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ABSTRACT

Power system operators are actively seeking solutions to increase electric grid power flex-

ibility and inertia, to accommodate deeper renewable integration. Buildings account for 75%

of the total electricity use in the US and have great potential for grid reliability support at var-

ious time and spatial scales. Due to the limited bidding power of individual buildings, grid

services are often provided by a fleet of small buildings managed by tailored coordination

strategies. This dissertation presents two families of control methods for building cluster en-

ergy management based on the control time frequency and inter-building coordination mode:

(1) dictatorial load modulating control strategies formulated under a specific context of dis-

tribution voltage regulation, and (2) market-based load shifting control achieved through a

game-theoretic control framework. Load modulation can enable distribution voltage support

by controling flexible loads in the building clusters to let their power use follow volatile solar

photovoltaic (PV) output, as a means to mitigate fluctuations in the net demand and maintain

a stable voltage. The game-theoretic control strategies allow coordinative load shifting in

which individual entities determine their control actions in their own interests while coordi-

nation is achieved indirectly through a market mechanism, with a goal of flattening the total

load curve of the building cluster.

For load modulation, two dictatorial control strategies were developed for heating, ven-

tilation and air-conditioning (HVAC) systems in support of voltage regulation of distribution

networks with high PV penetration. For voltage support, the flexible HVAC loads are proac-

tively controlled by the aggregator to smooth out fluctuations in the net demand and PV

generation. The first control strategy was developed for variable-capacity HVAC systems

whose compressor speeds/stages are directly controlled by a central controller to achieve

load modulation in response to real-time voltage reading. The control effectiveness was

verified by hardware-in-the-loop (HIL) tests, combining a 33-bus distribution feeder model

and an actual 3-ton heat pump. Laboratory tests showed that the strategy was effective in
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reducing variations of net demand with negligible impact on indoor comfort, resulting in

55% reductions of voltage fluctuations and complete or partial elimination of voltage reg-

ulator tap operations. The second control method for voltage support is to coordinate the

cycling of HVAC systems and water heaters in different buildings to provide proactive volt-

age support against volatile solar generation. The control performance was evaluated with

a co-simulation platform for PV-rich residential community with cycling HVAC and water

heating equipment. The platform allows co-simulation of 100 high-fidelity EnergyPlus mod-

els for residential dwellings, a solar PV model, and a distribution network power flow model,

to capture interactions between the loads, PV generation and distribution voltage. Simula-

tion tests have shown that the voltage regulation strategies using flexible building loads could

help reduce operations of step voltage regulators by up to 73%.

The second part of this dissertation describes a new game theoretic control framework

to enable market-based load shifting of building clusters. Analyses were carried out for two

operational scenarios, namely explicit peak demand reduction control and optimal flexible

load dispatch. The peak demand reduction game considers a peak demand charge which

is proportional to the monthly peak demand of the whole aggregation. A Shapley value-

based cost allocation mechanism, along with a log-sum-exponential approximate of the non-

differentiable max operator, was designed to solve the aggregate demand reduction problem.

The existence and uniqueness of Nash equilibrium (NE) solution were established with the

aid of Variational Inequality (VI) theory. A centralized algorithm and a distributed algorithm

were proposed to find the NE, and the convergence was rigorously proved under certain con-

ditions. Numerical tests with a commercial community showed that the control performance

attained was close to social optimum with less than 2% performance degradation. For the

flexible load dispatch game, a marginal generation cost curve is assumed which is dependent

on the collective demand of the whole aggregation. This study considered a power model

and an exponential model for the marginal cost curve and proved the existence and unique-

ness of NE for these two cost models. A simulation case study was considered using a linear

xix



marginal cost model to demonstrate the efficacy of the proposed game-theoretic control for

flexible load dispatching in building clusters. A distributed best response algorithm was de-

veloped to find the NE. The simulation tests showed that the game-theoretic control could

reduce the overall operating cost by 5.8% and reduce peak load by 28% compared to a base-

line operation strategy. The achieved performance was very close to the social optimum,

with a Price of Anarchy of 1.007.

xx



CHAPTER 1

INTRODUCTION

Proliferation of renewable energy resources and growing electricity demand are placing in-

creasing stress on the power grid. Flexible electrical demands can be utilized to alleviate the

stress, enabling a more robust and reliable electric power system while reducing consumer

costs. Buildings, as the nation’s largest power consumer, account for 75% of U.S. electricity

consumption and contribute a comparable fraction of peak demand [1]. Many building loads

are flexible and deferrable. When a communication and management system is in place, the

flexible loads may be controlled at varying time scales to benefit the grid while reducing the

electricity costs of building owners.

The advances in information and communication technologies have made buildings more

connected than ever before and catalyzed a new building design and operation paradigm

termed connected buildings or connected communities. Leveraging the economies of scale,

connected communities allow more cost-effective utilization of renewable energy and aggre-

gated participation in wholesale energy and ancillary service markets, which are traditionally

not friendly to individual buildings with low bidding power. Connected buildings also of-

fer operational benefits such as improved energy efficiency, reduced carbon emissions and

operation costs through energy use coordination across different buildings. Appropriate con-

trol strategies are critical to achieve the full potential of such connected technologies but the

control development is a challenging task due to strong inter-building couplings and self-

interestedness of participants.

This dissertation presents a series of building cluster control strategies designed to op-
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timize and coordinate energy uses across different buildings to maximize their support to

electric infrastructure operations and planning. Through these strategies, building end uses

can be dynamically controlled to help meet grid operational requirements and reduce overall

system costs, while still satisfying the comfort and productivity needs of occupants. Fig-

ure 1.1 shows a classification of building cluster control strategies based on the control time

frequency and mode of inter-building coordination. According to the control time scale, con-

trol strategies may be categorized into two groups, namely load modulation and load shifting,

following the classification of grid services by US Department of Energy [2]. In load modu-

lation services, buildings vary their loads in real time (or every few seconds) to closely track

reference grid signals. Reported modulation services from buildings include frequency regu-

lation, spinning reserves and distribution voltage support. For load shifting control, a flexible

load is shifted from peak hours to off-peak hours, usually through pre-cooling or pre-heating

actions, and peak demand is reduced in response to grid constraints or time-of-use (TOU)

price signals. Coordination across different buildings can be achieved through either a dicta-

tor scheme or a market-based approach. A dictatorial operation mode assumes that the grid

operator, utility, or a third-party aggregator can control building appliances directly through

a communication infrastructure. Direct load control (DLC), a voluntary curtailment program

offered by most of utilities in the US, is a good example of the dictator scheme. If enrolled in

a DLC program, a customer will receive a communication-enabled thermostat by which the

utility provider can remotely switch off the air-conditioner or heat pump during high demand

hours. On the other hand, the market-based mode allows coordination of different end users

through an energy market where load changes are incentivized by properly designed pricing

signals. The wholesale electricity market is an example of this operation mode although at a

large scale.

There have been extensive research on dictatorial or centralized control strategies for

building cluster load shifting. However, research on the other three categories is scarce. This

dissertation focuses on two out of the three under-researched categories, namely dictatorial
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load modulating strategies and market-based load shifting control. The load modulation

control strategies are discussed using a specific grid service (distribution network voltage

regulation), while the market-based control is achieved through a game-theoretic control

framework. The fourth category, i.e., market-based load modulation control, is not covered

since it has limited practical value to manage a market with a clearing time of a few seconds.

Figure 1.1: Classification of building energy control strategies

Building cluster control strategies for distribution voltage regulation can reduce voltage

fluctuations and voltage regulator operations caused by unstable PV power output. Two

voltage control methods are presented. The first approach is to control variable-speed HVAC

systems to let their power use follow the volatile PV output, as a means to mitigate fluctu-

ations in the net demand. To achieve this control capability, I developed a PV smoothing

control strategy for variable-speed HVAC equipment and verified its performance through

HIL tests, combining a 33-bus distribution feeder model and an actual 3-ton heat pump. The

control strategy is comprised of multiple control blocks including a PV power smoothing

filter, power flexibility estimator, power tracking controller, and zone temperature regulation

controller. Key laboratory test results are reported. The second method of voltage support

is through coordination of a fleet of small commercial and/or residential buildings. More
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specifically, a centralized control strategy was developed that coordinates the operations of

HVAC equipment and hot water heaters across different households in a residential commu-

nity to provide proactive voltage support against volatile solar generation. A co-simulation

framework that integrates EnergyPlus models for residential dwellings (e.g., 100 houses in

the case study), a PV model for solar power generation, and a 33-bus distribution network

model was established to test the effectiveness of the coordinative control strategy in reduc-

ing distribution voltage fluctuations.

Market-based building cluster load shifting is achieved through game-theoretic control

strategies designed to flatten the aggregate load profile and to provide efficiency support to

the grid. Two market-based load shifting control methods were developed: (1) market-based

game-theoretic control for peak demand reduction and (2) market-based game-theoretic con-

trol for flexible load dispatching. Both load shifting strategies leverage thermal network

models to characterize the dynamics and constraints of building thermal loads. The peak de-

mand reduction control involves a demand charge, which is proportional to the monthly peak

demand of the whole aggregation and is a coupled cost for different buildings. To allocate the

collective cost among participants, a Shapley value-based allocation mechanism, along with

a log-sum-exponential approximate of the non-differentiable max operator, was proposed to

solve the aggregate demand reduction problem. For this mechanism, I have proved the exis-

tence and uniqueness of the NE. A centralized and a distributed algorithm were developed to

find the NE. In the flexible load dispatching game, different cost functions were considered

to capture the impact of total power demand on the marginal cost of electricity generation,

and the existence and uniqueness of NE under the different cost functions are discussed.

A distributed best response algorithm was developed to find the NE of the dispatch game.

A six-building simulation case study with a linear cost function has been used to evaluate

the performance of the game-theoretic control for flexible load dispatching, along with two

benchmarking control methods.
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Figure 1.2: The structure of this dissertation

Figure 1.2 illustrates the overall structure of this dissertation. In Chapter 3, a volt-

age regulation control method for variable-capacity HVAC systems is introduced, which

is comprised of multiple control blocks including smoothing filter, power flexibility estima-

tor, power tracking controller and zone temperature regulation controller. To evaluate the

performance of the control strategy, experimental tests are carried out with a HIL testbed,

which integrates a 3-ton heat pump (hardware) and numerical models for a representative

building and a 33-bus distribution network with high PV penetration. In Chapter 4, a voltage

regulation control method for cycling HVAC systems is presented. A co-simulation platform

along with the component models for the residential building prototypes, a power distribu-

tion grid and solar PV is used to evaluate the performance of the control strategy. Chapters

5 and 6 introduce two market-based load shifting control methods. Chapter 5 provides an

overview of the fundamentals of convex optimization, game theory, and VI problems and

introduces a game-theoretic control problem for demand response aggregators whose elec-

tricity cost includes a demand charge and a TOU energy charge, while Chapter 6 focuses on

game-theoretic control for flexible load dispatching under various marginal pricing models.

Concluding remarks are provided and potential future work is discussed in Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

A thorough review of relevant prior work is presented in this chapter according to the two

building cluster control categories discussed in the introduction: (1) building clusters’ par-

ticipation in regulating voltage of distribution networks with high PV penetration and (2)

market-based game-theoretic control of building clusters for reducing the peak demand and

operational cost.

2.1 Voltage Regulation Control for Building Clusters

The growth of renewable energy utilization will continue in the years to come due to fast

declining installation costs and state initiatives to pass renewable portfolio standards in order

to diversify their energy supplies, stimulate economic growth, and decrease greenhouse gas

emissions [3]. On May 9, 2018, the California Energy Commission established rules and

became the first U.S. state to require PV panels in new homes constructed after January 1,

2020 [4]. The rising deployment of renewable energy provides considerable problems to the

power grid in maintaining reliable and stable operation due to the increased unpredictability

in power production, despite its importance in achieving a sustainable energy eco-system.

Voltage variations beyond the regulatory limits, bidirectional power flows, and harmonic

distortion in the current and voltage waveforms may result from the unpredictability of re-

newable resources, such as solar and wind power [5]. Operational challenges arising from

the utilization of renewable energy include dynamic power system behavior on time scales

ranging from microseconds to hours.U.S. Department of Energy (DOE) research shows that
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when the yearly energy contribution of renewables hits 20%, the present power infrastruc-

ture in the California market has to be curtailed by at least 30% [6]. Power system operators

are continuously looking for ways to increase their capacity to accommodate renewable en-

ergy with mitigating their negative effect on grid stability and capacity [7]. Technologies are

being investigated to minimize the fluctuation of renewable energy generation in response

to these system integration needs [8]. Most of the technologies are targeted at intermittency

mitigation of PV output, which involves the most aggressive fluctuations.

When solar irradiance rises, curtailment and dump load controls reduce the effective en-

ergy production, which slows the upward ramping of PV output. Traditional curtailment

strategies operate the system below the maximum power point (MPP) to limit power pro-

duction, whereas the dump load control employs a resistor to consume and dump a part of

the available power to minimize generation [9, 10]. Even though they’re simple to deploy,

these strategies have a negative effect on both productivity and asset value. In addition, both

strategies can only be used to reduce upward ramping, and they are unable to lower down-

ward ramp rates. It is possible to reduce the fluctuation in output by using a combination

of dispatchable generation, such as diesel and natural gas generators, with PV and wind re-

sources [11]. However, the problem is that these dispatchable generating assets are often

sluggish and cannot be utilized to regulate high-frequency ramp rates at all.

2.1.1 Control Methods for Smoothing Solar Power Output

Controlling renewable generation through energy storage has been studied, and all have a

common control logic: charge the storage during overgeneration periods and discharge to

satisfy the load when renewable power is constrained. Because of its high power-to-energy

ratio and its ability to store rotating energy, the flywheel has been employed for PV smooth-

ing control in a variety of ways [12]. However, flywheels have degraded performance for

long-term energy storage due to friction losses and are not suitable for mild days with in-
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termittent power fluctuations. Compressed air energy storage (CAES) is another mechanical

storage device that has been utilized to manage the ramp rate of PV [13]. During period of

low PV output, the compressed and pressurized air from the storage tank can be sent to a

turbine, which generates power using the excess PV power. Both flywheels and CAES are

mechanically based and have advantages such as reduced initial costs, longer life spans, and

smaller environmental impacts compared to electrochemical energy storage. However, their

overall round-trip energy efficiency is lower, ranging from 40% to 70%. The use of super-

capacitors for renewable mitigation control has recently been investigated [14]. Due to their

better life cycle performance and high power density, supercapacitors are a viable option for

applications which require dynamic storage. However, material reliability difficulties and

high capital costs make them uneconomical for large-scale utility use. A good number of

strategies were proposed in the literature for control of battery charging/discharging for PV

smoothing, most of which applied smoothing filters to obtain smoother net generation from

raw PV output. Both moving-average [15] and full term low-pass filters [16] were proved

effective for PV generation smoothing. The major drawback of filter-based algorithms is the

delayed estimation of the PV output midpoint because of the memory effect. Ramp rate limit-

ing control, a special type of filter, is only concerned about the power output change between

consecutive time steps and attempts to limit the change within a given threshold. Compared

to low-pass filter algorithms, the ramp-rate control requires minimum computing and mem-

ory resources and involves reduced battery energy throughput leading to lower round-trip

energy losses and improved life time [17]. However, the ramp-rate control solution typically

requires greater battery sizes to prepare for both upward and downward ramping.

2.1.2 Modulation Services from HVAC Systems

Due to buildings’ intrinsic thermal inertia, HVAC systems in buildings are great candidates

for modulation services such as power frequency and voltage control. Variable-speed supply
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fans [18, 19], electrical space heaters [20], chilled-water pumps [21], residential heat pumps

[22], water heaters [23], commercial-scale chillers [24], and packaged air-conditioning equip-

ment [25] have been studied for regulatory service. In addition to providing frequency reg-

ulation assistance for the bulk power grid, HVAC equipment was effectively employed for

frequency support of microgrids [26, 27] and load following in minimizing variations in re-

newable power [28]. The published results have demonstrated a variety of advantages of

using HVAC equipment for modulation services compared to other resources:

• Fast response: a majority of the power associated with building thermal systems is

consumed by electric motors which have fast power response to speed changes [29];

• Low capital cost: almost all buildings have HVAC systems installed and the cost to

enable the smoothing control capability in existing equipment is marginal compared

to installation of new storage systems;

• No round-trip efficiency loss: charging and discharging a thermal system involves no

additional heat loss compared to normal operation, leading to little to no opportunity

costs for provision of smoothing control [30];

• Environment-friendly compared to batteries and fossil fuel plants, especially with the

shift to low- or zero-GWP refrigerant.

However, in residential and light commercial buildings, the relatively limited power ca-

pacity of a single building represents a significant impediment to the contribution of build-

ings to frequency regulaton. There have been efforts to develop aggregation solutions for the

frequency regulation control of multiple buildings in order to overcome the size challenge of

frequency regulation in a single building and provide an acceptable size of regulation capac-

ity by aggregating or coordinating different buildings in a cluster. For example, references

[31, 32] have developed and experimentally tested a hierarchical frequency regulation con-

trol method using variable-speed supply air fans in commercial buildings. A supervisory
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reserve scheduler, a room controller, and a local regulation signal tracking controller were

integrated to identify the next day regulation reserve capacity. The reserve scheduler is based

on a similar approach to that of the study [33] by explicitly addressing the randomness in

the regulatory signal. The studies in [32, 31, 33] relied only on supply air fans for frequency

regulation. Fan control is straightforward, but its power capacity is much lower than that of

HVAC compressors.

2.1.3 Control Methods for Distribution Network Voltage Regulation

Voltage regulation devices used in traditional distribution grids include on-load tap changer

(OLTC), shunt capacitor and step voltage regulator (SVR). These devices are primarily de-

signed to mitigate slow diurnal voltage variations and not suitable for rejecting dynamic

disturbances caused by deep PV integration. For more effective distribution voltage man-

agement, hybrid methods have been investigated that combine legacy voltage regulation de-

vices with emerging technologies such as PV power curtailment [34], reactive power control

through smart inverters [35, 36], electrical batteries [37] and smart load management [38].

PV inverter Volt-Var control can be implemented either in a completely decentralized manner

through a droop logic based on local voltage measurements [35] or in a centralized scheme

where the reactive power injection/absorption at different nodes are managed by a central co-

ordinator [36]. The local and decentralized method may cause voltage instability due to lack

of synchronization across the different devices. Although the centralized approach is able to

maintain stability with appropriate coordination, a communication infrastructure is required

and the communication delay may jeopardize the overall control performance. In reference

[39], energy storage was used along with tap changer transformers to regulate voltage and

reduce tap operations in case of high PV penetration. When voltage rises, the transformer

tap position is firstly changed and then the energy storage system is charged; on the occasion

of peak load, coordination signals will be sent to discharge the distributed energy storage in
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order to mitigate voltage drops.

2.1.4 Building-to-Grid Co-Simulation Platform

Co-located with distributed generation in a PV-rich distribution grid, building flexible loads

can be leveraged for distribution voltage support. To facilitate optimal controller design and

performance assessment, a high-fidelity numerical tool is needed for the distribution grid

that can capture realistic dynamics and the diverse patterns of building flexible loads. To

this end, a co-simulation approach, leveraging and linking disparate simulation tools across

different disciplines, appears to be suitable. In the field of building performance simulation,

a co-simulation approach has been adopted to accommodate different types of simulation

analysis and most of prior studies utilized whole building energy simulation programs (e.g.,

EnergyPlus) paired with other numerical tools. For example, studies combined EnergyPlus

and MATLAB/Simulink framework to investigate the influence of weather as well as con-

struction materials on the room and ventilation temperatures [40] and to support assessment

of an occupant-oriented mixed mode predictive controller [41]. Another study co-simulated

a building’s energy performance and the outdoor micro-climate by linking EnergyPlus and

ENVI-met, to study the impact of different types of green roofs on the cooling demand

for different climate conditions and urban densities [42]. Analysis of phase change mate-

rials (PCM) for thermal management of buildings was performed with an EnergyPlus and

ANSYS Fluent co-simulation setup [43]. The above studies have shown good success of co-

simulation with the high fidelity EnergyPlus toolset and other simulation platforms to accom-

modate cross-disciplinary analyses. Some power system simulation tools, e.g., GridLAB-D

[44], incorporate simplified building models that cannot capture some of the important load

dynamics, such as heat pump efficiency variations caused by cyclic operations and dehumid-

ification. Most relevant to this study, the Transactive Energy Simulation Platform (TESP),

developed by the Pacific Northwest National Laboratory, allows the implementation and con-
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trol of EnergyPlus building models on the feeder level and provides co-simulation capability

across different simulators including GridLab-D, EnergyPlus, OpenDSS, PyPower, NS-3,

among others.

2.2 Market-Based Game-Theoretic Control of Building Clusters

To improve the robustness and efficiency of the grid, an aggregator is needed across a num-

ber of users to unite the users in the grid and regulate the power usage strategies of users in

response to the dynamic unit electricity price, allowing for more efficient energy usage. One

method for aggregator is to find the above optimal strategy centralized [45, 46, 47], with the

aggregator defining user’s power consumption strategy profile over the time horizon. This,

however, is a quite aggressive method, as it needs each user to supply extensive information

on user’s power consumption. Indeed, these concerns about privacy may prevent demand-

side users from subscribing to the optimization process. The computational complexity of

centralized system will increase significantly as the number of buildings increases, which

makes the centralized approach incapable of accommodating an increase in the aggregation

size. Additionally, a cooperative solution may sacrifice some individuals’ utilities or quality

of services (e.g., uncomfortable indoor temperatures) to achieve social optimality, and ratio-

nal players may leave the alliance for their own benefits, leading to an unstable coalition.

To address the above mentioned social and technical barriers, a non-cooperative game

solution be considered. The non-cooperative game provides the aggregator with a distributed

operation mode in which each individual only considers his/her own optimization objectives

and constraints. There is a lot of game relevant research that focuses on load management

(demand side) [48, 49, 50, 51, 52] and energy source management (supply side) [53, 54, 55].

