
INVESTIGATION, EXTENSION, AND GENERALIZATION 

OF A METHODOLOGY FOR TWO STAGE SHORT 

RUN VARIABLES CONTROL CHARTING 

By 

MATTHEW EDWARD ELAM 

Bachelor of Science in Mathematics 
University of Texas at Tyler 

Tyler, Texas 
1991 

Master of Science in Mathematics 
University of Texas at Tyler 

Tyler, Texas 
1994 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the Degree of 

DOCTOR OF PHILOSOPHY 
May,2001 



INVESTIGATION, EXTENSION, AND GENERALIZATION 

OF A METHODOLOGY FOR TWO STAGE SHORT 

RUN VARIABLES CONTROL CHARTING 

Thesis Approved: 

-~t~-
i 

Thesis Adviser 

~ r~A,,t.,..~-

~liege 

ii 



ACKNOWLEDGMENTS 

I would like to mention several people who have made important contributions to the 

process I have undertaken to complete this dissertation and to receive my Ph.D. in 

Industrial Engineering at Oklahoma State University. 

Dr. Case, my advisor and committee chair, undoubtedly deserves much credit for my 

know ledge iil the area of Quality and for iny growth as a researcher. I consider it a 

· privilege to have witnessed and learned from his professionalism, knowledge, and 

expertise that he displays in his capacities as a teacher, a researcher, and as an advisor. 

Thank you, Dr. Case, for your time and effort spent on my behalf. 

I would also like to thank Dr. Schuermann, Dr. Pratt, Dr. De Yong, and Dr. Claypool 

for their time and effort in serving on my committee. Special thanks go to Dr. Pratt for 

allowing me to be his teaching assistant and to Dr. Schuermann for his patience and 

kindness while I wrestled with the decision to switch to Industrial Engineering. 

I consider myself fortunate to have met Brad Beaird when I first arrived at Oklahoma 

State. In addition to being a good friend, he introduced me to Industrial Engineering and 

helped me to see that Quality Control was exactly what I had been looking for in an area 

to study. 

I cannot say enough about the positive impact that Dr. McClaran has had on my life. 

He provided me with my first college teaching experience at East Texas Baptist 

University. He also introduced me to Oklahoma State. It is because of him that I came to 

iii 



know both how much I enjoy college teaching and how much I would .enjoy attending 

Oklahoma State. 

Completing this dissertation and my Ph.D. program has required significant 

mathematical skills. These were taught to me by Dr. Cranford, Dr. Kraut, Dr. Mitchell, 

Dr. Morris, and Dr. Pace at the University of Texas at Tyler. A special thanks goes to 

Dr. Cranford for informing me of the summer teaching opportunity at East Texas Baptist 

University that would start me out on the road to Oklahoma State. 

Standing beside me throughout this entire process has been my parents. Without all 

that they have freely and abundantly given, none of this would have been possible. I 

dedicate this dissertation to them, to the memories of my grandparents, and to the 

memories of Mitzie and Mopsy. 

iv 



TABLE OF CONTENTS 

Chapter 

I. THE RESEARCH PROBLEM . 

Introduction .... . 
Problem ...... . 
Research Objective . 

Research Sub:-Objectives and Tasks 
·. Research Contributions . 

II. LITERATURE REVIEW. 

Introduction . . . . . . 
Pooling Data. . . . . . 

Transformations for Pooling Data 
Advanced Methodologies for Pooling Data. 
C.onclusions for Pooling Data. . . . . . 

Control Charts with Greater Sensitivity ... 
CUSUM and EWMA Control Schemes 
Combined Methodologies. 
Economic Design . . . . . . . . . 

Process Inputs . . . . . . . . . . . . . 
Control Charts with Modified Limits . 

Q Charts ............. . 
Issues with Q Charts ...... . 
Two Stage Short Run Control Charts . 
Sensitivity Issues with Two Stage Short Run Control Charts 

The Two Stage Procedure. . . 
Stage One Control Limits . . . . . . . . . . . . . . 
Establishment of Control . . . . . . . . . . . . . . 
Control Chart Factors for the Two Stage Procedure 

Performance Evaluation of Short Run Control Charts 
Summary ........ . 

III. TWO STAGE SHORT RUN 
VARIABLES CONTROL CHARTING 

Introduction . . . . . . . . . 
Stage One Control Charting. 

V 

Page 

1 

1 
2 
7 
7 

12 

15 

15 
16 
16 
23 
26 
27 
27 
29 
32 
33 
34 
35 
38 
41 
62 
63 
63 
64 
67 
68 
69 

71 

71 
71 



The Delete and Revise (D&R) Process . . . . . . . . . . . . . . . . . 74 
Stage Two Control Charting . . . . . . . . . . . . . . . . . . . . . . 74 
Unbiased Estimates of the Process Variance and Standard Deviation . 75 
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

IV. TWO STAGE SHORT RUN (X, R) CONTROL CHARTS AND 
A COMPUTER PROGRAM TO CALCULATE THE FACTORS 

Introduction . 
Problem. 
Solution . 
Outline .. 
Note ... 

The Probability Integral of the Range. 
The Probability Integral of the Studentized Range . 
The Computer Program . . 

Mathcad (1998) Note . 
Page 1 . 
Page 2. 
Page 3. 
Page 4. 
Page 5. 
Page 6. 
Page 7. 

Tabulated Results of the Program. 
Implications of the Tabulated Results. 
A Numerical Example. 
Conclusions ............. . 

V. TWO STAGE SHORT RUN 

(X, v) AND (X, ..Jv) CONTROL CHARTS AND A 

COMPUTER PROGRAM TO CALCULATE THE FACTORS. 

78 

78 
79 
79 
80 
80 
80 
84 
85 
85 
85 
87 
88 
90 
92 
92 
92 
94 
98 

100 
102 

103 

Introduction . 103 
Problem . 103 
Solution . 104 
Outline. . 104 
Note. . . 105 

The Distribution of the Variance . 105 
The Distribution of the Studentized Variance 106 
The Equation to Calculate the Bias Correction Factors. 108 
Corrected Two Stage Short Run Control Chart Factor Equations 109 
The Computer Program. . 115 

Mathcad (1998) Note . 115 
Page 1 . 115 
Page 2. . . . . . . . . 116 

vi 



Page 3. 118 
Page 4. 119 
Page 5. 120 
Page 6. 120 
Page 7. 120 

Tabulated Results of the Program. 122 
Implications of the Tabulated Results. 123 
A Numerical Example. 126 
Conclusions .............. 130 

VI. TWO STAGE SHORT RUN (X, s) CONTROL CHARTS AND 
A COMPUTER PROGRAM TO CALCULATE THE FACTORS 131 

Introduction . 131 
Problem. 131 

· Solution . 131 
Outline .. 132 
Note ... 133 

The Distribution of the Standard Deviation. 133 
The Distribution of the Studentized Standard Deviation . 136 
The Distribution of the Mean Standard Deviation 137 
Derivation of the Control Chart Factor Equations 140 
The Computer Program . . 145 

Mathcad (1998) Note. 145 
Page 1 . 145 
Page 2. 146 
Page 3. 148 
Page 4. 149 
Page 5. 150 
Page 6. 151 
Page 7. 151 

Tabulated Results of the Program. 152 
Implications of the Tabulated Results. 154 
A Numerical Example. . . . . . . . . 156 

Advantages of Two Stage Short Run (X, s) Control Charts . 158 

Unbiased Estimates of cr and cr 2 Using ; 161 
Conclusions .......................... 162 

VII. TWO STAGE SHORT RUN (X, MR) CONTROL CHARTS AND 
A COMPUTER PROGRAM TO CALCULATE THE FACTORS 163 

Introduction . 163 
Problem. 163 
Solution . 164 
Outline .. 164 

vii 



Note. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 
The Probability Integral of the Range for Subgroup Size Two. 165 
The Probability Integral of the 

Studentized Range for Subgroup Size Two. . . 166 
The Distribution of the Mean Moving Range. . . 168 
Derivation of the Control Chart Factor Equations 171 
The Computer Program . . 176 

Mathcad (1998) Note . 176 
Page 1 . 176 
Page 2. 178 
Page 3 . 180 
Page 4 . 181 
Page 5 . 183 
Page 6 . 183 
Page 7. 183 

Tabulated Results of the Program. 185 
Implications of the Tabulated Results. 188 
A Numerical Example. . . . . . . . . 189 

Unbiased Estimates of cr and cr 2 Using MR . 191 
Conclusions . . . . . . . . . . . . . . . . . . 191 

VIII. AMETHODOLOGYFOR THE 
DETERMINATION OF THE APPROPRIATE 
EXECUTION OF THE TWO STAGE PROCEDURE. 

Introduction ............. . 
Delete and Revise (D&R) Procedures 

D&Rl. 
D&R2. 
D&R3. 
D&R4. 
D&R5. 
D&R6. 

The Methodology . 
Measurements ... 

POD, ARL, and SDRL . 
P(false alarm), APFL, SDPFL 

The Computer Program . 
Main Program cc 
Module Stage_l . 
ModuleD&R .. 
ModuleStage_2. 
Replications . . . 
Output ..... . 

Interpretation of Results from the Computer Program . 
Sample Runs for an IC Process in Stages 1 and 2 . 

viii 

192 

192 
192 
192 
193 
194 
194 
194 
194 
195 
196 
196 
198 
199 
199 

. 203 
203 
204 
204 
205 
207 
209 



Sample Runs for an OOC Process in 
Stage 1 and an IC Process in Stage 2 . 

Sample Runs for an IC Process in 
Stage 1 and an OOC Process in Stage 2 

Sample Runs for an OOC Process in Stages 1 and 2 . 
Conclusions from the Samp}e Runs. 

Conclusions. 

IX. SUMMARY ... 

. 216 

. 222 

. 227 

. 233 

. 234 

. 235 

Introduction . . 235 
Summary of Chapters . . 235 
Conclusions . . . . . . . 238 
Areas for Future Research . 240 

REFERENCES . . 242 

APPENDICES . . 249 

APPENDIX A - Analytical Results for Chapter 2 . . 250 

APPENDIX B.1 -:- Analytical Results for Chapter 4 . . 255 
APPENDIX B.2 - Computer Program ccfsR.mcd for Chapter 4. . 258 
APPENDIX· B.3 - Tables Generated from ccfsR.mcd . . 266 

APPENDIX C. l - Analytical Results for Chapter 5 . . . 277 
APPENDIX C.2 - Computer Program ccfsv.mcd for Chapter 5 . . 283 
APPENDIX C.3 - Tables Generated from ccfsv.mcd . 291 

APPENDIX D.1 - Analytical Results for Chapter 6 . . 307 
APPENDIX D.2 - Computer Program ccfss.mcd for Chapter 6 . . 326 
APPENDIX D3 - Tables Generated from ccfss.mcd . 334 

APPENDIX E.1 - Analytical Results for Chapter 7 . . 345 
APPENDIX E.2 - Computer Program ccfsMR.mcd for Chapter 7. . 356 
APPENDIX E.3 - Tables Generated from ccfsMR.mcd . . . . 364 

APPENDIX F.1 - Simulation Program cc.f90 for Chapter 8. . 368 
APPENDIX F.2 - Sample Input Files for cc.f90 . . . . 423 
APPENDIX F.3 - Sample Output Files from cc.f90 . . . . . . 434 

ix 



LIST OF TABLES 

Table Page(s) 

3.1 Upper Control Limit (UCL) Calculations for Two Stage Short 

Run (X, R), (X, v), (X, ..Jv) , (X, s), and (X, MR) Control Charts . 72 

3.2 Lower Control Limit (LCL) Calculations for Two Stage Short 

Run (X, R), (X, v), (X, ..Jv), (X, s), and (X, MR) Control Charts . 73 

3.3 Unbiased Estimates of the Process 
Variance ( cr2 ) and Standard Deviation (cr). 76 

4.1 · Comparison of Two Stage Short Run Control Chart Factor Notation 93 

4.2 Examples of Corrections to Pyzdek's (1993) Table 1. . . . . . 97 

4.3 SelectedA22 and Corresponding A2 Values from Table B.3.4 98 

4.4 ANumerical Example. . . . . . . . . . . . . . . . . . . . . . 100 

5.1 Selected A42 and Corresponding A4 Values from Table C.3.4 124 

5.2 A Numerical Example. . . . . . . . . . . . . . . . . . . . . . 127 

6.1 Selected A32 and Corresponding A3Values from Table D.3.4 155 

6.2 A Numerical Example. . . . . . . . . . . . . . . . 157 

6.3 Comparison of Degrees of Freedom for c: and ct; .159-160 

7 .1 A Numerical Example. . . . . . . . . . . . . . . . 190 

8.la ARL, SDRL, Replications, and Stops for Two Stage Short 

Run (X, R) Control Charts with Stage 1: IC and Stage 2: IC 

8.1 b P(RL ~ t) for Two Stage Short Run (X, R) 
Control Charts with Stage 1: IC and Stage 2: IC . 

X 

210 

210 



8.2a 

8.2b 

8.3a 

8.3b 

ARL; SDRL, Replications, and Stops for Two Stage Short 

Run (X, v) Control Charts with Stage 1: IC and Stage 2: IC. 

P(RL ~ t) for Two Stage Short Run (X, v) 
Control Charts with Stage 1: IC and Stage 2: IC . 

ARL, SDRL, Replications, and Stops for Two Stage Short 

Run (X, ~) Control Charts with Stage 1: IC and Stage 2: IC 

P(RL ~ t) for Two Stage Short Run (X, ~) 

Control Charts with Stage 1: IC and Stage 2: IC . 

8.4a ARL, SDRL, Replications, and Stops. for Two Stage Short 

8.4b 

· 8.5a 

8.5b 

Run (X, s) Control Charts with Stage 1: IC and Stage 2: IC. 

P(RL ~ t) for Two Stage Short Run (X, s) 
· · Control Charts with Stage 1: IC and Stage 2: JC . 

ARL, SDRL, Replications, and Stops for Two Stage Short 
. Run (X, MR) Control Charts with Stage 1: IC and Stage 2: IC. 

P(RL ~ t) for Two Stage Short Run (X, MR) 
Control Charts with Stage 1: IC and Stage 2: IC . 

8.6a ARL, SDRL, Replications, and Stops for Two Stage Short Run 

211 

211 

212 

212 

213 

213 

214 

214 

(X, R) Control Charts with Stage 1: OOC (MN) and Stage 2: IC . 217 

8.6b .· P(RL ~ t) for Two Stage Short Run (X, R) 
Control Charts with Stage 1: OOC (MN) and Stage 2: IC . 217 

8.7a ARL, SDRL, Replications, and Stops for Two Stage Short Run 

(X, R) Control Charts with Stage 1: OOC (SD) and Stage 2: IC 218 

8.7b P(RL ~ t) for Two Stage Short Run (X, R) 
Control Charts with Stage 1: OOC (SD) and Stage 2: IC. 218 

8.8a ARL, SDRL, Replications, and Stops for Two Stage Short Run 

(X, R) Control Charts with Stage 1: OOC (MS) and Stage 2: IC 219 

8.8b P(RL ~ t) for Two Stage Short Run (X, R) 
Control Charts with Stage 1: OOC (MS) and Stage 2: IC 219 

xi 



8.9a ARL; SDRL, APPL, SDPFL, Replications, 

and Stops for Two Stage Short Run (X, R) 
Control Charts with Stage 1: IC and Stage 2: OOC (MN) . ...... 223 

8.9b· P(RL::;; t) for Two Stage Short Run (X, R) 

Control Charts withStage 1: IC and Stage 2: OOC (MN) . . . . . . . 223 

8.10a ARL, SDRL, APPL, SDPPL, Replications, 

and Stops for Tw:o Stage Short Run {X, R) 
Control Charts with.Stage 1: IC and Stage 2: OOC (SD) . . . . . . . . 224 

8.10b P(RL::;; t) for Two Stage Short Run (X, R) 
Control Charts with Stage l: lC and Stage 2: OOC (SD) . . . . . . . . 224 

8.lla ARL, SDRL, APFI:.,, SDPPL, Replications, 

and Stops for Two Stage Short Run {X, R) 
Control.Charts with Stage 1: IC and Stage 2: OOC (MS) ....... 225 

8.llb P(RL::;; t) for Two Stage Short Run (X, R) 
Control Charts with Stage 1: IC and Stage 2: OOC (MS) ....... 225 

8.12a ARL, SDRL, APPL, SDPPL, Replications, and 

Stops for Two Stage Short Run (X, R) Control 
Charts with Stage 1: OOC (MN) and Stage 2: OOC (MN) . ...... 229 

8.12b P(RL ::;; t) for Two Stage Short Run (X, R) Control 
Charts with Stage 1: OOC (MN) and Stage 2: OOC (MN). ...... 229 

8.13a ARL, SDRL, APPL, SDPPL, Replications, and 

Stops for Two Stage Short Run (X, R) Control 
Charts with Stage 1: OOC (SD) and Stage 2: OOC (MN) . ...... 230 

8.13b P(RL ::;; t) for Two Stage Short Run (X, R) Control 
Charts with Stage 1: OOC (SD) and Stage 2: OOC (MN) . ...... 230 

8.14a ARL, SDRL, APPL, SDPPL, Replications, and 

Stops for Two Stage Short Run (X, R) Control 
Charts with Stage 1: OOC (MS) and Stage 2: OOC (MN) . ...... 231 

8.14b P(RL::;; t) for Two Stage Short Run (X, R) Control 
. Charts with Stage 1: OOC (MS) and Stage 2: OOC (MN). ...... 231 

xii 



B.3.1 Partial Re-creation of Table D3 in the Appendix of Duncan (1974) . 267 

B.3.2 Partial Re-creation of Table II.2 for P=0.995 
(alphaRangeUCL=0.005) in Harter, Clemm, and Guthrie (1959) ... 268-269 

B.3.3 Partial Re-creation of Table II.2 for P=0.001 
(alphaRangeLCL=0.001) in Harter, Clemm, and Guthrie (1959) ... 270-271 

B.3.4 Two Stage Short Run Control 
. Chart Factors for alphaMean=0.0027, 

alphaRangeUCL=0.005, and alphaRangeLCL=0.001 . 272-276 

C.3.1 v2 (Degrees of Freedom) and c4 (v2 + 1) Values (v2 = m · (n - 1)) 292 

C.3.2 (1- alphaVarUCL) Percentage Points of the 
Studentized Variance (alphaVarUCL = 0.005) ............. 293-294 

C.3.3 alpha V arLCL Percentage Points of the 
Studentized Variance (alphaVarLCL = 0.001) ............. 295-296 

C.3.4 Two Stage Short Run Control 
Chart Factors for alphaMean=0.0027, 
alphaVarUCL=0.005, and alphaVarLCL=0.001 

D.3.1 v2 (Degrees of Freedom) and c: (c4star) Values 

D.3.2 (1 - alphaStandUCL) Percentage Points of the 

. 297-306 

335 

Studentized Standard Deviation (alphaStandUCL = 0.005) . . . . . . 336-337 

D.3.3 alphaStandLCL Percentage Points of the 
Studentized Standard Deviation (alphaStandLCL = 0.001) ...... 338-339 

D.3.4 Two Stage Short Run Control 
Chart Factors for alphaMean=0.0027, 
alphaStandUCL=0.005, and alphaStandLCL=0.001 . 

E.3.1 v (Degrees of Freedom) and d;(MR) (d2starMR) Values. 

E.3.2 Partial Re-creation of Table II.2 for 

E.3.3 

P=0.995 (alphaMRUCL=0.005) and P=0.001 
(alphaMRLCL=0.001) in Harter, Clemm, and Guthrie (1959). 

Two Stage Short Run Control 
Chart Factors for alphalnd=0.0027, 
alphaMRUCL=0.005, and alphaMRLCL=0.001 . 

xiii 

. 340-344 

365 

366 

367 



· LIST OF FIGURES 

Figure Page 

8.1 Layout of the Segments of the Computer Program . . . . . . . . . . . . . . 200 

xiv 



CHAPTER I 

THE RESEARCH PROBLEM 

Introduction 

Control charts have been used since their introduction by Shewhart (1925, 1926, 1927, 

1931) to monitor both products and processes to determine if and when action should be 

taken to adjust a process because of changes in centering and/or spread of the quality 

characteristic being measured. Shewhart control charts are constructed using estimates of 

the process mean and standard deviation obtained from subgrouped data, as well as 

conventional control chart constants that are widely available in table form. These 

conventional control chart constants assume that an infinite number of subgroups are 

available to estimate the process mean and standard deviation. 

Hillier (1969) presents three situations in which this assumption is invalid. The first is 

in the initiation of a new process. The second is during the startup of a process just 

brought into statistical control again. The third is for a process whose total output is not 

large enough to use conventional control chart constants. Each of these is an example of 

a short run situation. A short run situation is one in which little or no historical 

information is available about a process in order to estimate process parameters to begin 

control charting. Consequently, the initial data obtained from the early run of the process 

must be used for this purpose. 

In recent years, manufacturing companies have increasingly faced each of these short 

run situations. One reason is the widespread application of the just-in-time (JIT) 

philosophy, which has caused much shorter continuous runs of products. Other reasons 
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. are frequently changing product lines and product characteristics caused· by shorter-lived 

products, fast-paced product innovation, and changing consumer demand. Fortunately, 

flexible manufacturing technology has provided companies with the ability to alter their 

processes in order to face these·challenges. Unfortunately, existing statistical process 

control (SPC) methodologies in general have not provided companies with the ability to 

reliably monitor quality in each of the previously mentioned short run situations. 

One of these methodologies for short run control charting is from Hillier (1969). It is 

implemented in exactly the same way as Shewhart control charting, but with control chart 

factors that are based on a finite number of subgroups. As the number of subgroups 

grows to infinity, Hillier's (1969) control chart factors converge to the respective 

conventional control chart constants used to constructShewhart control charts. Two 

problems exist with this methodology that limit its application. This research effort 

solves these problems by investigating, extending, and generalizing Hillier's (1969) 

theory, resulting in a comprehensive, theoretically sound, easy-to-implement, and 

effective methodology that is immediately applicable in industry due to the creation of 

computer programs that implement the research. 

Problem 

In Shewhart control charting, m subgroups of size n consisting of measurements of a 

quality characteristic of a part or process are collected. The mean (X) in combination 

with the range (R), variance (v), or standard deviation ( ~ ors) is calculated for each 

subgroup. When the subgroup size is one, individual values (denoted by X) are used in 

combination with moving ranges (denoted by MR) of size two. The mean of the 
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subgroup means (X) and subgroup ranges {R), variances (v), or standard deviations 

· ( s ) are calculated and used to determine estimates of the process mean and standard 

deviation, respectively. When the subgroup size is one, the mean of the individual values 

(X) and moving ranges (MR) are calculated and used to determine estimates of the 

process mean and standard deviation, respectively. These parameter estimates are then 

used to construct control limits using conventional control chart constants for monitoring 

the performance of the process. 

A common rule of thumb, which has been widely accepted despite evidence that it 

may be incorrect, states that twenty to thirty subgroups of size four or five are necessary 

before parameter estimates may be obtained to construct control limits using 
. . 

conventional control chart constants. This is a difficult if not impossible rule to satisfy in 

a short run situation. As a result, papers appear in the literature starting several decades 

ago detailing methodologies that allow for control charting when it is not possible to 

collect enough data to satisfy the rule. 

The prevalent methodologies focus on pooling data from different parts onto a single 

control chart combination (i.e., onto (X, R), (X, v), (X, ~), (X, s), and (X, MR) 
'; . 

control charts) in order to have enough data to satisfy the rule. It should be noted that the 

difference between (X, ~) and (X, s) control charts is that the former are constructed 

using the statistic ·~ and the latter are constructed using the statistic s. Pooling data is 

advantageous because it reduces the number of control charts in use, which greatly 

simplifies control chart management programs. Also, in most cases, control charting can 

begin almost immediately after the startup of a process because control limits are known 
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and constant. However, pooling data has several disadvantages. One is that few 

situations in industry allow for its application. Another is thatthe values used as 

. estimates of the process parameters (i.e., estimates of the process mean and standard 

deviation) are either not representative of the process or violate the original motivations 

for pooling data. A final disadvantage is that some of the methodologies are difficult to 

implement. 

A second approach to control charting in a short run situation is using control charts 

with greatersensitivity (i.e., more statistical power) than Shewhart control charts. An 

advantage of this approach is that it allows for the quick detection of special cause 

signals, which takes on added jmportance in a short run situation where the total output of 

the process is not large .. A disadvantage is that initial estimates of the process parameters 

must be close to their true values in order for the control charts to perform well. Also, the 

methodologies that comprise this approach are difficult to implement. 

A third approach to control charting in a short run situation is to monitor and control 

process inputs rather than process outputs. The assumption upon which this approach is 

based is that, by correctly selecting and monitoring critical input variables, one can 

control the output of the process. An advantage of this approach is that, since large 

amounts of process input data may be available even in a short run situation, Shewhart 

control charting may be used. A disadvantage of this approach is that few situations in 

industry allow for its application. 

A fourth approach to control charting in a short run situation is using control charts 

with modified limits. Control limits are modified in order to achieve a specified Type I 

error probability (i.e., the probability of a false alarm). Quesenberry's (1991) Q chart 
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methodology falls under this approach. Q charts are advantageous in that, not only do 

they allow for the pooling of data from different parts, but different statistics may be 

plotted on the same Q chart Also, control charting can begin almost immediately after 

the start-up of a process because control limits are known and constant. Disadvantages of 

Q charts are their inability to detect a process that starts out-of-control and their general 

lack of sensitivity in detecting process changes. Also, process standard deviation 

estimates used to calculate Q statistics to be plotted on Q charts are unreliable. 

Hillier's (1969) methodology also falls under the fourth approach. It has significant 

advantages over Quesenberry's (1991) methodology as well as the methodologies from 

the other approaches. It overcomes their endemic problems of relying on the common 

rule of thumb, using parameter estimates that are not representative of the process, 
. -

assuming the process starts in-control, and complex implementation. 

An integral part of Hillier's (1969) methodology is its two stage procedure, which is 

used to determine both the initial state of the process and the control limits for testing 

future performance of the process. In the first stage, the initial subgroups drawn from the 

process are used to determine the control limits. The initial subgroups are plotted against 

the control limits to retrospectively test if the process was in-control while the initial 

subgroups were being drawn. Any out-of-control initial subgroups are deleted using a 

delete and revise (D&R) procedure. Once control is established, the procedure moves to 

the second stage, where the initial subgroups that were not deleted in the first stage are 

used to determine the control limits for testing if the process remains in-control while 

future subgroups are drawn. Each stage uses a different set of control chart factors called 

first stage short run control chart factors and second stage short run control chart 
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factors. 

Two problems exist with Hillier's (1969) methodology that present research 

opportunities. The first one is that it has been applied to only (X, R) control charts (see 

Hillier (1969)) and to (X, v) and (X, ..Jv) control charts (see Yang and Hillier (1970)). 

Additionally, limited and in some cases incorrect results are presented in the literature for 

these charts. A particularly important deficiency of Hillier's {1969) methodology is that 

it has not been applied to (X, MR) control charts (see Del Castillo and Montgomery 

(1994) andQuesertberry (1995b)). 

The second problem is that the process of establishing control in the first stage of the 

two stage procedure is not clear (see Faltin, Mastrangelo, Runger, and Ryan (1997)). 

Several D&R procedures exist in the literature with no evidence to suggest which one 

establishes the most reliable control limits for monitoring the future performance of a 

process. In a short run situation, the D&R process takes on added importance. The 

reason is that deleting subgroups is equivalent to throwing away information about a 

process, which, in a short run situation, is limited even before the D&R process begins. 

Since the reliability of control limits for monitoring the future performance of a process is 

directly related to the amount of information from the process that is used to construct 

them, the choice of the D&R procedure used in a short run situation would seem to have 

serious implications. 

From these problems it is clear that opportunities exist not only to correct and 

generalize results currently available in the literature, but also to extend and generalize 

Hillier's (1969) methodology to other control chart combinations, namely (X, s) and 

(X, MR) charts. Also, an opportunity exists to develop a methodology to determine the 
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appropriate execution (i.e., the appropriate D&R procedure to use to establish control in 

the first stage) of the two stage procedure. 

Research Objective 

The objective of this research is to investigate, extend, and generalize a methodology 

for two stage short run variables control charting. 

Research Sub-Objectives and Tasks 

The research objective is achieved by accomplishing the following five research sub

objectives (in order of appearance) and their respective tasks: 

1. Generalize Hillier's (1969) theory so that it can be used for (X, R) control charts 

regardless of the subgroup size, number of subgroups, alpha for the X control chart, 

alpha for the R control chart above the upper control limit, and alpha for the R control 

chart below the lower control limit (alpha is the probability of a Type I error). As a 

part of this generalization, correct previous results in the literature for two stage short 

run control chart factors for (X, R) charts. 

The first research sub-objective is achieved by accomplishing the following tasks: 

a. Develop a computer program using the software Mathcad 8.03 Professional 

(1998) with the Numerical Recipes Extension Pack (1997) that accurately 

calculates first and second stage short run control chart factors for (X, R) charts. 
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b. Use exact equations for the probability integral of the range,the expected values 

of the first and second powers of the distribution of the range, the probability 

integral of the studentized range, degrees of freedom calculations, short run 

calculations, and conventional control chart calculations in the program. 

c. Use numerical routines provided by the software in the program. 

d. Have the program accept values for subgroup size, number of subgroups, alpha 

for the X chart, and alpha for the R chart both above the upper control limit and 

below the lower control limit. 

e. Use the program to generate tables for specific values of these inputs. 

f. Compare the tabulated results to legitimate results in the literature to validate the 

program. 

g .. Use the tables to correct and extend previous results in the literature. 

2. Generalize Yang and Hillier's (1970) theory so that it can be used for (X, v) and 

(X, Fv) control charts regardless of the subgroup size, number of subgroups, alpha 

for the X control chart, alpha for the v and Fv control charts above the upper 

control limit, and alpha for the v and Fv control charts below the lower control limit. 

As a part of this generalization, correct Yang and Hillier's (1970) results for two stage 

short run control chart factors for (X, v) and (X, Fv) charts. 

The second research sub-objective is achieved by accomplishing the following tasks: 

a. Develop a computer program using the software Mathcad 8.03 Professional 

(1998) with the Numerical Recipes Extension Pack (1997) that accurately 
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calculates first and second stage short ruri control chart factor's for (X, V) and 

(X, ,,Jv) charts. 

b. Vse exact equations for the distributions of the variance and the studentized 

variance, degrees of freedom calculations, short run calculations, and 

conventional control chart calculations in the program. 

c·. Use numerical routines provided by the software in the program. 

d. Have the prograrri accept values for subgroup size, number of subgroups, alpha 

for the X chart, and alpha for the v or· .rv· chart b,oth above the upper control 

limit and below the lower control limit. 

e. Use the program to generate tables for specific values of these inputs. 

f. Compare the tabulated results to legitimate results in the literature to validate the 

program. 

g. Use the tables to correct and extend previous results in the literature. 

3. Extend and generalize Hillier's (1969) theory so that it can be used for (X, s) control 

charts regardless of the subgroup size, number of subgroups, alpha for the X control 

chart, alpha for the s control chart above the upper control limit, and alpha for the s 

control chart below the lower control limit. 

The third research sub-objective is achieved by accomplishing the following tasks: 

a. Extend Hillier's (1969) theory to allow for the derivation of equations to calculate 

first and second stage short run control chart factors for (X, s) charts. 

9 



b. Derive equations to calculate first and second stage short run control chart factors, 

.as well as conventional control chart constants, for (X, s) charts. 

c.- Develop a computer program using the software Mathcad 8.03 Professional 

(1998) with the Numerical Recipes Extension Pack (1997) that accurately 

calculates the factors using the derived equations. 

d. Use exact equations for the distribution of the standard deviation, the mean and 

standard deviation of the distribution of the standard deviation, the distribution of 

the studentized standard deviation, and degrees of freedom calculations in the 

program. 

e. Use numerical routines provided by the software in the program. 

f. -Have the program accept values for subgroup size, number of subgroups, alpha 

for the X chart, and alpha for the s chart both above the upper control limit and 

below the lower control limit. 

g. Use the program to generate tables for specific values of these inputs. 

h. Compare the tabulated results to legitimate results in the literature to validate the 

program. 

4. Extend and generalize Hillier's (1969) theory so that it can be used for (X, MR) 

control charts regardless of the number of subgroups, alpha for the X control chart, 

alpha for the MR control chart above the upper control limit, and alpha for the MR 

control chart below the lower control limit. As a part of this extension and 

generalization, correct previous results in the literature for two stage short run control 

chart factors for (X, MR) charts. 

10 



The fourth research sub-objective is achieved by accomplishingthe following tasks: 

a. Extend Hillier's (1969) theory to allow for the derivation of equations to calculate 

· first and second stage short run control chart factors for (X, MR) charts. 

b. Derive equations to calculate first and second stage short run control chart factors, 

as well as conventional control chart const~nts, for (X, MR). charts. 

c.. Develop a computer program using the software Mathcad 8.03 Professional 

(1998) with the Numerical Recipes Extension Pack (1997) that accurately 

calculates the factors using these derived equations .. 

d. Use exact equations for the probability integral of the range, the mean of the 

distribution of the range, the probability integral of the studentized range (all three 

for subgroup size twq), and degrees of freedom calculations in the program. 

e. Use numerical routines provided by the software in the program. 

f. Have the program accept values for number of subgroups, alpha for the X chart, 

and alpha for the MR chart both above the upper control limit and below the 

lower.control limit. 

g: Use the program to generate tables for specific values of these inputs. 

h. Compare the tabulated results to legitimate results in the literature to validate the 

program. 

i. Use the tables to correct and extend previous results in the literature. 

5. Develop a methodology to determine the appropriate execution of the two stage 

procedure. 
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The fifth research sub-objective is achieved by accomplishing the following tasks: 

a. Develop a computer program using FORTRAN (1999) and the Marse-Roberts 

Uniform (0, 1) random variate generator (see Marse and Roberts (1983)) to 

simulate two stage short run control charting for (X, R), (X, v), (X, ~), (X, s), 

and (X, MR) charts for in-control and various out-of-control conditions in both 

stages. 

b. Determine the delete and revise '(D&R) procedures to include in the program by 

reviewing the relevant literature. Also, develop reasonable hybrids of existing 

procedures. 

c. Determine the measurements (i.e., the information) that the program needs to 

provide so that one can choose the appropriate D&R procedure to use. This is 

accomplished by reviewing the literature concerning measurements to use when 

control charting in a short run situation. 

d. Determine any additional information that the program needs to provide. This is 

accomplished by studying sample runs of the program to detect occurrences of 

events that need to be recorded. 

e. Use sample runs from the program to show how to interpret its output. 

Research Contributions 

This research makes important contributions to the statistical process control body of 

knowledge. The application of Hillier's (1969) theory to (X, s) and (X, MR) control 
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charts is a new contribution.· It is important because two stage short run (X, s) control 

charts provide another alternative to two stage short run (X, R) control charts that use a 

more efficient estimate of the process standard deviation and that may be easier to use in 

industry than two stage short run (X, Fv) control charts. It is also important because two 

stage short run (X, MR) control charts provide a means by which two stage short run 

control charting can occur in situations where subgrouping is infeasible. It should be 

noted that two stage short run (X, s) and (X, MR) control charts previously did not exist. 

The computer programs are important contributions because they calculate 

theoretically precise control chart factors to determine control limits for (X, R), (X, v), 

(X, Fv), (X,s), and (X, MR)charts regardless of the subgroup size, number of 

subgroups, and alpha values. Previously these capabilities did not exist. This flexibility 

is valuable in that process monitoring in industry will no longer have to be adjusted to use 

the limited, and in some cases incorrect, results previously available in the literature for 

two stage short run (X, R), (X, v), and (X, Fv) control charts. 

The development of a methodology for determining the appropriate execution of the 

two stage procedure is another new contribution. This methodology is important 

because, in a short run situation, the implications of choosing different D&R procedures 

for establishing control in the first stage can now be investigated. The information 

provided by the methodology allows one to choose the D&R procedure that most closely 

balances two competing issues. The first is avoiding losing too much important 

information about a process by deleting an already limited number of subgroups in stage 

one. The second is having control limits to start stage two control charting that have both 
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the desired probability of a false alarm (i.e., the desired probability of signaling a change 

in the process when there is none) and a high probability of detecting a special cause 

signal (i.e., a high probability of detecting a signal indicating a change in the process). 

Another contribution is two new equations to calculate unbiased estimates of a 

population variance. The first equation uses the average standard deviation calculated 

from m standard deviations, each of which is based on a subgroup of size n. The second 

equation uses the average moving range calculated from (m-1) moving ranges, each of 

which is based on a subgroup of size two. 

It is evident that the contributions of this research result in the development of a 

comprehensive, theoretically sound, easy-to-implement, and effective methodology for 

two stage short run control charting using (X, R) , (X, v) , (X, Fv), (X, s), and (X, MR) 

charts. Additionally, the programs allow for the immediate use of this methodology in 

industry. 
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CHAPTER II 

LITERATURE REVIEW 

Introduction 

For several decades and with much higher frequency in recent years, different 

methods of monitoring processes in a short run situation with (X, R), (X, v), (X, ~) , 

(X, s), and (X, MR) control charts have appeared in the literature. These methods belong 

to at least one of four general approaches to control charting in a short run situation (see 

- -

Woodall, Crowder, and Wade (1995) and Crowder and Halbleib (2000)). 

The first approach is pooling data from different parts onto a single control chart 

combination (i.e., onto (X, R), (X, v), (X, ~), (X, s), and (X, MR) control charts). 

The second is using control charts that have greater sensitivity (i.e., more statistical 

power) than Shewhart control charts. The third is emphasizing the monitoring and 

controlling of process inputs rather than product characteristics (i.e., process outputs). 

The fourth is modifying control chart limits to achieve the desired Type I error 

probability (i.e., the desired probability of a false alarm). 

This chapter first reviews the literature comprising each of these approaches as they 

concern (X, R), (X, v), (X, ~) , (X, s), and (X, MR) control charts. Next, this chapter 

reviews the different ways of executing the two stage procedure. The last topic this 

chapter reviews is the different metrics used to determine control chart performance in a 

short run situation. 
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. Pooling Data 

In a short run situation it is not likelythat enough data will be available to estimate 

process parameters to construct control charts for single parts. The widely accepted 

guideline for how much data is enough is the common rule of thumb. This rule states that 

twenty to thirty subgroups of size four or five are necessary before process parameters 

·may be estimated and conventional control chart constants used to construct control 

limits. By pooling data from different parts, it is hoped that enough data is available to 

satisfy this rule. 

Pooling data is the procedure·of taking measurements of quality characteristics from 

· different parts, performing a transformation on the measurements, and plotting the 

transformed measurements from the different parts on the same control chart. Typically, 

all of the part numbers on the same control chart are produced by one machine or 

process. Hence, control charting using pooled data is often termed a process-focused 

approach rather than a product-focused approach to control charting. 

Transformations for Pooling Data 

Early attempts at pooling data on a single control chart focused on using the deviation

from-nominal transformation (see Grubbs (1946) and Occasione (1956)). Bothe (1988) 

calls this a Nom-i-nal (i.e., Nominal) transformation and applies it to a short run situation. 

Each measurement X of a quality characteristic on a given part number is adjusted using 

the transformation given as equation (2.1) (see Bothe (1988)): 
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X' = X - Nominal (2.1) 

where 

Nominal: the blueprint specification for the measurement taken from that given part 

number 

Shewhari control chart techniques are then applied to these adjusted values to construct 

control charts using conventional control chart constants. Both Occasione (1956) and 

Bothe (1988) give examples of applying the deviation-from.:.nominal transformation to 

-
construct pooled (X, R) control charts. Koons and Luner (1988, 1991) give an example 

of applying it to construct pooled (X, v) control charts with varying subgroup sizes. 

When expressed in terms of averages, equation (2.1) becomes equation (2.2) (see 

Bothe (1989)): 

X PLOT POINT= X-T ARGET X (2.2) 

where 

X: the average of m val~es of X for a si>ecific part number 

The transformation given as equation (2.2) is not suitable in the situation where the 

standard deviation estimates for different part numbers are not close to each other (this 

can be determined using the range test (see Griffith (1996)) or Hartley's F-max test (see 

Nelson (1987))). Consequently, Bothe (1989) suggests the use of his Short Run X and R 

chart. 

The control chart statistic for the Short Run R (Range) chart is given as equation 
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(2.3a): 

R PLOT POINT= __ R __ 
TARGETR 

where 

R : the average of m values of R for a specific part number 

(2.3a) 

Equation (2.3a) standardizes the range from any part number so that it fits on the same 

Short Run Range chart as long as the subgroup sizes remain constant. The upper control 

limit (UCL) for the Short Run Range chart is the conventional control chart constant D 4 • 

The lower control limit (LCL) is the conventional control chart constant D 3 • 

The control chart statistic for the Short Run X chart is given as equation (2.3b): 

X PLOT POINT= X -TARGET X 
TARGETR 

(2.3b) 

Equation (2.3b) standardizes the average from any part number so it fits on the same 

Short Run X chart as long as the subgroup sizes remain constant. The UCL for the Short 

Run X chart is the conventional control chart constant A 2 • The LCL is equal to -A 2 • 

The TARGET R value in equations (2.3a) and (2.3b) and the TARGET X value in 

equation (2.3b) are determined in one of four different ways (see Bothe (1989)). The first 

is by using prior control charts for the specific part number. The second is by using 

historical data for the specific part number. The third is by using prior experience on 
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similar part numbers. The fourth is by using specification limits. 

Bothe (1989) states several advantages to his Short Run X and R charts. The first is 

that the Short Run X chart is independent of both X and R and the Short Run Range 

chart is independent of R . This means that part numbers with significantly different X 

and R values may be plotted on the. same Short Run X and R charts. The second is that . . . . . 

the control limits .for the Short Run X and R chart can be used when beginning the first 

control chart with the first plot point. The third is that the control limits do not need to be 

calculated or recalculated unless process changes are detected. 

Quesenberry (1998) and Crowder and Halbleib (2000) point out two problems with 

Bothe's (1989) transformations, which are similar to many of the transformations used for 

pooling data; Quesenberry (1998) states that Bothe's (1989) Short Run X and R chart is 

not valid since point patterns on them are not predictable, even for a stable process. 

Crowder and Halbleib (2000) state that the distribution of Bothe's (1989) transformation 

given as equation (2.3b) depends on m (the number of subgroups) as well as the subgroup 

size n. Consequently, plotting it against the conventional control chart constants - A 2 

and A 2 (which do not depend on m) for the X chart is problematic. 

Burr (1989) applies his deviation-from-tolerance transformation (similar to equation 

(2.1) except Tolerance is used instead of Nominal) to construct pooled (X, MR) control 

charts when the tolerance widths for the measured quality characteristics of different 

products to be pooled are close. When they are not (i.e., when they differ by a factor of 

two), Burr (1989) recommends the Q-statistic control chart. The Q-statistic is given as 

equation (2.4): 
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Q = X - Nominal 
0.5 · (Tolerance) 

(2.4) 

The motivation for the Q-statistic is similar to that used by Bothe (1989) to derive his plot 

points given earlier as equations (2.3a) and (2.3b ). 

Similar to Burr (1989), Wheeler (1991) shows how to construct pooled (X, MR) 

control charts, except with the deviation-from-nominal transformation given as equation 

(2.1). Shewhart control chart techniques are applied to the adjusted values to construct 

control charts using conventional control chart constants. The resulting control charts are 

called Difference Charts. 

As a test to determine if the Difference Charts are adequate to display the process 

data, Wheeler (1991) suggests plotting average moving ranges for each product on a chart 

for Mean Ranges. The control limits for this chart are given as equations (2.5a)-(2.5c): 

(2.5a) 

CL- =R 
R 

(2.5b) 

= H·d ·R 
LCL- =R- 3 

R dz ·..Jk 
(2.5c) 

where 

R: the average of m average moving ranges (mis also the number of different products) 

H: a tabled constant that depends on m 
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d 2 , d 3 : the mean and standard deviation, respectively, of the distribution of the range 

(these are tabled constants that depend on n (see Table Min the appendix of Duncan 

(1974))) 

k: the number of moving ranges (i.e., the number of subgroups) for each product 

CL: the center line for the chart for Mean Ranges 

If an average moving range for a product is not within the control limits, then there is 

evidence to suggest that variation between products is too inconsistent to use Difference 

Charts. In this case, Wheeler (1991) recommends the use of Zed Charts (also called Z-

Charts) or z· charts. The transformations for the Z-Chart are given as equations (2.6a) 

and (2.6b): 

Z = X-Nominal 

R/d 2 

where 

(2.6a) 

(2.6b) 

Nominal: the target value for the product specific quality characteristic being measured 

R : the mean of k moving ranges determined from the initial subgroups for a specific 

product drawn from the process. 

The control chart for the Z statistic has UCL=3.0, CL=O.O, and LCL=-3.0. The control 

chart forthe W statistic has UCL= d 2 + 3 · d 3 = 3.686 and CL= d 2 = 1.128. 
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The transformations for the z*. chart are exactly like those for the Z-Chart, except the 

denominators are R instead of R/d 2 • The control chart for the z* statistic has UCL, 

CL, and LCL equal to 2.660, 0.0, and -2.660, respectively. The control chart for the w* 

statistic has UCL= D 4 = 3.268 and CL=l.O. 

Equations (2.6a) and (2.6b) differ from equations (2.3a), (2.3b ), and (2.4) in that the 

standard deviation used is an estimate from initial subgroups drawn from the process; it is 

. not target or tolerance values. It should be noted that Wheeler (1991) also gives 

equations to calculate Difference Charts, Zed charts (called Zed-Bar charts), and z* 

charts ( called z* charts) for sub grouped data (i.e., pooled (X, R) control charts). 

Farnum (1992), like.Bothe (1989), Burr (1989), and Wheeler (1991}, proposes a 

modification of the deviation-from~nominal (which hecallsDNOM) procedure in the 

case where variances are not constant among different parts. For processes with an 

approximately constant coefficient of variation, together with measurement systems 

whose errors are reported as percentages of the instrument's reading, Farnum (1992) 

recommends a DNOM chart that monitors how much Xi/Ti deviates from one. The 

value Xi is the average of a subgroup for part i. The value Ti is the nominal dimension 

for the quality characteristic being measured for part i. The ratio XJTi is interpreted as 

percent of nominal. 

The control chart for the ratio X)Ti has UCL = 1 + ((3 · s )/ ..;n), CL=l.O, and 

LCL = 1- ((3 · s )/..fr;). The value s is the square mot of the average of m values of 

(si /Ti )2, where si is the standard deviation of a subgroup for part i. 

Pyzdek (1993) presents a variation on Bothe's (1988) Nom-i-nal transformation (see 
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. equation (2.1)). It is given as equation (2.7): 

A X-:--target 
x=------

Unit of measure 
(2.7) 

Dividing by the unit of measure allows for integer values of x to be plotted on pooled 

(X, R) control charts using Hillier's (1969) methodology, which is reviewed later in the 

Two Stage Short Run Control Charts subsection of the Control Charts with Modified 

Limits section of this chapter. 

Pyzdek (1993) also presents a methodology called Stabilized control charts that is 

similar to Bothe's (1989) Short Run X and R chart. The difference is that, instead of 

using target values to estimate the process average and standard deviation for a specific 

part, a grand average and an average range, respectively, are used from initial subgroups 

drawn from the process for that specific part. Conventional control chart constants are 

then used to construct control limits as in Bothe's (1989) approach. 

Advanced Methodologies for Pooling Data 

Al-Salti and Statham (1994) present a more comprehensive approach to determine 

which parts should be pooled. It is called the group technology (GT) concept. The main 

idea is to group parts together into component families based on design and 

manufacturing similarities. When a new part is scheduled for production, the component 

family in which it belongs is determined. Historical information obtained from this 

component family is used to estimate process parameters for the new part. 
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The most important part of applying the GT concept is the use of a suitable 

Classification and Coding (C&C) system. This system determines the similarity structure 

in component machining as a basis for family formation. 'A C&C system for statistical 

process control consists of two main codes. The first is a primary code that is based on 

an existing design-oriented system. A secondary code incorporates the manufacturing 

similarities of machined components. 

The formation of the component families involves identifying the most important 

variables affecting the quality characteristic of the process output. As part of the primary 

code, examples of such variables are the basic shape, size, material, and the initial form 

of the component. As part of the secondary code, examples.of such variables are the 

machine tool used, the machining process monitored, the quality characteristic, the 

measuring device used, the dimensional class and accuracy of the machined surface, the 

cutting tool, and the component and tool holding methods. 

The procedure for estimating the process parameters for a new component using the 

GT concept is as follows. First, determine the code number for the component to be 

machined. Second, identify the important variables affecting the quality characteristic of 

the process output. Third, use the results of step two to establish the family in which the 

component belongs. Fourth, retrieve from the family any data that is related to the 

measurements taken from the component. Fifth, calculate the transformed values of the 

retrieved data using appropriate upper and lower specification limits. Sixth, estimate the 

process mean and standard deviation using the transformed retrieved data. Seventh, 

establish target values to use as estimates of the process parameters for the component to 

be machined using the estimated process parameters from step six and appropriate upper 
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and lower specification limits. 

The process parameter estimates from step seven in the previous paragraph are used to 

transform component measurements, which are then plotted on pooled (X, R) control 

charts for the machining process being monitored .. 

Lin, Lai, and Chang (1997) propose a multicri~eria part family formation to improve 

upon the group technology concept for placing parts into families. In this methodology, 

deviations-from-nominal for each part type are calculated using equation (2.1). The 

standard deviation of the deviations-from-nominal for each part type are calculated and 

ranked in ascending order. Ratios of the.se standard deviations are formed and different 

part types are placed in the same f~ly if the ratios satisfy certain criteria. 

Once families are formed, control chart statistics for each family are calculated using 

equation (2.2): The family-specific control charts have UCL = 3 · (sp<r> / ~), CL=O.O, 
. . . 

and LCL = -3 · (sp(r) /~),where sp(r) is the family~specific pooled standard deviation 

for a family with r parts. The resulting control charts are pooled X charts. 

Lin, Lai, and Chang ( 1997) state two advantages of their methodology over the group 

technology concept. First, it is simpler to implement for small manufacturers with 

inadequate statistical staffs. Second, a multicriteria part family formation methodology 

. . 
improves process variation estimates based on pooled observations from different quality 

characteristics. Statistics calculated from poorly pooled observations tend to be 

underestimated for some quality characteristics and overestimated for others. This can 

create pooled control charts that for some parts will have a higher false alarm rate and for 

others will have less sensitivity to detect special cause signals. 
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Conclusions for Pooling Data 

Several problems exist with each of these methodologies for pooling data. In a true 

short run situation, one will often find it difficult to even proceed to pool data (Crowder 

and Halbleib (2000)). The reason is that, in order to construct control limits from pooled 

data, many part types or operations with similar characteristics must be produced or 

performed, respectively, by the same process. 

Another problem is process parameters for each part number are estimated using 

target or nominal values, tolerances, specification limits, initial subgroups drawn from the 

process, or historical data. Quesenberry (1991) states that using target or nominal values 

is equivalent to using specification limits instead of statistical control limits on control 

charts, which Deming ( 1986) asserts is a serious mistake. The same can be said for 

tolerances and specification limits. The reason is that the process target (what you want), 

the process aim (what you set), and the process average (what you get) are never the 

same. The magnitude of the differences depends on how well the process is performing. 

The result is a control chart that in general will be useless in delineating special cause 

variation from common cause variation (i.e., variation that is the result of an in-control 

process). 

Using initial subgroups drawn from the process to obtain parameter estimates for part 

numbers begs the original short run problem that motivates the use of pooled data. If one 

has enough data ( as defined by the common rule of thumb) from a process for a single 

part to estimate its process parameters, then pooling data is not necessary in the first 

place. 

When one has historical data to estimate process parameters for part numbers, then by 
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definition one is not in a short run situation. Consequently, pooling data is not even 

necessary, other than to reduce the number of control charts in use. 

Finally,·an original motivation for pooling data was to satisfy the common rule of 

thumb. However, Ng and Case (1992) and Quesenberry (1993) show in detail that 

satisfying the rule does not guarantee control limits that result in a low false alarm rate 

and have a high probability of detecting a special cause signal. 

Control Charts with Greater Sensitivity 

In a short run situation where the total output of the process is not large, the quick 

detection of special cause signals takes on added importance. It is well known that 

cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control 

schemes are more sensitive to detecting small process shifts than Shewhart control charts 

(e.g., see Lucas and Saccucci (1990) and Ch.22, p.464 in Duncan (1974), respectively). 

Also, economically designed control charts have greater sensitivity (see Woodall, 

Crowder, and Wade (1995) and Crowder and Halbleib (2000)). Consequently, these have 

been adapted for use in short run situations. 

CUSUM and EWMA Control Schemes 

Hawkins (1987) introduces a short run CUSUM control scheme called self-starting 

CUSUM charts in which process parameters are estimated using the running mean and 

standard deviation of all of the data obtained since the startup of the process. This 

scheme has increased sensitivity in detecting shifts at the startup of a process over using 
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parameter estimates obtained from .initial subgroups drawn from the process. This 

sensitivity improves as more data are used in the calculation of the running mean and 

standard deviation. 

Del Castillo .and Montgomery (1994) show results originally given in a 1992 Arizona 

State University technical report that adapts the EWMA control scheme to short run 

situations. The methodology is called the adaptive Kalman filtering method. Other 

names given to this methodology are the dynamic EWMA, the adaptive EWMA, and a 

first..:order, constant variance, dynamic linear model (Wasserman (1994)). 

Wasserman's (1994) dynamic EWMA control chart is a generalization of the EWMA . 

control chart. It allows for prior information about the process to be incorporated into the 

model in the form of a prior distribution. Prior information may consist of engineering 

judgment, expert knowledge, engineering specifications, or information obtained from 

similar processes. This prior information is updated as individual observations are 

obtained from the process. Initial estimates of the process mean and standard deviation 

are obtained using the prior information along with a Bayesian estimation scheme. 

Updated estimates of these two process parameters are obtained using the updated prior 

information. 

The dynamic EWMA control chart statistic is calculated using equation (2.8): 

mt = At . Yi + (1- At) . m H 

where 

m 1 : mean level of the process at time t 

A. 1 : adaptive weighting factor at time t (adaptive means that the variance terms are 
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estimated) 

Y1 : individual observation at time t 

Since individual observations are used to determine the control chart statistic, this is a 

short run application of the X chart. 

