infections. 

In scenario 4, the epidemiological and economic impacts on trade are positively 

correlated. Therefore, the model tries to decrease the economic impact on trade by keeping 

more industries open (tradable industries, 𝐾1, and non-tradable industries, 𝐾2). However. 

since opening states and all industries would significantly increase the number of patients, 

the model chooses to close more states and less demanded local industries, so the economic 

impact on trade would be minimized. 

Therefore, the feasible solution region and the Pareto-optimal solutions for the MOMILP 

show a convex and nonlinear behavior. Deriving the Pareto-optimal solutions for the convex 

and nonlinear multi-objective functions using other approaches is adequately addressed in 

the literature (Das & Dennis, 1998; Hartikainen et al., 2012). In this example, the optimality 

gap equals 5%, and all the Pareto solutions are non-dominated.  

 

Table 2. 7. The normalized payoff matrix and range of three objective functions 

 𝐹1 value 𝐹2 value 𝐹3 value 

Min 𝐹1 0.000 1.000 1.000 

Min 𝐹2 1.000 0.000 0.813 

Min 𝐹3 0.668 0.973 0.000 
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(a) (b) 

Figure 2. 6. The results of the proposed MOMILP for Scenario 4 consider (a) full grid 

Pareto optimal solutions, (b) selected 24 Pareto optimal solutions with the value of 
F1 equal to 0.4, 0.6, 0.8, 1.0. 

 

For each scenario presented in Table 2. 6, we measure the value of the three objective 

functions, including the average percentage of patients (F1), the average trade impact (F2, 

measured by the percentage of unmet demand), and the average local businesses impact (F3, 

measured by the percentage of business shrinkage). For the sake of compression of the four 

scenarios, we choose a solution from the Pareto-optimal solutions set that results in the 

minimum cubic distance from the lower bound of each objective in that specific scenario. For 

instance, among the 36 Pareto-optimal solutions obtained for scenario 4, one of the solution 

points has the lowest cubic distance with the minimum values of F1, F2, and F3 from the 

payoff matrix. The selected Pareto solution results in the normalized values of the three 

objective functions such that F1= 0.692, F2=0.918, and F3=0.000.  

The first three scenarios focus on minimizing only one objective. Therefore, the average 

percentage of patients, the average percentage of local business shrinkage, and the average 

percentage of unmet demand are minimum in scenarios 1, 2, and 3, respectively. The results 

obtained from scenario 4 show significantly different outcomes. In this scenario, the 
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optimum values of each objective are roughly close to each other, while in the first three 

scenarios, the range of each objective is significantly higher. The Pareto-optimal solutions 

suggest that for any control decision (state and industry closure or reopening), the economic 

and epidemiological impacts change in the opposite direction. At the same time, it is more 

effective to close most states and keep the majority of industries open  .The MOMILP model 

tries to minimize one objective while considering the possible optimum value of the other 

objectives. Therefore, the results from all three MOMILP objective functions are more 

convincing for decision-makers interested in minimizing all three aspects of the pandemic 

impact. The selected Pareto solution suggests opening more industries to minimize the 

significant economic impact on trade rather than closing more states. The results show that 

the economic impact of industries and state closure overcome the epidemiologic impact in 

terms of the number of infected people. However, this result is not reflecting the economic 

impact of the increase in the number of infected people, including the healthcare costs and 

workforce loss.  

Figure 2. 7 shows the optimum value of each objective changing over the time horizon of 

𝑇 = 10 for each of the four scenarios presented in Table 2. 6. Results for scenario 4 belong 

to the selected solution among the Pareto optimal solutions set, with the minimum cubic 

distance from the lower bound of F1, F2, and F3. As shown in Figure 2. 7a, objective function 

Min F1 in scenario 1, decreases the percentage of patients quickly as the model forces more 

states and industries to be closed. This decrease results in a higher economic impact on local 

businesses and trade, as shown in Figure 2. 7b and Figure 2. 7c.  With objective function Min 

F2 in scenario 2, the percentage of patients decreases more slowly than in scenario 1 as 

scenario 2 minimizes the economic impact on local businesses by closing fewer states. While 



 

37 
 

fewer states and local businesses are closed, to keep the number of patients lower than its 

upper bound, the model closes more industries, leading to an increased impact on trade. 

Objective function Min F3 in scenario 3 minimizes the economic impact on trade, so it tries 

to keep more industries open. Since open industries result in higher employee infection, the 

model forces more states to close to keep the number of infections lower than its upper 

bound. In this case, the economic impact on local businesses is higher than in scenario 2, 

while the number of patients is less. The three single objective function scenarios result in 

extreme points of each objective function without considering the importance of other 

objectives. In contrast, the MOMILP objective functions in scenario 4, generally result in an 

average solution that considers the importance of all objectives.  

As shown in Figure 2. 7b, the percentage of patients decreases over time, as all MOMILP 

models force more states to close. All MOMILP models keep more industries open since they 

value the economic impact on trade. Therefore, the range of economic impact is significantly 

lower than in the first three scenarios. The MOMILP models balance the epidemiological 

impact and the economic impact while considering the importance of their specific objective 

function as a priority. In the selected Pareto-optimal solution sets in scenario 4, the 

epidemiological impact and economic impacts oscillate during the time horizon as the 

MOMILP models give a different sequence of opening and closure. In scenario 4, the average 

local business impact increases, as more states are closed, and to decrease the economic 

impact on trade, more industries are opened. As shown in Figure 2. 7c, the epidemiological 

impact in the three MOMILP models in scenario 4 is decreasing with closer values than in 

scenarios 1, 2, and 3  
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(a) 

 

(b) 

 

(c) 

Figure 2. 7. The results of the proposed model for (a) average percentage of patients 

in scenarios 1-4, (b) average percentage of local business impact in scenarios 1-4, 
and (c) average percentage of trade impact in scenarios 1-4. 

 

Finally, each optimal solution controls policies over the considered time horizon. Figure 

2. 8 shows the optimal opening and closure policy for each state and industry over the time 

horizon and scenarios 1-4. All the policies regarding the opening and closure of states and 

industries comply with the results explained in Figure 2. 7. The more industries in each state 
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that are closed, the more unmet demand for the product of those industries increases in the 

same state and the other states. The MOMILP models in scenario 4 keep the balance of all 

three objectives. The MOMILP models mostly keep more industries open to decrease the 

unmet demand, while they keep more states closed to decrease the percentage of patients.  

In contrast, the results of scenarios 1-3, where each scenario only considers one objective 

function, are significantly different. For example, the comparison of Scenario 1 and scenario 

4, shows how scenario 1 keeps the number of patients minimum (F1 is the objective function 

in scenario 1) and scenario 4 tries to keep the number of patients as minimum as possible. 

At the same time, it also tries to minimize the two economic impacts.  

Moreover, the industry status is decided based on the amount of trade between states for 

a specific commodity. In MOMILP majority of industries are open due to the high economic 

impact their closure may cause. The industries that are closed more often are located in the 

District of Columbia. According to Figure 2. 5, the District of Columbia mainly supplies a small 

number of commodities, mainly from the Wholesale trade and Manufacturing industries. The 

Wholesale trade industry is closed at time 5, while the Manufacturing, Mining, Retail trade, 

Information, and Management industries are closed during the whole planning horizon. In 

Vermont, where the export of commodities is lower, Retail trade, Warehouse and storage, 

and Information industries are closed at times  𝑡 =  Error!  Bookmark not defined., 𝑡 =  {1: 9}, 

and 𝑡 =  {5,6,8,9} respectively. 
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(a) Pandemic policy in scenario 1 

 

(b) Pandemic policy in scenario 2 

 

(c) Pandemic policy in scenario 3 

 

(d) Pandemic policy in scenario 4 

 

Figure 2. 8. Closure and reopening policies at the state and industry level over the 

time horizon of 𝑻 = 𝟏𝟎 in scenarios 1-4. 
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The other industries are closed accordingly. In New York, which has the second-highest 

export value, the Transportation and Accommodation industries are closed at time 𝒕 =  {𝟓} 

and  𝒕 =  {𝟑)  respectively. In Maryland, Manufacturing is closed at time 𝒕 = {𝟔} , and in 

Delaware and Maine, the Management industry is closed at times 𝒕 = {𝟏: 𝟏𝟎} and 𝒕 = {𝟓}, 

respectively. Results show that the economic impact on trade is significantly important, and 

therefore the important industries with high traded values in specific states (e.g., 

Manufacturing, Wholesale trade, Warehouse, and storage) are staying open more often during 

the planning horizon. 

2.5. Model Efficiency 

The most influential input parameter on the efficiency of the proposed model is the time 

horizon, 𝑇. Figure 2. 9 shows the efficiency of the objective functions (scenarios 1, 2, and 3) 

for the planning time horizon of 1 to 12 units of time intervals (10 days). Figure 2. 9 suggests 

that increasing the time horizon will result in a linear increase in the number of decision 

variables. However, it exponentially increases the computational time.   

   

Figure 2. 9. The number of variables and the computational time for scenarios 1-3. 
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2.6.  Concluding Remarks 

This research explores a practical decision-making tool that can improve state-level and 

industry-level operational decisions during pandemic outbreaks. We propose a novel 

decision framework that integrates SIRD, MNFP models, and unemployment measures into 

mixed-integer linear programming for estimating the best control strategy over a specified 

time horizon. The contribution of this paper lies in (i) accounting for the two-fold economic 

(supply and demand perturbation and the raised unemployment) and epidemiological 

mechanisms of the pandemic, simultaneously, (ii) incorporating the interdependency 

between industry and state-level pandemic-driven decisions, and (iii) providing a decision 

support tool for optimizing the closure and reopening strategies during the pandemic 

planning period.  