For the demand side, users are the game’s participants and the goal of the users is to reduce

their own electricity cost by scheduling their electricity usage profiles. In this framework,
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the users can obtain information of other users and energy unit price from the electricity

market to optimize their control actions. For the supply side game, each user engages in

a game with the electricity provider, where the electricity provider, as a leader, maximizes

their profit by setting price and users as the followers adjust the power demand accordingly.

These non-cooperative strategies can be divided into two sub-categories: dynamic games

and static games.

2.2.1 Dynamic Game in Building Energy Management

For a dynamic game, also called sequential game, there is at least one player who chooses

their strategy according to which the others make their decision. The later players must have

information about the former player’s actions. Therefore, the time plays a key role in de-

cision making. The Stackelberg game that is commonly used in smart grid solutions is an

example of dynamic games. For instance, authors of [53, 54, 55] used Stackelberg games

to model the interactions between the utility company and electricity consumers, where the

utility company (leader) sets the price and the users (followers) adjust the power demand

accordingly. When a Stackelberg equilibrium is reached, the leader’s profit is maximized

and all the users’ costs are minimized at the identified prices. The Stackelberg game setting

is not very applicable to building load aggregators since it is difficult to come up with a

non-monetary utility function for individual buildings. Most Stackelberg equilibrium seek-

ing algorithms assume easy access to closed-form solutions of the followers’ optimization

problems, which is not the case for building load control. In [56], the authors proposed a bi-

level game framework for demand side management. On the customer side (bottom layer), a

static non-cooperative game is used in which Nash equilibrium solutions are sought that min-

imize the individual player’s electricity cost under a given price structure. As the top layer,

a dynamic Stackelberg game is used to model the interactions between the utility company

and the customers, in which the utility company updates the price structure to maximize its
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profit meanwhile minimizing the peak to average ratio (PAR). A distributed algorithm was

proposed to solve the bi-level optimization problem.

2.2.2 Static Game in Building Energy Management

The static game theory has been studied extensively for smart grid applications. For in-

stance, in [51], a two-settlement demand response strategy was proposed with day-ahead

and real-time phases. The day-ahead bidding strategy was based on a non-cooperative Nash

equilibrium game setting in which each player tends to minimize the expected daily electric-

ity cost and the electricity price is proportional to the aggregated demand. The day-ahead

bidding process is reformulated as a generalized Nash equilibrium problem (GNEP) and

an asynchronous proximal decomposition algorithm is used to find the variational solution

of the GNEP by relaxing the coupling constraints. The study assumed a simple load model

without any temporal couplings. In reference [52], the authors presented a Nash equilibrium-

based strategy for demand-side management to reduce the PAR and energy cost. A heuristic

method was used to distribute the aggregate generation cost among the consumers based on

their respective shares of total daily energy use. The consequence of this treatment was that

the same cost function was involved for all players, transforming the non-cooperative game

into a homothetic cooperative type. A block coordinate decent-type algorithm was used to

solve the Nash equilibrium problem. In reference [57], the authors proposed a Vickrey-

Clarke-Groves (VCG) cost allocation mechanism which ensures each user’s objective func-

tion aligns with the social planner’s objective function. Therefore, the users cannot do better

than truthfully declaring their demand information to the energy provider, who determines

the payment and the power consumption strategy of each user according to the Nash equi-

librium of the VCG mechanism. In this framework, customers are requested to share their

power demand information, which is used by a centralized operator for the price calculation.

In static game applications, existing game-theoretic controls for demand side management
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primarily used pricing mechanisms to incentivize costumers to change their power consump-

tion strategies. The existing social cost functions are mostly strictly convex. For instances,

a quadratic social cost function was used in [52, 58]; a logarithmic social cost function that

ensures users are able to sell energy back to the grid was used in [56] and a power function

was used in [59].

Algorithm for Game Theoretic Control

To solve the game problem and find the NE, the following three methods are most commonly

used:

• Best response algorithms. These algorithms allow (semi-)distributed implementations.

Therefore, they are often employed by engineers and practitioners for problem solving.

There are two types of distributed implementations: Jacobi (simultaneous iterative

algorithm) and Gauss–Seidel (sequential iterative algorithm). These algorithms are

simple to implement, but the convergence conditions can be very restrictive. They

are often utilized for problems with specific structures, e.g., potential game [60] and

supermodular game [61].

• VI algorithms. For NE problems with completely decoupled action sets, VI-based

algorithms can be more suitable, e.g., methods of projection (extragradient method

by Korpelevich [62]; hyperplane projection by Konnov [63]), Tikhonov regularization

[64], proximal point [65] and splitting [66]. VI algorithms often feature better global

convergence properties, but may be more computationally demanding in comparison

to best response algorithms.

• Nikaido-Isoda function (NI) algorithms. For generalized NE problems, e.g., the dis-

tribution voltage regulation problem where a player’s action set is dependent on the

actions of others, the NI function-based approach may be more appropriate [67, 68].
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This approach converts a (G)NEP into a saddle point problem using the Nikaido-Isoda

(NI) function, and then uses classic saddle point algorithms to find the NE. A semis-

mooth Newton’s method with a backtracking (geometric) line search can be used to

find the stationary point of a complementarity reformulation of the merit function [69].

This algorithm can solve not only NE problems but also GNEP [70].

2.3 Review Summary and New Contributions of the Present Work

Based one the review results, it is apparent that there has been limited research work on

grid-responsive building cluster control under the dictatorial load modulation or market-

based load shifting categories, as shown in Figure 2.1. Most of the existing building cluster

control methods were synthesized on a hourly time scale to control electrical equipment in

buildings with a dictatorial operation mode [46, 71, 72, 73] This dissertation fills the gap on

dictatorial load modulation and market-based load shifting by a series of new control strategy

development. Specifically, the present work makes unique contributions in the following

aspects:

Figure 2.1: Classification of building energy control strategies
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• Voltage regulation. This dissertation introduces a completely new method for solar

power smoothing by utilizing novel voltage regulation control strategies for building

thermal equipment, which is operated on a second/minute time scale under a dictator

mode.

• Cost function. Previous studies for game-theoretic control for demand side manage-

ment considered cost functions that are smooth and strictly convex, e.g., quadratic cost

function [52, 58], logarithmic cost function [56], and power function [59]. The present

study is first to use a non-smooth convex cost function (max function).

• Split pricing mechanism. Prior work used simple social cost split methods, e.g., as-

suming an individual’s share of the social cost is proportional to their total power con-

sumption. which is difficult to make the optimal decisions of individuals consistent

with the global optimum. In addition, the heuristic cost splitting mechanism is hard to

maintain the stability of the alliance. To overcome the shortcomings mentioned above,

the present work adopts a shapely value-based allocation mechanism that is fair and

efficient.

• Existence and uniqueness of NE. The existence and uniqueness of NE for the peak de-

mand reduction game problem with a Shapley value-based split function were proven.

This study also proved the existence and uniqueness of NE for the flexible load dis-

patching game problem under an exponential marginal price model and a power marginal

price model.

• Centralized algorithms to find NE solution. A centralized algorithm is proposed for

the game problem based on a customized proximal point algorithm for the VI [74].

Compared with the previous VI algorithms, this algorithm features accelerated con-

vergence by designing the regulation coefficient according to everyone’s constraints

before reformulating the game into a VI form.
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CHAPTER 3

DISTRIBUTION VOLTAGE SUPPORT USING VARIABLE-CAPACITY HVAC

SYSTEMS

This chapter presents a voltage regulation control method for variable-capacity HVAC sys-

tems that are designed to pair with solar PV applications. However, the method can also be

applied for intermittency mitigation of other renewable resources. Section 3.1 introduces a

building-to-distribution grid simulation model that covers components commonly encoun-

tered in a PV-rich distribution grid. Section 3.2 introduces a PV smoothing control strategy,

a voltage regulation control method using variable-capacity HVAC systems. The control

strategy is comprised of multiple control blocks including a smoothing filter, a power flex-

ibility estimator, a power tracking controller and a zone temperature regulation controller.

Section 3.3 describes a HIL testing methodology used for performance assessment of the

proposed control method. The experimental setup, simulation models for the distribution

network and buildings, and their interactions are discussed. Section 3.4 presents and dis-

cusses the key test results. A chapter summary is given in Section 3.5.

3.1 Building-to-Distribution Grid Model

This section introduces a building-to-distribution grid simulation model covering compo-

nents commonly encountered in a PV-rich distribution grid. This model is utilized to assess

and evaluate the PV smoothing performance of various HVAC systems (variable-capacity

HVAC systems in this chapter and cycling HVAC systems in Chapter 4). The building-to-

distribution grid system simulation includes models of residential dwellings, a radial distri-
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bution feeder, solar PV panels uniformly distributed across the feeder, a step voltage reg-

ulator (SVR) and a central control system. These component models are elaborated in the

subsequent sections.

3.1.1 Power Distribution Network Model

The voltage regulation strategy can bring a variety of benefits to the electric grid. One of the

performance improvements is in voltage regulation for distribution networks having high PV

penetrations. Voltage variation caused by renewable intermittencies has been recognized as

one of the main barriers for deep integration of distributed generation into low- and medium-

voltage distribution networks [75, 76]. The HVAC system voltage regulation strategy aims

to reduce the variability of net demand/generation, which will consequentially stabilize the

distribution voltage and minimize the adverse impact of renewables on the life time of legacy

voltage regulation devices. Figure 3.1 shows the test distribution system used in the case

Figure 3.1: Residential distribution network in the case study

study, which consists of 33 load buses and has a nominal apparent capacity of 4.55 MVA,

which is also the summation of nominal capacities of all the load buses in this distribution

network. The distribution grid model has packaged as a nonlinear steady-state power flow
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model to simulate voltage variations of a distribution system and a Newton-Raphson method

for equation solving [77]. The distribution grid model can be executed at various time steps

(e.g., every second in this chapter and every minute in Chapter 4) to calculate the distribution

voltage given the instantaneous loads and PV output. Note that the nonlinear power flow

model is not suitable to use in iterative control algorithms due to the high computational

demand. To improve numerical efficiency, the grid simulator also incorporates a routine to

generate a linear approximate of the power flow model based on the linearization approach

proposed by Baran and Wu [77] for radial networks. This approach neglects the line loss

terms but captures the reactive power contribution to voltage drops. The linear surrogate

model is used in the controllers discussed in Section 4.2. However, it should be noted that

the voltage simulation results presented in this chapter were all obtained with the nonlinear

power flow model.

3.1.2 Step Voltage Regulator

As shown in Figure 3.1, a SVR is assumed to be installed between buses 5 and 6 to com-

pensate for voltage drops along the radial distribution line. A SVR is primarily designed to

maintain a constant secondary voltage under time varying load and distributed generation,

which are known to be highly influenced by weather events and can fluctuate drastically

[78]. It is an autotransformer that can vary the turns ratio through automatic tap changing to

achieve voltage regulation. For conventional grid operation with no or low PV penetrations,

SVRs work along with on-load tap changers and/or capacitor banks to regulate voltage on a

distribution network against diurnal load variations. Figure 3.2 compares the voltage profiles

along the feeder with and without SVR, at the nominal load conditions and without PV inte-

gration. It can be seen that without SVR, the voltage of the buses at the far end of the feeder

would drop below 0.95 p.u. and violate the ANSI C84.1 Standard [79]. The SVR installed

after bus 5 can boost the voltage of downstream buses to be in compliance with the standard.
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It may be noted that the SVR secondary voltage is typically set at a slightly higher value,

e.g., 1.05 p.u., to compensate for large voltage drops in a long radial network. However,

the tests conduced in this study assumed a setpoint of 1 p.u. at bus 6 to prevent overvoltage

issues due to distributed PV penetration.

Growing installations of solar PV generators in distribution systems may cause frequent

variations of distribution voltage and overstress voltage regulation devices [80]. To quan-

tify this impact and capture potential benefit of the proposed voltage regulation solution on

operations of voltage regulation devices, a SVR installed in the middle of the feeder is con-

sidered. Most utility SVRs are able to modulate the output (secondary) voltage in the range

of 90% to 110% of the input (primary) voltage. This regulation is usually accomplished in

32 discrete steps so that each step would result in 0.625% or 0.75 V voltage change on a

standard 120 VAC base. The 32 steps are equally divided between -10% and +10% so there

are 16 steps each for voltage boost and reduction. In this study, the SVR is operated to main-

tain the secondary voltage (of bus 6) within a prescribed deadband through adjusting the tap

position. Two different deadband settings, i.e., ±0.625% (±0.75 V) and ±1.6% (±2 V), are

simulated to evaluate the impact on operation behaviors. Most SVR controllers apply a time

delay to prevent too frequent tap operations; a tap position change is only executed when

the voltage stays out of the deadband for a minimum duration. A time delay setting of 30

seconds is assumed in this study [80, 81].

3.1.3 PV Integration on Distribution Network

For simplicity, it is assumed that solar PV panels are installed across all buses in the distri-

bution network with identical penetration levels. The PV penetration at a distribution node

is defined as the ratio of the total nameplate capacity of solar PV systems to the nominal

apparent load of the bus. Only real power is assumed to be injected by the PV panels. For

each bus, power consumption of all the connected buildings and solar power output calcu-
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Figure 3.2: Feeder voltage profiles with nominal load and without PV.

lated from the solar PV model are both scaled to match the nominal capacity of that bus.

Therefore, the solar power fluctuations across the different buses are all synchronized and

the test performance presented in this chapter corresponds to the worst case scenario without

considering geometrical averaging effect. An actual distribution network at the same PV

penetration level would experience smaller disturbance due to the averaging effect among a

large number of PV panels in the service territory.

3.1.4 Building Thermal Capacitance Model

In this study, building load profile was generated with the DOE prototypical building model

using EnergyPlus, a whole building energy simulation tool developed and maintained by the

U.S. Department of Energy (DOE). HVAC loads are regarded as the major flexible loads

and all other electrical end consumers, e.g., lighting, computers etc., are assumed to be non-

controllable [82]. The HVAC systems power modulation required by the voltage regulation

control leads to fluctuations in the cooling effect delivered by the HVAC system and may

adversely impact indoor comfort. Therefore, operational (and load) flexibility of HVAC

equipment is affected by the building thermal inertia and HVAC anti-cycling time settings,
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both of which affect and thereby can be correlated with the HVAC cycling patterns. To

accurately capture this effect, a lumped capacitance building thermal model is implemented

to emulate indoor environmental variations during voltage regulation and details of the model

are presented as follows.

The following thermostat model characterizes the HVAC cycling frequency with respect

to the runtime fraction X [83]:

N = 4 ·Nmax ·X · (1−X) (3.1)

where N is the number of duty cycles in each hour and Nmax is the peak cycling rate which

occurs at X = 0.5. The runtime fraction is defined as the ratio of the HVAC run time in

one duty cycle to the total cycle length, which is also close to the ratio of the building load

to the HVAC cooling capacity [83]. Figure 3.3 shows the variation of the HVAC cycling

rate with the run time fraction from one of the simulated case study buildings in EnergyPlus

(after modification of the effective capacitance, to be discussed in the following paragraph);

the bell-shaped curve represents the best fit of Section 3.1.4 to the simulation results with

Nmax close to 3. It can be observed that the cycling rate is low for periods with very low or

very high load ratios, while the cycling rate peaks at a run time fraction of 0.5. The building

thermal capacitance can be estimated based on a cyclic thermostat model

Cbld =
Qrate

8NmaxTdb

(3.2)

where Qrate is the rated cooling capacity of the HVAC system. Tdb is the thermostat dead-

band and Nmax is the maximum compressor cycling rate per hour, for a single-stage HVAC

unit. It may be noted that the thermal capacitance Cbld combines the thermal inertial associ-

ated with the indoor air volume, air-to-furniture/wall interactions and thermostat enclosure.

For given HVAC capacity and thermostat deadband, the maximum cycling rate is inversely
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Figure 3.3: Cycling rate vs. run time fraction for an example EnergyPlus building model

proportional to the combined thermal capacitance, which is a relatively constant parameter

for a given house. Due to the relationship with the combined thermal capacitance, peak

cycling rate is an important parameter and realistic estimates thereof are critical to capture

the aggregate flexibility. Henderson et al. collected high-resolution thermostat data from

more than 10 single-family residential dwellings in Florida and found the peak cycling rate

ranging from 2.4 to 3.5 [83]. Note that the thermal capacitance is derived based on the ther-

mostat cycling model subject to an on/off HVAC unit. However, the case study considered

in this chapter involves a variable-capacity HVAC system that can continuously modulate its

cooling power to regulate the temperature.

3.2 PV Smoothing Control Strategy

Figure 3.4 depicts the proposed overall PV smoothing control strategy for variable-capacity

HVAC systems. At each decision time step, the PV generation and building thermal load

need to be pre-conditioned to estimate the respective base power, which is used to identify

the HVAC power setpoint on the fly. The control method consists of three major control
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modules: 1) a low-pass filter to estimate the base PV power, a midpoint around which the

actual PV output fluctuates, 2) a HVAC power flexibility estimator that takes the instanta-

neous cooling load and generates the upper/lower bounds for HVAC power modulation, and

3) a power tracking controller that modulates the compressor speed to follow the identified

power setpoint. The pre-conditioning step ensures energy neutrality in the compensating

power so that the average building thermal load can be met to maintain indoor comfort. The

various control modules are elaborated as follows.

Figure 3.4: Overall control diagram

3.2.1 Voltage Regulation Low-pass Filter

A moving-average filter is implemented to identify the midpoint of PV power fluctuation

during partly cloudy and partly sunny days. The difference between the filter output and the

instantaneous PV power, termed compensating power, should ideally be offset by smoothing

resources such as building thermal loads in order to obtain a relatively smooth net genera-

tion/demand. In the experimental tests, a 30-minute time window and uniform weights were

assumed in the implemented moving-average filter. Figure 3.5 shows the raw and filtered PV

power output, based on field power measurements of a 14 kW solar plant. The 30-minute

data used in the experiments is also highlighted.
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Figure 3.5: Raw and filtered diurnal PV power.

3.2.2 HVAC Power Flexibility Estimator

HVAC systems are primarily designed to maintain indoor comfort, which represents a major

constraint in determining control actions for voltage regulation. Therefore, it is critical to

develop a method to estimate the HVAC power flexibility, dictated by the base power and the

upper/lower limits. During PV smoothing control, the HVAC power is modulated around the

base level and within the upper/lower limits to absorb excessive fluctuation of PV output. As

long as the modulation power is energy neutral with respect to the base power, the average

cooling effect and indoor temperature regulation performance would not be impacted.

a. HVAC System Model

The first task of the flexibility estimator is to identify the base compressor speed and power

at a given building load. A simplified quasi-steady-state model was developed to capture

the relationship between the cooling rate and HVAC power, based on a compressor map

and empirical correlations on temperature differentials of the condenser and evaporator. The

compressor map uses the following 20-term correlations for compressor power (P ) and cool-
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ing capacity (Q) predictions:

P = cT1x (3.3)

Q = cT2x (3.4)

where c1 and c2 are the coefficient vectors, provided by the equipment manufacturer. The

vector x is equal to [1, Te, Tc, R, TeTc, TeR, TcR, T 2
e , T 2

c , R2, TeTcR, T 2
e Tc, T 2

eR, T 3
e , TeT

2
c ,

T 2
c R, T 3

c , TeR
2, TcR

2, R3]⊤, where R is the compressor speed, and Te and Tc are the saturated

evaporating and condensing temperatures. The evaporating and condensing temperatures are

intermediate variables that vary with operating conditions such as the zone/return air tem-

perature (Tz) and outdoor temperature (To). The air-to-refrigerant temperature differentials,

defined as

dTe = Tz − Te (3.5)

dTc = Tc − To, (3.6)

drive the heat transfers on the evaporator and condenser, respectively. For variable-capacity

HVAC systems, the temperature differentials are highly dependent on boundary conditions

(i.e., Tz and To) and compressor speed. This dependence can be approximated by the fol-

lowing linear correlations:

dTe = a0 + a1To + a2Tz + a3R (3.7)

dTc = b0 + b1To + b2Tz + b3R (3.8)

where the coefficients ai and bi’s can be estimated from system performance data. In this

study, offline experimental tests were carried out for the test unit covering a wide range

of operating conditions and linear regression was applied to obtain the coefficient values

from the experimental data. It should be noted that the supply airflow could also impact
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the temperature differentials; this dependence is neglected in the present study since the PV

smoothing strategy tends to maintain a relatively constant airflow when appropriate power

limits are used. Dehumidification is not considered since all tests were carried out under dry

air conditions (the sensible heat ratio is always equal to unity). Figure 3.6 and Figure 3.7

compare the experimental and model prediction results. The model is in good agreement

with measurements for both cooling capacity and power predictions, with relative errors less

than 10% of a majority of the points.

Figure 3.6: HVAC power prediction performance.

Figure 3.7: HVAC cooling capacity prediction performance.
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The developed HVAC system model has an input-output form of

[P,Q] = HVAC(To, Tz, R). (3.9)

Figure 3.8 shows the relationship between the cooling capacity and HVAC power at Tz =

25◦C and To = 35◦C when the compressor speed varies in the full range (35% to 100% of

nominal speed). There is a clear one-to-one projection between capacity and power, which

allows easy conversion from one to the other as needed in the flexibility estimator.

Figure 3.8: Variation of cooling capacity with compressor power, for Tz = 25◦C and To =
35◦C.

b. Flexibility Estimator

The flexibility estimator is designed to predict the range of HVAC power modulation for

given load and boundary conditions (Tz and To). Firstly, the upper and lower bounds of

cooling output need to be identified as

Qmin = HVAC(To, Tz, Rmin) (3.10)

Qmax = HVAC(To, Tz, Rmax) (3.11)
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where Rmin and Rmax are the compressor speed lower and upper limits. For the test unit, the

lowest speed of the compressor is approximately 35% of the nominal or maximum speed.