Wasserman and Sudjianto (1993) present a second order, constant variance, dynamic 

linear model version of the dynamic EWMA. This model also performs well in detecting 

small process shifts in a short run situation. 

The methodologies of Del Castillo and Montgomery (1994), Wasserman (1994), and 

Wasserman and Sudjianto (1993) have a common problem. Initial estimates of the 

process mean and standard deviation must be close to their true values. If not, the ability 

of the control mechanisms to detect shifts is significantly hampered. 

Chan (1994) uses simulation techniques to determine control chart parameter values 

for the usual EWMA control chart (where A1 = A is constant in equation (2.8)) that allow 

for the application of this chart to short run situations. Chan's (1994) two assumptions 

that the process starts in-control and the process mean and standard deviation are known 

undermine his results. If process parameters are known, then by definition one is not in a 

short run situation. Also, it is possible for a process to start out-of-control. 

Consequently, Chan's results (1994) may not be applicable in a short run situation. 

Combined Methodologies 

Quesenberry (1995a) applies EWMA and CUSUM monitoring schemes to his Q chart 

(this Q is different from Burr's (1989) Q-statistic given earlier as equation (2.4)) 
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methodology, which is reviewed later in the Q Charts subsection of the Control Charts 

with Modified Limits section of this chapter, to improve the detection of small process 

shifts. The Q statistic is used to calculate the EWMA control chart statistic as shown in 

equation (2.9): 

· where 

Zt : the EWMA control chart statistic at time t, t: 1, 2, ... ( Z0 = 0.0) 

A: constant weighting factor 

Qt : . the Q statistic at time t 

The Q statistic is used to calculate the CUSUM statistics as shown in equations 

(2.10a) and (2.10b): 

s; =max{o,s~l +Qt -kJ 

s~ = min{ 0, s;~l + Qt +ks} 

· where 

(2.9) 

(2.10a) 

(2.10b) 

s;, s;: the CUSUM control chart statistics at time t, t: 1, 2, ... (S~ = 0.0, S~ = 0.0) 

ks: reference value (Quesenberry (1995a) uses ks = 0.75) 

Problems with Quesenberry's (1995a) methodology are given later in the Issues with Q 

. Charts subsection of the Control Charts with Modified Limits section of this chapter. 
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Doganaksoy and Vandeven(1997) apply an EWMA monitoring scheme to control 

charts for pooled data. Charting pooled data in this manner results in earlier notification 

· of process changes. The transformation used to allow for pooling is given as equation 

(2.11): 

Y gel;t -y ge 
zgel;t ::;: . ' 

sge 
(2.11) 

where 

g, c, 1: product grade, color, and line, respectively 

z gel; 1 : pooled control chart statistic for product gel at time t 

y gel; 1 : measured quality characteristic for product gel at time t 

y ge : historical mean of the measured quality characteristic for product gc 

sgc : historical standard deviation of.the measured quality characteristic for product gc 

The historical mean and standard deviation for each product can be estimated using data 

collected from a previous production period. 

· The EWMA control chart statistic is calculated using equation (2.12): 

EWMA 1 =A·Zgel;t +(1-A)·EWMA1_ 1 (2.12) 

where 

EWMA 1 : the EWMA control chart statistic at time t, t: 1, 2, ... (EWMA0 = 0.0) 

11. : constant weighting factor 
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Problems with Doganaksoy and Vandeven's (1997) methodology are the same as those 

given earlier in the Pooling Data section of this chapter. 

Economic Design 

· Del Castillo and Montgomery (1996) develop a model for the optimal economic 

design of X charts for short run situations. It assumes a finite production run whose 

length is determined separately from the model. Incorporated in the model is the 

consideration of the effectthe setup operation has on the chart design. An imperfect 

setup corresponds to a process that has a nonzero probability of starting out-of-control. 

As the production run lengthens to infinity and as the probability of a perfect setup 

converges to one, the model converges to Duncan's (1956) model. 

Del Castillo and Montgomery (1996) use designed experiments to conclude that the 

length of the production run, the probability of having a correct setup, and the power of 

the chart design are related. Another conclusion is that the model is sensitive to the value 

of the parameter that represents the probability of a perfect setup. 

Del Castillo and Montgomery (1996) give several examples illustrating these 

conclusions. As the setup improves or as the production run increases, charts with higher 

power are needed. If there is a high probability of an incorrect setup, then a high power 

chart is not recommended because there is no point in stopping the process for a setup 

that will not bring a process to an in-control state. If the setup is perfect and the 

production run length is short, a low power chart can be used because an out-of-control 

state will reset to an in-control state through the perfect setup operation. 
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. - Del Castillo ( 1996b} presents an algorithm for the constrained optimization of Del 

Castillo and Montgomery's (1996) model. For the situation in which cost and parameter 

estimation is impractical, Del Castillo (1996b) presents a graphical method for finding a 

feasible chart design. The constraints, which are statistical and production-related in 

nature, link the chart desig_n variables with the production process to make the model 

more realistic and to obtain chart designs with better statistical properties. 

Process Inputs 

The third approach to applying (X, R), (X, v), (X, --Jv), (X, s), and (X, MR) control 

charts to short run situations is the monitoring and controlling of process inputs (e.g., 

temperature, pressure, rpms) rather than product characteristics (e.g., diameter, thickness, 

number of defects). By controlling the process inputs, one can control the quality of the 

process output. This approach is applicable when large amounts of process input data are 

available, 

_ Foster (1988) gives a three-phase model for monitoring process inputs. The first step 

_ of phase one is the creation of a Master Process Requirements List. This is a compilation 

of all the individual specification requirements for a particular process. When separate 

specification requirements overlap, the most stringent requirement is used. The second 

step is to flowchart the process. The third step is to select and rank critical inputs. The 

last step of phase one is to perform a capability analysis on each critical input parameter. 

If any are not capable, the process should be adjusted and the last step repeated. 

Phase two is the evaluation of the process output. If the output is unacceptable, then 

the selection and/or capability of the critical input parameters should be re-evaluated. 
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This phase ,should be repeated until the output is acceptable. 

In phase three, the focus is on maintaining control, establishing and refining 

relationships between critical input parameters, and improving process requirements. 

Monitoring of the process inputs in this phase is done with (X, R) , (X, v) , (X, ~) , 

{X, s), or (X, MR) charts constructed using conventional control chart constants. 

A problem with this approach is that critical input parameters for a new part to be 

produced in a short run may not match all of the critical input parameters for which large 

amounts of data are available. Also, Foster (1988) assumes that the process input 

nominal values arethe same for all product fabricated on that process. If nominal values 

are different, a transformation of the process input data may be required (Crowder and 

Halbleib (2000)). 

Control Charts with Modified Limits 

In a true short run situation, the process mean and standard deviation are unknown and 

must be estimated from a small number of subgroups with only a few samples each 

drawn from the startup of a process. When these estimates are used with conventional 

control chart constants to construct control limits for (X, R), (X, v), (X, ~), (X, s), 

and (X, MR) control charts, the Type I error probability (i.e., the probability of a false 

alarm) becomes distorted. Consequently, modified control chart factors need to be used 

to achieve the desired Type I error probability. 

Two methodologies exist that use control charts with modified limits for short run 

. control charting. This section first reviews Quesenberry's (1991) Q chart methodology. 
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This section then reviews Hillier's (1969) two stage short run control chart methodology. 

0 Charts 

Quesenberry (1991) introduces Q charts (this Q is different from Burr's (1989) Q

statistic given earlier as equation (2.4)) for short run situations that allow for the 

specification of the desired Type I error probability as well as the plotting of 

measurements of quality characteristics from multiple part types on a single chart. This 

second characteristic establishes a relationship between Q charts and the pooled control 

charts presented earlier in the Pooling Data section of this chapter. The Q chart 

methodology is for measurements of quality characteristics that are independent and 

identically distributed Normal random variables. 

Quesenberry (1991) derives equations to calculate Q-chart complements of (X, MR) 

and (X, v) control charts. These equations convert a measurement of a quality 

characteristic into a standard Normal variable called a Q statistic. These equations also 

update the estimated process mean and standard deviation as measurements are made and 

subgroups are formed. The Q statistic is plotted on a control chart that has control limits 

in a standardized Normal scale. These known, constant control limits on Q charts allow 

for meaningful control charting to begin almost at the start-up of a process, even if the 

process mean and standard deviation are unknown. 

The Q statistic for the X control chart when the process mean and standard deviation 

are unknown is calculated using equation (2.13): 
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· where 

r = 3, 4, ... : the number of the individual measurement 

Qr : the rth Q statistic 

. Xr: the rth individualmeasurement 

<t>-1 : the inverse of.the standard normal distribution function 

. G r-2 : the Student t distribution with .v =: (r - 2) degrees of freedom 

Xr-1 = 

s 1= r-

r-1 
L,xj 

'=2 
1 . : the average of the first (r-1) measurements 
r-1 

r-1 L (x j -:-Xr-1 )2 
_j_=2-----: the standard deviation of the first (r-1) measurements 

r-2 

(2.13) 

The Q statistic for the MR control chart when the process mean and standard deviation 

are unknown is calculated using equation (2.14): 

Q(R )- cp _1 {R ( v · R; J} 
r - I, v R 2 + R 2 + ... + R 2 

2 4 ~2 

(2.14) 

where 

r = 4, 6, ... : the number of the moving range 

Rr = Xr -Xr-i: the rth moving range 
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F1,v:theFdistributionwith v 1 =1 numeratordegreesoffreedomand V 2 =v=((r/2)-1) 

denominator degrees of freedom 

Equation (2.14) avoids overlapping moving ranges to maintain independence among the 

Q statistics. 

The Q statistic for the X control chart when the process mean and standard deviation 

are unknown is calculated using equ:ation (2.15): 

Q. (xi)= <t>-1[0 [ 1 n1 +n2 + .. ·+ni-t 

where 

ni . n1 + Ilz + ... + ni-1 

0 1 +n2 +···+ni-1 

i = 2, 3, ... : the number of the subgroup 

Xi : the average of the ith subgroup 

(2.15) 

= n ·X1 +n ·X2 +···n. ·Xi-1 
Xi-I = 1 2 •-1 : the average of the first (i-1) subgroup averages 

s . = p,1 

Il1 + nz +. ··ni 

n -1 ·v +(n -1 ·v +··· n. -1 ·v. 
1 1 2 2· • ' : the square root of the pooled variance 

n1 +n 2 +···ni -i 

of the first i subgroup variances 

The Q statistic for the v control chart when the process mean and standard deviation are 

unknown is calculated using equation (2.16): 

37 



(2.16) 

where 

vi: the variance of the ith subgroup 

It should be notedthat equations (2.15) and (2.16) allow for unequal subgroup sizes. 

The upper and lower control limits for the Q chart are qa, and q1_a2 ; where qa is the 

( 1-a)th .fractile of the standard Normal distribution. The center line is zero. Since each 

of the Q statistics given in equations (2.13), (2.14), (2.15), and (2.16) are standard 

Normal variables, each may be plotted on the same Q chart, even though each is for a 

different statistic. 

Issues with O Charts 

Quesenberry (1991) gives two precautions when using Q charts. Both affect the 

sensitivity ofQ charts to detect changes in a process. Consider the situation when the 

process mean µ shifts to a larger value. Because the Q statistic calculated using equation 

(2.13) utilizes all of the information prior to the rth observation to calculate estimates for 

µ, the Q statistics following the shift will eventually settle into .an in-control pattern. The 

reason is that, as more data are collected following the shift, the parameter estimates will 

reflect the shifted value for µ. A similar problem occurs when the process standard 

deviation cr shifts to a larger value. Wade (1992) investigates this issue further and 

concludes that Q charts for individual measurements can be insensitive to large shifts in 
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the estimated proce·ss parameters when the shifts occur early in the production run. 

The second precaution given by Quesenberry (1991) is that data from processes that 

start out-of-control and need time to settle into an in-control state should not be used in 

the calculations of the process parameter estimates for Q statistics. W as~err:nan and 

Sudjianto (1993) state that if Q charts are used at the start-up of an out-of-control process, 

then they would be useless.because the Q statistics would be formed from a running 

process average of the process parameter ~hich has existed solely in an out-of-control 

state. The resulting Q chart would not detect the out-of-control state. They conclude that 

Q charts cannot be used prior to the establishment of an in-control state. Woodall, 

Crowder, and Wade (1995) suggest the use of a two stage piocedure to overcome 

Quesenberry's (1991) implicit assumption that the process being monitored starts in-

' ' 

control. Otherwise, when a process starts out-of-control, the Q chart results would be 

difficult to interpret. Crowder and Halbleib (2000) also state that Q charts will not detect 

the situation where a process commences with an off target mean. 

In general, when control charts with modified limits are used in short rim situations, 

sensitivity issues are inherent because of the tradeoff between having a low false alarm 

rate and a high probability of detecting a special cause signal (Del Castillo (1995)). To 

deal with these sensitivity issues, Quesenberry (1991) suggests using the tests for special 

causes given by Nelson (1984) with Q charts. Also, as mentioned earlier in the 

Combined Methodologies subsection of the Control Charts with Greater Sensitivity 

section of this chapter, Quesenberry (1995a) applies his Q statistics to EWMA and 

CUSUM control schemes to improve detection capabilities. 

Problems exist with the Q statistics in equations (2.13) and (2.15). According to Del 
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Castillo and Montgomery (1994), the standard deviation estimate Sr-I in equation (2.13) 

is biased and should be divided by the factor c4 forn equal to (r-1). The factor c4 is 

the mean of the distribution of the standard deviation and is tabled for several values of n 

·· (e.g., see Table Min.the appendix of Duncan (1974)). Del Castillo and Montgomery 

(1994) investigate the performance of Q charts using equation (2.13) and conclude that 

using Sr_if c4 instead of Sr-I improves the sensitivity of Q charts. In equation (2.15), the 

standard deviation estimate Sp,i is biased and should be divided by the factor c 4 for a 

subgroup size of ((n 1 +n 2 + ... +n)-i+l) (seeNelson(l990)). 

Del Castillo (1995) states an additional problem with the standard deviation estimate 

Sr-I in equation (2.13). When the. process shifts to an out-of-control state, Sr-i will 

overestimate the process standard deviation cr. The· reason is that Sr-i combines within 

subgroup variability and between subgroup variability. The result is that, when a small 

amount of data from a process is used to obtain parameter estimates, the probability of 

detecting a shift in the observations immediately following the shift may decrease as the 

shift size increases. Del Castillo and Montgomery (1994) and Quesenberry (1995a) also 

investigate this problem and arrive at identical conclusions. 

It should be noted that, instead of using the Q statistics in equations (2.13) and (2.14 ), 

Wade (1992) suggests the use of a sequential X~chart ina short run situation. This is 

similar to (X, MR) control charts, except the process parameters are re-estimated as each 

measurement is obtained from the process (as with Quesenberry's (1991) Q statistics 

given as equations (2.13) and (2.15)). Also, as explained earlier in the CUSUM and 

EWMA Control Schemes subsection of the Control Charts with Greater Sensitivity 

section of this chapter, Hawkins (1987) uses running estimates of process parameters in 

40 



his short run CUSUM control scheme .. Wade {1992) states that the sequential X-chart is 

more sensitive than the Q chart for individual values and moving ranges for a broad range 

of process shifts, especially those occurring after only a few in-control observations. 

Two Stage Short Run Control Charts 

Hillier (1969) presents a methodology for two stage short run control charting for 

(X, R) charts that allows for the specification of the desired Type I error probability. It 

includes the methodology for second stage short run control charting for X charts and R 

charts presented by Hillier in his 1964 and 1967 papers, respectively. Earlier papers by 

King (1954) and Proschan and Savage (1960) also consider only one of the two stages. 

King (1954) investigates the probability of a Type I error during retrospective testing 

(stage one) when only a small number of subgroups are available to construct X control 

charts. Proschan and Savage (1960) do the same when testing for future subgroups (stage 

two). The results of both papers indicate that control chart factors different from 

conventional control chart constants need to be used in both stages to prevent distortion 

of the Type I error probability. 

Hillier (1964) shows that the probability of a Type I error is exceedingly high when 

estimates of the process mean and standard deviation based on a small number of 

subgroups are used together with conventional control chart constants to construct X 

charts for future testing (stage two). To resolve this issue, Hillier (1964) derives an 

equation for A;, the second stage short run control chart factor for the X chart. Using 

this factor, which depends on m (the number of subgroups) as well as the subgroup size 
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n, instead of the conventional control chart constant A 2 results in control limits that give 

the desired Type I error probability. The value A; is related to A 2 in that, as m~00, 

A; ~ A 2 •. · Second stage short run X control charts are constructed by following the 

same procedure for constructing Shewhart control charts, except A; is used instead of 

The derivation for A; proceeds as follows (see Hillier (1964) and (1969)). Consider a 

Normal population with meanµ and standard deviation .cr. Suppose thatm subgroups of 

size n are sampled from this population .. Denote the average of the subgroup averages as 

X and the average of the subgroup ranges as R . Suppose again that an additional 

· subgroup of size n is sampled from the same population. Denote the average and range 

of this subgroup as X and R, respectively .. In order to achieve the desired Type I error 

probability for future testing, we need to determine the value A; such that equation 

(2.17a) holds: 

(2.17a) 

where 

alphaMean: probability of a Type I error on the X control chart 

Rearranging equation (2.17 a) results in equation (2.17b ): 

* x-x * 1 -- J -A2 :5- R :5 A 2 = 1-alphaMean (2.17b) 
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It is necessary to determine the distribution of (x.-x)/R. First consider (x.-x). 

Both X and X are normally distributed, hence their difference is normally distributed. 

The expected value of (:X - x) is equal to zero and is derived in Appendix A of this 

dissertation. The standard deviation of (x.-x) is equal to ((~(m + 1)/(n · m) ). cr) and is 

also derived in Appendix A. 

Now consider the distributio_n of R . Patnaik (1950) shows that (v · (R )2 )/((ct; )2 · cr 2 ) 

has approximately a x2 distribution with v degrees of freedom, where v and ct; are both 

functions of m and n. This means that, since (x. -X) and R are independent for a 

Normal distribution, the ratio given as (2.18a) has approximately a Student's t distribution 

with v degrees of freedom: 

(2.18a) 

Simplifying the ratio in (2.18a) results in (2.18b ): 

d. --· • ·~-m [X-XJ 
2 m+l R 

(2.18b) 
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Since equation (2.18b) has approximately a Student's t distribution with v degrees of 

freedom, we have the probability relationship given as equation (2.19a): 

(2.19a) 

where 

t(alphaMean/2), v: the critical value for an area of (alphaMean/2) in each tail of the Student's t-

distribution with v degrees of freedom 

Rearranging equation (2.19a) results in equation (2.19b): 

J(-t(alpha~ean/2),v . lm.+ 1 J ~ X-X ~( t(alphaM:an/2),v · lm.+ 1 JJ = l-alphaMean (2.19b) 
4 l d 2 n m R d2 . n m 

Comparing equation (2.19b) with equation (2.17b) reveals the equation for A;, which is 

given as equation (2.20): 

(2.20) 

Hillier (1967) shows that the probability of a Type I error is exceedingly high when 

estimates of the process standard deviation based on a small number of subgroups are 

used together with conventional control chart constants to construct R charts for future 
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testing (stage two). To resolve this issue, Hillier (1967) derives equations for D: and 

D;, the second stage short run upper and lower control chart factors, respectively, for the 

R chart. Using these factors, which depend on m as well as n, instead of the 

corresponding alpha-based (i.e., probability based) conventional upper and lower control 

chart constants D 4 and D3 , respectively, results in control limits that give the desired 

Type I error probability. The value D: is related to D 4 in that, as m~oo, D: ~ D 4 • 

Similarly, the value D; is related to D 3 in that, as m~oo, D; ~ D 3 • 

The derivation for D: proceeds as follows (see Hillier (1967) and (1969)). Consider a 

Normal population with mean µ and standard deviation cr. Suppose that m subgroups of 

size n are sampled from this population. Denote the average of the subgroup ranges as 

R . Suppose again that an additional subgroup of size n is sampled from the same 

population. Denote the range of this· subgroup as R. In order to achieve the desired Type 

I error probability for future testing, we need to determine the value D: such that 

equation (2.21a) holds: 

P(R::;; D: · R )= 1-alphaRangeUCL 

where 

(2.21a) 

alphaRangeUCL: probability of a Type I error on the R control chart above the upper 

control limit (UCL) 

Rearranging equation (2.21a) results in equation (2.21b): 
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1: ,;; D:) = 1-alphaRangeUCL (2.21b) 

It is necessary to determine the distribution of R/R .. Consider first the distribution of 

·· the range R/cr . .Through the application of Patnaik's (1950) theory, cr may be replaced 

with the independent estimate of the population standard deviation denoted by R/ ct; , 

which is based on v degrees of freedom (v and ct; are both functions of m and n). The 

resulting ratio· (ct; · R )/R is by definition the distribution of the studentized range with v 

degrees of freedom. 

Consequently, we have the probability relationship given as equation (2.22a): 

Jct; ·R J . ~ l R ~ ql-alphaRangeUCL,v ~ 1-alphaRangeUCL (2.22a) 

where 

q1_alphaRangeucL,v: the critical value for a cumulative area of (1-alphaRangeUCL) under the 

curve of the distribution of the studentized range with v degrees of freedom 

Rearranging equation (2.22a) results in equation (2.22b ): 

1 R. < ql-alphaRangeiJCL,v J < l- l haR UCL _ _ * _ a p ange 
R d2 

(2.22b) 

Comparing equation (2.22b) with equation (2.21b) reveals the equation for o:, which is 
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given as equation (2.23): 

D * = q 1-alphaRangeUCL, v 
4 d* 

2 

(2.23) 

The equation for n; is derived inexactly the same way as the equation for n:, 

except alphaRangeLCL replaces (1-alphaRangeUCL) (alphaRangeLCL is the probability 

of a Type I error on the R control chart below the lower control limit (LCL)). It is given 

as equation (2.24 ): 

D * = q alphaRangeLCL, v 
3 d* 

2 

(2.24) 

where 

qalphaRangeLCL,v: the critical value for a cumulative area of alphaRangeLCL under the curve 

of the distribution of the studentized range with v degrees of freedom 

Hillier (1969) incorporates the two stage procedure with his (1964) and (1967) results 

and derives equations to calculate first and second stage short run control chart factors for 

(X, R) charts. Using these factors when process parameter estimates come from a small 

number of subgroups results in control chart limits that reliably indicate when a process 

has gone out of control. The first stage short run control chart factor for the X chart is 

denoted by A;·. It depends on mas well as n. The value A;· is related to A 2 in that, as 

m~=, A;· ~ A 2 • First stage short run X control charts are constructed by following 
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the same procedure for constructing Shewhart control charts, except A;* is used instead 

The derivation for A;· proceeds as follows (see Hillier (1969)). Consider a Normal 

population with meanµ and standard deviation cr. Suppose that m subgroups of size n 

are sampled from this population. Denote the average of the subgroup averages as X 

and the average of the subgroup ranges as R . Denote one of the initial subgroup 

averages used to calculate X as Xk (k: 1, 2, ... , m). In order to achieve the desired Type 

I error probability for retrospective testing, we need to determine the value A;* such that 

equation (2.25) holds: 

** Xk -X ** 1 - - J -A 2 ~ R ~A 2 =1-alphaMean (2.25) 

where 

alphaMean: probability of a Type I error on the X control chart 

The expected value and standard deviation of (xk -x) are derived in Appendix A. 

Using these in place of the expected value and standard deviation, respectively, of 

(x-x) in equations (2.18a), (2.18b), (2.19a), and (2.19b) results in equation (2.26): 

A~*= t(alphaMean/2),v .~m-1 
- d* n · m 

2 

(2.26) 
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. The first stage short run upper and lower control chart factors for the R chart are 

denoted by D:· and D:, respectively. Each of these factors depends on mas well as n. 

The derivation for D:· proceeds as follows (see Hillier (1969)). Consider a Normal 

population with meanµ and standard deviation cr. Suppose that m subgroups of size n 

are sampled from this population. Denote the average of the subgroup ranges as R . 

Denote one of the initial subgroup ranges used to calculate R as Rk (k: 1, 2, ... , m). In 

order to achieve the desired Type I error probability for retrospective testing, we need to 

determine the value· D: such that equation (2.27) holds: 

P(Rk ~D7 ·R)=l-alphaRangeUCL (2.27) 

where 

alphaRangeUCL: probability of a Type I error on the R control chart above the UCL 

. When equation (2.27) is expressed in terms of D:, equation (228a) is the result: 

• m·R-R 1 ( - JJ Rk ~D 4,m.1 • m-l k = 1-alphaRangeUCL (2.28a) 

where 

D: m-I : the second stage short run upper control chart factor for the R chart based on 

(m-1) subgroups 
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m·R-R -
· k : the average (based on R) of (m-1) subgroup ranges 

m-1 

Collecting Rk on the leftside of the inequality in equation (2.28a) resultsin equation 

(2.28b): 

J Rk ::;(· m-n:·:·1 J·RJ=l-alphaRangeUCL 4l m.,-l+D4~.1 
(2.28b) 

Comparing equation (2.28b) to equation (2.27) reveals the equation for D :·, which is 

given as equation (2.29): 

** m-n: m-1 
D4 = . • 

m-l+D4,m-I 
(2.29) 

The equation for n; is derived in exactly the same way as the equation for n;, 

except alphaRangeLCL replaces (1-alphaRarigeUCL) (alphaRangeLCL is the probability 

of a Type I error on the R ·control chart below the LCL). It is given as equation (2.30): 

(2.30) 

where 

n;,m.J: the second stage short run lower control chart factor for the R chart based on 
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(m~ 1) subgroups 

Hillier (1969) gives tables of two stage short run control chart factors for (X, R) 

charts for the following values: 

• n: 5 

• m: 1 (for second stage only), 2-10; 15, 20, 25, 50, 100, oo 

• alphaMean: 0.001; 0.0027, 0.01, 0.025; 0.05 

• alphaRangeUCL, alphaRangeLCL: 0.001, 0.005, 0.01, 0.025, 0.05 

These values give limited results that have two consequences. First, further study of two 

stage short run (X, R) control charts is hindered. Second, in order to use the limited 

results, those involved with quality control in industry would most likely have to adjust 

their process monitoring to the above values. Otherwise, they would have to incorrectly 

use conventional control chart constants. 

To allow. for the use of more efficient estimates of the process variance and standard 

deviation, Yang and Hillier (1970) use exact distributional results to derive equations to 

calculate two stage short run control chart factors for (X, v) and (X, ~) using Hillier's 

(1969) methodology. Using these factors when process parameter estimates come from a 

small number of subgroups results in control chart limits that reliably indicate when a 

process has gone out of control. 

The first and second stage short run control chart factors for the X chart are denoted 

by A:· and A:, respectively. These factors depend on mas well as n. As m~oo, both 

51 



A:· and A: converge to A4 , the conventional control chart constant for the X chart. 

First and second stage short run X control charts are constructed by following the same 

procedure for constructing Shewhart control charts, except A:· and A:, respectively, are 

used instead of A 4 • 

The derivation for A: proceeds as follows (see Yang and Hillier (1970)). Consider a 

Normal population with meanµ and standard deviation cr. Suppose that m subgroups of 

size n are sampled from this population .. Denote the average of the subgroup averages as 

X and the average of the subgroup variances as v. Suppose again that an additional 

subgroup of size n is sampled from the same population. Denote the average and 

variance of this subgroup as X and v, respectively. In order to achieve the desired Type 

I error probability for future testing, we need to determine the value A: such that 

equation (2.31a) holds: 

(2.31a) 

Rearranging equation (2.31a) results in equation (2.31b): 

* x-x . { - - J -A4 ::; ~ ::; A 4 = 1- alphaMean (2.31b) 

It is necessary to determine the distribution of (x-x)/ ~. First consider (x-x). 
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It was determined earlier that (x -X) is normally distributed with mean zero and 

standard deviation ((~(m + 1)/(n · m))· cr) (see Appendix A). 

Now consider the distribution of~. The ratio ((m · (n -1))· ~)/(cr2 ) has a x2 

distribution with (m · (n -1 )) degrees of freedom. This means that, since (x -X) and ~ 

are independent for a Normal distribution, the ratio given as (2.32a) has approximately a 

Student's t distribution with (m · (n -1)) degrees of freedom: 

(2.32a) 

Simplifying the ratio in (2.32a) results in (2.32b ): 

(2.32b) 

Since equation (2.32b) has a Student's t distribution with (m · (n -1)) degrees of freedom, 

we have the probability relationship given as equation (2.33a): 
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where 

t(aiphaMean/z),m-(n-I): the critical value for an area of (alphaMean/2) in each tail of the 

· Student's t distribution with (m · (n ~1)) degrees of freedom 

Rearranging equation (2.33a) results in equation (2.33b ): 

m+l X-X m+l {( ~J --( ~J) - t(alphaMean/2),m-(n-1). n. m ::; ~ ::; t(alphaMean/2),m·(n-1). n. m = 1- alphaMean 

(2.33b) 

Comparing equation (2.33b) with equation (2.31 b) reveals the equation for A:, which is 

given as equation (2.34): 

* ~m+l A4 = t(alphaMean/2),m·(n-1) · -· -
n·m 

(2.34) 

The derivation for A:* proceeds as follows (see Yang and Hillier (1970)). Consider a 

Normal population with meanµ and standard deviation cr. Suppose that m subgroups of 

size n are sampled from this population. Denote the average of the subgroup averages as 

-
X and the average of the subgroup variances as v . Denote one of the initial subgroup 

averages used to calculate X as X k (k: 1, 2, ... , m). In order to achieve the desired Type 

l error probability for retrospective testing, we need to determine the value A:* such that 
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equation (2.35) holds: 

** . Xk -X ** 1 - - J -A4 :::; ~ :::;A4 · =1-alphaMean (2.35) 

The expected value and standard deviation of (x:k -x) are derived in Appendix A. 

Using these in place of the expected value and standard deviation, respectively, of 

(x: - X) in equations (2.32a), (2.32b ), (2.33a), and (2.33b) results in equation (2.36): 

•• ~m-1 
A4 = t(alphaMean/2),m·(n-1) • -

n · m 

The first stage short run upper and lower control chart factors for the v chart are 

denoted by B;* and B;·, respectively. The second stage short run upper and lower 

control chart factors for the v chart are denoted by B; and B;, respectively. These 

(2.36) 

factors depend on mas well as n. As m~=, both B;* and B; converge to B8 , the alpha-

based conventional upper control chart constant for the v chart. Similarly, as m~=, both 

B;* and B; converge to B7 , the alpha-based conventional lower control chart constant 

for the v chart. 

The derivation for B; proceeds as follows (see Yang and Hillier (1970)). Consider a 

Normal population with meanµ and standard deviation cr. Suppose that m subgroups of 

size n are sampled from this population. Denote the average of the subgroup variances as 
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-
• v., Suppose again thatan additional subgroup of size n is sampled from the same 

population. Denote the variance of this subgroup as v. In order to achieve the desired 

Type I error probability for future testing, we need to detennine the value B; such that 

equation (2.37a) holds: 

P(v ~ B; · ~ )= 1-alphaVarUCL (2.37a) 

where 

a]pha V arUCL: probability of a Type I error on the v and ~ control charts above the 

UCL 

Rearranging equation (2.37a) results in equation (2.37b): 

1 ~ ,rn;) = I-alpha V arUCL (2.37b) 

The ratio v / ~ is the F distribution with (n-1) degrees of freedom for v and 

(m · (n -1)) degrees of freedom for ~. Consequently, B; is calculated using equation 

(2.38): 

B; = Fl-alphaVarUCL, n-l,m·(n-1) (2.38) 

where 

F 1 .• 1phavaruCL.n-l,m-(n-l): the critical value for a cumulative area of (1-alphaVarUCL) under 
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the curve of the F distribution with (n-l)numerator degrees of freedom and (m · (n -1)) 

denominator degrees of freedom 

The equation for B; is derived in exactly the same way as the equation for B;, except 

alphaVarLCL replaces (1-alphaVarUCL) (alphaVarLCL is the probability of a Type I 

error on the v and fv control charts below the LCL). It is given as equation (2.39): 

B; = FalphaVarLO.,n-l,m·(n-1) (2.39) 

where 

FaiphaVarLa., n-I. m-(n-i): the critical value for a cumulative area of alpha V arLCL. under the 

curve of the F distribution with (n-1) numerator degrees of freedom and (m · (n -1)) 

denominator degrees of freedom 

The derivation for B;· proceeds as follows (see Yang and Hillier (1970)). Consider a 

.Norn:ial population with meanµ and standard deviation cr. Suppose that m subgroups of 

size n ar~ sampled from this population. Denote the average of the subgroup variances as 

- -
v . Denote one of the initial subgroup variances used to calculate v as v k (k: 1, 2, ... , 

m). In order to achieve the desired Type I error probability for retrospective testing, we 

need to determine the value B;· such that equation (2.40) holds: 

(2.40) 
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· When equation (2.40) is expressed in terms .of B;, equation (2.41a) is the result: 

m·v-v 

{ [ - JJ vk ~ B;,m-t · m-l k = 1-alphaVarUCL 

where 

B* -F 
8,m-1 - l-alphaVarUCL,n-1,(m-l}(n-1) . 

m·v-v -
---· _k : the average (based on v) of (m-1) subgroup variances 

m-1 

(2.41a) 

Collecting· v k on the left side of the inequality in equation (2.41a) results in equation 

(2.41b): 

v k ~ · .- · v =I-alpha V arUCL { [ m · B; m I J -J 
m-l+Bs,m-t 

(2.41b) 

Comparing equation (2.41b) to equation (2.40) reveals the equation for B;*, which is 

given as equation (2.42): 

** . m-B; m-1 
Bs = . * 

m-l+Bs,m-t 
(2.42) 

The equation for B;* is derived in exactly the same way as the equation for B;*, 

except alphaVarLCL replaces (1-alphaVarUCL). It is given as equation (2.43): 
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** m. B;,m-1 
B1 = • 

m-l+B1m-1 
(2.43) 

where 

B;,m-1 = FalphaVarLCL,n-1,(m-l)·(n-1) 

The first stage short run upper and lower control chart factors for the Fv chart are the 

square roots of B;· and B;·, respectively. The second stage short run upper and lower 

control chart factors for the Fv chart are the square roots of B; and B;, respectively. 

These factors, which depend on m as well as n, result in control limits that give the 

desired Type I error probability. As m~=, both .jP:;" and Ji'; converge to .Ji3:, the 

alpha-based conventional upper control chart constant for the Fv chart. Similarly, as 

m~=, both .jB*;" and ji?; converge to ,JB;, the alpha-based conventional lower 

control chart constant for the Fv chart. 

Yang and Hillier (1970) give tables of two stage short run control chart factors for 

(X, v) and (X, Fv) charts for the following values: 

• n:5 

• m: 1 (for second stage only), 2-10, 15, 20, 25, 50, 100, 00 

• alphaMean: 0.001, 0.002, 0.01, 0.05 

• alphaVarUCL, alphaVarLCL: 0.001, 0.005, 0.025 
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These values give limited results that have two consequences. First, further study of two 

stage short run (X, v) and (X, ~) control charts is hindered. Second, in order to use 

the limited results, those involved with quality control in industry would most likely have 

to adjust their process monitoring to the above values. Otherwise, they would have to 

incorrectly use conventional control chart constants. 

Additionally, Yang and Hillier (1970) neglect to includ,e appropriate bias correction 

factors in their two stage short run control chart factor equations that involve ~, which 

is a biased estimate of the population standard deviation. This omission renders much of 

their tables as incorrect. Also, some of their results calculated using the correct equations 

are incorrect in the last decimal place shown by one and in some cases two digits. These 

issues are explained in complete detail.in Chapter V of this dissertation. 

Two attempts appear in the literature to expand Hillier's (1969) results for two stage 

short run (X, R) charts. Pyzdek (1993) gives two stage short run control chart factors for 

(X, R) charts using Hillier's (1969) theory for the following values: 

• n: 2-5 

• m: 1 (for second stage only), 2-10, 15, 20, 25 

• alphaMean: 0.0027 

• alphaRangeUCL: 0.005 

In addition to these values offering even more limited results for m, alphaMean, and 

alphaRangeUCL (with no alphaRangeLCL) than those presented by Hillier (1969), 
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several of Pyzdek's values are incorrect (see Chapter IV of this dissertation). 

Yang (1995) gives two stage short run control chart factors for (X, R) charts using 

· Hillier's (1969) theory for the following values: 

• · n: 2-25 for the X chart and 2-20 for the R chart 

• m: 1 (for second stage only), 2-25 

• alphaMean: 0.0027, 0.01, 0.05 

• alphaRangeUCL: 0.00135 and 0.0027 

Similar to Pyzdek (1993), Yang (1995) does not give two stage short run control chart 

factors for the R chart below the lower control limit. Many of the values given by Yang 

. (1995) are incorrect because inaccurate equations and numerical techniques are used to 

calculate the results (see Chapter IV). It should be noted that Yang (1999 and 2000) 

contain some of the results from Yang (1995). 

Elam and Case (2001) describe the development and execution of a computer program 

that overcomes the problems ;issociated with Hillier's (1969), Pyzdek's (1993), and 

Yang's (1995, 1999, 2000) efforts to present two stage short run control chart factors for 

(X, R) charts. Chapter IV and Appendix B of this dissertation include the entire contents 

of Elam and Case (2001). 

Other than Yang and Hillier (1970), one attempt appears in the literature to extend 

Hillier's (1969) methodology to other control chart combinations. Pyzdek (1993) 

attempts to present two stage short run control chart factors for (X, MR) charts for the 

following values (alphalnd is the probability of a Type I error on the X chart and 
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alphaMRUCL is the probability of a. Type I error on the MR..chart above the UCL): 

• m:· 1 (for second stage only), 2-10, 15,20, 25 

• · alphalnd: 0.0027 

• alphaMRUCL: 0.005 

However, all of Pyzdek's (1993) Table 1 results for subgroup size one are incorrect 

because he uses invalid theory (this is explained in complete detail in Chapter VII of this 

dissertation). 

Sensitivity Issues with Two Stage Short Run Control Charts 

As with Quesenberry's (1991) Q charts, two stage short run control charts based on 

Hillier's (1969) theory, in general, are not very sensitive in detecting process changes (see 

Del Castillo (1996a) and Crowder and Halbleib (2000)). Using the average run length 

(ARL), which is the average number of subgroups that must be plotted on a control chart 

· before an out-of-control condition is indicated, Del Castillo (1996a) evaluates Yang and 

Hillier's (1970) second stage short run X control chart. For an in-control situation, Del 

Castillo (1996a) concludes that fewer short runs and more very long runs occur between 

false alarms. This is a desirable situation. However, for an out-of-control situation, 

fewer short runs and more very long runs occur until detection. This is clearly an 

undesirable situation. 

In order to deal with these sensitivity issues, one may use the tests for special causes 

given by Nelson (1984), which Quesenberry (1991) suggests for his Q charts, or runs 
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rules (i.e;, the four tests for instability in Western Electric Co., Inc. '(1956)). However, 

using techniques to increase the sensitivity of two stage short run control charts based on 

Hillier's (1969) methodology increases the probability of a false alarm. This is because 

of the inherent tradeoff between these two issues when control charts with modified 

limits are used in short run situations (Del Castillo (1995)). 

The Two Stage Procedure 

A two stage (i.e., two phase, delete and revise) procedure for initiating control 

charting serves two distinct purposes. The first· is· retrospective testing. The second is 

future testing. In the first stage of the two stage procedure, the initial subgroups drawn 

from the process are used to determinethe control limits. The initial subgroups are 

plotted against the control limits to retrospectively test if the process was in control while 

the initial subgroups were being drawn. Once control is established, the procedure moves 

to the second stage, where the subgroups that were not deletedin the first stage are used 

to determine the control limits for testing if the process remains in control while future 

subgroups are drawn. 

Stage One Control Limits 

Two approaches are given in the literature for setting up control limits in stage one. 

Hillier (1969) uses each of the initial subgroups to estimate parameters to determine stage 

one control limits, which only have to be calculated once. All of the initial subgroups are 

tested simultaneously against these control limits (Yang and Hillier (1970)). Roes, Does, 
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and Schurink (1993) suggest an approach by which the initial subgroup that is going to be 

tested is not used to estimate parameters to determine stage one control limits. This 

. requires that stage one control limits be recalculated for each initial subgroup. It should 

be noted that Yang and Hillier (1970}also mention the procedure suggested by Roes, 

Does, and Schurink(1993), but do not use it. Also, King (1954) seems to have suggested 

this approach. 

Establishment of Control 

A point of contention with the two stage procedure in the literature has been how to 

establish control in the first stage; i.e., how to make the transition from stage one to stage 

two. Faltin, Mastrangelo,,Runger, and Ryan (1997) state that there is a failure to 

distinguish between these two stages in much of the relevant literature. The tendency is 

to focus on stage one without considering the ramifications for stage two. 

Several approaches (i.e., delete and revise (D&R) procedures) have been suggested for 

establishing control in stage one. The first approach, and the one that seems to appear 

most often in the literature, is to repeat the following procedure until no subgroups show 

out-of-control on either the control chart for. centering or the control chart for spread: 

1. Delete the out-of-control initial subgroups on either control chart entirely (i.e., if a 

subgroup shows out-of-control on either the control chart for centering or spread, it 

should be deleted from both charts). 

2. Recalculate the control limits. 
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Hillier (1969), Ryan (1989), and Montgomery (1997) all advocate this approach. Ryan 

(1989) states that a subgroup should be deleted only if an assignable (special) cause is 

detected and removed. Since an assignable cause that affects the standard deviation 

estimate does not necessarily affect the average estimate, itmay not be necessary to 

delete a subgroup from the chart for centering that shows out-of-control only on the chart 

for spread. However, for the sake of simplicity, Ryan (1989) recommends deleting the 

out-of-control subgroup entirely, stating that the exclusion of such points will not make a 

difference in the end result unless they are near one of the control limits. 

Montgomery (1997) states that it may not be possible to find an assignable cause for a 

subgroup that plots out-of-control on either chart. In this case, one option is to eliminate 

the subgroup anyway. The other option is to keep the subgroup, which is a risk because 

if the subgroup is really out..:of-control because of an assignable cause, then the control 

limits will be distorted. 

When many subgroups plot out-of-control and each is subsequently deleted, an 

undesirable situation arises because few subgroups will remain to estimate process 

parameters to construct control limits. The fewer the initial subgroups, the less 

information one has about the process. Less information results in less reliable control 

limits. In this situation, Montgomery (1997) suggests that one should not search for an 

assignable cause for each out-of-control subgroup, but should instead determine the 

pattern of the out-of-control subgroups and determine the assignable cause associated 

with the pattern. 

Pyzdek (1993) suggests an approach for establishing control in the first stage that uses 

the following procedure: 
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1. Delete the out-of-control initial subgroups on the control chart for spread. 

2. Recalculate the control limits. 

3. Repeat steps 1 and 2 until no initial subgroups show out-of-control on the control 

chart for spread. 

4. Using the parameter estimate for spread obtained aftercompleting steps 1-3 and the 

overall average obtained from all of the initial subgroups, determine the control limits 

for the control chart for centering. 

5. Perform steps l-3 for the control chart for centering. 

Except for the fact that the deletion of subgroups is performed on the charts for centering 

and spread separately, Pyzdek's (1993) approach is exactly like the one advocated by 

Hillier (1969), Ryan (1989), and Montgomery (1997). 

A third approach is to delete out-of-control subgroups only on the chart for spread just 

once (Case (1998)). The resulting parameter estimate for spread is used with the overall 

average from all of the initial subgroups to determine control limits for the control chart 

for centering. This approach has the advantage of requiring recalculation of control 

limits just once on only one chart. 

A fourth approach is to not perform any revision of the control chart limits regardless 

of whether or not initial subgroups plot out-of-control. Doty (1997) bases his 

justification for supporting this approach on two assumptions. The first is that trial 

control charts constructed from all of the initial subgroups are perfectly adequate for 

controlling the process. The second is that, since control chart limits are periodically 
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revised anyway, it is not necessary to establish control using the initial subgroups. For 

additional justification, Doty (1997) also states that much of the statistical process control 

computer programs do not recognize revised charts. 

Control Chart Factors for the Two Stage Procedure 

As was shown in the Two Stage Short Run Control Charts subsection of the Control 

Charts with Modified Limits section earlier in this chapter, Hillier (1969) expresses 

analytically the two distinct purposes of two stage control charting in a short run 

situation .. Even if no subgroups are deleted in stage one when establishing control, stage 

one control limits are still different from stage two control limits. This means that the 

values for the control chart factors depend upon the two distinct purposes of two stage 

control charting when in a short run situation (i.e., when only a finite number of 

subgroups is available). 

The approaches by Ryan (1989), Montgomery (1997), and Case (1998) use 

conventional control chart constants for each stage. This means that, if no subgroups are 

deleted in stage one when establishing control, then stage one control limits are equal to 

stage two control limits. This implies that values for the control chart factors do not 

depend upon the two distinct purposes of two stage control charting when operating 

under the assumption that an infinite number of subgroups is available. This statement is 

theoretically validated when one considers that, for a specific control chart, Hillier's 

(1969) and Yang and Hillier's (1970) first stage and second stage short run control chart 

factors converge to the same conventional control chart constant as the number of 

subgroups approaches infinity. 
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Performance Evaluation of Short Run Coritrol Charts 

The one performance metric that is used extensively to evaluate the performance of 

short run control charts is the average run length (ARL). The ARL is the average number 

of subgroups that must be plotted on a control chart before an out-of-control condition is 

indicated. It is desirable to have a large value for the ARL when a process is in-control. 

When a process is out-of-control, a small ARL is preferred. 

By its very definition, the ARL would seem difficult to apply .in a short run situation. 

The reason is that, in a short run situation, a process may not run long enough in order to 

draw enough subgroups to even come close to equaling the ARL. Nevertheless, the ARL 

seems to be the metric of choice for those evaluating the performance of short run control 

charts in the literature (see Quesenberry (1993), Wasserman and Sudjianto (1993), Del 

Castillo and Montgomery (1994), Del Castillo (1996a), Doganaksoy andVandeven 

(1997), and Lin, Lai, and Chang (1997)). 

A more meaningful performance metric for short run control charts is the probability 

of detection (POD). This is the probability that a control chart will signal, within a given 

number of subgroups following a shift, that a process is out-of-control (see Woodall, 

Crowder, and Wade (1995) and Crowder and Halbleib (2000)). Wade (1992) uses the 

POD within ten subgroups following a shift. Quesenberry (1995a) and Del Castillo 

(1995) use the POD within thirty subgroups following a shift. It should be noted that 

determining the POD is the same thing as characterizing the run length distribution. 
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Summary 

It is clear from this literature review that Hillier's (1969) methodology overcomes the 

endemic problems associated with the other methodologies that apply (X, R), (X, v), 

(X, Fv) , (X, s), and (X, MR) control charts to short run situations. These problems 

include relying on the common rule of thumb, using target or nominal values, tolerances, 

or specification limits to estimate process parameters, assuming the process starts in

control, and complex implementation. However, Hillier's (1969) methodology has its 

own problems that present research opportunities. 

The first problem is that Hillier's (1969) methodology is limited to (X, R) control 

charts (see Hillier (1969)) and to (X, v) and (X, Fv) control charts (see Yang and Hillier 

(1970)). Additionally, limited and in some cases incorrect results are presented in the 

literature for these charts. A particularly important deficiency of Hillier's (1969) 

methodology is that it has not been applied to (X, MR) control charts (see Del Castillo 

and Montgomery (1994) and Quesenberry (1995b)). 

The second problem is that the execution of the two stage procedure is not clear (see 

Faltin, Mastrangelo, Runger, and Ryan (1997)). Using the approach advocated by Hillier 

(1969), Ryan (1989), and Montgomery (1997) is problematic because, in a short run 

situation, one does not have a lot of initial data to estimate process parameters. By 

continually deleting subgroups from both control charts in the first stage, one is creating a 

situation in which an even more limited amount of data will be available to initially 

estimate process parameters for stage two. This is a problem because the reliability of the 

control limits decreases as the amount of data used to obtain initial estimates of the 
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process parameters decreases. However, control limits are also less reliable if subgroups 

reflecting process changes are used in their calculation. A methodology is required that 

can provide information to investigate this tradeoff. 
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. CHAPTER III 

TWO STAGE SHORT RUN VARIABLES CONTROL CHARTING 

Introduction 

The purpose of this chapter is to describe the process required to perform two stage 

short run variables control charting, with reference to the research in Chapters IV-VIII of 

this dissertation. Tables are presented that indicate, based on the choice of the two stage 

short run control chart ( (X, R), (X, v), (X, -Jv), (X, s), or (X, MR)), the appropriate 

program to use from Chapters IV-VII, the.output to use from these programs, and the 

equations to use to construct Stage 1 and Stage 2 control limits. Additionally, a table is 

presented that indicates, based on the choice of the statistic ( R , ~, ~, ; , or MR ), the 

appropriate program to use from Chapters IV-VII, the output to use from these programs, 

and the equations to use to calculate unbiased estimates of the process variance and 

standard deviation. 

Stage One Control Charting 

In the first stage of the two stage procedure, initial subgroups are collected from the 

process. Tables 3.1 and 3.2 have, based on the choice of the two stage short run control 

chart ( (X,R), (X, v), (X, -Jv), (X, s), or (X, MR)), the appropriate program to use from 

Chapters IV-VII, the output to use from these programs (the last three columns of each 

table), and the equations to use to construct upper (Table 3.1) and lower (Table 3.2) Stage 

1 control limits. It should be noted that the notation in these tables is explained in 

71 



Table 3.1. Upper Control Limit (UCL) Calculations for Two Stage 

Short Run (X, R), (X, v), (X, ,rv), (X,s), and (X, MR) Control Charts 

Math cad 
Center General Stage Stage 

Control Program Conventional 
Line Form 1 2 

Chart (extension 
(CL) for the UCL ccf ccf 

ccf 
.med) 

- - - - A21 A22 A2 (i.e., A2 ) X X X+ccf ·R ccfsR - -
R R ccf ·R D41 D42 D4 (i.e., D 4 ) 

- -
X+ccf-~ A41 A42 A4 (i.e., A4 ) X X ccfsv - -

V V ccf · v B81 B82 BS (i.e., B8 ) 

- -
X+ccf -~ A41 A42 A4 (i.e., A4 ) X X 

ccfsv 
~ ccf··~ 

BS sqrt 
J; BSlsqrt B82sqrt 

(i.e., JB:) 
- - - - A31 A32 A3 (i.e., A3 ) X ccfss X X+ccf ·s 

- -
s s ccf · s B41 B42 B4 (i.e., B 4 ) 

- -
X E21 E22 E2 (i.e., E 2 ) 

ccfsMR X X+ccf·MR 
- -

MR MR ccf ·MR D41 D42 D4 (i.e., D 4 ) 

Chapters IV -VII. 

For example, suppose one wants to construct first stage control limits for (X, R) 

· .. charts. Referring to the first two rows of the fourth columns of Tables 3.1 and 3.2, three 

pieces of information are required: X, R, and ccf (ccf stands for control chart factor). 

X and R are, respectively, the average of the initial subgroup averages (which are 

denoted by X) and the average of the initial subgroup ranges (which are denoted by R). 

The value for ccf is from the output of the Mathcad (1998) program ccfsR.mcd, which 

is in Chapter IV and Appendix B.2 of this dissertation. For the X control chart, ccf is 

equal to A21 for both the upper and lower Stage 1 control limits. For the R control chart, 

ccf is equal to D41 for the upper Stage 1 control limit and it is equal to D31 for the lower 
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Table 3.2. Lower Control Limit (LCL) Calculations for Two Stage 

Short Run (X, R), (X, v), (X, ..Jv), (X, s), and (X, MR) Control Charts 

Math cad 
Center General Stage Stage 

Control Program Conventional 
Line Form 1 2 

Chart (extension (CL) fortheLCL ccf ccf 
ccf 

.med) 
- - - - A21 A22 A2 (i.e., A2 ) X X X-ccf ·R ccfsR - -
R R ccf·R D31 D32 D3 (i.e., DJ 
- -

X-ccf -~ A41 A42 A4 (i.e., A 4 ) X X ccfsv - -
V V ccf ·V B71 B72 B7 (i.e., B7 ) 

- -
X-ccf -~ A41 A42 A4 (i.e., A4 ) X X 

-Jv 
ccfsv 

~ ccf-~ 
B7sqrt 

B71sqrt B72sqrt (i.e., ,JB;) 
- - - - A31 A32 A3 (i.e., A3 ) X X X-ccf ·s ccfss - -
s s ccf ·S B31 B32 B3 (i.e., B3 ) 

- - -X E21 E22 E2 (i.e., E 2 ) X X~ccf ·MR 
ccfsMR - -

MR MR ccf·MR D31 D32 D3 (i.e., D3 ) 

Stage 1 control limit. 

After constructing Stage 1 control limits, the initial subgroups are plotted against them 

to retrospectively test if the process was in-control while the initial subgroups were being 

drawn. If all of the subgroups are in-control, then one is ready to construct Stage 2 

control limits using all of the initial subgroups. The construction of Stage 2 control limits 

is explained later in the Stage Two Control Charting section of this chapter. If any 

subgroups are out-of-control, then one needs to determine which delete and revise (D&R) 

procedure to use to establish control of the process. This is explained in the next section. 
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TheDelete and Revise (D&R)Process 

Six D&R procedures are described in detail in the Delete and Revise (D&R) 

Procedures section of Chapter VIII of this dissertation. Chapter VIII also presents a 

methodology that provides information to assist one in determining which D&R 

procedure to use. The methodology consists of three elements, each of which is 

described in complete detail in Chapter VIII. The main element is the computer program 

that simulates two stage short run v·ariables control charting. The next element, which is 

included in the operation of the. program, is the measurements that one may use to 

· determine which D&R procedure establishes the most reliable second stage control 

limits. The third element is the interpretation of the results from the program. 

Once a D&R procedure has been chosen and completed, then one is ready to construct 

Stage 2 control limits. 