The proposed framework minimizes three main components: (i) the economic impact on 

the supply and trade equilibrium measured by the MNFP formulation, (ii) the economic 

impact on local businesses based on their unemployment rate, and (iii) the epidemiological 

impact based on the number of the infected population measured by SIRD formulation. While 

the reopening of the industries decreases the negative economic impact, it also contributes 

to increasing the number of the infected population. Also, the state reopening contributes to 

the number of infected populations, which ultimately impacts the workforce effectiveness of 

the industries, and finally, it impacts the economy of the states. Therefore, the timing and the 

choice of closure and reopening of states and industries are important for minimizing both 

the economic and the epidemiological impact of the pandemic.  
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The proposed model is implemented on the COVID-19 data over 11 states, the District of 

Columbia, and 19 industries in the US. The results show that with a different combination of 

economic and epidemiologic components, some states have shown a high percentage of 

patients in some scenarios while others have shown a high level of negative economic impact. 

Furthermore, the closure of each industry in one state may affect the unmet demand in 

another state and therefore affect the closure or opening of industries in the same or other 

states. The proposed MOMILP result in more state closure rather than industry closure. 

Three large states such as New York, New Jersey, Massachusetts, and Maryland, are closed 

more often, while the high economic impact on local businesses keeps Pennsylvania, 

Connecticut, and Delaware open more often. District of Columbia has small sizes of 

industries that have small contribution to supply for the demand and have less export to the 

other states; therefore, those industries are closed more often. The industries that are closed 

more often include Management, Information, Retail trade, Mining, and Manufacturing, 

mostly in the District of Columbia, Vermont, and New York. The reason for the closure of 

these industries in a specific state is the low output level that they have. 

While temporal state-level and industry-level policies are vital for controlling the early 

stage impacts of the pandemic, several other impacts need to be considered in the later stage 

decisions. It has been proven that a pandemic’s epidemiological and economic impact 

propagates to the other aspects of life, including socio-demographic vulnerabilities, 

perception of social equity in access to resources, fair vaccination distribution, and 

community-level job loss vulnerability, among others. On the other hand, the scale of closure 

and reopening, specific to each state and each industry in each state, significantly affects the 

efficiency of control strategies. 
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As such, future work will explore (i) quantifying the direct effect of business and industry 

closure in one state on the business and industry in other states (i.e., multi-regional 

interdependent economic impacts), (ii) incorporating various levels of the strictness of the 

control policy based on the criticality of industries, businesses, and states, (iii) incorporating 

the fairness of the controlling policy based on social vulnerabilities of infection, death, job 

losses, and accessibility to the resources, among others, and (iv) measuring the effect of the 

adoption and the timing of vaccination on the optimal closure and reopening strategies. 
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Chapter 3: MULTI-REGIONAL, MULTI-INDUSTRY IMPACTS OF FAIRNESS 

ON THE PANDEMIC POLICIES 

3.1. Introduction 

Sudden Acute Respiratory Syndrome – Coronavirus-2 (SARS-Cov-2), which produces the 

resulting disease of COVID-19, was declared a pandemic by the World Health Organization 

(WHO) on January 9, 2020 (Organization, 2020). In the US, COVID-19 had its first confirmed 

case in Washington State on January 19, 2020 (Zimmermann et al., 2020) and until now there 

have been various waves of growth in several infections and deaths. Since the beginning of 

the pandemic, different states, counties, and municipalities around the country implemented 

various strategies to control the spread of the virus (Chowell & Mizumoto, 2020). According 

to the previous studies, lockdown and quarantine policies diminish the number of infected, 

hospitalized, and deceased cases. However, such policies also decrease the economic output 

of the closed industries, which leads to a disastrous cascading effect across other industries 

in the state where the strategy is enacted as well as in other states. On the other hand, 

opening states and industries may increase the risk of growth in infected, hospitalized, and 

deceased cases. Therefore, the main dilemma would be identifying an optimal control 

strategy and the time when it should be implemented such that the pandemic-related effects 

are minimized while maintaining some level of economic, health, and societal equity 

(Andersen et al., 2020; Ocampo & Yamagishi, 2020; Pronk & Kassler, 2020).  

Lockdowns and business shutdowns in various states have also led to business closures, 

increased unemployment (Blustein et al., 2020), and workforce losses in critical businesses 
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(Blustein & Guarino, 2020), and a lack of supply produced by specific industries (Chowell & 

Mizumoto, 2020).  According to the Bureau of Labor Statistics (Bureau of Labor Statistics, 

2022), the US unemployment rate was 3.6% pre-COVID and it increased to 15% in May 2020. 

Several studies addressed the short-term and long-term employment impact of the COVID-

19 crisis (Cohen, 2020; Fana et al., 2020). Besides the fact that the infection and death rate 

has been different in each state, the change in the rate of unemployment, however, has not 

been the same over the states and industries. Therefore, due to the different socio-economic 

attributes of each state, the controlling policy should be adjusted to the important attributes 

of each state and each industry to keep fairness between states, and between industries.   

When it comes to healthcare, fairness is not only defined as equity, but it means avoiding 

discrimination against social communities in different states and employees of different 

industries. There is a disparity among races in their vulnerability to COVID-19 infection, 

hospitalization, and death (Bureau of Labor Statistics, 2022). Also, certain industries have 

experienced more job losses. The importance of considering social fairness in determining 

pandemic policy has been studied in recent research (Buso et al., 2020; Martins-Filho et al., 

2021; Paton, 2020). Social fairness in the decision process can include considering the 

demographic attributes of the communities in each state and demographic attributes of the 

employees in each industry, such as age, race, and gender, among others. It also stems from 

considering the socio-economic attributes of the affected population such as their wealth 

and their accessibility to healthcare services and equipment, among others (Newdick et al., 

2020; White & Angus, 2020). Therefore, deriving a comprehensive policy to control the 

spread of the pandemic as well as controlling the effects of the pandemic requires 

consideration of social fairness. 
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Closing industries have had a significant impact on the economy by disturbing the supply 

and demand equilibrium (Pichler & Farmer, 2021). According to the input-output economic 

model, each industry’s commodity is consumed either by the final consumer or used by other 

industries to produce another commodity (Leung et al., 2007). Therefore, when infections 

cause labor loss in an industry, the supply capacity in that industry decreases, and the lack 

of supply propagates to the other interdependent industries in the same states (Yu & Aviso, 

2020). Designing a control policy that minimizes such industry inoperability is critical for 

reducing negative economic impacts. State closures or lockdowns during the pandemic have 

also decreased the demand for certain industries such as entertainment, hotel, and dining 

industries, among others. The decrease in demand also can affect the economic system 

balance, however, in this study, we are only considering the industry closure and supply-side 

effect of the pandemic.  

The application of the input-output (I-O) economic model to analyze the cascading 

economic effects of disruptive events has been studied for a wide variety of domains 

(Galbusera & Giannopoulos, 2018; Li et al., 2017), including the COVID-19 pandemic 

(Galbusera & Giannopoulos, 2018; Sarmidi et al., 2021; Socci et al., 2021). Hishikar (2021) 

estimate the impact of the COVID-19 pandemic on India’s economy using the inoperability 

input-output model (IIM), estimating a 4.2% in the output of transport and hotel industries 

due to the complete lockdown. Yu et al. (2020)studied the effect of extended shutdown of 

business operations using a persistent inoperability input-output model (PIIM), showing 

that industries with higher levels of inoperability would recover faster and initially 

unaffected industries would experience inoperability levels higher than directly affected 

industries over time. Santos (2006)explored the impact of pandemics on the workforce with 
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several mitigation and suppression policies using an I-O framework. Richiardi et al. (2020) 

analyzed the effects of the COVID-19 lock-down on final demand and supply in key industries 

in the UK using a dynamic I-O model that allows for both demand-side and supply-side 

perturbations. Chen et al. (2021) combined an epidemiological model describing the spread 

of COVID-19 with an I-O model to measure the direct and indirect impacts of labor supply 

shock on each industry. Results indicated that the trade-offs between economic losses and 

the epidemiologic impact of the pandemic is non-linear with respect to social distancing and 

lockdown duration decisions. Also, industries relying on physical labor, such as the 

Agriculture and Construction industries, were more adversely impacted by the pandemic 

compared to those industries that rely on professional labor services.   

Since the evolution of the COVID-19 pandemic, various research studies have analyzed 

the pandemic's social, economic, and epidemiologic impacts at international and national 

levels, as well as providing a wide range of policies to mitigate the crisis effect of this 

pandemic (Brodeur et al., 2020; Gros & Gros, 2021; Jackson et al., 2020; Nicola et al., 2020; 

Ocampo & Yamagishi, 2020; Principato et al., 2020; Soufi et al., 2022). The majority of the 

available literature has prescribed control strategies based on a descriptive analysis of the 

available epidemiologic and economic statistics (Balla-Elliott et al., 2020; Seyedin et al., 2020; 

Wang et al., 2020). However, to the best of the authors' knowledge, no published work has 

proposed a mathematical model to simulate the effect of control policies and identify the 

optimal closure and reopening strategies at the state and industry levels during a specific 

timeline of planning. This research presents multiple contributions to the literature, 

including (i) proposing a prescriptive decision-making tool based on a multi-objective 

mixed-integer linear programming optimization model that results in an optimal policy to 
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control the pandemic at the state and industry level, (ii) proposing a decision-making model 

that incorporates the societal fairness, epidemiologic impact, and the inoperability impact of 

the pandemic in deriving the optimal control policy, (iii) considering the social fairness 

attribute from two aspects including the vulnerability of communities to both getting 

infected by COVID-19 due to state opening decisions and losing employment due to state 

closure decisions, measured by the deviation from a national social vulnerability index, and 

(iv) quantifying the inoperability impact of a pandemic by combining the supply side multi-

regional inoperability input-output model (MRIIM) and the industry level decisions within 

the optimization model. It is assumed that all companies within an industry behave the same 

way.  