For a given cooling load Q, the modulation margin of the cooling capacity can be estimated

as

∆Q = min(Qmax −Q,Q−Qmin)

and the upper and lower bounds for capacity modulation can be found as QUB = Q + ∆Q

and QLB = Q − ∆Q. During PV smoothing, the cooling capacity would modulate with a

midpoint equal to the load Q and ramp-up/-down margin equal to ∆Q. These bounds dictate

the thermal flexibility of the HVAC system. The power flexibility, i.e., the corresponding

upper and lower bounds (PUB and PLB) of the compensating HVAC power, can be easily

estimated using the HVAC system model in Equation (3.9), since the model gives a one-to-

one mapping between the power and cooling capacity. The base HVAC power is simply the

arithmetic average of the upper and lower bounds

Pbase =
PLB + PUB

2

Figure 3.9 and Figure 3.10 depict the variations of thermal and power flexibilities of the

HVAC system under study, for different load levels and at boundary conditions To = 35◦C

and Tz = 25◦C. It can be seen that for extremely high or low load conditions, the flexibility

is reduced because the base compressor speed is closer to its upper or lower bounds and the

speed modulation margins are reduced attributed to the symmetric requirements for upward

and downward ramping. The flexibility peaks at intermediate load conditions with maximum

speed modulation margins.
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Figure 3.9: The cooling capacity flexibility at different load levels.

Figure 3.10: The power flexibility at different load levels.

3.2.3 Power Tracking Controller

The estimated power flexibility can be leveraged to identify the desired HVAC power, which

is set to the base HVAC power plus the PV compensating power (Pcomp), but needs to be

bounded by the power modulation limits, i.e.,

Pdes = max
(
min(Pbase + Pcomp, PUB), PLB

)
(3.12)
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A power tracking controller is designed to determine the compressor speed on the fly in

order to follow the desired power level Pdes. A feedforward-feedback approach is adopted

where a feedforward block estimates the compressor speed needed to match the power set

value based on the HVAC model and a feedback controller takes corrective control actions to

compensate for model inaccuracies. The tracking control diagram is shown in Figure 3.11.

Figure 3.11: Power tracking control diagram.

The feedforward controller relies on the quasi-steady-state HVAC model described in

Section 3.2.2 to obtain a rough estimate of the compressor speed for the given power set

value. This is achieved through a Newton-Raphson-based numerical solver that finds the

target speed R for a given power level P . This feedforward controller enables fast responses

to sudden changes in the power setpoint, which is an essential requirement for PV smoothing

control during partly cloudy and partly sunny days.

The feedback block is necessary to compensate for mismatches between model predic-

tions and actual system behaviors and to mitigate steady-state errors. A proportional-integral

(PI) controller is used with PI gains tuned through offline tests using the Ziegler-Nichols

method. The sum of the feedback and feedforward control outputs is fed to a ramp rate filter,

which enforces the ramp rate limit before the control command is sent to the compressor

variable frequency drive (VFD).
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3.2.4 Zone Temperature Control

The primary function of a HVAC system is to maintain desirable indoor conditions. In

provision of grid services, such as voltage regulation, the building thermal load must be met

by the HVAC equipment for satisfactory indoor temperature regulation. A PI-type feedback

loop is used to monitor the actual zone air temperature and vary the indoor fan speed to

regulate the zone temperature close to its setpoint. When the zone temperature goes beyond

the setpoint, the supply air flow delivered by the indoor blower will be increased to provide

more cooling to the indoor space; the reverse action will be taken when the temperature

drops below the setpoint. The zone temperature control loop is designed to cope with the

building envelope dynamics, which are typically very slow and could have time constants up

to a week. As a consequence, the interactions with other control loops are negligible.

3.3 Testing Methodology

3.3.1 HIL Experimental Testing Approach

Figure 3.12 shows the experimental test rig and the HIL testing methodology. The test unit

is a 3-ton (10.5 kW) split heat pump, with variable-speed drives for the compressor, sup-

ply and condenser fans. The outdoor unit is placed in an environmental chamber which is

used to reproduce desired outdoor conditions (dry-bulb temperature and humidity). The en-

vironmental chamber has dimensions 18’×15’×12’ and is built with 5” thick polyurethane

insulation panels. The chamber is served by a medium-temperature refrigeration system and

can accommodate psychrometic testing of air-conditioning/heat pump units up to 12 ton.

The indoor air-handling unit is connected to an indoor environmental test loop that is able

to maintain specified indoor temperature and humidity. The test loop is made of 21”×21”

square duct that has a total length of 30’ and is instrumented with high accuracy flow station
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and temperature/humidity sensors. A conditioning system, which is sized according to the

thermal capacity of the outdoor chamber, is used to generate desired conditions in the indoor

test loop. A monitoring system is in place and major operating conditions are recorded, in-

cluding the instantaneous air-side cooling rate and power consumption of the compressor,

supply and condenser fans.

In the HIL tests, the measured cooling effect is fed to the building thermostat model

described in Section 3.3.2 and the zone temperature is predicted for the next time step (1

second). The predicted temperature is sent to the indoor loop controller which actuates

the indoor conditioning system so that the return temperature closely follows the predicted

indoor temperature. The indoor temperature is also used for supply fan speed control. How-

ever, due to the small variation in the simulated indoor temperature (see results in Sec-

tion 3.4.6), the supply fan speed was relatively constant in the experimental tests. This

bidirectional feedback mechanism ensures the indoor unit experiences realistic indoor envi-

ronmental variations during PV smoothing control. The thermal HIL also plays a critical role

in evaluating any impact that PV smoothing may have on indoor temperature regulation and

comfort delivery. HVAC systems are primarily operated to maintain indoor comfort and any

negative impact on comfort delivery will limit the technology’s acceptance among building

owners/operators. The measured compressor (plus condenser fan) power draw is fed to the

power distribution network model presented in Section 3.3.2, which is used to simulate nodal

voltage variations. Since no feedback of power system operation is involved, there is only

unidirectional communications from the test unit to the distribution network model. In the

experimental tests, indoor fan power was not used for PV smoothing since it was relatively

constant and had magnitude much smaller than that of the outdoor unit.

The proposed control strategy was programmed in a National Instruments CompactRIO

controller using LabVIEW. The generated control command, i.e., the compressor speed, is

communicated to the test unit via a proprietary communication protocol acquired from the
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Figure 3.12: Experimental test schematic.

manufacturer. The control signal is sent to the unit and feedback information, such as actual

compressor and condenser fan speeds, is received by the NI controller every second.

3.3.2 Building Load Model

We will use the power flow model described in Section 3.1 to evaluate the efficacy of our

PV smoothing control method. The distribution network model is implemented using MAT-

POWER in MATLAB [84] and values of model parameters can be found in [85]. To simplify

the overall analysis, commercial load characteristics are assumed for all the buses. Fig-

ure 3.13 shows an example load profile for a peak summer day of a small office building

located in Oklahoma City. The non-HVAC appliances together contribute approximately

47% of the total building peak load for this specific load profile. Therefore, it is assumed in

the PV smoothing analysis that only 53% of the nodal peak power is consumed by HVAC

equipment and used as the main flexible resource. The power consumed by the test unit dur-

ing the experimental tests is scaled to the nominal power capacities of the various buses in a
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synchronized manner. This allows assessment of the effectiveness when the smoothing so-

lution is adopted by all buildings connected to the distribution network. The same (nominal)

power factor is applied for HVAC and non-HVAC loads.

Figure 3.13: Diurnal electrical demand of a typical commercial building.

a. Building Thermal Model

Assuming time-invariant thermal parameters, a discrete-time model can be obtained to cal-

culate the zone temperature response for given cooling effect delivered to the indoor space

[30]

Cbld
Tz(t)

dt
= UA

(
To(t)− Tz(t)

)
+Qint(t)−Q(t) (3.13)

where Cbld is the effective thermal capacitance of a building, UA is the overall conductance

between indoor and outdoor spaces, Qint is the internal heat gain and Q is the instantaneous

cooling delivered by the HVAC system. The building thermal capacitance can be estimated

based on a cyclic thermostat model Section 3.1.4. The parameters assume Nmax = 3 cy-

cles/hr and Tdb = 0.56◦C, based on results reported in a field study by Henderson and

Rengarajan [86]. The building thermal capacitance is derived from field measurements in
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a dozen of residential houses that were served by single-speed HVAC systems. However,

it captures typical building thermal inertia and can be used to analyze representative indoor

environmental responses for any type of HVAC equipment. The building overall thermal

conductance UA is estimated as

UA =
Qrate

fos

1

TOD − Tbal,D

where fos is the HVAC equipment oversizing factor (assuming a value of 1.2 in this study),

TOD is the design outdoor temperature (set to 35◦C) and Tbal,D is the balance point outdoor

temperature (19.4◦C) (see [87] for modeling details).

3.4 Results and Discussions

A number of parametric tests were undertaken to understand the sensitivity of control perfor-

mance under different operation settings. The parameters and the tested values are shown in

Table 3.1. The tests covered two voltage regulator deadbands, three compressor speed ramp

rate limits, two PV penetration levels and three building load ratios.

Table 3.1: Test parameter values

Test cases
SVR deadband (p.u.) 0.00625, 0.016
Compressor ramp limit
(RPM/s)

120, 240, 360

PV penetration 50%, 100%
Cooling load ratio 60%, 70%, 80%

3.4.1 Power Tracking Performance

There is an upper limit for the motor speed ramp rate imposed to protect the motor from

overstress. This limit determines how fast a compressor can respond to a speed command
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and thus can directly impact the power tracking performance. A higher ramp rate limit can

enable faster speed and power responses but may overstress the motor and lead to premature

failures. The VFD for the test unit has a reconfigurable parameter for the maximum ramp

rate, which is defaulted at 120 RPM/s and has the highest allowable value of 360 RPM/s.

The authors confirmed with the compressor manufacturer that the products passed reliability

tests for different ramp rates in the range without noticeable impact on the compressor lifes-

pan. Experimental tests were carried out for three ramp rate limits: 120 RPM/s, 240 RPM/s

and 360 RPM/s. The test results are shown in Figure 3.14. The target power was generated

by the control strategy discussed in Section 3.2. The compressor speed command was de-

termined by the feedback-feedforward controller elaborated in Section 3.2.3 and sent to the

compressor VFD control board. The same control settings were used in the three tests with

the only difference being the VFD ramp rate limit. As expected, the ramp rate limit of 360

RPM/s resulted in the best tracking performance, while significant delays in control actions

could be observed in the case with a ramp rate limit of 120 RPM/s. The results presented in

the remainder of the chapter were all obtained under a ramp rate limit of 360 RPM/s.

Figure 3.14: Power tracking results at different ramp rate limits.

Figure 3.15 and Figure 3.16 compare the power variations with and without PV smooth-

ing control at node 6, for a load ratio (αld) of 70% and a PV penetration level (αPV ) of
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50%. The outermost profile is the total building electrical demand, including both control-

lable (HVAC) and non-controllable power uses. In these plots, the HVAC power collected

in the experiments was scaled according to the bus nominal load. The yellow shaded areas

correspond to PV power generation and the net demand is highlighted by blue shaded areas.

For the baseline case without PV smoothing, the building demand was relatively constant,

leading to a highly fluctuating net demand because of the volatile PV power output. The PV

smoothing controller varied the compressor speed in sync with the instantaneous solar power

and was able to effectively reduce the variation of the net demand. A few spikes were present

in the net demand, which were mainly caused by the communication delays (1 second) and

limited ramp rate of the compressor speed. With PV smoothing, the standard deviation of the

net demand was reduced from 0.012 MW to 0.0035 MW compared to the base case without

PV smoothing.

Figure 3.15: Power variations at node 6 with PV smoothing, αld=70% and αPV = 50%.

3.4.2 Impact on Distribution PV smoothing

Figure 3.17 compares variations of the voltage at bus 6 with and without PV smoothing. To

eliminate the influence of SVR tap operations on the nodal voltage, the SVR was temporar-
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Figure 3.16: Power variations at node 6 without PV smoothing, αld=70% and αPV = 50%.

ily removed for this analysis. With suppressed fluctuations in net demand, the nodal voltage

variation could be much reduced using the PV smoothing strategy. Figure 3.18 shows com-

parative histograms of the bus 6 voltage for the two cases. Two voltage clusters existed

associated with the rising and falling of the solar power. Without PV smoothing, the two

clusters centered at 0.966 p.u. and 0.982 p.u., respectively. The smoothing strategy was able

to shorten the distance between the two clusters, with the voltage standard deviation reduced

from 0.0072 p.u. to 0.0032 p.u. Only bus 6 voltage is presented here since it has a direct

impact on the voltage regulator operations, which will be discussed in the following sections.

Buses further downstream of the network would see even greater voltage fluctuations driven

by solar volatility.

3.4.3 Impact on SVR Operations

The SVR is operated to maintain the secondary voltage, i.e., voltage at bus 6, within a pre-

scribed deadband. Fluctuations of the control voltage could trigger frequent SVR tap oper-

ations, which may accelerate aging of the tap changer and cause premature failures. SVR

tap operation control sequences were simulated as part of the distribution network model
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Figure 3.17: Comparison of bus 6 voltage for cases with and without PV smoothing;
αld=70%, αPV = 50% and no SVRs. Standard deviations(STDs) are 0.0072 p.u. and 0.0032
p.u. for cases without and with PV smoothing.

Figure 3.18: Histograms of bus 6 voltage; αld=70%, αPV = 50% and no SVRs.

described in Section 3.3.2. Figure 3.19 depicts the variations of the SVR secondary voltage

and Figure 3.20 shows the tap operations for cases with and without proactive PV smooth-

ing. These simulations assumed a voltage deadband of 0.00625 p.u. It should be noted that

results during the simulation initialization period are not presented. At the beginning of

simulation, the tap changer stepped up from an initial position (zero) to a point where the

resultant voltage fell within the deadband. It can be observed that with PV smoothing, the

voltage was well maintained inside the deadband and no tap position change was executed.
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A few voltage excursions were present, but they did not trigger any tap operations because

the duration was all shorter than the delay setting, i.e., 30 seconds. For the base case without

PV smoothing, the voltage drifted out of the deadband for prolonged periods of time, which

triggered 10 tap operations in total for the 30-minute test period.

Figure 3.19: Bus 6 voltage variations for αld=70%, αPV = 50% and SVR dead-
band=0.00625p.u. Voltage STDs are 0.0065 p.u. and 0.0052 p.u. for cases without and
with PV smoothing.

Figure 3.20: VR tap position changes for αld=70%, αPV = 50% and SVR dead-
band=0.00625p.u.

The SVR tap operations are highly dependent on the deadband setting. A tighter dead-
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band can provide better regulation, especially for downstream buses far away from the SVR,

but may lead to frequent tap operations; a wider deadband reduces the frequency of tap

changes but could result in nodal voltage floating out of acceptable ranges. Figure 3.21 and

Figure 3.22 compare the voltage variations at bus 6 and the SVR tap operations for deadbands

of 0.00625 p.u. and 0.016 p.u., both without PV smoothing. With a relaxed deadband setting

of 0.016 p.u., the SVR secondary voltage stayed within the deadband even without proactive

PV smoothing, resulting in no tap operations during the test period. Therefore, PV smooth-

ing would not make any difference in terms of SVR operations for this specific case with a

50% PV penetration; however, the benefit of voltage improvement still existed. For cases

with high PV penetrations, the SVR control behaviors could be altered significantly and this

will be discussed in Section 3.4.4. Reduced tap operations with a relaxed deadband setting

may come at a cost of deteriorated PV smoothing performance. Figure 3.23 compares the

bus 33 (farthest node on the network) voltage variations for the two deadband settings. It can

be seen that the voltage fluctuation at bus 33 has a magnitude almost twice of the fluctuation

at bus 6. Thus, using a larger deadband may lead to voltage violations of regulatory limits

(e.g., the ±5% threshold set forth by ANSI C84.1 [79]), especially for long radial networks

with high PV penetrations. However, PV smoothing could ensure consistent PV smoothing

performance along the feeder even with relaxed SVR deadband settings. Figure 3.23 shows

that when the 0.016 p.u. deadband was used in combination with PV smoothing, the voltage

variation was even smaller than the results obtained with a 0.00625 p.u. deadband setting

(without PV smoothing).

3.4.4 Impact of PV Penetrations on PV smoothing

PV penetration levels directly affect the magnitude of voltage fluctuations on the distribution

network. It was shown in the preceding section that a 50% penetration level would not

cause any SVR tap changes when a 0.016 p.u. deadband setting was used, even without
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Figure 3.21: Bus 6 voltage variations under two deadband settings; αld=70%, αPV = 50% and
without PV smoothing. Voltage STDs are 0.0065 p.u. and 0.0082 p.u. for SVR deadbands
of 0.00625 p.u. and 0.016 p.u.

Figure 3.22: VR tap position changes under two deadband settings; αld=70%, αPV = 50%
and without PV smoothing.

PV smoothing. Simulations were also carried out for a case with 100% PV penetration to

evaluate the influence of PV penetration levels on PV smoothing performance. Figure 3.24

compares the SVR secondary voltage variations for 50% and 100% penetrations, assuming

a voltage deadband of 0.016 p.u. It can be seen that without PV smoothing, doubling the PV

size resulted in the secondary voltage drifting outside the deadband and a few tap changes
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Figure 3.23: Bus 33 voltage variations under two deadband settings; αld=70%, αPV = 50%.
Voltage STDs are 0.0094 p.u., 0.012 p.u. and 0.0064 p.u. for blue, red and orange curves.

were undertaken to bring the voltage back into range. Figure 3.24 also shows the SVR

secondary voltage behaviors when PV smoothing was enabled. The PV smoothing solution

was able to maintain the voltage within the deadband without any need for tap operations, as

can be seen in Figure 3.25.

Figure 3.24: Bus 6 voltage variations with and without PV smoothing, at different PV pene-
tration levels and with αld=70%. Voltage STDs are 0.012 p.u., 0.0098 p.u. and 0.0082 p.u.
for blue, red and black curves.
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Figure 3.25: Tap operations with and without PV smoothing; αld=70%, αPV = 100% and
SVR deadband = 0.016p.u.

3.4.5 Impact of Building Load on PV smoothing

As illustrated in Figure 3.10, the smoothing capacity varies significantly with the instanta-

neous building load. For excessively high or low load conditions, the available smoothing ca-

pacity is limited due to reduced margins to the speed upper/lower bounds (see Section 3.2.2

for detailed explanations). Experimental tests were conducted for three load levels, i.e.,

αld = 60%, 70% and 80%, and the resultant net demand profiles at bus 6 are depicted in

Figure 3.26. It can be observed that the smoothing capacities were similar for load ratios of

60% and 70%. At 80% load ratio, the smoothing capacity was much reduced, leading to a

greater magnitude of fluctuation in the net demand. As a consequence, the voltage drifted out

of the deadband, even after PV smoothing, for a few occasions which triggered tap position

changes, as can be seen in Figure 3.27 and Figure 3.28. With load ratios of 60% and 70%,

the PV smoothing was able to maintain the voltage in range without any tap operations.
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Figure 3.26: Net demand of bus 6 at different load conditions, with PV smoothing, αPV =
50% and SVR deadband = 0.00625p.u.

Figure 3.27: VR tap operations at different load conditions, with PV smoothing, αPV = 50%
and SVR deadband = 0.00625p.u.

3.4.6 Comfort Impact from Thermal HIL Tests

Thermal HIL test results are presented in this section to analyze the potential impact of PV

smoothing on indoor temperature regulation. The (air-side) cooling rate delivered by the AC

unit was measured in real time and fed to the lumped load model described in Section 3.3.2.

The zone temperature was simulated and used as return air temperature setpoint for the in-
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Figure 3.28: Bus 6 voltage at different load conditions, with PV smoothing, αPV = 50% and
SVR deadband = 0.00625p.u. Voltage STDs are 0.0058 p.u., 0.0052 p.u. and 0.0051 p.u. for
load ratios of 80%, 70% and 60%.

door control loop. Figure 3.29 depicts the cooling rate variation and compressor power for a

test with a load ratio of 70% and compressor ramp rate limit of 360 RPM/s. Driven by the

compressor speed modulation, the cooling rate moved up and down around the load line. The

cooling rate had damped fluctuations relative to the compressor power, which was attributed

to the thermal inertia associated with the fin-tube evaporator and condenser coils in the heat

pump. Figure 3.30 shows the resultant indoor temperature variation. The temperature de-

viation from the setpoint (25◦C) was within 0.2◦C, due to a combined thermal buffering

effect of the building construction and HVAC equipment. This proves that PV smoothing

has negligible impact on indoor comfort, even at the maximum smoothing capacity.

3.4.7 Discussions

Distribution voltage variations and SVR tap operations are highly dependent on the load pat-

tern, compressor speed ramp limit, PV penetration levels and SVR deadband settings. The

thermal load determines the smoothing capacity while the compressor speed limit influences

the power tracking accuracy. PV penetration and SVR dead band only affect distribution
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Figure 3.29: Variations of cooling capacity and compressor power for a test with αld=70%
and compressor ramp rate limit of 360 RPM/s.

Figure 3.30: Indoor air temperature

Table 3.2: Tap operations for different test scenarios.

Num. of tap operations
No PV-SC W/ PV-SC

0.00625 DB,
αPV =50%

αld=60% 8 0
αld=70% 7 0
αld=80% 6 3

αld=70%
αPV =50%

0.00625 DB 7 0
0.016 DB 0 0

αPV =100%
0.00625 DB 9 6
0.016 DB 5 0
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voltage variations, which are related to benefits that PV smoothing can generate; but they

have no direct effect on PV smoothing performance. The impact of PV smoothing on distri-

bution voltage stability varies significantly. Table 3.2 summarizes the tap operations during

the 30-minute test period for all test scenarios. With much mitigated voltage fluctuations,

the PV smoothing strategy was able to reduce or even fully eliminate tap operations for all

cases. For extreme load conditions and for cases with high PV penetrations but tight SVR

deadband settings, tap position changes were present but effectively reduced with the PV

smoothing control strategy. This is due to the combined effect of reduced smoothing capac-

ity from HVAC equipment and more significant disturbance effect from volatile PV output.