Stage Two Control Charting 

In the second .stage of the two stage procedure, the initial subgroups that remain after 

completing Stage 1 control charting are used to construct Stage 2 control limits. Tables 

3.1 and 3.2 have, based on the choice of the two stage short run control chart ( (X, R), 

(X, v), (X, ~), (X, s), or (X, MR)), the appropriate program to use from Chapters IV

VII, the output to use from these programs (the last three columns of each table), and the 

equations to use to construct upper (Table 3.1) and lower (Table 3.2) Stage 2 control 

limits. 

For example, suppose one wants to construct second stage control limits for (X, R) 
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· charts .. Referring to the first two rows of the fourth columns of Tables 3.1 and 3.2., three 

pieces of information are required: X, R , and ccf. X and R are, respectively, the 

average of the remaining initial subgroup averages (which are denoted by X) and the 

average of the remaining initial subgroup ranges (which are denoted by R). 

The value for ccf is from the output of the Mathcad (1998) program ccfsR.mcd. For 

the X control chart, ccf is equal to A22 for both the upper and lower Stage 2 control 

limits. For the R control chart, ccf is equal to D42 for the upper Stage 2 control limit and 

it is equal to D32 for the lower.Stage 2 control limit. 

After constructing Stage 2 control limits, one is ready to monitor the future 

performance of the process. If one is interested in updating Stage 2 control limits as 

more subgroups are accumulated, then an approach to do this may be found in Hillier's 

(1969) example. However, no methodology is presented in this dissertation that 

determines the approach for updating that results in Stage 2 control limits that perform 

the best. 

Unbiased Estimates of the Process Variance and Standard Deviation 

Table 3.3 presents equations to calculate unbiased estimates of the process variance 

( cr 2 ) and standard deviation ( cr) based on R , ~, ~, s, and MR . For any one of these 

statistics calculated from m subgroups of size n, the table gives the appropriate Mathcad 

(1998) program from Chapter IV,V, VI, or VII that must be used to determine the value 

for the bias correction factor. Using the notation from the programs, the tables then give 

the equations to calculate unbiased estimates of cr and cr 2 using the bias correction 
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Table 3.3. Unbiased Estimates of the Process Variance ( cr 2 ) and Standard Deviation (cr) 
Math cad 

Unbiasing Factor Unbiased Estimate 
Program 

Statistic 
(extension 

cr 0'2 cr 0'2 
.med) 

- d2 d2star 
R/d2 (R/ d2star )2 R ccfsR (i.e., d2) (i.e., ct;) 

c4(v2 + 1) 

- (i.e., c4 with 
~/c4(v2+1) 

-
V ccfsv ----- V 

subgroup 
size (v2+ 1)) 

~ ccfsv c4(v2+ 1) ----- . ~ /c4(v2 + 1) (~)2 
c4 

- (i.e., c4 with c4star 
i/c4 (i/ c4star )2 s ccfss 

subgroup (i.e., c:) 
size n) 

d2starMR 
--

ccfsMR d2 (i.e., d2) (i.e., MR/d2 (MR/ d2starMR )2 MR 
ct;(MR)) 

factors. It should be noted that columns three and four of Table 3.3 represent output from 

the respective programs. Also, the notation in this table is explained in Chapters IV-VII. 

For example, suppose one wants to determine unbiased estimates of cr and cr 2 based 

on R . Referring to the first row of Table 3.3, three pieces of information are required: 

R , d2 (i.e., d 2 ), and d2star (i.e., ct;). R is the average of m subgroup ranges (which are 

denoted by R), each of which is based on a subgroup of size n. Values for the unbiasing 

factors d2 and d2star are from the output of the Mathcad (1998) program ccfsR.mcd. 

The equations to calculate the unbiased estimates of cr and cr 2 based on R are in the first 

rows of the last two columns, respectively, of Table 3.3. 

As will be explained in Chapters VI and VII, the unbiasing factors c4star (i.e., c:) and 
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d2starMR (i.e., d; (MR)), respective·ly, in Table 3.3 are new developments from the 

research presented in this dissertation. This means that, for the first time, one may obtain 

an unbiased estimate of cr 2 based on ·s and MR using the- equations in the last two rows, 

respectively, of the last column of Table 3.3. 

Conclusions 

The description of the process required to perform two stage short run variables 

control charting together with the notation and equations presented in this chapter is 

· ineant to indicate where and how to use the research presented in Chapters IV-VIII of this 

dissertation in this process .. By addressing the tasks associated with research sub

objectives 1, 2, 3, 4, and 5 from Chapter I of this dissertation, the research presented in 

Chapters IV, V, VI, VII, and VIII, respectively, results in a comprehensive, theoretically 

sound, easy-to-implement, and effective methodology for two stage short run control 

charting using (X, R), (X, v), (X, ~), · (X, s), and (X, MR) charts. 
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CHAPTER IV 

TWO STAGE SHORT RUN (X, R) CONTROL CHARTS 
AND A COMPUTER PROGRAM TO CALCULATE THE FACTORS 

Introduction 

Hillier (1969) presents equations to calculate two stage short run control chart factors. 

for (X, R) charts and gives extensive tabulated results, but for subgroup size five only. 

Using Hillier's (1969) theory, Pyzdek (1993) gives two stage short run control chart 

factors for (X, R) charts for subgroup sizes 2-5, but with less numbers of subgroups than 

Hillier (1969) and only one set of values for alpha for the X chart and alpha for the R 

chart above the upper control limit (alpha is the probability of a Type I error). Unlike 

Hillier's (1969) results, Pyzdek (1993) does not give two stage short run control chart 

· factors for the R chart below the lower control limit. 

Also using Hillier's (1969) theory, Yang (1995) presents two stage short run control 

chart factors for (X, R) charts for subgroup sizes 2-25 for the X chart and 2-20 for the R 

chart, number of subgroups 1 (for second stage only) and 2-25, alpha values of 0.05, 

0.01, and 0.0027 for the X chart, and alpha values of 0.00135 and 0.0027 for the R chart 

above the upper control limit. Similar to Pyzdek (1993), Yang (1995) does not give two 

stage short run control chart factors for the R chart below the lower control limit. It 

should be noted that Yang (1999 and 2000) contain some of the results from Yang 

(1995). 
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Problem 

Hillier (1969), Pyzdek (1993), and Yang (1995, 1999, 2000) represent the only 

attempts in the literature to present two stage short run control chart factors for (X, R) 

charts based on Hillier's (1969) theory. In addition to the limitations already presented, 

Pyzdek's Table 1: Exact Method Control Chart Factors contains some incorrect values. 

Also, many of the values in Yang's (1995) Tables 2.1-2.7 and 3.1-3.4 are incorrect 

because inaccurate equations and numerical techniques are used to calculate the results. 

It should be noted that Tables l and 2 in Yang ( 1999) are exact replications of Tables 3 .4 

and 3.2, respectively, in Yang (1995). Also, Tables 1 and 2 in Yang (2000) are exact 

replications of Tables 2.4 and 2.7, respectively, in Yang (1995). 

Solution 

This chapter describes the development and execution of a computer program that 

overcomes these limitations. It will accurately calculate first and second stage short run 

control chart factors for (X, R) charts. The program uses exact equations for the 

probability integral of the range, the expected values of the first and second powers of the 

distribution of the range, the probability integral of the studentized range, degrees of 

freedom calculations, short run calculations, and conventional control chart calculations. 

The program accepts values for subgroup size, number of subgroups, alpha for the X 

chart, and alpha for the R chart both above the upper control limit and below the lower 

control limit. Tables are generated for specific values of these inputs. Comparison of the 

tabulated results to legitimate results in the literature validates the program. The tables 
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correct and extend previous results in the literature. 

The software used for the program is Mathcad 8.03 Professional (1998) with the 

Numerical RecipesExtension Pack (1997). The program uses numerical routines 

provided by.the software . 

. Outline 

This chapter first presents the probability integrals of the range and the studentized 

range. These are essential in the application of Hillier's (1969)theory to (X, R) control 

charts and are required for the program to perform accurate calculations. Next, the 

computer program is described. Tables genera,ted by the program are then presented and 

compared with legitimate results in the literature. Also, implications of the tabulated 

results are discussed. · Following a numerical example that illustrates the use of the 

program, final conclusions describing the impact of the program on industry and research 

are given. 

Results from the program are for processes generating parts with independent 

measurements that follow a Normal distribution. 

The Probability Integral of the Range 

The probability integral (or cumulative distribution function (cdf)) of the range for 

subgroups of size n sampled from a standard Normal population is given by Pachares 
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(1959) as equation (4.1) (with some modifications in notation): 

P(W) = n · f _~ f(x) ·(F(x + W)-F(x)) 0
-

1dx (4.1) 

W represents the (standardized) range w/cr, where w is the range of a subgroup and cr is 

the population standard deviation. Throughout this chapter, F(x) is the cdf of the 

standard Normal probability density function (pdf) f(x). 

The expected values of the first and second powers (or moments) of the distribution of 

the range W = (w / cr) for subgroups of size n sampled from a Normal population with 

meanµ and variance equal to one given by Harter (1960) are equations (4.2) and (4.3), 

respectively (with some modifications in notation): 

Wl = n ·(n -1) · f ~ [f: W ·(F(x + W)- F(x))"·' ·f(x+ W) dW lf(x) dx (4.2) 

W2 = n · (n -1) · f ~ [f: W' ·(F(x + W)-F(x))"·' -f(x + W)dW lf(x)dx (4.3) 

The mean of the distribution of the range (E(W)) is Wl and is the control chart constant 

denoted by d 2 (see Table Min the appendix of Duncan (1974)). The variance of the 

distribution of the range (Var(W)) is calculated using equation (4.4): 

Var=W2-Wl 2 (4.4) 
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The control chart constant d 3 (see Table Min the appendix of Duncan (1974)) is the 

square root of the variance. 

The values d 2 , d 3 , and m (the number of subgroups) are used to generate the degrees 

of freedom (v) and ct; (d2star) values for Table D3 in the appendix of Duncan (1974). 

The value d2star is calculated using the exact equation (equation (4.5)) from David 

(1951) (note: d2 = d 2 and d3 = dJ: 

· d2star = d2 2 + d! ( 2 J0.5 
(4.5) 

The value v has two possible calculations. The first calculation is an estimate. It is given 

by David (1951)as equation (4.6): 

(4.6) 

where A is determined using equation (4.7) (with some modifications in notation): 

A=(:}(:)' (4.7) 

This estimate is also given by Pearson (1952) and Prescott (1971). However, this 

estimate for vis highly inaccurate for small m (e.g., for m=l and n less than 11, the 
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inaccuracy is in the third place or less to the right of the decimal). As m~oo for any n, 

the accuracy of the estimate for v improves. 

Consequently, the program presented by this chapter uses the second calculation for v, 

which is exact. Two equations are involved. The first equation (equation (4.8)) is 

derived in Appendix B.1 of this dissertation from results given by David (1951) and 

Prescott (1971): 

r=---
m·d22 

(4.8) 

The second equation (equation (4.9)) is derived in Appendix B.l from results given by 

Prescott (1971): 

X • e 2·(gammln(0.5·x)-gammln(0.5·x+0.5)) _ 2 
h(x) =-----2----- (4.9) 

where gammln is a numerical recipe in the Numerical Recipes Extension Pack (1997) that 

calculates the natural logarithm of the gamma function. Using gammln in equation (4.9) 

allows for large values of v (hence large values form and n) in the program. The exact 

value for vis the value of x such that equation (4.10) holds: 

h(x) = r (4.10) 
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The Probability Integral ofthe Studentized Range 

The probability integral of the studentized range for subgroups of size n sampled from 

a Normal population is given by Harter, Clemm, and Guthrie (1959) as equation (4.lla): 

P3(z) =( !}e~ ·(Pl(z)+ P2(z)) (4.lla) 

where 

cv = ln(2)+(~}1n( ~ )-( ~ )-gamntl{ ~) (4.llb) 

[ 
, 2 JV-! , 2 . 11 · z--25-W z--25.w 

.Pl(z)= f. (s- :}e ,,, ·e ,.,, ·P(W)dW (4.llc) 

( 

·2 )v-1 2 oo 1-x 1-x 

P2(z)=( n L: X -e-2 •e 2 dx (4.1 ld) 

The variable z is equal to 5 · Q. Q represents the studentized range w/s, where w is the 

range of a subgroup and s is an independent estimate (based on v degrees of freedom) of 

the population standard deviation. The equation for cv (equation (4.1 lb)) is the natural 

logarithm of the equation for C(v) given by Harter, Clemm, and Guthrie (1959). It is 

derived in Appendix B.l. Using gammln in equation (4.llb) allows for large values ofv 

(hence large values form and n) in the program. The equation to calculate v is given 

· earlier as equation ( 4.10). In equation ( 4.1 lc ), P(W) is the probability integral of the 

range W = (w/cr) (see equation (4.1)). 

As v~= (i.e., as m~=) for any n, the distribution of the studentized range Q = ( w /s) 
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converges to the distribution of the range W = (w/cr) (see Pearson and Hartley (1943)). 

This fact is used to calculate alpha-based conventional control chart constants for the R 

chart. 

The Computer Program 

This section of the chapter presents the computer program, which is in Appendix B.2 

of this dissertation. The program has seven pages, each of which is further divided into 

sections. 

Mathcad (1998) Note 

It is possible for a section of code in the program to tum red and have the error 

message "Unknown Error". To correct this, delete one character in the red code and type 

it back in. Click the mouse arrow outside of the code. The code should tum black, 

indicating that the error has been eliminated. If not, repeat the procedure (it will 

eventually correct the problem). 

Page 1 

The first page of the program begins with the data entry section. The program 

requires the user to enter the following values: alphaMean (alpha for the X chart), 

alphaRangeUCL (alpha for the R chart above the UCL), alphaRangeLCL (alpha for the R 

chart below the LCL), m (number of subgroups), and n (subgroup size for the (X, R) 

charts). If no lower control limit on the R chart is desired, the entry for alphaRangeLCL 
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should be leftblank (do notenter zero). Before a value can be entered, the cursor must 

be moved to the right side of the appropriate equal sign. This may be done using the 

arrow keys on the keyboard or by moving the mouse arrow to the right side of the equal 

sign and clicking once with the left mouse button. The program is activated by paging 

down once the last entry is made. When using Mathcad 8.03 Professional (1998), paging 

down is not allowed while a calculation is taking place. However, Mathcad 2000 

Professional (1999) allows the user to page down to the output section of the program 

(explained later) after the last entry is made. 

The next part of page 1 is s.ection 1.1 of the program. The value TOL is the tolerance. 

The calculations that use this value will be accurate to ten places to the right of the 

decimal. The functions dnorm(x, 0, 1) and pnorm(x, 0, 1) in Mathcad (1998) are the pdf 

and cdf, respectively, of the standard Normal distribution. The equations for the pdf and 

cdf are also given in case the dnorm or pnorm function fails to calculate a result. In 

Mathcad (1998), an equation turns red if it does not calculate a result due to an error. If 

the dnorm function gives an error, type f(x) on the left side of the equal sign in equation 

(4.12): 

-x2 

= [(Z. n)-o.s ]. e 2 (4.12) 

If the pnorm function gives an error, type F(x) on the left side of the equal sign in 

equation (4.13): 
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(4.13) 

Wl, W2, and Var, which depend only on n, are given earlier as equations (4.2), (4.3), and 

(4.4), respectively. The value d2 is used to calculate the conventional control chart 

constant for the X chart. It is also used to calculate alpha-based conventional control 

chart constants for the R chart. Both d2 and d3 are used to calculate two stage short run 

.. 
control chart factors for the X chart as well as the R chart. 

Page 2 

Page 2 of the program begins with section 2.1. P(W) is given earlier as equation (4.1). 

The remainder of the code in this section determines wD4 and wD3, the 

(1-alphaRangeUCL) and alphaRangeLCL percentage points, respectively, of the 

distribution of the range W = (w /cr) for a given n and infinite v (i.e., infinite m) (recall 

the earlier statement that as v~= (i.e., as m~=) for any n, the distribution of the 

studentized range Q = (w/s) converges to ~he distribution of the range W = (w/cr) ). 

The values wD4 and wD3 are used to calculate alpha-based conventional upper and 

lower control chart constants, respectively, for the R chart. The roots of the equations 

DUCL(W) and DLCL(W) are wD4 and wD3, respectively, and are determined using 

zbrent (a numerical recipe in the Numerical Recipes Extension Pack (1997) that uses 

Brent's method to find the roots of an equation). The subprograms Wseedl and Wseed2 

generate seed values seedD4 and seedD3, respectively, for Brent's method. 

The subprogram Wseedl works as follows. Initially, W0 and W1 are set equal to 0.01 
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and 0.02, respectively. A0 and A1 result from evaluating DUCL(W) at W0 and W1 , 

respectively. The while loop begins by checking if the product of A0 and A1 is 

negative. If so; the root for DUCL(W) lies between 0.01 and 0.02. If not, W0 and W1 

are incremented by 0.01. A0 and A1 are recalculated and if their product is negative, the 

root for DUCL(W) lies between 0.02 and 0.03. Otherwise, the while loop repeats. Once 

a root for DUCL(W) is bracketed, the bracketing values are passed out of the subprogram 

into the 2 x 1 vector seedD4 to be used by Brent's method to determine wD4. The 

subprogram Wseed2 works similarly to construct the 2xl vector seedD3 to be used by 

Brent's method to determine wD3, exceptthe starting value is 0.001. 

The next part of page 2 is section 2.2 of the program. The two stage short run control 

chart factor calculations require v and vprevm (i.e., v for (m-1) subgroups). The value 

rprevm has the same meaning as r (given earlier as equation (4.8)), except it is for (m-1) 

subgroups. The equation for h(x) is described earlier (see equation (4.9)). Brent's 

method is used to find the root v of d(x) using the seed value x. Similarly, Brent's 

method is used to find the root vprevm of dprevm(x) using the seed value xprevm. The 

equations for x and xprevm are from the footnote to Table D3 in the appendix of Duncan 

(1974). Patnaik (1950) also gives a form for these equations. 

Page 3 

Page 3 of the program begins with section 3.1. P3(z), cv, Pl(z), and P2(z) are all 

given earlier as equations (4.lla), (4.llb), (4.1 lc), and (4.lld), respectively. Section 3.2 

contains the calculations required to determine qD4, the (1-alphaRangeUCL) percentage 
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point of the distribution of the studentized range Q = (w /s) with v degrees of freedom 

(which is calculated earlier in the program). The value qD4 is used to calculate the 

second stage short run upper control chart factor for the R c~art. The subprogram Zseedl 

generates the seed value seedl for Brent's method or for root (root is a numerical routine 

in Mathcad (1998) that uses the Secant method for determining the roots of an equation). 

Either root-finding method determines the root of D(x). The result of dividing this root 

by five is qD4. Both Brent's method and the Secant method are given because one may 

not work when the other one does. If Brent's method fails, type qD4 on the left side of 

the equal sign in equation (4.14): 

_ mot[ jP3(seedl)- (1- alphaRangeUCL )I , seedl] 

5 
(4.14) 

The subprogram Zseedl begins by generating values for Z0 and Z1 • A 0 and A1 

result from evaluating P3(z) at Z0 and Z1, respectively. The while loop continually 

increments Z~ and Z1 by 5.0 a~d evaluates P3(z) at these two values until A1 becomes 

greater than (1-alphaRangeUCL) for the first time, at which point A 0 will be less than 
.. 

(1-alphaRangeUCL). When this occurs, P3(z) is equal to (1-alphaRangeUCL) for some 

value z between. Z0 and Z1 • An initial guess for this value is determined using linterp (a 

numerical routine in Mathcad (1998) that performs linear interpolation) and stored in 

Zguess. The initial guess is passed out of the subprogram as seedl. 
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- Page 4 

Page 4 of the program is section 4.1. The code in this section is used to determine 

· qD3, the alphaRangeLCL percentage point of the distribution of the studentized range 

Q = (w/s) with v degrees of freedom (which is calculated earlier in the program). The 

value qD3 is used to calculate the second stage short run lower control chart factor for the 

R chart; The subprogram Zseed2 generates the value seed2 that is used to determine an 

initial value for qD3. An improved value for qD3 is then calculated by determining the 

root of the equation (P3(z)-alphaRangeLCL) using the Secant method with the seed value 

seed2 and dividing this root by five. 

For some values of n in combination with mostly large m, the Secant method fails to 

work (Brent's method should notbe used) .. This is not a problem because the initial value 

for qD3 and the improved value match to several places to the right of the decimal. This 

phenomenon is discussed in more detail when the tabulated results of the program are 

presented later in this chapter. The Monitor Results area in the bottom right hand comer 

of section 4.1 indicates how closely the two values for qD3 match until the root routine 

·. fails. This will dictate the number of decimal places that can be used to display qD3 and 

the second stage short run lower control chart factor for the R chart. 

The code in the subprogram Zseed2 that begins with the first line of code and includes 

the while loop and the two for loops constructs 21xl vectors Zv for z and Av for P3(z). 

The first row of each vector is zero. The while loop determines the first value Z where 

P3(Z) is greater than alphaRangeLCL. This Z and the corresponding value P3(Z) are 

stored in the second rows of Zv and Av, respectively. The two for loops generate values 

for the remaining rows of Zv and Av. Two different for loops are used because P3(z) 
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may encounter an error for some i (i: 1, 2, ... , 20). The value for i where the error occurs 

can be skipped using the dual for loop construction. When the execution of this section 

of code is complete, P3(z) is equal to alphaRangeLCL for some value z between Zv O and 

Zv1 • 

The code in the subprogram Zseed2 that starts in the line where the variable Zguess 

first appears to the last line of the subprogram is derived from Harter, Clemm, and 

Guthrie (1959). This code searches for and estimates the value z where P3(z) is equal to 

alphaRangeLCL. Zguess is the initial guess for this value z. It is determined using 

linterp, the 21xl vectors for P3(z) and z previously determined, and alphaRangeLCL. 

The 2xl vector A is determined using ratint (a numerical recipe in the Numerical 

Recipes Extension Pack (1997) that performs rational interpolation), the 21xl vectors 

for z and P3(z), and Zguess. Aguess is the entry in the first row of A and is the estimated 

value for P3(Zguess). The while loop first checks if Aguess is an accurate estimate 

(within 10-15 ) of alphaRangeLCL. If so, Zguess is passed out of the subprogram as the 

value seed2. If not, Aguess and Zguess are entered into the second rows of the 

previously determined vectors Av and Zv, respectively, if Aguess is more than 10-15 

larger than alphaRangeLCL. If Aguess is more than 10-15 smaller than alphaRangeLCL, 

Aguess and Zguess are entered into the first rows of the vectors Av and Zv, respectively. 

New values for Zguess and Aguess are determined using the same procedure as before 

and execution is returned to the beginning of the while loop. 
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Page 5 

Page 5 of the program contains sections 5.1 and 5.2. These sections correspond to 

sections 3.1 and 3.2, respectively, described earlier. The only difference is that the 

calculations in sections 5 .1 and 5 .2 use vprevm instead of v. The calculations are for 

qD4prevm, which is used to determine the first stage short run upper control chart factor 

for the R chart. 

Page 6 

Page 6 of the program is section 6.1. This section corresponds to section 4.1 

. described earlier. The only difference is that the calculations in section 6.1 use vprevm 

instead of v. The calculations are for qD3prevm, which is used to determine the first 

stage short run lower control chart factor for the R chart. 

Page7 

Page 7 of the program begins with section 7 .1. It has the equations for d2star (given 

earlier as equation (4.5)) and d2starprevm (d2star for (m-1) subgroups). The value d2star 

is used to calculate first and second stage short run control chart factors for the X chart. 

It is also used to calculate second stage short run control chart factors for the upper and 

lower control limits for the R chart. The value d2starprevm is used to calculate first stage 

short run control chart factors for the upper and lower control limits for the R chart. The 

function qt(adj_alpha, v) in Mathcad (1998) determines the critical value crit_t for a 

cumulative area of adj_alpha under the Student's t curve with v degrees of freedom. The 
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value crit..J is used.to calculate first and second stage short run control chart factors for 

the X chart. The function qnorm(adj_alpha, 0, 1) in Mathcad (1998) determines the 

critical value crit_z for a cumulative area of adj_alpha under the standard Normal curve. 

The value crit_z is used to calculate the conventional control chart constant for the X 

chart; 

Section 7 .2 of the program has the two stage short run control chart factor equations 

from Hillier (1969). A21 and A22,are, respectively, the first and second stage short run 

control chart factors for the X chart.· D41 andD42 are, respectively; the first and second 

stage short run upper control chart factors for the R chart. D31 and D32 are, respectively, 

the first and second stage short run lower control chart factors for the R chart. Table 4.1 

compares the notation for these factors from Hillier (1969), Pyzdek (1993), and this 

chapter (Yang (1995, 1999, 2000) uses the same notation as Pyzdek (1993)). 

Section 7 .2 also has the conventional control chart equations for A2 and alpha-based 

D4 and D3. A2 is the conventional control chart constant for the X chart. The equation 

for A2 is a generalization of the equation for A 2 from Table M in the appendix of 

Duncan (1974) to allow for different values of alphaMean. It is obtained by taking the 

limit of either A21 or A22 as m~oo (i.e., as v""7oo) for any n. D4 is the conventional 

upper control chart constant for the R chart. It is obtained by taking the limit of either 

D41 as m---?oo (i.e., as vprevm---?oo) or D42 as m---?oo (i.e., as V---?oo) for any n. D3 is the 

Table 4.1. Comparison of Two Stage Short Run Control Chart Factor Notation 
A21 D41 D31 A22 D42 D32 

Hillier (1969) A** 
2 

o·· 
4 

o** 3 
A* 

2 
o· . 4 o· 

3 

Pyzdek (1993) A2F D4F ----- A2s D4s -----
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conventional lower control chart constant for the R chart. It is obtained by taking the 

limit of either D31 as m-~= (i.e., as vprevm~=) or D32 as m~= (i.e., as v~=) for any 

n. 

The last part of page 7 is the output section of the program. The five values entered at 

the beginning of the program are given. The control chart factors are broken down into 

first stage, second stage, and conventional. The mean, standard deviation, and variance 

of the distribution of the range W = (w/cr), Duncan's (1974) Table D3 results, and 

Harter, Clemm, and Guthrie's (1959) Table Il.2 results complete the output of the 

program. To copy results into another software package (like Excel), follow the 

directions from Mathcad's (1998) help menu or highlight a value and copy and paste it 

into the other software package. ,When highlighting a value with the mouse arrow, place 

the arrow in the middle of the value, depress the left mouse button, and drag the arrow to 

the right. This will ensure just the numerical value of the result is copied and pasted. 

Tabulated Results of the Program 

The four tables (Tables B.3. l-B.3.4)jn Appendix B.3 of this dissertation were 

generated using the program with the following input values: 

• alphaMean=0.0027, alphaRangeUCL=0.005, alphaRangeLCL=0.001 

• m: 1-20,25,30,50, 75,100,150,200,250,300 

• n: 2-8, 10, 25, 50 

The values v, d2star, vprevm, d2starprevm, d2, d3, and d3 2 (Var.) are in Table B.3.1. 
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The results in this table compare favorably to Duncan's (1974) Table D3. If the values in 

Table B.3.1 are rounded as in Duncan's Table D3, some values differ from those in 

Duncan's Table D3 by one digit in the last decimal place. A possible explanation is that 

the Table B.3.1 calculations were performed with more places to the right of the decimal 

and with v determined exactly. Nelson (1975) uses the exact calculation for v 

(referenced from Pearson (1952)) for some combinations of subgroup size and number of 

subgroups in his :re-creation of Duncan's {1958) Table 548 (a separate publication 

. equivalent to Duncan's (1974) Table D3). Nelson also encountered differences between 

his results and Duncan's (1958) similar to the differences found here. It should be noted 

that the program eliminates the need for the estimations for v and ct; given by Duncan 

(1974) in the footnote to his Table D3. · 

The values qD4, qD4prevm, and wD4 are in Table B.3.2. The values qD3, 

qD3prevm, and wD3 are in Table B.3.3. The results in these tables compare favorably to 

Harter, Clemm, and Guthrie's (1959) Table II.2. The blanks in Table B.3.3 indicate 

where Zseed2 was not able to generate an initial value for qD3. This problem may be 

· attributable to the low value used for alphaRangeLCL (0.001). 

As explained earlier in this chapter, in the calculations for qD3 and qD3prevm, the 

Secant method fails to work for some values of n in combination with mostly large m. 

For Table B.3.3, this is true for n=2 (m~2), n=3 (~50), n=5 (m~150), n=6 (m=250), n=7 

(m=200), n=lO (m=200), and n=25 (m~150). This problem may also be attributable to 

the low value used for alphaRangeLCL. As mentioned previously, this is not a serious 

issue, especially for n less than seven. For these values of n, the initial value for qD3 

matches the improved value for qD3 (before the Secant method fails) to at least six places 
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·to the right of the decirrial. For n=7 and n=lO, the match is five places to the right of the 

decimal. This is why the values for m=200 when n=7 and n=lO are displayed with four 

places to the right of the decimal in Table B.3.3. For n=25, the match is four places to 

the right of the decimal. Consequently, the values for ~150 when n=25 are displayed 

with three places to the right of the decimal in Table B.3.3. 

The entry for n=50 and m=300 in Table B.3.3 is blank because the initial value for 

qD3 was incorrect. The Secant method also failed to work; Again, this is probably 

attributable to the low. value for alphaRangeLCL. This brings up the important point that 

the· results from the program should converge smoothly to their respective infinite values. 

If not, the program may have performed an incorrect calculation. 

Values for A21, D41, D31, A22, D42, D32, A2, D4, and D3 are in Table B.3.4. 

Results from Table B.3.4 for n=5 compare favorably to Hillier's (1969) results. Any 

differences may be attributable to Hillier using v and ct; from Duncan's (1974) Table D3, 

which shows fewer places to the right of the decimal. than the results used in the program. 

The blanks in Table B.3.4 are where Zseed2 and Zseed4 were not able to generate initial 

values for qD3 and qD3prevm, respectively. D31 and D32 for m=200 when both n=7 

and n=lO are displayed to four places to the right of the decimal for reasons previously 

explained. Similarly, D31 and D32 for n=25 and ~150 are displayed to three places to 

the right of the decimal. It should be noted that the values wD4, wD3, and D4 and D3 in 

Tables B.3.2, B.3.3, and B.3.4, respectively, may differ in the ninth or tenth decimal 

place for different root routines used to calculate wD4 and wD3. 

These favorable comparisons validate the program. Consequently, Table B.3.4 results 

for n: 2-5 and m: 1.,.10, 15, 20, 25 may be considered corrections to Pyzdek's (1993) 
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Table 1. Table 4.2 illustrates a smaller magnitude correction and a larger magnitude 

correction to Pyzdek's Table 1. 

Also, results in Tables B.3.1 and B.3.4 for n: 1-8, 10, 25 and m: 1-20, 25 may be 

considered corrections to Yang's (1995) Tables 2.1, 2.4, and 2.7. Results in Yang's 

(1995) Table 2.1 for V (i.e., v) are inaccurate regardless of the values form and n. 

However, for many values of n, the inaccuracies of the results in Yang's (1995) Tables 

2.1, 2.4, and 2.7 for C (i.e., ct;), AZF (i.e., A21), and A 25 (i.e., A22), respectively, 

d~crease as m~=. 

Yang's (1995) results are inaccurate for several reasons. Yang (1995) uses equations 

that give esti.mates for v and ct;. Additionally, Yang's (1995) equation for the cdf of the 

standard Normal distribution gives estimated results. Also, the numerical techniques 

used by Yang (1995) do not give accurate results. 

It should be noted that Tables 2.2-2.4 in Yang (1995) incorrectly show zeroes as the 

value of AZF (i.e., A21) when m=l. A21 does not exist when m=l. This does not mean 

the same thing as having a value of zero. Also, Yang (1999 and 2000) incorrectly states 

· that Pyzdek (1993) uses an alpha value of 0.0027 for both the X control chart and the R 

control chart above the upper control limit. Pyzdek (1993) uses an alpha value of 0.005 

for the R control chart above the upper control limit. 

Table 4.2. Examples of Corrections to Pyzdek's (1993) Table 1 
n m Factor Table B.3.4 Pyzdek 

Smaller Magnitude Correction 2 2 A21 8.27583 8.49 
Larger Magnitude Correction 4 1 D42 7.13456 13 
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Implications of the Tabulated Results 

Values in Table B.3.4 show some interesting properties. Consider Table 4.3, which 

· · contains selected A22 and corresponding A2 values from Table B.3.4. As n increases for 

a particular m, the A22values.decrease. For-larger values of m, the difference between 

A22 for n=2 and n=50 decreases. Of more interest is that as m increases for a particular 

n, the A22 values converge in a decr~asing manner to their respective A2 values. For 

larger values of n, the difference between A22 for m=l and the respective A2 value 

decreases. This means that as m increases the convergence of A22 to A2 is faster for 

larger values of n. These results make sense because more information about the process 

is at hand for larger i1 and m. 

Further investigation of Table B.3.4 reveals that, as m increases for a particular n, the 

D31 and D42 values also converge to their respective D3 and D4 values in a decreasing 

manner. The convergence pattern for D41 and D32 differs in that as m increases for a 

particular n, the D41 and D32 values converge in an increasing manner to their respective 

· D4 and D3 values. The convergence pattern for A21 is unique. For n equal to 2, 3, and 

4, A21 converges in a decreasing manner to A2 as m increases. For n=5, A21 also 

T bl 4 3 S 1 d A22 d C a e ... e ecte an d. A2 V 1 f orrespon mg a ues rom T bl B 3 4 a e 
A22 A2 

n m=l m=2 m=20 m=30 m=lOO m=300 m=oo 
2 166.72424 14.33417 2.20516 2.08810 1.93901 1.89934 1.87996 
3 8.35221 2.70257 1.11739 1.08487 1.04132 1.02927 1.02332 
4 3.01070 1.43980 0.77844 0.76144 0.73829 0.73181 0.72859 
5 1.76214 1.00199 0.60994 0.59872 0.58331 0.57897 0.57681 
10 0.61168 0.44314 0.32071 0.31654 0.31074 0.30909 0.30826 
25 0.25204 0.20157 0.15757 0.15593 0.15363 0.15297 0.15265 
50 0.14716 0.12122 0.09711 0.09618 0.09488 0.09451 0.09432 
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converges in a decreasing manner to A2, but starting at m=3. For n equal to 6, 7, 8, 10, 

25, and 50, A21 converges in an increasing manner to A2 as m increases. 

These results have major implications. A common rule of thumb is that 20 to 30 

subgroups of size 4 or 5 are necessary to use conventional control chart constants for 

constructing control limits. The results in Table B.3.4 indicate that this may be an 

incorrect rule. Consider again the A22 and corresponding A2 values in Table 4.3. When 

n=4, A2 is 6.404% smaller than A22 for m=20. When n=5, A2 is 3.659% smaller than 

A22 for m=30. These results indicate that if one were to construct X charts using 

conventional control chart constants when only 20 to 30 subgroups of size 4 or 5 are 

available to estimate the process mean and standard deviation, the upper and lower 

control limits would notbe wide enough, resulting in a higher false alarm rate. 

D42 and corresponding D4 values, as well as D32 and corresponding D3 values, in 

Table B.3.4 also indicate that the common rule of thumb may be an incorrect rule. When 

n=4, D4 is 4.748% smaller than D42 for m=20 and D3 is 0.896% larger than D32 for 

m=20. When n=5, D4 is 2.581 % smaller than D42 for m=30 and D3 is 0.663% larger 

than D32 for m=30. Consequently, if one were to construct R charts using conventional 

control chart constants when only 20 to 30 subgroups of size 4 or 5 are available to 

estimate the process standard deviation, the upper and lower control limits would not be 

wide enough, resulting in a higher false alarm rate. 

Quesenberry (1993) also investigated the validity of the common rule of thumb and 

concluded that 400/(n -1) subgroups are needed for the X chart before conventional 

control chart constants may be used. However, for all practical purposes, the program 

presented by this chapter eliminates the need for these rules. 
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A Numerical Example 

Consider the data in Table 4.4 obtained from a process requiring short run control 

charting techniques (assume alphaMean=0.0027, alphaRangeUCL=0.005, and 

alphaRangeLCL=0.001). For m=5 and n=4, the following first stage short run control 

chart factors are obtained from Table B.3.4: A21=0.77660, D41=2.11840, and 

D31=0.11338. UCL(R), LCL(R), UCL( X ), and LCL( X) are calculated as follows: 

UCL(R) = D41 · R = 2.11840 ·0:21600 = 0.45757 

LCL(R) = D31 · R = 0.11338 · 0.21600 = 0.02449 

UCL(X) = X + A21 · R = 1.28600 + 0.77660 · 0.21600 = 1.45375 

LCL(X) = X-A21 · R = 1.28600-0.77660 · 0.21600 = 1.11825 

R for subgroup five (R=0.49000) is above UCL(R). Find, investigate, and remove from 

the process the special cause ( or causes) that created this out of control point, delete 

subgroup five, recalculate averages (shown as the Revised Averages in Table 4.4 ), and 

T bl 4 4 AN . IE a e .. umenca xampe 
-

Subgroup XI X2 X3 X4 X R 

1 1.17 1.14 1.20 1.18 1.17250 0.06000 
2 1.38 1.29 1.36 1.44 1.36750 0.15000 
3 1.20 1.21 1.30 1.14 1.21250 0.16000 
4 1.40 1.40 1.21 1.43 1.36000 0.22000 
5 1.12 1.20 1.61 1.34 1.31750 0.49000 

Averages 1.28600 0.21600 
Revised Averages 1.27813 0.14750 

100 



reconstruct first stage control limits (this approach is from Hillier's (1969) example). For 

m=4 and n=4, the following first stage short run control chart factors are obtained from 

Table B.3.4: A21=0.78832, D41=2.07041, and D31=0.11848. Revised UCL(R), 

LCL(R), UCL( X ), and LCL( X) are calculated as follows: 

UCL(R) = D41 · R = 2.07041 · 0.14750 = 0.30539 

LCL(R) = D31 · R = 0.11848 · 0.14750 = 0.01748 

UCL(X) = X + A21 · R = 1.27813 + 0.78832 · 0.14750 = 1.39441 

LCL(X) = X-A21 · R = 1.27813-0.78832 · 0.14750 = 1.16185 

Since none of the remaining values plot out of control (i.e., control has been established), 

the next step is to construct second stage control limits using the following second stage 

short run control chart factors from Table B.3.4 (for m=4 and n=4): A22=1.01772, 

D42=2.94060, and D32=0.09281. UCL(R), LCL(R), UCL(X ), and LCL(X) are 

calculated as follows: 

UCL(R) = D42 · R = 2.94060 · 0.14750 = 0.43374 

LCL(R) = D32 · R = 0.09281 · 0.14750 = 0.01369 

UCL(X) = X + A22· R = 1.27813+ 1.01772 · 0.14750 = 1.42824 

LCL(X) = X-A22 · R = 1.27813-1.01772 · 0.14750 = 1.12802 
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These control limits may be used to monitor the future performance of the process. 

Conclusions 

This chapter and the program it presents make important contributions to both 

industry and research. Those involved with quality control in industry will, for the first 

time, be able to use theoretically precise control chart factors to determine control limits · 

for (X, R) charts regardless of the subgroup size, number of subgroups, and alpha 

values. This flexibility is valuable in that process monitoring will no longer have to be 

adjusted to use the limited, and in some cases incorrect, results previously available in the 

literature. Concerning research, this chapter provides a valuable reference for anyone 

interested in anything having to do with (X, R) control charts. Also, as already 

mentioned, the program eliminates the need for the research question of how many 

subgroups are enough before conventional control chart constants may be used. 
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CHAPTER V 

TWO STAGE SHORT RUN (X, v) AND (X, ,Jv) CONTROL CHARTS 
AND A COMPUTER PROGRAM TO CALCULATE THE FACTORS 

Introduction 

Yang and Hillier (1970) follow Hillier's (1969) theory to derive equations to calculate 

two. stage· short run control chart factors for (X, v) and . (X, ,Jv) charts. The tables 

presented by Yang and Hillier (1970) are for several values for number of subgroups, 

alpha for the X chart, and alpha for the v and ,Jv charts both above the upper control 

limit and below the lower control limit (alpha is the probability of a Type I error). 

However, as in Hillier's 1969 paper, the results are for subgroup size five only. 

Problem 

. Yang and Hillier (1970) represent the only attempt in the literature to present two 

stage short run control chart factors for (X, v) and (X, ,Jv) charts based on Hillier's 

(1969)theory. In addition to the limitations already presented, Yang and Hillier (1970) 

neglect to include appropriate bias correction factor calculations in some of their two 

stage short run control chart factor equations, rendering much of their tables as incorrect. 

Also, some of the results that were calculated using the correct equations are inaccurate 

in the last decimal place. shown by one and in some cases two digits. 
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Solution 

This chapter describes the development and execution of a computer program that 

overcomes these limitations. It will accurately calculate first and second stage short run 

control chart factors for· (X, v) and (X, Fv) charts using the appropriate bias correction 

factor calculations. The program uses exact equations for the distributions of the 

variance and the studentized variance, degrees of freedom calculations, short run 

calculations (which are corrected for bias), and conventional control chart calculations. 

The program accepts values for subgroup size, number of subgroups, alpha for the X 

· chart, and alpha for the v or Fv 'chart both above the upper control limit and below the 

lower control limit. Tables are generated for specific values of these inputs. Comparison 

of the tabulated results to legitimate results in the literature validates the program. The 

tables correct and extend previous results in the literature. 

The software used for the program is Mathcad 8.03 Professional (1998) with the 

Numerical Recipes Extension Pack (1997). The program uses numerical routines 

provided by the software. 

Outline 

This chapter first presents the distributions of the variance and the studentized 

variance. These are essential in the application of Hillier's ( 1969) theory to (X, v) and 

(X, Fv) control charts and are required for the program to perform accurate calculations. 

Next, the equation to calculate the bias correction factors is presented, as well as 

justification for its use. From this, corrected equations to calculate two stage short run 
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control chart factors for (X, v) and (X, Fv) charts are given. Next, the computer 

program is described. Tables generated by the program are then presented and compared 

with legitimate results in the literature. Also, implications of the tabulated results are 

discussed. Following a numerical example that illustrates the use of the program, final 

conclusions describing the impact of the program on industry and research are given . 

. Results from the program are for processes generating parts with independent 

measurements that follow a Normal distribution. 

The Distribution of the Variance 

The distribution of the variance for subgroups of size n sampled from a Normal 

population with meanµ and variance cr 2 is given by Pearson and Hartley (1962) as 

equation (5.la) (with some modifications in notation): 

(5.la) 

The value v (the variance) is an independent estimate of cr 2 based on vl = (n -1) degrees 

of freedom. Equation (5.la) may also be represented as equation (5.lb) (see Appendix 

C.1 of this dissertation): 
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p(V) = (J:I . e 2 In 2 -gammln 2 )' 2-1 ln(v)- 2·cr2 ( J [ (vi} (vi) . (vl\_(vl } vl·v] 
(5.lb) 

Equation (5.lb), is the form used in the program; The function garnmln is a numerical 

recipe in the Numerical Recipes Extension Pack (1997) that calculates the natural 

logarithm of the gamma function. Using gammln in equation (5.lb) allows for large 

values. of vl (hence large values for n) in the program. The cumulative distribution 

function (cdf) of the variance v with vl degrees of freedom is equation (5.2): 

P(V) = f 
0
v p(v) dv (5.2) 

The program uses equation (5.2) (with cr=l.0) to determine alpha-based conventional 

control chart constants for the v and Tv charts. 

The Distribution of the Studentized Variance 

The distribution of the studentized variance (i.e., the F distribution) for subgroups of 

size n sampled from a Normal population with meanµ and variance cr 2 is given by Bain 

and Engelhardt (1992) as equation (5.3a) (with some modifications in notation): 

rf vl+v2 ). vi vl+v2 - vi --2 vl 2 --1 vl 2 

p3(f) = rf ¥}rf ¥J { v2) .f' { 1+ v2 ·f) (5.3a) 
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The value f (the studentized variance) is equal to v/v', where v' is a second independent 

estimate of cr 2 based on v2 = m · (n -1} degrees of freedom (m is the number of 

subgroups). Equation (5.3a) may also be represented as equation (5.3b) (see Appendix 

C.l): 

p3(f) = ep1+p2<0 (5.3b) 

where 

( vl + v2J . (vlJ J v2J pl= gammln 2 -gammln 2 - gammL\ 2 (5.3c) 

(5.3d) 

Equations (5.3b)~(5.3d) are used in the program. Using gammln in equation (5.3c) allows 

for large values of vl (hence large values for n) and large values of v2 (hence large 

values form and n) in the program. The cdf of the studentized variance f = (v/v') with 

vl degrees of freedom forv and v2 degrees of freedom for v' is equation (5.4): 

P3(F) = J OF p3( f) df (5.4) 

The program uses equation (5.4) to determine two stage short run control chart factors for 

the v and Fv charts. 
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As v2~= (i.e., as 'm~oo) for any n, the distribution of the studentized variance 

f = (v/v') converges to the distribution of the variance v (when CJ=l.0). This fact is used 

to calculate alpha-based conventional control chart constants for the v and fv charts. 

The Equation to Calculate the Bias Correction Factors 

As mentioned earlier in the Problem subsection, Yang and Hillier (1970) neglect to 

include appropriate bias correction factor calculations in some of their two stage short run 

. . . ' - -
control chart factor equations. The equations that involve v are correct ( v is the average 

-
of m values of v, each of which is based on a subgroup of size n), since v is an unbiased 

estimate of CJ 2 (see Appendix C.l). The problem occurs in those equations that involve 

~, which is a biased estimate of CJ. This bias is revealed when one considers the fact 

that ~ = sP, where ~P is the pooled standard deviation (this equivalency is shown in 

Appendix C.l). King (1953), Burr (1969), Nelson (1990), and Wheeler (1995) all state 

that sP is a biased estimate of CJ, and that this bias is corrected by dividing sP by c4 , 

where c 4 is calculated using equation (5.5a) from Mead (1966) (with CJ=l.0): 

rn _ ( 2 J0.5 
c, -cr· v2 . f:J 

Wheeler (1995) also gives this equation as his c: (with CJ=l.0). The control chart 
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constant c 4 · is the mean of the distribution of the standard deviation. The equation for v2 

is given earlier in relation to equation (5.3a). Equation (5.5a) may also be represented as 

equation (5.5b) (see Appendix C.l) (note: c4.= c 4 ): 

( 
2 )0.5 [ gammln(1)-gammln( x;l) J 

c4(x) =cr· -- ·· · e 
x-1 

(5.5b) 

where x is the appropriate value for subgroup size (in the case of ~, x = (v2 + 1) ). 

Equation (5.5b)is the form used in the program. Using gammln in equation (5.5b) allows 

for large values·of v2 (hence large values form ~nd n) in the program. 

Corrected Two Stage Short Run Control Chart Factor Equations 

Since ~ /c4(v2 + 1) is an unbiased estimate of cr, six of Yang and Hillier's (1970) 

equations to calculate two stage short run control chart factors for (X, v) and (X, J;) 

charts require correcting. The first one is the equation for A:, the second stage short run 

control chart factor for the X chart. Yang and Hillier (1970) calculate second stage short 

run upper and lower control limits for the X chart using equations (5.6) and (5.7), 

respectively: 

(5.6) 

(5.7) 
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Consequently, the bias correction factor calculated using equation (5.5b) with 

x = (v2 + 1) should be incorporated into the equation for A:. The result is given as 

equation (5.8) (note: A42 = A:): 

A 42 = ( crit-:- t )·( m + l)o.s 
c4(v2+1) n·m · · 

(5.8) 

where crit_t is the critical value for a cumulative area of (1- (alphaMean / 2)) under the 

Student's t curve with v2 degrees of freedom (alphaMean is the probability of a Type I 

error on the X control chart). Similarly, the correct equation for A:*, the first stage 

short run control chart factor for the X chart, is given as equation (5.9) (note: 

A4 l::;:;( crit_t )·(m-l)o.s 
c4( v 2 + 1) n · m 

(5.9) 

The value crit_t has the same meaning here as in equation (5.8). 

The next two equations that require correcting are for JB; and .jn;, the second 

stage short run upper and lower control chart factors, respectively, for the ~ chart. 

Yang and Hillier (1970) calculate second stage short run upper and lower control limits 

for the ~ chart using equations (5.10) and (5.11), respectively: 
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UCL=jii;-~ (5.10) 

LCL={ri;-~ (5.11) 

. Consequently, the bias correction factor calculated using equation (5.5b) with 

x = (v2 + 1) should be incorporated into the equations for the control chart factors used in 

equations (5.10) and (5.11). The results are given as equations (5.12) and (5.13), 

respectively (note: B82°·5 = jB; and B72°·5 = .jB;' ): 

B82°·5 

B82sqrt = ( ) 
c4 v2+1 

(5.12) 

B72°.s 
B72sqrt = ( ) 

c4 v2+1 
(5.13) 

B82sqrt replaces jB; in equation (5:10) and B72sqrt replaces .jB;' in equation (5.11). 

B82 is the second stage short run upper control chart factor for the v chart. It is equal to 

fB8, the (I-alpha V arUCL) percentage point of the distribution of the studentized variance 

f = ( v / v') with v 1 degrees of freedom for v and v2 degrees of freedom for v' 

(alphaVarUCL is the probability of a Type I error on the v and ~ charts above the 

upper control limit). B72 is the second stage short run lower control chart factor for the v 

chart. It is equal to fB7, the alpha VarLCL percentage point of the distribution of the 

studentized variance f = (v/v') with vl degrees of freedom for v and v2 degrees of 
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freedom for v' (alpha VarLCL is the probability of a Type I error on the v and Fv charts 

below the lower control limit). 

Similarly, the correct equations for the first stage short run upper and lower control 

chart factors for the Fv chart are given as equations (5.14) and (5.15), respectively (note: 

B81 o.s = .Jii;" and B71 °·5 = Ji';): 

B81 o.s 
B8 lsqrt = -.,-----..,... 

c4(v2prevm + 1) 

B71 °·5 
B7 lsqrt = -.,------...,... 

c4(v2prevm + 1) 

(5.14) 

(5.15) 

B8lsqrt and B71sqrt replace .Jii;" and Ji';, respectively. The value v2prevm has the 

same meaning as v2, except it is for (m-1) subgroups (i.e., V2prevm = (m-1) · (n -1) ). 

B81, the first stage short run upper control chart factor for the v chart, is calculated using 

equation (5.16): 

BS l = m · fB8prevm 
m -1 + fB8prevm 

(5.16) 

The value fB8prevm is the (I-alpha V arUCL) percentage point of the distribution of the 

studentized variance f = (v/v') with vl degrees of freedom for v and v2prevm degrees 

of freedom for v'. B71, the first stage short run lower control chart factor for the v chart, 

is calculated using equation (5.17): 
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B?l = m · fB7prevm 
m -1 + fB7prevm 

The value fB7prevm is the alpha V arLCL percentage point of the distribution of the 

(5.17) 

studentized variance f = (v/v') with vl degrees of freedom for v and v2prevm degrees 

of freedom for v'. 

Since c4(x)~l.O as x~= (i.e., as m~=) for any n, Yang and Hillier's (1970) results 

for infinite m are calculated using the correct equations. The equation for A4, the 

conventional control chart constant for the X chart, may be obtained by taking the limit 

of either A41 or A42 as m~= (i.e., as v2~oo) for any n. The resulting equation for A4 

is given as equation (5.18): 

A4 = crit_z 
n o.5 

(5.18) 

The value criCz is the critical value for a cumulative area of (1- (alphaMean/2)) under 

the standard Normal curve. 

The equation for B8, the alpha-based conventional upper control chart constant for the 

v chart, may be obtained by taking the limit of either B81 as m~= (i.e., as v2prevm~=) 

or B82 as m~= (i.e., as v2~=) for any n. The resulting equation for B8 is given as 

equation (5.19): 

B8 = vB8 (5.19) 

113 



The value vB8 is the (1-alpha VarUCL) percentage point of the distribution of the 

variance v with vl degrees of freedom. 

The equation for B7, the alpha-based conventional lower control chart constant for the 

v chart, may be obtained by taking the limit of either B71 as m400 (i.e., as v2prevm400) 

or B72 as m400 (i.e., as v2400) for any n. The resulting equation for B7 is given as 

equation (5.20): 

B7 = vB7 (5.20) 

The value vB7 is the alphaVarLCL percentage point of the distribution of the variance v 

with v 1 degrees of freedom. 

The equation for B8sqrt, the alpha-based conventional upper control chart constant for 

the Fv chart, may be obtained by taking the limit of either B81sqrt as m~oo (i.e., as 

v2prevm400) or B82sqrt as m~oo (i.e., as v2~oo) for any n. The resulting equation for 

B8sqrt is given as equation (5.21): 

B8sqrt = B8°·5 (5.21) 

The equation for B7sqrt, the alpha-based conventional lower control chart constant for 

the Fv chart, may be obtained by taking the limit of either B71sqrt as m400 (i.e., as 

v2prevm400) or B72sqrt as m~oo (i.e., as v2~00) for any n. The resulting equation for 

B7sqrt is given as equation (5.22): 
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B7sqrt = B7°·5 (5.22) 

The Computer Program 

This section of the chapter presents the computer program, which is in Appendix C.2 

of this dissertation. The program has seven pages, each of which is further divided into 

sections. 

Mathcad (1998) Note 

It is possible for a section of code in the. program to tum red and have the error 

message "Unknown Error". To correct this, delete one character in the red code and type 

it back in. Click the mouse arrow outside of the code; The code should tum black, 

indicating that the error has been eliminated. If not, repeat the procedure (it will 

eventually correct the problem). 

Page 1 

The first page of the program begins with the data entry section. The program 

requires the user to enter the following values: alphaMean (alpha for the X chart), 

alphaVarUCL (alpha for the v or Fv chart above the UCL), alphaVarLCL (alpha for the 

v or Fv chart below the LCL), m (number of subgroups), and n (subgroup size for the 

(X, v) or (X, Fv) charts). If no lower control limit on the v or Fv chart is desired, the 

115 



entry for alphaVarLCL should be left blank (do not enter zero). Before a value can be 

entered, the cursor must be moved to the right side of the appropriate equal sign. This 

. may be done using the arrow keys on the keyboard or by moving the mouse arrow to the 

right side of the equal sign and clicking once with the left mouse button. The program is 

activated by paging down once the last entry is made. When using Mathcad 8.03 

Professional (1998), paging down is not allowed while a calculation is taking place. 

However, Mathcad 2000 Professional (1999) allows the user to page down to the output 

section of the program (explained later) after the last entry is made. 