3.2. Problem Formulation 

This section provides the methodological background of the MRIIM and SIRD models, as 

well as the proposed mathematical model for providing the optimal state- and industry-level 

pandemic policies that balances the social, economic, and epidemiological impacts of the 

pandemic. Also, social fairness is quantified as the numerical deviation of the social 

vulnerability of each state from the average national vulnerability index at each period 

during the planning horizon. The model results in the optimal closure and reopening 

strategies for (i) each industry, (ii) each state, and (iii) each period, along with the three 

impacts of each decision. With such an optimization framework, we look to address different 

decision-making perspectives: state-level decisions, national-level decisions, industry-level 

decisions, and how any of these trade-offs with each other. 
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3.2.1. Multi-Regional Inoperability Input-Output Model  

The basic economic input-output model (Leontief, 1986) assumes that the economy 

consists of a group of 𝑛 interacting industries, each producing a single commodity. Therefore, 

under a static equilibrium of the economy, the total output of each industry is distributed to 

all industries and satisfies external demand. This is represented in Eq. (3. 1), where the 

output from industry 𝑖, 𝑥𝑖 , is equal to the sum of output flows, 𝑧𝑖𝑗 , from industry 𝑖 to 𝑗 and the 

external demand, 𝑐𝑖, industry 𝑖. That is, the total output from industry 𝑖 is found from (i) the 

intermediate demand required for production in other industries and (ii) the amount 

demand directly by consumers. Flow 𝑧𝑖𝑗  can be rewritten as the product of the proportional 

requirement, 𝑎𝑖𝑗, of industry 𝑖 output to industry 𝑗’s output and the output of industry 𝑗, 𝑥𝑗 . 

Proportional coefficient 𝑎𝑖𝑗 is called the Leontief coefficient or technical coefficient.  

𝑥𝑖 = ∑ 𝑧𝑖𝑗

𝑛

𝑗=1

+ 𝑐𝑖 = ∑ 𝑎𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 + 𝑐𝑖      (3. 1) 

 

Eq.(3. 1) can be written in a matrix form as in Eq.(3. 2), where 𝐱 is an 𝑛 × 1 vector of 

industry outputs, 𝐜 is the 𝑛 × 1 vector of the final industry demand, and 𝐀 is the 𝑛 × 𝑛 matrix 

of technical coefficients. 

𝐱 = 𝐀𝐱 + 𝐜     (3. 2) 

To regionalize the input-output model, the elements of the 𝐀 matrix are modified to form 

the regional input-output matrix 𝐀𝒓 in Eq.(3. 3) (Miller & Blair, 2009), where 𝑙𝑖 is the location 

quotient and is an indicator of the extent to which industry 𝑖  is used in the output of industry 

𝑗 in region 𝑟. 
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𝑎𝑖𝑗
𝑟 = {

𝑙𝑖𝑎𝑖𝑗        𝑙𝑖 < 1   

𝑎𝑖𝑗        𝑙𝑖 ≥ 1  
 

(3. 3) 

Location quotient 𝑙𝑖 is calculated in Eq.(3. 4), where 𝑥𝑖
𝑟  is the output of the industry 𝑖 in 

region 𝑟, 𝑥total
𝑟  is the total output of industries in region 𝑟, 𝑥𝑖  is the total output of industry 𝑖, 

and 𝑥total is the total output of all industries at the national level. 

𝑙𝑖 =
𝑥𝑖

𝑟 𝑥𝑡𝑜𝑡𝑎𝑙
𝑟⁄

𝑥𝑖 𝑥𝑡𝑜𝑡𝑎𝑙⁄
 

(3. 4) 

Therefore, the multi-regional input-output model for the p regions can be written as Eq. 

(3. 5).  

[

𝐱1

𝐱2

⋮
𝐱𝑝

] = [

𝐀1 0
0 𝐀2 ⋯

0
0

⋮ ⋱ ⋮
0  0 ⋯ 𝐀𝑝

] [

𝐱1

𝐱2

⋮
𝐱𝑝

] + [

𝐜1

𝐜2

⋮
𝐜𝑝

] 

(3. 5) 

Isard et al. (2017) proposed an extended model for incorporating the inter-regional trade 

and commodity flows in the input-output model calculations. Eq.(3. 6) shows the basis for 

the inter-regional input-output flow model, where 𝑡𝑖
𝑟𝑠  is the proportion of commodity 𝑖 

consumed by region 𝑠 that originated in region r. 

𝑎𝑖𝑗
𝑟𝑠 = 𝑡𝑖

𝑟𝑠𝑎𝑖𝑗
𝑟  (3. 6) 

The inter-regional input-output model can then be summarized in Eq.(3. 7),  where each 

sub-matrix 𝐓𝑟𝑠 is an  𝑛 × 𝑛 diagonal matrix whose diagonal elements are 𝑡𝑖
𝑟𝑠 values. 
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[

𝐱1

𝐱2

⋮
𝐱𝑝

] = [

𝐓11 𝐓12

𝐓21 𝐓22 ⋯ 𝐓1𝑝

𝐓2𝑝

⋮ ⋱ ⋮

𝐓𝑝1  𝐓𝑝2 ⋯ 𝐓𝑝𝑝

] [

𝐀1 0
0 𝐀2 ⋯

0
0

⋮ ⋱ ⋮
0  0 ⋯ 𝐀𝑝

] [

𝐱1

𝐱2

⋮
𝐱𝑝

]

+ [

𝐓11 𝐓12

𝐓21 𝐓22 ⋯ 𝐓1𝑝

𝐓2𝑝

⋮ ⋱ ⋮

𝐓𝑝1  𝐓𝑝2 ⋯ 𝐓𝑝𝑝

] [

𝐜1

𝐜2

⋮
𝐜𝑝

] 

(3. 7) 

The basic formulation of the Multi-Regional Inoperability Input-Output Model (MRIIM), 

shown in Eq.(3. 8), has foundations in the input-output model but where, rather than 

traditional commodity flows, the propagation of inoperability among industries in different 

regions is studied. Inoperability can be thought of as the proportional extent to which 

industries are not productive due to a direct or interdependent disruption (Santos, 2006).  

Inoperability is measured with vector 𝐪. Vector 𝐜∗ is a vector of direct perturbation to an 

industry’s production, 𝐓∗ is the 𝑛 × 𝑛 normalized diagonal regional trade coefficient matrix, 

and 𝐀∗ is the 𝑛 × 𝑛 normalized matrix of technical coefficients. (Miller & Blair, 2009). 

𝐪 = 𝐓∗𝐀∗𝐪 + 𝐓∗𝐜∗  ⇔  𝑞𝑖
𝑟 = ∑ ∑ 𝑡𝑖

∗𝑟𝑠𝑎𝑖𝑗
∗𝑠𝑞𝑗

𝑠𝑛
𝑗=1

𝑝
𝑠=1 + ∑ 𝑡𝑖

∗𝑟𝑠𝑐𝑖
∗𝑠𝑝

𝑠=1  (3. 8) 

The formulations for 𝑞𝑖
𝑟 , 𝑐𝑖

∗𝑠 , 𝐀∗  and T∗  are presented in Eq.(3. 9)-(3. 12) respectively, 

where diag(𝐱) is the diagonal matrix formed by the industry output vector. 

𝑞𝑖
𝑟 =  

𝑎𝑠 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑥𝑖
𝑟)−𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑥̃𝑖

𝑟)

𝑎𝑠 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑥𝑖
𝑟)

 ⇔ 𝐪 = diag(𝐱) −1 ∆𝐱 (3. 9) 

𝑐𝑖
∗𝑠 =  

𝑎𝑠 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 (𝑐𝑖
𝑟)−𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 (𝑐𝑖̃

𝑟)

𝑎𝑠 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑥𝑖
𝑟)

 ⇔ 𝐜∗ = 𝑑𝑖𝑎𝑔(𝐱) −1 ∆𝐜 (3. 10) 

𝐀∗ =  diag(𝐱)−1 𝐀 diag(𝐱)   (3. 11) 

𝐓∗ =  diag(𝐱)−1 𝐓 diag(𝐱) (3. 12) 
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The MRIIM is developed to help understand the interdependencies between regional and 

inter-regional perturbations in different industries. The original model is demand-driven, 

wherein final demand perturbations impact the production outputs of different 

interdependent industries from the direct and indirect effects. (Leung et al., 2007) extended 

the IIM with supply-side and output-side effects. The output-side IIM model measures the 

impact of direct perturbation on the output of an industry, which could have been caused by 

capacity loss, facility closure, or supply flow disruption, among others. Such disruptions are 

turned into a direct reduction in the output level of the interdependent industries. In this 

case, the MRIIM model can be revised to handle mixed exogenous (demand or supply) and 

endogenous (output) specified variables (Leung et al., 2007). 

In general, assuming that among 𝑛  industries, 𝑟 (𝑟 ≤ 𝑛)  industries are disrupted and 

have exogenously determined output, then the inoperability vector can be divided into two 

sets, 𝑞 and 𝑞̅, where 𝑞 is the inoperability vector of (𝑛 − 𝑟) industries, whose values are to 

be determined by the model, and 𝑞̅  is the inoperability vector of the 𝑟  industries, whose 

values are exogenously specified. For the disrupted industries, the final demand 

perturbation vector should be determined by the model (𝑐̅∗) and for the remaining (𝑛 − 𝑟) 

industries, the final demand perturbation vector is exogenously specified (𝑐∗). Therefore, by 

rearranging Eq. (3. 8), the value of exogenous inoperability and the final demand can be 

determined in Eq.(3. 13) (Crowther & Haimes, 2010), and the linear formulation can be 

presented in Eq.(3. 14). 