HVAC power flexibility was shown to vary with the building cooling load; at excessively

high or low load levels, the smoothing capacity is reduced due to smaller margins to the

compressor speed limits. To achieve consistent power flexibility, building load scheduling

techniques, through dynamic zone temperature reset, can be leveraged to optimally shape

the load profile.

The PV smoothing strategy was proved to be effective in mitigating the variations of net

demand and voltage caused by solar power volatility. However, spiky tracking errors existed

during sudden changes of solar power, due to the hardware limits of compressor ramp rate

imposed by manufacturers. This analysis assumed the solar power generation at all buses

follows exactly the same trajectory, which was extracted from power measurements in a 14

kW solar generator. For actual distribution networks with distributed solar generation, vari-

ation of the total solar power would be smoother with geometric averaging and better power

tracking performance would be expected. In addition, the PV smoothing can be combined

with advanced inverter control features to achieve improved PV smoothing performance.

When solar power increases suddenly, curtailment control can be leveraged to reduce the up-

ward ramping requirement of the compressor. During sharp drop of solar irradiance, reactive

power can be injected to boost the nodal voltages. These control features can be implemented

within either the PV inverter or the compressor VFD.
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This feasibility study assumed identical control behaviors and did not consider diverse

and random load patterns across the different buildings connected to a distribution network.

As a result, the compressor speed limits between 40% and 100% have led to reduced power

flexibility. For low load conditions, a variable-capacity HVAC system would cycle on (at

minimum compressor speed of 40%) and off to meet the load and would not be able to pro-

vide any continuous smoothing capacity. However, HVAC units serving different buildings

can coordinate the cycling cycles to offer semi-continuous power modulation. This could

recover the flexibility loss caused by the speed limits and provide greater smoothing capaci-

ties.

3.5 Chapter Summary

This chapter presented an entirely new approach to PV power injection smoothing through

a novel control strategy utilizing building HVAC equipment. The variable-capacity HVAC

systems control strategy employs a quasi-steady-state heat pump model derived from either

manufacturer performance data or field/laboratory measurements to determine on-the-fly

unit power flexibility, which is determined by the base power and upward/downward ramping

margins. The instantaneous PV output is monitored and projected onto the power modula-

tion range in determining a desired heat pump power level. Then a feedforward-feedback

controller is used to vary the speed of the heat pump compressor to follow the power set-

point. Experimental tests were carried out with a hardware-in-the-loop (HIL) testbed, which

integrates a 3-ton heat pump (hardware) and numerical models for a representative build-

ing and a 33-bus distribution network (software). Test results are reported including power

tracking performance, distribution nodal voltage variations, voltage regulator operations and

indoor comfort impact. The tests cover a range of building thermal load, PV penetration,

compressor ramp rate limit and voltage regulator setting. Considering the significant elec-

trical energy consumption by buildings worldwide, the proposed technology can leverage
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the vast untapped storage resources associated with building end uses, helping mitigate the

adverse impact and increase the hosting capacity of renewable resources on the electric grid.
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CHAPTER 4

DISTRIBUTION VOLTAGE SUPPORT THROUGH COORDINATIVE CYCLING

OF HVAC SYSTEMS

Chapter 3 demonstrated the feasibility of using variable-speed heat pumps to mitigate solar

power fluctuations at the second time scale. The simulation tests assumed a synchronized

control of all HVAC systems connected to the same distribution feeder. However, variable-

speed systems are not common, especially in the residential sector, and synchronized control

is not practical to implement because of the diversities in HVAC loads and operational con-

straints across different households.

This chapter presents a different distribution voltage control approach using single-stage

(cycling) HVAC systems that are more commonly used in residential and small commercial

buildings. This control approach coordinates the duty cycles of HVAC equipment serving

different households to provide maximum voltage support. A co-simulation framework,

which links 100 EnergyPlus building models and a power flow model for the 33-bus distri-

bution network, has been developed to facilitate synthesis, analysis and verification of the

voltage regulation strategy for cycling HVAC systems in buildings. The flexibility and di-

versity of residential thermal loads and their influence on the aggregate voltage regulation

capacity, can be realistically simulated with the co-simulation framework. A priority-based

control logic was developed for operations of cycling HVAC systems in the households to

enable active voltage support.

This chapter is structured as follows. Section 4.1 introduces the co-simulation platform

along with the component models for the residential building prototypes, a power distribution
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grid and solar PV. Section 4.2 describes the voltage regulation strategy using building ther-

mal loads. Section 4.3 presents the key simulation results obtained from the co-simulation

platform corresponding to five voltage regulation cases. A chapter summary is given in Sec-

tion 4.4.

4.1 Co-Simulation Platform

This section introduces the co-simulation platform for a PV-rich distribution grid similar to

that introduced in the preceding chapter. It is assumed that solar PV panels are installed

across all buses with a uniform penetration of 70%, i.e., the nameplate capacity of the PV

panels connected to each bus is equal to 70% of the apparent capacity of the corresponding

bus. The aggregate PV capacity is 3.19 MW. A case study for a residential community, com-

prised of 100 residential dwellings, is used to demonstrate the efficacy of the co-simulation

platform in analyzing and evaluating the distribution voltage regulation performance under

various control scenarios. It is assumed that 3 buildings are connected to each of buses #1 to

#32 while 4 buildings are served by bus #33. The different simulated buildings have com-

parable peak electric load while the nodal power capacity can differ significantly from one

bus to another. Note that an actual feeder of similar sizes may serve up to 1000 residential

dwellings. The case study only considers 100 households that are scaled up to a comparable

aggregate capacity. This limitation is associated with the memory requirement of EnergyPlus

for each building model and the fact that all simulations in the case study are carried out on

a single desktop computer. The co-simulation framework supports distributed and parallel

model implementations across different computers. However, it is believed 100 buildings

are adequate to capture the load diversities and trends in the aggregate power flexibility. In

the case study, the building loads are scaled so that the annual peak loads of all households

served by the same bus add up to 80% of the node nominal capacity.
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Figure 4.1 shows the schematic diagram of the co-simulation framework along with the

data flow across the various components. The co-simulation framework adopts a loose cou-

pling strategy (ping-pong). At each time step, data is being exchanged between the different

tools for the pre-defined interfacing variables: for each simulation tool, the external interfac-

ing variable values of the previous time step are used to calculate its model output for the

current time step. The interaction between simulators is orchestrated by the python master

algorithm. A group of residential dwellings (e.g., 100 houses in the case study) are simulated

through parallel and independent EnergyPlus models each wrapped in the form of a func-

tional mockup unit (FMU) which includes the building model and corresponding weather

file. At each time step, two main interactions take place between the master code and the

different building models: (1) the master code extracts outputs, e.g., the total power con-

sumption and current zone/domestic hot water (DHW) temperatures, from the 100 building

models which are run on the same computer sequentially, although the developed frame-

work has the capability of simulating different buildings models in parallel on multiple cores

or across multiple computers, and (2) when all building simulations are completed for the

current time step, the controller accepts the simulated results and determine the control com-

mands (cycling control signals) which are then sent to the building FMUs. The building

power consumption is passed along with the solar power generation from the PV model to

the distribution grid model, which calculates the voltage of the feeder. A homegrown grid

simulator for radial distribution networks is utilized which offers both a nonlinear power

flow model and a linear surrogate model; the latter is leveraged by the central controller to

support control decision making. If a SVR is present, the tap position is adjusted and the

corresponding turn ratio is applied to the distribution grid model to regulate the secondary

voltage within its deadband. Finally, the central controller receives the voltage output from

the distribution grid model and generates an cycling command to each controllable load.

The framework then progresses to the following time step, repeating the described sequence.

Note that the co-simulation engine operates with a one-minute time step and the solar data
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used in this study also has a time resolution of one minute. Therefore, the presented results

only represent benefits that can be achieved up to the minute time scale.

Figure 4.1: Co-simulation framework and interfacing variables

4.1.1 Building Load Model

The co-simulation framework incorporates the DOE prototypical residential building models

developed by Pacific Northwest National Laboratory (PNNL) in the form of FMUs. The 100

dwellings simulated in the case study cover the 2006, 2009, 2012, 2015 and 2018 editions of

the International Energy Conservation Code [88] specified for the climatic zone 2B (Tucson

Arizona) to reflect the construction diversity in a representative residential community. Each

EnergyPlus FMU models a two-story single-family dwelling with a total floor area of 2,376

ft2 and equipped with a central heat pump system for space cooling and heating (with a

resistive auxiliary heater used in Emergency Heat mode), and a resistive water heater.

U.S. households typically employ staged HVAC and water heating equipment that cycle

on and off (or between stages for multi-stage systems) to maintain the thermostat tempera-

tures close to their setpoints. However, EnergyPlus is primarily designed to evaluate quasi-

steady-state energy performance and cannot directly model cyclic operations of residential

HVAC. In order to capture more realistic load responses, the control logics in EnergyPlus

have been modified to receive cycling commands provided externally by the control module.

Thermostat and water heater setpoints/deadbands are also implemented outside EnergyPlus

in the co-simulation master code. Temperature setpoints of 23◦C for the indoor spaces and
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47◦C for the hot water tank are assumed with a deadband of 0.5◦C. Further, the thermal iner-

tia, occupancy schedule and operational settings such as anti-cycling periods all impact the

variations of flexibility and thus the ability of residential loads to provide voltage support

across the different houses and at different times of the day. To better capture the aggregate

load flexibility, occupancy schedules and thermostat cyclic patterns are randomized across

the different household models in the co-simulation platform, to be discussed in the follow-

ing subsections.

a. Building Thermal Model

EnergyPlus simulates quasi-steady-state temperature variation of the indoor air volume but

cycling of a HVAC unit is dependent on the temperature reading inside a thermostat. In-

door furniture and thermostat enclosure may cause buffering effect in temperature reading

and thus can affect the cycling pattern of a HVAC system. Since the combined thermal ca-

pacitance, associated with building construction and thermostat enclosures, has a significant

impact on the load flexibility of a dwelling (elaborated later in this section), it is important

to obtain representative capacitance estimates. A hybrid method is proposed here that com-

bines the thermostat cyclic model and high-resolution field data collected in a dozen of U.S.

houses to obtain a realistic range for the combined thermal capacitance; details of the method

are presented in Section 3.1.4.

As previously mentioned, the capacitance significantly impacts the load flexibility of a

dwelling, which is defined as the margin for the electrical load increase (ramp-up) or de-

crease (ramp-down) from the current load level. Figure 4.2 illustrates the effects of thermal

capacitance and anti-cycling time on power flexibility of HVAC equipment. The red shaded

area corresponds to load ramp-up flexibility. If the current time step falls within the red

shaded area, the HVAC unit can be turned on if needed. Similarly, the blue shaded area

presents the ramp-down flexibility during which period the HVAC equipment can be turned
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off anytime. A controller cannot turn a HVAC system on or off unless there is ramp-up or

ramp-down flexibility. Note that load flexibility of HVAC equipment is highly dependent

on the anti-cycling period, which is implemented by manufacturers to prevent frequent cy-

cling of the compressor for the sake of equipment lifetime. After a shut-down (or start-up)

of the HVAC equipment, the unit ramp-up (or ramp-down) flexibility will not be available

until the anti-cycling timer expires. This is why larger anti-cycling time settings could lead

to reduced load flexibility due to prolonged lock-out of a compressor, as evident from com-

parison of Figure 4.2 (a) and Figure 4.2 (c). In the case studies, the minimum on-time and

off-time of a duty cycle both assume 4 minutes. HVAC load flexibility is also affected by the

building thermal inertia. For a dwelling with high thermal mass or large thermostat inertia,

the combined capacitance is high and the thermostat temperature variation would be slow,

leading to greater load flexibility; on the other hand, houses with light construction typically

involve low thermal capacitance and thereby smaller load flexibility. This can be clearly seen

through comparison of Figure 4.2 (a) and Figure 4.2 (b). The available load flexibility of a

community at any time instance is simply the sum of power flexibility across all households

(see Figure 4.7 of the case study section for the aggregate flexibility). Note that EnergyPlus

Figure 4.2: HVAC flexibilities for different simulation settings: (a) Nmax = 2.5, anti-cycling
time = 4 min; (b) Nmax = 5, anti-cycling time = 4 min; (c) Nmax = 2.5, anti-cycling time = 8
min.
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does not offer a thermostat model directly, but the “zone temperature capacitance multiplier”

parameter can be used to simulate the additional inertia associated with thermostat enclosure

and indoor furniture [83]. This parameter is randomized across the different building models

of the co-simulation so that the resultant peak cycling rate uniformly falls within the range

identified in [83].

b. Occupancy and Electrical Load Schedules

The original prototypical building model has predefined occupancy and load schedules while

these schedules are likely to differ significantly from one household to another. In order to

capture the electrical load diversity, occupancy profiles in EnergPlus are randomized across

different dwellings and each of the household end uses has been linked to the number of oc-

cupants for a given dwelling, e.g., 22.8 W/person for dishwasher, 35.5 W/person for refrig-

erator, 14.2 W/person for clothes washer, 72.5 W/person for electric dryer and 730 W/person

for electric range; these end use densities are estimated based on the nominal end uses and

occupancy of the original prototypical model. Occupancy schedule is randomized using the

model developed by [89], based on a first order time inhomogeneous Markov chain derived

from self-reported surveys. The occupancy schedules generated across the 100 buildings are

depicted in Figure 4.3.

c. Weather Data

The EnergyPlus residential building simulations utilize measured meteorological (dry-bulb

temperature, relative humidity, atmospheric pressure and windspeed) and solar irradiance

data (global horizontal, direct normal and diffuse horizontal solar radiation), obtained from

the OASIS database of National Renewable Energy Laboratory for Tucson, Arizona [90].

The data is available in a minute resolution and spans over the whole year of 2019. Note

59



Figure 4.3: Occupancy schedules of all the simulated buildings throughout a summer day

that the temperature and solar irradiance data is also used by the solar PV model discussed

in Section 4.1.2

4.1.2 Solar Photovoltaic Model

The solar irradiance fluctuations can occur at a range of frequencies from fractions of mHz

to a few Hz. The daily solar irradiance parabolic profile is the source of the low frequency

variation; medium frequency variation is mainly associated with moving clouds while local

intermittent shading and passing flocks of birds contribute to high frequency variation of

solar irradiance. [91] presented a thorough analysis of the frequency spectrum of solar PV

power based on field measurements with one-second time resolution. The study found that

98% of the PV energy is attributed to the frequency band lower than 1mHz ( 15 mins).

In this study, the solar irradiance data from the NREL OASIS database is used which

has a time resolution of one minute. A solar PV model is implemented to calculate the solar

60



power output for the given solar irradiance and ambient temperature (the same as the weather

data used in EnergyPlus building models) at each time step. The instantaneous PV power

output (under maximum power point) can be estimated with

Pm = ηcAGT (4.1)

where A is the aperture area, GT is the global horizontal solar irradiance and ηc is the PV

power output efficiency. The PV efficiency was found to be linearly related to the cell tem-

perature and can be estimated with the following correlation [92]

ηc = ηTref
[1− βref (Tc − Tref )] (4.2)

where ηTref
is the PV power output efficiency at the standard test conditions, i.e., at the

reference cell temperature Tref = 25◦C and solar irradiance of 1000 W/m2, and βref is

the temperature coefficient. This correlation assumes the impact of solar irradiance on the

conversion efficiency is negligible, which is a common practice. These parameter values can

be obtained from the manufacturer, e.g., ηTref
= 0.125 ,βref = 0.0044◦C−1 for crystalline

silicon modules [93]. It is difficult to reliably measure the PV cell temperature and a practical

method is to use the ambient temperature Ta to estimate the cell temperature, such as [94]

Tc = Ta +
GT

GNOCT

(TNOCT − Ta) (4.3)

where GNOCT is the nominal solar irradiance and TNOCT is the nominal operating cell tem-

perature measured under nominal terrestrial environment [95]. Note that the PV efficiency in

Equation 4.1.2 has combined an inverter efficiency of 0.95, as the original parameter value

for ηTref
is 0.13.
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4.2 Voltage Regulation Strategies from Building Thermal Loads

This section describes the control strategy for building HVAC and DHW loads to enable

proactive voltage regulation. The strategy always uses the HVAC regulation flexibility first

and only when the HVAC flexibility is exhausted, the DHW flexibility is procured. Before

the strategy is deployed, the target nodal voltage and a corresponding deadband need to be

specified; the control voltage could be the nodal voltage on the secondary side of a SVR

or the voltage of the worst case node across the feeder. Figure 4.4 shows the logics for

procurement of HVAC and DHW load flexibility for voltage regulation. At each time step,

the controllable loads are firstly separated into four groups: 1) a “lock-out” group including

all the HVAC and DWH units with unexpired anti-cycling timers (thus these units cannot

change operational status); 2) a “change of status” group comprised of the units that must

change status, either on-to-off or off-to-on due to temperature excursions; 3) an “available

to ramp-down” group including the units that are currently energized but can be turned off

if needed; 4) an “available to ramp-up” group with units that are in idle mode but can be

activated if needed. In addition, the units in the ramp-up and -down groups are ordered by the

priority, e.g., if a HVAC unit has the thermostat temperature closer to the upper/lower bound

of the deadband, it has a higher priority to be turned cycling. The voltage regulation strategy

procures the regulation flexibility from the ramp-up or ramp-down group: if the control

voltage tends to drop below the lower limit, the ramp-down flexibility is called for to reduce

load of the feeder and boost voltage; similarly, if an overvoltage is about to occur, ramp-up

resources will be leveraged; if the voltage falls within the deadband, no proactive voltage

regulation is needed and thermal loads are controlled according to their original thermostat

sequences. During proactive voltage control, the amount of the flexibility (number of units

that need to be turned on or off) that is needed is determined with an iterative process in the

simulation study. In real-world implementation, real-time voltage feedback can be leveraged

for accurate flexibility procurement.
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Figure 4.4: HVAC and DHW flexibility procurement logics

4.3 Simulation Case Studies

Five numerical test cases are considered to evaluate the performance improvement in volt-

age regulation using the proposed proactive building load control strategy. The five case

studies cover distribution grids with and without SVR, different control targets (maintain

feeder voltage within ANSI limits, minimize SVR operations) and different control settings

(constant thermostat setpoint versus setpoint reset). The simulation parameters and settings

for the five cases are shown in Table 4.1. All the simulations are carried out for the same

summer day to enable cross-comparisons.

4.3.1 Baseline Control

The baseline case assumes a SVR is not in place and there is no proactive thermal load

control; it is used as a benchmark to quantify the benefits of the proposed voltage regulation

strategy. In the baseline case, the HVAC/DWH is controlled according to the indoor/water

temperature regardless of voltage changes of the distribution grid. Figure 4.5 shows the
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Table 4.1: Cases study parameter settings

Baseline Case 2 Case 3 Case 4 Case 5
Building voltage support × ×

√ √ √

Setpoint for
building voltage support N/A N/A

1.0 p.u.
at bus #6

1.0 p.u.
at bus #33

1.0 p.u.
at bus #33

Deadband for building
voltage support N/A N/A 0.0125 p.u. 0.05 p.u. 0.05 p.u.

SVR in place ×
√ √

× ×

SVR voltage setpoint N/A
1.0 p.u.

at bus #6
1.0 p.u.

at bus #6 N/A N/A

SVR voltage deadband N/A 0.0125 p.u. 0.0125 p.u. N/A N/A
Thermostat setpoint reset × × × ×

√

aggregate (active) load profile, which includes both HVAC/DWH loads and non-controllable

end uses such as lighting, TV etc., along with the aggregate PV power generation, under the

baseline control. The voltage variation of bus #6 is shown in Figure 4.6

Figure 4.5: PV power output and the total building loads of the distribution grid on a typical
summer day

The lowest voltage occurs at time 1103min (around 6 PM) after sunset, when there is still

significant load but no solar power available. The voltage peak occurs around noon because
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Figure 4.6: The voltage variation of bus 6 for the baseline case

of the high PV power output and relatively low building load. In addition to the diurnal

voltage variation caused by the slowly changing building loads, high-frequency fluctuations

of voltage are present mainly driven by the dramatic changes in the solar power due to

passing clouds. This research aims to evaluate the feasibility of using flexible thermal loads

to mitigate the adverse impact of PV integration on distribution voltage. Although on-site

solar generation can neutralize a portion of the building loads, there is still a positive net

demand and that is why the distribution voltage is almost always below 1 p.u..

Figure 4.7 shows the baseline building power usage and load flexibilities, represented

by shaded areas above and underneath the power consumption curve. As described in Sec-

tion 4.1.1, the red shaded areas indicate the ramp-up flexibility, which is the available power

to bring on at a given time step by turning on HVAC and/or DWH units. When a change

of status is applied to a HVAC unit, its flexibility becomes unavailable until the anti-cycling

timer expires. Similarly, the blue shaded areas correspond to the ramp-down flexibility. It can

be observed that the ramp-up flexibility of DHW is far greater than the downward flexibility.

This is because the heater is sized to accommodate large instantaneous loads during active
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HW usage (e.g., shower) but the average-to-peak ratio of DHW load is very low; therefore,

the electrical heater is in idle mode for most of the day and can be turned on if needed, result-

ing in significant ramp-up flexibility. However, the water in the tank heats up very quickly

after the heater is energized, due to the low average load, leading to poor sustainability of

the ramp-up flexibility: the flexibility will be exausted very fast after being called upon. The

available ramp-down flexibility from DHW is negligile, because DWH is off for a majority of

the time. The HVAC load ratio spans over a good range from 10% to 68% for this simulated

day, resulting in considerable upward and downward flexibilities. The flexibilities change

sigificantly with the time of the day: during high load hours (around noon), the ramp-down

flexibility is most significant and within low load hours (evening time), the upward flexibility

is dominant. Since DHWs are not able to contribute sustainable load flexibility, only HVAC

flexibility results will be presented throughout the rest of the chapter. Note that Figure 4.7

shows the available flexibility, which is not being utilized at all for this baseline case as active

load control is not enabled. In subsequent sections, the utilized flexibility will be presented

for cases when proactive voltage support is present.