The next part of page 1 is section 1.1 of the program. The value TOL is the tolerance. 

The calculations that use this value will be accurate to twelve places to the right of the 

decimal. The population standard deviation cr is set equal to one for two reasons. The 

first is to achieve the convergence of the distribution of the studentized variance 

f = ( v / v') with v 1 degrees of freedom for v and v2 degrees of freedom for v' to the 

distribution of the variance v with vl degrees of freedom as v2-t= (i.e., as m-t00) for 

any n. The second is to have the appropriate calculation for the bias correction factors. 

As mentioned earlier in relation to equation (5. la), the degrees of freedom vl for the 

variance vis equal to (n -1). The equation for c4(x) is given earlier as equation (5.5b). 

Page 2 

Page 2 of the program begins with section 2.1. The equations for p( v) and P(V) are 

given earlier as equations (5.lb) and (5.2), respectively. The next part of page 2 is 

section 2.2 of the program. The code in this section determines vB8 and vB7, the 

(1-alphaVarUCL) and alphaVarLCL percentage points, respectively, of the distribution 
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·. of the variance v with vl degrees of freedom and infinite v2 (i.e., infinite m) (recall the 

earlier statement that as v2~= (i.e., as m~=) for any n, the distribution of the 

studentized variance f = (v/v') converges to the distribution of the variance v (when 

cr=l.0)). As shown earlier in equations (5.19) and (5.20), vB8 is equal to B8 and vB7 is 

equal to B7, respectively. The roots of the equations DUCL(V) and DLCL(V) are vB8 

and vB7; respectively, and are determined using zbrent (a numerical recipe in the 

Numerical Recipes Extension Pack ( 1997) that uses Brent's method to find the roots of an 

equation). The· subprograms Vseedl and Vseed2 generate seed values seedB8 and 

seedB7, respectively, for Brent's method. 

-

The subprogram Vseedl works as follows .. Initially, V0 and V1 are set equal to 0.01 

and 0.02, respectively. A 0 and Ai result from evaluating DUCL(V) at V0 and V1 , 

respectively. The while loop begins by checking if the product of A 0 and A1 is 

negative. If so, the root for DUCL(V) lies between 0.01 and 0.02. If not, V0 and V1 are 

incremented by 0.01. A 0 and A1 are recalculated and if their product is negative, the 

root for DUCL(V) lies between 0.02 and 0.03. Otherwise, the while loop repeats. Once 

a root for DUCL(V) is bracketed, the bracketing values are passed out of the subprogram 

into the 2xl vector seedB8 to be used by Brent's method to determine vB8. The 

subprogram V seed2 works similarly to construct the 2 x 1 vector seedB7 to be used by 

Brent's method to determine vB7, except the starting value is 0.000001. 

The last part of page 2 is ·section 2.3 of the program. As shown earlier, the two stage 

short run control chart factor calculations require v2 and v2prevm. The equation for v2 is 

given earlier in relation to equation (5.3a). The equation for v2prevm is given earlier in 
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relation to equations (5.14) and(5.15). 

Page 3 

Page 3 of the program begins with section 3.1. The equations for p3(f), pl, p2(f), and 

P3(F) are given earlier as equations (5.3b), (5.3c), (5.3d), and (5.4), respectively. Section 

3.2 contains the calculations required to determine fB8, the (1-alphaVarUCL) percentage 

point of the distribution of the studentized variance f = ( v / v') with v 1 degrees of 

freedom for v and v2 degrees of freedom for v' (both vl and v2 are calculated earlier in 

the program). As explained earlier in relation to equation (5.12), fB8 is equal to B82. 

The subprogram Fseedl generates the seed value. seedl for Brent's method or for root 

(root is a numerical routine in Mathcad (1998) that uses the Secant method to determine 

the roots of an equation). Either root-finding method determines the root fB8 of Dl(x). 

Both Brent's method and the Secant method are given because one may not work when 

the other one does. If Brent's method fails (which is signified in Mathcad (1998) by the 

code turning red), type fB8 on the left side of the equal sign in equation (5.23): 

= root[JP3(seedl)-(l-alphaVarUCL)J, seedl] (5.23) 

The subprogram Fseedl begins by generating values for F0 and F1 • A0 and A1 result 

from evaluating P3(F) at F0 and F1 ,respectively. The while loop continually increments 

F0 and F1 by deltal and evaluates P3(F) at these two values until A1 becomes greater 

than (I-alpha VarUCL) for the first time, at which point A0 will be less than 
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. (1-alphaVarUCL). When this occurs, P3(F) is equal to (1-alphaVarUCL)for some value 

F between F0 and F,. An initial guess for this value is determined using linterp (a 

numerical routinein Mathcad (1998) that performs linear interpolation) and stored in 

Fguess. The initial guess is passed out of the subprogram as seedl. 

Page 4 

Page 4 of the program is section 4.1. The code in this section is used to determine 

fB7, the alpha VarLCL percentage point of the distribution of the studentized variance 

f = (v/v') with vl degrees of freedom for v and v2 degrees of freedom for v' (both vl 

and v2 are calculated earlier in the program). As ex.plained earlier in relation to equation 

(5.13), fB7 is equal to B72. The subprogram Fseed2 generates the seed value seed2 for 

Brent's method or for root. Either root-finding method determines the root fB7 of D2(:x.). 

Both Brent's method and the Secant method are given because one may not work when 

the other one does. If Brent's method fails, type fB7 on the left side of the equal sign in 

equation (5.24): 

= rnot( jP3(seed2) - alpha V arLCLj , seed2) (5.24) 

The subprogram Fseed2 begins by generating values for F0 and F1 • A0 and A, result 

from evaluating P3(F) at F0 and F1 , respectively. The while loop continually increments 

F0 and F1 by delta2 and evaluates P3(F) at these two values until A1 becomes greater 

than alphaVarLCL for the first time, at which point A0 will be less than alphaVarLCL. 
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When this occurs, P3(F) is equalto alpha VarLCL for some value F between F0 and F1 • 

An initial guess for this value is determined using linterp and stored in Fguess. The 

initial guess is passed out of the subprogram as seed2. 

Page 5 

Page 5 of the program contains sections 5.1 and 5.2. These sections correspond to 

sections 3.1 and 3.2, respectively, described earlier. The only difference is that the 

calculations in sections 5.1 and 5.2 use v2prevm instead of v2. The calculations are for 

fB8prevm, which is used in the equation for B81 (given earlier as equation (5.16)). 

Page 6 

Page 6 of the program is section 6.1. This section corresponds to section 4.1 

described earlier. The only difference is that the calculations in section 6.1 use v2prevm 

instead of v2. The calculations are for fB7prevm, which is used in the equation for B71 

(given earlier as equation (5.17)). 

Page 7 

Page 7 of the program begins with section 7.1. The function qt(adj_alpha, v2) in 

Mathcad (1998) determines the critical value crit_t for a cumulative area of adj_alpha 

under the Student's t curve with v2 degrees of freedom. The value crit_t is used in the 

equations for A42 and A41, both of which are given earlier as equations (5.8) and (5.9), 
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respectively. The function qnorm(adj_alpha, 0, 1) in Mathcad(l998) determines the 

critical value crit_z for a cumulative area of adj_alpha under the standard Normal curve. 

The value crit_z is used in the equation for A4 (given earlier as equation (5.18)). 

Section· 7 2 of the program has the equations to calculate two stage short run control 

chart factors and conventional control chart constants given earlier in the Corrected Two 

Stage Short Run Control Chart Factor Equations section of this chapter. A41, B81, B71, 

A42, B82, B72, A4, BS, and B7 are for the (X, v) control charts. A41, B81sqrt, B71sqrt, 

A42, B82sqrt, B72sqrt, A4, B8sqrt, and B7sqrt are for the (X, ..Jv) control charts. 

The last part of page 7 is the output section of the program. The five values entered at 

the beginning of the program are· given. The control chart factors are· broken down into 

first stage, second stage, and conventional. Values for vl, v2, c4(v2 + 1), v2prevm, and 

c4(v2prevm+l), and the (1-alphaVarUCL)-and alphaVarLCL percentage points of the 

distributions of the studentized variance f = (v/v') with vl degrees of freedom for v and 

v2 degrees of freedom for v' and the variance v with v 1 degrees of freedom complete the 

output of the program. To copy results into another software package (like Excel), follow 

the directions from Mathcad's (1998) help menu or highlight a value and copy and paste 

it into the other software package. When highlighting a value with the mouse arrow, 

place the arrow in the middle of the value, depress the left mouse button, and drag the 

arrow to the right. This will ensure just the numerical value of the result is copied and 

pasted. 
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Tabulated. Results of the Program 

The four tables (Tables C.3.1-C.3.4) in Appendix C.3 of this dissertation were 

generated using the program with the following input values: 

• alphaMean=0.0027, alphaVarUCL=0.005, alphaVarLCL=0.001 

• m; i-20, 25, 30, 50, 75, 100, 150, 200_, 250, 300 

• n:2-8, 10,25,50 

Thevaluesv2, c4(v2+1),v2prevm,and c4(v2prevm+l) areinTableC.3.1. The 

c4( v2 + 1) values compare favorably to the c 4 values in Table M in the appendix of 

Duncan (1974) and Tables 1 and 20 in the appendix of Wheeler (1995). 

The values fB8, fB8prevm, and vB8 are in Table C.3.2. The values fB7, fB7prevm, 

and vB7 are in Table C.3.3. The distribution of the studentized variance f = ( v/v') with 

v 1 degrees of freedom for v and v2 degrees of freedom for v' is equivalent to the F 

distribution with vl numerator degrees of freedom and v2 denominator degrees of 

freedom. Results in Table C.3.2 compare favorably to the upper 0.005 percentage points 

of the F distribution in Table 18 from Appendix II of Pearson and Hartley ( 1962). 

The distribution of the variance v with vl degrees of freedom is equivalent to a second 

distribution as shown in equation (5.25): 

p(v)=c -- ·-( Vl·VJ Vl 
02 0'2 

(5.25) 
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where c is the x2 distribution with v 1 degrees of freedom (this equivalency is shown in 

Appendix C.1 ). Also, percentage points of th~ distribution of the variance v with v 1 

degrees of freedom are equivalent to percentage points of the x2 distribution with v 1 

degrees of freedom divided by vl. 

Values for A41, B81, B71, A42, B82, B72, B81sqrt, B71sqrt, B82sqrt, B72sqrt, A4, 

BS, B7, B8sqrt, and B7sqrt are in.Table C.3.4. Results from Table C.3.4 for B81, B71, 

B82, B72, B8, B7, B8sqrt, and B7sqrt when n=5 compare favorably to Yang and Hillier's 

(1970) results. Any differences are attributable to the accuracy issues concerning Yang 

and Hillier's (1970) results mentioned earlier in the Problem subsection. It should be 

notedthat the values vB8, vB7, and B8 and B7in Tables C.3.2, C.3.3, and C.3.4, 

respectively, may differ in the ninth or tenth decimal place for different root routines used 

to calculate vB8 and vB7. 

These favorable comparisons validate the program. Consequently, Table C.3.4 results 

for n=5, m: 1-10, 15, 20, 25, 50, 100, =, alphaVarUCL=0.005, and alphaVarLCL=0.001 

may be considered corrections to Yang and Hillier's ( 1970) Tables 3-6. 

Implications of the Tabulated Results 

Values in Table C.3.4 show some interesting properties. Consider Table 5.1, which 

contains selected A42 and corresponding A4 values from Table C.3.4. As n increases for 

a particular m, the A42 values decrease. For larger values of m, the difference between 

A42 for n=2 and n=50 decreases. Of more interest is that as m increases for a particular 

n, the A42 values converge in a decreasing manner to their respective A4 values. For 

larger values of n, the difference between A42 for m=l and the respective A4 value 
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Table 5.L Selected A42 and Corresponding A4 Values from Table C.3.4 
A42 A4 

n m=l m=2 m=20 m=30 m=lOO m=300 m=oo 
2 295.51103 18.76822 2.51074 2.37035 2.19190 2.14447 2.12130 
3 17.69484 4.97997 1.90426 1.84459 1.76489 1.74290 1.73204 
4 7.07531 3.13025 1.61030 1.57260 1.52140 1.50709 1.49999 
5 4.45422 2.41654 1.42343 1.39568 1.35765 1.34695 1.34163 
10 1.88245 1.36485 0.98715 0.97427 0.95633 0.95122 0.94868 
25 0.95593 0.77906 0.61835 0.61225 0.60368 0.60122 0.60000 
50 0.63533 0.53455 0.43596 0.43208 0.42662 0.42505 0.42426 

decreases. This means that as m increases the convergence of A42 to A4 is faster for 

larger values of n. These results make sense because more information about the process 

is at hand for larger n and m. 

Further investigation of Table C.3.4 reveals that, as m increases for a particular n, the 

B71, B82, B71sqrt, and B82sqrt values converge to B7, BS, B7sqrt, and B8sqrt, 

respectively, in a decreasing manner. The convergence pattern for B81 and B81sqrt 

differs in that as m increases for a particular n, the B81 and B81sqrt values converge in 

an increasing manner to BS and B8sqrt, respectively. 

The convergence patterns for A41, B72, and B72sqrt are unique. For n equal to 2, 3, 

and 4, A41 converges in a decreasing manner to A4 as m increases. For n=5, A41 

converges in a decreasing manner to A4, but starting at m=3. For n=6, A41 also 

converges in a decreasing manner to A4, but starting at m=7. For n equal to 7, 8, 10, 25, 

and 50, A41 converges in an increasing manner to A4 as m increases. For n equal to 2 

and 3, B72 converges in a decreasing manner to B7 as m increases. However, for n equal 

to 4-8, 10, 25, and 50, B72 converges in an increasing manner to B7 as m increases. For 

n equal to 2-4, B72sqrt converges in a decreasing manner to B7sqrt as m increases. For n 
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equal to 5-8, 10, 25, and 50, B72sqrt converges in an increasing manner to B7sqrt as m 

mcreases. 

These results have major implications. A common rule of thumb is that20 to 30 

subgroups of size 4 or 5 are necessary to use conventional control chart constants for 

constructing control limits. The results in Table C.3.4 indicate that this may be an 

incorrect rule. Consider again the A42 and corresponding A4 values in Table 5.1. When 

n=4, A4 is 6.850% smaller than A42 for m=20. When n=5, A4 is 3.873% smaller than 

A42 for m=30. These results indicate that if one were to construct X charts using 

conventional control chart constants when only 20 to 30 subgroups of size 4 or 5 are 

available to estimate the process mean and standard deviation, the upper and lower 

control limits would not be wide enough, resulting in a higher false alarm rate. 

B82 and corresponding BS values, as well as B72 and corresponding B7 values, in 

Table C.3.4 also indicate that the common rule of thumb may be an incorrect rule. When 

n=4, BS is 9.507% smaller than B82 for m=20 and B7 is 0.872% larger than B72 for 

m=20. When n=5, BS is 5.244% smaller than B82 for m=30 and B7 is 0.799% larger 

than B72 for m=30. Consequently, if one were to construct v charts using conventional 

control chart constants when only 20 to 30 subgroups of size 4 or 5 are available to 

estimate the process variance, the upper and lower control limits would not be wide 

enough, resulting in a higher false alarm rate. 

Lastly, B82sqrt and corresponding B8sqrt values, as well as B72sqrt and 

corresponding B7sqrt values, in Table C.3.4 indicate that the common rule of thumb may 

be an incorrect rule. When n=4, B8sqrt is 5.268% smaller than B82sqrt for m=20 and 

B7sqrt is 0.0111 % smaller than B72sqrt for m=20. Consequently, if one were to 
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construct fv charts using conventional control chart constants when only 20 subgroups 

of size 4 are available to estimate the process standard deviation, the upper control limit 

would not be wide enough, resulting in a higher false alarm rate. Also, the lower control 

limit would be too tight, resulting in a decrease in the sensitivity of the chart. When n=5, 

B8sqrt is 2.860% smaller than B82sqrt for m=30 and B7sqrt is 0.186% larger than 

B72sqrt for m=30. Consequently, if one were to construct fv charts using conventional 

control chart constants when only 30 subgroups of size 5 are available to estimate the 

process standard deviation, the upper and lower control limits would not be wide enough, 

resulting in a higher false alarm rate. 

Quesenberry (1993) also investigated the validity of the common rule of thumb and 

concluded that 400/(n -1) subgroups are needed for the X chart before conventional 

control chart constants may be used. However, for all practical purposes, the program 

presented by this chapter eliminates the need for these rules. 

A Numerical Example 

Consider the data in Table 5.2 obtained from a process requiring short run control 

charting techniques (assume alphaMean=0.0027, alphaVarUCL=0.005, and 

alphaVarLCL=0.001). This example will be worked two ways, the first with (X, v) 

control charts and the second with (X, fv) control charts. 

For m=5 and n=4, the following first stage short run control chart factors for (X, v) 

charts are obtained from Table C.3.4: A41=1.63082, B81=3.21838, and B71=0.00972. 

UCL(v), LCL(v), UCL( X ), and LCL( X) are calculated as follows: 
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Table 5.2. A Numerical Example 
- J; .Subgroup x1 X2 X3 X4 X V 

1 1.17 1.14 1.20 1.18 1.17250 0.00063 0.02500 
2 1.38 1.29 1.36 1.44 1.36750 0.00382 0.06185 
3 1.20 1.21 1.30 .. 1.14 1.21250 0.00436 0.06602 
4 1.40 1.40 1.21 1.43 1.36000 0.01020 0.10100 
5 1.12 1.20 1.61 1.34 1.31750 0.04629 0.21515 

Averages 1.28600 0.01306 -----
Revised A vera2es 1.27813 0.00475 -----

-
UCL(v) = B81 · v = 3.21838 ·0.01306 = 0.04203 

-
LCL(v) = B71 · v = 0.00972 ·0,01306 = 0.00013 

UCL(X) = X + A41 · ~ = 1.28600 + 1.63082 · .J0.01306 == 1.47237 

LCL(X) = X - A41 · ~ = 1.28600 -1.63082 · .Jo.o 1306 = 1.09963 

The variance for subgroup five (v=0.04629) is above UCL(v). Find, investigate, and 

remove from the process the special cause (or causes) that created this out of control 

point, delete subgroup five, recalculate averages (shown as the Revised Averages in 

Table 5.2), and reconstruct first stage control limits (this approach is from Hillier's 

(1969) example). For m=4 and n=4, the following first stage short run control chart 

factors are obtained from Table C.3.4: A41=1.66424, B81=2.97585, and B71=0.01024. 

Revised UCL(v), LCL(v), UCL( X ), and LCL( X) are calculated as follows: 

-
UCL(v) = B81 · v = 2.97585 ·0.00475 = 0.01414 

-
LCL(v) = B71 · v = 0.01024 · 0.00475 = 0.000049 
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UCL(X) = X + A41 · ~ = 1.27813 +l.66424 · .J0.00475 = 1.39283 

LCL(X) = x-A41 · ~ = l.27813-1.66424 . .Jo.00475 = L16343 

Since none of the remaining values plot out of control (i.e., control has been established), 

the next step is to construct second stage control limits using the following second stage 

short run control chart factors from Table C.3.4 (for m=4 and n=4): A42=2.14852, 

B82=7.22576, and B72=0.00779. UCL(v), LCL(v), UCL(X ), and LCL( X) are 

calculated as follows: 

-
UCL(v) = B82 · v = 7.22576 · 0.00475 = 0.03432 

-
LCL(v) = B72 · v = 0.00779 · 0.00475 = 0.000037 

UCL(X) = X + A42 · ~ = 1.27813 + 2.14852 · .J0.00475 = 1.42621 

LCL(X) = X-A42 -~ = l.27813-2.14852 -.J0.00475 = 1.13005 

These control limits may be used to monitor the future performance of the process. 

For m=5 and n=4, the following first stage short run control chart factors for (X, ~) 

charts are obtained from Table C.3.4: A41=1.63082, BSlsqrt=l.83171, and 

B71sqrt=0.10068. UCL(~), LCL( ~ ), UCL(X ), and LCL(X) are calculated as 

follows: 

UCL(~) = B8 lsqrt · ~ = 1.83171 · .Jo.a 1306 = 0.20933 
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LCL(..Jv} = B7lsqrt -~ = 0.10068 -.J0.01306:;:: 0.01151 

UCL(X) = X + A41-~ = 1.28600+1.63082 -.J0.01306 = 1.47237 

LCL(X) = X-A41 · ~ = 1.28600-1.63082 · .J0.01306 = 1.09963 

The standard deviation for subgroup five ( Fv = 0.21515) is above UCL( Fv ). Find, 

investigate, and.remove from the process the special cause (or causes) that created this 

out of control point, delete subgroup five, recalculate averages (shown as the Revised 

Averages in Table 5.2), and reconstruct first stage control limits (this approach is from 

Hillier's (1969) example). For m::::4 and n=4, the following first stage short run control 

chart factors are obtained from Table C.3.4: A41=1.66424, B8lsqrt=l.77356, and 

B7lsqrt=0.10404. Revised UCL( Fv ), LCL( Fv ), UCL(X ), and LCL(X) are calculated 

as follows: 

UCL(Fv) = B8lsqrt -~ = 1.77356 -.J0.00475 = 0.12223 

. LCL(..Jv)=B7lsqrt-~ =0.10404·.J0.00475 =0.00717 

UCL(X) = X + A41 · ~ = 1.27813 + 1.66424 · .J0.00475 = 1.39283 . 

LCL(X) = X-A41 · ~ = 1.27813-1.66424 · .J0.00475 = 1.16343 

Since none of the remaining values plot out of control (i.e., control has been established), 

the next step is to construct second stage control limits using the following second stage 

short run control chart factors from Table C.3.4 (for m=4 and n=4): A42=2.14852, 
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B82sqrt=2.74460, and B72sqrt=0.09014·. UCL( ..Jv ), LCL( ..Jv ), UCL( X ), and LCL( X) 

are calculated as follows: 

UCL(..Jv) = B82sqrt -~ = 2.74460-.J0.00475 = 0.18916 

LCL(..Jv) = B72sqrt · ~ = 0.09014 -.J0.00475 = 0.00621 

UCL(X) = X + A42 · ~ =,1.27813 + 2.14852 · .J0.00475 = 1.42621 

LCL(X) = X - A42 · ~ = 1.278.13 - 2.14852 · .J0.00475 = 1.13005 

These control limits may be used to monitor the future performance of the process. 

Conclusions 

This chapter and the program it presents make important contributions to both 

industry and research. Those involved with quality control in industry will, for the first 

time, be able to use theoretically precise control chart factors to determine control limits 

for (X, v) and (X, Fv) charts regardless of the subgroup size, number of subgroups, and 

alpha values. This flexibility is valuable in that process monitoring will no longer have to 

be adjusted to use the limited, and in some cases incorrect, results previously available in 

the literature. Concerning research, this chapter provides a valuable reference for anyone 

interested in anything having to do with (X, v) and (X, ..Jv) control charts. Also, as 

already mentioned, the program eliminates the need for the research question of how 

many subgroups are enough before conventional control chart constants may be used. 
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· CHAPTER VI 

TWO STAGE SHORT RUN (X, s) CONTROL CHARTS AND 
A COMPUTER PROGRAM TO CALCULATE THE FACTORS 

· Introduction 

Hillier (1969) and Yang and Hillier (1970) represent the only attempts.in the literature 

to develop two.stage short run control charts based on Hillier's (1969) theory. Hillier 

(1969) derives equations to calculate two stage short run control chart factors for (X, R) 

charts. Yang and Hillier (1970)derive equations to calculate two stage short run control 

. chart factors for (X, v) and (X, ..Jv) charts. 

Problem 

Yang and Hillier (1970) mention that, for theoretical reasons, it does not appear to be 

possible to derive equations to calculate two stage short run control chart factors for 

(X, s) charts, wheres is the standard deviation.of a subgroup. It seems that no 

subsequent work appears in the literature that attempts to overcome this problem. 

Solution 

This chapter presents a solution to this problem, consequently allowing for the 

derivation of equations to calculate first and second stage short run control chart factors 

for (X, s) charts. It also describes the development and execution of a computer program 

that will accurately calculate the factors using these derived equations. Other exact 
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equations that the program uses are the distribution of the. standard deviation, the mean 

and standard deviation of the distribution of the standard deviation, the distribution of the 

studentized standard deviation, equations to calculate degrees of freedom, and derived 

conventional control chart equations. The program accepts values for subgroup size, 

number of subgroups, alpha for the X chart, and alpha for the s chart both above the 

. upper control limit and below the lower control limit (alpha is the probability of a Type I 

error). Tables are generated for specific values of these inputs. Comparison of the 

tabulated results to legitimate results in the literature validates the program. 

The software used for the program is Mathcad 8.03 Professional (1998) with the 

Numerical Recipes Extension Pack (1997). The program uses numerical routines 

provided by the software. 

Outline 

This chapter first presents the distributions of the standard deviation and the 

studentized standard deviation. These are essential in the application of Hillier's ( 1969) 

theory to (X, s) control charts and are required for the program to perform accurate 

calculations. Next, Patnaik's (1950) theory is used to develop an approximation to the 

distribution of the mean standard deviation. From this result, equations to calculate two 

stage short run control chart factors for (X, s) charts are derived by following the work in 

the appendix of Hillier (1969). Also, equations to calculate conventional control chart 

constants for (X, s) charts are derived. Next, the computer program is described. Tables 

generated by the program are then presented and compared with legitimate results in the. 
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· · literature. Also, implications of the tabulated results are discussed. A numerical example 

illustrates the use of the program. Following a discussion of the advantages of two stage 

short run (X, s) control charts, unbiased estimates of cr and cr 2 using ; are given, as well 

as final conclusions desctibing the impact of the program on industry and research. 

Results from the program are for processes generating parts with independent 

measurements that follow a Normal distribution. 

The Distribution of the Standard Deviation 

The distribution of the . .standard deviation for subgroups of size n sampled from a 

Normal population with mean·µ and standard deviation cr is given by Lord (1950) as 

equation (6.la) (with some modifications in notation): 

vi 
-VJ-s2 

·vl 2 -
p(s) = vi ·Svl-1 ·e 2.o-2 

22 -1 1v1J v1 . - ·O' 
. 2 

(6.la) 

This equation may also be found in Irwin (1931). The values (the standard deviation) is 

an independent estimate of cr based on vl = (n -1) degrees of freedom. Equation (6.la) 

may also be represented as equation (6.1 b) (see Appendix D.1 of this dissertation): 
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· ( 1 J. [ (~)·ln(vl)J ~-l)·ln(2):...gammin(~··)+(vl-l)'·ln(s) Vl·s: ] 
p(s) = ~ . e - l - 2 , 2-cr 

cr 
(6.lb) 

Equation (6.lb) is the form used in the program. The function gammln is a numerical 

recipe in the Numerical Recipes Extension Pack (1997) that calculates the natural 

logarithm of the gamma function. Using gammln in equation (6.lb) allows for large 

values of vl (hence large values for n) in the program .. The cumulative distribution 

function (cdf) of the standard deviations with vl degrees of freedom is equation (6.2): 

· P(S) = f 
0

5 p(s) ds (6.2) 

The program uses equation (6.2) (with cr=l.0) to determine alpha-based conventional 

control chart constants for the s chart. 

The mean of the distribution of the standard deviation s with v 1 degrees of freedom is 

given by Mead (1966) as equation (6.3a) (with some modifications in notation): 

(6.3a) 

E(s) is the control chart constant denoted by c4 (when cr=l.0) (see Table Min the 

appendix of Duncan (1974) and Tables 1 and 20 in the appendix of Wheeler (1995)). 
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Equation (6.3a) may also be represented as equation (6.3b) (see Appendix D.l) (note: 

(6.3b) 

Equation (6.3b) is the form used in the program,· Using gammln in equation(6.3b) allows 

for large values of v 1 (hence large values for n) in the program. 

The variance of the distribution of the standard deviation s with vl degrees of freedom 

is also given by Mead (1966) as equation (6.4a) (with some modifications in notation): 

rr}_m2 ·· -vl+l 
--

var(s) = (~J· - 2 

· vl 1~1) 1~1) (6.4a) 

The value ~var(s) is the control chart constant denoted by c5 (when cr=l.0) (see 

Wheeler's ( 1995) Table 20). It is also equal to ~1- c ~ (when cr=l .O). The square root 

of equation (6.4a) may be represented as equation (6.4b) (see Appendix D.l) (note: 

(6.4b) 

135 



Equation (6.4b} is the form used in the program. Using gammln in equation (6.4b) allows 

for large values of v 1 (hence large values for n) in the program. 

The Distribution of the Studentized Standard Deviation 

The distribution of the studentized standard deviation for subgroups of size n sampled 

from a Normal population with meanµ and standard deviation cr is given by Irwin (1931) 

as equation (6.5a) (with some modifications in notation): 

" "' 1 J 2 12 2-:,- vl + v2 v. 1-1 
·V ·V - · · ·t 

2 
(6.5a) 

p3(t) = Ti 11 Ti 2J vl+v2 Al~ rAl v2 •(vl•t2 +v2)_2_ 

The value t (the studentized standard deviation) is equal to s/s', where s' is a second 

independent estimate of cr based on v2 degrees of freedom. Equation (6.5a) may also be 

represented as equation (6.5b) (see Appendix D.1): 

p3(t) = ep1(1)-p2<1) (6.5b) 

where 

( vlJ (v2J (vl+v2J pl(t) = ln(2) + 2 · ln(vl) + 2 · ln(v2) + gammln 2 + (vl-1) · ln(t) (6.5c) 

J vlJ (v2J (vl +v2J ( 2 ) p2(t)=gammL\ 2 +gammln 2 + 2 ·In vl·t +v2 (6.5d) 

136 



Equations (6.5b)-(6.5d) are used in the program. Using gammln in equations (6.5c) and 

(6.5d) allows for large values of vl (hence large values for n) and large values of v2 

(hence large values forn and m (the number of subgroups)) in the program. The cdf of 

, the studentized standard deviation t = (s/s') with vl degrees of freedom for sand v2 

degrees of freedom for s' is equation· (6.6): 

P3(T) = JOT p3(t) dt (6.6) 

The program uses·equation (6.6) to determine two stage short run control chart factors for 

the s chart. 

As v2~oo (Le., as m~oo) for any n, the distribution of the studentized standard 

deviation t = (s/s') converges to the·distribution of the standard deviation s (when 

cr=l.0). This factis used to calculate alpha-based conventional control chart constants 

for the s chart. 

The Distribution of the Mean Standard Deviation 

Consider the situation in which the mean of a statistic is calculated by averaging m 

values of the statistic, each of which is based on a subgroup of size n. Patnaik (1950) 

investigates this situation when the statistic is the range and develops an approximation to 

the distribution of the mean range R/ cr. The resulting distribution is the (x ·ct;)/ .Jv 

distribution, which is a function of the X distribution with v degrees of freedom (the X 
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distribution with v degrees of freedom and its moments about zero may be found in 

Johnson and Welch (1939)). Equations for v and ct; are derived from results obtained by 

equating the squared means as well as the variances of the distribution of the mean range 

R/cr and the (x ·ct;)/ ..Jv distribution with v degrees of freedom. Hillier (1964 and 

1967) uses Patnaik's (1950) theory to derive equations to calculate short run control chart 

factors for X and R charts, respectively. Hillier (1969) then incorporates the two stage 

procedure into his short run control chart factor calculations for (X, R) charts. 

Consider the situation in which the statistic is the standard deviation and the 

distribution of interest is the distribution of the mean standard deviation s/ cr . In order to 

be able to use Hillier's (1969) theory to derive equations to calculate two stage short run 

control chart factors for (X, s) charts, we apply Patnaik's (1950) theory to approximate 

s/ (J by the (x · C: )/ M distribution with V2 degrees of freedom (this V2 is the same as 

the one given earlier in equation (6.5a)). The equation for c: is derived in Appendix D.1 

and is given as equation (6.7) (note: c4star = c:): 

, ( , 2 J0.5 
c4star = c4 2 + c: (6.7) 

The equations for the control chart constants c4 and c5 are given earlier as equations 

(6.3b) and (6.4b), respectively. 

Using results from Prescott (1971), the equation for v2 is determined by equating the 

ratio of the variance to the squared mean, both of the :x; distribution with v2 degrees of 
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· freedom, to the ratio of the variance to the :Squared mean; both of the distribution of the 

mean standard deviation s/cr. The resulting equation for v2 is equation (6.8): 

d(x) =-h(x) - r (6.8) 

The exact value for v2 is the value of x such that d(x) is equal to zero. The function h(x) 

is the ratio of the variance to the squared mean, both of the X· distribution with x degrees 

of freedom (x replaces v2). The mean and variance of the x distribution with v2 degrees 

of freedom are given in Appendix D.l. The equation for h(x), which is derived in 

Appendix B.1 of this dissertation, is given as equation (6.9): 

X. e2·(gammln(0.5·x)-gammln(0.5·x+0.5)) _ 2 
h(x)= . 

2 
(6.9) 

The value r is the ratio of the variance to the squared mean, both of the distribution of 

the mean standard deviation s/ cr . The mean and the variance of the distribution of the 

mean standard deviation s/cr are derived in Appendix D.1. The equation for r is given as 

equation (6.10): 

c5 2 
r=--

m·c42 
(6.10) 

An equivalent form (also based on Patnaik's (1950) theory) of equation (6.8) may be 
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found in Palm and Wheeler (1990), who use their result to calculate equivalent degrees of 

freedom for population standard deviation estimates based on subgroup standard 

deviations .. 

Table D.3.1 (the creation of which is explained in the Tabulated Results of the 

Program section later in this chapter) in Appendix D.3 of this dissertation has v2 and c: 

values form: 1-20, 25, 30, 50, 75, 100, 150,200,250,300 and n: 2-8, 10, 25, 50, as well 

as c4 values. When m=l for any n, c: is equal to one. As m-too (i.e., as v2-too) for any 

. . . 
n, c 4 converges to c 4 • 

Approximating the distribution of the mean standard deviation s/ cr by the 

(x · c: )/M · distribution with v2 degrees of freedom works well. In fact, based on how 

c: is derived in Appendix D.l, the means and variances of these two distributions are 

equal. 

Derivation of the Control Chart Factor Equations 

Since the (x · c: )/ M distribution with v2 degrees of freedom approximates the 

distribution of the mean standard deviation s/cr, the derivation of equations to calculate 

first and second stage short run control chart factors for (X, s) charts follows the work in 

the appendix of Hillier (1969). A32, the second stage short run control chart factor for 

the X chart, is derived in almost the same manner as Hillier's (1969) A;. Differences 

are that A32, s, v2, and c: in this chapter replace A;, R, v, and c, respectively, in 

Hillier (1969). The resulting equation for A32 is given as equation (6.11) (note: 
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c4star = c: ): 

A32 =(crit _ t )·( m + l)o.s 
c4star n ·m 

(6.11) 

The value crit_t is the critical value for a cumulative area of (1- (alphaMean/2)) under . 

the Student's t curve with v2 degrees of freedom (alphaMean is the probability of a Type 

I error on the X control chart). 

A31, the first stage short run control chart factor for the X chart, is derived in almost 

the same manner as Hillier's (1969) A;* . Differences are that A3 l, ; , v2, and c: in this 

chapterreplace A;·, R, v, and c, respectively, in Hillier (1969). The resulting equation 

for A31 is given as equation (6.12): 

A3l =(crit _ t)·(m-l)o.s 
c4star n ·m 

(6.12) 

The value crit_t has the same meaning here as in equation (6.11). 

B42, the second stage short run upper control chart factor for the s chart, is derived in 

Appendix D.l. Other than differences in notation and distributions, this derivation 

follows that for Hillier's (1969) o:. The resulting equation for B42 is given as equation 

(6.13): 

141 



B42 = tB4 
c4star 

The value tB4 is the (1-alphaStandUCL) percentage point of the distribution of the 

(6.13) 

studentized standard deviation t = (s/s') with vl degrees of freedom for sand v2 degrees 

of freedom for s' (alphaStandUCL is the probability of a Type I error on the s chart 

above the upper control limjt). 

B37, the sec;ond stage short run lower control chart factor for the s chart, is derived in 

a manner similar to B42. Differences are that B32, tB3, and alphaStandLCL replace B42, 

tB4, and (1-alphaStandUCL), respectively (alphaStandLCL is the probability of a Type I 

error on the s chart below the lower control limit). The resulting equation for B32 is 

given as equation (6.14): 

B32= tB3 
c4star 

(6.14) 

The value tB3 is the alphaStandLCL percentage point of the distribution of the 

studentized standard deviation t = {s/s') with vl degrees of freedom for sand v2 degrees 

of freedom for s'. 

B41, the first stage short run upper control chart factor for the s chart, is derived in 

almost the same manner as Hillier's (1969) D:*. Differences are that B41, si, B42, and 

s in this chapter replace D:*, Ri, D:, and R, respectively, in Hillier (1969). The 

resulting equation for B41 is given as equation (6.15): 
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B4l= m·tB4prevm 
· c4starprevm · (m -1) + tB4prevm 

(6.15) 

The value tB4prevm has the same meaning as tB4 (given earlier in equation (6.13)), 

except,it is for v2prevm (i.e,, v2 for (m-1) subgroups). The.value c4starprevm has the 

· ·. same equation as c4star (given earlier-as equation (6.7)), except mis replaced with (m-1). 

The equation for B31, the first stage short run lower control chart factor for the s 

· chart, is derived in almost the same manner as Hillier's (1969) o;*. Differences are that 

B31, si, B32, and sin.this chapter replace o;*, Ri, o;, .and R, respectively, in Hillier 

(1969). The resulting equation for B31 is given as equation (6.16): 

B3l = m · tB3prevm 
· c4starprevm · (m -1) + tB3prevm 

(6.16) 

The value tB3prevm has the same meaning as tB3 (given earlier in equation (6.14)), 

except it is for v2prevm instead of v2. 

The equation for A3, the conventional control chart constant for the X chart, may be 

obtained bytaking the limit of either A31 or A32 as m~oo (i.e., as v2~oo) for any n. 

The resulting equation for A3 is given as equation (6.17): 

A3 = crit_z 
c4 · n°·5 
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The value crit_z is the critical value for a cumulative area of (1- (alphaMean/2)) under 

the standard Normal curve. The equation for the control chart constant c4 is given earlier 

as equation (6.3b). 

The equation for B4, the alpha-based conventional upper control chart constant for the 

s chart, may be obtained by taking the limit of either B41 as m~oo (i.e., as v2prevm~oo) 

or B42 as m~oo (i.e., as v2~9<>) for any n. The resulting equation for B4 is given as 

equation (6.18): 

B4 = sB4 
c4 

. The value sB4 is the (1-alphaStandUCL) percentage point of the distribution of the 

standard deviations with vl degrees of freedom. 

(6.18) 

The equation for B3, the alpha-based conventional lower control chart constant for the 

s chart, may be obtained by taking the limit of either B31 as m~oo (i.e., as v2prevm ~oo) 

or B32 as m~oo (i.e., as v2~oo) for any n. The resulting equation for B3 is given as 

equation (6J9): 

B3 = sB3 
c4 

(6.19) 

The value sB3 is the alphaStandLCL percentage point of the distribution of the standard 

deviation s with v 1 degrees of freedom. 
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The Computer Program 

This section of the chapter presents the computer program, which is in Appendix D.2 

of this dissertation. The program has seven pages, each of which is further divided into 

sections. 

Mathcad (1998) Note 

It is possible for a. section of code in the program to tum red and have the error 

message "Unknown Error". To correct this, delete one character in the red code and type 

it back in. Click the mouse arrow outside of the code. The code should turn black, 

indicating that the error has been eliminated. If not, repeat the procedure (it will 

eventually correct the problem). 

Page 1 

The first page of the program begins with the data entry section. The program 

· requires the user to enter· the following values: alphaMean (alpha for the X chart), 

alphaStandUCL (alpha for the s chart above the UCL), alphaStandLCL (alpha for the s 

chart below the LCL), m (number of subgroups), and n (subgroup size for the (X, s) 

charts). If no lower control limit on the s chart is desired, the entry for alphaStandLCL 

should be left blank (do not enter zero). Before a value can be entered, the cursor must 

be moved to the right side of the appropriate equal sign. This may be done using the 

arrow keys on the keyboard or by moving the mouse arrow to the right side of the equal 

sign and clicking once with the left mouse button. The program is activated by paging 
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down once the last entry is made. When using Mathcad 8.03 Professional (1998), paging 

down is not allowed while a calculation is taking place. However, Mathcad 2000 

Professional (1999) allows the user to page down to the output section of the program 

(explained later) after the last entry is made. 

The next part of page 1 is section 1.1 · of the program. The value TOL is the tolerance. 

The calculations that use this. value will be accur~te to twelve places to the right of the 

decimal. The population standard deviation cr is set equal to one for two reasons. The 

first isto .achieve the convergence, of the distribution of the studentized standard 

deviation t.= (s/s') with vl degrees of freedom for sand v2 degrees of freedom for s' to 

the distribution of the standard deviation s with vl degrees of freedom as v2-?oo (i.e., as 

m-?00) for any n. The second is to.have the correct calculations for c4 and c5. As 

mentioned earlier in relation to equation (6.la), the degrees of freedom vl for the 

standard deviations is equal to (n-1). The equations for p(s), c4, and c5 are given earlier 

as equations (6.lb), (6.3b), and (6.4b), respectively. 

Page 2 

Page 2 of the program begins with section 2.1. P(S) is given earlier as equation (6.2). 

The remainder of the code in this section determines sB4 and sB3, the 

· ( 1-alphaStandUCL) and alphaStandLCL percentage points, respectively, of the 

distribution of the standard deviation s with vl degrees of freedom and infinite v2 (i.e., 

infinite m) (recall the earlier statement that as v2-?oo (i.e., as m-?oo) for any n, the 

distribution of the studentized standard deviation t = (s/s') converges to the distribution 
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of the standard deviations (when cr=l.0)). The value sB4 is used in the equation for B4, 

which is given earlier as equation (6.18). The value sB3 is used in the equation for B3, 

which is given earlier as equation (6.19). The roots of the equations DUCL(S) and 

DLCL(S) are sB4 and sB3, respectively, and are determined using zbrent (a numerical 

· recipe in the Numerical Recipes Extension Pack (1997) that uses Brent's method to find 

the roots ofan equation). The. subprograms Sseedl and Sseed2 generate seed values 

seedB4 and seedB3, respectively, for Brent's method. 

The subprogram Sseedl works as follows. Initially, S0 and S1 are set equal to 0.01 

and 0.02, respectively. A 0 and A1 result from evaluating DUCL(S) at S0 and S1 , 

respectively. The while loop begins by checking if the product of A0 and A1 is 

negative. If so, the root for DUCL(S) lies between 0.01 and 0.02. If not, S0 and S1 are 

incremented.by 0;01. A 0 and A1 are recalculated and if their product is negative, the 

root for DUCL(S) lies between 0.02 and 0.03. Otherwise, the while loop repeats. Once a 

root for DUCL(S) is bracketed, the bracketing values are passed out of the subprogram 

into the 2xl vector seedB4 to be used by Brent's method to determine sB4. The 

subprogram Sseed2 works similarly to construct the 2 x 1 vector seedB3 to be used by 

Brent's method to determine sB3, except the starting value is 0;001. 

The next part of page 2 is section 2.2 of the program. As shown earlier, the two stage 

short run control chart factor calculations require v2 and v2prevm. The equation for h(x) 

is described earlier (see equation (6.9)). The value rprevm has the same meaning as r 

described earlier (see equation (6.10)), except it is for (m-1) subgroups. The .equation for 

dprevm(x) is the same as that for d(x) (given earlier as equation (6.8)), except rprevm 

replaces r. The equation for v(A) is from Prescott (1971). Brent's method is used to find 
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the root v2 of d(x) using the seed value v(A), where A is given as equation (6.20): 

(6.20) 

This equation for A is the distribution of the mean standard deviation counterpart of the 

equation for A from Prescott (1971). Similarly, Brent's method is used to find the root 

v2prevm of dprevm(x) using the seed value v(A), where A is given as equation (6.21): 

A- 2 c5 ( J ( ]2 

- m-1 · c4 
(6.21) 

Page 3 

Page 3 of the program begins with section 3.1. The equations for p3(t), pl(t), p2(t), 

and P3(T) are given earlier as equations (6.5b), (6.5c), (6.5d), and (6.6), respectively. 

Section 3.2 contains the calculations required to determine tB4, the (1-alphaStandUCL) 

percentage point of the distribution of the studentized standard deviation t = (s/s') with 

v 1 degrees of freedom for s and v2 degrees of freedom for s' (both v 1 and v2 are 

calculated earlier in the program). The value tB4 is used in the equation for B42, which 

is given earlier as equation (6.13). The subprogram Tseedl generates the seed value 

seedl for Brent's method or for root (root is a numerical routine in Mathcad (1998) that 

uses the Secant method to determine the roots of an equation). Either root-finding 

method determines the root tB4 of Dl(x). Both Brent's method and the Secant method 
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.are givenbecause one may not work when the·otherone does. If Brent's method fails 

(which is signified in Mathcad (1998) by the code turning red), type tB4 on the left side 

of the equal sign in equation (6.22): 

= root[ jP3(seedl)-{1-alphaStandUCL)j, seedl] (6.22) 

The subprogram Tseedl begins by generating values for T0 and T1 • A0 and A1 

result from evaluating P3(T) at T0 and T1 , respectively. The while loop continually 

increments T0 and T1 by 0.1 and evaluates P3(T) at these two values until A1 becomes 

greater than (1 -calphaStandUCL) for the. first time, at which point A0 will be less than 

(l-alphaStandUCL). When this occurs, P3(T) is equal to (1-alphaStandUCL) for some 

value T between T 0 and T1 • An initial guess for this value is determined using linterp (a 

numerical routine in Mathcad (1998) that performs linear interpolation) and stored in 

Tguess. The initial guess is passed out of the subprogram as seedl. 

Page4 

Page 4 of the program is section 4.1. The code in this section is used to determine 

tB3, the alphaStandLCL percentage point of the distribution of the studentized standard 

deviation t = (s/s') with vl degrees of freedom for sand v2 degrees of freedom for s' 

(both v 1 and v2 are calculated earlier in the. program). The value tB3 is used in the 

equation for B32, which is given earlier as equation (6.14). The subprogram Tseed2 

generates the seed value seed2 for Brent's method or for root. Either root-finding method 
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determines the root tB3 of D2(x). Both Brent's method and the Secant method are given 

because one may not work when the other one does. If Brent's method fails, type tB3 on 

the left side of the equal sign in equation (6.23): 

= root( IP3(seed2) - alphaStandLCLj, seed2) (6.23) 

The subprogram Tseed2 begins by generating values for T0 and T1 • A 0 and A1 

result from evaluating P3(T) at T0 and T1 , respectively. The while loop continually 

increments T0 and T1 by 0.001 and evaluates P3(T) at these two values until A1 

becomes greater than alphaStandLCL for the first time, at which point A 0 will be less 

than alphaStandLCL When this occurs, P3(T) is equal to alphaStandLCL for some value 

T between T0 and T1 • An initial guess for this value is determined using linterp and 

stored in Tguess. The initial guess is passed out of the subprogram as seed2. 

Page 5 

Page 5 of the program contains sections 5.land 5.2. These sections correspond to 

sections 3.1 and 3.2, respectively, described earlier. The only difference is that the 

calculations in sections 5.1 and 5.2 U:se v2prevm instead of v2. The calculations are for 

tB4prevm, which is used in the equation for B41 (given earlier as equation (6.15)). 

150 



Page 6 

Page 6 of the program is section 6.1. This section corresponds to section 4.1 

described earlier. The only difference is thatthe calculations in section 6.1 use v2prevm 

· instead of v2: The calculations are for tB3prevm, which is used in the equation for B31 

(given earlier as.equatioir(6.16)). 

Page 7 

Page 7 of the program begins with section 7.1. It has the equations for c4star (given 

earlier as equation (6.7)) and.c4starprevm (c4starfor (m-1) subgroups). The value c4star 

is used in the equations for A32, A31, B42, and B32, all of which are given earlier as 

equations (6.11);(6.12); (6.13), and (6.14), respectively. The value c4starprevm is used 

in the equations for B41 and B31, which are given earlier as equations. (6.15) and (6.16), 

respectively. The function qt(adj_alpha, v2) in Mathcad (1998) determines the critical 

value crit_t for a cumulative area of adj_alpha under the Student's t curve with v2 degrees 

of freedom. The value crit_t is used in the equations for A31 and A32. The function 

qnorm(adj_alpha, 0, 1) in Mathcad (1998) determines the critical value crit_z for a 

cumulative area of adj_alpha under the standard Normal curve. The value crit_z is used 

in the equation for A3 (given earlier as equation (6.17)). 

Section 7.2 of the program has the equations to calculate two stage short run control 

chart factors and conventional control chart constants given earlier in the Derivation of 

the Control Chart Factor Equations section of this chapter. The equation for A3 is a 

generalization of the equation for A 3 from Duncan's (1974) Table M to allow for 
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different values of alphaMean. 

The last part of page 7 is the output section of the program. The five values entered at 

the beginning of the program are given. The control chart factors are broken down into 

first stage, second stage, and conventional. The mean, standard deviation, and variance 

of the distribution of the standard deviations with vl degrees of freedom, the values for 

vl, v2, c4star, v2prevm, and c4starprevm, and the (1-alphaStandUCL) and 

alphaStandLCL percentage points of the distributions of the studentized standard 

deviation t = (s/s') with v 1 degrees of freedom for s and v2 degrees of freedom for s' 

and the standard deviation s with vl degrees of freedom complete the output of the 

program. To copy results into another software package (lik~ Excel), follow the 

directions from Mathcad's (1998) help menu or highlight a value and copy and paste it 

into the other software package. When highlighting a value with the mouse arrow, place 

the arrow in the middle of the value, depress the left mouse button, and drag the arrow to 

the right. This will ensure just the numerical value of the result is copied and pasted. 

Tabulated Results of the Program 

The four tables (Tables D.3.l-D.3.4) in Appendix D.3 were generated using the 

program with the following input values: 

• alphaMean=0.0027, alphaStandUCL=0.005, alphaStandLCL=0.001 

• m: 1-20,25,30,50, 75,100,150,200,250,300 

• n:2-8, 10,25,50 
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The values v2, c4star, v2prevm, c4starprevm, c4, c5, and c52 (the variance of the 

distribution of the standard deviations with vl degrees of freedom) are in Table D.3.1. 

The v2 and v2prevm values compare favorably to the equivalent degrees of freedom in 

· Table 2 of Palm and Wheeler (1990) and Table 25 in the appendix of Wheeler (1995). 

The c4 values compare favorably to the c4 values in Duncan's (1974) Table Mand 

Wheeler's (1995) Tables 1 and 20. The c5 values compare favorably to the c5 values in 

Wheeler's (1995) Table 20. 

The values tB4, tB4prevm, and sB4 are in Table D.3.2. The values tB3, tB3prevm, 

and sB3 are in Table D.3.3. The distribution of the studentized standard deviation 

t = (s/s') with vl degrees of freedom for sand v2 degrees of freedom for s' is equivalent 

to a second distribution as shown in equation (6.24): 

p3(t) = f (t 2 ). 2. t (6.24) 

where f is the F distribution with v 1 numerator degrees of freedom and v2 denominator 

degrees of freedom (this equivalency is shown in Appendix D.1). Also, percentage 

points of the distribution of the studentized standard deviation t = (s/s') with vl degrees 

of freedom for s and v2 degrees of freedom for s' are equivalent to the square root of 

percentage points of the F distribution with v 1 numerator degrees of freedom and v2 

denominator degrees of freedom. Hartley (1944) also gives distributions that are 

transformations of the distribution of the studentized standard deviation t = (s/s'). 

The distribution of the standard deviation s with v 1 degrees of freedom is equivalent 
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to a second distribution as shown in equation (6.25): · 

p(s)=c -- · ·· · · (Vl·s 2 J 2·Vl·S 
0'2 0'2 

(6.25) 

where c is the x2 distribution with vl degrees of freedom (this equivalency is shown in 

Appendix D.l). Also, percentage points of the distribution of the standard deviations 

with vl degree~ of freedom are equivale~t to the square root of the percentage points of 

the x2 distribution with vl degrees of freedom divided by vl. 

. Values for A31, B41, B31, A32, B42, B32, A3, B4, and B3 are in Table D.3.4. The 

. A3 values compare favorably to the A 3 values in Duncan's, (1974) Table M. It should be 

noted that the values sB4, sB3, and B4 and B3 in Tables D.3.2, D.3.3, and D.3.4, 

respectively, may differ in the ninth or tenth decimal place for different root routines used 

to calculate sB4 and sB3. 

Implications of the Tabµlated Results 

Values in Table D.3.4 show some interesting properties. Consider Table 6.1, which 

contains selected A32 and corresponding A3 values from Table D.3.4. As n increases for 

a particular m, the A32 values decrease. For larger values of m, the difference between 

A32 for n=2 and n=50 decreases. Of more interest is that as m increases for a particular 

n, the A32 values converge in a decreasing manner to their respective A3 values. For 

larger values of n, the difference between A32 for m=l and the respective A3 value 

decreases. This means that as m increases the convergence of A32 to A3 is faster for 
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. Table 6.1. Selected A32 and Corresponding A3 Values- from Table D.3.4 
A32 A3 

n m=l m=2 m=20 m=30 m=lOO m=300 m=oo 
2 235.78369 20.27157 .· 3.11857 2.95302 2.74218 · 2.68607 2:65866 
3 15.68165 5.12390 2.13293 2.07124 . l.98856 1.96570 1.95440 
4 6.51861 3.17444 1.73764 1.70031 1.64942 l.63517 · L62809 
5 4.18690 . 2.43647 '. 1.50709 1.48008 1.44296 1.43250 1.42729 
10 1.83098 1.36718 1.01240 1.00001 .. 0.98273 0.97780 0.97534 
25 0.94603 0.77925 0.62420 0.61825 0.60988 0.60748 0.60628 
50 0.63210 0.53458 0.43797 0.43415 0.42876 0.42721 0.42643 

larger values of n. These results make sense because more information about the process 

is at hand for larger n and m. 