[𝐼 − 𝑇∗𝐴∗] [
𝑞
𝑞̅] = [ 𝑇∗] [

𝑐̅∗ 
𝑐∗ ] (3. 13) 
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(1 −  𝑡𝑖
∗𝑟𝑟𝑎𝑖𝑖

∗𝑟)𝑞𝑖
𝑟 −  ∑ ∑ 𝑡𝑖

∗𝑟𝑠𝑎𝑖𝑗
∗𝑠𝑞𝑗

𝑠

𝑛

𝑗=1
𝑖≠𝑗

𝑝

𝑠=1

=  ∑ 𝑡𝑖
∗𝑟𝑠𝑐𝑖

∗𝑠

𝑝

𝑠=1

 
(3. 14) 

Without loss of generality, Eq.(3. 8) can be used in the mathematical optimization models 

where 𝑞  and 𝑐  can be either a parameter (exogenously specified) or a decision variable 

(indigenously specified in the model).  

3.2.2. Modified SIRD Model 

The susceptible-infected-recovered-deceased (SIRD) model is a well-known 

mathematical representation of the dynamics of an epidemic or a pandemic (Zhu et al., 2019). 

The formulation of the SIRD model used in this research is resented in section 2.2.2.  is 

governed by ordinary differential equations or fractional differential derivatives (Kermack 

& McKendrick, 1927). It formulates the relation between the numbers of susceptible cases 

𝑆(𝑡), infected cases 𝐼(𝑡), recovered cases 𝑅(𝑡), and deceased cases 𝐷(𝑡) at each time and in 

a certain population.  

3.2.3. Proposed mathematical model 

The proposed model combines the Multi-Regional Inoperability Input-output model and 

the modified SIRD model to optimize the timing of the implementation of control strategies 

at the industry and regional levels. The definition of sets and the notation of the parameters 

and decision variables are shown in Table 3. 1, Table 3. 2, and Table 3. 3, respectively. 

 

 



 

55 
 

Table 3. 1. Model indices and sets 

Set Definition 

N Set of all states indexed by 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑁 (e.g., state 2) 

𝐾 Set of all industries indexed by 𝑘 ∈ 𝐾. 

 

Table 3. 2. Model parameters. 

Parameters Definition 

𝛼𝑖 The infection rate in state 𝑖  

𝛽𝑘 The infection rate in industry 𝑘  

𝜌 The recovery rate in the country 

𝛾𝑖 The death rate in state 𝑖  

𝜋𝑖  The initial susceptible population in state 𝑖  (equal to the initial 

population of state 𝑖 ) 

ℎ𝑖  The initial number of patients in state 𝑖  

𝑔𝑖 The initial status of the state 𝑖  

𝑓𝑖
𝑘 The initial status of the state 𝑖 for industry 𝑘  

𝑒𝑖
𝑘 The initial number of employees in state 𝑖 for industry 𝑘 

𝑞𝑖𝑡
𝑘  Inoperability of industry 𝑘 ∈ 𝐾 in state 𝑖 due to its closure  

𝑥𝑖𝑗
∗𝑘 Normalized amount of trade of industry 𝑘 ∈ 𝐾 between state 𝑖 and state 

𝑗 

𝑎𝑖
∗𝑙𝑘 Normalized amount of requirement of industry 𝑙 ∈ 𝐾 from industry 𝑘 ∈

𝐾 in state 𝑖  

𝑑𝑖
∗𝑘 Normalized changes of final demand from industry 𝑘 ∈ 𝐾 in state 𝑖  

𝜆𝑖 Vulnerability of state 𝑖 in regard to COVID infection 

𝜉𝑖 Index of the communities’ job insecurity in state 𝑖 due to pandemic policy 

𝑡𝑅 The average recovery period (~ 4 weeks) 

𝑡𝐼 The average immunity period (~ 12 weeks) 

𝑡𝐷 The average death period (~ 2 weeks) 

𝑚 Large number 

𝑡 The index of time ranging from 1 to time horizon 𝑇  
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Table 3. 3. Model decision variable. 

Variable Definition 

𝑞𝑖𝑡
𝑘  The measure of the inoperability of industry  𝑘 ∈ 𝐾  in state 𝑖 due to the closure 

of other industries, continuous 

𝑣𝑖𝑡
𝑘  The inoperability in industry  𝑘 ∈ 𝐾   in state 𝑖  due to the closure of other 

industries, continuous 

𝜐𝑖𝑡
𝑘  The potential inoperability in industry  𝑘 ∈ 𝐾  in state 𝑖 due to the closure of 

other industries, continuous 

𝑐𝑖𝑡
∗𝑘 The measure of the normalized changes of final demand from 𝑘 ∈ 𝐾  in state 𝑖, 

continuous 

𝑏𝑖𝑡
∗𝑘 The potential measure of the normalized changes of final demand from  𝑘 ∈ 𝐾  

in state 𝑖, continuous 

𝑝𝑖𝑡 Number of patients in state 𝑖 at time 𝑡 = 1, … , 𝑇, integer 

𝑤𝑖𝑡 Number of new patients in state 𝑖 at time 𝑡 = 1, … , 𝑇, integer 

𝑠𝑖𝑡 Number of total susceptible people in state  𝑖 at time 𝑡 = 1, … , 𝑇, integer  

𝑟𝑖𝑡 Number of susceptible people to infection in state 𝑖 at time 𝑡 = 1, … , 𝑇, integer 

𝑜𝑖𝑡
𝑘  Number of total susceptible employees in state  𝑖  and industry 𝑘 at time 𝑡 =

1, … , 𝑇, integer 

𝑛𝑖𝑡
𝑘  Number of total susceptible employees to infection in state  𝑖 and industry 𝑘 at 

time 𝑡 = 1, … , 𝑇, integer 

𝑦𝑖𝑡
𝑘  Equal to 1 if industry 𝑘 in state 𝑖 is open at time 𝑡 = 1, … , 𝑇, binary 

𝑧𝑖𝑡 Equal to 1 if state 𝑖 is open at time 𝑡 = 1, … , 𝑇, binary 

𝛿𝑡 Average national vulnerability at time 𝑡 = 1, … , 𝑇, integer  

𝜗𝑖𝑡 Measure of state 𝑖′s vulnerability at time 𝑡 = 1, … , 𝑇 

𝜇𝑖𝑡
−  Negative slack for the deviation of state 𝑖's vulnerability from the average of the 

country at time 𝑡 = 1, … , 𝑇 

𝜇𝑖𝑡
+  Positive slack for the deviation of state 𝑖's vulnerability from the average of the 

country at time 𝑡 = 1, … , 𝑇 

 

The proposed multi-objective mixed-integer linear programming (MOMILP) model 

contains three distinct objective functions shown in Eqs. (3. 15)-(3. 17), including (i) the 

average epidemiological impact in terms of the percentage of the infected population across 

the states and over the time horizon of the decision-making (F1), (ii) the average social 

impact value of the controlling policy in terms of the deviation of the social vulnerability 

from the national average social vulnerability in state closure over the time horizon of the 
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decision making (F2), and (iii) the average economic impact of controlling policy in terms of 

the inter-regional inoperability measure across industries and states over the time horizon 

of the decision making (F3).  

It is expected that the epidemiological impact (F1) and the economic impacts (F3) 

compete such that any strategy that decreases the epidemiological impact by industries 

closure would result in an increase in economic impact due to a higher inoperability, and 

vice versa. Also, the epidemiological impact (F1) and the social impacts (F2) may affect each 

other adversely if any strategy that decreases the epidemiological impact by state closure 

increases the social vulnerability deviation from the national average. Therefore, the 

MOMILP model balances all three objectives simultaneously.  

Eq.(3. 18) measures the level of the inoperability where q and c can be either the decision 

variables or a parameter. If the industry k in state i is open (𝑦𝑖𝑡
𝑘 = 1), then demand for the 

commodity of that industry is indigenously determined, and the inoperability level should 

be calculated exogenously based on the status of the interdependent industries. If the 

industry k in state i is closed (𝑦𝑖𝑡
𝑘 = 0), then demand for the commodity of that industry is 

perturbed and should be calculated exogenously, while the inoperability level is defined 

indigenously as the result of the percentage of output loss. Eqs. (3. 19)-(3. 22) and Eqs. (3. 

23)-(3. 26) are defined to determine whether q and c are decision variables or parameters 

based on the status of the industry (closed or open). For instance, if the industry k in state i 

is open ( 𝑦𝑖𝑡
𝑘 = 1 ), then 𝑞𝑖𝑡

𝑘 = 𝑣𝑖𝑡
𝑘   and 𝑣𝑖𝑡

𝑘 = 𝑣𝑣𝑖𝑡
𝑘  from Eqs.(3. 20)-(3. 21) and 𝑣𝑖𝑡

𝑘  is an 

unbounded decision variable in Eq. (3. 22). On the other hand if industry k in state i is closed 

(𝑦𝑖𝑡
𝑘 = 0), then 𝑞𝑖𝑡

𝑘 = 𝑢𝑖
𝑘  in Eq.(3. 19) and 𝑣𝑖𝑡

𝑘 = 0  from Eq.(3. 22) while 𝑣𝑣𝑖𝑡
𝑘  is a positive 
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decision variable which will not affecting the MRIIM model. The same explanation is 

applicable to Eqs.(3. 23)-(3. 26). 

Eqs. (3. 27)-(3. 29) quantifies the social vulnerability value coming out of the controlling 

policy at the state level. Two indicators are defined for the social vulnerability index, 

including (I) COVID-19 Community Vulnerability Index (CCVI), 𝜉𝑖 , in state i, and (II) the 

community job security during COVID-19, 𝜆𝑖, in state i. The value of 𝜉𝑖 measures the risk of 

getting COVID-19 in each state and it incorporates different factors, such as socioeconomic 

status, minority, and language status, household and transportation availability, 

epidemiological factors, healthcare system factors, the high-risk environment of living and 

working ad the population density. The data regarding the  𝜉𝑖  is determined by the COVID 

Community Vulnerability Index (CCVI) measured by (Surgo Ventures, 2021a). The value of 

𝜆𝑖 is measured by incorporating the size of each industry in each state and their associated 

employment change during Feb 2020- Feb 2021 by considering the type of industry and the 

community attributes of the employees such as age, gender, education level, and race and 

ethnicity. Eq.(3. 27)measures the social vulnerability index for each state at each time (𝜗𝑖𝑡) 

and Eq.(3. 28) measures the average social vulnerability index at the national level (𝛿𝑡). Eq.(3. 