Figure 4.7: Building power consumption and load flexibilities for the baseline case
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4.3.2 Case 2 (with SVR) and Case 3 (with SVR and Building Voltage Support)

When SVRs are in place, fluctuations of distribution voltage could trigger frequent SVR tap

operations, which may accelerate aging of the tap changer and cause premature failures. To

evaluate the potential of using flexible thermal loads to smooth distribution voltage and re-

duce SVR operations, simulations (Case 2 and Case 3) were carried out assuming a SVR is

installed between buses #5 and #6 to maintain the bus #6 voltage within a prescribed range.

The voltage setpoint for bus #6 is configured to 1.0 p.u. and the voltage deadband is set to

0.0125 p.u. If the bus #6 voltage stays within the deadband, the tap position remains un-

changed; otherwise, the tap position is adjusted to vary the turn ratio of the autotransformer

inside the SVR as a means to regulate the secondary voltage. Case 2 assumes no proactive

regulation support from building thermal loads as a benchmark while Case 3 considers both

SVR and proactive load control for voltage regulation. In Case 3, if the voltage of bus #6

tends to drift out of the deadband, the load flexibility is utilized first to pull the voltage back

into the deadband and if the load flexibility is exhausted but the voltage is still out of range,

the SVR then adjusts the tap position to prevent voltage excursion.

Figure 4.8 and Figure 4.9 compare the bus #6 voltage variations and SVR tap positions

of Cases 2 and 3. For Case 2, the high-frequency voltage fluctuations caused by the volatile

solar power lead to a total of 15 SVR tap operations within the simulated day. These SVR

operations are effective in preventing voltage excursions. For Case 3, the HVAC and DHW

units are proactively cycled on and off by the regulation controller as an attempt to main-

tain the voltage within the deadband and the load flexibility is utilized to minimize SVR

operations. This can be clearly seen from Figure 4.10 which shows the available and uti-

lized flexibilities of HVAC equipment. It can be observed that the flexibility is called upon

around noon when the voltage fluctuation is significant. The proactive voltage support from

HVAC can effectively reduce the number of SVR tap position changes, from 15 in Case 2

to 4 in Case 3. The four SVR tap position changes associated with Case 3 are attributed to
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Figure 4.8: Voltage of bus 6 with and without HVAC & DHW voltage support for Cases 2
and 3

Figure 4.9: SVR tap positions with and without HVAC & DHW voltage support for Cases 2
and 3

exhausted flexibility caused by diurnal load variation (2nd, 3rd and 4th operations) and also

partially due to the discrepancy between the predicted power usage and the actual power
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Figure 4.10: Variations of available and procured HVAC flexibility for Case 3

draw of HVAC equipment calculated in EnergyPlus (1st operation). In the HVAC regulation

controller, the nominal HVAC power is used in determining the number of units to be turned

on or off while the actual power draw simulated by EnergyPlus can vary significantly with

ambient and indoor temperatures.

Figure 4.11 and Figure 4.12 compare the temperature variations of the 100 simulated

dwellings along with the thermostat deadband, for Cases 2 and 3. It can be seen that for

both cases, the indoor temperature can drift out of the deadband occasionally because of 1)

the minimum time step (1 minute) implemented in EnergyPlus and 2) the anti-cycling logic

for thermostats. The flexibility utilization is clearly reflected in the temperature plot of Case

3. For Case 2, the thermostat follows a conventional deadband logic where a HVAC unit

is turned on or off only when the temperature reaches the upper or lower bound, while the

HVAC voltage regulation controller in Case 3 tends to switch off HVAC units right after the

expiration of the anti-cycling timer, even though the temperature is still far above the lower

bound, during undervoltage events in order to reduce the overall electrical demand and to

prevent SVR operations. The temperature excursions for Cases 2 and 3 are comparable,
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Figure 4.11: Zone temperatures of the 100 simulated buildings for Case 2

Figure 4.12: Zone temperatures of the 100 simulated buildings for Case 3
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Figure 4.13: Total cumulative number of HVAC cycles for Case 2 and 3

both less than 0.3◦C. This proves that the provision of flexibility has minimum comfort

impact, which is consistent with results reported in previous studies [25]. To assess the

potential lifetime impact, Figure 4.13 compares the cumulative number of HVAC cycles of

Cases 2 and 3. Voltage regulation control results in increased cyclic operations of the HVAC

equipment, from 4373 in Case 2 to 4870 in Case 3, across all 100 buildings for the simulated

day. However, the increase of HVAC equipment operations (and thereby the lifetime impact)

is minor compared to the benefit of SVR operation reduction.

4.3.3 Case 4 (with Building Voltage Support)

Case 4 evaluates the effectiveness of using load flexibility to maintain the whole feeder volt-

age within a desired range, e.g., the service voltage limit of 1.05 p.u. and 0.95 p.u for systems

operating 600V and below imposed by ANSI C84.1 [96], without a SVR. The voltage of bus

#33, located at the far end of the feeder, experiences the most significant variation, driven by

diurnal load change and variable solar PV power injection across the feeder. Therefore, bus
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Figure 4.14: HVAC power and flexibilities for Case 1 (benchmark)

#33 voltage is the target control variable for thermal load control in Case 4. If the voltage of

bus #33 exceeds the tolerable range (0.95 to 1.05 p.u.), the load flexibility controller will be

triggered to turn on or off HVAC and DHW equipment to bring voltage back into range.

Figure 4.14 and Figure 4.15 depict the available and utilized HVAC power flexibility and

Figure 4.16 compares the variations of bus #33 voltage between Case 1 (baseline) and Case

4. Note that without a SVR, undervoltage is present in the baseline case as the simulated

results correspond to a peak summer day with aggregate load close to ( 75% of) the feeder

nominal capacity. It can be seen from Figure 4.14 and Figure 4.15 that in late afternoon and

early evening, the HVAC ramp-down flexibility is fully utilized by the voltage regulation

controller as an attempt to boost the voltage of bus #33, as evident from results in Figure 4.16.

However, even with full utilization of the flexibility, the voltage of bus #33 still drops below

the lower bound occasionally. Compared to the baseline case, there is clear improvement on

voltage performance with the proactive voltage support from HVAC and DHW: the lowest

voltage has been bumped up from 0.93 p.u. in Case 1 to 0.94 p.u. in Case 4; the accumulative

voltage excursion is also reduced from 1.4799 p.u.-min in Case 3 to 0.3971 p.u.-min in Case
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Figure 4.15: HVAC power and flexibilities for Case 4

Figure 4.16: Bus #33 voltage variations of the baseline case and Case 4
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4, representing a performance improvement of 73%.

4.3.4 Case 5 (with Building Voltage Support and Thermostat Setpoint Reset)

The voltage regulation controller in Case 4 fails to fully eliminate voltage excursions. In

addition to the load being close to the network design capacity, the dissatisfactory control

performance is also partially caused by the constant thermostat setpoint and deadband in

the controller, which offers adequate flexibility to compensate for high-frequency (at minute

time scale) voltage fluctuations but has limited capability in changing the overall trend of

voltage variation.

It is well known that zone temperature scheduling is effective in changing a building’s

diurnal load profile. Therefore, in Case 5, the voltage regulation controller is modified to

reset the thermostat setpoint through a droop controller: when the feeder voltage tends to

drop below the lower bound, the thermostat setpoint is raised linearly with the potential

voltage excursion to further reduce the load. The thermostat deadband remains unchanged

in the modified regulation controller. This strategy can reduce HVAC load and thereby shift

the feeder voltage upwards when the feeder voltage is close to its lower bound.

The variations of indoor temperatures of the 100 dwellings simulated for Case 5 are

shown in Figure 4.17. When the feeder voltage stays within the range, the thermostat as-

sumes the same setpoint of

Figure 18 shows the aggregate HVAC power along with the flexibilities with the proposed

thermostat reset. It can be seen from Figure 4.18 and Figure 4.19 that as the indoor temper-

ature setpoint in Case 5 is increased in the evening, the ramp-down flexibility provided by

HVAC equipment can be significantly increased to offer better voltage support. Figure 4.19

compares the bus 33 voltage variation with and without indoor temperature reset. With the

modified regulation controller, the accumulative voltage excursion for the simulated day can
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be reduced from 0.3971 p.u.-min (Case 4) to 0.0088 p.u.-min (Case 5). It should be noted that

the modified voltage regulation controller may cause indoor discomfort with a temperature

increase of 1.5◦C from the desired level. An improvement is to optimize the setpoint trajec-

tory throughout a day by leveraging pre-cooling actions to eliminate or reduce the comfort

issues during the evening time. This will be addressed in future studies.

Figure 4.17: Zone temperatures of the 100 simulated buildings for Case 5

4.4 Chapter Summary

In this chapter, the use of flexible thermal loads in buildings’ cycling HVAC systems to

compensate for volatility of solar PV generation is proposed and its impact on distribution

voltage control is investigated, with the aid of a community co-simulation platform. Five

simulation cases have been considered that cover distribution grids with and without voltage

regulation devices and scenarios with and without the proposed voltage regulation control

strategy to evaluate the impact. Compared with Chapter 3, the analysis in this chapter is

based on simulation models with one minute time step. Therefore, the presented results

only reflect benefits that can be achieved at frequencies lower than 16.7mHz (1 min). The
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Figure 4.18: HVAC power and flexibilities for Case 5

Figure 4.19: Bus #33 voltage variations of the baseline, and Cases 4 and 5

results are believed to capture a majority of the achievable performance of cycling HVAC

systems given the slow response of zone temperatures and the presence of anti-cycling pe-

riods. Chapter 3 and Chapter 4 present a proof-of-concept and feasibility study of using
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thermal loads of residential buildings to mitigate voltage control issues caused by deeper

solar photovoltaic integration. For practical implementation, the proposed control approach

can be realized in a distributed manner, e.g., a reference ramping signal can be broadcast to

all units and those having flexibility can respond in real-time until the ramping request is sat-

isfied. Such event-triggered responses cannot be perfectly captured as most simulation tools

use finite time steps. However, our current simulation framework can reproduce the overall

trends and control behaviors. Economic factors also need to be accounted for in controller

design, as voltage control actions would cause higher electricity costs for residential house-

holds and the extra costs need to be covered by distribution system operators. Unfortunately,

there is no distribution markets yet in the U.S although the industry and regulatory agencies

are exploring such possibilities. Next chapter will discuss fully distributed strategies and

distribution market design based on game-theoretic formulations to encourage household

flexibility contribution through financial incentives.
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CHAPTER 5

MARKET-BASED GAME-THEORETIC CONTROL FOR PEAK DEMAND

REDUCTION

Chapter 3 and Chapter 4 presented distribution voltage control strategies using building flexi-

ble loads in a dictator mode, where control actions of all buildings are determined by a central

controller. Due to the heterogeneity of building load dynamics and the rising concerns for

privacy, it is challenging to access operational parameters of individual buildings and make

collective control decisions. Self-interestedness of the participating buildings further lim-

its user acceptance of centralized and dictorial control strategies. This chapter introduces a

novel game-theoretic control framework for building clusters to achieve near-optimal opera-

tion while respecting individual building control preferences.

This chapter focuses on a game-theoretic control strategy for building demand response

aggregators whose electricity cost includes a demand charge. The demand charge is de-

pendent on the aggregate peak demand of a control time horizon, which cannot be easily

distributed among the participating buildings. Users are often reluctant to cooperate under

an unfair cost allocation mechanism and may even choose to leave the alliance. To address

this issue, a novel cost-sharing mechanism was developed based on the Shapley value func-

tion to ensure fair cost allocation while encouraging cooperative control actions of individual

buildings. The problem is then reformulated and solved in a non-cooperative game frame-

work to be introduced in this chapter. Coordination of buildings is achieved through a market

mechanism. Section 5.1 summarizes basic theoretical foundations of VI and then show how

to reformulate a non-cooperative game problem (i.e., Nash equilibrium problem (NEP)) as

a VI problem. Section 5.2 introduces a non-cooperative game model for the game-theoretic
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control strategy, and discusses the existence and uniqueness of NE. Section 5.3 presents a VI

reformulation of the NEP and provides a centralized algorithm and a distributed algorithm

to find the solution. In Section 5.4, simulation tests of a six-building aggregator were carried

out for the proposed strategy along with three benchmarking control methods. A chapter

summary is given in Section 5.5.

5.1 Review of Convex Optimization, Variational Inequality and Non-cooperative Game

Theory

5.1.1 Convex Optimization Problem

A generic convex optimization problem has the following form.

minimize
x

W (x) (5.1)

subject to x ∈ X (5.2)

where X ⊆ Rn is a convex set and W is a convex function. Assume that X is closed and

bounded and the objective function W is continuously differentiable on X (i.e., its gradient

∇W exists at any point in X ). x∗ is an optimal solution, if x∗ ∈ X and W (x∗) ≤ W (x) for

all x ∈ X . According to the optimality criterion for differentiable W [97], x∗ is optimal if

and only if x∗ ∈ X and

∇W (x∗)⊺(x− x∗) ≥ 0 ∀x ∈ X (5.3)
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5.1.2 Variational Inequality Problem

A VI problem can be written as the problem of finding a point x∗ with the property

F(x∗)⊺(x− x∗) ≥ 0 ∀x ∈ X (5.4)

where F : X → Rn is a nonlinear operator, and X is a closed and convex subset of Rn. The

above VI problem is denoted as VI(X ,F). Note that if the Jacobian of F, denoted by JF, is

symmetric for all x ∈ X then there exists a differential function W such that ∇W = F and

thus, the VI problem is equivalent to a convex optimization problem.

5.1.3 Existence and Uniqueness of the Solution of Variational Inequality

Theorem 1. (Existence). If X is a closed and bounded convex set and F(x) is continuous

for all x ∈ X , then the problem VI(X ,F) admits at least one solution x∗.

Before diving into the uniqueness of the solution of VI problem, the monotonicity prop-

erties of the vector-valued function F on a convex set X should first be defined:

Definition 1 (Monotonicity). F(x) is monotone on X if

(F(x)− F(y))⊺(x− y) ≥ 0 ∀x,y ∈ X (5.5)

Definition 2 (Strict Monotonicity). F(x) is strictly monotone on X if

(F(x)− F(y))⊺(x− y) > 0 ∀x,y ∈ X (5.6)

Definition 3 (Strong Monotonicity). F(x) is strongly monotone on X if

(F(x)− F(y))⊺(x− y) ≥ c||x− y||2 ∀x,y ∈ X (5.7)
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It may be noted that the role of monotonicity for a VI problem is similar to convexity in

convex optimization analysis. More VI details can be found in [98].

Theorem 2. (Uniqueness).

1. If X is a closed convex set and F is monotone on X , the solution set of the VI problem

is closed and convex.

2. If X is a closed bounded convex set and F is strictly monotone on X , the solution of

the VI problem is unique.

3. If X is a closed convex set and F is strongly monotone on X , the solution of the VI

problem is unique.

In practical applications, the original definitions are rarely used to determine the mono-

tonicity properties of the vector-valued function F; instead, the monotonicity can be estab-

lished by investigating the positive-definiteness of the Jacobian matrix of F (i.e., JF) through

the following theorem.

Theorem 3. (Monotonicity condition). If X is convex, F is continuously differentiable on X

and the Jacobian matrix JF is positive-semidefinite (positive-definite), then F is monotone

(strictly monotone).

5.1.4 Review of Non-Cooperative Game Theory

Non-cooperative game theory is concerned of strategies played by partially or totally con-

flicting agents, in which individuals behave in a selfish way to maximize their own utilities.

The NE is an equilibrium of a non-cooperative game where no players can receive a larger

benefit from changing only their individual strategies. Therefore, the NE is the most funda-

mental concept in the non-cooperative games. In this section, the mathematical expressions

of the NEP, as well as the existence and uniqueness of NE, will be discussed.

81



a. Definition of Nash Equilibrium

An N -player game with the player set N = {1, ..., N} is defined. The control variable of

player i is denoted by xi ∈ Xi, where Xi is the action set of player i. Let x denote the vector

of control actions of all players x = (x⊺
1, ...,x

⊺
N)

⊺. x−i is used to indicate the collective

control actions of the rivals of player i, i.e., x−i = (x⊺
1, ..,x

⊺
i−1,x

⊺
i+1, ...,x

⊺
N)

⊺. Each player

minimizes his/her cost function wi(xi,x−i) by identifying his/her optimal control actions

xi ∈ Xi, i.e.,

minimize
xi∈Xi

wi(xi,x−i) (5.8)

Assuming X is the Cartesian product of Xi (i.e., X = X1×, ...,×XN ) and the formal defini-

tion of NEP can be written as

wi(x
∗
i ,x

∗
−i) ≤ wi(xi,x

∗
−i), ∀xi ∈ Xi,∀i ∈ N (5.9)

where x∗
i is the ith player’s best response when his/her rivals play x∗

−i. The strategy (x∗
i ,x

∗
−i) ∈

X is an NE (i.e., a solution of NEP) such that no player has an incentive to deviate from it.

b. Existence and Uniqueness of Nash Equilibrium

Theorem 4 (Existence of NE). If ∀i ∈ N , Xi is nonempty, convex and compact, wi : X → R

is continuous within X and ∀x−i ∈ X−i, xi → wi is convex on Xi, then there exists a Nash

equilibrium.

The proof of the existence theorem relies on a fixed point argument; [99] is referred

to for the details. Before analyzing the uniqueness of NE, a connection between the NEP

and the VI problem should be established and the NEP should be reformulated using a VI.
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Assume that the individual’s objective function wi(xi,x−i) is continuously differentiable at

any x ∈ X and convex in xi for every fixed x−i, and the strategy set of player i is compact

and convex. According to the optimality criterion given in Equation 5.3, x∗
i should satisfy

∇xi
wi(x

∗
i ,x

∗
−i)

⊺(xi − x∗
i ) ≥ 0, ∀xi ∈ Xi (5.10)

and this condition holds for all i ∈ N . Assume F(x) = (∇xi
wi(x))

N
i=1, then x∗ is an NE if

and only if

F(x∗)⊺(x− x∗) ≥ 0, ∀x ∈ X (5.11)

This shows the equivalence between a NEP and a VI problem. The uniqueness of NE can be

guaranteed if JF is positive-definite.

5.2 NEP reformulation of the peak demand reduction problem

A load aggregator is considered, consisting of N buildings, the set of which is denoted by

N := {1, ..., N}. The goal is to identify an appropriate internal pricing mechanism and to

develop an algorithm to seek the NE for the building thermal loads over a given time horizon

T := {1, ..., T}. Let xt
n denote the power consumption of building n at time slot t ∈ T .

xt = {xt}t∈T ∈ RT is defined as the aggregated power consumption over the considered

time horizon, i.e., xt =
∑

n∈N xt
n, and define xn = {xt

n}t∈T ∈ RT as the power profile

of building n over all the time slots. The vector x = {xn}n∈N ∈ RTN×1 concatenates the

power use trajectories of all buildings. For building n, x−n = (x⊺
1, ...,x

⊺
n−1,x

⊺
n+1, ...x

⊺
N)

⊺ is

used to represent the control actions of the other participants in the aggregator.
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5.2.1 Electricity Cost Formulation

Assume that the aggregator purchases electricity from the wholesale energy market at an

energy price of pt (with unit of $/kWh). In addition, an anytime demand charge rate of pd

(unit $/kW) that penalizes the peak electricity usage of the aggregator during the considered

time horizon is studied. Therefore, the total collective cost for all customers is:

W =
T∑
t=1

pt · xt + pd ·max
t∈T

(xt) (5.12)

Building owners are often reluctant to cooperative control programs because of privacy/security

concerns. The lack of interoperability across different building controller vendors repre-

sents a major barrier of technical feasibility of centralized control solutions. Therefore, a

non-cooperative game setting is considered in this chapter in which an appropriate pricing

mechanism is imposed and individual buildings are to minimize their own electricity costs,

by taking into consideration of the aggregate demand that is in turn dependent on strategies

adopted by others. Under this setting, each building tends to identify its optimal control

strategy given the rivals’ control actions, i.e.,

min
xn∈Xn

wn(xn,x−n),∀n ∈ N (5.13)

where

wn(xn,x−n) =

(
T∑
t=1

pt · xt
n

)
+ pd ·Rn,∀n ∈ N (5.14)

where Rn is building n’s share of the aggregator peak demand and Xn is the strategy set

of building n. For cost-sharing games with convex cost functions, the Shapley value cost-

sharing rule provides the optimal price of anarchy, followed by the price of stability [100].

Therefore, the Shapley value is used to distribute the collective demand charge among the
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players:

Rn(x) =
∑

Sn⊆N\{n}

(|Sn|)!(|N | − |Sn| − 1)!

|N |!

(
V (Sn ∪ {n})

− V (Sn)
)
,∀n ∈ N (5.15)

where

V (Sn) = max
t∈T

{xt
Sn
}, xt

Sn
=
∑
m∈Sn

xt
m. (5.16)

So Sn is a coalition that excludes player n and V (Sn) is the characteristic function of coali-

tion Sn, which describes the total expected sum of costs that the members of Sn can obtain by

cooperation. Therefore, V estimates the collective peak demand that the coalition Sn would

result in. The summand of Equation 5.15 is the marginal cost contribution of a player n ∈ N

to a coalition Sn ∪ {n} that is defined as the variation of the cost function of coalition after

player n leave. The share of peak demand for player n is his/her weighted average marginal

contribution over all possible coalitions that he/she joins; the weight associated with each

coalition only depends on its size and can be interpreted as the probability that a coalition of

the particular size is formed. For an example case with 3 buildings and 2 time slots in the

scheduling horizon (i.e., N = 3 and T = 2), the characteristic function V can be expressed

as

85



V (S) =



v0 = 0 if S = ∅

v1 = max(x1
1, x

2
1) if S = {1}

v2 = max(x1
2, x

2
2) if S = {2}

v3 = max(x1
3, x

2
3) if S = {3}

v4 = max(x1
1 + x1

2, x
2
1 + x2

2) if S = {1, 2}

v5 = max(x1
1 + x1

3, x
2
1 + x2

3) if S = {1, 3}

v6 = max(x1
2 + x1

3, x
2
2 + x2

3) if S = {2, 3}

v7 = max(x1
1 + x1

2 + x1
3, x

2
1 + x2

2 + x2
3) if S = {1, 2, 3}

(5.17)

Under the Shapley value allocation mechanism, the estimated shares of the peak demand for

individual players are:

R1(x) =
(0)!(3− 0− 1)!