Further investigation of TableD.3.4 reveals that, as m increases for a particular n, the 

B31 and B42 values also converge to their respective B3 and B4 values in a decreasing 

manner. The convergence pattern for B41 and B32 differs in t~at as m increases-for a 

particular n, the B41 and B32 values converge in an increasing manner to their respective 

B4 and B3 values. The convergence pattern for A31 is unique. For n equal to 2, 3, and 

4, A31 converges in a decreasing manner to A3 as m increases. For n=5, A31 also 

converges in a decre1;1sing manner to A3, but starting at m=4. For n equal to 6, 7, 8, 10, 

25, and 50, A31 converges in an increasing manner to A3 as m increases. 

These results have major implications. A common rule of thumb is that 20 to 30 

subgroups of size 4 or 5 are necessary to use conventional control chart constants for 

constructing control limits. The results in Table D.3.4 indicate that this may be an 

incorrect rule. Consider again the A32 and corresponding A3 values in Table 6.1. When 

n=4, A3 is 6.305% smaller than A32 for m=20. When n=5, A3 is 3.567% smaller than 

A32 for m=30. These results indicate that if one were to coqstruct X charts using 
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conventional control chart constants when only 20 to 30 subgroups of size 4 or 5 are 

available to estimate the process mean and standard deviation, the upper and lower 

control limits would not be wide enough, resulting in a higher false alarm rate. 

B42 and corresponding B4 values, as well as B32 and corresponding B3 values, in 

Table D.3.4 also indicate that the common rule of thumb may be an incorrect rule. When 

n=4, B4 is 4.758% smaller than B42 for m=20 and B3 is 0.878% larger than B32 for 

m=20. When n=5, B4 is 2.580% smaller than B42 for m=30 and B3 is 0.634% larger 

than B32 for m=30. Consequently, if one were to constructs charts using conventional 

control chart constants when only 20 to 30 subgroups of size 4 or 5 are ava.ilable to 

estimate the process standard deviation, the upper and lower control limits would not be 

wide enough, resulting in a higher false alarm rate. 

Quesenberry (1993) also investigated the validity of the common rule of thumb and 

concluded that 400/(n -1) subgroups are needed for the X chart before conventional 

control chart constants may be used. However, for all practical purposes, the program 

presented by this chapter eliminates the need for these rules. 

A Numerical Example 

Consider the data in Table 6.2 obtained from a process requiring short run control 

charting techniques (assume alphaMean=0.0027, alphaStandUCL=0.005, and 

alphaStandLCL=0.001). For m=5 and n=4, the following first stage short run control 

chart factors are obtained from Table D.3.4: A31=1.72737, B41=2.09812, and 

B31=0.l 1441. UCL(s), LCL(s), UCL(X ), and LCL(X) are calculated as follows: 
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Table 6.2. A Numerical Example 
-

Subgroup X1 X2 X3 X4 X s 

1 1.17 1.14 1.20 1.18 1.17250 0.02500 
2 1.38 1.29 1.36 1.44 1.36750 0.06185 
3 1.20 1.21 1.30 1.14 1.21250 · 0.06602 
4 1.40 1.40 1.21 1.43 1.36000 0.10100 
5 1.12 1.20 1.61 1.34 1.31750 0.21515 

Averages 1.28600 0.09380 
Revised Averages 1.27813 0.06346 

-
UCL(s) = B41 · s = 2.09812 · 0.09380 = 0.19680 

-
LCL(s) = B31 · s = 0.11441 · 0.09380 = 0.01073 

-
UCL(X) = X + A31 · s = 1.28600 + 1.72737 · 0.09380 = 1.44803 

-
LCL(X) = X-A31 · s = 1.28600-1.72737 · 0.09380 = 1.12397 

The standard deviation for subgroup five (s=0.21515) is above UCL(s). Find, 

investigate, and remove from the process the special cause (or causes) that created this 

out of control point, delete subgroup five, recalculate averages (shown as the Revised 

Averages in Table 6.2), and reconstruct first stage control limits (this approach is from 

Hillier's (1969) example). For m=4 and n=4, the following first stage short run control 

chart factors are obtained from Table D.3.4: A31=1.75114, B41=2.05256, and 

B31=0.11958. Revised UCL(s), LCL(s), UCL( X ), and LCL( X) are calculated as 

follows: 

UCL(s) = B41 · s = 2.05256 · 0.06346 = 0.13026 
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.. LCL(s) = B31 · s = 0.11958 · 0.06346= 0.00759 

-
UCL(X) = X + A31· s = 1.27813 +1.75114-0.06346 = 1.38926 

LCL(X) = X-A31 · s = 1.27813-1.75114 · 0.06346 = 1.16700 

Since none of the remaining values plot out of control (i.e., control has been established), 

the next step is to const11,1ct second stage control limits using the following second stage 

short run.control chart factors from Table D.3.4 (for m=4 and n=4): A32=2.26072, 

B42=2.89208, and B32=0.09367. PCL(s), LCL(s), UCL( X ), and LCL( X) are 

calculated as follows: 

-
UCL(s) = B42 · s = 2.89208 · 0.06346 = 0.18353 

-
LCL(s) = B32 · s = 0.09367 · 0.06346 = 0.00594 

-
UCL(X) = X + A32· s = 1.27813 + 2.26072 ·0.06346 = 1.42160 

-
LCL(X) = X -A32 · s = 1.27813- 2.26072 · 0.06346 = 1.13466 

These control limits may be used to monitor the future performance of the process. 

Advantages of Two Stage Short Run (X, s) Control Charts 

Several advantages exist to using two stage short run (X, s) control charts. A 

significant advantage is that there is a smaller loss in degrees of freedom from using the 

Patnaik (1950) approximation than with two stage short run (X, R) control charts. This 
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is illustrated in Table 6.3, which has selected values for degrees of freedom for both c: 

(from Table D.3.1 in Appendix D.3) and ct; (from Table B.3.1 in Appendix B.3 of this 

.· dissertation). 

As expected, when n=2, the degrees of freedom for both c: and ct; are equal. When 

· m=l for each value of n given, c: suffers no loss in degrees of freedom, at least to the 

accuracy shown (the exact degrees of freedom is equal to (m · (n -1)) (see Yang and 

Hillier (1970))). However, as n increases when m=l, ct; loses degrees of freedom at an 

increasing rate to the point that, when n=50, the degrees of freedom for ct; is less than 

half of that for c: . Even when m=300 and n=2, the degrees of freedom for c: is still 

approximately 88% of the exact value of 300 degrees of freedom. As expected, this 

percentage increases as n increases. 

Many authors suggest that when n gets large (i.e., in the case of Duncan (1974), when 

n> 12), the loss in efficiency (which is related to a loss in degrees of freedom) becomes 

too great to use the range to estimate process variability. The -tesults in Table 6.3 seem to 

Table 6.3. Comparison of Degrees of Freedom for c: and d; 

n 2 5 
* d* * d* m C4 2 C4 2 

1 1.00000 1.00000 4.00000 3.82651 
2 1.91952 1.91952 7.81543 7.47105 
5 4.59060 4.59060 19.21294 18.35417 
10 8.98907 8.98907 38.19043 36.47359 
25 22.14078 22.14078. 95.11138 90.81974 
50 44.04420 44.04420 189.9757 181.3926 
100 87.84479 87.84479 379.7029 362.5367 
200 175.4428 175.4428 759.1566 724.8242 
300 263.0400 263.0400 1138.610 1087.112 
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Table 6.3 continued. Comparison of Degrees of Freedom for c: and ct; 
n 10 25 50 

* d; * d; * d* m C4 C4 C4 2 

1 9.00000 7.68007 24.00000 15.62977 49.00000 24.02990 
2 17.78069 15.14589 47.76168 31.02740 97.75573 47.82145 
5 44.09875 37.51556 119.0374 77.20616 244.0184 119.1869 
10 87.95388 74.78859 237.8272 154.1660 487.7879 238.1261 
25 219.5142 186.6017 594.1947 385.0424 1219.095 594.9419 
50 438.7796 372.9550 1188.140 769.8356 2437.941 · 1189.634 
100 877.3099 745.6608 2376.030 1539.422 4875.632 2379.019 
200 1754.370 1491.072 4751.810 3078.593 9751.014 4757.787 
300 2631.430 2236.483 7127.590 4617.765 14626.39 7136.556 

agree with this statement, even when compared to the degrees of freedom for c: (when 

n=lO, the degrees of freedom for ct;. is.approximately 85% of that for c:). 

These results are significant when one considers the fact that degrees of freedom is 

equivalent to information about the process. The more (less) degrees of freedom retained 

in relation to the exact value when estimating the process variability, the more (less) 

information is obtained from the process. The more (less) information obtained from the 

process, the more (less) reliable are the control limits calculated using this information. 

Another possible advantage to using two stage short run (X, s) control charts relates 

to Yang and Hillier's (1970) (X, ~) control charts (which is mentioned earlier in the 

Introduction). Both sets of charts may be used for plotting means and standard deviations 

of subgroups. However, two stage short run (X, s) control charts may be easier to 

implement and maintain in a production environment. Control limits for two stage short 

run (X, ~) charts must be constructed using subgroup variances. This means that both 

the variance and the standard deviation of each subgroup must be recorded. If just 
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subgroup standard deviations are recorded after control limits are set, then one must 

perform additional calculations to get the variances from past subgroups when it is time 

to update the control limits. Considering the small loss in degrees of freedom for c: 

compared to the exact degrees of freedom (which is used in two stage short run (X, ~) 

control charts), two stage short run (X, s) control charts may have an advantage since 

one only has to calculate and record the subgroup standard deviation. 

A final advantage to using two stage short run (X, s) control charts relates to Yang 

and Hillier's (1970) (X, v) control charts (which is mentioned earlier in the Introduction). 

- -
Yang and Hillier ( 1970) state that s is less affected proportionally than v if the process 

has gone out-of-control with increased dispersion when any of the initial subgroups are 

drawn. Burr (1976) states two objections. to using v control charts instead of s control 

· charts. The first objection is that v, the center line on a v control chart, will be more 

-
affected by a single large v than will s by the square root of this single large v. The end 

result would be a more highly inflated center line on the v control chart, creating a 

situation in which a special cause signal may not be detected. The second objection is 

that the distribution of v is far more unsymmetrical than that for s. The notes under Table 

17 in the appendix of Wheeler (1995) state that this extreme skewness of the distribution 

of v makes the v control chart somewhat unsatisfactory. 

Unbiased Estimates of cr and cr 2 Using ; 

It is well known that ;/c 4 is an unbiased estimate of cr (see Wheeler's (1995) Tables 
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3.6, 3.7, and 4.2). A proof of this is given in Appendix D.l. It is also shown in Appendix 

D.l that (s/c:)2 is an unbiased estimate of cr 2 • Since the value c: is a new result from 

this chapter, this means that, for the first time, an unbiased estimate of the population 

variance may be obtained from the average of m standard deviations, each based on a 

subgroup of size n. Also, since c: retains increasingly more degrees of freedom as n gets 

larger when compared to the degrees of freedom for ct; , the variability in ( s/ C: )2 Will be 

increasingly smaller than that for ( R/ct;)2 as n gets larger c( R/ct;)2 is also an unbiased 

estimate of cr 2 (see Duncan (1955a, 1955b, 1955c) and Ott (1990))). 

Conclusions 

This chapter and the program it presents make important contributions to both 

industry and research. Those involved with quality control in industry will, for the first 

time, be able to use theoretically precise control chart factors to determine control limits 

for (X, s) charts regardless of the subgroup size, number of subgroups, and alpha values. 

Concerning research, this chapter provides a valuable reference for anyone interested in 

anything having to do with (X, s) control charts. Also, as already mentioned, the 

program eliminates the need for the research question of how many subgroups are 

enough before conventional control chart constants may be used. 
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CHAPTER VII 

TWO STAGE SHORT RUN (X, MR) CONTROL CHARTS 
AND A COMPUTER PROGRAM TO CALCULATE THE FACTORS 

Introduction 

Hillier (1969) and Yang and Hillier (1970) represent the only attempts in the literature 

to develop two stage short run control charts based on Hillier's (1969) theory. Hillier 

(1969) derives equations to calculate two stage short run control chart factors for (X, R) 

charts. Yang and Hillier (1970) derive equations to calculate two stage short run control 

chart factors for (X, v) and (X, Fv) charts. 

Problem 

It seems that no attempt appears in the literature to derive equations to calculate two 

stage short run control chart factors for (X, MR) charts. Del Castillo and Montgomery 

(1994) and Quesenberry (1995) both point out this deficiency. The application of 

(X, MR) control charts is desirable because in a short run situation, it may be difficult to 

form subgroups (Del Castillo and Montgomery (1994)). 

Pyzdek (1993) attempts to present two stage short run control chart factors for 

(X, MR) charts for several values for numbers of subgroups and one value each for alpha 

for the X chart and alpha for the MR chart above the upper control limit (alpha is the 

probability of a Type I error). However, all of Pyzdek's (1993) Table 1 results for 

subgroup size one are incorrect because he, uses invalid theory (this is explained in detail 

in the Tabulated Results of the Program section later in this chapter). 
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Solution 

This chapter presents a solution to this problem, consequently allowing for the 

derivation of equations to calculate first and second stage short run control chart factors 

for (X, MR) charts. It also describes the development and execution of a computer 

program that will accurately calculate the factors using these derived equations. Other 

exact equations that the program uses are the probability integral of the range, the mean 

of the distribution of the range, the probability integral of the studentized range (all three 

for subgroup size two), equations to calculate degrees of freedom, and derived 

conventional control chart equations. The program accepts values for number of 

subgroups, alpha for the X chart, and alpha for the MR chart both above the upper control 

limit and below the lower control limit. Tables are generated for specific values of these 

inputs. Comparison of the tabulated results to legitimate results in the literature validates 

the program. The tables correct and extend previous results in the literature. 

The software used for the program is Mathcad 8.03 Professional (1998) with the 

Numerical Recipes Extension Pack (1997). The program uses numerical routines 

provided by the software. 

Outline 

This chapter first presents the probability integrals of the range and the studentized 

range, both for subgroup size two. These are essential in the application of Hillier's 

(1969) theory to (X, MR) control charts and are required for the program to perform 
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. accurate calculations. Next, Patnaik's (1950) theoryis used to develop an approximation 

to the distribution of the mean moving range. From this result, equations to calculate two 

stage short run control chart factors for (X, MR) charts are derived by following the work 

in the appendix of Hillier (1969). Also; equations to calculate conventional control chart 

· constants for (X, MR) charts are derived. Next, the computer program is described. 

Tables generated by the program are then presented and compared with legitimate results 

in the literature. Also, implications of the tabulated results are discussed. Following a 

numerical example that illustrates the,use of the program, unbiased estimates of cr and cr2 

using MR are given, as well as final conclusions describing the impact of the program 

on industry and research. 

Results from the program are for processes generating parts with independent 

measurements that follow a Normal distribution. 

The Probability Integral of the Range for Subgroup Size Two 

The probability integral (or cumulative distribution function (cdf)) of the range for 

subgroups of size two sampled from a standard Normal population is given by Pachares 

(1959) as equation (7.1) (with some modifications in notation): 

P(W) = 2 · f ~ f (x) · (F(x + W)-F(x))dx (7.1) 
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. W represents the (standardize,d) range w/cr, where w is the range of a subgroup and cr is 

the population standard deviation. Throughout this chapter, F(x) is the cdf of the 

stan~ard Normal probability density function (pdf) f(x). 

The mean of the distribution of the range W = (w /cr) for subgroups of size two 

sampled from a Normal population with meanµ and variance equal to one given by 

Harter (1960) is equation (7.2) (with some modifications in notation): 

2 
d2=-

7t0.5 
(7.2) 

The value d2 is the control chart constant denoted by d 2 (see Table Min the appendix of 

Duncan (1974)). The equation for d2 for subgroup size two for any value of cr is given 

by Johnson, Kotz, and Balakrishnan (1994). 

The Probability Integral of the Studentized Range for Subgroup Size Two 

The probability integral of the studentized range for subgroups of size two sampled 

from a Normal population is given by Harter, Clemm, and Guthrie (1959) as equation 

(7.3a): 

P3(z) =( !)-e~ ·(Pl(z)+P2(z)) (7.3a) 

where 
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cv =ln(2)+( ~ J-1{ ~ H ~ J-gamml{ ~ J (7.3b) 

11 [( J z2-zs.w2 ]v-l ,2_z5.w2 
Pl(z) =J

O 
. 5 · : · e 2·22 

• e 2·22 
. • P(W) dW (7.3c) 

(7.3d) 

The variable z is equal to 5 · Q. Q represents the studentized range w/s, where w is the 

range of a subgroup and s is an independent estimate (based on v degrees of freedom) of 

the population standard deviation. The equation for cv (equation (7.3b)) is the natural 

logarithm of the equation for C(v) given by Harter, Clemm, and Guthrie (1959). It is 

derived in Appendix B.1 of this dissertation. The function gammln is a numerical recipe 

in the Numerical Recipes Extension Pack (1997) that calculates the natural logarithm of 

the gamma function. Using gammln in equation (7.3b) allows for large values of v 

(hence large values form (the number of subgroups)) in the program. In equation (7.3c), 

· P(W) is the probability integral of the range W = (w/cr) for subgroup size two (see 

equation (7.1)). 

As v~= (i.e., as m~=), the distribution of the studentized range Q = (w /s) for 

subgroup size two converges to the distribution of the range W = (w /a) for subgroup 

size two (see Pearson and Hartley (1943)). This fact is used to calculate alpha-based 

conventional control chart constants for the MR chart. 
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The Distribution of the Mean Moving Range 

Consider the situation in which the mean of a statistic is calculated by averaging m 

values of the statistic, each of which is based on a subgroup of size n. Patnaik (1950) 
. . 

investigates this situation when the statistic is the range and develops an approximation to 

the distribution of the mean range R/cr. The resulting distribution is the (x ·ct;)/ Jv 

distribution, which is a function of the X distribution with v degrees of freedom (the X 

distribution with v degrees of freedom and its moments about zero may be found in 

Johnson and Welch (1939)). Equations for v and ct; are derived from results obtained by 

equating the squared means as well as the variances of the distribution of the mean range 

R/cr and the (x ·ct;)/ Jv distribution with v degrees of freedom. Hillier (1964 and 

1967) uses Patnaik's (1950) theory to derive equations to calculate short run control chart 

factors for X and R charts, respectively. Hillier (1969) then incorporates the two stage 

procedure into his short run control chart factor calculations for (X, R) charts. 

Consider the situation in which the statistic is the moving range of size two and the 

distribution of interest is the distribution of the mean moving range MR/cr. Evidence 

exists in the literature that MR/cr may be approximated by a distribution that is a 

function of either the x2 or the X distribution. Sathe and Kamat (1957) use results given 

by Cadwell (1953, 1954) to approximate the distribution of the mean successive 

difference (i.e., the distribution of the mean moving range MR/cr) by a distribution that 

is a function of a power of the x2 distribution. Roes, Does, and Schurink (1993) use 

theory that is similar to Patnaik's (1950) theory to approximate the distribution of the 
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mean moving range· MR/cr (with cr=l.0) by a distribution that is a function of the x 

distribution. 

In order to be able to use Hillier's (1969) theory to derive equations to calculate two 

stage short run control chart factors for (X, MR) charts, we apply Patnaik's (1950) theory 

to approximate the distribution of the mean moving range MR/cr by the 

(x · ct; (MR))/ .fv · distribution with v degrees of freedom (this vis the same as the one 

given earlier .in equation (7 .3a)), The equation for d; (MR) is derived in Appendix E.1 

of this dissertation and is given as equation (7.4) (note: d2starMR = d; (MR)): 

d2starMR = (d22 + d22 • r )°'5 (7.4) 

The equation for the control chart constant d2 for subgroup size two is given earlier as 

equation (7.2). The valuer represents the variance of MR/d2. Its equation is given later 

as equation (7.7a). 

Using results from Prescott (1971), the equation for vis determined by equating the 

ratio of the variance to the squared mean, both of the X distribution with v degrees of 

freedom, to the ratio of the variance to the squared mean, both of the distribution of the 

mean moving range MR/ cr . The resulting equation for v is equation (7 .5): 

d(x) = h(x) - r (7.5) 

The exact value for v is the value of x such that d(x) is equal to zero. The function h(x) is 
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the ratio of the variance to the.squared mean, both of the x distribution with x degrees of 

freedom (x replaces v). The mean and variance of the X distribution with v degrees of 

freedom are given in Appendix E.l. The equation for h(x), which is derived in Appendix 

B.l, is given as equation (7.6): 

X • e 2·(gammln(0.5·x)-gammln(O.S.x+0.5)) _ 2 
h(x) =---------

2 
(7.6) 

The value r is the ratio of the variance to the squared mean, both of the distribution of 

the mean moving range MR/cr. The mean and the variance of the distribution of the 

mean moving range MR/cr are derived in Appendix E.l. The equation for r is given by 

Palm and Wheeler (1990) as equation (7.7a): 

b· (m-1)-c 
r=-----

(m-1)2 

where 

C = 7t - 2 + 3°·5 

6 

(7.7a) 

(7.7b) 

(7.7c) 

Cryer and Ryan (1990) give an equivalent form for equation (7.7a). Hoel (1946) gives an 

equation for the variance of MR which, when multiplied by l/d2 2 , gives the same 

results as those obtained by using equation (7.7a). It should be noted that an equivalent 
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form (also based on Patnaik's (1950) theory) of equation (7.5) may be found in Palm and 

Wheeler (1990), who use their result to calculate equivalent degrees of freedom for 

population standard deviation estimates based on consecutive overlapping moving ranges 

of size two. 

Table E.3.1 (the creation of which is explained in the Tabulated Results of the 

Program section later in this chapter) in Appendix E.3 of this dissertation has v and 

ct; (MR) values form: 2-20, 25, 30, 50, 75, 100, 150, 200, 250, 300, as well as d 2 for 

subgroup size two. As m~oo (Le,, as v~=), ct; (MR) converges to d 2 for subgroup size 

two. 

Approximating the distribution of the mean moving range ,MR/cr by the 

(x · ct; (MR))/ .Jv distribution with v degrees of freedom works well. In fact, based on 

how ct; (MR) is derived in Appendix E.1, the means and variances of these two 

distributions are equal. 

Derivation of the Control Chart Factor Equations 

Since the (x · d; (MR))/ .Jv distribution with v degrees of freedom approximates the 

distribution of the mean moving range MR/cr, the derivation of equations to calculate 

first and second stage short run control chart factors for (X, MR) charts follows the work 

in the appendix of Hillier (1969). E22, the second stage short run control chart factor for 

the X chart, is derived in almost the same manner as Hillier's (1969) A;. Differences are 

that n=l and X, X, E22, MR, and ct; (MR) in this chapter replace X, X, A;, R , and 
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c, respectively, in Hillier (1969). The resulting equation for E22 is given as equation 

(7.8) (note: d2starMR = d;(MR) ): 

E22 = ( crit _ t J. ( m + 1 Jo.s 
d2starMR m 

(7.8) 

The value crit_t is the critical value for a cumulative area of (1- (alphalnd/2)) under the 

Student's t curve with v degrees of freedom (alphalnd is the probability of a Type I error 

on the X control chart). 

E21, the first stage short run control chart factor for the X chart, is derived in almost 

the same manner as Hillier's (1969) A;·. Differences are that E21, Xi, X, MR, and 

ct; (MR) in this chapter replace A;·, Xi, X, R, and c, respectively, in Hillier (1969). 

The resulting equation for E21 is given as equation (7.9): 

E2l = ( crit_ t J·(m-lJo.s 
d2starMR m 

(7.9) 

The value crit_t has the same meaning here as in equation (7 .8). 

D42, the second stage short run upper control chart factor for the MR chart, is derived 

in Appendix E.l. Other than differences in notation, this derivation follows that for 

Hillier's (1969) o:. The resulting equation for D42 is given as equation (7.10): 
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D42= qD4 
· d2starMR 

(7.10) 

The value qD4 is the (1-alphaMRUCL) percentage point of the distribution of the 

studentized range Q = ( w / s) .for subgroup size two with v degrees of freedom 

(alphaMRUCL is the probability of a Type I error on the MR chart above the upper 

control limit). 

· D32, the second stage short run lower control chart factor for the MR chart, is derived 

in a manner similar to D42. Differences are that D32, qD3, and alphaMRLCL replace 

D42, qD4, and (1-alphaMRUCL), respectively (alphaMRLCL is the probability ofa Type 

I error on the MR chart below the lower control limit). The resulting equation for D32 is 

given as equation (7.11): 

D32= qD3 
d2starMR 

(7.11) 

The value qD3·is the alphaMRLCL percentage point of the distribution of the studentized 

range Q = ( w / s) for subgroup size two with. v degrees of freedom. 

D41, the first stage short run upper control chart factor for the MR chart, is derived in 

almost the same manner as Hillier's (1969) D:*. Differences are that D41, MRi, D42, 

and MR in this chapter replace D:*, Rp D:, and R, respectively, in Hillier (1969). 

The resulting equation forD41 is given as equation (7.12): 
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041 = m · qD4prevm 
d2starMRprevm · (m -1) + qD4prevm 

(7.12) 

The value qD4prevm has the same meaning as qD4 (given earlier in equation (7.10)), 

except it is for vprevm (i.e., v for (m-1) subgroups). The value d2starMRprevm has the 

same equation as d2starMR (given earlier as equation (7.4)), except mis replaced with 

(m-1). 

The equation for D3 l, the first stage short run lower control chart factor for the MR 

chart, is derived in almost the same manner as Hillier's (1969) n;·. Differences are that 

D31, MRi, D32, and MR in this chapter replace n;·, Ri, n;, and R, respectively, in 

Hillier (1969). The resulting equation forD31 is given as equation (7.13): 

031 = m · qD3prevm 
d2starMRprevm · (m -1) + qD3prevm 

(7.13) 

The value qD3prevm has the same meaning as qD3 (given earlier in equation (7.11)), 

except it is for vprevm instead of v. 

The equation for E2, the conventional control chart constant for the X chart, may be 

obtained by taking the limit of either E21 or E22 as m~= (i.e., as v~=). The resulting 

equation for E2 is given as equation (7.14): 

E2 = crit_z 
d2 

(7.14) 
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The value crit_z is the critical value for a cumulative area of (1- (alphalnd/2)) under the 

standard Normal curve. The equation for the control chart constant d2 for subgroup size 

two is given earlier as equation (7.2). 

The equation for D4, the alpha-based conventional upper control chart constant for the 

MR chart, may be obtained by taking the limit of either D41 as m--?= (i.e., as 

vprevm--?=) or D42 as m--?= (i.e., as V--?=). The resulting equation for D4 is given as 

equation (7.15): 

D4 = wD4 
d2 

(7.15) 

The value wD4 is the (1-alphaMRUCL) percentage point of the distribution of the range 

W = (w/cr) for subgroup size two. 

The equation for D3, the alpha-based conventional lower control chart constant for the 

MR chart, may be obtained by taking the limit of either D31 as m--?= (i.e., as 

vprevm --?=) or D32 as m--?= (i.e., as V--?=). The resulting equation for D3 is given as 

equation (7.16): 

D3 = wD3 
d2 

(7.16) 

The value wD3 is the alphaMRLCL percentage point of the distribution of the range 

W = (w/cr) for subgroup size two. 
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The Computer Program 

This section of the chapter presents the computer program, which is in Appendix E.2 

of this dissertation. The program has seven pages, each of which is further divided into 

sections. 

Mathcad (1998) Note 

It is possible for a section of code in the program to tum red and have the error 

message "Unknown Error". To correct this, delete one character in the red code and type 

it back in. Click the mouse arrow outside of the code. The code should tum black, 

indicating that the error has been eliminated. If not, repeat the procedure (it will 

eventually correct the problem). 

Page 1 

The first page of the program begins with the data entry section. The program 

requires the user to enter the following values: alphalnd (alpha for the X chart), 

alphaMRUCL (alpha for the MR chart above the UCL), alphaMRLCL (alpha for the MR 

chart below the LCL), and m (number of subgroups (i.e., the number of MRs plus one)). 

If no lower control limit on the MR chart is desired, the entry for alphaMRLCL should be 

left blank ( do not enter zero). Before a value can be entered, the cursor must be moved to 

the right side of the appropriate equal sign. This may be done using the arrow keys on 

the keyboard or by moving the mouse arrow to the right side of the equal sign and 

clicking once with the left mouse button. The program is activated by paging down once 
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· the last entry is made. When using Mathcad 8.03 Professional (1998), paging down is 

not allowed while a calculation is taking place. However, Mathcad 2000 Professional 

(1999) allows the user to page down to the output section of the program (explained later) 

after the last entry is made. 

The next part of page I is section 1.1 of the program. The value TOL is the tolerance. 

The calculations that use this value will be accurate to ten places to the right of the 

decimal. The functions dnorm(x, 0, 1) and pnorm(x, 0, 1) in Mathcad (1998) are the pdf 

and cdf, respectively, of the standard Normal distribution. The equations for the pdf and 

cdf are also given in case the dnorm or pnorm function fails to calculate a result. In 

Mathcad (1998), an equation turns red if it does not calculate a result due to an error. If 

the dnorm function gives.an error, type f(x) on the left side of the equal sign in equation 

(7.17): 

-x2 

= [<2 · 7t)-o.s ]. e-2 (7.17) 

If the pnorm function gives an error, type F(x) on the left side of the equal sign in 

equation (7.18): 

(7.18) 

The equations for P(W) and d2 are given earlier as equations (7.1) and (7.2), respectively. 
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Page 2 

Page 2 of the program begins with section 2.1. The code in this section determines 

wD4 and wD3, the (1-alphaMRUCL) and alphaMRLCL percentage points, respectively, 

of the distribution of the range W = (w / cr) for subgroup size two and infinite v (i.e., 

infinite m) (recall the earlier statement that as V--700 (i.e., as m--700 ), the distribution of 

the studentized range Q = ( w / s) for subgroup size two converges to the distribution of 

the range W = (w/cr) for subgroup size two). The value wD4 is used in the equation for 

D4, which is given earlier as equation (7.15). The value wD3 is used in the equation for 

D3, which is given earlier as equation (7.16). The roots of the equations DUCL(W) and 

DLCL(W) are wD4 and wD3, respectively, and are determined using zbrent (a numerical 

recipe in the Numerical Recipes Extension Pack (1997) that uses Brent's method to find 

the roots of an equation). The subprograms Wseedl and Wseed2 generate seed values 

seedD4 and seedD3, respectively, for Brent's method. 

The subprogram Wseedl works as follows. Initially, W0 and W1 are set equal to 0.01 

and 0.02, respectively. A0 and A1 result from evaluating DUCL(W) at W0 and W1 , 

respectively. The while loop begins by checking if the product of A0 and A1 is 

negative. If so, the root for DUCL(W) lies between 0.01 and 0.02. If not, W0 and W1 

are incremented by 0.01. A0 and A1 are recalculated and if their product is negative, the 

root for DUCL(W) lies between 0.02 and 0.03. Otherwise, the while loop repeats. Once 

a root for DUCL(W) is bracketed, the bracketing values are passed out of the subprogram 

into the 2xl vector seedD4 to be used by Brent's method to determine wD4. The 

subprogram Wseed2 works similarly to construct the 2xl vector seedD3 to be used by 
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Brent's method to determine wD3, except the starting value is 0.001. 

The next part of page 2 is section 2.2 of the program. As shown earlier, the two stage 

short run control chart factor calculations require v and vprevm. The equation for h(x) is 

described earlier (see equation (7 .6)). · The value rprevm has the same meaning as r 

described earlier (see equation (7.7a)), except it is for (m-1) subgroups. The equations 

for band care given earlier as equations (7.7b) and {7.7c), respectively. The equation for 

dprevm(x) is the same as that for d(x) (given earlier as equation (7.5)), except rprevm 

replaces r. The value v is the root of the equation d(x) and is determined using zbrent 

with seed value seedv. The value vprevm is the root of the equation dprevm(x) and is 

determined using zbrent with seed value seedvprevm. The subprogram dfseed generates 

the seed values seedv and seedvprevm for Brent's method. 

The subprogramdfseed works as follows. Initially, df O and df1 are set equal to 0.9 

and 1.1, respectively. A0 and A1 result from evaluating y(x) (which is equal to either 

d(x)or dprevm(x)) at df O and df1 , respectively. The while loop begins by checking if 

the product of A0 and A 1 is negative. If so, the root for y(x) lies between 0.9 and 1.1. If 

not, df O and df1 are incremented by 0.5. A0 and A1 are recalculated and if their product 

is negative, the root for y(x) lies between 1.1 and 1.6. Otherwise, the while loop repeats. 

Once a root for y(x) is bracketed, the bracketing values are passed out of the subprogram 

into the 2 x 1 vector seedv (if y(x) is equal to d(x)) or seedvprevm (if y(x) is equal to 

dprevm(x)) to be used by Brent's method to determine v or vprevm, respectively. 
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Page 3 

Page 3 of the program begins with section 3.1. The equations for P3(z), cv, Pl(z), and 

P2(z) are given earlier as equations (7.3a), (7.3b), (7.3c), and (7.3d), respectively. 

Section 3.2 contains the calculations required to determine qD4, the (1-alphaMRUCL) 

percentage point of the distribution of the studentized range Q = (w /s) for subgroup size 

two with v degrees of freedom (which is calculated earlier in the program). The value 

qD4 is used in the equation for D42, which is given earlier as equation (7.10). The 

subprogram Zseedl generates the seed value seedl for Brent's method or for root (root is 

a numerical routine in Mathcad (1998) that uses the Sec.ant method for determining the 

roots of an equation). Either root-finding method determines the root of D(x). The result 

of dividing this root by five is qD4. Both Brent's method and the Secant method are 

given because one may not work when the other one does. If Brent's method fails, type 

qD4 on the left side of the equal sign in equation (7.19): 

root[ jP3(seedl) - (1- alphaMRUCL)j , seedl] 

5 
(7.19) 

The subprogram Zseedl begins by generating values for Z0 · and z,. A 0 and A, 

result from evaluating P3(z) at Z0 and z,, respectively. The while loop continually 

increments Z0 and z, by 5.0 and evaluates P3(z) at these two values until A, becomes 

greater than (1-alphaMRUCL) for the first time, at which point A 0 will be less than 

(1-alphaMRUCL). When this occurs, P3(z) is equal to (1-alphaMRUCL) for some value 
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z between Z0 and Z1 • An initial guess for this value is determined using linterp (a 

numerical routine in Mathcad (1998) that performs linear interpolation) and stored in 

Zguess. The initial guess is passed out of the subprogram as seedl. 

Page4 

Page 4 of the program is section 4.1. The code in this section is used to determine 

qD3, the alphaMRLCL percentage point of the distribution of the studentized range 

Q = (w /s) for subgroup size two with v degrees of freedom (which is calculated earlier 

in the program). The value qD3 is used in the equation for D32, which is given earlier as 

equation (7.11). The subprogramZseed2 generates the value seed2 that is used to 

determine an initial value for qD3. An improved value for qD3 is then calculated by 

determining the root of the equation (P3(z)-alphaMRLCL) using the Secant method with 

the seed value seed2 and dividing this root by five. 

The ability of the Secant method to calculate a result depends upon the values for 

alphaMRLCL and m (Brent's method should not be used). It is not a problem if it does 

not calculate a result because the initial value for qD3 and the improved value match to 

several places to the right of the decimal. This phenomenon is discussed in more detail 

when the tabulated results of the program are presented later in this chapter. The Monitor 

Results area in the bottom right hand corner of section 4.1 indicates how closely the two 

values for qD3 match until the root routine fails. This will dictate the number of decimal 

places that can be used to display qD3 and the second stage short run lower control chart 

factor for the MR chart. 

The code in the subprogram Zseed2 that begins with the first line of code and includes 
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the while loop and the two for loops constructs 21 x 1 vectors Zv for z and Av for P3(z). 

The first row of each vector is zero. The while loop determines the first value Z where 

P3(Z) is greater than alphaMRLCL. This Z and the corresponding value P3(Z) are stored 

in the second rows of Zv and Av, respectively. The two for loops generate values for the 

remaining rows of Zv and Av. Two different for loops are used because P3(z) may 

encounter an error for some i (i: 1, 2, ... , 20). The value for i where the error occurs can 

be skipped using the dual for loop construction. When the execution of this section of 

code is complete, P3(z) is equal to alphaMRLCL for some value z between Zv O and 

Zv1 • 

The code in the subprogram Zseed2 that starts in the line where the variable Zguess 

first appears to the last line of the subprogram is derived from Harter, Clemm, and 

Guthrie (1959). This code searches for and estimates the value z where P3(z) is equal to 

alphaMRLCL. Zguess is the initial guess for this value z. It is determined using linterp, 

the 21xl vectors for P3(z) and z previously determined, and alphaMRLCL. The 2xl 

vector A is determined using ratint (a numerical recipe in the Numerical Recipes 

Extension Pack (1997) that performs rational interpolation), the 2lxl vectors for z and 

P3(z), and Zguess. Aguess is the entry in the first row of A and is the estimated value for 

P3(Zguess). The while loop first checks if Aguess is an accurate estimate (within 10-15 ) 

of alphaMRLCL. If so, Zguess is passed out of the subprogram as the value seed2. If 

not, Aguess and Zguess are entered into the second rows of the previously determined 

vectors Av and Zv, respectively, if Aguess is more than 10-15 larger than alphaMRLCL. 

If Aguess is more than 10-15 smaller than alphaMRLCL, Aguess and Zguess are entered 

into the first rows of the vectors Av and Zv, respectively. New values for Zguess and 
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Aguess are determined using the same procedure as before and execution is returned to 

the beginning of the while loop. 

Page 5 

Page 5 of the program contains sections 5 .1 and 5 .2. These sections correspond to 

sections 3.1 and 3.2, respectively, described earlier. The only difference is that the 

calculations in sections 5.1 and 5.2 use vprevm instead ofv. The calculations are for 

qD4prevm, which is used in the equation for D41 (given earlier as equation (7.12)). 

Page 6 

Page 6 of the program is section 6.1. This section corresponds to section 4.1 

described earlier. The only difference is that the calculations in section 6.1 use vprevm 

instead of v. The calculations are for qD3prevm, which is used in the equation for D3 l 

(given earlier as equation (7.13)). 

Page 7 

Page 7 of the program begins with section 7 .1. It has the equations for d2starMR 

(given earlier as equation (7.4)) and d2starMRprevm (d2starMR for (m-1) subgroups). 

The value d2starMR is used in the equations for E22, E21, D42, and D32, all of which 

are given earlier as equations (7,8), (7.9), (7.10), and (7.11), respectively. The value 

d2starMRprevm is used in the equations for D41 and D31, which are given earlier as 

equations (7.12) and (7.13), respectively. The function qt(adj_alpha, v) in Mathcad 
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(1998) determines the critical value crit_t for a cumulative area of adj_alpha under the 

Student's t curve with v degrees of freedom. The value crit_t is used in the equations for 

E21 and E22. The function qnorm(adj_alpha, 0, 1) in Mathcad (1998) determines the 

critical value crit_z for a cumulative area of adj_alpha under the standard Normal curve. 

The value crit_z is used in the equation for E2 (given earlier as equation (7.14)). 

Section 7.2 of the program has the equations to calculate two stage short run control 

chart factors and conventional control chart constants given earlier in the Derivation of 

the Control Chart Factor Equations section of this chapter. The equation for E2 is a 

generalization of the equation for E 2 from Wheeler's (1995) Tables 3 and 4 to allow for 

different values of alphalnd. 

The last part of page 7 is the output section of the program. The four values entered at 

the beginning of the program are given. The control chart factors are broken down into 

first stage, second stage, and conventional. The values for v, d2starMR, vprevm, and 

d2starMRprevm, the mean of the distribution of the range W = (w/cr) for subgroup size 

two and the variance of the distribution of the mean moving range MR/ cr , and Harter, 

Clemm, and Guthrie's (1959) Table 11.2 results for n=2 (i.e., for subgroup size two) 

complete the output of the program. To copy results into another software package (like 

Excel), follow the directions from Mathcad's (1998) help menu or highlight a value and 

copy and paste it into the other software package. When highlighting a value with the 

mouse arrow, place the arrow in the middle of the value, depress the left mouse button, 

and drag the arrow to the right. This will ensure just the numerical value of the result is 

copied and pasted. 
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Tabulated Results of the Program 

The three tables (Tables E.3.1-E.3.3) in Appendix E.3 were generated using the 

program with the following input values: 

• alphalnd=0.0027, alphaMRUCL=0.005, alphaMRLCL=0.001 

• m:2~20,25,30,50, 75,100,150,200,250,300 

The values v, d2starMR, vprevm, d2starMRprevm, and d2 are in Table E.3.1. The v and 

vprevm values compare favorably to the equivalent degrees of freedom in Table 3 of 

Palm and Wheeler (1990} and Table 23 in the appendix of Wheeler (1995). The d2 value 

compares favorably to the d 2 value for subgroup size two in Duncan's (1974) Table M 

and Wheeler's (1995) Tables 1 and 18. 

The values qD4, qD4prevm, and wD4, as well as qD3, qD3prevm, and wD3, are in 

Table E.3.2. The results in these tables compare favorably to Harter, Clemm, and 

Guthrie's (1959) Table II.2 results for n=2 (i.e., for subgroup size two). 

As explained earlier in the Page 4 subsection of The Computer Program section of this 

chapter, in the calculations for qD3 and qD3prevm, the ability of the Secant method to 

calculate a result depends upon the values for alphaMRLCL and m. For Table E.3.2, the 

Secant method fails to work for m:2:3. As mentioned previously, this is not a serious 

issue. The reason is that the initial value for qD3 matches the improved value for qD3 

(before the Secant method fails) to eight places to the right of the decimal. 

Values for E21, D41, D31, E22, D42, D32, E2, D4, and D3 are in Table E.3.3. The 
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E2 value compares favorably to the E 2 value for n=2 in Wheeler's (1995) Table 4. It 

should be noted that the values wD4 and wD3 in Table E.3.2 and D4 and D3 in Table 

E.3.3 may differ in the ninth or tenth decimal place for different root routines used to 

calculate wD4 and wD3. 

These favorable comparisons validate the program. Consequently, Table E.3.3 results 

form: 2-10, 15, 20, 25 may be considered corrections to Pyzdek's (1993) Table 1 for 

subgroup size one. All of Pyzdek's (1993) Table 1 results for subgroup size one are 

incorrect for two reasons. The first is that he uses degrees of freedom based on Patnaik's 

(1950) approximation applied to the distribution of the mean range R/cr, where R is the 

average of m values of R (the range), each based on a subgroup of size two, not the 

distribution of the mean moving range NrR./ cr . In the latter case, the degrees of freedom 

reflect the factthat serial correlation exists among consecutive overlapping moving 

ranges of size two, which means that the average of these overlapping Nffi.s reflects that 

serial correlation. The result is that degrees of freedom based on Patnaik's (1950) 

approximation applied to the distribution of the mean moving range NrR./ cr is less than 

that from applying Patnaik's (1950) approximation to the distribution of the mean range 

R/ a, where R is the range of a subgroup of size two. 

The second is that Pyzdek (1993) uses the equation for ct; (i.e., d2star) instead of that 

for d2starNffi. (given earlier as equation (7.4)). The equation for ct; is given as equation 

(7.20): 
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(7.20) 

where dz and d 3 are the.mean and standard deviation, respectively, of the distribution of 

the range W = (w/cr). Equations to calculate dz and d 3 for any subgroup size as well as 

the equation for ct; may be found in Chapter IV of this dissertation. 

The difference between equations (7.4) and (7.20) is that equation (7.4) has d2z · r, 

which is the variance of the distribution of the mean moving range "MR/ cr, instead of 

· di /m, which is the variance·of the distribution of the mean range R/ cr. The equation 

for r in d2z · t reflects the factthat serial correlation exists among consecutive 

overlapping moving ranges· of size two, which means that the average of these 

overlapping "MR..s,reflects that serial correlation. The result is that values for d2star"MR 

are less than those for d2star for subgroup size two; but, as m~oo, both converge to d2. 

It should be noted that d2star"MR for m=2 is equal to d2star for n=2 and m=l (see Table 

B.3.1 in Appendix B.3 of this dissertation). 

One last issue regarding Pyzdek's (1993) Table 1 results is that he gives second stage 

short run control chart factors for number of subgroups equal to one. This is clearly an 

impossibility because one must have two subgroups in order to calculate one moving 

range. The results in Table E.3.3 show that for stage one short run control chart factors 

for the individuals and moving range charts, m must be at least two and three, 

respectively. For stage two short run control chart factors for the individuals and moving 

range charts, m must be at least two. 
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Implications of the Tabulated Results 

Values in Table E.3.3 show some interesting properties. As m increases, the E22 and 

D42 values converge in a decreasing manner to E2 and D4, respectively. The D32 values 

also converge in a decreasing manner to D3, though it is not evident from the accuracy 

shown. This convergence makes sense because more information about the process is at 

hand for larger m. 

These properties have major implications. A common rule of thumb is that 20 to 30 

subgroups of size 4 or 5 are necessary to use conventional control chart constants for 

constructing control limits. The results in Table E.3.3 indicate that this may be an 

incorrect rule when applied to constructing (X, MR) control charts. Consider again the 

E22 values and E2 in Table E.3.3. E2 is 20.709% smaller than E22 for m=20 and 

13.915% smaller than E22 for m=30. These results indicate that if one were to construct 

X charts using the conventional control chart constant E2 when only 20 to 30 subgroups 

of size one are available to estimate the process mean and standard deviation, the upper 

and lower control limits would not be wide enough, resulting in a higher false alarm rate. 

D42 values and D4 in Table E.3.3 also indicate that the common rule of thumb, when 

applied to constructing (X, MR) control charts, may be an incorrect rule. D4 is 16.513% 

smaller than D42 for m=20 and 10.975% smaller than D42 for m=30. Consequently, if 

one were to construct the upper control limit of MR charts using the conventional control 

chart constant D4 when only20 to 30 subgroups of size one are available to estimate the 

process standard deviation, the upper control limit would not be wide enough, resulting in 

a higher false alarm rate. 
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To the accuracy shown in Table E.3.3, there is little difference between D32 for any m 

and D3. If increased accuracy is used, then D3 is slightly less than D32 for any m. 

Consequently, if one were to construct the lower control limit of MR charts using the 

conventional control chart constant D3 when only 20 to 30 subgroups of size one are 

available to estimate the process standard deviation, the lower control limit would be 

slightly too wide, possibly creating a situation in which the probability of detecting a 

special cause signal is slightly diminished. 

Quesenberry (1993) also investigated the validity of the common rule of thumb when 

applied to constructing (X, MR) control charts and concluded that 300 individual values 

are needed for the X chart before conventional control chart constants may be used. 

However, for all practical purposes, the program presented by this chapter eliminates the 

need for these rules. 

A Numerical Example 

Consider the data in Table 7 .1 obtained from a process requiring short run control 

chartingtechniques (assume alphalnd=0.0027, alphaMRUCL=0.005,and 

alphaMRLCL=0.001). For m=5, the following first stage short run control chart factors 

for the MR chart are obtained from Table E.3.3: D41=3.83736 and D31=0.00196. 

UCL(MR) and LCL(MR) are calculated as follows: 

UCL(MR) = D41 ·MR= 3.83736 · 0.03875 = 0.14870 

LCL(MR) = D31 ·MR= 0.00196 ·0.03875 = 0.000076 
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Table 7.1. A Numerical Example 
Subgroup X MR 

1 1.280 -----
2 1.129 0.151 
3 1.130 0.001 
4 1.131 0.001 
5 1.133 0.002 

Averages 1.16060 0.03875 
Revised Average 0.00133 

The first moving range (MR=0.151) is above UCL(MR). Find, investigate, and remove 

from the process the special cause (or causes) that created this out of control point, delete 

the first moving range, recalculate the average moving range (shown as the Revised 

Average in Table 7.1), and construct second stage control limits for the (X, MR) charts 

(this approach is from Case (1998)). For m=4, the following second stage short run 

control chart factors for the MR chart are obtained from Table E.3.3: D42=13.20218 and 

D32=0.00157. For m=5, the following second stage short run control chart factor for the 

X chart is obtained from Table E.3.3: E22=9.00182. UCL(MR), LCL(MR), UCL(X), 

and LCL(X) are calculated as follows: 

UCL(MR) = D42·MR = 13.20218 ·0.00133 = 0.017559 

LCL(MR) = D32 ·MR= 0.00157 · 0.00133 = 0.0000021 

UCL(X) = X + E22 ·MR= 1.16060 + 9.00182 · 0.00133 = 1.17257 

LCL(X) = X-E22 ·MR= 1.16060-9.00182 ·0.00133 = 1.14863 

These control limits may be used to monitor the future performance of the process. 

190 



Unbiased Estimates of cr and cr 2 Using MR 

It is well known that -MR/d 2 -is an ·unbiased estimate of cr (e.g., see Wheeler's (1995) 

Table 3. 7); A proof of this is given in Appendix E. l. It is also shown in Appendix E. l 

that ·{MR/ ct; (MR) )2 is an unbiased-estimate of cr 2 • Since the value ct; (MR) is a new 

result from this chapter, this means that, for the first time, an unbiased estimate of the 

population variance may be obtained from the average of m moving ranges, each based 

on a subgroup of size two. 

Conclusions 

This chapter and,the program it presents make important contributions to both 

industry and research. Those involved with quality control in industry will, for the first 

time, be able to use theoretically precise control chart factors to determine control limits 

for (X, MR) charts regardless of the number of subgroups and alpha values. This is 

valuable in that process monitoring will no longer have to be adjusted to use the incorrect 

and limited results previously available in the literature. Concerning research, this 

chapter provides a valuable reference for anyone interested in anything having to do with 

(X, MR) control charts. Also, as already mentioned, the program eliminates the need for 

the research.question of how many subgroups are enough before conventional control 

chart constants may be used. 
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CHAPTER VIII 

A METHODOLOGY FOR THE DETERMINATION OF THE 
APPROPRIATE EXECUTION OF THE TWO STAGE PROCEDURE 

Introduction 

Several approaches appear in the literature for establishing control ofa process during 

the retrospective stage of control charting. No research has been put forth that provides a 

means by which one may determine the delete and revise procedure that will establish 

control limits for future testing that have both the desired Type I error probability and a 

high probability of detecting a special cause signal. This chapter presents a methodology 

that determines, when one is using two stage short run (X, R) , (X, v) , (X, Fv) , (X, s) , 

and (X, MR) control charts as presented in Chapters IV, V, VI, and VII, respectively, of 

this dissertation, the appropriate execution of the two stage procedure. 

Delete and Revise (D&R) Procedures 

This chapter considers six different D&R procedures for establishing control of a 

process in the first stage of the two stage procedure. Four of them are given in the 

Establishment of Control subsection of The Two Stage Procedure section of Chapter II of 

this dissertation. Detailed descriptions of all six follow. 

D&Rl 

The first D&R procedure is from Hillier (1969), Ryan (1989), and Montgomery 
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(1997). It is executed as follows: 

i. Deletes out-of-control (OOC) initial subgroups on either the control chart for 

centering or spread entirely (i.e., if a subgroup shows OOC on either control 

chart, it is deleted from both charts). 

ii. Recalculates the control limits for both charts using the subgroups remaining after 

step i. 

iii. Determines OOC subgroups. 

iv. Repeats step·s i-iiiuntil no initial subgroups show OOC on either chart. 

D&R2 

The second ~&R procedure is from·Pyzdek (1993). It is executed as follows: 

i. Deletes out-of-control (OOC) initial subgroups on the control chart for spread. 

ii. Recalculates the control limits for the control chart for spread using the subgroups 

remaining after step i. 

iii. Determines OOC subgroups. 

iv. Repeats steps i-iii until no initial subgroups show OOC on the control chart for 

spread. 

v. Determines the control limits for the chart for centering using the parameter 

estimate for spread obtained after completing steps i-iv and the overall average 

obtained from all of the initial subgroups. 

v1. Repeats steps i-ii for the control chart for centering until no initial subgroups 
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show OOC. 

D&R3 

The third D&R procedure is from Case (1998). It deletes out-of-control (OOC) initial 

subgroups on the control chart for spread just once. No D&R is performed on the control 

chart for centering. 

D&R4 

The fourth D&R procedure is from Doty (1997). It does not perform D&R. This 

means all of the initial subgroups will be used to determine second stage control limits 

for both the control charts for centering and spread. 

D&R5 

The fifth D&R procedure is a hybrid of D&R 1 in that it iterates only once. It deletes 

out-of-control (OOC) initial subgroups on either the control chart for centering or spread 

entirely (i.e., if a subgroup shows OOC on either control chart, it is deleted from both 

charts). D&R is performed just once. 

D&R6 

The sixth D&R procedure is a hybrid of D&R 2 in that it iterates only once. It is 

executed as follows: 
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1. Deletes out-of-control (OOC) initial subgroups on the control chart for spread just 

once. 

11. · Determines the control limits for the chart for centering using the parameter 

estimate for spread obtained after completing step i and the overall average 

obtained from all of the initial subgroups. 

m. Performs step i for the control chart for centering. 

Any of the above six D&R procedures may be used on two stage short run (X, R) , 

(X, v), (X, ~), and (X, s) control charts. However, only D&Rs 2, 3, 4, and 6 may be 

used on two stage short run (X, MR) control charts. The reason is that, since the MR 

values are calculated from two consecutive X values, no single MR value can be 

associated with a single X value. Consequently, D&Rs 1 and 5, which delete out-of

control (OOC) initial subgroups on either the control chart for centering or spread 

entirely (i.e., if a subgroup shows OOC on either control chart, it is deleted from both 

charts), cannot be used on two stage short run (X, MR) control charts. 

The Methodology 

The methodology for the determination of the appropriate execution of the two stage 

procedure as presented in this chapter consists of three elements. The main element is the 

computer program that simulates two stage short run variables control charting. The next 

element, which is included in the operation of the program, is the measurements that one 

may use to determine which delete and revise (D&R) procedure establishes the most 
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reliable second stage control limits. The third element, which is explained using sample 

runs from the program, is the interpretation of the results from the program. 

Measurements 

The computer program in this chapter uses two sets of measurements to provide 

information that one may use to determine the reliability of second stage control limits. 

The first set of measurements is the probability of detection (POD), the average run 

length (ARL), and the standard deviation of the run length (SDRL). The second set of 

measurements is the probability of a false alarm (P(false alarm)), the average probability 

of a false alarm (APFL), and the standard deviation of the probability of a false alarm 

(SDPFL). 

POD. ARL. and SDRL 

As mentioned in the Performance Evaluation of Short Run Control Charts section of 

Chapter II, the POD is the probability that a control chart will signal, within a given 

number.of subgroups following a shift, that a process is out-of-control (OOC). 