29) quantifies the deviation of the social vulnerability of each state from the national social 

vulnerability index, which can be a negative deviation (𝜇𝑖𝑡
−) or a positive deviation (𝜇𝑖𝑡

+). The 

summation of positive and negative deviation will be minimized in the second objective 

function.  

Eqs. (3. 30)-(3. 44) generate the bounds for the modified SIRD model. The epidemiologic 

impact measures the number of infected people who are infected either in their social life or 
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during their work time. Constraint (3. 30) updates the number of patients at each time based 

on the number of patients in the previous period, the newly infected people (𝑊𝑖𝑡 ), the 

number of recovered cases at the time 𝑡 − 𝑡𝑅 and the number of deceased cases at the time 

𝑡 − 𝑡𝐷 . Eq.(3. 31) updates the number of new infectious (patients) based on the status of 

industries and states. It is assumed that every susceptible person may become infected 

during their work life or social life (except during work hours). Eq.(3. 31) is formulated to 

avoid double counting an employee’s chance of infection during their work life and social life. 

To incorporate the relationship between the status of the industries and states and the 

number of new patients in a linear formula, 𝑟𝑖𝑡 and 𝑛𝑖𝑡
𝑘  are defined in Eqs.(3. 32)-(3. 35) and 

Eqs. (3. 36)-(3. 39) respectively, with the same logic that is explained for Eqs. (3. 19)-(3. 22) 

earlier. For example, if state i is open (𝑧𝑖𝑡 = 1) then based on Eqs.(3. 33)-(3. 34), 𝑟𝑖𝑡 = 𝑠𝑖𝑡 and 

𝑠𝑖𝑡 is the number of infected people in state i at time t measured by Eq.(3. 32). On the other 

hand, if state i is closed (𝑧𝑖𝑡 = 0), then there is no new infection at time t in state i, therefore 

𝑟𝑖𝑡 = 0 from Eq.(3. 35), being used in Eq.(3. 33). The same logic can be used to quantify the 

new infections in industries measured by Eqs.(3. 36)-(3. 39). 

Eqs. (3. 40)-(3. 42) limit the infected and susceptible populations in each state to its total 

population and the infected workforce of industry  𝑘  in state  𝑖  to its total number of 

employees. Eqs. (3. 43)-(3. 47) define the initial value for each decision variable at time 𝑡 =

0, and Eqs.(3. 48)-(3. 52) denote the nature of decision variables. 
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F1: min   ∑ ∑ (
𝑝𝑖𝑡

𝜋𝑖
) (

1

𝑁𝑇
) 

𝑖∈𝑁

𝑇

𝑡=1

  
(3. 15) 

F2: min   ∑ ∑ ( 
𝜇𝑖𝑡

− + 𝜇𝑖𝑡
+   

|𝑁𝑇|
)

𝑖∈𝑁

𝑇

𝑡=1

  
(3. 16) 

F3: min   ∑ ∑ ∑ (
𝑞𝑖𝑡

𝑘

𝑁𝑇𝐾
)

𝑘∈𝐾𝑖∈𝑁

𝑇

𝑡=1

 
(3. 17) 

s. t. 
 

 

𝑞𝑖𝑡
𝑙 =  ∑ ∑(𝑥𝑖𝑗

∗𝑙  𝑎𝑗
∗𝑙𝑘𝑞𝑗𝑡

𝑘 )

𝑘∈𝐾𝑗∈𝑁

+  ∑(𝑥𝑖𝑗
∗𝑙𝑐𝑗𝑡

∗𝑙) 

𝑗∈𝑁

 ∀𝑖 ∈ 𝑁, ∀ 𝑙 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (3. 18) 

𝑞𝑖𝑡
𝑘 =  𝑣𝑖𝑡

𝑘 + (1 − 𝑦𝑖𝑡
𝑘 )𝑢𝑖

𝑘  ∀𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (3. 19) 

𝜐𝑖𝑡
𝑘 ≤ 𝑣𝑖𝑡

𝑘 + 𝑚(1 − 𝑦𝑖𝑡
𝑘 ) ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (3. 20) 

𝜐𝑖𝑡
𝑘  ≥ 𝑣𝑖𝑡

𝑘  ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (3. 21) 

𝑣𝑖𝑡
𝑘 ≤ 𝑚 𝑦𝑖𝑡

𝑘  ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (3. 22) 

𝑐𝑖𝑡
∗𝑘 =  𝑐𝑖𝑡

∗𝑘 + 𝑦𝑖𝑡
𝑘  𝑑𝑖

∗𝑘 ∀𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (3. 23) 

𝑏𝑖𝑡
∗𝑘 ≤ 𝑐𝑖𝑡

∗𝑘 + 𝑚𝑦𝑖𝑡
𝑘  ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (3. 24) 

𝑏𝑖𝑡
∗𝑘 ≥ 𝑐𝑖𝑡

∗𝑘 ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (3. 25) 

𝑐𝑖𝑡
∗𝑘 ≤ 𝑚 (1 − 𝑦𝑖𝑡

𝑘 ) ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (3. 26) 

𝜗𝑖𝑡 = 𝜉𝑖(1 − 𝑧𝑖𝑡) + 𝜆𝑖𝑧𝑖𝑡  ∀𝑖 ∈ 𝑁,  𝑡 = 1, … , 𝑇 (3. 27) 

𝛿𝑡 =
1

𝑁
∑ 𝜉𝑖(1 − 𝑧𝑖𝑡) + 𝜆𝑖𝑧𝑖𝑡

𝑖∈𝑁

  𝑡 = 1, … , 𝑇 
(3. 28) 

𝜗𝑖𝑡 − 𝛿𝑡 + 𝜇𝑖𝑡
− − 𝜇𝑖𝑡

+ = 0  ∀𝑖 ∈ 𝑁,  𝑡 = 1, … , 𝑇 (3. 29) 

𝑝𝑖𝑡 = 𝑝𝑖(𝑡−1) + 𝑤𝑖(𝑡−1) − 𝛾𝑖𝑤𝑖(𝑡−𝑡𝐷)

− (1 − 𝛾𝑖)𝑤𝑖(𝑡−𝑡𝑅) 
∀𝑖 ∈ 𝑁,  𝑡 = 1, … , 𝑇 

(3. 30) 
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𝑤𝑖𝑡 = 𝛼𝑖 (𝑟𝑖𝑡 − ∑ 𝑛𝑖𝑡
𝑘

𝑘∈𝐾

) + (1

− (1 − 𝛼𝑖 )(1 − 𝛽𝑖
𝑘)) ∑ 𝑛𝑖𝑡

𝑘

𝑘∈𝐾

 

∀𝑖 ∈ 𝑁,  𝑡 = 1, … , 𝑇 

(3. 31) 

𝑠𝑖𝑡 = 𝑠𝑖(𝑡−1) + (1 − 𝛾𝑖)𝑤𝑖(𝑡−𝑡𝑅−𝑡𝐼) − 𝑤𝑖(𝑡−1) ∀𝑖 ∈ 𝑁,  𝑡 = 1, … , 𝑇 (3. 32) 

𝑠𝑖𝑡 ≤ 𝑟𝑖𝑡 + 𝑚(1 − 𝑧𝑖𝑡) ∀𝑖 ∈ 𝑁,  𝑡 = 1, … , 𝑇 (3. 33) 

𝑠𝑖𝑡 ≥ 𝑟𝑖𝑡 ∀𝑖 ∈ 𝑁,  𝑡 = 1, … , 𝑇 (3. 34) 

𝑟𝑖𝑡 ≤ 𝑚 𝑧𝑖𝑡 ∀𝑖 ∈ 𝑁,  𝑡 = 1, … , 𝑇 (3. 35) 

𝑜𝑖𝑡
𝑘 = 𝑜𝑖(𝑡−1)

𝑘 − (1 − 𝛾𝑖) 𝛽𝑖
𝑘𝑛𝑖(𝑡−𝑡𝑅−𝑡𝐼)

𝑘

− 𝛽𝑖
𝑘𝑛𝑖(𝑡−(𝑡𝑅+𝑡𝐼))

𝑘  

∀𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1,  … , 𝑇 

(3. 36) 

𝑜𝑖𝑡
𝑘 ≤ 𝑛𝑖𝑡

𝑘 + 𝑚(1 − 𝑦𝑖𝑡
𝑘 ) ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (3. 37) 

𝑜𝑖𝑡
𝑘  ≥ 𝑛𝑖𝑡

𝑘  ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (3. 38) 

𝑛𝑖𝑡
𝑘 ≤ 𝑚 𝑦𝑖𝑡

𝑘  ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (3. 39) 

𝑝𝑖𝑡 ≤ 𝜋𝑖  ∀𝑖 ∈ 𝑁,  𝑡 = 1,  … , 𝑇 (3. 40) 

𝑠𝑖𝑡 ≤ 𝜋𝑖  ∀𝑖 ∈ 𝑁,  𝑡 = 1,  … , 𝑇 (3. 41) 

𝑜𝑖𝑡
𝑘 ≤ 𝑒𝑖

𝑘 ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾,  𝑡 = 1, … , 𝑇 (3. 42) 

𝑠𝑖𝑡 = 𝑟𝑖𝑡 = 𝜋𝑖  ∀𝑖 ∈ 𝑁,  𝑡 = 0 (3. 43) 