3!
(v1 − v0) +

(1)!(3− 1− 1)!

3!
(v4 − v2)

+
(1)!(3− 1− 1)!

3!
(v5 − v3) +

(2)!(3− 2− 1)!

3!
(v7 − v6) (5.18)

R2(x) =
(0)!(3− 0− 1)!

3!
(v2 − v0) +

(1)!(3− 1− 1)!

3!
(v4 − v1)

+
(1)!(3− 1− 1)!

3!
(v6 − v3) +

(2)!(3− 2− 1)!

3!
(v7 − v5) (5.19)

R3(x) =
(0)!(3− 0− 1)!

3!
(v3 − v0) +

(1)!(3− 1− 1)!

3!
(v5 − v1)

+
(1)!(3− 1− 1)!

3!
(v6 − v2) +

(2)!(3− 2− 1)!

3!
(v7 − v4) (5.20)

5.2.2 Feasible Solution Sets

Thermal network models are used to characterize the dynamics and constraints of building

thermal loads. The indoor temperature of building n is described by a linear state-space
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model:

rt+1
n = Anr

t
n +Bw,nu

t
n +Bu,nx

t
n, ∀n ∈ N (5.21)

T t+1
n = Cnr

t+1
n ,∀n ∈ N (5.22)

where r is the state vector consisting of all nodal temperatures in the thermal network, u

contains all the uncontrollable inputs such as ambient weather conditions and internal heat

gains, and xt
n is the cooling power of the air-conditioning system. The state-space matri-

ces A, Bw, Bu and C are constructed with the thermal resistances and capacitances of the

building thermal network; the details of the modeling approach can be found in [101].

The following indoor temperature constraints need to be satisfied through the entire con-

trol horizon to ensure indoor comfort.

T t
n ≤ T t

n ≤ T
t

n,∀t ∈ T ,∀n ∈ N (5.23)

where T t
n and T

t

n are the lower and upper bounds of the comfortable temperature zone. The

air-conditioning power should be bounded by the system capacity xn for building n, i.e.,

0 ≤ xt
n ≤ xn,∀t ∈ T , ∀n ∈ N (5.24)

Constraints presented in Equation 5.21 to Equation 5.24 can be reformulated as Rmn ∋

gn(xn) := Dnxn − bn ≥ 0 and the strategy set of building n is Xn = {xn| gn(xn) ≥ 0}.

The feasible set of the whole game is given as

X = X1 ×X2 × ...×XN = {x|g(x) ≥ 0} (5.25)

where g(x) = {gn}n∈N ∈ RM and M = m1 + ...+mN . The function g is a mapping from
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RNT to RM

5.2.3 Nash Equilibrium Problem

The game problem G = ⟨X ,w⟩ described above is a typical NEP summarized as below:

1) Players: buildings in set N .

2) Cost function: wn(xn,x−n) for building player n.

3) Strategy set: X =
∏

n∈N Xn ⊆ RNT is nonempty, compact and convex.

A vector x∗ = (x∗
n,x

∗
−n) ∈ X is called a NE if wn(x

∗
n,x

∗
−n) ≤ wn(xn,x

∗
−n),∀xn ∈ Xn

and ∀n ∈ N . At a NE, no player can lower his/her cost by unilaterally changing his/her

strategy.

Note that the max operator is not everywhere differentiable in its domain. To make this

problem easier to solve, the max operator is approximated with the log-sum-exponential

function:

Model approximation: Replace maxt∈T {xt} with the smooth function 1

k̂
log
(∑T

t=1 e
k̂xt
)

where k̂ assumes a large constant value. The following bounds can be derived for this ap-

proximation.

max
t∈T

{xt} =
1

k̂
log
(
ek̂max{xt}

)
≤ 1

k̂
log

(
T∑
t=1

ek̂x
t

)
≤ 1

k̂
log
(
Tek̂max{xt}

)
= max

t∈T
{xt}+ log(T )

k̂
(5.26)

Therefore, the approximation error is bounded by log(T )/k̂ and vanishes as k̂ → ∞. Con-

vexity is preserved in the surrogate log-sum-exponential model. A sketch of the proof is

88



given here for completeness through verifying the positive semidefiniteness of the Hessian

matrix. For simplicity, it is assumed that k̂ = 1. Then the subsequent equation can be

obtained:

▽2f(x) =
1

1⊺ϱ
diag(ϱ)− 1

(1⊺ϱ)2
ϱϱ⊺ (5.27)

where ϱ = (ex
t
)Tt=1 and diag(ϱ) is the diagonal matrix whose diagonal elements are those

in ϱ. To show the Hessian matrix ∇2f(x) ⪰ 0, b⊺∇2f(x)b ≥ 0 should be verified for all

b = (b1, ..., bT )
⊺ ∈ RT :

b⊺∇2f(x)b =
(
∑

t ϱtb
2
t )(
∑

t ϱt)− (
∑

t ϱtbt)
2

(
∑

t ϱt)
2

≥ 0 (5.28)

since (
∑

t ϱtb
2
t )(
∑

t ϱt) − (
∑

t ϱtbt)
2 ≥ 0 (Cauchy-Schwarz inequality). According to the

equality conditions of Cauchy-Schwarz inequality, Equation 5.28 is equal to zero if and only

if bi’s are all identical.

5.2.4 Existence and Uniqueness of Nash Equilibrium

If the max function is replaced with log-sum-exponential function in Equation 5.15 and the

player n’s demand charge function Rn(x) is modified accordingly, wn can be obtained as

follows:

wn(x) =

(
T∑
t=1

pt · xt
n

)
+ pd ·

j=2N−1∑
Sn⊆N\{n},j=1

(
πsn,j

1

k̂
log(1⊤exp(k̂ ·Hsn,j

x))

−πsn,j

1

k̂
log(1⊤exp(k̂ ·Hsn,j

x))

)
,∀n ∈ N , (5.29)
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where

πsn,j
=

(|Sn,j|)!(|N | − |Sn,j| − 1)!

|N |!
, (5.30)

Hsn,j
=
(
(Hi

sn,j
)Ni=1

)⊺
,Hi

sn,j
=


IT×T i ∈ Sn,j ∪ {n}

0T×T otherwise

(5.31)

Hsn,j
=
(
(H

i

sn,j
)Ni=1

)⊺
,H

i

sn,j
=


IT×T i ∈ Sn,j

0T×T otherwise

(5.32)

where the operator exp(x) performs point-wise exponential of elements in x, i.e., exp(x) =

(exi)xi∈x. The binary matrix Hsn,j
= (H1

sn,j
, ...,HN

sn,j
) ∈ BT×TN indicates the control

variables of the players in the alliance Sn,j with the elements Hn
Sn,j

, n ∈ N . IT denote

T×T identity matrix, 0T denote T×T zeros matrix. For example, consider a game with three

players and two time slots, i.e., N = {1, 2, 3}, T = {1, 2} and x = [x1
1, x

2
1, x

1
2, x

2
2, x

1
3, x

2
3]

⊤.

The first player’s cost function is

w1(x1,x−1) =

(
2∑

t=1

pt · xt
1

)
+ pd ·R1

∼=

(
2∑

t=1

pt · xt
1

)
+ pd

(1
3

(
log(ex

1
1 + ex

2
1)
)

+
1

6

(
log(ex

1
1+x1

2 + ex
2
1+x2

2)− log(ex
1
2 + ex

2
2)
)

+
1

6

(
log(ex

1
1+x1

3 + ex
2
1+x2

3)− log(ex
1
3 + ex

2
3)
)

+
1

3

(
log(ex

1
1+x1

2+x1
3 + ex

2
1+x2

2+x2
3)− log(ex

1
2+x1

3 + ex
2
2+x2

3)
))

(5.33)
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The family of coalitions including the player 1 is S1 ∪{1} = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}.

The corresponding Hs1,j of each alliance can be expressed as

Hs1,j =



Hs1,1 = ( I2 02 02 ) for S1,j ∪ {1} = {1}

Hs1,2 = ( I2 I2 02 ) for S1,j ∪ {1} = {1, 2}

Hs1,3 = ( I2 02 I2 ) for S1,j ∪ {1} = {1, 3}

Hs1,4 = ( I2 I2 I2 ) for S1,j ∪ {1} = {1, 2, 3}

(5.34)

and Hs1,j is given by

Hs1,j =



Hs1,1 = ( 02 02 02 ) for S1,j = {0}

Hs1,2 = ( 02 I2 02 ) for S1,j = {2}

Hs1,3 = ( 02 02 I2 ) for S1,j = {3}

Hs1,4 = ( 02 I2 I2 ) for S1,j = {2, 3}

(5.35)

Existence of NE Since the log-sum-exponential function is smooth and convex everywhere

in its domain, Equation 5.29 is C2 in both xn and x−n, Theorem 4 guarantees the existence

of NE for this game.

Uniqueness of NE The uniqueness solution of NE solution can be proven using the well-

developed uniqueness theorem of VI. Assume F(x) = (∇xnwn(x))
N
n=1, and by Theorem 3

and Section 5.1.4, this game admits a unique solution if the Jacobian matrix of F(x) below

is positive definite for all x ∈ X :

F(x) =


∇x1w1(x1,x−1)

...

∇xN
wN(xN ,x−N)

 (5.36)
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It may be noted that the term log(1⊤exp(Hsn,j
) in wn does not depend on the player n’s con-

trol variables and therefore, its gradient with respect to xn is equal to zero. For uniqueness

analysis, this term from wn can be safely dropped and the remaining terms can be analyzed.

The truncated cost w̃n can be obtained by:

w̃n(xn,x−n) =

(
T∑
t=1

pt · xt
n

)
+ pd ·

2N−1∑
j=1

(
πn,j ·

1

k̂
· log(1⊤exp(k̂ ·Hsn,j

x))

)
(5.37)

where

πsn,j
=

(|Sn,j|)!(|N | − |Sn,j| − 1)!

|N |!

Assume that pn = ∇x

(∑T
t=1 p

t · xt
n

)
∈ RTN . Then the gradient of w̃n is

∇xw̃n = pn + pd

2N−1∑
j=1

(
πn,j ·

(
1(

1⊤exp(k̂ ·Hsn,j
x)
) ·H⊤

sn,j
· exp(k̂ ·Hsn,j

x)

))
(5.38)

To obtain Equation 5.36, ∇xw̃n needs only the gradient with respect to xn. For convenience,

the gradient with respect to x−n of wn can be set to zero by replacing H⊺
sn,j

with B⊺
n =

(Bi
n)

N
i=1 ∈ BTN×T where

Bi
n =

 IT , if i = n

0T , otherwise
(5.39)

For example, the game with three players with N = {1, 2, 3}, T = {1, 2}, and x =

[x1
1, x

2
1, x

1
2, x

2
2, x

1
3, x

2
3]

⊤ has the following form:

Bn =


B1 = ( I2 02 02 ) for n = 1

B2 = ( 02 I2 02 ) for n = 2

B3 = ( 02 02 I2 ) for n = 3

(5.40)
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Assume that

∇xw̃
∗
n = pn + pd

2N−1∑
j=1

(
πn,j ·

(
1(

1⊤exp(k̂ ·Hsn,j
x)
) ·B⊤

n · exp(k̂ ·Hsn,j
x)

))
(5.41)

F can therefore be expressed as

F =
N∑

n=1

∇xw̃
∗
n (5.42)

=

(
N∑

n=1

pn

)
+ pd

 N∑
n=1

2N−1∑
j=1

(
πn,j ·

(
1(

1⊤exp(k̂ ·Hsn,j
x)
) ·B⊤

n · exp(k̂ ·Hsn,j
x)

))
(5.43)

The Jacobian matrix of F can be written as

JF = pd

N∑
n=1

2N−1∑
j=1

(
πn,j · k̂ ·

(
1

(1⊤exp(k̂ ·Hsn,j
x))

·
(

diag(exp(k̂ ·Hsn,j
x))Bi

)⊤
·Hsn,j

− 1

(1⊤exp(k̂ ·Hsn,j
x))2

B⊤
n exp(k̂ ·Hsn,j

x)exp(k̂ ·Hsn,j
x)⊤Hsn,j

))

= pd

N∑
n=1

2N−1∑
j=1

(
πn,j · k̂ ·

(
B⊤

n diag(gsn,j
)Hsn,j

−B⊤
ngsn,j

g⊤
sn,j

Hsn,j

))

=
N∑

n=1

2N−1∑
j=1

(
πn,j · k̂ ·

(
B⊤

nMsn,j
Hsn,j

))
(5.44)

where

gsn,j
=

1

(1⊤exp(k̂ ·Hsn,j
x))

exp(k̂ ·Hsn,j
x), Msn,j

= diag(gsn,j
)− gsn,j

g⊤
sn,j

Assume that Ŝ = {Ŝ1, ..., Ŝ2N} is a family of combinatorial subsets of the set of all players

and corresponding weight associated with each coalition is r̂ = (π̂l)
2N

l=1 . Since Sn is a
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family of combinatorial subsets of players that includes the player n, so if n ∈ Ŝl for some

l ∈ {1, .., 2N}, then it implies that Ŝl ∈ Sn. Combining the alike terms of Equation 5.44

and replacing Msn,j
Hsn,j

with the corresponding MŜl
Hŝl , the following equation can be

obtained:

JF =
2N∑
l=1

π̂l

(∑
n∈Ŝl

B⊺
n

)
MŝlHŝl (5.45)

By the definitions of Bn and Hŝl , a relationship between these two matrices can be estab-

lished:

∑
n∈Ŝl

(B⊺
n) = H⊺

ŝl
,∀Ŝl ∈ Ŝ (5.46)

Therefore, Equation 5.44 can be re-written as

JF =
2N∑
l=1

π̂lH
⊺
ŝl
MŝlHŝl (5.47)

From Cauchy Schwarz inequality of Equation 5.28, it is easy to obtain that x⊤H⊤
ŝl
MŝlHŝlx

⊤ ≥

0 for any x and x⊤H⊤
ŝl
MŝlHŝlx

⊤ = 0 if and only if x⊤H⊤
ŝl
= y1⊺. The conclusion is that

JF ⪰ 0 and JF = 0 if and only if x⊤H⊤
ŝl

= y1⊺ with some y ∈ R. To show that this

problem has a uniqueness NE, it suffices to verify that JF ≻ 0 for all x ∈ X (i.e., x that

satisfies x⊤H⊤
ŝl
= y1⊺ is not in the feasible set X ). The vector x satisfying x⊤H⊤

ŝl
= y1⊺

means that x1
n = x2

n = ... = xT
n for all n ∈ N , i.e., the electricity consumption is constant

throughout the whole day for all buildings; this strategy would likely violate the building op-

erational constraints considering the load variations from building to building and from hour

to hour. In practical implementations, one can perform a quick feasibility check by imposing

additional constraints of x1
n = x2

n = ... = xT
n for any n ∈ N before solving the NEP. If the

modified problem is infeasible, then JF ≻ 0 for any x ∈ X and the game has a unique NE.
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5.3 Solution Algorithm for the NEP

5.3.1 Reformulate NEP as VI Problem

The control optimization problem for player n in the game problem G = ⟨X ,w⟩ described

above is

min
xn

{wn(xn,x−n)|Dnxn − bn ≥ 0},∀n ∈ N (5.48)

After introducing the Lagrange multipliers λn ∈ Rmn
+ , the following Lagrangian function

can be obtained:

Ln = wn(xn,x−n)− λ⊺
n(Dnxn − bn),∀n ∈ N , λn ∈ Rmn

+ ,∀xn ∈ RT (5.49)

Let (x∗
n, λ

∗
n) be the saddle point of the following min-max problem for given x∗

−n:

max
λn

min
xn

{Ln(xn,x
∗
−n, λn)|λn ≥ 0},∀n ∈ N (5.50)

which is equivalent to

Ln(x
∗
n,x

∗
−n, λn) ≤ Ln(x

∗
n,x

∗
−n, λ

∗
n),∀n ∈ N , ∀λn ∈ Rmn

+ ,∀xn ∈ RT (5.51)

Ln(x
∗
n,x

∗
−n, λ

∗
n) ≤ Ln(xn,x

∗
−n, λ

∗
n),∀n ∈ N ,∀λn ∈ Rmn

+ ,∀xn ∈ RT . (5.52)
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Then, substituting the expression in Equation 5.49 for Ln in Equation 5.51 and Equation 5.52

leads to:

Ln(x
∗
n,x

∗
−n, λ

∗
n)− Ln(x

∗
n,x

∗
−n, λn)

= wn(x
∗
n,x

∗
−n)− (λ∗

n)
⊺(Dnx

∗
n − bn)− wn(x

∗
n,x

∗
−n) + λ⊺

n(Dnx
∗
n − bn)

= (λn − λ∗
n)

⊺(Dnx
∗
n − bn)

≥ 0,∀n ∈ N ,∀λn ∈ Rmn
+ ,∀xn ∈ RT (5.53)

and

Ln(xn,x
∗
−n, λ

∗
n)− Ln(x

∗
n,x

∗
−n, λ

∗
n)

= wn(xn,x
∗
−n)− (λ∗

n)
⊺(Dnxn − bn)− wn(x

∗
n,x

∗
−n) + (λ∗

n)
⊺(Dnx

∗
n − bn)

= wn(xn,x
∗
−n)− wn(x

∗
n,x

∗
−n) + (xn − x∗

n)
⊺(−D⊺

nλ
∗
n)

≥ 0,∀n ∈ N ,∀λn ∈ Rmn
+ ,∀xn ∈ RT (5.54)

Define yn = (x⊺
n, λ

⊺
n)

⊺. The following compact inequality is obtained by adding the left and

right sides of Equation 5.53 to the left and right sides of Equation 5.54, respectively:

wn(xn,x
∗
−n)− wn(x

∗
n,x

∗
−n) + (yn − y∗

n)
⊺Φn(y

∗
n) ≥ 0,

∀n ∈ N , ∀λn ∈ Rmn
+ ,∀xn ∈ RT (5.55)

where

Φn(y
∗
n) =

 0 −D⊺
n

Dn 0

y∗
n −

 0

bn

 (5.56)

= Υny
∗
n −Σn. (5.57)
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Therefore, in game problem G = ⟨X ,w⟩, the optimal strategy for each player n must satisfy

Equation 5.55. Since wn is a convex function on xn, wn should satisfy:

wn(xn,x
∗
−n)− wn(x

∗
n,x

∗
−n) ≥ (xn − x∗

n)
⊺∇xnwn(x

∗
n,x

∗
−n),

∀n ∈ N ,∀λn ∈ Rmn
+ ,∀xn ∈ RT (5.58)

Therefore, the following inequality is a necessary condition of Equation 5.51 and Equa-

tion 5.52.

(xn − x∗
n)

⊺∇xnwn(x
∗
n,x

∗
−n) + (yn − y∗

n)
⊺Φn(y

∗
n) ≥ 0,

∀n ∈ N ,∀λn ∈ Rmn
+ , ∀xn ∈ RT (5.59)

Since all players have to satisfy Equation 5.59 in their optimal play, the NE problem is

equivalent to finding a vector y∗ = (y∗
n)

N
n=1 such that



(x1 − x∗
1)

⊺∇x1w1(x
∗
1,x

∗
−1) + (y1 − y∗

1)
⊺Φ1(y

∗
1) ≥ 0, ∀λ1 ∈ Rm1

+ ,∀x1 ∈ RT

(x2 − x∗
2)

⊺∇x2w2(x
∗
2,x

∗
−2) + (y2 − y∗

2)
⊺Φ2(y

∗
2) ≥ 0, ∀λ2 ∈ Rm2

+ ,∀x2 ∈ RT

(x3 − x∗
3)

⊺∇x3w3(x
∗
3,x

∗
−3) + (y3 − y∗

3)
⊺Φ3(y

∗
3) ≥ 0, ∀λ3 ∈ Rm3

+ ,∀x3 ∈ RT

...

(xN − x∗
N)

⊺∇xN
wN(x

∗
N ,x

∗
−N) + (yN − y∗

N)
⊺ΦN(y

∗
N) ≥ 0,∀λN ∈ RmN

+ ,∀xN ∈ RT

(5.60)

Therefore, the NE (x∗
n,x

∗
−n) of the game problem G = ⟨X ,w⟩ should also satisfy the fol-

lowing compact inequality:

(x− x∗)⊺F(x∗) + (y − y∗)⊺Ψ(y∗) ≥ 0, ∀x ∈ RNT ,∀y ∈ RNT+M (5.61)
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where y = (yn)
N
n=1, yn = (x⊺

n, λ
⊺
n)

⊺, and

Ψ(y) =



Υ1

Υ2

. . .

ΥN


y −



Σ1

Σ2

...

ΣN


(5.62)

Since Υn,∀n ∈ N is a skew-symmetric matrix, Ψ(y) satisfies the following equation:

(Ψ(y∗)−Ψ(y))⊺ (y∗ − y) ≡ 0 (5.63)

Therefore, according to Definition 1, Ψ(y) is monotone. Since JF is positive definite, which

has been proved in Section 5.2.4, Equation 5.61 represents a monotone VI problem.

5.3.2 Centralized Algorithm

To solve the game and find the NE, there are three commonly used methods:

• Best response method, which has a stringent convergence requirement that cannot be

satisfied for the problem under study.

• Nikaido-Isoda (NI) function method, which features high computational complexity,

has been examined in my prior work [102]. The solution returned by this method

satisfies the necessary optimality conditions but may not be a NE.