Additionally, if a process is in-control (IC), the POD may be interpreted as the 

probability of a Type I error (i.e., the probability of a false alarm) within a given number 

of subgroups starting with the first subgroup drawn from the process. 

Using the POD allows for the characterization of the run length (RL) distribution. 

This is particularly useful in a short run situation because it is desirable to know, for 

small numbers of subgroups, the probability of detecting a special cause signal or the 
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probability of a false alarm .. Using the ARL, which is the average number of subgroups 

that must be plotted on a control chart before an OOC condition is indicated, in a short 

run situation is not appropriate because a short run may not last long enough to even 

achieve the ARL. Additionally, as will be shown in the Interpretation of Results from the 

Computer Program section later in this chapter, the ARL can mislead one in choosing the 

appropriate D&R procedure. 

The POD may be expressed mathematically as equation (8.1): 

POD = P(RL ~ t) 

where 

RL: run length (in number of subgroups) 

t: the subgroup number 

P(RL ~ t): the probability that the run length (RL) is less than or equal to subgroup 

numbert 

(8.1) 

As calculated by the computer program in this chapter, for an OOC situation in the 

second stage of the two stage procedure, the subgroup count starts at one at the first OOC 

subgroup. For an IC situation, the subgroup count starts at one with the first subgroup 

drawn from the process in the second stage. 

Each time the program simulates two stage short run variables control charting, an RL 

value is determined. As the simulation is repeated, RL and RL2 values are summed, and 

counts for the number of RLs less than or equal to each integer value in the interval 

[l, 50000] are kept. Once the repeating of the simulation is complete, the two sums are 
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used to calculate the ARL and the SDRL, which is the standard deviation of the number 

of subgroups that must be plotted on a control chart before an OOC condition is 

indicated. The counts are used to determine the POD values. 

For an OOC situation in the second stage of the two stage procedure, it is desirable to 

have the highest possible POD values and the lowest possible ARL. For an IC situation 

in the second stage, it is desirable to have the lowest possible POD values and the highest 

possible ARL. 

P(false alarm), APFL, and SDPFL 

The probability of a false alarm (i.e., P(false alarm)) is the probability of a control 

. chart indicating an OOC condition when none exists. As mentioned in the Two Stage 

Short Run Control Charts.subsection of the ·control Charts with Modified Limits section 

of Chapter II, Hillier's (1969) methodology, upon which the two stage short run variables 

control charts presented in Chapters IV-VII are based, allows for the specification of the 

desired probability of a false alarm (i.e., the desired Type I error probability). 

The computer program in this chapter calculates the probability of a false alarm when 

an OOC situation occurs beyond the first subgroup drawn from the process in the second 

stage of the two stage procedure. Each time the program simulates two stage short run 

variables control charting under these conditions, a value for P(false alarm) is 

determined. As the simulation is repeated, P(false alarm) and (P(false alarm)) 2 values 

are summed. Once the repeating of the simulation is complete, these two sums are used 

to calculate the APFL and the SDPFL. It is desirable for the P(false alarm) values, and 

consequently the APFL, to be as low as possible. 
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The Computer Program 

The computer program that simulates two stage short run variables control charting is 

in Appendix F.1 of this dissertation. It is coded in FORTRAN (1999). The program is 

meant to simulate two stage short run variables control charting of a process before 

initiating it so that one can decide which D&R procedure to use when performing two 

. stage short run variables control charting during the early run of the process. The D&R 

.procedures that the program provides·are described earlier in the Delete and Revise 

(D&R) Procedures section of this chapter. 

The layout of the segments of the simulation program is illustrated in Figure 8.1. 

. Each segment of the program and its operation is described in this section in reverse 

order of appearance in Figure 8.1 (i.e., in the orderin which the program operates). 

Main Program cc 

The main program cc (cc stands for control charting) includes the data entry, file 

setup, subroutine calls, summations·of various values determined by the subroutines, final 

ARL, SDRL, P(false alarm), APPL, and SDPFL calculations, and the output of 

information to a file. It is the only segment of the program requiring user interaction. 

The following inputs (in order of appearance in the program) are requested from the 

user in main program cc: 

• The process mean and standard deviation. 
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module random_mod 

module Stage_2 

· module D _and_R 

module Stage_! 

mam program cc 

subroutine random 

subroutine Xbar_R_2 

subroutine Xbar_ v _2 

subroutine Xbar_sqrtv _2 

subroutine Xbar_s_2 

subroutine X_MR_2 

subroutine D _and_R_l 

subroutine D _and_R_2 

subroutine D _and_R_3 

subroutine D _and_R_5 

subroutine D _and_R_6 

subroutine Xbar_R_l 

subroutine Xbar_ v _l 

subroutine Xbar_sqrtv _l 

subroutine Xbar_s_l 

subroutine X_MR_l 

Figure 8.1. Layout of the Segments of the Computer Program 
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• The number of times to replicate the two stage short run control charting procedure. 

• The control chart combination ( (X, R), (X, v), (X, ~), (X, s), or (X, MR)). 

• The subgroup size (not applicable to (X, MR) control charts). 

• The number of subgroups for Stage 1. 

• The choice of simulating the process in Stage 1 as IC or OOC. If OOC is chosen, 

then the user is requested to enter the choice of a sustained shift in the mean, the 

standard deviation, or both. Once the user chooses a shift type, the program prompts 

for the shift size (in the same units as the parameter that has shifted) and the number 

of the first subgroup after the shift in Stage 1. 

• The choice of simulatingthe process in Stage 2 as IC or OOC. If OOC is chosen, 

then the user is requested to enter the choice of a sustained shift in the mean, the 

· standard deviation, or both. Once the user chooses a shift type, the program prompts 

for the shift size (in the same units as the parameter that has shifted) and the number 

of the first subgroup after the shift in Stage 2. 

• The choice of using a different starting value for seed for the Marse-Roberts Uniform 

(0, l) random variate generator (see Marse and Roberts (1983)) coded as subroutine 

random in module random_mod. 

• The D&R procedure (entered as 1, 2, 3, 4, 5, or 6). The program describes the 

execution of each D&R procedure in detail for the user. 

• The name (including the location)of the text file (extension .txt) that has the two 

stage short run control chart factors for the control chart combination entered earlier. 

• The name (including the location) of the text file (extension .txt) that will store the 

results from the program. 
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The second to last bullet point above requires further explanation. Appendix F.2 of 

this dissertation has the five input files that were used to generate the results in the 

Interpretation of Results from the Computer Program section later in this chapter. The 

first input file contains the first and second stage short run control chart factors for 

(X, R) charts from Table B.3.4 in Appendix B.3 of this dissertation for n=3 and m: 1-5. 

The second input file contains the first and second stage short run control chart factors for 

(X'. v) charts from Table C.3.4 in Appendix C.3 of this dissertation for n=3 and m: 1-5. 

The third input file contains the first and second stage short run control chart factors for 

(X, Fv) charts, also from Table C.3.4 in Appendix C.3 for n=3 and m: 1-5. The fourth 

input file contains the first and second stage short run control chart factors for (X, s) 

charts from Table D.3.4 in Appendix D.3 of this dissertation for n=3 and m: 1-5. The 

fifth input file contains the first and second stage short run control chart factors for 

(X, MR) charts from Table E.3.3 in Appendix E.3 of this dissertation form: 2-15. 

The only difference between the appearance of the input files and their corresponding 

tables in the appendices is that the first stage short run control chart factors in the first 

row of each input file are set to zero. This is required in order for the program to 

correctly read the second stage short run control chart factors from these input files when 

m=l (in the case of (X, R), (X, v), (X, Fv), and (X, s) control charts) or m=2 (in the 

case of (X, MR) control charts). 
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Module Stage 1 

When the data entry is complete, the first replication of the two stage short run control 

charting procedure begins as program execution proceeds from main program cc to 

module Stage_l and the subroutine for the control chart combination entered by the user. 

Each of the five subroutines for Stage 1 control charting performs the following tasks: 

• Reads first stage short run control chart factors from the input file. 

• Generates first stage subgroups. 

• Constructs first stage control limits. 

• Determines OOC ~ubgroups. 

The tasks in the last two bullet points use Hillier's .(1969) approach. When Stage 1 

control charting is complete, program execution returns to main program cc. 

ModuleD&R 

Once program execution returns to main program cc, it immediately proceeds to 

module D _and_R and the subroutine for the D&R procedure entered by the user. All six 

D&R procedures are described earlier in the Delete and Revise (D&R) Procedures 

section of this chapter. When the D&R procedure is complete, program execution returns 

to main program cc. At this point, the program assumes that control of the process has 

been established. 
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Module Stage 2 

Once program execution returns to main program cc, required summations are 

calculated and required variable assignments are made. Program execution then proceeds 

to module Stage_2 and the subroutine for the control chart combination entered by the 

user. Each of the five subroutines for Stage 2 control charting performs the following 

tasks: 

• Reads second stage short run control chart factors from the input file. 

• Constructs second stage control limits. 

• Generates second stage subgroups. 

• Determines the run length (RL) and, if applicable, if a false alarm occurs. 

The calculations in the last bullet point are based on the signaling capabilities of 

combined control charts for centering and spread; i.e., a signal occurs if a subgroup plots 

OOC on either the control chart for centering or the control chart for spread. The number 

of the first subgroup that signals is the RL value. The second stage control limits are not 

updated as subgroups are accumulated. When an RL value is determined, Stage 2 control 

charting is complete and program execution returns to main program cc. 

Replications 

In main program cc after Stage 2 control charting, required summations are calculated. 

When this is complete, execution returns to the location in main program cc immediately 
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before the five subroutine calls for Stage 1 control charting to begin the second 

replication. The entire procedure for two stage short run control charting just described 

repeats for the amount of times entered by the user. 

Output 

After the last replication, program execution in main program cc proceeds to writing 

the following information to the output file: 

• The process mean and standard deviation. 

• The number of replications of the two stage short run control charting procedure that 

were carried out. 

• The control chart combination ((X, R), (X, v), {X, ..Jv}, (X, s), or (X, MR)). 

• The subgroup size (not applicable to (X, MR) control charts). 

• The number of subgroups for Stage 1. 

• The D&R procedure. 

• The state of the process in Stage 1: IC or OOC. If it is OOC, then the type of 

sustained shift, the shift size (in the same units as the parameter that has shifted), and 

the number of the first subgroup after the shift in Stage 1 are given. 

• The state of the process in Stage 2: IC or OOC. If it is OOC, then the type of 

sustained shift, the shift size (in the same units as the parameter that has shifted), and 

the number o(the first subgroup after the shift in Stage 2 are given. 

• The ARL and SDRL. 

• TheAPFL and SDPFL(if applicable). 
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• A table ·of POD values. 

The information in the first eight bullet points was entered by the user. The values in the 

last three bullet points are calculated bythe program. 

In addition to these calculated values, which are explained in the Measurements 

section of this chapter, the computer program determines counts of the number of 

occurrences of certain events (when applicable). These events are as follows: 

• The number of times out of the total number of replications that D&R 1 iterated more 

than once. 

• The number of times out of the total number of replications that D&R 2 iterated more 

than once for the control chart for spread as well as for the control chart for centering. 

• The number of times out of the total number of replications the program skipped a 

replication because the number of subgroups dropped to zero (for two stage short run 

(X, R) , (X, v), (X, J;) , (X, s), and (X, MR) control charts) or one (for two stage 

short run (X, MR) control charts) after OOC subgroups were deleted in a D&R 

procedure. 

• The number of times out of the total number of replications a D&R procedure was 

stopped because the number of subgroups dropped to one (for two stage short run 

(X, R) , (X, v) , (X, J;) , and (X, s) control charts) or two (for two stage short run 

(X, MR) control charts) after OOC subgroups were deleted. 

These counts, if applicable, are also written to the output file. 
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Once the above information, applicable calculations, and applicable counts have been 

written to the output file, execution of the computer program is complete. 

Interpretation of Results from the Computer Program 

The fourteen pairs of tables (Tables 8.la-8.14b) that appear in this section were 

constructed from output files generated from sample runs of the computer program. For 

. example, Tables 8.12a and 8.12b were constructed from the six output files in Appendix 

F.3 of this dissertation. In addition to the notation already introduced in this chapter, 

Tables 8.la-8.14b use the following notation: 

• MN - a sustained shift in the mean 

• SD - a sustained shift in the standard deviation 

• MS - a sustained shift in both the mean and the standard deviation 

• Replications (skipped) - the number of replications carried out and, in parentheses, 

the number of replications skipped because the number of subgroups dropped to zero 

(for two stage short run (X, R), (X, v), (X, -,Jv), (X, s), and (X, MR) control charts) 

or one (for two stage short run (X, MR) control charts) after OOC subgroups were 

deleted in a D&R procedure. 

• Stops - the number of times out of the total number of replications carried out that a 

D&R procedure was stopped because the number ofsubgroups dropped to one (for 

two stage short run (X, R), (X, v), (X,-,Jv), and (X, s) control charts) or two (for 

two stage short run (X, MR) control charts) after OOC subgroups were deleted. 
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The sample runs of the program that generated the information in Tables 8.la-8.14b 

assumed the following: 

• The process mean and standard deviation are always 0.0 and 1.0, respectively. 

• .. The planned number of replications is always 5000. 

• The subgroup size n is always 3 (not applicable to (X, MR) control charts). 
. . 

• The nunib~r of Stage 1 subgr~ups (d~noted by m) is always 5 for two stage short run 

(X, R), (X, v), (X, ,,/v), and (X, s) co~trol charts and it is always 15 for two stage 

. . ' . 
short run (X, MR) control charts. This is why the first four sample input files in 

Appendix F.2 have two stage short run control chart factors for (X, R), (X, v), 

(X, ,Jv) , and (X, s) · charts form up to and including m=5 and the fifth sample input 

file in Appendix F.2 has two stage short run control chart factors for (X, MR) charts 

form up to and including m=15. 

• A shift in the mean is always of size 1.5 (same units as the mean). 

• A shift in the standard deviation is always of size 1.0 (same units as the standard 

. deviation). 

• A shift in Stage 1 always occurs between subgroups 2 and 3. 

• A shift in Stage 2 always occurs between subgroups 10 and 11. 

• The process is JC immediately before Stage 2 control charting begins. 
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Sample Runs for ah IC Process in Stages 1 and 2 

The first 28 sample runs of the program are for the process being IC during both Stage 

1 and Stage 2 control charting. Two stage short run control charting for (X, R), (X, v), 

(X, -.Jv) , (X, s), and (X, MR) charts was simulated using all six· D&R procedures for 

each control chart combination. The results of these simulations appear in Tables 8.la-

8.5b. 

Since the process is being simulated as IC in Stage 2, it is desirable for the ARL 

values in Tables 8. la-8.5a to be as high as possible. Also, it is desirable for the P(RL $ t) 

values in Tables 8.lb-8.5b to be as low as possible (since they correspond to probabilities 

of false alarms within t or less subgroups after. starting Stage 2 control charting), 

especially for small numbers of subgroups (since a short run situation is in effect). 

Based on both ofthese criteria, the informationinTables 8.la-8.5b indicates that 

D&R 4 is, for the most part, the delete and revise procedure of choice. The only 

exception is in Table 8.3a, where D&R 1 is the delete and revise procedure of choice 

based on the ARL. This implies that, under the assumptions of this simulation, it is 

preferable to use subgroups that signal false alarms in the construction of second stage 

control limits. The cost, in terms of the loss in reliability of second stage control limits, is 

higher by throwing out subgroups that signal false alarms than it is by including them in 

the construction of second stage control limits. 

Comparing results in Tables 8.la-8.5a reveals that two stage short run (X, s) control 

charts have the highest ARL for D&R 4. Comparing results in Tables 8.1 b-8.5b reveals 

that two stage short run (X, -.Jv) control charts have, for most of the shown values oft, 
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Table 8.la. ARL, SDRL, Replications, and Stops for Two Stage 

Short Run (X, R) Control Charts with Stage 1: IC and Stage 2: IC 

D&R 
ARL SDRL 

Replications 
Stops 

Procedure (Skipped) 
1 552.89 701.12 5000 (0) 0 
2 550.10 702.51 4999 (1) 1 
3 552.87 701.72 5000 (0) 0 
4 560.49 702.22 5000 (-----) -----
5 552.08 700.49 5000 (0) 0 
6 552.03 700.61 5000 (0) 0 

# of Times D&R 1 Iterated More Than Once: 22 
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 8 

# of Times D&R 2 Iterated More Than Once forthe X Control Chart: 70 

Table 8.lb. P(RL :s; t) for Two Stage Short Run 

(X, R) Control Charts with Stage 1: IC and Stage 2: IC 

t 
Delete and Revise (D&R) Procedure 

1 2 3 4 5 6 
1 .· 0.00940 0.01000 0.00900 0,00740 0.00820 0.00860 
2 0.01640 0.01760 0.01600 0.01260 0.01520 0.01560 
3 0.02540 0.02741 ·0.02520 0.02040 0.02440 0.02500 
4 0.03360 0.03561 0.03300 0.02700 0.03260 0.03300 
5 0.03820 0.04061 0.03760 0;03140 0.03700 0.03760 
6 0.04400 0.04721 0.04400 0.03580 0.04320 0.04420 
8 0.05380 0.05761 0.05460 0.04520 0.05320 0.05480 
10 0.06400 0.06721 0.06480 0.05420 0.06380 0.06500 
15 0.08880 0.09182 0.08880 0.07820 0.08840 0.08920 
20 0.11040 0.11462 0.11100 0.09960 0.11000 0.11180 
30 0.14040 0.14423 0.14100 0.12980 0.13960 0.14180 
40 0.16480 0.16863 0.16520 0.15360 0.16420 0.16620 
50 0.19180 0.19584 0.19160 0.17980 0.19120 0.19320 
100 0.27440 0.27806 0.27460 0.26480 0.27440 0.27520 
200 0.40740 0.41148 0.40800 0.40060 0.40820 0.40820 
300 0.50200 0.50630 0.50340 0.49600 0.50360 0.50380 
400 0.57760 0.58192 0.57900 0.57320 0.57900 0.57940 
500 0.63500 0.63773 0.63640 0.63120 0.63600 0.63680 
750 0.74900 0.75075 0.74840 0.74560 0.74920 0.74860 
1000 0.82100 0.82156 0.82060 0.81840 0.82120 0.82080 
2000 · 0.95460 0.95479 0.95460 0.95280 0.95460 0.95480 
3000 0.98480 0.98480 0.98480 0.98440 0.98500 0.98500 
5000 0.99840 0.99840 0.99840 0.99860 0.99840 0.99840 
7500 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
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. Table 8.2a .. ARL,SDRL, Replications, andStops for Two Stage 

Short Run (X, v) Control Charts with Stage l: IC and Stage 2: IC 

D&R Replications 
Procedure 

ARL SDRL (Skipped) 
Stops 

1 ·. 543.47 699.56 5000 (0) 1 
2 540.76 698.13 . 5000 (0) 0 
3 543.47 699.98 .· 5000 (0) 0 
4 . 557.40 705.40 5000 (-----) -----
5 542.93 699.56 5000 (0) 0 
6 543.01 699.50 5000 (0) 0 

# of Times D&R 1 Iterated More Than Once: 14 
# of Times D&R 2 Iterated More Than Once for.the v Control Chart: 5 

-
# of Times.D&R 2 Iterated More Than Once for the X Control Chart: 71 

t 

1 
2 
3 
4 
5 
6 
8 
10 
15 
20 
30 
40 
50 

. 100 
200 
300 
400 
500 
750 
1000 
2000 

· 3000 
5000 
7500 

· Table 8.2b. P(RL s; t) for Two Stage Short Run 

(X, v) Control Charts with Stage 1: IC and Stage 2: IC 

Delete and Revise (D&R) Procedure 
1 2 3 4 5 

0.00900 0.01000 0.00860 0.00640 0.00880 
0.01580 0.01740 0;01660 0.01080 0.01620 
0.02460 0.02680 · 0.02560 0.01780 0.02480 
0.03200 0.03520 0.03340 0.02380 0.03240 
0.03740 0.04060 0.03860 0.02800 0.03760 
0.04440 0.04660 0.04460 . 0;03360 0.04400 
0.05320 0.05640 0.05400 0.04180 0.05300 
0.06380 0.06680 0.06520 0.05080 0.06420 
0.09140 0.09420 0.09220 0.07640 0.09180 
0.11180 0.11520 0.11340 0.09840 0.11220 
0:14180 · 0.14520 0.14340 0.12740 0.14220 
0.16640 0.17020 0.16760 0.15060 0.16680 
0.19260 0.19640 0.19360 0.17700 0.19300 
0.28300 0.28740 0.28400 0.26980 0.28380 
0.40940 0.41140 0.40900 0.39440 0.41020 
0.50240 0.50420 0.50280 0.49080 0.50320 
0.58040 ·o.58260 0.58100 0.57040 0.58140 
0.64260 0.64360 0.64220 0.63180 0.64320 
0.75760 0.75800 0.75720 0.75060 0.75800 
0.82920 0.83040 0.82880 0.82460 0.82960 
0.95560 0.95620 0.95580 0.95420 0.95560 
0.98440 0.98460 0.98420 0.98340 0.98440 
0.99860 0.99860 0.99860 0.99860 0.99860 
1.00000 1.00000 1.00000 1.00000 1.00000 
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6 
0.00880 
0.01660 
0.02580 
0.03400 
0.03940 
0.04560 
0.05520 
0.06600 
0.09300 
0.11340 
0.14360 
0.16840 
0.19440 
0.28420 
0.40940 
0.50380 
0.58120 
0.64300 
0.75700 
0.82920 
0.95580 
0.98440 
0.99860 
1.00000 



Table 8.3a. ARL; SDRL, Replications, and Stops for Two Stage 

Short Run (X, Fv) Control Charts with Stage 1: IC and Stage 2: IC 

D&R ARL SDRL 
Replications 

Stops 
Procedure (Skipped) 

1 566.68 758.05 5000 (0) 8 
2 550.63 675.26 5000 (0) 3 
3 555.38 683.76 5000 (0) 0 
4 561.88 682.24 5000 (-----) -----
5 555.38 682.22 5000 (0) 0 
6 555.38 683.51 5000 (0) 0 

# of Times D&R 1 Iterated More Than Once: 93 

# of Times D&R 2 Iterated More Than Once for the Fv Control Chart: 28 
-

# of Times D&R 2 Iterated More Than Once for the X Control Chart: 60 

t 

1 
2 
3 
4 
5 
6 
8 
10 
15 
20 
30 
40 
50 
100 
200 
300 
400 
500 
750 
1000 
2000 
5000 
10000 
30000 

Table 8.3b. P(RL ~ t) for Two Stage Short Run 

(X,Fv) Control Charts with Stage 1: IC and Stage 2: IC 

Delete and Revise (D&R) Procedure 
1 2 3 4 5 

0.00680 0.00800 0.00760 0.00620 0.00740 
0.01060 0.01260 0.01240 0.00980 0.01160 
0.01740 0:02020 0.01900 0.01600 0.01780 
0.02260 0.02580 0.02460 0.02080 0.02380 
0.02660 0.03020 0.02860 0.02480 0.02760 
0.03240 0.03580 0.03420 0.03020 0.03320 
0.04100 0.04400 0.04240 0.03800 0.04140 
0.05040 0.05340 0.05180 0.04660 0.05080 
0.07520 0.07780 0.07560. 0.06960 0.07440 
0.09680 0.09920 0.09720 0.09020 0.09580 
0.12340 0.12520 0.12360 0.11660 0.12220 
0.14660 0.14800 0.14620 0.13900 0.14520 
0.17040 0.17180 0.17040 0.16280 0.16900 
0.25760 0.26100 0.25900 0.25220 0.25760 
0.38660 0.39080 0.38820 0.38140 0.38720 
0.48040 0.48540 0.48380 0.47780 0.48320 
0.56220 0.56560 0.56560 0.55920 0.56540 
0.62380 0.62800 0.62760 0.62140 · 0.62760 
0.74480 0.74920 0.74820 0.74380 0.74860 
0.82080 0.82440 0.82400 . 0.82020 0.82400 
0.95520 0.95800 0.95680 0.95620 0.95680 
0.99800 0.99900 0.99900 0.99900 0.99900 
0.99980 1.00000 1.00000 1.00000 1.00000 
1.00000 1.00000 1.00000 1.00000 1.00000 
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6 
0.00720 
0.01200 
0.01880 
0.02520 
0.02920 
0.03480 
0.04280 
0.05220 
0.07600 
0.09720 
0.12320 
0.14640 
0.17040 
0.25880 
0.38760 
0.48380 
0.56560 
0.62800 
0.74820 
0.82400 
0.95680 
0.99900 
1.00000 
1.00000 



Table 8.4a. ARL, SDRL, Replications, and Stops for Two Stage 

Short Run (X, s) Control Charts with Stage 1: IC and Stage 2: IC 

D&R Replications 
Procedure 

ARL -SDRL 
(Skipped) 

Stops 

1 562.52 709.58 5000 (0) 0 
2 561.89 . 709.13 5000 (0) 1 
3 561.99 706.56 5000 (0) 0 
4 566.35 702.87 5000 (-----) -----
5 562.51 · 709.61 5000 (0) 0 
6 561.99 -707.42 5000 (0) 0 

# of Times D&R 1 Iterated More Than Once: 17 
# of Times D&R 2 Iterated More Than Once for the s Control Chart: 8 

-
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 65 

t 

1 
2 
3 
4 
5 
6 
8 
10 
15 
20 
30 
40 
50 
100 
200 
300 
400 
500 
750 
1000 
2000 
3000 
5000 
7500 

Table 8.4h. P(RL :5 t) for Two Stage Short Run 

(X, s) Control Charts with Stage 1: IC and Stage 2: IC 

. Delete and Revise (D&R) Procedure 
1 2 3 4 5 

·- 0.00940 0.01000 0.00860 0.00800 ·0.00860 
0.01700 0;01780 ·0:01580 0.01280 0.01600 
0.02520 · 0.02640 0.02420 0.02120 0.02420 
0.03120 0.03260 0.03020 0:02600 0.03020 
0.03640 . 0.03820 0.03560 0.03040 0.03540 
0.04320 0.04560 0.04320 0.03680 0.04260 
0.05260 0.05560 0.05320 0.04540 0.05200 
0.06220 0.06500 0.06260 0.05420 0.06140 
0.08540 0.08800 0.08600 0.07680 0.08480 
0.10620 0.11000 0.10780 0.09800 0.10560 
0.13460 0.13780 0.13600 0.12660 0.13380 
0.15960 0.16340 0.16100 0.15080 0.15900 
0.18800 . 0.19180 0.18900 0.17840 0.18740 
0.27540 0.27800 0.27640 0.26680 0.27520 
0.40340 0.40480 0.40380 0.39780 0.40300 
0.49200 0.49400 0.49280 0.48880 0.49240 
0.57040 0.57160 0.57100 0.56640 0.57100 
0.62740 0.62860 0.62800 0.62420 0.62780 
0.74240 0.74200 0.74160 0.74020 0.74240 
0.81700 0.81660 0.81640 0.81620 0.81700 

.· 0.95400 0.95420 0.95400 0.95380 0.95400 
0.98380 0.98380 0.98420 0.98420 0.98380 
0.99840 0.99860 0.99860 0.99880 0.99840 
1.00000 1.00000 1.00000 1.00000 1.00000 
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6 
0.00840 
0.01580 
0.02420 
0.03040 
0.03560 
0.04320 
0.05320 
0.06240 
0.08560 
0.10760 
0.13580 
0.16120 
0.18960 
0.27600 
0.40320 
0.49300 
0.57140 
0.62840 
0.74200 
0.81660 
0.95400 
0.98400 
0.99860 
1.00000 



Table 8.5a. ARL, SDRL, Replications, and Stops for Two Stage 
Short Run (X, MR) Control Charts with Stage 1: IC and Stage 2: IC 
D&R ARL SDRL 

Replications 
Stops Procedure (Skipped) 

2 539.78 705.27 5000 (0) 0 
3 540.46 705.74 5000 (0) 0 
4 544.85 709.22 5000 (-----) -----
6 540.76 705.61 5000 (0) 0 

# of Times D&R 2 Iterated More Than Once for the MR Control Chart: 13 
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 51 

Table 8.5b. P(RL :s; t) for Two Stage Short Run 
(X, MR) Control Charts with Stage 1: IC and Stage 2: IC 

t 
Delete and Revise (D&R) Procedure 
2 3 4 6 

1 0.00340 0.00300 0.00220 0.00260 
2 0.01200 0.01120 0.01000 0.01080 
3 0.01840 0.01740 0.01620 0.01700 
4 0.02500 0.02380 0.02260 0.02360 
5 0.02940 0.02820 0.02680 0.02800 
6 0.03540 0.03360 0.03180 0.03340 
8 0.04440 0.04260 0.03960 0.04220 
10 0.05480 0.05320 0.04940 0.05260 
15 0.07660 0.07560 0.07080 0.07520 
20 0.09580. 0.09480 0.08940 0.09440 
30 0.12960 0.12800 0.12160 0.12780 
40 0.16020 0.15860 0.15320 0.15820 
50 0.18460 0.18320 0.17760 0.18280 
100 0.28000 0.27940 0.27380 0.27880 
200 0.42000 0.41960 0.41580 0.41920 
300 0.51940 0.51940 0.51540 0.51920 
400 0.59560 0.59560 0.59200 0.59540 
500 0.65620 0.65600 0.65280 0.65620 
750 0.76240 0.76220 0.76060 0.76200 
1000 0.83240 0.83220 0.83120 0.83200 
2000 0.95000 0.94980 0.94940 0.94960 
3000 0.98380 0.98380 0.98340 0.98380 
5000 0.99860 0.99860 0.99840 0.99860 
7500 0.99980 0.99980 0.99980 0.99980 
10000 1.00000 1.00000 1.00000 l.00000 
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the lowest P(RL :s; t) values for D&R 4. These results imply that, under the assumptions 

of this simulation, different control chart combinations are preferable depending on the 

measurement used. 

The information in Tables 8.1 b-8Ab also indicates that the P(RL :s; t) values when t=l 

are reasonably close to the theoretical probability of a false alarm. Assuming 

. independence between the control charts for centering and spread, the theoretical 

probability of a false alarm (i.e., P(false alarm)) may be calculated using equation (8.2): 

P(false alarm)= aCen + (aSpreadUCL + aSpreadLCL)-acen • (aSpreadUCL + aSpreadLCL) (8.2) 

where 

acen : P(false alarm) on the control chart for centering 

aspreactucL : P(false alarm) on the control chart for spread above the upper control limit 

(UCL) 

aspreactLcL : P(false alarm) on the control chart for spread below the lower control limit 

(LCL) 

For the sample runs of the program, aCen = 0.0027 , aSpreadUCL = 0.005, and 

aspreadLCL = 0.001. This means that P(false alarm), as calculated by equation (8.2), is 

equal to 0.0086838. 

For example, the P(RL :s; t) value from Table 8.lb for D&R 1 and t=l is 0.00940. The 

fact that this value is reasonably close to the theoretical probability of a false alarm is not 

surprising. As was mentioned in the P(false alarm), APFL, and SDPFL subsection of the 
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Measurements section of this chapter, Hillier's (1969) methodology, upon which the two 

stage short run variables control charts presented in Chapters IV -VII are based, allows for 

the specification of the desired probability of a false alarm. 

In Table 8.5b, each of the P(RL =:; t) values for t=l are much lower than 0.0086838. 

The closest one is 60.847% smaller than 0.0086838. However, these lower P(RL =:; t) 

values for t=l come at the pi;:ice of having the lowest ARL for D&R 4 among Tables 

8.la-8.5a. This is an example of the tradeoff mentioned by Del Castillo (1995) between 

having a low probability of a false alarm and a high probability of detecting a special 

cause signal inherent with two stage short run control charts. ·· 

It should be noted that the information in Tables 8.la-8.5a also indicates that D&R 1 

and D&R 2 are iterating more than once. These multiple iterations seem to create 

conditions causing replications to be skipped and the chosen D&R procedure to be 

stopped. Also, if one were to construct confidence intervals using the ARL and SDRL 

values in Tables 8.la-8.5a, then, depending on the confidence level chosen, the ARL 

results in Tables 8. la-8.5a may not be statistically significantly different. 

Sample Runs for an OOC Process in Stage 1 and an IC Process in Stage 2 

The next 18 sample runs of the program are for the process being OOC during Stage 1 

control charting and IC during Stage 2 control charting. Two stage short ruri control 

charting for (X, R) charts was simulated using all six D&R procedures for each OOC 

condition (MN, SD, MS). The results of these simulations appear in Tables 8.6a-8.8b. 

As in the previous subsection, since the process is being simulated as IC in Stage 2, it 

is desirable for the ARL values in Tables 8.6a-8.8a to be as high as possible. Also, it is 
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Table 8.6a. ARL; SDRL, Replications, and Stops for Two Stage 

Short Run· (X, R) Control Charts with Stage 1: OOC (MN) and Stage 2: IC 

D&R 
ARL SDRL Replications 

Stops Procedure (Skipped) 
1 332.74 833.38 4996 (4) 10 
2 314.33 515.14 4996 (4) 10 
3 299.30 487.34. 5000 (0) 0 
4 302.32 492.05 5000 (-----) -----
5 309.47 508.73 4999 (1) 0 
6 303.24 492.75 5000 (0) 0 

# of Times D&R 1 Iterated More Than Once: 108 
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 7 

-
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 626 

Table 8.6b. · P(RL ::;; t) for Two Stage Short Run (X, R) 
on ro S WI age : an tage : C t 1 Chart . th St 1 OOC (MN) d S 2 IC 

t Delete and Revise (D&R) Procedure 
1 2 3 4 5 6 

1 0.03883 0.03823 0.03860 .0.03440 0.03841 0.03640 
2 0.06385 0.06485 0.06840 0.06140 0..06601 0.06540 
3 0.08527 0.08667 0.09080 0.08220 0.08882 0.08660 
4 0.10248 . 0.10388 0.10960 0.09980 0.10582 0.10440 
5 0;11209 0.11629 0.12160 0.10980 · 0.11522 0.11600 
6 0.12830 0.13151 0.13840 0.12620 0.13263 0.13380 
8 0.15753 0.15973 0.16660 0.15580 0.16343 0.16420 
10 0.17734 0.17974 0.18840 0.17720 0.18344 0.18600 
15 0.22778 0.23058 0.24360 0.22980 0.23365 0.23580 
20 0.26301 0:26821 0.28000 0.26680 0.26885 0.27440 
30 . 0.30885 0.31405 . 0.32520 . 0.31500 . 0.31546 0.31820 
40 0.34788 0.35488 0.36600 0.35640 0.35547 0.35860 
50 0.38131 .0.39071. 0.40180 0.39260 0.38968 0.39560 
100 0.49420 0.50420 0.51020 0.50620 0.50050 0.50480 
200 0.61489 0.62470 0.62760 0.62480 0.62252 0.62520 
300 0.69456 0.69936 0.70520 0.70260 0.70214 0.70540 
400 0.75120 0.75600 0.76400 0.76240 0.75995 0.76480 
500 0.79223 0.79664 0.80820 0.80660 . 0.80096 0.80480 
750 0.86649 0.87050 0.87960 0.87860 0.87297 0.87700 
1000 0.91173 0.91273 0.91920 0.91820 0.91518 0.91820 
2000 0.98159 0.98199 0.98480 0.98460 0.98380 0.98420 
5000 0.99860 0.99980 0.99980 0.99960 0.99920 0.99980 
10000 0.99960 1.00000 1.00000 1.00000 1.00000 1.00000 
50000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
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Table 8.7a. ARL, SDRL, Replications, and Stops for Two Stage 

Short Run (X, R) Control Charts with Stage 1: OOC (SD) and Stage 2: IC 

D&R 
ARL SDRL 

Replications 
Stops 

Procedure (Skipped) 
1 463.12 561.26 5000 (0) 5 
2 455.32 549.20 5000 (0) 4 
3 ·453.95 546.51 5000 (0) 0 
4 453.07 533.20 5000 (-----) -----
5 460.32 554.43 5000 (0) 0 
6 455.49 549.37 5000 (0) 0 

# of Times D&R 1 Iterated More Than Once: 68 
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 29 

-
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 196 

t 

1 
2 
3 
4 
5 
6 
8 
10 
15 
20 
30 
40 
50 
100 
200 
300 
400 
500 
750 
1000 
2000 
3000 
5000 
7500 

Table 8.7b. P(RL ~ t) for Two Stage Short Run (X, R) 
Control Charts with Stage 1: OOC (SD) and Stage 2: IC 

Delete and Revise (D&R) Procedure 
1 2 3 4 5 

0.00260 0.00360 0.00320 0.00200 0.00200 
0.00540 0.00740 0.00580 0.00420 0.00480 
0.01000 0.01340 0.01120 0.00860 0.01000 
0.01420 0.01760 0.01460 0.01220 0.01380 
0.01680 0.02080 0.01740 0.01420 0.01620 
0.02060 0.02400 0.02080 0.01640 0.01940 
0.02740 0.03140 0.02780 0.02240 0.02600 
0.03460 0.03760 0.03400 0.02740 0.03300 
0.04960 0.05260 0.04900 0.04040 0.04780 
0.06260 0.06540 0.06180 0.05300 0.06100 
0.08660 0.09000 0.08720 0.07660 0.08540 
0.11300 0.11700 0.11500 0.10340 · 0.11320 
0.13860 0.14080 0.13940 0.12720 0.13800 
0.23880 0.24300 0.24300 0.22720 0.23800 
0.40080 0.40600 0.40600 0.39440 0.40000 
0.52000 0.52200 0.52300 0.52000 0.52020 
0.61660 0.62120 0.62060 0.61940 0.61600 
0.69160 0.69600 0.69780 0.69860 0.69260 
0.81100 0.81400 0.81620 0.81600 0.81160 
0.87980 0.88220 0.88280 0.88600 0.88140 
0.97400 0.97580 0.97540 0.97600 0.97540 
0.99220 0.99360 0.99320 0.99400 0.99280 
0.99920 0.99920 0.99920 0.99940 0.99920 
1.00000 1.00000 1.00000 1.00000 1.00000 
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6 
0.00240 
0.00480 
0.01020 
0.01400 
0.01640 
0.01960 
0.02660 
0.03280 
0.04740 
0.06020 
0.08520 
0.11240 
0.13680 
0.23980 
0.40460 
0.52260 
0.62080 
0.69740 
0.81640 
0.88320 
0.97540 
0.99340 
0.99920 
1.00000 



Table 8.8a. ARL, SDRL, Replications, and Stops for Two Stage 

Short Run (X, R) Control Charts with Stage 1: OOC (MS) and Stage 2: IC 

D&R ARL SDRL 
Replications 

Stops Procedure (Skipped) 
1 431.11 610.46 4992 (8) 9 
2 407.63 494.82 4997 (3) 13 
3 384.80 469.57 5000 (0) 0 
4 401.66 480.23 5000 (-----) -----
5 407.99 491.72 5000 (0) 0 
6 400.00 488.78 5000 (0) 0 

# of Times D&R 1 Iterated More Than Once: 126 
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 29 

-
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 427 

Table 8.8b. P(RL::; t) for Two Stage Short Run (X, R) 
ontro arts Wlt tage : an tage : C 1 Ch . h S 1 OOC (MS) d S 2 IC 

t 
Delete and Revise (D&R) Procedure 

.1 2 3 4 5 6 
1 0.00501 0.00981 0.01240 0.00700 0.00580 0.00840 
2 0.01062 0.01701 0.02000 0.01100 0.01180 0.01440 
3 0.01643 0.02341 0.02920 0.01760 0.01880 0.02160 
4 0.01983 0.02802 0.03440 0.02120 0.02280 0.02620 
5 ·0.02284 0.03262 0.03940 0.02460 0.02680 0.03040 
6 0.02704 0.03662 0.04500 0.02880 0.03180 0.03560 
8 0.03466 0.04623 0.05580 0.03700 0.03980 0.04500 
10 0.03986 0.05483 0.06400 0.04260 0.04680 0.05360 
15 0.05569 0.07324 0.08540 0.05880 0.06360 0.07320 
20 0.07031 0.08905 0.10100 0.07300 0.07760 0.08900 
30 0.10076 0.11847 0.13000 0.09980 0.10700 0.11800 
40 0.12881 0.14509 0.15900 0.12800 0.13520 0.14640 
50 0.15625 0.17150 0.18720 . 0.15580 0.16240 0.17340 
100 0.26342 0.28177 0.29860 0.27000 0.27200 0.28580 
200 0.42808 0.44187 0.45960 0.43540 0.43980 0.45000 
300 0.54868 0.56234 0.58080 0.56100 0.55980 0.57060 
400 0.64744 0.65799 0.67560 0.65960 0.65640 0.66500 
500 0.72135 0.72964 0.74580 0.73360 0.73060 0.73760 
750 0.83373 0.83910 0.85300 0.84640 0.84120 0.84520 

; 1000 0.89724 0.90014 0.90960 0.90700 0.90240 0.90380 
2000 0.97897 0.98239 0.98560 0.98420 · 0.98280 0.98260 
5000 0.99840 0.99980 0.99980 0.99960 0.99980 0.99980 
10000 0.99980 1.00000 1.00000 1.00000 1.00000 1.00000 
20000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
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desirable for the P(RL::::; t) values in Tables 8.6b-8.8b to be as low as possible (since they 

correspond to probabilities of false alarms within t or less subgroups after starting Stage 2 

control charting), especially for small numbers of subgroups (since a short run situation is 

in effect). · 

Based on the ARL, Tables 8.6a-8.8a indicate that D&R 1 is the delete and revise 

procedure of choice,regardless of the OOC condition in Stage 1. However, the SDRL 

values for D&R 1 are higher than those for the other D&R procedures. The ARL for 

D&R 1 in Table 8.7a is higher than the ARL values for D&R 1 in Tables 8.6a and 8.Sa. 

The ARL for D&R 1 in Table 8.6a is the lowest of the three. These results imply that, 

under the assumptions of this simulation, the type of OOC condition in Stage 1 has an 

· affect on the IC ARL in Stage 2. Additionally, the ARL values for each of the six D&R 

procedures in Table 8.la are higher than the respective ARL values in Tables 8.6a-8.8a. 

This result implies that, under the assumptions of this simulation, an OOC condition in 

Stage 1 causes a reduction in the IC ARL in Stage 2, regardless of the D&R procedure 

used. 

The choice of the appropriate D&R procedure based on the P(RL::::; t) values in Tables 

8.6b-8.8b varies depending on the OOC condition as well as the subgroup number t. In 

Table 8.6b, D&R 4 results in the lowest P(RL::::; t) values for shown values oft::::; 10. For 

shown values oft > 10, D&R 1 is the delete and revise procedure of choice. In Table 

8.7b, D&R 4 again results in the lowest P(RL::::; t) values, but for shown values oft::::; 300. 

For most of the shown values oft ~ 300, D&R 1 is the delete and revise procedure of 

choice. In Table 8.8b, D&R 1 results in the lowest P(RL::::; t) values for each of the 

shown values oft except t: 30, 40, 50. Since D&R 1 is not the delete and revise 
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procedure of choice in Tables 8.6b and 8.7b for shown values oft~ 10 and t ~ 200, 

respectively, this is an example of how the ARL can be misleading in choosing the 

appropriate D&R procedure to use in a short run situation. 

The results from Tables 8.6b and 8.7b imply that, under the assumptions of this 

. simulation, it is preferable to use subgroups that signal shifts in either the mean or the 

standard deviation in the construction of second stage control limits. The cost, in terms 

of the loss in reliability of second stage control limits, is higher by throwing out 

subgroups that signal shifts in either the mean or the standard deviation than it is by 

including them in the construction of second stage control limits. 

The P(RL ~ t) values for shown values oft ~ 300 for D&R 4 and for shown values of 

t ~ 300 for D&R 1 in Table 8.7b are lower than the lowest P(RL ~ t) values in Tables 

8.6b and 8.8b. The lowest P(RL ~ t) values in Table 8.6b are higher than those in Tables 

8.7b and 8.8b. These results imply that, under the assumptions of this simulation, the 

type of OOC condition in Stage 1 has an affect on the P(RL ~ t) values in Stage 2. 

Additionally, the lowest P(RL ~ t) values in Table 8.lb are higher than those in Table 

8.7b for shown values oft~ 200 and in Table 8.8b for shown values oft~ 100. These 

results imply that, under the assumptions of this simulation, having Stage 1 IC does not 

necessarily result in Stage 2 control limits with the lowest P(RL ~ t) values. 

An issue of concern is the P(RL ~ t) values when t=l. In Table 8.6b, each of these 

values is much larger than 0.0086838, the theoretical probability of a false alarm. The 

closest one is 396.140% larger than 0.0086838. In Table 8.7b, each of these values is 

much smaller than 0.0086838. The closest one is 241.217% smaller than 0.0086838. In 

Table 8.8b, some of these values are reasonably close to 0.0086838, while others are not. 
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These results are in contrast to the P(RL::; t) values when t=l in Table 8.lb. Clearly, 

un~er the assumptions of this simulation, an OOC condition as well as the type of OOC 

condition in Stage 1 has a significant effect on the P(RL ::; t) values when t=l in Stage 2. 

Again, as in the previous subsection, the information in Tables 8.6a-8.8a indicates that 

D&R 1 and D&R 2 are iterating more than once. These multiple iterations seem to create 

conditions causing replications to be skipped and the chosen D&R procedure to be 

stopped. Also, if one were to construct confidence intervals using the ARL and SDRL 

values in Tables 8.6a-8.8a, then, depending on the confidence level chosen, the ARL 

results in Tables 8.6a-8.8a may not be statistically significantly different. 

Sample Runs for an IC Process in Stage 1 and an OOC Process in Stage 2 

The next 18 sample runs of the program are for the process being IC during Stage 1 

control charting and OOC during Stage 2 control charting. Two stage short run control 

charting for (X, R) charts was simulated using all six D&R procedures for each OOC 

condition (MN, SD, MS). The results of these simulations appear in Tables 8.9a-8. l lb. 

Since the process is being simulated as OOC in Stage 2, it is desirable for the ARL 

and, as always, the APFL values in Tables 8.9a-8.lla to be as low as possible. Also, it is 

desirable for the P(RL::; t) values in Tables 8.9b-8.1 lb to be as high as possible (since 

they correspond to probabilities of detecting special causes within t or less subgroups 

after the shift in Stage 2), especially for small numbers of subgroups (since a short run 

situation is in effect). 

Based on the ARL, D&R 2 (in Tables 8.9a and 8.1 la) and D&R 4 (in Table 8.10a) are 

the delete and revise procedures of choice. The ARL for D&R 2 in Table 8.1 la is lower 

222 



Table 8.9a. ARL, SDRL, APFL, SDPFL, Replications, and Stops for Two 

Stage Short Run (X, R) Control Charts with Stage 1: IC and Stage 2: OOC (MN) 
D&R 

ARL SDRL APFL SDPFL 
Replications 

Stops Procedure (Skipped) 
1 95.01 241.02 0.01116 0.05639 5000 (0) 1 
2 94.39 240.51 0.01252 0.06003 5000 (0) 1 
3 95.08 241.31 0.01098 0.05263 5000 (0) 0 
4 95.00 240.54 0.00738 0.03638 5000 (-----) -----
5 95.01 241.49 0.01064 0.05253 5000 (0) 0 
6 94.63 240.54 0.01092 0.05120 5000 (0) 0 

# of Times D&R 1 Iterated More Than Once: 19 
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 10 

-
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 82 

t 

1 
2 
3 
4 
5 
6 
8 
10 
15 
20 
30 
40 
50 
100 
200 
300 
400 
500 
750 
1000 
2000 
3000 
4000 

Table 8.9b. P(RL ~ t) for Two Stage Short Run (X, R) 
Control Charts with Stage 1: IC and Stage 2: OOC (MN) 

Delete and Revise (D&R) Procedure 
1 2 3 4 5 

0.14340 0.14800 0.14600 0.13480 0.14320 
0.22360 0.22600 0.22500 0.21380 0.22360 
0.27540 0.27960 0.27940 0.26720 0.27600 
0.31760 0.32120 0.32160 0.31060 0.31800 
0.35140 0.35580 0.35540 0.34480 0.35300 
0.38120 0.38520 0.38500 0.37500 0.38300 
0.42780 0.43200 0.43160 0.42160 0.43040 
0.46400 0.46840 0.46720 0.45820 0.46600 
0.52920 0.53380 0.53160 0.52700 0.53120 
0.57820 0.58260 0.58080 0.57800 0.58000 
0.64700 0.65020 0.64720 0.64600 0.64760 
0.68480 0.68740 0.68480 0.68400 0.68540 
0.71320 0.71500 0.71320 0.71240 0.71360 
0.80120 0.80180 0.80140 0.80180 0.80180 
0.87360 0.87500 0.87340 0.87340 0.87420 
0.91100 0.91200 0.91100 0.91240 0.91120 
0.93520 0.93600 0.93580 0.93580 0.93500 
0.95180 0.95200 0.95180 0.95180 0.95160 
0.97420 0.97400 0.97340 0.97380 0.97360 
0.98500 0.98540 0.98520 0.98540 0.98500 
0.99780 0.99780 0.99780 0.99780 0.99780 
0.99920 0.99920 0.99920 0.99920 0.99920 
1.00000 1.00000 1.00000 1.00000 1.00000 
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0.14620 
0.22560 
0.27900 
0.32040 
0.35440 
0.38380 
0.43000 
0.46580 
0.53140 
0.58060 
0.64760 
0.68540 
0.71400 
0.80160 
0.87380 
0.91160 
0.93620 
0.95220 
0.97400 
0.98540 
0.99780 
0.99920 
1.00000 



Table 8.10a. ARL, SDRL, APFL, SDPFL, Replications, and Stops for Two 

Stage Short Run (X, R) Control Charts with Stage 1: IC and Stage 2: OOC (SD) 

D&R 
ARL SDRL APFL SDPFL 

Replications 
Stops 

Procedure (Skipped) 
1 23.24 93.78 0.01100 0.05779 5000 (0) 1 
2 22.38 89.05 0.01178 0.05779 5000 (0) 2 
3 22.56 89.39 0.01056 0,04953 5000 (0) 0 
4 22.16 86.67 0.00736 0.03421 5000 (-----) -----
5 22.84 92.74 0.00994 0.04787 5000 (0) 0 
6 22.57 89.39 0.01052 0.04839 5000 (0) 0 

# of Times D&R l Iterated More Than Once: 28 
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 10 

-
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 96 

Table 8.10b. P(RL:::; t) for Two Stage Short Run 

(X, R) Control Charts with Stage 1: IC and Stage 2: OOC (SD) 

t 
· Delete and Revise (D&R) Procedure 

1 2 3 4 5 6 
1 0.18840 0.18860 0.18760 0.17680 0.18860 0.18880 
2 0.31400 0.31380 0.31300 0.30000 0.31460 0.31380 
3 0.40000 0.39980 0.39960 0.38880 0.40160 0.40040 
4 0.46680 0.46780 0.46620 0.45780 0.46800 0.46720 
5 0.51900 0.52000 0.51980 0.51160 0.52140 0.52040 
6 0.56100 0;56200 0.56140 0.55500 0.56320 0.56200 
8 0.62960 0.63080 0.62980 0.62600 0.63100 0.63020 
10 0.67980 0.68040 0.67920 0.67500 0.68080 0.67940 
15 0.75680 0.75940 · 0.75940 0.75680 0.75900 0.75920 
20 0.80380 0.80800 0.80620 0.80480 0.80480 0.80600 
30 0.86120 0.86340 0.86320 0.86060 0.86200 0.86280 
40 0.89240 0.89460 0.89440 0.89260 0.89380 0.89420 
50 0.91340 0.91640 0.91500 0.91420 0.91460 0.91500 
100 0.96120 0.96260 0.96220 0.96220 0.96220 0.96220 
200 0.98220 0.98300 0.98280 0.98400 0.98280 0.98280 
300 0.98940 0.99000 0.98960 0.99080 0.98980 0.98960 
400 0.99280 0.99340 0.99320 0.99400 0.99320 0.99320 
500 0.99520 . 0.99540 0.99540 0.99620 0.99540 0.99540 
750 0.99680 0.99720 0.99720 0.99760 0.99700 0.99720 
1000 0.99780 0.99800 0.99800 0.99800 0.99780 0.99800 
2000 0.99940 0.99940 0.99940 0.99940 0.99940 0.99940 
3000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
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Table 8.1 la. ARL, SDRL, APFL, SDPFL, Replications, and Stops for Two 

Stage Short Run (X, R) Control Charts with Stage 1: IC and Stage 2: OOC (MS) 

D&R 
ARL SDRL APFL SDPFL 

Replications 
Stops Procedure (Skipped) 

1 8.88 130.78 0.01072 0.05435 4999 (1) 1 
2 6.63 17.56 0,01086 0.05166 5000 (0) 1 
3 6.76 18.00 0.01082 0.05077 5000 (0) 0 
4 6.64 15.57 0.00724 0.03515 5000 ( -----) -----

5 6.78 17.58 0.01000 0.04863 5000 (0) 0 
6 6.75 17.98 0.01052 0.04835 5000 (0) 0 

# of Times D&R 1 Iterated More Than Once: 20 
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 4 

-
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 89 

Table 8.11 b. P(RL ~ t) for Two Stage Short Run 

(X, R) Control Charts with Stage 1: IC and Stage 2: · OOC (MS) 

t 
Delete and Revise (D&R) Procedure 

1 2 3 4 5 6 
1 0.31026 0.31540 0,31680 0.30540 0.31320 0.31520 
2 0.47650 0.48620 0.48520 0.47760 0.48140 0.48540 
3 0.59492 0.60440 0.60220 0.59960 0.60120 0.60260 
4 0.67013 0.67980 0.67720 0.67260 0.67620 0.67760 
5 0.72334 0.73500 0.73240 0.72880 0.73120 0.73320 
6 0.76215 0.77460 0.77120 0.76960 0.77000 0.77180 
8 0.81716 0.82680 0.82380 0.82280 0.82320 0.82400 
10 0.85437 0.86500 0.86140 0.86140 0.86100 0.86160 
15 0.91158 0.91700 0.91440 0.91340 0.91500 0.91480 
20 0.93599 0.94160 0.93980 0.93920 0.93980. 0.94020 
30 0.96179 0.96540 0.96400 0.96420 0.96340 0.96460 
40 0.97680 0.97980 0.97900 0.97960 0.97900 0.97920 
50 0.98260 0.98480 0.98440 0.98460 0.98400 0.98440 
100 0.99420 0.99560 0.99540 0.99560 0.99500 0.99540 
200 0.99760 0.99840 0.99800 0.99840 0.99800 0.99800 
300 0.99920 0.99940 0.99940 0.99980 0.99960 0.99940 
400 0.99960 0.99960 0.99960 1.00000 0.99980 0.99960 
500 0.99960 0.99980 0.99980 1.00000 0.99980 0.99980 
750 0.99980 1.00000 1.00000 1.00000 1.00000 1.00000 
1000 0.99980 1.00000 1.00000 1.00000 1.00000 1.00000 
2000 0.99980 1.00000 1.00000 1.00000 1.00000 1.00000 
5000 0.99980 1.00000 1.00000 1.00000 1.00000 1.00000 
10000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
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than the ARL values for D&Rs 2 and 4 in Tables 8.9a and 8.10a, respectively. The ARL 

for D&R 2 in Table 8.9a is the highest of the three (it is 1423.680% larger than the ARL 

. for D&R 2 in Table 8.11 a). These results imply that, under the assumptions of this 

. simulation, the type of OOC condition in Stage 2 has an affect on the OOC ARL in Stage 

2. As expected, the ARL values for each of the six D&R procedures in Tables 8.9a-8.l la 

are much lower than the respective ARL values in Table 8.la. . . ... •, '• 

Based on the APPL, Tables 8.9a-8.l la indicate that D&R 4 is the delete and revise 

procedure of choice regardless of the OOC condition in Stage 2. This reaffirms the 
. .· ··,' . ' 

statement made in the first subsection of this section that, in terms of the APPL, it is 

preferable t_o use subgroups that signal false alarms in the construction of second stage 

control limits. Also, the APPL values for D&R 4 are reasonably close to 0.0086838, the 

theoretical probability of a false alarm. However, the APPL values for the other D&R 

procedures are slightly inflated. 