𝑜𝑖𝑡
𝑘 =  𝑛𝑖𝑡

𝑘 = 𝑒𝑖
𝑘      ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾,  𝑡 = 0 (3. 44) 

𝑝𝑖𝑡 = ℎ𝑖  ∀𝑖 ∈ 𝑁,  𝑡 = 0 (3. 45) 

𝑧𝑖𝑡 = 𝑔𝑖 ∀𝑖 ∈ 𝑁,  𝑡 = 0 (3. 46) 

𝑦𝑖𝑡
𝑘 = 𝑓𝑖

𝑘 ∀ 𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾,  𝑡 = 0 (3. 47) 

𝑦𝑖𝑡
𝑘 ∈ {0,1} ∀𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾, 𝑡 = 1, … , 𝑇 (3. 48) 
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𝑧𝑖𝑡 ∈ {0,1} ∀𝑖 ∈ 𝑁, 𝑡 = 1, … , 𝑇 (3. 49) 

𝑝𝑖𝑡, , 𝑠𝑖𝑡, 𝑟𝑖𝑡, 𝑤𝑖𝑡, 𝜗𝑖𝑡 , 𝜇𝑖𝑡
− , 𝜇𝑖𝑡

+ ≥ 0  ∀𝑖 ∈ 𝑁, 𝑡 = 1, … , 𝑇 (3. 50) 

𝑞𝑖𝑡
𝑘 , 𝑐𝑖𝑡

∗𝑘, 𝑏𝑖𝑡
∗𝑘, 𝑜𝑖𝑡

𝑘 , 𝑛𝑖𝑡
𝑘 , 𝑣𝑖𝑡

𝑘 , 𝑣𝑣𝑖𝑡
𝑘 ≥ 0 ∀𝑖 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾, 𝑡 = 1, … , 𝑇 (3. 51) 

𝛿𝑡 ≥ 0 𝑡 = 1, … , 𝑇 (3. 52) 

3.3. Illustrative Example 

The proposed model is illustrated with several sources of data describing the economy 

of industries and states and the COVID pandemic characteristics in the United States. 

3.3.1. Data 

In this study, the data of 50 states, the District of Columbia, and 14 industries are 

considered. Table 3. 4 shows the definition of the industries and their North American 

Industry Classification System (NAICS) code, along with their industry-specific rate of 

COVID-19 infection, the unemployment rate during the pandemic, and the rate of basic 

inoperability when controlling policy in terms of reduced capacity is applied estimated from 

the data used in this research are divided into three categories as follows. 

1- Economic data 

Data for the Input-output model (includes the output of industries in each state ( 𝑋 ) and 

the technical coefficient matrix (𝐴)) are maintained by the Bureau of Economic Analysis 

(BEA) (2018).  Figure 3. 1a shows the gross domestic production (GDP) of each industry in 

each state as a proxy for the output matrix X. according to this data California, Texas, and 

New York is the top states with the highest level of GDP. Also, Finance, Government, 

manufacturing, and professional and business industries are the most productive industries 
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in these top productive states and the majority of states. Figure 3. 1b also shows that 

according to the technical coefficient matrix (A), Finance, Manufacturing, and professional 

and business industries are the neediest industries that need input from the majority of 

other industries to operate. The technical coefficient is a critical component of inoperability 

input-output analysis and the controlling policy-making as closing a highly needed industry 

will propagate to the other industries and fail other industries’ operations. 

provided by (Chen et al., 2021). 

Table 3. 4. The definition and information of the industries considered in this study. 

NAIC 
code 

Industry definition Infection 
rate (%) 

Normalized 
unemployment 
rate (%) 

Estimated 
inoperability 

(%) 
11   Agriculture, forestry, fishing, and 

hunting 9 0 4.6 
21   Mining, quarrying, and oil and gas 

extraction 1 2.9 3.1 
22   Utilities 0 0.2 2.3 
23   Construction 8 8.9 0.3 
31   Manufacturing 9 16.3 2.9 
42   Wholesale trade 3 7.5 2.3 
45   Retail trade 10 10.5 3.4 
48   Transportation and warehousing 5 4.8 4.4 
51   Information 1 7.2 1.4 
52   Finance, insurance, real estate, 

rental, and leasing 2 3 0.7 
54   Professional and business services 3 22.3 1.5 
61   Educational services, health care, 

and social assistance 4 37.6 3.7 
71   Arts, entertainment, recreation, 

accommodation, and food 
services 1 100 4.0 

92 Government and government 
enterprises 4 

40.2 
3.4 
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(a)  

 

(b)  

  Figure 3. 1. (a) The output (Gross Domestic Production) of various industries in each 

state ($ billions) in 2019 (Bureau of Economic Analysis (BEA), 2018), (b) Technical 
coefficient data (Bureau of Economic Analysis (BEA), 2018). 

 

Data for the commodity flow coefficient (matrix 𝑇) are estimated from the Commodity 

Flow Survey database maintained by the Bureau of Transportation Statistics (BTS) (2017). 

Figure 3. 2 shows the annual flow of goods in US dollars using multi-modal transportation 

across different regions in the United States. The majority of the goods flow within each state, 

therefore in Figure 3. 2, the flow within states is filtered, to depict the significance of between 
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state flows. Between states, flows are important for developing the pandemic policy as it 

shows the industry closure in one state will affect other states significantly.   

 

Figure 3. 2. The annual flow of goods using multi-modal transportation across 

different states ($ billions). 

 

2- Fairness index data 

The impact of COVID-19 on individual health and state- and industry-level economic 

performance differs across states and industries. Therefore, any controlling strategy should 

consider the social fairness between states and between industries as much as possible. 

Social fairness is calculated from two components. The first component (𝜉𝑖) measures the 

risk of getting infected with and dying from COVID-19 in each state(Surgo Ventures, 2021b). 
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This CCVI index, calculated by (Surgo Ventures, 2021b), incorporates different critical 

vulnerability factors, such as socioeconomic status, minority, and language status, household 

and transportation availability, epidemiological factors, healthcare system factors, the 

riskiness of living and working, and population density. Figure 3. 3 shows the CCVI 

associated with each state(Surgo Ventures, 2021b). 

 

Figure 3. 3. The COVID Community Vulnerability Index (CCVI) across states in the US 
(Surgo Ventures, 2021b). 

 

The second component of social fairness, (𝜆𝑖), measures the vulnerability of employees 

to lose their job in each state, in terms of the percentage of employees who lost their job due 

to COVID-19.  This value depends on the community attributes of the employees such as age, 

gender, education level, and race and ethnicity. According to the US Bureau of Labor 

Statistics (BLS), COVID-19 has changed the employment level in most industries significantly. 

Figure 3. 4a shows the employment change by industry between February 2020 and 

February 2021, while Figure 3. 4c shows the distribution of employees over various 
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industries in each state. Industries such as Leisure and hospitality, Government, Educational 

services, Professional and business services, and Manufacturing are the top industries that 

experienced employee loss due to COVID-19. Also, depending on the combination of 

employer demography, the vulnerability of losing a job may differ. As is shown in Figure 3. 

4b, and according to the US Bureau of Labor Statistics (BLS), women employees, Latino 

employees, employees with a college education or less, and employees at age of 34-54 have 

experienced higher rates of unemployment between February 2020 and September 2020. 

Figure 3. 4d shows the distribution of employees in each state based on different 

demographic attributes.  

To determine the value of 𝜆𝑖, for each state, we calculated the weighted average over 

the multiplication of the percentage of job loss in each industry (from Figure 3. 4b) and the 

percentage of employees in each industry (from Figure 3. 4b) plus the weighted average 

over the multiplication of the percentage of job loss in each category (from Figure 3. 4c) 

and the percentage of employee’s demography in each industry (from Figure 3. 4d). The 

normalized value of 𝜉𝑖  and  𝜆𝑖 for each state is depicted in Figure 3. 5. By using the 

normalized value of 𝜉𝑖  and  𝜆𝑖, Eq.(2.18) measures the total fairness attribute for each state 

such that if the state is open then the infection vulnerability index should be considered, 

and if the state is closed the job security vulnerability index should be considered. Then 

Eq.(2.20) tries to minimize the deviation of the total vulnerability index of each state from 

the national average vulnerability index to keep fairness among different states.   
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(a) (b) 

 
(c) 

 
(d) 

Figure 3. 4. (a) Employment change by industry (1000), Feb 2020- Feb 2021. (b) The 

total number of employees of each industry in each state. (c) Share of the workforce 

as of February 2020 and share of job losses between February 2020-September 
2020. (d) demographic distribution of employees in each state. 
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Figure 3. 5. The normalized value of 𝝃𝒊 and  𝝀𝒊 for each state. 

 

3- COVID-19 data:  

These data include the COVID-19-related rates, including the infection, recovery, and 

death rate at the state level in the United States. These data are gathered from the COVID-19 

Impact Analysis Platform compiled by the University of Maryland (University of Maryland, 

2020).  The average proportion of the total recovery to the total active cases all around the 

US is equal to 0.6. Data related to the recovery time, death time, and immunity time frame 

are gathered from the literature and reports from the Centers for Disease Control and 

Prevention (CDC)3. The infection rate in each industry is derived from the Washington state 

department of health report (Department of Health, 2020). These data show the COVID 

infection rate in different industries in Washington state, and we have used the same rate for 

similar industries in all other states. 

 
3 https://www.cdc.gov  

https://www.cdc.gov/
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 According to Kyrychko et al. (2020), the recovery time, 𝑡𝑅 vary between 10 to 60. Also, 

the value of the time to death, 𝑡𝐷 , can vary between 0 to 40 days. The time interval in our 

analysis is considered equivalent to 14 days. Therefore, we assume that 𝑡𝑅 = 4 (equivalent 

to 28 days) and 𝑡𝐷 = 1(equivalent to 14 days). According to the CDC, evidence suggests that 

reinfection is uncommon three months after the initial infection. Therefore, we consider the 

immunity time 𝑡𝑉 = 6 in the model. At the initial time 𝑡 = 0, all industries, and states are 

considered open. 