• VI algorithm, which is reported in this section. It offers guaranteed global convergence

under mild conditions and features less computational complexity than the NI method

[102]. The solution obtained by the VI method is guaranteed to be a NE.

Firstly, this section presents a centralized solution algorithm as shown in Algorithm 1. Note
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that In is an n × n identity matrix. The convergence of the algorithm is discussed next. At

each interaction, the new iterate xk+1 is generated by finding the root of Equation 5.69 and

the new iterate lagrange multiplier λk+1 is generated using a max function that guarantees

that λk+1 ∈ RM
+ .

Algorithm 1 Customized centralized algorithm

Initial j = 0, yj ∈ RTN+M , ϵ1 ≥ 0, ϵ2 ≥ 0, rn = (∥D⊺
nDn∥+ ϵ1)

1
2 ,∀n ∈ N , ωz > ϵ2

D =


D1

D2

. . .
DN

 (5.64)

E =


r1I

T

r2I
T

. . .
rNI

T

 (5.65)

λ =
[
λ⊺
1 λ⊺

2 . . . λ⊺
N

]⊺ (5.66)

P−1 =


1
r1
Im1

1
r2
Im2

. . .
1
rN
ImN

 (5.67)

while ωz > ϵ2 do

Newton’s method to find xk+1 that satisfies:
F(xk+1)−D⊺λk + E⊺(xk+1 − xk) = 0 (5.68)
λk+1 = max

(
λk −P−1(D(2xk+1 − xk)− b),0

)
(5.69)

ωz = ∥xk+1 − xk∥+ ∥λk+1 − λk∥ (5.70)

end
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5.3.3 Convergence of Centralized Algorithm

For given (xk, λk), the process for calculating (xk+1, λk+1) in Equation 5.69 and Equa-

tion 5.70 is equivalent to finding (xk+1, λk+1) satisfying the following two VI problems.

(x− xk+1)⊺
(
F(xk+1)−D⊺λk + E(xk+1 − xk)

)
≥ 0,∀x ∈ RTN (5.71)

(λ− λk+1)⊺
(
Dxk+1 − b+D(xk+1 − xk)

+P(λk+1 − λk)
)
≥ 0,∀λ ∈ RM

+ (5.72)

To obtain a structure similar to Equation 5.61, it is necessary to assemble a vector function

F, which already exists in Equation 5.71, and a vector function Ψ, which can be obtained

by adding (x − xk+1)⊺(−D⊺λk+1 + D⊺λk+1) to the left-hand side of Equation 5.71. The

following expression shows the modified Equation 5.71

(x− xk+1)⊺
(
F(xk+1)−D⊺λk+1 +D⊺(λk+1 − λk) + E(xk+1 − xk)

)
≥ 0,

∀x ∈ RTN (5.73)

The following compact expression represents a necessary condition for Equation 5.73 and

Equation 5.72

(x− xk+1)⊺F(xk+1) + (y − yk+1)⊺Ψ(yk+1)

≥ (y − yk+1)⊺Ω(yk − yk+1), ∀x ∈ RTN ,∀y ∈ RTN+M (5.74)
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where y = (yn)
N
n=1, yn = (x⊺

n, λ
⊺
n)

⊺,

Ω =



Θ1

Θ2

. . .

ΘN


,Θn =

rnI D⊺
n

Dn rnI

 , n ∈ N ,

Ψ(y) =



Υ1

Υ2

. . .

ΥN


y −



Σ1

Σ2

...

ΣN


. (5.75)

If rn satisfies the following criterion, Θn is guaranteed to be a positive definite matrix

r2n > ∥Dn
⊺Dn∥,∀n ∈ N , (5.76)

where ∥ · ∥ is the spectral norm of the matrix (i.e., the largest singular value of matrix). Ω

is thus a positive definite matrix, as a block diagonal matrix is positive definite if and only

if each diagonal block is positive definite. Note that if yk = yk+1, the right-hand side of

Equation 5.74 becomes zero, and the structures of Equation 5.74 and Equation 5.61 become

identical, i.e., xk+1 is the NE (x∗).

Since (xk+1, λk+1) is the solution of Equation 5.74 for all x ∈ RTN and λ ∈ RM
+ , the

following inequality holds by substituting x = x∗ into Equation 5.74

(x∗ − xk+1)⊺F(xk+1) + (y∗ − yk+1)⊺Ψ(yk+1)

≥ (y∗ − yk+1)⊺Ω(yk − yk+1) (5.77)

Multiplying both sides of Equation 5.77 by a negative sign, the following inequality can be
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obtained:

(yk+1 − y∗)⊺Ω(yk − yk+1)

≥ (xk+1 − x∗)⊺F(xk+1) + (yk+1 − y∗)⊺Ψ(yk+1) (5.78)

Since F and Ψ are both monotone, the following inequality can be obtained:

(xk+1 − x∗)⊺F(xk+1) + (yk+1 − y∗)⊺Ψ(yk+1)

≥ (xk+1 − x∗)⊺F(x∗) + (yk+1 − y∗)⊺Ψ(y∗)

≥ 0 (5.79)

From Equation 5.79 and Equation 5.78, the following inequality can be obtained:

(yk+1 − y∗)⊺Ω(yk − yk+1) ≥ 0 (5.80)

Note that if two vectors â and b̂ satisfy b̂⊺M(â − b̂) ≥ 0 and M is positive definite, the

following property can be derived:

∥â∥2M = ∥b̂+ (â− b̂)∥2M

= ∥b̂∥2M + ∥â− b̂∥2M + b̂⊺M(â− b̂)

≥ ∥b̂∥2M + ∥â− b̂∥2M (5.81)

where ∥x∥2M = x⊺Mx. The following inequality can be obtained by moving ∥â− b̂∥2M from

the right-hand side of Equation 5.81 to the left side:

∥b̂∥2M ≤ ∥â∥2M − ∥â− b̂∥2M (5.82)
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Assuming â = yk − y∗ and b̂ = yk+1 − y∗, the following inequality can be obtained:

∥yk+1 − y∗∥2Ω ≤ ∥yk − y∗∥2Ω − ∥yk − yk+1∥2Ω (5.83)

Since 0 ≤ ∥yk+1 − y∗∥2Ω ≤ ∥y0 − y∗∥2Ω, ∥yk − yk+1∥2Ω → 0 as k → ∞. Then, it

can be concluded that the sequence {yk} is bounded and has at least one cluster point and

at least one convergent subsequence. If y∗ ∈ Γ∗ = {y∗|wn(xn,x−n) − wn(x
∗
n,x−n) +

(y − y∗)⊺Φn(y
∗) ≥ 0} is a cluster point of the sequence {yk}, and the subsequence {yik}

converges to y∗. Because yik −yik+1 is continuous in yik, then y∗ −yik+1 = limi→∞(yik −

yik+1) = 0 and y∗ is a solution of Equation 5.61. Since ∥yk−y∗∥2Ω is bounded nonincreasing

and contains a convergent subsequence ∥yik−y∗∥2Ω → 0 as ik → ∞, then ∥yk−y∗∥2Ω → 0

as k → ∞, i.e., {yk} converges to {y∗}.

5.3.4 Distributed Solution Method

In this section, a distributed solution to find the NE is presented. The iterative scheme of

customized distributed method follows

xk+1
n = argmin

xn

Ln(x
k+1
n ,xk

−n, λ
k
n) +

pdk̂[(N − 1)]

2
||xn − xk

n||2

+
rn
2
||xn − xk

n||2,∀n ∈ N ,∀λn ∈ Rmn
+ , ∀xn ∈ RT (5.84)

λk+1
n = argmax

λn≥0

(
Ln(2x

k+1
n − xk

n,x
k
−n, λn)

−rn
2
||λn − λk

n||2
)
,∀n ∈ N ,∀λn ∈ Rmn

+ ,∀xn ∈ RT (5.85)

Equation 5.84 involves a smooth unconstrained optimization problem whose optimality con-

dition is the gradient of the objective function with respect to xn is equal to zero. In addi-

tionally, since λk+1
n is obtained by solving a quadratic optimization problem with λ ∈ Rmn

+ ,

the close form of λk+1
n can be obtained by Equation 5.88 . The distributed algorithm imple-
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mentation is given in Algorithm 2.

Algorithm 2 Customized Distributed Algorithm

Initial j = 0, yn
j ∈ RT+mn , ϵ1 ≥ 0, ϵ2 ≥ 0, rn = (∥D⊺

nDn∥ + ϵ1)
1
2 ,∀n ∈ N , ωz > ϵ2

while ωz > ϵ2 do

Newton’s method to find xk+1
n that satisfies:

∇xnwn(x
k+1
n ,xk

−n)−D⊺
nλ

k
n +

(
rn + psk̂[(N − 1)]

)
(xk+1

n − xk
n) = 0 (5.86)

λk+1
n = max

(
λk
n − r−1

n (Dn(2x
k+1
n − xk

n)− bn),0
)

(5.87)

ωz = ∥xk+1
n − xk

n∥+ ∥λk+1
n − λk

n∥ (5.88)

end

Note that the convergence conditions of the distributed algorithm have not bee established

yet. However, the distributed algorithm was able to converge with the generated solution

identical to that returned by the centralized algorithm, in the simulation tests to be discussed

next.

5.4 Simulation Case Study

In order to verify the effectiveness of the proposed game-theoretic control approach, three

benchmarking control strategies are considered and introduced in the following subsections.

5.4.1 Baseline Control

During cooling seasons, higher zone air temperature (ZAT) settings are effective in lower-

ing cooling power consumption. Therefore, the baseline control, which best represents the

current practices, maintains the ZAT setpoint at the upper bound of the comfortable zone to

minimize cooling energy consumption. The air-conditioning power is estimated by using the
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zone air temperature setpoint and the load model:

xt
n = max

(
0,B−1

u (C−1T
t+1

n −Artn −Bwu
t
n)
)

(5.89)

5.4.2 Individual Optimal Control

A second benchmarking strategy, termed individual optimal control, is considered where

each customer purchases electricity from the market independently under the same rate struc-

ture and optimizes his/her electricity usage schedule to minimize his/her electricity cost. The

control problems across the different players are totally decoupled. For building n, the con-

trol problem is

min
xn∈Xn

{( T∑
t=1

pt · xt
n

)
+ pd ·max

t∈T
{xt

n}

}
(5.90)

5.4.3 Centralized Control

A centralized and fully cooperative control strategy is evaluated, in which all customers coor-

dinate with each other to minimize the collective electricity cost in Equation 5.12. The cen-

tralized control leads to the social optimum and deviations from it represent suboptimalities

due to lack of cooperation. The centralized control problem has the following formulation

min
x∈X

{( T∑
t=1

pt · xt
)
+ Pd ·max

t∈T
{xt}

}
. (5.91)
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5.4.4 Case Study Descriptions

Simulation tests were carried out for six commercial buildings with the proposed and the

three benchmarking control strategies. The thermal network model described in subsec-

tion 5.2.2 was used for both control decision making and the simulation testbed. The model

was developed from field data collected in an office building in West Lafayette, IN and was

replicated for the six-building case study assuming different occupancy schedules to repre-

sent diverse load patterns in a building cluster. Simulations with one-shot control optimiza-

tion were performed for a typical summer day with actual weather data collected in the case

study building [103]. However, the proposed strategy can also be implemented in a receding

horizon scheme for continuous operations. Table 5.1 shows the time-of-use rates used in the

simulation tests. The rate structure has two pricing periods, namely on-peak and off-peak

periods. The on-peak period starts at 11:00 am and ends at 2:00 pm; the rest of the day is

considered as off-peak. An all-time peak demand charge of 4$/kW is considered. The six

buildings have very different baseline load profiles due to different occupancy schedules.

Table 5.1: Summer TOU Tariffs with demand charge

Rate periods
Electricity

price
($/kWh)

Hours
Demand
charge
($/kW)

On-peak 0.3 11:00 AM-2PM
4

Off-peak 0.1 2PM-11:00AM

The thermal loads and control strategies vary from one building to anther driven by the

different occupancy schedules. Figure 5.1 to Figure 5.12 depict the simulation test results

for buildings #1 to #6, respectively, to illustrate the behaviors of the various players. The

first subplot shows the cooling power associated with the different control strategies, and

the second subplot presents the zone temperature trajectories along with the ZAT upper and

lower bounds (dash-dotted lines). In the case study, the comfortable temperature band is
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assumed to be 21-23 ◦C during occupied hours and 19-25 ◦C during unoccupied hours.

Figure 5.13 plots the variations of the aggregate power of all six buildings. The electricity

costs for the various strategies are listed in Table 5.2.

In the baseline control results, the zone temperature is kept at the upper bound during

occupied hours resulting in the lowest energy consumption. During unoccupied hours, the

air-conditioning system is off and the indoor temperature floats within the comfort band. Due

to the lack of coordination, the baseline control leads to the highest peak demand among the

four strategies. From Table 5.2, it can be seen that the aggregate peak demand is lower

than the sum of individual building demands due to the diverse baseline load patterns across

different buildings. The demand charge differential represents one benefit of aggregation,

under baseline control. Although the baseline strategy results in the lowest energy cost, the

demand charge is the highest leading to the highest total cost among the four strategies.

For the individual optimal control, each customer minimizes his/her own electricity costs

disregarding how other players behave. The performance is optimal if the building were to

purchase electricity directly from the market. The individual control precools the building

before occupied hours to store “cooling” energy into the building thermal mass. During peak

load hours, the zone temperature is adjusted upwards which allows the stored cooling energy

to be released to help offset the air-conditioning power. With this load shifting effect, the

peak demand can be effectively reduced compared to the baseline strategy. In the individual

optimal control, the air-conditioner operation time is longer than the baseline case, but each

building’s demand charge is much reduced. However, from Figure 5.13 it can clearly see

that the individual control strategy causes new load peaks during the precooling and morning

hours, since there is no coordination among the players.

The centralized control assumes full cooperation of all buildings in the aggregator. There-

fore, the aggregate performance is optimal with the lowest total electricity cost. A major

differentiating behavior compared to the individual control approach is that more aggressive
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precooling actions are utilized, which leads to the maximum peak demand reduction. Al-

though the individual peaks are much higher compared to those associated with the other

strategies, the aggregate peak demand is the lowest because the peaks of different players

are shifted in time.

The game theoretic control approach, proposed in this study, results in depths of precool-

ing between those of the centralized and individual optimal strategies. Deeper precooling

is utilized compared to the individual control strategy to achieve more demand reductions

of the whole community. However, the precooling power in the game theoretic approach is

not as spiky as the centralized controller, since too high of an individual peak could cause

a higher share of the collective demand charge (reflected by a high Shapley value). It can

be seen that the game theoretic control strategy could achieve a Price of Anarchy of 1.019

for this specific case. This strategy achieves aggregate electricity cost savings of 8.9% com-

pared to the individual controller and 11.5% compared to the baseline strategy. Also it can

be seen that the individual building costs under the proposed game setting are the lowest for

all buildings among the implementable strategies (baseline and individual), which is critical

for alliance stability. For the centralized controller, it is not a trivial task to distribute the

aggregate demand cost across the various buildings. This is why the demand and total costs

are missing for the individual buildings under the centralized control in Table 5.2.

Figure 5.1: Zone temperature of building #1
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Figure 5.2: Zone temperature of building #2

Figure 5.3: Zone temperature of building #3

5.5 Chapter Summary

This chapter presents a game-theoretic control strategy for demand response aggregators of

buildings whose electricity cost includes a demand charge. The demand charge is based on

the aggregate peak demand, which cannot be simply split across the participating buildings.

This building cluster coordination problem is formulated as a Nash equilibrium problem

where the Shapley value function is used to estimate the share of demand charge of each
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Figure 5.4: Zone temperature of building #4

Figure 5.5: Zone temperature of building #5

Figure 5.6: Zone temperature of building #6
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Figure 5.7: Power consumption of building #1

Figure 5.8: Power consumption of building #2

Figure 5.9: Power consumption of building #3
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Figure 5.10: Power consumption of building #4

Figure 5.11: Power consumption of building #5

Figure 5.12: Power consumption of building #6
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Figure 5.13: Total power consumption

Table 5.2: HVAC electricity costs for the various strategies

Demand charge ($) Energy charge ($) Total charge ($)
Base Indiv. Cent. Game Base Indiv. Cent. Game Base Indiv. Cent. Game

Bld #1 4.01 3.23 N/A 2.98 1.46 1.65 1.71 1.79 5.47 4.87 N/A 4.77
Bld #2 3.32 2.90 N/A 2.57 1.20 1.27 1.26 1.43 4.57 4.17 N/A 4.00
Bld #3 4.28 3.33 N/A 1.44 1.44 1.52 1.33 1.58 5.72 4.85 N/A 3.02
Bld #4 4.47 3.23 N/A 2.87 1.45 1.62 1.45 1.62 5.93 4.85 N/A 4.49
Bld #5 4.45 4.04 N/A 3.55 1.98 1.99 2.31 2.22 6.42 6.03 N/A 5.77
Bld #6 3.64 3.27 N/A 2.88 1.67 1.75 2.22 1.90 5.31 5.02 N/A 4.78
Sum of

individual 24.17 20.00 N/A 16.60 9.20 10.55 10.28 9.86 33.36 29.79 N/A 27.15

Aggregate 21.49 20.00 16.37 16.60 10.55 9.80 10.28 9.86 30.69 29.79 26.64 27.15

building. Using the Lagrangian function, the game problem is transformed to an equivalent

VI problem. Two algorithms are presented to solve the VI problem: a centralized algorithm

and a distributed approach. The convergence conditions to NE solutions are discussed. Sim-

ulation tests of a six-building aggregator were carried out for the proposed strategy along

with three benchmarking control methods and the game-theoretic control performance at-

tained was very close to the social optimum with a Price of Anarchy of 1.019.
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CHAPTER 6

MAKET-BASED GAME-THEORETIC CONTROL FOR FLEXIBLE LOAD

DISPATCHING

In the preceding chapter, a game-theoretic control strategy for collective peak demand re-

duction of building clusters with a nonsmooth and non-strongly-convex function is pre-

sented, which uses a Shapely value function to allocate the collective cost among players.

In this chapter, a game-theoretic control approach for flexible load dispatching with various

marginal price models is presented. An NE problem is formulated and the existence and

uniqueness of NE under various marginal price frameworks are discussed in Section 6.1. To

evaluate the game-theoretic control performance for flexible load dispatching in a building

clusters, a six-building simulation case study under a linear marginal price model is pre-

sented in Section 6.2 where a distributed best response method is used to find the NE. A

chapter summary is given in Section 6.3.

6.1 Cost Model for Power Generation

The load dispatch problem and the corresponding non-cooperative game problem of concern

in this chapter are similar to those discussed in Chapter 5. The player set, control variables

and feasible action set are all identical to those described in Chapter 5. The major difference

lies on the cost function and allocation mechanism. In this chapter, each player’s impact on

the collective performance is reflected by its influence on the marginal price of electricity

generation and an individual’s utility bill can be calculated as the marginal price multiplied

by his/her electricity consumption; therefore, each building’s cost is well defined and there
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is no need for cost allocation.

In this chapter, two families of marginal price models will be introduced, along with

proof of the existence and uniqueness of NE under these two marginal price types. One cost

model assumes the marginal electricity generation cost increases following a power function

with the total load. The second model features an exponential increase of the marginal cost

with total electrical demand.

6.1.1 Power Marginal Price Model

Assume that the marginal electricity generation cost pt (with unit of $/kWh) at each hour

t ∈ T is dependent on the collective load following a power function:

pt = ah · (
N∑

n=1

xt
n)

ap (6.1)

where ah and ap are positive scalars. Under this setting, each building identifies his/her

optimal control strategy given the rivals’ control actions, i.e.,

min
xn∈Xn

wn(xn,x−n) =
T∑
t=1

ptxt
n =

T∑
t=1

ah

( N∑
n=1

xt
n

)ap
xt
n (6.2)

The second-order derivative of wn with respect to xn is:

∇2
xn
wn(xn,x−n) =



W1 0 0 . . . 0

0 W2 0 . . . 0

0 0 W3 . . . 0

...
...

... . . . ...

0 0 0 . . . WT


(6.3)
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where

Wi =


ahap(ap − 1)(

∑N
n=1 x

i
n)

ap−2xi
n + 2ahap(

∑N
n=1 x

i
n)

ap−1 ap ̸= 1

2ahap ap = 1

,

∀i ∈ T (6.4)

Since xt
n ≥ 0 and Wi ≥ 0, ∇2

xn
wn is positive semidefinite. According to second-order

derivative condition for convexity, wn(xn,x−n) is convex in xn for fixed x−n. Theorem 4

implies this game admits at least one NE. By Theorem 3 and Theorem 2, this game admits a

unique solution if the Jacobian matrix of F(x) shown below is positive definite for all x ∈ X :

F(x) =


∇x1w1(x1,x−1)

...

∇xN
wN(xN ,x−N)

 =



∇x1
1
w1(x1,x−1)

∇x2
1
w1(x1,x−1)

...

∇xT
1
w1(x1,x−1)

...

∇x1
N
wN(xN ,x−N)

∇x2
N
wN(xN ,x−N)

...

∇xT
N
wN(xN ,x−N)



(6.5)

x̂ = (x1
1, x

1
2, ...x

1
N , . . . , x

T
1 , x

T
2 , . . . x

T
N) is defined by reordering/regrouping the entries of x

= (x1
1, x

2
1, ...x

T
1 , . . . , x

1
N , x

2
N , . . . x

T
N) according to the time index. The following matrix form
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can be obtained with the reordered vector x̂.

F(x̂) =



∇x1
1
w1(x1,x−1)

∇x1
2
w1(x1,x−1)

...

∇x1
N
w1(x1,x−1)

...

∇xT
1
wN(xN ,x−N)

∇xT
2
wN(xN ,x−N)

...