The choice of the appropriate D&R procedure based on the P(RL ::;; t) values varies 

depending on the OOC condition as well as the subgroup number t. In Table 8.9b, D&R 

2 res!,llts in the highest P(RL ::;; t) values for shown values oft ::;; 200 ( except t=4 ). In 

Table 8.10b, D&Rs 5 (for shown values oft :5 10 (except t=l)), 2 (for shown values of 

t ~ 15 and t::;; 100), and 4 (for shown values oft~ 200) result in the highest P(RL :5 t) 

values. In Table 8.1 lb, D&Rs 2 (for shown values oft :5 200 (except t=l)) and 4 (for 

shown values oft~ 100) result in the highest P(RL ::;; t) values. Since the ARL value in 

Table 8.10a is not the lowest for D&R 2 or D&R 5, this is another example of how the 

ARL can be misleading in choosing the appropriate D&R procedure in a short rim 

situation. 
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The largest P(RL $; t) values in Table 8.11 b are larger than the largest P(RL::;:; t) values 

in Tables 8.9b and 8.10b. The largest P(RL::;:; t) values in Table 8.9b are lower than those 

in Tables 8.10b and 8.llb. These results imply that, under the assumptions of this 

simulation, the type of OOC condition in Stage 2 has an affect on the P(RL::;:; t) values in 

Stage 2. As expected, the P(RL::;:; t) values for each of the six D&R procedures in Tables 

8.9b-8.llb are mu.ch higher than the respective P(RL $; t) values inTable 8.la. 

The information in Tables 8.9a-8. l 1 b presents another example of the tradeoff 

mentioned by Del Castillo ( 1995) between having a low probability of a false alarm and a 

high probability of detecting a special cause signal inherent with two stage short run 

control charts. While D&R 4 results in the lowest APFL values regardless of the OOC 

condition in Stage 2, it also results in the lowestP(RL::;:; t) values for many of the shown 

values of tin Tables 8.9b and 8.10b. 

Again; as in the two previous subsections, the information in Tables 8.9a-8.lla 

indicates that D&R 1 and D&R 2 are iterating more than once. These multiple iterations 

seem to create conditions causing replications to be skipped and the chosen D&R 

· procedure to be stopped. Also, if one were to construct confidence intervals using the 

ARL and SDRL values in Tables 8.9a-8.l la, then, depending on the confidence level 

chosen, the ARL results in Tables 8.9a-8.l la may not be statistically significantly 

different. 

Sample Runs for an OOC Process in Stages 1 and 2 

The final 18 sample runs of the program are for the process being OOC during both 
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S'tage 1 and Stage 2 control charting. Two stage short run control charting for (X, R) 

charts was simulated using all six D&R procedures for each OOC condition (MN, SD, 

MS) in Stage 1 and one OOC condition (MN) in Stage 2. The results of these simulations 

appe:rr in Tables 8.12a-8.14b. 

As in the previous subsection, since the process is being simulated as OOC in Stage 2, 

it is desirable for the ARL and~ as always, the APFLvalues in Tables 8.12a-8.14a to be as 
. . 

_low as possible. Also, it is desirable for the P(RL ~ t) valµes in Tables 8.12b-8.14b to be 

as high as possible (since they correspond to probabilities of detecting special causes 

within t or less subgroups after the shift in Stage 2), especially for small numbers of 

subgroups (since a short run situation is in effect). 
-0 • 

Based on the ARL, I>&R 2 (in Tables 8.12a and 8.14a) and D&R 3 (in Table 8.13a) 

are the delete and revise procedures of choice. The ARL for D&R 3 in Table 8.13a is 

lower than the ARL values for D&R 2 in Tables 8.12a and 8.14a. The ARL for D&R 2 

in Table 8.14a is the highest of the three. These results imply th.at, under the assumptions 

of this simulation, the type of OOC condition in Stage 1 has an affect on the OOC (MN) 

ARL,in Stage 2. Additionally, the ARL values for each of the six D&R procedures in 

Table 8.9a are much lower than the respective ARL values in Tables 8.12a-8.14a. This 

result implies that, under the assumptions of this simulation, an OOC condition in 

Stage 1 causes an increase in the OOC (MN) ARL in Stage 2, regardless of the D&R 

procedure used. 

Based on the ArFL, Tables 8.12a-8.14aindicate that D&R 4 is the delete and revise 

procedure of choice regardless of the OOC condition in Stage 1. This implies that, under 

the assumptions of this simulation, it is preferable to use subgroups that signal shifts in 
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Table8.12a. ARL; SDRL,APFL,SDPFL, Replications, and Stops for Two Stage 

Short Run (X, R) Control Charts with Stage 1: OOC (MN) and Stage 2: OOC (MN) 
D&R 

ARL SDRL APFL SDPFL 
Replications 

Stops Procedure (Skipped) 
1• .464.86 693.88 0.03813 0.11174 4996 (4) 12 
2 393.96 584.75 0.03465 0.09819 4995 (5) 11 
3 415.52 596.73 0.03844 0;10604 5000 (0) 0 
4 422.42 603.49 0.03208 0.08711 5000 (-----) -----
5 450.38 654.57 0.03823 0.10840 4999 (1) 0 
6 425.71 603.89 0.03441 0.09416 4998 (2) 0 

· # of Times D&R 1 Iterated More Than Once: 111 
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 2 

-
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 644 

Table 8.12b. P(RL ~t) for Two Stage Short Run (X, R) 
C l Ch . h S 1 OOC (MN) d S 2 OOC (MN) ontro arts Wlt tage an tage 

t -Delete and Revise (D&R) Procedure 
1 2 3 4 5 6 

l 0.01801 0.03003 0.02220 0.01700 0.01760 0.01741 
2 0.03243 0.05005 0.04120 0.03280 0.03181 0.03201 
3 0.04724 0.06647 0.05700 0.04660 0.04701 0.04522 
4 0.05805 0.08028 0.06860 · 0.05680 0.05741 0.05482 
5 0.06805 0.09329 0.07920 0.06700 0.06841 0.06603 
6 .0.07686 0.10430 0.08820 0.07640 0.07682 0.07383 
8 0.09267 0.12513 0.10860 0.09620 0.09382 0.09284 
10 0.10969 · 0.14234 0.12460 0.11220 0.11082 0.10944 
15 0.13491 0.17137 0.15420 0.14100 0.13703 0.13906 

. 20 0.15873 0.20180 0.18520 0.17100 0.16363 0.16847 
30 0.20056 •. 0.25185 ·0.22920· 0.21560 0.20664 0.21449 
40 0.23259 0.28529 0.26240 0.24940 0.23785 0.24790 
50 · 0.25560 0.31051 0.28600 · 0.27340 0.26025 0.27231 
100 0.35649 · 0.41622 0.38660 · 0.37580 . 0.36067 0.37675 
200 . 0.48679 0.54234 0.51780 0.51100 0.49210 0.50900 
300 0.57906 0.63023 0.60820 0.60360 0.58312 0.60124 
400 0.65232 0.69530 0.67640 0.67200 0.65673 0.66967 
500 0.70136 0.74374 0.72640 0.72160 0.70734 0.71929 
750 0.80004 0.82943 0.82000 0.81800 0.80436 0.81453 
1000 0.85989 0.88308 0.87720 0.87580 0.86377 0.87275 
2000 0.96357 0.97337 0.97160 0.97060 0.96699 0.97099 
5000 0.99760 0.99920 0.99920 0.99900 0.99800 0.99920 
10000 0.99980 1.00000 1.00000 1.00000 1.00000 1.00000 
20000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
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Table 8.13a. ARL, SDRL, APFL, SDPFL, Replications, and Stops for Two Stage 

Short Run (X, R) Control Charts with Stage 1: OOC (SD) and Stage 2: OOC (MN) 

D&R Replications 
Procedure 

ARL SDRL APFL SDPFL 
(Skipped) 

Stops 

1 · 308.94 · 783.30 0.00468 0.02977 4999 (1) 4 
2 288.91 391.09 0.00490 0.02909 5000 (0) 6 
3 288.71 389.04 0.00452 0.02675 5000 (0) 0 
4 306.79 395.70 0.00298 0.01901 5000 (-----) -----
5 295.94 391.20 0.00426 0.02668 5000 (0) 0 
6 291.88 393.77 0.00374 0.02218 5000 (0) 0 

# of Times D&R 1 Iterated More Than Once: 85 
# of Times D&R 2 Iterated More Than Once for the R Control Chart: 30 

-
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 192 

t 

1 
2 
3 
4 
5 
6 
8 
10 
15 
20 . 
30 
40 
50 
100 
200 
300 
400 
500 
750 
1000 
2000 
5000 
10000 
50000 

Table 8.13b. P(RL:::; t) for Two Stage Short Run (X, R) 
Control Charts with Stage 1: OOC (SD) and Stage 2: OOC (MN) 

Delete and Revise (D&R) Procedure 
1 2 3 4 5 6 

0.03021 0.03240 0.03200 0.01840 0.02800 0.02720 
0.04921 0.05480 0.05420 0.03200 0.04860 0.04860 
0.06401 0.06820 0.06660 · 0.04280 0.06260 0.06160 
0.07361 0.07840 0.07700 0.05140 0.07220 0.07120 
0.08382 0.09040 0.08720 0.05940 0.08260 0.08280 
0.09322 0.09960 0.09640 0.06680 0.09200 0.09140 
0.10762 0.11840 0.11480 0.08000 0.10720 0.10960 
0.12102 0.13120 0.12700 0.09100 0.12020 0.12200 
0.14923 0.16000 0.15600 0.11720 0.14760 0.15220 
0.17223 0.18380 0.17920 0.13860 0.17100 0.17620 
0.21264 0.22400 0.22140 0.18060 0.20980 0.21860 
0.24625 0.25840 0.25600 0.21520 0.24380 0.25280 
0.27305 0.28680 0.28380 0.24380 0.27100 0.28120 
0.38908 0.40520 0.40320 0.36740 0.39000 0.40020 
0.55931 0.57000 0.56940 0.54400 0.56200 0.56640 
0.66813 0.68120 0.67940 0.65880 0.67080 0.67740 
0.75195 0.76240 0.76260 0.74580 0.75560 0.76160 
0.80576 0.81780 0.81900 0.80480 0.80980 0.81560 
0.89858 0.90520 0.90480 0.89740 0.90100 0.90400 
0.94179 0.94420 0.94400 0.94220 0.94280 0.94320 
0.99060 0.99120 0.99140 0;99060 0.99140 0.99080 
0.99940 0.99980 0.99980 0.99980 0.99980 0.99980 
0.99980 1.00000 1.00000 1.00000 1.00000 1.00000 
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
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Table 8.14a. ARL, SDRL, APPL, SDPFL, Replications, and Stops for Two Stage 

Short Run (X, R) Control Charts with Stage 1: OOC (MS) and Stage 2: OOC (MN) 

D&R 
ARL SDRL APFL SDPFL 

Replications 
Stops 

Procedure (Skipped) 
1 429.83 640.60 0.00615 0.04033 4993 (7) 11 
2 405.27 504.02 0.00788 · 0.04529 4998 (2) 14 
3 420.65 511.23 0.01102 0.05815 5000 (0) 0 
4 428.56 506.37 0.00580 0.03254 5000 (-----) -----
5 421.66 529.70 0.00688 0.04451 5000 (0) 0 
6 415.90 508.27 0.00716 0;03900 5000 (0) 0 

# of Times D&R 1 Iterated More Than Once: 120 
# of Times D&R 2 Iterated More Than Once for the R .Control Chart: 30 

-
# of Times D&R 2 Iterated More Than Once for the X Control Chart: 411 

Table 8.14b. P(RL :::; t) for Two Stage Short Run (X, R) 
. Control Charts with Stage 1: OOC (MS) and Stage 2: OOC (MN) 

t 
Delete and Revise (D&R) Procedure 

1 2 3' 4 5 6 
1 0.00841 0.00960 0.00500 0.00240 0.00600 0.00460 
2 0.01682 0.01961 0.01160 0:00700 0.01240 0.01140 
3 0.02223 0.02601 · 0.01780 0~01000 0.01900 0.01780 
4 0.02704 0.03061 0.02280 0.01400 0.02460 0.02240 
5 0.03265 0.03842 0.02940 0.01780 0.02940 0.02900 
6 0.03685 0.04462 0.03440 0.02140 0.03380 0.03420 
8 0.04506 0.05442 0.04120 0.02660 0.04140 0.04300 
10 0.05327 0.06343 0.04920 0.03360 0.04900 0.05140 
15 0.07090 0.08123 0.06680 0.05020 0.06560 0.06780 
20 .· 0.08412 0.09664 0.08080 0.06260 0.08020 0:08240 
30 0.11376 0.12745 0;11160 0.08880 0.10960 0.11340 
40 0.14240 0.15606 0.13760 0.11560 0.13880 0.14120 
50 0.16663 0.18327 0.16320 0.14040 · 0.16500 0.16720 
100 0.27278 0.29192 0.27060 0.24780 0.26960 0.27440 
200 0.43221 0.44798 0.42940 0.41480 0.43340 0.43500 
300 0.55257 0.56623 0.54780 0.54080 0.55200 0.55380 
400 0.64991 0.66246 0.64780 0.63940 0.65180 0.65380 
500 0.71841 0.72929 0.71640 0.71100 0.71760 0.72140 
750 0.83457 0.84174 0.83560 0.83180 0.83400 0.83600 
1000 0:89625 0.90276 0.89860 0.89540 0.89640 0.90040 
2000 0.97877 . 0.98159 0.97980 0.97940 0.97920 0.98040 
5000 0.99840 0.99940 0.99940 0.99960 0.99920 0.99940 
10000 0.99960 1.00000 1.00000 1.00000 1.00000 1.00000 
20000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
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the mean, the standard deviation, or both in the construction of second stage control 

limits. The cost, in terms of the loss in reliability of second stage control limits, is higher 

by throwing out subgroups that signal shifts in the mean, the standard deviation, or both 

than it is by including them in the construction of second stage control limits. 

Additionally, comparing the APFL results in Table 8.9a with those in Tables 8.12a-8.14a 

reveals that, under the assumptions of this simulation, an MN in Stage 1 has the effect of 

increasing the APFL (see Table 8.12a) and an SD in Stage 1 has the effect of decreasing 

· theAPFL (see Table 8.13a). 

An issue of concern is the differences in the APFL values from 0.0086838, the 

theoretical probability of a false alarm. The APFL value forD&R 4 in Table 8.12a is 

369.424% larger than 0.0086838. The APFL values for D&R 4 in Tables 8.13a and 

8.14a are 65.683% and 33.209%, respectively, smaller than 0.0086838. These results are 

somewhat consistent with those regarding the P(RL :s; t) values when t=l in Tables 8.6b-

8.8b. Clearly,. under the assumptions of this simulation, the type of OOC condition in 

Stage 1 has a significant effect on the APFL values before the shift in Stage 2. 

Based on the P(RL :s; t) values, D&R 2 is the appropriate delete and revise procedure 

for most of the shown values oft regardless of the OOC condition in Stage 1. Since 

Table 8.13a indicates that D&R 3 is the delete and revise procedure of choice, this is 

another example of how the ARL can be misleading in choosing the appropriate D&R 

procedure in a short run situation. The fact that the largest P(RL :s; t) values in Table 

8.14b are lower than those in Tables 8.12b and 8.13b for most of the shown values oft 

implies that, under the assumptions of this simulation, the type of OOC condition in 

Stage 1 has an affect on the P(RL :s; t) values in Stage 2. 
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Additionally, the largest P(RL ~ t) values in Table 8.9b are larger than those in Tables 

8.12b-8.14b. This result implies that, under the assumptions of this simulation, an OOC 

condition in Stage 1 decreases the P(RL ~ t) values in Stage 2. This is not desirable 

because of the MN in Stage 2. However, this is desirable for Stage 2 IC as was the case 

in comparing results in Table 8.lb to those in Tables 8.6b-8.8b earlier. Clearly, under the 

assumptions of this simulation, when one is interested in detecting MN in Stage 2, it is 

highly desirable to have the process IC when drawing first stage subgroups. 

The information in Tables 8.12a-8.14b presents another example of the tradeoff 

mentioned by Del Castillo (1995) between having a low probability of a false alarm and a 

high probability of detecting a special cause signal. inherent with two stage short run 

control charts. While D&R 4 results in the lowest APFL values regardless of the OOC 

condition in Stage 1, it also results in the lowest P(RL ~ t) values for many of the shown 

values oft in Tables 8.13b and 8.14b. 

Again, as in the three previous subsections, the information in Tables 8.12a-8.14a 

indicates that D&R 1 and D&R 2 are iterating more than once. These multiple iterations 

seem to create conditions causing replications to be skipped and the chosen D&R 

procedure to be stopped. Also, if one were to construct confidence inter_vals using the 

ARL and SDRL values in Tables 8.12a-8.14a, then, depending on the confidence level 

chosen, the ARL results in Tables 8.12a-8.14a may not be statistically significantly 

different. 

Conclusions from the Sample Runs 

The interpretation of the sample runs of the computer program in this section establish 

233 



the fact that no hard and fast rules can be developed regarding which D&R procedure is 

appropriate when performing two stage short run variables control charting. Under the 

assumptions of the simulations performed in this section, the choice of the appropriate 

D&Rprocedure varies both among and within measurements, among control chart 

combinations, among IC and various OOC conditions in both stages, and among numbers 

of subgroups plotted in Stage 2. It may even be possible that the choice of the 

appropriate D&R procedure varies among shift sizes and the timing of shifts, though this 

is not investigated here. 

If no decisions can be made regarding values for these variables, then extensive 

sample runs similar to the ones in this section need to be performed. However, if certain 

values for these variables are desired, then the process of making sample runs and 

interpreting their results is much simpler. 

Conclusions 

This chapter and the methodology it presents make important contributions. For the 

first time, the appropriate D&R procedure to use when performing two stage short run 

variables control charting may be determined. The importance of the computer program 

is evident because the choice of the appropriate D&R procedure varies depending on the 

values of many variables. Tables would only be able to provide very limited results. 

Additionally, the computer program can be expanded to include other variable values 

(e.g., other types of OOC conditions). 

234 



. CHAPTER IX 

SUMMARY 

Introduction 

This chapter serves three purposes. The first is to briefly summarize Chapters I-VIII 

of this dissertation in order to provide an overall perspective of the process undertaken to 

develop and solve the research problem, which is stated in Chapter I and will be restated 

in this chapter. The second is to provide final conclusions based on the research in 

Chapters IV-VIII. The third.is to present areas for future research within the realm of 

two stage short run control charting. 

Summary of Chapters 

Chapter I includes the following: background information on and the statement of the 

research problem; the research objective, sub-objectives, and tasks; and the research 

contributions. The research problem has two parts. The first part is that Hillier's (1969) 

methodology is limited to (X, R) control charts (see Hillier (1969)) and to (X, v) and 

(X,--Jv) control charts (see Yang and Hillier (1970)). Additionally, limited and in some 

cases incorrect results are presented in the literature for these charts. The second part is 

that the process of establishing control in the first stage of the two stage procedure is not 

clear (see Faltin, Mastrangelo, Runger, and Ryan'(1997)). 

The research objective, which is a statement of the resolution of the research problem, 

is to investigate, extend, and generalize a methodology for two stage short run variables 
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control charting. The "investigate" part of the research objective involves the entire 

process of developing the research problem, the research objective, the five sub

objectives and their respective tasks; learning and applying relevant theory; developing 

methodologies; examining the results from the implementation of the methodologies; and 

drawing conclusions based on the results. The "extend" part involves extending Hillier's 

(1969) two stage short run theory to (X, s) and (X, MR) control charts. It also involves 

extending it to allow for the determination of the appropriate. execution of the two stage 

procedure. The "generalize" part involves the development of the computer programs to 

calculate two stage short run control chart factors for (X, R) , (X, v) , (X, Fv) , (X, s) , 

and (X, MR) charts; It also involves the development of the computer program that 

provides information that one may use to determine which delete and revise (D&R) 

procedure to use to establish control in the first stage of the two stage procedure. 

Chapter II is a literature review of the three main topics that are essential to 

understanding the development and resolution of the research problem. The first topic is 

the different approaches to applying (X, R), (X, v), (X, Fv), (X, s), and (X, MR) 

control charts to short run situations. The second topic is the different ways of executing 

the two stage procedure. The third topic is the different metrics used to determine control 

chart performance in a short run situation. 

Chapter III describes the process required to perform two stage short run variables 

control charting in order to indicate where and how to use the research presented in 

Chapters IV-VIII in this process. Included in this description are tables that indicate, 

based on the choice of the two stage short run control chart ( (X, R), (X, v), (X, Fv) , 

(X, s), or (X, MR)), the appropriate program to use from Chapters IV-VII, the output to 
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. use from these programs, and the equations to use to construct Stage 1 and Stage 2 

control limits. Additionally, a table is presented that indicates, based on the choice of the 

statistic ( R , ~ , ~ , ; , or MR ), the appropriate program to use from Chapters IV-VII, 

the output to use from these programs, and the equations to use to calculate unbiased 

estimates of the process variance and standard deviation. 

The research in Chapter IV accomplishes the tasks associated with research sub

objective l, which is stated in Chapter I. The Mathcad (1998) program in Chapter IV 

accurately calculates, using exact equations, two stage short run control chart factors for 

(X, R) charts regardless of the subgroup size, number of subgroups, alpha for the X 

control chart, alpha for the R control chart above the upper control limit, and alpha for the 

R control chart below the lower control limit (alpha is the probability of a Type I error 

(i.e., the probability of a false alarm)). 

The research in Chapter V accomplishes the tasks associated with research sub

objective 2, which is stated in Chapter I. The Mathcad (1998) program in Chapter V 

accurately calculates, using exact equations, two stage short run control chart factors for 

(X, v) and (X, fv) charts regardless of the subgroup size, number of subgroups, alpha 

for the X control chart, alpha for the v and fv control charts above the upper control 

limit, and alpha for the v and Fv control charts below the lower control limit. 

The research in Chapter VI accomplishes the tasks associated with research sub

objective 3, which is stated in Chapter I. The Mathcad (1998) program in Chapter VI 

accurately calculates, using exact equations, two stage short run control chart factors for 

(X, s) charts regardless of the subgroup size, number of subgroups, alpha for the X 
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. control chart; alpha for the s control chart above the upper control limit, and alpha for the 

s control chart below the lower control limit. 

The research in Chapter VII accomplishes the tasks associated with research sub

objective 4, which is stated in Chapter I. The Mathcad (1998) program in Chapter VII 

accurately calculates, using exact equatiOIJS, two stage short mn control chart factors for 

(X, MR) charts regardless of the number of subgroups, ~lpha for the X control chart, 

alpha forthe MR control chart above the upper control limit, and alpha for the MR 

control chart below the lower control limit. · 

The research in Chapter VID accomplishes the tasks associated with research sub

objective 5, which is stated i11 Chapter I. The FORTRAN (1999) program in Chapter 

VID simulates two stage short rui::i-control charting for (X, R) , (X, v) , (X, ·,J;) , (X, s), 

and (X, MR) charts for in-control and various out-of-control conditions in both stages 

using six different D&R procedures. 

The accomplishment of the tasks associated with the five research sub-objectives 

means that the research objective is met. Consequently, the research problem as stated in 

Chapter I of this dissertation and restated in this chapter is solved. 

Conclusions 

The research in this dissertation results in a comprehensive, theoretically sound, easy

to-implement, and effective methodology for two stage short run control charting using 

(X, R), (X, v), (X, ..Jv), (X, s), and (X, MR) charts. The application of this research is 

immediate because of the computer programs in Chapters IV-VIII that implement the 

research. Also, the application of this research is not limited because of the inputs 
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accepted by the programs. Additionally, the program in Chapter VIII can be expanded to 

accept more varied inputs. 

As a result of the research and computer programs in Chapters IV"" VII, those involved 

with quality control in industry will, for the first time, be able to use theoretically precise 

control chart factors to determine control limits for (X, R), (X, v), (X, ..Jv), (X, s), and 

(X, MR) charts regardless of the subgroup size, number of subgroups, and alpha values. 

This flexibility is valuable in that process monitoring will no longer have to be adjusted 

to use the limited, and in some cases incorrect, results previously available in the 

literature. Also, the programs put an end to the erroneous use of conventional control 

chart constants when in a short run situation. 

It is recommended that the computer programs in Chapters IV, V, and VII replace the 

use of the tables of two stage short run control chart factors in Hillier ( 1969), Yang and 

Hillier ( 1970), Pyzdek (1993), and Yang ( 1995, 1999, 2000) because of the limited, and 

in some cases incorrect, results given in these papers. The corrections provided by the 

tables in the appendices of this dissertation are given in detail in Chapters IV, V, and VII. 

Any other corrections can be made by the appropriate program from these chapters. 

As a result of the research and computer pro grain in Chapter VIII, a methodology is 

available that, for the first time, provides information that one may use to determine 

which D&R procedure is most appropriate to use when performing two stage short run 

control charting with (X, R), (X, v), (X, ..Jv) , (X, s), and (X, MR) charts. The program 

is important because, based on the sample runs in Chapter VIII, the choice of the 

appropriate D&R procedure varies depending on the values of many variables. 

Concerning academia, Chapters IV, V, VI, and VII provide a valuable reference for 
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anyone interested in anything having to do with (X, R), (X, v), (X, Fv) , (X, s), and 

(X, MR) control charts, respectively. Furthermore, the programs in these chapters 

eliminate the need for the research question of how many subgroups are enough before 

conventional control chart constants may be used. Also, the research in Chapter VIII 

advances the study of the control chart revision process. 

In addition to the above contributions, the research in Chapters VI and VII provides 

results that may be useful beyond the realm of quality control. These results are two new 

-
equations to calculate unbiased estimates of a process variance based on the statistics s 

(Chapter VI) and MR (Chapter VII). 

Areas for Future Research 

Several areas for future research exist within the realm of two stage short run control 

charting. One area is to continue developing multivariate counterparts to two stage short 

run (X, R), (X, v), (X, Fv), (X, s), and (X, MR) control charts. This has already been 

done for Yang and Hillier's (1970) two stage short run X control chart (see Alt, Goode, 

and Wadsworth (1976)). This is desirable because situations may exist in which it is 

beneficial to use multivariate control charting when in a short run situation. 

Another area is to continue developing two stage short run attributes control charts. 

This has already been done for p control charts (see Nedumaran and Leon (1998)), which 

are based on the Binomial distribution. This is desirable because situations may exist in 

which it is beneficial to chart classification or count data when in a short run situation. 

A third area concerns the updating of Stage 2 control limits when in a short run 
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· situation. The issue is what to do with previous in-control subgroups that plot out-of

control after an update. If they are deleted so that they will not be used in the next 

update, then important information about the process is being thrown away. Since 

information is already limited in a short run situation, this may result in less reliable 

Stage 2 control limits. However, keeping these out-of-control subgroups so that they will 

be used in the next update may also result in less reliable control limits. It is desirable to 

develop a methodology that will provide information to examine this tradeoff. 

A fourth area is to study the performance of two stage short run (X, R), (X, v), 

(X, Fv) , (X, s), and (X, MR) control charts when data obtained from a process are non

normal and/or non-independent.· The .computer program in Chapter VIII may be 

modified to do this. 

Final areas for future research concern extensions of the computer program in Chapter 

VIII. One extension is to include the approach by Roes, Does, and Schurink (1993) (see 

the Stage One Control Limits subsection· of The Two Stage Procedure section of Chapter 

II) for determining out-of-control subgroups in Stage 1. Another extension is to include 

the option of not deleting false alarms before a shift in Stage L A third extension is to 

include an out-of-control condition caused by a trend in one or both of the population 

parameters. A fourth extension is to include the option of performing Stage 2 control 

charting with any desired combination of Nelson's (1984) tests for special causes or runs 

rules (i.e., the four tests for instability in Western Electric Co., Inc. (1956)). 
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Show: E(x ~ x)= 0.0 

n 

~x .. 
_) ( J n ( J m .· .L..J 1,J - - 1 1 j=I · 

. =>E~-X - n -~µ- m -~E n 

=> E(x-x)= µ-(-1 J·(m·n ·µ)= µ-µ =0.0 
m·n 
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Show: ~var(x-x) = ~m + l · cr 
n·m 

n m Lxj Lxi 
Var(x-x)=Var{:x}+Var~)=Va i=1 +V _i=_i_ 

n m 

since the Xi's and Xi 's are independent. 

n 

Lx .. 
I, J {- =) ( 1 ) n ·( 1 ) m j=i 

==> Var\X-X = ~ · icr2 + m2 ··~Va n 

since the Xi,i 's are independent. 
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.. Show: E(xk -X)=O.O 

' ia<k 

ia<k 

=(:~:J· !E(xk)-(m~~)· !(!E(xi,j)J 
. J~ •~ Fl . ia<k 

=(m~IJ· !µ-(-~ J·!(!µJ m n . m n . . 1 J=l · 1=! J= . ia<k . 

= - ·(n·µ)- -. -... ·((m-l}·n·µ) (m-lJ · (. 1 J 
m·n · m·n 

{- =) (m-lJ (m-lJ =>E\Xk -X = --;-- -µ- --;-- ·µ=0.0 
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Show: ~var(xk -x)=~m-l ·CJ 
n·m 

!xi 

-- ·Xk---( m-1) - l:l 
m m 

since the Xi 's are independent. 

- = m-1 ( ) ( )

2 

~ VarXk -X = --;- · V 

~(: ~: J · t. var(x,.J+( m, \,} t.[ t. var(x;.JJ 
... k 

since the Xk,i 'sand the Xi,i 's are independent. 

~ var(xk -x)=(m~:)
2

. !CJ2 +( / 2 )· ![!CJ2J 
m i=l m n i=l i=l 

i .. k 

=(m-1)2 ·(n·CJ2)+( 1 )·((m-l)·n·CJ2) 
m·n m2 -n 2 

=(m-1)
2

• CJ 2 +(m-1)-~ 
m n m 2 n 

n 

~x .. L.J l,J 

j=l 
n 

i;•k 

{- =) (( m -1) 2 J ( m -1 1 ) (( m -1) 2 J ( m -1) 2 ~ Var\Xk - X = n. m . CJ . --;- + m = n. m . CJ · l.O = n. m . CJ 

~ ~ V ar(x k - X) = J m - l · CJ 
n·m 
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APPENDIX B.1 - Analytical Results for Chapter 4 
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From David (1951), the variance of the mean of m ranges, each based on n observations, 

is d3 2 /m, which implies M 0 /V0 from Prescott (1971) is equal to: 

d2 d2·m 
--= 

( d!') 
( d2 is also the mean of the distribution of the mean range R/ cr ). 

2°-5 • rco.s. x + o.s) 2 2. (rco.s. x + o.5) )2 
d2 2 • m r(0.5. x) (rco.5. x))2 

=> = = ----'------------"----
d32 X _ 2 ·( ['(0.5 · X + 0.5))2 ( X · (['(0.5 · X) )2 - 2 · (r(0.5 · X + 0.5) )2 J 

rco.5. x) (rco.5. x))2 

d2 2 • m 2· (r(0.5 · X +0.5))2 => = ____ .:.._ ____ ~---
d32 X · (r(0.5 · X) )2 - 2 · (r(0.5 · X + 0.5) )2 

2 =-------~ 
X· (r(0.5·x))2 _ 2 

(r(0.5 · X + 0.5) )2 

2 
=-------

[ 
(r(0.5-x)) 2 ] 

In , 
(r(0.5-x+o.sn- 2 

X ·e . -

2 
=----------

e. In(r(0.5-x)/-ln(r(0.5-x+0.5)) 2 2 X· -

2 
=-----------X • e2·gammln(0.5-x)-2·gammln(0.5-x+0.5) _ 2 

2 =------------,-~ X. e2·(gammln(0.5-x)-gammln(0.5-x+0.5)) _ 2 

d32 X. e2·(gammln(05·x)-gammln(05-x+0.5)) _ 2 
=> ? =-----------

m · d2- 2 
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From Harter, Clemm, and Guthrie.(1959): 

V 

(
V )2 -v 

2· 2 ·e z 
C(v )= --'-----'-----

1 ~) 
Let CV= ln(C(v)). 

V 

=c>cv=ln~ 
1~) 

= + { ~ l · e -; ]-In( 1 ~) J 

= Inl 2-( ~ )i ]+ In( e-; )-grunml{ ~) 

= ln(2) + lnl ( ~ / ]+(-2v )-g=I { ~ ) 

= ln(2) +(~}in(~)-( ~ )-gamrrtl{ ~) 
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APPENDIX B.2 - Computer Program ccfsR.mcd for Chapter 4 
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Page 1 of pFogram: ccfsR.mcd 

ENTER the following 5 values: 

alphaMean - alpha for the X chart. (1) alphaMean := 0.0027 

(2). alphaRangeUCL := 0.005 

(3) alphaRangeLCL := 0.001 

alphaRangeUCL • alpha for the R chart above the UCL. 

. alphaRangeLCL - alpha for the R chart below the LCL "'. 

(4) m:= 5 

(5) n := 5 

m - number of subgroups . 

.!1 - subgroup size for the (X, R) char1s. 

"' Note - If no LCL is desired, leave alphaRangeLCL blank (do not enter zero). 

Please PAGE DOWN .to begin the program. 

(1.1) TOL := 10- lO 

f(x) := dnonn(x,O, 1) 

2 -x 

I:= [(2·'1tr0 . .5Je-:l F(x) := pnonn(x,0,1) 

W1 ,. n{n - 1) f [ r W (F(x+ W) - F(;))n-, f(x + W) dW lf(;) d, 

-oo 

W2 ,. n{n - 1) · r [ [ w' ·(F(x + W) - F(,()r' ·f(x + W) dW Jf(x) d, 

-oo 

d2 := Wl d3 := Vas:°·5 

259 

I := JX f(t) dt 
0 



Page 2 of program: ccfsR.mcd 

(2.1) P(vV) := nJ
00 

f(x) -(F(x + vV) - F(x)/-1 dx 
-oo 

DUCL(vV) := P(vV) - (1 - alphaRangeUCL) 

Wseedl(start) := W0 ~ start 

W1 ~ start+ O.Dl 

A0 ~ DUCL(W0) 

A1 ~ DUCL(W1) 

while A0-A1 > 0 

w 

Wo~W1 

W 1 ~ W 1 + O.Dl 

Ao~A1 

A1 ~ DUCL(W1) 

seedD4 := Wseedl(0.01) 

wD4 := zbrent(DUCL,seedD4o,seedD4i, TOL) 

d(x) := h(x) - r 

v := zbrent( d,x - 0.5 ,x + 0.5, TOL) 

DLCL(vV) := P(vV) - alphaRangeLCL 

Wseed2(start) := W0 ~ start 

W1 ~ start+ O.Dl 

A0 ~ DLCL(W0) 

A1 ~ DLCL(W1) 

while A0·A1 > 0 

w 

Wo~W1 

W1 ~ W 1 + 0.01 

Ao~A1 

A1 ~ DLCL(W1) 

seedD3 := Wseed.2(0.001) 

wD3 := zbrent(DLCL, seedD30 , seedD31, TOL) 

d32 
r·=--. 2 

m·d2 

d32 
rprevm := ---

(m - 1)-d22 

X· e2-(g,immln(0.5-x)-g,immln(0.5-x+0.5)) _ 2 
h(x):=----------~ 

2 

dprevm(x) := h(x) - rprevm 

vprevm := zbrent( dprevm,xprevm - 0.5 ,xprevm + 0.5, TOL) 
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Page 3 of program: ccfsR.mcd 

· 2 __ ..2 v-1 2 __ ..2 
:,; -25,W- :,; -2.5·W Ill . 

(3.1) Pl(,;)• 
0 

[(, :},,T] ,,T~dW 

(5) CV P3(z) := ; ·e ·(Pl(z) + P2(z)) 

(3.2) 2seedl(start) := 20 ~ start 

21 ~ start + 5.0 

. Ao~ P3(2o) 

A1 ~ P3(21) 

while A1 < (1 - alphaRangeUCL) 

20~21 

21 ~ 21 + 5.0 

Ao~A1 

A1 ~ P3(21) 

2guess ~ linterp(A,2,1 - alphaRangeUCL) 

2guess 

seedl := 2seed1(5.0) · D(x) := P3(x) - (1 - alphaRangeUCL) 

qD4 := zbrent(D, seedl - 5.0, seedl + 5.0, TOL) 
5 . 

root[ IP3(seedl) - (1 - alphaRangeUCL) I, seedl] 
•· ·= ---------------. 5 . 

261 



Page 4 of program: ccfsR.mcd 

(4.1) Zseed2(start) := Zv0 ~ 0.0 

Av0 ~ 0.0 

Z ~ start 

while (P3(Z) < alphaRangeLCL) 

Z ~ Z + 1.0 

for i E 1.. 6 

Zvi ~ Z + (1.0) ·(i - 1) 

Avi ~ P3(ZvJ 

for ie7 .. 20 

Zvi ~ Z + (1.0) ·(i - 1) 

Avi ~ P3(ZvJ 

Zguess··~ linterp(Av ,Zv, alphaRangeLCL) 

A~ ratint(Zv,Av,Zguess) 

Aguess ~ Ao 

while IAguess - alphaRangeLCLI > 10- 15 

if (Aguess - alphaRangeLCL) > 10- 15 

Av1 ~ Aguess 

Zv1 ~ Zguess 

if (Aguess - alphaRangeLCL) < -10- 15 

Av0 ~ Aguess 

Zv0 ~ Zguess 

Zguess ~ linterp(Av,Zv ,alphaRangeLCL) 

A~ ratint(Zv,Av ,Zguess) 

Aguess ~ Ao 

Zguess 

seed2 := Zseed2(1.0) 

qD3 := seed2 
5 

Monitor Results 

qD3 = 0.3584551343 

root( IP3(seed2) - alphaRangeLCLI ,seed2) qD3 := __,;._;,,,;,_c____; _ _..c, __ _;;c_ _ _;__ __ 

5 qD3 = 0.3584551342 
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Page 5 of program: ccfsR.mcd 

(5.1) f 11 [ z2 _25 .w1]'-l)M'm-l a2 _25 .w2 

Plprevm(z) := (5· :}e-;:r ·e 'li ·P(Vil) dW 

0 

J
oo 

2 ~-1 2 
· 1-x 1-x 

P2prevn(,) " rn 55 (,,----,---) ,-2- dx 

·- l.n(7> ( \Jprevm)· 1n( \Jprevm) ( \Jprevm) ( vprevm) c\Jprevm .- ~J + -- · -- - -- - "arnmln ·--
.. 2 2. 2 ° 2 

P3prevm(z) := (fl·e''-l)M'm·(Plprevm(z) + P2prevm(z)) 

(5.2) Zseed3(start) := Zo ~ start 

Z1 ~ start+ 5.0 

A0 ~ P3prevm(Z0) 

A1 ~ P3prevm(Z1) 

while A 1 < (1 - alphaRangeUCL) 

Zo~Z1 

Z1 ~ Z1 + 5.0 

Ao~A1 

A1 ~ P3prevm(Z1) 

Zguess ~ linterp(A,Z,1 ~.alphaRangeUCL) 

Zguess 

seed3 := Zseed3(5.0) Dprevm(x) := P3prevm(x) - (1 - alphaRangeUCL) 

zbrent(Dprevm,seed3 - 5.0,seed3 + 5.0,TOL) 
qD4prevm := --"""'-''--------------

5 

I :=· 
root[ IP3prevm(seed.3) - (1 - alphaRangeUCL) I ,seed.3] 

5 
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· Page 6 of program: ccfsR.mcd 

(6.1) Zseed4( start) := Zv0 ~ 0.0 

Av0 ~ 0.0 

Z ~ start 

while (P3prevn(Z) < alphaRangeLCL) 

Z~Z+l.O 

for i e 1.. 6 

Zvi ~ Z + (1.0) ·(i - 1) 

Avi ~ P3prevm(ZvJ 

for ie7 .. 20 

IZvi ~ Z + (1.0) ·(i - 1) 

Avi ~ P3prevm(ZvJ 

Zguess ~ linte:p(Av,Zv,alphaRangeLCL) 

A~ ratint(Zv,Av,Zguess) 

Aguess ~ Ao 

while IAguess - alphaRangeLCLI > 10- 15 

if (Aguess - alphaRangeLCL) > 10- 15 

1
Av1 ~. Aguess 

Zv1 ~ Zguess 

if (Aguess - alphaRangeLCL) < -10- 15 

Av0 ~ Aguess 

Zv0 ~ Zguess 

Zguess ~ linterp(Av,Zv,alphaRangeLCL) 

A~ ratint(Zv,Av,Zguess) 

Aguess ~ Ao 

Zguess 

seed.4 := Zseed4(1.0) 

seed.4 
qD3prevm := --

5 

root( IP3prevn(seed4) - alphaRangeLCLI ,seed4) 
qD3prevm := ----'-'---'---------------

5 
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Monitor Results 

qD3prevm = 0.3564225553 

qD3prevm = 0 .3564225551 



Page 7 ofprogram: ccfsR.mcd 

d. al h 1 alphaMean 
a~ pa:= -

- 2 

. ( J )o~ 
d2starprevm := d2J + ~ 

m- 1 
crit_t:= qt(adj_alpha,\I) crit_z := qnorm( adj_alpha,0,1) 

(7.2) 2 ._;_ ( crit_t) (m - 1 ) 0
·
5 

Al.- -- · --
d2star n·m 

041 := m·.qD4prevm 

· d2starprevm-(m - 1) + qD4prevm 

031 := ____ m_·_q_D_3p_r_evm ___ _ 

d2starprevm-(m - 1) + qD3prevm 

2 __ .( en_ 't_t) (m + 1 ) 0·5 
A2 .- -- · ·--

d2star n·m 

D42 := qD4 
d2star 

D32 := qD3 
· d2star 

FINAL RESULTS: 

(1) alphaMean = 0.0027 Control Chart Factors 

(2) alphaRangeUCL = 0.005 First Stage Second Stage 

(3) alphaRangeLCL = 0.001 
A21 = 0.58784 A22 = 0.71995 

(4) m=5 

(5) n=5 
D41 = 1.95711 D42 = 2.46759 

D31 = 0.18149 D32 = 0.15203 

crit z 
A2:= ----

d2-no.s 

wD4 
-D4·=-. d2 

wD3 
D3:=

d2 

Conventional 

A2 = 0.5768149104 

D4 = 2 .100487 4391 

D3 = 0.1579549576 

Mean, Stand. Dev., 
and Variance of the 
Dist. of the Range 

Duncan's (1974) Table D3 Harter Clemm and Guthrie's {19591 Table 11.2 

\I = 18.3541743541 qD4 = 5.81811 qD3 = 0 .35846 

d2 = 2.3259289473 d2star = 2.35781 qD4prevm = 6.08629 qD3prevm = 0.35642 

d3 = 0.8640819411 \lprevm = 14.72881 wD4 = 4.8855845381 wD3 = 0.3673920082 

Var= 0.7466376009 d2starprevm = 2.36571 
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a e .. art1a T bl B 3 I P . IR e-creat10n ·o a e mt e ,pJen fT bl D3. h A d. fD lXO uncan (1974) 

n 2 3 4 5 6 

m V d; V d; V d; V d; V d,' 
1 . 1.00000 1.41421 1.98463 1.91154 2.92916 2.23887 3.82651 2.48125 4.67716 2.67253 
2 1.91952 . 1.27930 3.83372 1.80538 5.69354 2.15069 7.47105 2.40484 9.16121 2.60439 
3 2.81729 1.23105· 5.66278 1.76857 8.44146 2.12049 11.10185 2.37883 13.63350 2.58127 
4 3.70617 1.20620 7.48535 1.74988 11.18455 2.10522 14.72881 2.36571 18.10259 2.56964 
5 4.59060 1.19105 · 9.30506 1.73857 13.92559 2.09601 i8.35417 2 .. 35781" 22.57035 · 2.56263 
6 5.47253 1.18083 11.12327 1.73099 16.66558 2.08985' ·21.97872 2.35253 27.03745 2.55795 
7 6.35291 1.17348 12.94060 1.72555 19.40495 2.08543 25.60279 2.34875 31.50415 i.55460 
8 7.23227 1.16794 14.75735 1.72146 22.14394 2.08212 29.22657 2.34591 35.97062 2.55209 
9 8.11092 1.16361 16.57373 1.71828 24.88267 2.07953 32.85015 2.34369 40.43692 2.55013 
10 8.98907 1.16014 18.38984 1.71572 27.62121 2.07747 36.4735.9 2.34192 44.90311 2.54856 
11 9.86684 1.15729 20.20575 1.71363 30.35962 2.07577 40.09692 2.34047 49.36922 2.54728 
12 10.74432 · 1.15490 22.02151 1.71189 . 33.09793 2.07436 43.72018 2.33927 53.83526 2.54621 
13 11.62158 1.15289 23.83716 1.71041 , 35.83616 2.07316 47.34338 2.33824 · 58.30126 2.54530 
14 12.49866 1.15115 25.65271 1.70914 38.57433 2.07214 50.96654 2.33737 62.76721 2.54453 
15 13.37559 1.14965 · 27.46819 1.70804 41.31245 2.07125. 54.58965 2.33660 67.23314. 2.54385 
16 14.25241 1.14833 29.28362 1.70708 44.05053 2.07047 58.21274. 2.33594 71.69904 2.54326 
17 15.12913 · 1.14717 31.09899 1.70623 46.78857 2.06978 61.83580 2.33535 76.16493 2.54274 
18 16.00577 1.14613 32.91432 1.70547. 49.52659 2.06917 6.5.45884 2.33483 80.63079 2.54228 
19 16.88234 1.14520 34.72962 1.70479 52.26459 2.06862 69.08186 , 2.33436 85.09664 · 2.54187 

.. 
20 17.75886 1.14437 36.54489 1.70419 55.Q0257 2.06813 72.70487 2.33394 89.56248 2.54150 
25 22.14078 1.14119 45.62091 1:70187 68.69224 2.06626 90.81974 2.33234 111.8915 2.54008 
30 26.52202 1.13906 54.69660 1.70032 82.38169 2.06501 108.9344 2.33127 134.2205 2.53914 
50 44.04420 1.13480 90.99798 1.69723 137.1386 2.06251 181.3926 2.32914 223.5356 2.53725 
75 65.94485 1.13266 136.3737 . 1.69567 205.5840 2.06126 271.9647 2.32807 335.1791 2.53630 

100 87.84479 1.13159 181.7490 1.69490 274.0292 2.06063 362.5367 2.32753 446.8224 2.53583 
150 131.6440 1.13052 272.4994 1.69412 410.9194 · 2.06000 543.6805 2.32700 670.1090 2.53536 
200 175.4428 1.12999 363.2496 1.69373 547.8094 2.05969 724.8242 2.32673 893.3955 2.53512 
250 219.2414 1.12967 · 453.9998 1.69350 684.6994 , 2.05950 905.9679 2.32657 1116.682 2.53498 
300 263.0400 1.12945 544.7499 1.69335 821.5894 2.05938 1087.112 2.32646 1339.968 2.53489 
d, 1.1283791671 1.6925687506 . 2.0587507460 2.3259289473 2,5344127212 
d, 0.8525024664 0.8883680040 0.8798082028 0.8640819411 0.8480396861 

d; (Var.) 0.7267604553 0.7891977106 0.7740624738 0.7466376009 0.7191713092 

Table B.3.1 continued. Partial Re-creation of Table D3 in the Appendix of Duncan (1974) 

n 7 8 10 25 50 

m V d,' V d,' V d,' V d,' V d,' 
1 5.48415 2.82980 6.25123 2.%288 7.68007 3.17905 15.62977 3.993% 24.02990 4.54518 
2 10.76747 2.76779 12.29594 2.90562 15.14589 3.12869 31.02740 3.96242 47.82145 4.52172 
3 16.04046 2.74681 18.33145 2.88628 22.60405 3.11172 46.42111 3.95185 71.61044 4.51388 
4 21.31070 2.73626 24.36452 2.87656 30.06021 3.10320 61.81384 3.94656 95.39878 4.50995 
5 26.57981 2.72991 30.39659 2.87071 37.51556 3.09808 77.20616 3.94338 119.1869 4.50759 
6 31.84834 2.72567 36.42816 2.86681 44.97049 3.09466 92.59828 3.94126 142.9748 4.50602 
7 37.11655 2.72263 42.45944 2.86401 52.42520 3.09222 107.9903 3.93974 166.7627 4.50490 
8 42.38454 2:72.035 48.49054. 2.86192 59.87975 3.09038 123.3822 3.93860 190.5505 4.50405 
9 47.65240 2.71858 54.52152 2.86029 67.33421 3.08895 138.7741 3,93772 · 214.3383 4.50340 
10 52.92017 2.71716 60.55241 2.85898 74.78859 3.08781 154.1660 3.93701 238.1261· 4.50287 
11 58.18786 2.71600 66.58324 2.85791 82.24293 3.08687 169.5578 3.93643 261.9138 4.50244 
12 63.45549 2.71503 72.61402- 2.85702 89.69723 3.08609 184.9496 3.93595 285.7016 4.50209 
13 68.72309 2.71421 78.64477 2:85627 97.15150 3.08543 200.3414 3.93554 309.4893 4,50178 
14 73.99066 2.71351 84.67549 2.85562 104.6057 3.08487 215.7332 3.93519 333.2771 4.50152 

15 79.25820 2.71290 90.70619 2.85506 112.0600 3.08438 231.1249 3.93488 357.0648 4.50130 

16 84.52571 2.71237 96.73687 2.85457 119.5142 3.08395 246.5167 3.93462 380.8525 4.50110 

17 89.79321 2.71190 102.7675 2.85414 126.9684 3.08357 261.9085 3.93438 404.6402 4.50093 
18 95.06070 2.71148 108.7982 2.85375 134.4226 3.08323 277.3002 3.93417 428.4279 4.50077 
19 100.3282 2.71110 114.8288 2.85341 141.8768 3.08293 292.6920 3.93399 452.2156 4.50063 
20 105.5956 2.71077 120.8595 2.85310 149.3309 3.08266 308.0837 3.93382 476.0033 4.50051 
25 131.9328 2.70949 151.0125 2.85192 186.6017 3.08163 385.0424 3.93318 594.9419 4.50004 
30 158.2699 2.70863 . 181.1655 2.85113 223.8725 3.08094 462.0011 3.93276 713.8803 4.49972 
50 263.6178 2.70692 301.7769 2.84956 372.9550 3.07957 769.8356 3.93191 1189.634 · 4.49909 
75 395.3023 2.70607 452.5409 2.84877 559.3079 3.07888 1154.629 3.93148 1784.326 4.49878 

100 526.9867 2.70564 603.3047 2.84838 745.6608 3.07854 1539.422 3.93127 2379.019 4.49862 

150 790.3554 2.70521 904.8323 2.84799 1118.366 3.07819 . 2309.007 3.93105 3568.403 4.49846 

200 1053.724 2.70500 1206.360 2.84779 1491.072 3.07802 3078.593 3.93095 4757.787 4.49838 

250 1317.093 2.70487 1507.887 2.84767 1863.777 3.07792 3848.179 3.93088 5947.172 4.49834 

300 1580.461 2.70478 1809.415 2.84759 2236.483 3.07785 4617.765 3.93084 7136.556 4.49830 
d, 2.7043567512 2.8472006121 3.0775054617 3.9306292195 4.4981472588 

d, 0.8332053356 0.8198314898 0.7970506735 0.7084407659 0.6521425884 

d/ (Var.) 0.6942311313 0.6721236717 0.6352897762 0.5018883188 0.4252899557 
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Table B.3.2. Partial Re-creation of Table II.2 for P=0.995 
(alphaRangeUCL=0.005) in Harter, Clemm, and Guthrie (1959) 

n 
2 3 4 5 6 

180.05956 27.42040 15.97331 12.55293 10.99826 
21.69172 10.21636 8.35496 7.67754 7.35145 
11.39731 7.55702 6.82575 6.56813 6.45828 
8.45485 6.54888 6.19062 6.08629 6.05995 
7.13703 6.02643 . 5.84535 5.81811 5.83514 
6.40423 5.70854 5.62895 5.64756 5.69092 
5.94176 5.49523 5.48079 5.52962 5.59060 
5.62475 5.34238 5.37305 5'44323 5,51680 
5.39447 5.22756 5.29121 5.37725 5.46025 
5.21988 5.13817 5:22694 5.32521 5:41553 
5.08308 5.06664 5.17514 5.28312 5.37929 
4.97307 5.00810 5.13251 5.24838 5.34932 
4.88272 · 4.95932 5.09681 5.21922 5.32413 
4.80722 4.91805 5.06648 5.19439 5.30266 
4.74320 4.88268 . 5.04040 5.17300 5.28414 
4:68823 4.85203 5.01772 5.15439 5.26801 
4.64053 4,82522 4.99784 5.13803 5.25382 
4.59875 4.80156 · 4.98025 5.12355 5.24126 
4.56186 4.78054 4.96459 5.11064 5.23004 
4.52904 4.76174 4.95055 5.09906 · . 5.21998 