3.3.2. Solution Approach 

We utilize the augmented ε-constraint method proposed by (Mavrotas & Florios, 2013) 

to solve the proposed multi-objective MOMILP model. The augmented ε-constraint method 

(AUGMECON) is an efficient version of the ε-constraint method, which accelerates the 

process of generating Pareto-optimal solutions by avoiding redundant iterations.  

All the implementations in this study are performed on a 64-bit desktop system with 12.0 

GB RAM and the Core-i7-6500U CPU@2.5GHz. The proposed framework is modeled and 

solved by Gurobi in Python and the implementation of each AUGMECON run takes 1 to 6 

hours with at least a 5-10% optimality gap.  

3.4. Results 

To generate the Pareto optimum solutions, we consider 5×5 grid points and the results 

for the normalized payoff matrix and range of three objective functions are shown in Table 

3. 5. The Pareto optimum solution is also shown in Figure 3. 6. The epidemiologic and 

economic impacts are negatively correlated through the industry status variable (𝑦𝑖𝑡
𝑘 ), the 
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epidemiologic and social impacts are affecting each other through the state status variable 

(𝑥𝑖𝑡 ) and there is no correlation between economic impact and the social impact. When 

looking for the optimum policy for controlling all three impacts of the pandemic, the model 

tries to decrease the economic impact by keeping more industries. However, since opening 

states and all industries would significantly increase the number of patients, the model 

chooses to close states with less social impact and less demanded industries. 

 
Table 3. 5. The normalized payoff matrix and 
range of three objective functions. 

 

 

 𝐹1 
value 

𝐹2 
value 

𝐹3 
value 

Min 𝐹1 0 1 1 
Min 𝐹2 0.556 0 0.458 
Min 𝐹3 1 0.721 0 

 

Figure 3. 6. The Pareto-optimal 
solutions for the proposed 
MOMILP.  

Figure 3. 7 shows the change in normalized values of the three impacts when the 

proposed model is solved for the different single objective functions and a multi-objective 

over the time horizon of 14 weeks (𝑇 = 7). For the sake of compression of the four objective 

functions, we choose a solution from the Pareto-optimal set that results in the minimum 

cubic distance from the lower bound of each objective in that specific scenario. For instance, 

among the 25 Pareto-optimal solutions, one of the solution points has the lowest cubic 

distance from the minimum values of F1, F2, and F3 from the payoff matrix. The selected 

Pareto-optimal solution results in the normalized values of the three objective functions such 

that F1= 0.56, F2=0.89, and F3=0.66. 
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If the epidemiological impact is the only focus of policymakers, 𝑚𝑖𝑛 𝐹1 would result in 

the smallest infected population over the first two periods. This causes several states and 

industries to close, which increases inoperability significantly. Also, when the states are 

closed, under-presented communities may lose other jobs. If the policymaker's focus is on 

maintaining fair decisions with respect to demographic and COVID vulnerability (𝑚𝑖𝑛 𝐹2), 

then the number of patients and the inoperability of industries would increase as states and 

industries may close and reopen frequently. The proposed MOMILP results in significantly 

different outcomes such that the optimal values of each objective are roughly close to each 

other, while in the first three scenarios, the range of each objective is significantly higher. 

The derived strategy would result in higher epidemiologic impact, lower social impact, and 

lower inoperability compared to when the focus is placed on decreasing epidemiologic 

impact. It also results in higher social and higher inoperability compared to when all focus is 

on the social impact. The results from all three MOMILP objective functions are more 

convincing for policymakers interested in minimizing all three aspects of the pandemic 

impact. The selected Pareto solution suggests closing more states and more industries. 

However, this results in a higher unbalanced solution for the social impact, and it creates 

more economic issues stemming from the increase in the lost jobs.  
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(a) (b) (c) 
Figure 3. 7. The results of the proposed model for (a) Normalized average percentage 
of patients, (b) Normalized average social impact, and (c) Normalized average 
inoperability. 

 

Every Pareto-optimal solution provides the timing of required changes in the state and 

industry status. Figure 3. 8 shows the optimal opening and closure policy for each state and 

industry over the time horizon for the selected solution. At the beginning of the planning 

horizon, all states and industries are open. Due to the increase in the number of infections, 

the model starts with closing the states with high populations such as Illinois, Texas, and 

California among others. It also closes industries with a lower impact on the inoperability 

while having a higher number of employees, such as state and industries get closed and after 

the decline in the number of patients, the model opens states and industries selectively so it 

does not cause high social and inoperability impacts.  

Figure 3. 8 shows the state and the industry status over the time horizon derived from 

the selected Pareto-optimal solution. The interregional technical coefficient plays an 

important role in defining the industry status. The model tries to keep the critical industries 

open more often. These industries whose closure results in high inoperability (Chen et al., 

2021) include Professional and business services, Finance, Manufacturing, and Government. 

According to Figure 3. 1b, the need of other industries for the commodity of these three 
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industries is also high. Among the industries whose interregional technical coefficient is low, 

Construction, Educational services, and Mining are closed more often. 

 
(a) 

 
(b) (c) 

Figure 3. 8. State and industry level policy for the selected Pareto optimum solution. 

(a) the percentage of time that each industry in each state is open, (b) the percentage 

of open industries over the planning time horizon, and (c) the state status over the 

planning time horizon. 

 

The results show that Alabama, California, Florida, Georgia, Illinois, Louisiana, New York, 

North Carolina, Texas, and Washington are the states that should open more often. Although 

the high population of these states causes a high rate of infection, the demographic attribute 

of the population, the COVID vulnerability index, and the scale of employees and their job 

security index in this state play a critical role in determining the state's status. Therefore, the 

model keeps these states open so that the social vulnerability attribute is as close as possible 

to the national average 
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Figure 3. 9. shows the value of the three target impacts of the selected policy at the state 

and industry levels over the planning horizon. According to  Figure 3. 9a at time 0, all states 

and industries are open, resulting in an epidemiological impact at time 1. The first two 

periods show a high percentage of infections as more industries and states are open, then 

the model starts closing states and industries. California, Georgia, North Carolina, and 

Alabama experience a high rate of infections as they are more open under the selected policy. 

Figure 3. 9b shows the social vulnerability index resulting from the selected policy. States 

whose closure causes a high deviation from the national social vulnerability index are forced 

to stay open more often by the proposed model. California, Florida, Illinois, New York, North 

Carolina, Ohio, Pennsylvania, and Texas experience fewer unfair decisions under the selected 

policy. This is compatible with the fact that these are large states with the highest variation 

in the demographic index and also a higher COVID vulnerability index. Therefore, the model 

tries to give more weight to the social vulnerability index, in order to keep the social impact 

minimum and to keep the fairness between states higher. Colorado, Connecticut, Delaware, 

Idaho, Iowa, Minnesota, Nebraska, Utah, and West Virginia are states where the social 

vulnerability index is high, and they are experiencing higher adverse social impact. Figure 3. 

9c shows the inoperability caused by the selected policy. Agriculture, Mining, Utility, 

Construction, Education, Finance, Art, and Government industries have the highest levels of 

interstate trade and the least amount of intrastate trade, suggesting that the closure of these 

industries causes high interstate inoperability. More specifically, the closure of industries 

such as Manufacturing, Professional businesses, Transportation, and Wholesale, especially in 

states such as California, Louisiana, Texas, Washington, and Georgia, will result in high 

interstate inoperability.  
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(a) 

 
(b) 

 
(c) 

   
Figure 3. 9. State and industry level policy for the selected Pareto optimum solution. 
(a) the normalized average percentage of patients in each state over the planning time 
horizon, (b) the normalized average of the social vulnerability index in each state over 
the planning time horizon, and (c) the normalized average inoperability of each 
industry over the planning time horizon. 

 

To explain the importance of considering the social and the economic impact of a 

pandemic along with the epidemiologic impact, we selected two states randomly (here 

California and Pennsylvania) and analyzed the results based on the industries’ status shown 

in Figure 3. 10,  the inter-regional and inter-industrial dependencies based on the technical 

coefficients shown in Figure 3. 1b and the normalized trade flow information shown in 

Figure 3. 11 and Figure 3. 12.   
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3.4.1. Analysis of Inoperability in California  

According to the commodity flow survey, 50% and 52% of commodity trade flow within 

California and Pennsylvania, respectively. The top state recipients of commodities exported 

from California are Nevada, Arizona, and Hawaii, mainly from industries such as Retail trade, 

Transportation and warehousing, and Professional and business services. So, any 

inoperability in these industries will result in subsequent inoperability in the destination 

state’s industries. On the other hand, California imports mostly from Arizona, Utah, and 

Colorado, and from industries such as Mining, Transportation and warehousing, and 

Information. So, if any of these industries experience failure, interdependent industries in 

California will experience some level of inoperability. Figure 3. 9 shows that the highest 

inoperability of industries in California belong to Agriculture, Education, Arts, Mining, Retail 

trade, Wholesale trade, Information, and Utilities. The inoperability of Agriculture, Education, 

and Arts stem from the closure of these industries in California after times 𝑡 = {1,4} and 𝑡 =

3   respectively. The Mining industry requires commodities mostly from Manufacturing, 

Professional and business services, Finance, and Mining industries. Almost 80% of these 

commodities are supplied from California, Utah, Arizona, and Montana. The closure of Mining 

in-between time 𝑡 = 1 and 𝑡 = 7 in Utah and Montana, and at time 𝑡 = {3,4} and time 𝑡 =