∇xT
N
wN(xN ,x−N)



(6.6)

Since the derivative ∇xt
n
wn(xn,x−n), ∀n ∈ N ,∀t ∈ T contains only the entries corre-

sponding to time t, the Jacobian matrix JF(x̂) can be expressed as a block diagonal matrix

as follows:

JF(x̂) =



F1 0 0 . . . 0

0 F2 0 . . . 0

0 0 F3 . . . 0

...
...

... . . . ...

0 0 0 . . . FT


, (6.7)
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where

Ft = (fij) ∈ RN×N ,∀t ∈ T

fij =



ahap(ap − 1)(
∑N

n=1 x
t
n)

ap−2xt
i + ahap(

∑N
n=1 x

t
n)

ap−1 i ̸= j, ap ̸= 1

ahap(ap − 1)(
∑N

n=1 x
t
n)

ap−2xt
i + 2ahap(

∑N
n=1 x

t
n)

ap−1 i = j, ap ̸= 1

ahap i ̸= j, ap = 1

2ahap i = j, ap = 1

,

∀i, j ∈ N (6.8)

It is clear that ∀t ∈ T , Ft is a summation of a diagonal matrix and a rank-1 matrix, where

the diagonal entries of the diagonal matrix are ahap(
∑N

n=1 x
t
n)

ap−1 and the rank-1 matrix is

a matrix with identical columns and non-negative entries. Since
∑N

n=1 x
t
n ≥ 0, the diagonal

matrix is semi-positive definite. Therefore, It is obvious that JF is positive definite matrix if

it satisfies the following condition:

• if ap > 1 and
∑N

n=1 x
t
n > 0,∀t ∈ T , JF is positive definite.

• if 0 ≤ ap ≤ 1, JF is positive definite matrix.

6.1.2 Exponential Marginal Price Model

The second cost model assumes that the electricity generation cost p̄t at each hour t ∈ T is

exponentially dependent on the collective demand

p̄t = āh · exp(
N∑

n=1

xt
n), (6.9)
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where āh is positive parameter. The optimal control strategy for each building is given by

min
xn∈Xn

wn(xn,x−n) =
T∑
t=1

p̄txt
n =

T∑
t=1

āh · exp(
N∑

n=1

xt
n) · xt

n (6.10)

The second-order derivative of wn with respect to xn is

∇2
xn
wn(xn,x−n) =



w̄1 0 0 . . . 0

0 w̄2 0 . . . 0

0 0 w̄3 . . . 0

...
...

... . . . ...

0 0 0 . . . w̄N


(6.11)

where

w̄i = āh · exp(
N∑

n=1

xt
n) · xt

n + 2āh · exp(
N∑

n=1

xt
n),∀i ∈ N (6.12)

Since the diagonal entries w̄i ≥ 2āh > 0,∀i ∈ N , the diagonal matrix ∇2
xn
wn(xn,x−n) is a

positive definite matrix, which guarantees the existence of NE according to Theorem 4. The

Jacobian matrix of F(x̂) is given by

JF(x̂) =



f̄ 1 0 0 . . . 0

0 f̄ 2 0 . . . 0

0 0 f̄ 3 . . . 0

...
...

... . . . ...

0 0 0 . . . f̄T


(6.13)
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where

f̄ t = (f̄ij) ∈ RN×N ,∀t ∈ T

f̄ij =


āh · exp(

∑N
n=1 x

t
n) · xt

i + āh · exp(
∑N

n=1 x
t
n) i ̸= j

āh · exp(
∑N

n=1 x
t
n) · xt

i + 2āh · exp(
∑N

n=1 x
t
n) i = j

,

∀i, j ∈ N (6.14)

Since exp(z) ≥ 1,∀z ≥ 0, the Jacobian matrix of F(x) is a positive definite matrix in the

feasible set, which guarantees the uniqueness of NE according to Theorem 2. Following is a

case study using a linear marginal price model to evaluate the effectiveness of game-theoretic

control strategies.

6.2 Case Study with a Linear Marginal Price Model

In this section, a linear marginal cost model is used to numerically demonstrate a distributed

NE solution algorithm. Under this assumption, the marginal electricity generation cost pt

(with unit of $/kWh) at each hour t ∈ T is linearly dependent on the collective demand

pt = ah(
N∑

n=1

xt
n) (6.15)

where ah is a positive scalar. Note that this linear price model is built based on the typical

operating cost curve of the electricity market with respect to system power capacity, such as

the one reported by PJM as shown in Figure 6.1. This linear price model is widely used in

game theoretic-control analysis of electricity markets [52, 51].
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Figure 6.1: Typical operating cost curve. Source: The Pennsylvania State University
(https://www.e-education.psu.edu/ebf200/node/151)

Under this setting, each building determines its optimal control strategy given the control

activities of its rivals, i.e.,

min
xn∈Xn

wn(xn,x−n) =
T∑
t=1

ptxt
n =

T∑
t=1

(
ah

N∑
n=1

xt
n

)
xt
n (6.16)

6.2.1 Distributed Algorithm

a. Best Response Algorithm

The best response BRn(x) is the set of actions minimizing the cost function for player n

under state x:

BRn(x) = {xn|xn = arg min
zn∈Xn

wn(zn,x−n)} (6.17)

Therefore, x∗ is the NE if and only if x∗
n ∈ BRn(x

∗) for every player n. A best response

strategy is proposed which is implemented through Jacobi iterations, i.e., at each iteration
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only one player performs optimization to identify his/her optimal control actions xn where

x−n assumes the most recent values. A pre-defined update sequence R is followed by the

players, e.g., the round robin sequence R = {1, ..., N, 1, ..., N, 1, ...}.

Algorithm 3 Best Response Algorithm
Result: x = xk is a Nash equilibrium

Input: Initial state x := x0; k = 1; L := ∅

while size(L) ̸= N do
Pick next player n := Rk

xk
n = BRn(x

k−1
n ,xk−1

−n )

xk
−n = xk−1

−n

e = ||xk − xk−1||

if e = 0 then
L := ∅

else
L := L ∪ {n}

end

k = k + 1

end

In this algorithm, x0 is chosen arbitrarily and the energy consumption schedules are

sequentially updated based on the round robin sequence R. L is the list of players that have

not changed their control actions since the last change of the state x. It is reset to an empty

list every time a player updates his/her actions. When this list reaches size N , a fixed point

is obtained and the solution is a NE.
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b. Convergence of the Algorithm

Theorem 5 ([104]). In a potential game, from an arbitrary initial outcome, best response

dynamics converge to a NE.

By Theorem 5, to prove the convergence of the best response algorithm, it is sufficient

to show that the game under concern is a potential game. The definition of potential game is

given below

Definition 4 (Potential game). Give a game M := (X1, ...,XN , w1, ..., wN), where Xn is

player n’s strategy set and wn is player n’s cost function. The game M is a potential game

if there exists a function P : X1 × ... × XN → R, such that ∀n ∈ N , ∀x−n ∈ X−n,

∀xn,x
′
n ∈ Xn

wn(xn,x−n)− wn(x
′

n,x−n) = P (xn,x−n)− P (x
′

n,x−n) (6.18)

Since wn is a quadratic function, Equation 6.16 can be expressed as a linear function (i.e.,

F(x) = Fx).

Lemma 6. The following function is a potential function of the NEP

P (xn,x−n) =
1

2
x⊤Fx. (6.19)

Proof. Substituting the expression of F into Equation 6.19, the following equation can be

derived:

P (xn,x−n) =
1

2
x⊤(

N∑
n=1

(ahB
⊤
nBn +B⊤

nA))x (6.20)
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For each player n and fixed strategy x−n the following holds

∇xnP (xn,x−n) = Bn(
N∑

n=1

(ahB
⊤
nBn +B⊤

nA))x (6.21)

=
(
ahBn(

N∑
n=1

B⊤
nBn) +Bn(

N∑
n=1

B⊤
n )A

)
x (6.22)

=
(
ahBn(I) +BnB

⊤
nA
)
x (6.23)

=
(
ahBn + (I)A

)
x (6.24)

=
(
ahBn +A

)
x (6.25)

∇xnwn(xn,x−n) = Bn(ahB
⊤
nBn +B⊤

nA)x (6.26)

=
(
ahBnB

⊤
nBn +BnB

⊤
nA
)
x (6.27)

=
(
ahBn(I) +BnB

⊤
nA
)
x (6.28)

=
(
ahBn + (I)A

)
x (6.29)

=
(
ahBn +A

)
x (6.30)

Clearly, one can obtain that ∇xnwn(xn,x−n) = ∇xnP (xn,x−n). According to Theorem 7

shown below, M := (X1, ...,XN , w1, ..., wN) is a potential game and therefore, the best

response algorithm is convergent.

Theorem 7 ([60]). Assuming that each player’s strategy set Xn is a compact convex set and

each utility function wn(x) is everywhere continuous and differentiable. Then ∇xnwn(xn,x−n) =

∇xnP (xn,x−n) is equivalent to Equation 6.19.
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6.2.2 Case Study Results

In order to verify the effectiveness of the proposed game-theoretic control approach, two

benchmarking control strategies are considered and introduced in the following subsections.

a. Baseline Control

The same baseline control strategy as described in Section 5.4.1 is considered as the first

benchmark, where all zone temperatures are maintained at the comfortable upper bound for

minimum cooling power consumption.

b. Centralized Control

A centralized and fully cooperative control strategy similar to that described in Section 5.4.2

is considered as a second benchmark. The major difference is on the central cost function:

min
x∈X

T∑
t=1

(
ah(

N∑
n=1

xt
n) · (

N∑
n=1

xt
n)
)
. (6.31)

d. Case Study Descriptions

Simulation tests were carried out with six commercial buildings with the proposed and the

benchmarking control strategies. The six buildings have the same dynamics and operational

constraints as those involved in the peak demand reduction aggregator case study. The ther-

mal loads and control strategies vary from one building to another. Figure 6.2 to Figure 6.13

depict the simulation test results for buildings #1 and #6, respectively, to illustrate the behav-

iors of the various players. Figure 6.2 to Figure 6.7 present the zone temperature trajecto-

ries along with the zone air temperature (ZAT) upper and lower bounds (dash-dotted lines),
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and Figure 6.8 to Figure 6.13 show the cooling power associated with the different control

strategies. Figure 6.14 plots the variations of the aggregate power of all six buildings. The

electricity costs for the various strategies are listed in Table 6.1.

In the baseline control results, the zone temperature is kept at the upper bound during

occupied hours resulting in the lowest energy consumption. During unoccupied hours, the

air-conditioning system is off and the indoor temperature floats within the comfort band.

Although the baseline strategy results in the lowest energy usage, the peak demand is the

highest among the three strategies causing higher cost penalties. As a consequence, the

resultant total electricity cost is the highest. The centralized control assumes full cooperation

of all buildings and tends to precool the building in the early morning to flatten the load

profile to reduce the electricity cost. It can be observed that the controller calls for precooling

at different times in different buildings so that the collective demand trajectory is smooth,

although individual building loads have occasional spikes. There is a tradeoff between the

total electricity usage and peak demand. Aggressive precooling is effective in reducing peak

demand but may result in higher total energy usage. The centralized controller identifies the

balancing point leading to the lowest total electricity cost. The game theoretic distributed

control approach, proposed in this study, results in very different behaviors in individual

building loads compared to the centralized controller. In the distributed control results, the

precooling power is smooth for all buildings since even small spikes can cause increases in

the individual costs. However, the total demand profile of the game theoretic control case

is very similar to that of the centralized results. Although the total cost associated with the

game-theoretic distributed control strategy is slightly higher than the centralized controller,

a lower PAR can be achieved. It can be seen that the game theoretic distributed control

strategy could achieve a Price of Anarchy of 1.007 for this specific case and reduce the

aggregate electricity cost by 6% compared to the baseline strategy. The detailed individual

and total costs for all three control strategies are summarized in Table 6.1.
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Figure 6.2: Zone temperature of building #1

Figure 6.3: Zone temperature of building #2

Figure 6.4: Zone temperature of building #3
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Figure 6.5: Zone temperature of building #4

Figure 6.6: Zone temperature of building #5

Figure 6.7: Zone temperature of building #6
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Figure 6.8: Power consumption of building #1

Figure 6.9: Power consumption of building #2

Figure 6.10: Power consumption of building #3
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Figure 6.11: Power consumption of building #4

Figure 6.12: Power consumption of building #5

Figure 6.13: Power consumption of building #6
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Figure 6.14: Total power consumption

Total charge ($)
Baseline Centralized Distributed

Bld #1 1.66 1.45 1.42
Bld #2 1.10 1.09 1.10
Bld #3 0.68 0.64 0.72
Bld #4 2.21 2.17 2.18
Bld #5 1.94 1.68 1.66
Bld #6 1.60 1.57 1.58

Sum of individual 9.19 8.60 8.66

Table 6.1: The electricity costs for the various strategies in microgrid scenario

6.3 Chapter Summary

In this section, a non-cooperative game theoretic control framework for load scheduling of

building clusters when the players are price makers is presented, i.e., the electricity price

varies with instantaneous electrical demand. The existence and uniqueness of NE of the for-

mulated game problem are proven and a distributed best response algorithm is presented to

find the NE. The convergence of the algorithm is guaranteed by reformulating the original

game as a potential game. A simulation test was carried out for six buildings and the pro-

posed game theoretic control strategy was shown to be effective in reducing the aggregate

electricity cost while ensuring lower PAR. The resultant control actions were very close to
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social optimum, with the Price of Anarchy of 1.007.
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CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Summary

This dissertation presents two control approaches for building cluster energy management in

support of grid reliability and efficiency: dictatorial load modulation control, which lever-

ages the building flexible loads to stabilize distribution voltage against volatile solar PV

generation, and market-based game theoretic control, which relies on a market mechanism

to incentivize buildings’ flexibility actions. To evaluate the potential for grid reliability sup-

port, voltage regulation control methods designed for two types of HVAC systems and game-

theoretic control methods for two different pricing mechanisms were proposed and assessed

either through simulation or experimental tests.

• Distribution voltage support using variable-capacity HVAC systems: a novel control

method using variable-capacity HVAC systems to smooth PV power output has been

proposed and tested. In this control method, the compressor speed is modulated by

a variable frequency drive to drive the power to follow solar power output in order

to reduce net demand/generation variations and voltage fluctuations. Laboratory tests

showed that the compressor ramp rate limit had a direct impact on the power track-

ing performance. Better tracking performance was achieved with higher ramp rate

limits. The voltage regulation controller could effectively reduce the variations of net

demand/generation and nodal voltages. More than 55% reduction of voltage fluctua-

tions was achieved for a test case with 50% PV penetration and 70% load ratio. With

reduced voltage fluctuations, the SVR tap operations could be fully or partially elimi-
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nated. Relaxed SVR deadband settings would result in fewer tap operations, especially

at moderate PV penetrations. Higher PV penetrations could lead to more frequent tap

position changes.

• Distribution voltage support through coordinative cycling of HVAC systems: a voltage

regulation control method that uses flexible thermal loads in cycling HVAC systems to

mitigate adverse solar PV impact is discussed. Its effectiveness on distribution voltage

regulation was examined using a community co-simulation platform. Simulation tests

showed that the voltage regulation control of cycling HVAC systems is effective in

reducing the number of SVR operations from 15 to 4, with a marginal increase in the

average HVAC cycling frequency from 44 to 49 cycles per day per unit. For distri-

bution systems without voltage regulation devices, a droop controller over thermostat

setpoint could help maintain the feeder voltage within a prescribed range and reduce

or even eliminate voltage excursions. However, the temperature setpoint adjustment

may cause indoor discomfort.

• Market-based game-theoretic control for peak demand reduction: a non-cooperative

game model is proposed to capture interactions of self-interested buildings with the

electricity market and a control strategy has been devised through solution of the NE

game problem. The existence and uniqueness of the NE for the game model have

been proven under a mild condition, namely, the feasible action set does not admit a

strategy with identical control schedules for all buildings. A centralized algorithm and

a distributed algorithm are proposed for solving the aggregator game model and the

centralized algorithm’s convergence to the NE has been proved. Numerical tests with

a commercial community showed that the control performance attained was close to

social optimum with less than 2% performance degradation.

• Maket-based game-theoretic control for flexible load dispatching: a load dispatch

problem is considered where the marginal electricity generation operation cost is as-
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sumed to be demand-dependent. This study investigated a power model and an expo-

nential model for the marginal cost curve, and proved the existence and uniqueness

of NE for these two cost models. In order to verify the effectiveness of the proposed

game-theoretic control for flexible load dispatching in building clusters, a simulation

case study using a linear marginal cost model was considered. To find the NE, a dis-

tributed best response method was developed. The simulation tests showed that the

game-theoretic control could reduce the overall operating cost by 5.8% and reduce

peak load by 28% compared to a baseline operation strategy. The achieved perfor-

mance was very close to the social optimum, with a Price of Anarchy of 1.007.

7.2 Future Work

Work presented in this dissertation can be extended in several directions:

• Building flexible load estimation. The discussed dictatorial load modulation control

methods are heuristics-based. Optimization-based control methods can enable the

building cluster to provide more effective support with limited flexible loads. How-

ever, in optimization-based control, the effectiveness of the control strategy is depen-

dent on the quality of the building and HVAC system models. A reliable modeling

methodology with adequate prediction accuracy and low computational complexity is

needed for building flexible load estimation, which is a topic worth pursuing in future

work.

• Social cost splitting function. In this study, the Shapley value is used to split the social

cost among participants. The main advantage of the Shapley value approach is that it

provides a fair allocation mechanism with favorable properties such as efficiency (the

sum of individual contributions equals the value achieved by the alliance), symme-

try (two members with the same Shapley value have the same share of cost/benefit),

135



linearity (if the alliance S engages multiple projects, say two projects with value func-

tions V (S) and U(S), then summing each member’s shares across the two projects

is the same as computing his/her share using the overall gain V (S) + U(S)), coali-

tional rationality (given how benefits/costs will be divided, all agents are willing to

join the grand coalition and no agents prefer to form smaller coalitions). However, the

disadvantage of the Shapley value approach is the high numerical complexity of the al-

gorithm because the number of feature combinations grows exponentially. Therefore,

a more numerically efficient cost allocation mechanism should be developed in future

work.

• Algorithm convergence properties. The current study only considered a centralized

algorithm and a distributed algorithm for a game with linear constraints. Nevertheless,

in many building control problems, the models involved in the control strategy are

nonlinear and non-convex, which may cause convergence issues with the proposed

algorithms. Therefore, the NE solution algorithms should be improved to achieve

convergence for a wide range of building control problems.

• Indoor air comfort. For indoor comfort impact assessment, the present study only

considered the indoor air temperature effect. However, indoor comfort is influenced

not only by temperature, but also by humidity ratio, air velocity and air quality. In

future work, an improved comfort model may be incorporated in the building control

problem.
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APPENDIX A

PUBLICATIONS

A.1 Conference

• Jiang, Zhimin, and Jie Cai. ”Distributed Game-Theoretic Control of Aggregate Build-

ing Thermal Loads Under Quadratic Generation Cost.” In 2022 American Control

Conference (ACC), to appear

• Jie Cai, and Jiang, Zhimin. ”Primal-Dual Distributed Control of Residential Thermal

Loads for Voltage Regulation of Distribution Systems with High PV Penetration.” In

2022 American Control Conference (ACC), to appear

• Jiang, Zhimin, and Jie Cai. ”Game Theoretic Control of Thermal Loads in Demand

Response Aggregators.” In 2021 American Control Conference (ACC), to appear

• Jiang, Zhimin, Jie Cai, Philani Hlanze, and Hao Zhang. ”Optimized Control of Phase

Change Material-Based Storage Integrated in Building Air-Distribution Systems.” In

2020 American Control Conference (ACC), to appear

A.2 Journal

• Jiang, Zhimin, Jie Cai. ”Optimal Predictive Control of Phase Change Material-Based

Energy Storage in Buildings via Mixed-Integer Convex Programming.” Applied Ther-

mal Engineering(2022): 118821.

• Jiang, Zhimin, Jie Cai, and Paul S. Moses. ”Smoothing control of solar photovoltaic
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generation using building thermal loads.” Applied Energy 277 (2020): 115523.

• Elhefny, Aly, Zhimin Jiang, and Jie Cai. ”Co-simulation and energy management of

photovoltaic-rich residential communities for improved distribution voltage support

with flexible loads.” Solar Energy 231 (2022): 516-526.

• Hlanze, Philani, Aly Elhefny, Zhimin Jiang, Jie Cai, and Hamidreza Shabgard. ”In-

duct phase change material-based energy storage to enhance building demand flexibil-

ity.” Applied Energy 310 (2022): 118520.

• Sanchez, Jerson, Zhimin Jiang, and Jie Cai.”Modeling and Mitigating Lifetime Impact

of Building Demand Responsive Control of Heating, Ventilation and Air-Conditioning

Systems.” Journal of Building Performance Simulation, accepted

• Hlanze, Philani, Zhimin Jiang, Jie Cai, and Bo Shen. ”Model-Based Predictive Con-

trol of Multi-Stage Air-Source Heat Pumps Integrated with Phase Change Material-

Embedded Ceilings.” Applied Energy, under review.

• Cai, Jie, Zhimin Jiang. ”Privacy-Preserving Distributed Load Control to Mitigate Dis-

tribution Voltage Excursions Induced by Solar Photovoltaic.” Solar Energy, under re-

view.

A.3 Presentation

• “Distributed Game-Theoretic Control of Aggregate Building Thermal Loads Under

Quadratic Generation Cost”, American Control Conference (ACC), 2022

• ”Primal-Dual Distributed Control of Residential Thermal Loads for Voltage Regula-

tion of Distribution Systems with High PV Penetration”, American Control Confer-

ence (ACC), 2022
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• ”Noncooperative Game based Demand Response for Multi-Building electricity con-

sumption”, American Control Conference (ACC), 2021

• ”Optimal predictive control of PCM storage integrated in building air-distribution sys-

tems” American Control Conference (ACC), 2020.

• “Integration of Phase Change Material-Based Storage in Air Distribution Systems to

Increase Building Power Flexibility”, The University of Tulsa, April 2019
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