{6,7} in California, cause the main inoperability in the Mining industry in California. Closure 

of Manufacturing at time 𝑡 = 5 and 𝑡 = 6 in California and Utah, respectively, the closure of 

Professional and business services at times 𝑡 = 3, 𝑡 = {6,7}  in California and Arizona, 

respectively, and the closure of Finance at times 𝑡 = {6,7} in California are the other sources 

of the inoperability in Mining. Similarly, the inoperability of Retail trade requires more than 

50% of its input from Professional and business services, Finance, Transportation, 
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Manufacturing, Utilities, Wholesale, and Information. The inoperability of Retail trade in 

California stems from the closure of Professional and business services at times 𝑡 = 3 and 𝑡 =

{6,7}  in California and Arizona, respectively, and the closure of Finance, Utilities, and 

Information, respectively, at times 𝑡 = {6,7} , 𝑡 = {1,2,5,6} , and 𝑡 = {1,2,3,4,5,6,7}  in 

California. The inoperability of Retail trade also stems from the closure of Transportation in 

California and Mississippi at the time 𝑡 = {7} and 𝑡 = {1,5,6,7}, respectively, and the closure 

of Manufacturing in California and Georgia at times 𝑡 = {5} and 𝑡 = {6} respectively and the 

closure of Wholesale trade in California, Texas, and Michigan at times 𝑡 = {3,4,5,6,7}, 𝑡 =

{3, 5,6,7} and 𝑡 = {3,4,6,7}, respectively. Similar analysis can be done for the Wholesale trade, 

Information, Utilities, and other industries in California using the commodity flow 

information, technical coefficient table, and the optimal pandemic policy. 

3.4.2. Analysis of Inoperability in Pennsylvania  

Pennsylvania imports mostly from West Virginia, New Jersey, New York, Ohio, and 

Virginia from industries such as Mining, Professional and business services, and Wholesale 

trade. The top state recipients of exports from Pennsylvania are Delaware, New Jersey, and 

Maryland, mainly from industries such as Professional and business services, Transportation 

and warehousing, Information, and Manufacturing. Therefore, any failure in these industries 

in Pennsylvania will cause some levels of inoperability in the other industries in 

interdependent states. For example, according to Figure 3. 1b the commodity of the 

Professional and business services industry is mainly required by itself and Information, Retail 

and Wholesale trade industries. Professional and business services are only closed at time 𝑡 =

6, therefore it contributes the most to the inoperability of the four independent industries in 
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Wyoming, Connecticut, Pennsylvania, Ohio, and DC. The commodity of Transportation 

industry is mainly required by itself and Utilities, and Retail trade industries. Transportation 

industry in Pennsylvania is closed at time 𝑡 = {3,4,6,7} and this closure mainly contributes 

to the inoperability of the Transportation Utilities, and Retail trade industries in 

Pennsylvania, Delaware, and Maryland. The effect of the pandemic policy on the propagation 

of the inoperability to different industries in different states can be analyzed similarly.  

3.4.3. Social impact  

The proposed model decides about the state status based on the epidemiologic impact 

(number of infected populations in each state influenced by the specific infection rate and 

the population of the state) and the social effect (deviation from the national social 

vulnerability level at each time). The decision of state status is part of a national decision, 

and the status of every state depends on the status of the other state so that the 

epidemiologic impact and the social impact at the national level are minimized. In 

combination with the status of other states, the model decides to open California more often 

than Pennsylvania. In general, the epidemiologic impact is more significant than the social 

impact in the model and the model opens.  According to Figure 3. 5, California has the highest 

CCVI value (𝜉𝑖 = 1) in the United States. This means if California stays open for a longer time, 

the percentage of the infected population goes up significantly. However, California has also 

a high ratio of vulnerable communities losing their job (𝜆𝑖 = 0.9  ) if the state got closed more 

often. In comparison, Pennsylvania has a moderate CCVI value ( 𝜉𝑖 = 0.5 ) and ratio of 

vulnerable communities to losing their job (𝜆𝑖 = 0.3). So closing and opening Pennsylvania 

would result in a moderate social impact while the status of California is critical. 



 

80 
 

 
Figure 3. 10. The status of industries in each state over the planning horizon from the 
selected Pareto optimum solution.  
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Figure 3. 11. The normalized flow of commodities from California and Pennsylvania 
to different states. 
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Figure 3. 12. The normalized flow of commodities from different states to California 
and Pennsylvania. 

 

3.5. Concluding remarks 

This research explores a improve state-level and industry-level operational decisions 

during pandemic outbreaks while minimizing three critical impacts of the pandemic 

including the epidemiologic impact, the social impact of the decisions for each state, and the 

inoperability caused by the industry-level decisions. The proposed model integrates SIRD 

and MRIIM models into a mixed-integer linear programming model for estimating the best-

control strategy during a pandemic over a specified time horizon. The contribution of this 
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paper lies in (i) proposing a prescriptive decision-making tool, based on a multi-objective 

mixed-integer linear programming optimization model which results in an optimum policy 

to control pandemics at the state and industry level, and (ii) proposing a decision-making 

model that incorporates the societal fairness, the epidemiologic impact, and the inoperability 

impact of the pandemic in deriving the optimum controlling policy, (iii) considering the 

social attribute from two aspects including the vulnerability of social communities to both 

getting infected by COVID due to the open state and losing a job due to the state closure, 

measured by the deviation from the national social vulnerability index, and (iv) quantifying 

the inoperability impact of a pandemic by combining the supply side multi-regional 

inoperability model (MRIIM) and the industry level decisions within the optimization model. 

The proposed framework minimizes three main components: (i) the epidemiological 

impact measured by SIRD formulation, (ii) the deviation of the social vulnerability index in 

each state from the national average social vulnerability index, and (iii) the economic impact 

measured by the inoperability of industries caused by industry closure. While the state and 

industry closure result in lower epidemiologic impact, the industry closure increases the 

industry’s inoperability. Also, the state reopening contributes to the number of infected 

populations, which ultimately impacts the workforce effectiveness of the industries, closing 

states contributes to the job losses in different social communities and industries, and finally, 

it impacts the economy of the states un-equally. Therefore, the timing and the choice of 

closure and reopening of states and industries are important for minimizing the 

epidemiologic, social, and economic impact of the pandemic.  
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The proposed model is implemented on the COVID-19 data from over 50 states, the 

District of Columbia, and 14 industries in the US. The results show that with a different 

combination of epidemiologic, social, and economic components, some states have shown a 

high percentage of patients in some scenarios while others have shown a high level of job 

losses. Furthermore, the closure of each industry in one state may affect another industry’s 

output in the same or other states and therefore affect the closure or opening of industries 

in the same or other states. Therefore, the proposed multi-objective mixed-integer linear 

programming tries to find a balanced control policy for each state and industry and at each 

period to diminish all three impacts of the pandemic simultaneously. 

As such, future work will explore (i) incorporating various levels of the strictness of the 

control policy based on the criticality of industries, businesses, and states, and (ii) measuring 

the effect of the adoption and the timing of vaccination on the optimal closure and reopening 

strategies, and (iii) examining the efficacy of the decision-making level, by comparing 

national, regional and state level aspects of socio-economic fairness.   
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Chapter 4: Concluding Remarks 

4.1. Summary and Conclusions 

The core of this thesis is to design a decision-making tool to evaluate the impact of the 

pandemic on the social, economic, and health of the countries and optimize the policy which 

can minimize all three adverse impacts of the pandemic. For this purpose, we combined 

required models which measure each aspect of the pandemic crisis: the SIRD model for 

measuring the epidemiologic impact, MNFP for the economic impact on the interstate trade 

and the unmet demand of the final consumers, the MRIIM model to quantify the inoperability 

of industries due to their dependencies to the output of other industries in same or other 

states, and the vulnerability of social communities in each state against pandemic health and 

economic threats. The proposed framework involves two main decisions: (i) when each state 

should be closed and when it should reopen and (ii) when each industry in each state should 

be closed and when it should reopen. We establish three objectives to address all three 

aspects of pandemic impact and this motivates the need for using appropriate algorithms 

such as variations of epsilon constraint methods. Therefore, we use the Augmented epsilon 

constraint method which tries to optimize one of the objectives and push the other two 

objectives toward their optimum values by setting lower bounds on the two objectives in a 

combination of intervals.  

The results of the first model show that with a different combination of economic and 

epidemiologic components, some states have shown a high percentage of patients in some 

scenarios while others have shown a high level of negative economic impact. Furthermore, 

the closure of each industry in one state may affect the unmet demand in another state and 
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therefore affect the closure or opening of industries in the same or other states. Therefore, 

the proposed multi-objective mixed-integer linear programming tries to find a balanced 

control policy for each state and industry and each time to diminish the economic and 

epidemiological impact of the pandemic simultaneously. 

The results of the second model show that with a different combination of epidemiologic, 

social, and economic components, some states have shown a high percentage of patients in 

some scenarios while others have shown a high level of job losses. Furthermore, the closure 

of each industry in one state may affect another industry’s output in the same or other states 

and therefore affect the closure or opening of industries in the same or other states. 

Therefore, the proposed multi-objective mixed-integer linear programming tries to find a 

balanced control policy for each state and industry and at each period to diminish all three 

impacts of the pandemic simultaneously. 

4.2. Future Directions 

Analyzing the impact of the pandemic on the socio-economic systems is not an easy task. 

The inherent complexities, nonlinear functional interdependencies, stochastic behavior, and 

temporal uncertainties of cyber-physical-social systems have made them significantly 

vulnerable to failure, causing substantial risks to national, social, and economic security. 

Different details can be added to the proposed model which makes it more applicable to the 

real-world situation.  Future work will explore (i) incorporating various levels of the 

strictness of the control policy based on the criticality of industries, businesses, and states, 

and (iii) measuring the effect of the adoption and the timing of vaccination on the optimal 

closure and reopening strategies.   
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