4.40761 4.69126 4.89771 5.05537 5.18197 
4.32945 4.64512 4.86292 5.02652 5.15682 
4.17954 4.55483 4.79437 4.96949 5.10701 
4.10766 4.51067 4.76061 4.94131 5.08235 
4.07246 4.48882 4.74385 4.92729 5:07007 
4.03775 4.46714 4:72718 4.91334 5.05783 
4.02057 . 4.45635 4:71888 4.90638 5.05173 
4.01032 4.44990 4.71390 4.90221 5.04807 

4.00351 4.44561 4.71059 4.89943 5.04564 
3.9697452252 4.4242351777 4.6940874592 4.8855845381 5.0334791352 
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. Table B.3.2 continued. Partial Re-creation of Table II.2 for 
P=0.995 (alphaRangeUCL=0.005) in Harter, Clemm, and Guthrie (1959) 

n 
7 8 10 25 50 

10.13317 9.59128 8.96259 . 7.99977 7.91156 
7.17114 7.06337 6.95315 6.95639 7.15747 
6.40976 6.39095 6.39383 6.63514 6.91715 
6.06422 6.08197 6.13253 6.47939 6.79913 

· 5 . .86739 5.90480 5.98139 6.38750 6.72903 
5.74040 5.79002 5.88293 6.32690 6.68261 
5.65171 5.70964 5:81372 628394 6.64959 
5.58628 5.65022 5.76241 6.25190 6.62492 
5.53603 . 5.60451 5,72287 6.22708 6.60578 
5.49623 5.56826 5.69146 6.20730 6.59050 
5.46392 5.53882 5.66590 6.19115 6.57801 
5.43719 5.51442 5.64471 6.17773 6.56763 
5.41469 5.49388 5.62685 6.16639 6.55885 
5.39549 5.47634 5.61159 6.15669 6.55133 
5.37893 5.46120 5.59841 6.14830 6.54482 
5.36449 5.44800 5.58690 6.14096 6;53913 
5.35178 5.43638 5.57677 6.13449 6.53411 
5.34052 .. 5.42607 · 5.56779 · 6.12875 6.52966 
5.33047 5.41688 5.55976 . 6.12362 6.52567 

· 5.32145 5.40861 5.55255 . 6.11900 6.52208 
5.28733 5.37736 5.52525 6.10149 6.50847 
5.26474 . 5.35664 5.50713 6.08984 6.49941 
5.21993 5.31551 5.47111 6.06662 6.48132 
5.19770 5.29509 5.45321 6.05504 6.47229 
5.18663 5.28492 5.44429 6.04925 6.46778 
5.17560 5.27477 5.43538 6.04348 6.46328 
5.17009 5.26971 5.43093 6.04059 6.46102 
5.16679 5.26667 5.42827 6.03886 6.45967 
5.16459 5.26465 5.42649 6.03771 6.45877 

5.1536133124 5.2545498162 5.4176160146 6.0319395194 6.4542688862 
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Table B.3.3. Partial Re-creation of Table II.2 for P=0.001 
(alphaRangeLCL=0.001) in Harter, Clemm. and Guthrie (1959) 

n 
2 3 4 s 

0.00222 0.06026 0.18632 0.33245 
0.00201 0.06025 0.19194 0.34723 
0.00193 0.06025 0.19418 0.35319 
0.00189 0.06025 0.19539 0.35642 
0.00187 0.06025 0.19614 0.35846 
0.00185 0.06025 0.19666 0.35985 
0.00184 0.06025 0.19704 0.36087 
0.00183 0.06025 0.19733 0.36165 
0.00183 0.06025 0.19755 0.36226 
0.00182 0.06025 0.19773 0.36275 
0.00182 0.06025 0.19789 0.36316 
.0.00181 0.06025 0.19801 0.36350 
0.00181 0.06025 0.19812 0.36379 
0.00181 0.06025 0.19821 0.36404 
0.00181 0.06025 0:19829 0.36426 
0.00180 0.06025 0.19836 0.36445 
0.00180 0.06025 0.19842 0.36462 
0.00180 0.06025 0.19848 0.36477 
0.00180 0.06025 0.19853 0.36490 
0.00180 0.06025 0.19857 0.36503 
0.00179 0.06025 0.19875 0.36549 
0.00179 0.06025 0.19886 0.36580 
0.00178 0.06025 0.19909 0.36643 
0.00178 0.06024 0.19921 0.36675 
0.00178 0.06024 0.19927 0.36691 
0.00178 0.06024 0.19933 0.36707 
0.00177 0.06024 0.19936 0.36715 
0.00177 0.06024 0.19938 0.36720 
0.00177 0.06024 0.19939 0.36723 

6 
0.47538 
0.50030 
0,51042 
0.51594 
0.51941 
0.52180 
0.52354 
0.52487 
0.52592 
0.52676 
0.52746 
0.52805 
0.52854 
0.52897 
0.52935 
0.52967 
0.52996 
0.53022 
0.53046 
0.53067 
0.53147 
0.53200 
0.53309 
0.53363 
0.53391 
0.53418 
0.53432 
0.53440 

0.0017724543 0.0602447314 0.1994460628 0.3673920082 0.5347362725 
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Table B.3.3 continued. Partial Re-creation of Table II.2 for 
P=0.001 (alphaRangeLCL=0.001) in Harter, Clernrn, and Guthrie (1959) 

n 
7 8 10 25 50 

0.60798 0.72902 0.93957 1.82816 2.46937 
0.64281 0.77307 0.99964 1.94858 2.62247 
0.65703 0.79110 1.02434 1.99857 2.68617 
0.66478 0.80096 1.03788 2.02614 2.72141 
0.66968 0.80719 1.04644 2.04365 2.74386 
0.67304 0.81148 1.05234 2.05577 2.75942 
0.67551 0.81461 1.05666 2.06466 2.77086 
0.67738 0.81700 1.05996 2.07146 2.77962 
0.67886 0.81889 . l.06256 2.07683 2.78655 
0.68006 0.82041 1.06467 2.08118 2.79216 
0.68105 0.82167 1.06640 2.08478 2.79680 
0.68187 0.82273 1.06786 2.08780 2.80071 
0.68258 0.82363 1.06910 2.09037 2.80404 
0.68319 0.82440 1.07017 2.09259 2.80691 
0.68371 0.82508 1.07110 2.09453 2.80941 
0.68418 0.82567 1.07192 2.09623 2.81162 
0.68459 0.82619 1.07265 2.09773 2.81357 
0.68496 0.82666 1.07329 2.09908 2.81531 
0.68528 0.82708 1.07387 2.10028 2.81687 
0.68558 0.82746 1.07439 2.10137 2.81829 
0.68671 0.82891 1.07639 2.10554 2.82369 
0.68747 0.82988 1.07774 2.10834 2.82733 
0.68901 0.83184 1.08045 2.11400 2.83469 
0.68978 0.83283 1.08182 2.11687 2.83841 
0.69017 0.83333 1.08251 2.11831 2.84029 
0.69056 0.83382 1.08320 2.120 2.84217 
0.6908 0.83407 1.0835 2.120 2.84311 

0.83422 2.121 2.84368 
2.121 

0.6913468703 0.8348258291 l .0845826539 2.1226552123 2.8459534386 
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Table B.3.4. Two Stage Short Run Control Chart Factors for 
alphaMean=O 0027, alphaRangeUCL=O 005, and alphaRangeLCL=O 001 

2 
A21 D41 D31 A22 D42 D32 

166.72424 127.32134 0.00157 
8.27583 1.98441 0.00314 14.33417 16.95587 0.00157 
4.73208 2.68348 0.00235 6.69217 9.25818 0.00157 
3.62681 3.02106 0.00209 4.68219 7.00946 0.00157 
3.11850 3.18338 0.00196 3.81937 5.99224 0.00157 
2.83285 3.27080 0.00188 3.35187 5.42349 0.00157 
2.65175 3.32336 0.00183 3.06197 5.06335 0.00157 
2.52736 3.35784 0.00179 2.86575 4.81596 0.00157 
2.43693 3.38200 0.00177 2.72457 4.63598 0.00157 
2.36837 3.39981 0.00175 2.61833 4.49937 0.00157 
2.31466 3.41346 0.00173 2.53558 4.39225 0.00157 
2.27148 3.42425 0.00171 2.46936 4.30605 0.00157 
2.23604 3.43300 0.00170 2.41520 4.23522 0.00157 
2.20643 3._44023 0.00169 2.37009 4.17601 0.00157 
2.18135 3.44631 0.00168 2.33196 4.12579 0.00157 
2.15982 . 3.45150 0.00168 2.29930 4.08265 0.00157 
2.14114 3.45597 0.00167 2.27102 4.04522 0.00.157 
2.12479 3.45988 0.00166 2.24630 4.01242 0.00157 
2.11036 3.46331 0.00166 2.22451 3.98345 0.00157 

. 2.09753 3.46636 0.00165 2.20516 3.95768 0.00157 
2.05010 3.47759 0.00164 2.13381 3.86230 0.00157 
2.01962 3.48479 0.00162 2.08810 3.80088 0.00157 
1.96128 3.49858 0.00160 2.00090 3.68305 0.00157 
1.93337 3.50522 0.00159 1.95932 3.62654 0.00157 
1.91972 3.5_0849 0.00159 1.93901 3.59887 0.00157 
1.90627 3.5ll72 0.00158 1.91902 3.57157 0.00157 
1.89962 3.51333 0.00158 1.90914 3.55806 0.00157 
1.89565 3.51429 0.00158 1.90325 3.55000 0.00157 
1.89302 3.51492 0.00158 1.89934 3.54465 0.00157 

1.8799567883 3.5180951058 0.0015707967 I .8799567883 3.5180951058 0.0015707967 

Table B.3.4 continued. Two Stage Short Run Control Chart Factors 
ti I h M 00027 1 h R UCL 0005 d I haR LCL 0001 or a1p a ean= , aip a ange = , an atp ange = 

3 
A21 D41 D31 A22 D42 D32 

----- ----- ----- 8.35221 14.34466 0.03152 
1.56033 1.86966 0.06112 2.70257 5.65885 0.03337 
1.35226 2.21659 0.04924 1.91239 4.27295 0.03407 
1.25601 2.35005 0.04491 1.62151 3.74247 0.03443 
1.20246 2.41685 0.04267 1.47271 3.46631 0.03465 
1.16868 2.45655 0.04130 1.38280 3.29785 0.03481 
1.14551 2.48283 0.04037 1.32272 3.18462 0.03491 
1.12866 2.50151 0.03970 1.27978 3.10340 0.03500 
1.11588 2.51550 0.03920 1.24759 3.04233 0.03506 
1.10584 2.52636 0.03881 1.22255 2.99476 0.03511 
1.09776 2.53505 0.03849 1.20254 2.95667 0.03516 
1.09112 2.54215 0.03823 1.18617 2.92549 0.03519 
1.08556 2.54808 0.03801 1.17254 2.89950 0.03522 
1.08085 2.55310 0.03783 1.16101 2.87750 0.03525 
1.07679 2.55740 0.03767 1.15114 2.85864 0.03527 
1.07327 2.56113 0.03754 1.14258 2.84230 0.03529 
1.07018 2.56440 0.03741 1.13510 2.82800 0.03531 
1.06745 2.567_28 0.03731 1.12850 2.81539 0.03532 
1.06503 2.56985 0.03721 1.12264 2.80417 0.03534 
1.06285 2.57215 0.03713 I.JI 739 2.79414 0.03535 
1.05467 2.58078 0.03681 1.09774 2.75653 0.03540 
1.04930 2.58645 0.03660 1.08487 2.73191 0.03543 
1.03872 2.59760 0.03619 1.05971 2.68370 0.03550 
1.03353 2.60309 0.03599 1.04740 2.66010 0.03553 
1.03095 2.60582 0.03589 1.04132 2.64843 0.03554 
1.02839 2.60853 0.03579 1.03527 2.63684 0.03556 
1.02712 2.60988 0.03574 1.03227 2.63108 0.03557 
1.02636 2.61069 0.03571 1.03047 2.62763 0.03557 
1.02585 2.61123 0.03569 1.02927 2.62534 0.03558 

l.0233188600 2.6139175593 0.0355936687 1.0233188600 2.6139175593 0.0355936687 
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Table B.3.4 continued. Two Stage Short Run Control Chart Factors 
ti 1 haM O 0027 1 haR UCL O 005 d 1 haR LCL O 001 or alp, ean= ,alp ange = , an alp ange = 

n 4 
m A21 D41 D31 A22 D42 D32 
1 ----- ----- ----- 3.01070 7.13456 0.08322 
2 0.83127 1.75414 0.15366 1.43980 3.88477 0.08925 

·3 0.8.0653 1.98042 0.12815 1.14060. 3.21895 0.09157 
4 · 0.78832 2.07041 0.11848 1.01772 2.94060 0.09281 
s 0.77660 2.11840 0.11338 0.95113 2.78880 0.09358 
6 0.76860 2.14831 0.11023 0.90943 · 2.69347 0.09410 
7 0.76285 2.16879 0.10809 0.88087 2.62813 0.09448 
8 0.75853 2.18371 0.10654 0.86009 2.58057 0.09477 
9 0.75517 2.19507 0.10537 0.84430 2.54442 0.09500 
10 0.75248 2.20403 0.10445 0.83190 . 2.51602 0.09518 
11 0.75028 2.21126 0.10371 0.82189 2.49312 0.09533 
12 0.74845 2.21723 0.10310 0.81365 2.47426 0.09546 
13 0.74691 2.22225 0.10260 0.80675 2.45847 0.09556 
14 0.74558 2.22652 0.10216 0.80088 2.44505 0.09566 
15 0.74444 2.23020 0.10179 0.79584 2.43351 0.09574 
16 0.74344 • 2.23341 0.10147 0.79145 2.42347 0.09581 
17 0.74255 2.23623 0.10119 0.78760 2.41467 0.09587 
18 0.74177 2.23872 0.10094 0.78419 2.40688 0.09592 
19 0.74107 2.24095 0.10071 0.78116 2.39995 0.09597 
20 0.74044 2.24295 0.10052 0.77844 2.39373 0.09602 
25 0.73805 2.25050 ' 0.09977 0.76819 2.37033 0.09619 
30 0.73647 2.25550 0.09927 0.76144 2.35491 0.0%30 
so 0.73330 2.26540 0.09830 0.74812 2.32453 0.09653 
75 0.73173 2.27031 0.09782 0.74155 2.30957 0.09665 
100 0.73094 2.27276 0.09758 0.73829 2.30214 0.09670 
150 0.73016 2.27520 0.09735 0.73504 2.29474 0.09676 
200 0.72977 2.27642 0.09723 0.73342 2.29106 0.09679 
250 0.72953 2.27715 0.09716 0.73245 2.28886 0.09681 
300 0.72937 2.27764 0.09711 0.73181 2.28739 0.09682 
= 0.7285915982 .•, 2.2800659421 0.0968712267 0. 7285915982 2.2800659421 0.0%8772267 

Table B.3.4 continued. Two Stage Short Run Control Chart Factors 
ti 1 haM O 0027 al haR UCL=O 005 d 1 haR LCL=O 001 ora1p ean= ' IP ange - , an a1p ange -

n s 
m A21 D41 D31 A22 D42 D32 
1 ----- ----- ----- 1.76214 5.05912 0.13399 
2 0.57850 1.66992 0.23631 1.00199 3.19254 0.14439 
3 0.58948 1.84450 0.20200 0.83366 2.76108 0.14847 
4 0.58920 1.91706 0.18863 0.76066 2.57271 0.15066 
s 0.58784 1.95711 0.18149 0.71995 2.46759 0.15203 
6 0.58654 ·1.98264 0.17705 · 0.69400 2.40063 0.15296 
7 0.58545 2.00038 0.17402 0.67602 2.35428 0.15364 

.8 0.58455 2.01344 0.17182 0.66282 2.32031 0.15416 
9 0.58381 . 2.02347 0.17015 0.65272 2.29435 0.15457 
10 -0.58319 2.03141 0.168.84 0.64475 2.27386 0.15489 
11 0.58267 2.03786 0.16778 0.63829 2.25729 0.15516 
12 0.58223 2.04321 0.16692 · .0.63295 2.24360 0.15539 
13 0.58184 2.04771 0.16619 0.62846 2.23211 0.15558 
14 0.58151 2.05156 0.16557 0.62464 2.22233 0.15575 
15 0.58122 2.05488 0.16504 0.62135 2.21390 0.15589 
16 0.58096 2.05778 0.16457 0.61848 2.20656 0.15602 
17 0.58073 2.06033 0.16417 0.61596 2.20011 0.15613 
18 0.58052 2.06259 0.16381 0.61372 2.19440 0.15623 
19 0.58034 2.06461 0.16349 0.61173 2.18931 0.15632 
20 0.58017 2.06643 0.16320 0.60994 2.18474 0.15640 
25 0.57952 2.07331 0.16212 0.60319 2.16751 0.15671 
30 . 0.57908 2.07787 0.16141 0.59872 2.15613 0.15691 
so 0.57819 2.08696 0.16001 0.58987 2.13362 0.15733 
75 0.57774 2.09148 0.15932 0.58549 2.12249 0.15753 

100 0.57751 2.09374 0.15898 0.58331 2.116% 0.15764 
150 0.57728 2.09599 0.15863 0.58114 2.11145 0.15774 
200 0.57716 2.09712 0.15846 0.58006 2.10870 0.15780 

250 0.57709 2.09779 0.15836 0.57941 2.10705 0.15783 
300 0.57705 2.09824 0.15829 0.57897 2.10596 0.15785 

= 0.5768149104 2.100487 4391 0.1579549576 0.5768149104 2.1004874391 0.1579549576 
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Table B.3.4 continued. Two Stage Short Run Control Chart Factors 
t I h M 00027 1 haR UCL 0005 d I h R LCL 0001 or atpi a ean= , a1p1 ange = , an a1p1 a ange = 

n 6 
m A21 D41 D31 A22 D42 D32 
1 ----- ----- ----- 1.25023 4.11530 0.17788 
2 0.45107 1.60902 0.30203 0.78128 2.82272 0.19210 
3 0.47212 1.75589 0.26290 0.66767 2.50197 0.19774 
4 0.47776 1.81896 0.24735 0.61679 2.35829 0.20078 
5 0.48003 1.85450 0.23898 0.58792 2.27701 0.20269 
6 0.48116 1.87743 0.23375 0.56932 2.22480 0.20399 
7 0.48180 1.89349 0.23016 0.55634 2.18844 0.20494 
8 0.48220 1.90539 0.22755 0.54676 2.16168 0.20566 
9 . 0.48245 1.91456 0.22557 0.53940 2.14117 0.20623 
10 0.48263 1.92185 0.22401 0.53357 2.12494 0.20669 
11 0.48276 1.92779 0.22275 0.52884 2.11178 0.20707 
12 0.48286 1.93272 0.22172 0.52492 2.10090 0.20738 
13 0.48293 1.93687 0.22085 0.52162 2.09175 0.20765 
14 0.48298 1.94043 0.22011 0.51881 2.08395 0.20789 
15 0.48303 1.94350 0.21948 0.51638 2.07722 0.20809 
16 0.48306 1.94619 0.21892 0.51426 2.07136 0.20827 
17 0.48309 1.94856 0.21844 0.51239 2.06620 0.20842 
18 0.48311 1.95066 0.21801 0.51074 2.06163 0.20856 
19 0.48313 1.95253 0.21763 0.50927 2.05756 0.20869 
20 0.48315 1.95422 0.21728 0.50794 2.05390 0.20880 
25 0.48320 1.96063 0.21599 0.50293 2.04008 0.20923 
30 0.48322 1.96488 0.21514 0.49961 2.03093 0.20952 
50 0.48325 1.97337 0.21346 0.49301 2.01282 0.21010 
75 0.48325 1.97761 0.21263 0.48974 2.00384 0.21040 

100 0.48325 1.97972 0.21222 0.48811 1.99937 0.21055 
150 0.48325 1.98183 0.21181 0.48648 1.99492 0.21069 
200 0.48325 1.98289 0.21160 0.48567 1.99270 0.21077 
250 0.48325 1.98352 0.21.148 0.48519 1.99137 0.21081 
300 0.48325 1.98394 0.48486 1.99048 
~ 0.4832423182 l.9860534526 0.2109902101 0.4832423182 l.9860534526 0.2109902101 

Table B.3.4 continued. Two Stage Short Run Control Chart Factors 
t I haM O 0027 I haR UCL=O 005 d I haR LCL O 001 ora1p1 ean= ; a1p1 ange - , an atpl ange = 

n 7 
m A21 D41 D31 A22 D42 D32 
1 ----- ----- ----- 0.97756 3.58088 0.21485 
2 0.37394 1.56340 0.35370 0.64769 2.59093 0.23225 
3 0.39800 1.69307 0.31213 0.56286 2.33353 0.23920 
4 0.40591 1.75008 0.29538 0.52403 2.21625 0.24295 
5 0.40968 1.78262 0.28630 0.50175 2.14930 0.24531 
6 0.41184 1.80379 0.28061 0.48730 2.10605 0.24693 
7 0.41323 1.81869 0.27670 0.47716 2.07583 0.24811 
8 0.41419 1.82976 0.27385 0.46965 2.05351 0.24901 
9 0.41490 1.83832 0.27168 0.46387 2.03637 0.24971 
10 0.41543 1.84514 0.26997 0.45928 2.02278 0.25028 
11 0.41585 1.85070 0.26859 0.45554 2.01175 0.25075 
12 0.41619 1.85533 0.26745 0.45245 2.00262 0.25115 
13 0.41647 1.85923 0.26650 0.44984 1.99494 0.25148 
14 0.41670 1.86257 0.26569 0.44761 1.98838 0.25177 
15 0.41690 1.86546 0.26499 0.44569 1.98272 0.25202 
16 0.41707 1.86799 0.26438 0.44401 1.97779 0.25224 
17 0.41722 1.87022 0.26385 0.44253 1.97345 0.25244 
18 0.41735 1.87220 0.26338 0.44122 1.96960 0.25261 
19 0.41746 1.87397 0.26296 0.44004 1.96616 0.25277 
20 0.41756 1.87556 0.26258 0.43899 1.96308 0.25291 
25 0.41794 1.88160 0.26116 0.43500 1.95142 0.25345 
30 0.41818 1.88562 0.26022 0.432.36 1.94369 0.25381 
50 0.41864 1.89365 0.25837 0.42710 1.92836 0.25454 
75 0.41886 1.89766 0.25745 0.42448 1.92076 0.25490 
100 0.41897 1.89966 0.25700 0.42318 1.91697 0.25509 
150 0.41907 1.90167 0.25654 0.42188 1.91319 0.25527 
200 0.41913 1:90267 0.2563 0.42123 1.91131 0.2554 
250 0.41916 1.90327 0.42084 1.91018 
300 0.41918 1.90367 0.42058 1.90943 
~ 0.4192807486 1.9056706590 0.2556418897 0.4192807486 1.9056706590 0.2556418897 
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Table B.3.4 continued. Two Stage Short Run Control Chart Factors 
£ 1 h M O 0027 1 haR UCL O 005 d I h R LCL O 001 or a1p1 a ean= , a1p ange = , an alpl a ange = 

n 8 
m A21 D41 D31 A22 D42 D32 
1 ----- ----- ----- 0.80906 3.23715 0.24605 
2 0.32197 1.52798 0.39493 0.55767 2.43094 0.26606 
3 0.34663 1.64588 0.35223 0.49020 2.21426 0.27409 
4 0.35542 1.69862 0.33486 0.45884 2.11432 0.27844 
5 0.35983 1.72899 0.32540 0.44070 2.05691 0.28118 
6 0.36246 1.74885 0.31945 0.42886 2.01968 0.28306 
7 0.36419 · 1.76288 0.31536 0.42053 1.99358 0.28443 
8 0.36543 1.77334 0.31237 0.41435 1.97428 0.28547 
9 0.36634 1.78143 0.31009 0.40958 1.95942 0.28630 
10 0.36705 1.78789 0.30830 0.40579 1.94764 0.28696 
11 0.36761 1.79316 0.30685 0.40270 1.93806 0.28751 
12 0.36807 1.79755 0.30566 0.40014 1.93013 0.28797 
13 0.36845 1.80125 0.30465 0.39798 1.92345 0.28836 
14 •. 0.36878 .· 1.80443 030380 0.39613 1.91774 0.28870 
15 . 0.36905 ·l.80718 0.30307 0.39453 1.91282 0.28899 
16 0.36929 1.80958 030243 0.39314 1.90852 0.28925 
17 0.36949 1.81170 0.30187 0.39191 1.90474 0.28947 
18 0.36968 1.81358 0.30137 0.39082 1.90138 0.28968 
19 0.36984 1.81527 0.30093 0.38984 1.89839 0.28986 
20 0.36998 1.81678 0.30053 0.38897 1.89570 0.29002 
25 0.37052 1.82254 0.29903 0.38565 1.88552 0.29065 
30 0.37087 1.82637 0.29804 0.38345 1.87878 0.29107 
so 0.37155 1.83403 0.29609 0.37906 1.86538 0.29192 
75 0.37188 · 1.83786 0.29512 0.37687 1.85873 0.29235 
100 0.37204 1.83977 0.29464 0.37578 1.85541 0.29256 
150 0.37221 1:84169 · 0.29416 · 0.37470 1.85211 0.29278 
200 0.37229 1.84264 0.29392 0.37415 1.85045 0.29288 
250 0.37233 1.84322 0.29378 0.37383 1.84947 0.29295 
300 0.37237 1.84360 0.37361 1.84881 
= 0.3725245186 1.8455144305 0.2932093459 0.3725245186 1.8455144305 0.2932093459 

Table B .3.4 continued. Two Stage Short Run Control Chart Factors 
£ I h M O 0027 I haR UCL O 005 d I haR LCL O 001 or atp a . ean= , a1p1 ange = , an a1p1 ange = 

n 10 
m A21 D41 D31 A22 D42 D32 
1 ----- ----- ----- 0.61168 2.81927 0.29555 
2 0.25585 1.47634 0.45626 0.44314 2.22238 0.31951 
3 0.27949 1.57900 0.41324 0.39526 2.05476 0.32919 
4 0.28856 1.62600 0.39552 0.37253 1.97619 0.33445 
5 0.29331 1.65339 0.38581 0.35923 1.93068 0.33777 
6 0.29623 1.67142 0.37968 0.35050 1.90099 0.34005 
7 0.29820 1.68421 0.37545 0.34433 1.88011 0.34172 
8 0.29961 1.69377 0.37236 0.33973 1.86463 0.34299 
9 0.30068 1.70120 0.37000 0.33617 J.85269 0.34399 

10 0.30152 1.70712 0.36814 0.33334 1.84320 0.34480 
11 0.30219 1.71197 0.36663 0.33103 1.83548 0.34546 
12 0.30273 1.71601 0.36539 0.32911 1.82908 0.34602 
13 0.30319 1.71942 0.36435 0.32748 1.82368 0.34650 
14 0.30358 1.72235 0.36347 0.32610 1.81907 0.34691 
15 0.30391 1.72488 0.36270 0.32490 1.81508 0.34727 
16 0.30420 1.72710 0.36204 0.32385 1.81161 0.34758 
17 0.30445 1.72906 0.36145 0.32292 1.80854 0.34786 
18 0.30468 1.73080 0.36093 0.32210 1.80583 0.34811 
19 0.30488 1.73235 0.36047 0.32137 1.80340 0.34833 
20 0.30505 1.73375 0.36006 0.32071 1.80122 0.34853 
25 0.30572 1.73908 0.35850 0.31820 1.79296 0.34929 
30 0.30616 1.74263 0.35747 0.31654 1.78748 0.34981 
50 · 0.30702 1.74973 0.35543 0.31322 1.77658 0.35084 
75 0.30744 1.75328 0.35442 0.31156 1.77117 0.35137 
100 0.30764 1.75506 0.35392 0.31074 1.76847 0.35163 
150 0.30785 1.75684 0.35342 0.30991 1.76577 0.35189 
200 0.30795 1.75772 0.3532 0.30950 1.76442 0.3520 
250 0.30802 1.75826 0.30925 1.76362 

300 0.30806 1.75861 0.30909 1.76308 

= 0.3082613611 1.7603920065 0.3524226577 0.3082613611 1.7603920065 0.3524226577 
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Table B.3.4 continued. Two Stage Short Run Control Chart Factors 

~ 1 haM O 0027 1 haR UCL O 005 d 1 haR LCL=O 001 or aip ean= , a1p1 ange = , an a1p. ange -
n 25 
m A21 D41 D31 A22 D42 D32 
1 ----- ----- ----- 0.25204 2.00297 0.45773 
2 0.11638 1.33399 0.62800 0.20157 1.75559 0.49177 
3 0.13099 1.40238 0.59207 0.18524 1.67900 0.50573 
4 0.13719 1.43535 0.57703 0.17711 1.64178 0.51339 
s 0.14063 1.45502 0.56874 0.17224 1.61980 0.51825 
6 0.14282 1.46814 0.56349 0.16898 1.60530 0.52160 
7 0.14433 1.47754 0.55986 0.16666 1.59501 0.52406 
8 0.14544 1.48459 0.55721 0.16491 1.58734 0.52594 
9 0.14629 1.49010 . 0.55518 0.16356 1.58139 0.52742 

10 0.146% 1.49450 0.55358 0.16247 1.57665 0.52862 
11 0.14750 1.49812 0.55229 0.16158 1.57278 0.52961 
12 0.14795 1.50113 0.55122 0.16084 1.56957 0.53044 
13 0.14832 1.50369 0.55032 0.16021 1.56685 0.53115 
14 0.14864 1.50588 0.54956 0.15967 1.56452 0.53176 
15 0.14892 1.50778 0.54890 0.15920 1.56251 0.53230 
16 0.14916 1.50944 0.54833 0.15879 1.56075 0.53276 
17 0.14937 1.51091 0.54782 0.15843 1.55920 0.53318 
18 0.14956 1.51222 0.54738 0.15811 1.55782 0.53355 
19 0.14973 1.51339 0.54698 0.15783 1.55659 0.53388 
20 0.14988 1.51445 0.54662 0.15757 1.55549 0.53418 
25 0.15044 1.51846 0.54527 0.15658 1.55129 0.53533 
30 0.15082 1.52114 0.54438 0.15593 1.54849 0.53610 
so 0.15155 1.52651 0.54262 0.15462 l.54292 0.53765 
75 0.15192 · 1.52920 0.54175 0.15396 1.54014 0.53844 
100 0.15210 1.53055 0.54132 0.15363 1.53875 0.53884 
150 0.15228 1.53190 0.541 0.15330 1.53737 0.539 
200 0.15238 1.53257 0.541 0.15314 1.53667 0.539 
250 0.15243 1.53298 0.541 0.15304 1.53626 0.540 
300 0.15247 1.53325 0.541 0.15297 1.53598 0.540 - 0.1526461452 1.5345989618 0.5400293677 0.1526461452 1.5345989618 0.5400293677 

Table B.3.4 continued. Two Stage Short Run Control Chart Factors 

~ 1 haM O 0027 1 haR UCL O 005 d 1 haR LCL=O 001 or am ean= 'aip. ange = , an a1p1 ange - . 
n so 
m A21 D41 D31 A22 D42 D32 
1 ----- --- ----- 0.14716 1.74065 0.54329 
2 0.06999 1.27025 0.70407 0.12122 1.58291 0.57997 
3 0.07951 1.32538 0.67439 0.11244 1.53242 0.59509 
4 0.08366 1.35241 0.66212 0.10800 1.50758 0.60342 
s 0.08599 1.36864 0.65541 0.10531 1.49282 0.60872 
6 0.08748 1.37951 0.65119 0.10351 1.48304 0.61239 
7 0.08852 1.38731 0.64828 0.10221 1.47608 0.61508 
8 0.08928 1.39317 0.64617 0.10124 1.47088 0.61714 
9 0.08987 1.39775 0.64456. 0.10048 1.46684 0.61877 
10 0.09033 1.40142 0.64329 0.09987 1.46362 0.62008 
11 0.09071 1.40443 0.64227 0.09937 1.46099 0.62117 
12 0.09102 1.40694 0.64142 0.09895 1.45880 0.62209 
13 0.09128 1.40907 0.64072 0.09860 1.45694 0.62287 
14 0.09151 1.41089 0.64012 0.09829 1.45536 0.62355 
15 0.09170 1.41248 0.63960 0.09803 1.45399 0.62413 
16 0.09187 1.41387 0.63915 0.09780 1.45279 0.62465 
17 0.09201 1.41509 0.63875 0.09760 1.45173 0.62511 
18 0.09215 1.41619 0.63840 0.09742 1.45079 0.62552 
19 0.09226 1.41716 0.63809 0.09725 1.44994 0.62588 
20 0.09237 1.41804 0.63781 0.09711 1.44919 0.62621 
25 0.09276 1.42139 0.63676 0.09655 1.44632 0.62748 
30 0.09303 1.42363 0.63607 0.09618 1.44440 0.62833 
so 0.09355 1.42811 0.63470 0.09544 1.44058 0.63006 
75 0.09381 1.43036 0.63403 0.09507 1.43868 0.63093 
100 0.09394 1.43149 0.63369 0.09488 1.43773 0.63137 
150 0.09406 1.43262 0.63336 0.09469 1.43677 0.63181 
200 0.09413 1.43318 0.63319 0.09460 1.43630 0.63203 
250 0.09417 1.43352 0.63309 0.09454 1.43601 0.63216 
300 0.09419 1.43374 0.09451 1.43582 

- 0.0943190142 1.4348727 409 0.6326945907 0.0943190142 1.4348727 409 0.6326945907 
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· APPENDIX C.l - Analytical Results for Chapter 5 
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Show: The distribution of the variance v with v I degrees of freedom may be represented 

as follows: 

From Pearson and Hartley ( 1962), 

-( cr~1 } [)TH T J-1
{ 'l T JJ{T-1 

}"·' ;~; ] 

-( cr~' }[)T)•(T}"--(T}(T-f,,, ;~;] 
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Show: The distribution of the studeritized variance f = ( v/v') with v 1 degrees of freedom 

for v and v2 degrees of freedom for v' may be represented as follows: 

p3(f} = epi+pzco 

where 

Jvl+v2) . Jvl) (v2) pl= gamml.\ 2 - gamml.\ 2 - gammln 2 

.. · (vl) ( ( ) ( )) (vl ) . . (vl+v2) ( vl ) p2(f) = 2 · In vl -In v2 + 2 -1 ·ln(f)- 2 ·In 1+ v2 ·f 

From Bain and Engelhardt (1992), 

= eln( r(v1:v2J)-1n( 1 ¥J)-1n( 1 vnH¥}1n(:~ H:1-1J1nco-(v1:v2}1n(1+ :~-f J 

= e gammln( vi :vz )-gamm1n( ¥)-gammln( v; H ¥ }1n(v1 }-In(v2 )~( f-1 }n<f)-( vl:v2}n( l+ :~ .f) 

( vl +v2J (vlJ J v2J Let pl = gammln 2 - gammln 2 - gamml.\ 2 

p2(f) =( i} (In(v!)-in(v2))+( i-1 J-1n(f)-( vi ~vz} in( J + :~ .f J 
=> p3(f) = ep1+p2co 
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Show: ~ is an unbiased estimate of o 2 ; i.e.;show E( ~) ~ o 2 

-
E( v)= 

since E(v) = o 2 • 

=> E(-;;) =(~ }(m ·cr' )=cr' 

Show: ~ = sP, where sP is the pooled standard deviation 

From Burr (1969) and Nelson (1990), sP = 

!(ni)-m 
i=l 

Since the subgroup size n is the same for each of the m subgroups, 

m m m 

=~ 

Lkn-l)·s;] (n-1) · Ls; (n-1)· Ls; 
s = i=l = i=l = i=l 

p m (m·n)-m m· (n-1) 
L(n)-m 

i=l 
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Show: The mean of the distribution of the standard deviation s with (x-1) degrees of 

freedom may berepresented as follows: 

2 ·· .· . gammln - ga -
( )0.5 ( (X} nuru{x-)) J 

c4(x) =CJ. x -1 . e . z z 

From Mead (1966), 

_ill_ 2 0.5 
E(s)=c 4 =CJ·(-) · 

n-1 f ;!) 
where n is the size of the subgroup from which the statistic that is used to estimate CJ is 

calculated. 

where c4 = C4 • 

=} c4 - CJ· -- · ~CJ· -- · e 
_ ( 2 )0.5 [ /ammln( f) J- . ( 2 )0.5 ( gamm1{f }gamm1n( n;I) J 

n -1 /amm1n( 0
;
1) n -1 

2 gamm - -gammln -
( )0.5 [ i{x) (x-l)J 

=} c4( X) = CJ . X - 1 . e 2 2 
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Show: p(v) = { v:; v} ;: , where p(v) is the distribution of the variance with vl 

degrees of freedom and c is the x2 distribution with v 1 degrees of freedom. 

Bain and Engelhardt (1992) give the x2 distribution as follows: 

-x I ~-1 

c(x) = · x 2 • e 2 

2¥-i~'J 

Vl· V Let X =--
0'2 

::::} dx = -dv::::} c(x) dx = c -- ·-dv vl (vl· vJ vl 
0'2 0'2 0'2 

(Vl·vJ vl 1 (Vl·vJ¥-1 -(v;~v) vl 
::::} c -- ·-dv= · -- ·e 2 ·-dv 

cr' cr' 2 T 1 ~!) cr' cr2 

~-1 vl 2 • vl ~-1 -vl•v 
= · v 2 • e 2·cr2 dv 

2 T . 1 ~} (cr' JT-1 cr' 

=vl v21 ·( 21 ]¥ ·(rf v2lJJ-I ~-I -vl-v 
i l . O'-vl . V 2 . e 2-0-2 dv 

= p(v) dv 

282 



APPENDIX C.2 - Computer Program ccfsv.mcd for Chapter 5 
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Page 1 of program: ccfsv.mcd 

ENTER the following 5 values: 

(1) alphal\lI e an := 0 .0027 

(2) alphaV arUCL := 0.005 

(3) alphaV arLCL := 0.001 

(4) m:=5 

(5) n:= 5 

alphaMean - alpha for the X chart. 

alphaVarUCL - alpha for the v or -vV chart above the UCL. 

alphaVarLCL - alpha for the v or ,,/v chart below the LCL "'. 

m - number of subgroups. 

n - subgroup size for the (X, v) or (X, ./v) charts. 

"'Note - If no LCL is desired, leave alphaVarLCL blank (do not enter zero). 

Please PAGE DOWN to begin the program. 

(1.1) TOL := 10-ll cr := 1.0 vl := n - 1 
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Page 2 of program: ccfsv.mcd 

(2.1) 
[ (vl) (vl) (vl) (vl ) vl·VJ 

p(".) ,. c~, l , , ·In, __ , + ,-, ·h,(ol- , . ., 

P(V) := f v p(v) dv 
0 

(2.2) DUCL(V) := P(V) - (1 - alphaVarUCL) 

Vseedl(start) := V0 ~ start 

V 1 ~ start+ O.Dl 

A0 ~ DUCL(V0) 

A1 ~ DUCL(V1) 

while Ao·A1 > 0 

V 

Vo~V1 

V1~V1+0.0l 

Ao~A1 

A 1 ~ DUCL(V 1) 

seeclB8 := V seedl(O .Dl) 

vB8 := zbrent(DUCL, seeclB80 , seeclB81, TOL) 

(2.3) v2 := m·(n - 1) 

v2prevm := (m - l)·(n - 1) 

285 

DLCL(V) := P(V) - alphaV arLCL 

V seed2(start) := V0 ~ start 

V 1 ~ start + 0.01 

A0 ~ DLCL(Vo) 

A1 ~ DLCL(V1) 

while A0-A1 > 0 

V 

Vo~ V1 

V1~V1+0.Dl 

Ao~A1 

A1 ~ DLCL(V1) 

seeclB7 := V seed2(0.000001) 

vB7 := zbren.t(DLCL, seeclB70 , seeclB71, TOL) 



Page 3 of program: ccfsv.mcd 

p2(f) := ( ~l }(1n(vl)-ln(v2)) + ( ~l -1)-ln(f) -( vl; v2}1n(1 + :~ -f) 

p3(f) := epl+p:l(f) 

P3(F) := f F p3(f) df 
0 

(3.2) Fseedl(start,deltal) := F0 ~ start 

F 1 ~ start + delta! 

Ao~ P3(Fo) 

A1 ~ P3(F1) 

while A1 < (1 - alphaVarUCL) 

Fo ~ F1 

F1 ~ F1 + delta! 

Ao~A1 

A1 ~ P3(F1) 

F guess ~ lintetp( A , F , 1 - alpha V arUCL) 

Fguess 

seedl := F seedl(0.1, delta!) 

Dl(x) := P3(x) - (1 - alphaV arUCL) 

deltal :;= 1100.0 if (n = 2) ·(m = 1) 

0.1 otherwise 

fB8 := zbrent(Dl ,seedl - delta! ,seedl + deltal ,TOL) 

1 := root[jP3(seedl) -(1 - alphaVarUCL)j ,seedl] 
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Page 4 of program: ccfsv.mcd 

(4.1) Fseed2(start,delta2) := F0 f- start 

F 1 f- start + delta2 

Ao f- P3(F0) 

A1 f- P3(F1) 

while A 1 < alpha V arLCL 

Fo f- F 1 

F1 f- F1 + delta2 

Ao f- A1 

A1 f- P3(F1) 

F guess f- linterp( A , F , alpha V arLCL) 

Fguess 

seed2 := Fseed2(0.000001,delta2) 

D2(x) := P3(x) - alphaV arLCL 

delta2 := I O .0000001 if ( n = 2) 

0.001 otherwise 

tB7 := zbrent(D2,seed2 - delta2,seed2 + delta2,TOL) 

1 := root( IP3(seed2) - alphaVarLCLI ,seed2) 
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Page 5 of program: ccfsv.mcd 

p2prevm(f) := (~)·(ln(vl) - In( v2prevrn)) + (~ - l)·ln(f) -( vl + v2prevrn)-1n(1 + vl ·f) 
2. 2 2 ~vm 

p3prevm(f) := eplprevm+p:;ipw.,m(f) 

P3prevm(F) := f F p3prevm(f) elf 
0 

(5.2) F seed3( start, delta3) := F0 f-- start 

F 1 f-- start + delta3 

A0 f-- P3prevm(F0) 

A 1 f-- P3prevm( F 1) 

while A1 < (1 - alphaVarUCL) 

Fof--F1 

F 1 f-- F 1 + delta3 

Ao f-- A1 

A 1 f-- P3prevm( F 1) 

Fguess f--. hnterp(A,F ,1 - alphaVarUCL) 

Fguess 

seed3 := Fseed3(0.1, delta3) 

Dlprevm(x) := P3prevm(x) - (1 - alphaVarUCL) 

delta3 := 1100.0 if (n = 2)-(m :-; 2) 

0.1 otherwise 

fB8prevm := zbrent(Dlprevm,seed3 - delta3,seed3 + delta3,TOL) 

1 := root[ IP3prevm(seed3) - (1 - alphaV arUCL) I ,seed3] 
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Page 6 of program: ccfsv.mcd 

(6.1) Fseed4( start, delta4) := F0 f- start 

F 1 f- start + delta4 

A0 f- P3prevm(F0) 

A 1 f- P3prevm(F 1) 

while A 1 < alpha V arLCL 

Fo f- F1 

F1 f- F1 + delta4 

Ao f-A1 

A 1 f- P3prevm( F 1) 

Fgue~s.f- linterp(A;F, alphaVarLCL) 

Fguess 

seed4 := Fseed4(0.000001,delta4) 

D2prevm(x) := P3prevm(x) - alphaVarLCL 

delta4 := ·1 0 .000000 l . if ( n = 2) 

0.001 otherwise 

fB7prevm := zbrent(D2prevm, seed4 - delta4,seed4 + delta4, TOL) 

1 := root( IP3prevm(seed4) - alphaV arLCLI, seed4) 
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Page 7 of program: ccfsv.mcd 

(7.1) d. al h 1 alphaMean a1 pa:= -
- 2 

erit_t := qt(adj_alpha, v2) erit_ z := qnonn( adj_alpha,O, 1) 

(7.2) A41 ·= en_ · ~ ( 
"t t ) ( 1 )o.5 

· e4( v2 + 1) n·m 
A42 ·= en . m+ ( ·t t ) ( 1 )o.5 

· e4( v2 + 1) n·m 
A crit z 
4·=---

. 0.5 
n 

881 := m·fB8prevm 
m - 1 + fB8prevm 

871 := m·fB7prevm 
m - 1 + fB7prevm 

B81°·5 
B81sqrt := ----

e4( v2prevm + 1) 

B71o.5 
B71 sqrt:= ----

e4( v2prevm + 1) 

FINAL RESULTS: 

(1) alphaMean = 0.0027 

(2) alphaVarUCL = 0.005 

(3) alpha V arLCL = 0 .001 

(4) m = 5 

(5) n = 5 

vl = 4 

v2 = 20 

e4( v2 + 1) = 0.98758 

v2prevm = 16 

e4( v2prevm + 1) = 0.98451 

B82 := fB8 B8 := vB8 

B72 := fB7 B7 := vB7 

B82°·5 

B82sqrt:= ( ) 
e4 v2 + 1 

B72o.5 
B72sqrt:= ( ) 

e4 v2 + 1 
B7sqrt := B7°·5 

Control Chart Factors 

First Stage Second Stage Conventional 

A41 = 1.38606 A42 = 1.69757 A4 = 1.3416304973 

B81 = 2 .92485 B82 = 5.17428 B8 = 3.7150647501 

B71 = 0.0266826472 B72 = 0.0216918527 B7 = 0.0227010089 

B81sqrt = 1.73713 B82 sqrt = 2 .3033 B8sqrt = 1.9274503237 

B71sqrt = 0.16592 B72sqrt = 0.14913 B7sqrt = 0.1506685398 

(1 - alphaVarUCL) and alphaVarLCL Percentage Points of 
the Distributions of the Studentized Variance and the Variance 

fB8 = 5.17428 fB8prevm = 5.63785 v88 = 3.7150647501 

fB7 = 0.0216918527 fB7prevm = 0.0214606431 vB7 = O.D227010089 
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Table C.3.1. v2 (Degrees of Freedom) and civ2+1) Values (v2 = m · (n - 1)) 
n 2 3 4 5 6 

m v2 C (v2+1) v2 c,(v2+1) v2 c,(v2+1) v2 C (v2+1) v2 c,(v2+1) 

1 1.0 0.79788 2.0 0.88623 3.0 0.92132 4.0 0.93999 5.0 0.95153 
2 2.0 0.88623 4.0 0.93999 6.0 0.95937 8.0 0.96931 10.0 0.97535 
3 3.0 0.92132 6.0 0.95937 9.0 0.97266 12.0 0.97941 15.0 0.98348 

.4 4.0 0.93999 8.0 0.96931 12.0 0.97941 16.0 0.98451 20.0 0.98758 
5 5.0 0.95153 10:0 0.97535 15.0 · 0.98348 20.0 0.98758 25.0 0.99005 
6 6:o 0.95937 12.0 0.97941 18.0 0.98621 24.0 0.98964 30.0 0.99170 
7 7.0 0.96503 14.0 0.98232 21.0 0.98817 28.0 0.99111 35.0 0.99288 
8 8.0 0.96931 16.0 0.98451. 24.0 0.98964 32.0 0.99222 40.0 0.99377 
9 9.0 0.97266 18.0· 0.98621 27.0 0.99079 36.0 0.99308 45.0 0.99446 
10 10.0 0.97535 20.0 0.98758 30.0 0.99170 40.0 0.99377 50.0 0.99501 
11 11.0 0.97756 22.0 0.98870 33.0 0.99245 44.0 0.99433 55.0 0.99547 
12 12.0 0.97941 24.0 0.98964 36.0 0.99308 48.0 0.99481 60.0 0.99584 
13 13.0 0.98097 26.0 , 0.99043 39.0 0.99361 52.0 0.99520 65.0 0.99616 
14 14.0 0.98232 28.0 0.99111 42.0 0.99407 56.0 0.99555 70.0 0.99644 
15 15.0 0.98348 30.0 0.99170 45.0 0.99446 60.0 0.99584 75.0 0.99667 
16 16.0 0.98451 32.0 0.99222 48.0 0.99481 64.0 0.99610 80.0 0.99688 
17 17.0 0.98541 34.0 0.99268 51.0 0.99511 68.0 0.99633 85.0 0.99706 
18 18.0 0.98621 36.0 0:99308 54.0 0.99538 72.0 0.99653 90.0 0.99723 
19 19.0 0.98693 38.0 0.99344 57.0 0.99562 76.0 0.99672 95.0 0.99737 
20 20:0 , 0.98758 40.0 0.99377 60.0. 0.99584 80.0 0.99688 100.0 0.99750 
25 25.0 0.99005 50.0 0.99501 75.0 0.99667 100.0 0.99750 125.0 0.99800 
30 30.0 0.99170 60.0 0.99584 90.0 0.99723 120.0 0.99792 150.0 0.99833 
50 50.0 0.99501 100.0 0.99750 150.0 0.99833 200.0 0.99875 250.0 0.99900 
75 75.0. . 0.99667 150.0 0.99833 225.0 0.99889 300.0 0.99917 375.0 0.99933 

100 100.0 0.99750 200.0 0.99875 300.0 0.99917 400.0 0.99938 500.0 0.99950 
150 150.0 0.99833 300.0 0.99917 450.0 0.99944 600.0 0.99958 750.0 0.99967 
200 200.0 0.99875 400.0 0.99938 600.0 0.99958 800.0 0.99969 1000.0 0.99975 
250 250.0 0.99900 500.0 0.99950 750.0 0.99967 1000.0 0.99975 1250.0 . 0.99980 
300 300.0 . 0.99917 600.0 0.99958 900.0 0.99972 1200.0 0.99979 1500.0 0.99983 

C,(=) 1.00000 1.00000 1.00000 1.00000 l.00000 

Table C.3.1 continued. v2 (Degrees of Freedom) and civ2+1) Values (v2 = m · (n - 1)) 
n 7 8 10 25 so 
m v2 C (v2+1) v2 C,(v2+1) v2 C (V2+1) v2 C (V2+1) v2 c,(v2+1) 

1 6.0 0.95937 7.0 0.96503 9.0 0.97266 24.0 0.98964 49.0 0.99491 
2 12.0 0.97941 14.0 0.98232 18.0 0.98621 48.0 0.99481 98.0 0.99745 

3 18.0 0.98621 21.0 0.98817 27.0 0.99079 72.0 0.99653 147.0 0.99830 
4 24.0 0.98964 28.0 0.99111 36.0 0.99308 96.0 0.99740 196.0 0.99873 

5 30.0 0.99170 35.0. 0.99288 45.0 0.99446 120.0 0.99792 245.0 0.99898 

6 36.0 0.99308 42.0 0.99407 54.0 0.99538 144.0 0.99827 294.0 0.99915 

7 42.0 0.99407 49.0 0.99491 63.0 0.99604 168.0 0.99851 343.0 0.99927 

8 48.0 0.99481 56.0 0.99555 72.0 0.99653 192.0 0.99870 392.0 0.99936 

9 54.0 0.99538 63.0 0.99604 81.0 0.99692 216.0 0.99884 441.0 0.99943 

10 60.0 0.99584 70.0 0.99644 90.0 0.99723 240.0 0.99896 490.0 0.99949 

11 66.0 0.99622 77.0 0.99676 99.0 0.99748 264.0 0.99905 539.0 0.99954 

12 72.0 0.99653 84.0 0.99703 108.0 0.99769 288.0 0.99913 588.0 0.99957 

13 78.0 0.99680 91.0 0.99726 117.0 0.99787 312.0 0.99920 637.0 0.99961 

14 84.0 0.99703 98.0 0.99745 126.0 0.99802 336.0 0.99926 686.0 0.99964 

15 90.0 0.99723 105.0 0.99762 135.0 0.99815 360.0 0.99931 735.0 0.99966 

16 96.0 0.99740 112.0 0.99777 144.0 0.99827 384.0 0.99935 784.0 0.99968 

17 102.0 0.99755 119.0 0.99790 153.0 0.99837 408.0 0.99939 833.0 0.99970 

18 108.0 0.99769 126.0 0.99802 162.0 0.99846 432.0 0.99942 882.0 0.99972 

19 114.0 0.99781 133.0 0.99812 171.0 0.99854 456.0 0.99945 931.0 0.99973 

20 120.0 0.99792 140.0 0.99822 180.0 0.99861 480.0 0.99948 980.0 0.99974 

25 150.0 0.99833 175.0 0.99857 225.0 0.99889 600.0 0.99958 1225.0 0.99980 

30 180.0 0.99861 210.0 0.99881 270.0 0.99907 720.0 0.99965 1470.0 0.99983 

50 300.0 0.99917 350.0 0.99929 450.0 0.99944 1200.0 0.99979 2450.0 0.99990 

75 450.0 0.99944 525.0 0.99952 675.0 0.99963 1800.0 0.99986 3675.0 0.99993 

100 600.0 0.99958 700.0 0.99964 900.0 0.99972 2400.0 0.99990 4900.0 0.99995 

150 900.0 0.99972 1050.0 0.99976 1350.0 0.99981 3600.0 0.99993 7350.0 0.99997 

200 1200.0 0.99979 1400.0 0.99982 1800.0 0.99986 4800.0 0.99995 9800.0 0.99997 

250 1500.0 0.99983 1750.0 0.99986 2250.0 0.99989 6000.0 0.99996 12250.0 0.99998 

300 1800.0 0.99986 2100.0 0.99988 2700.0 0.99991 7200.0 0.99997 14700.0 0.99998 

c,(=l 1.00000 1.00000 1.00000 1.00000 1.00000 
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Table C.3.2. (1 - alpha VarUCL) Percentage 

Points of the Studentized Variance (alphaVarUCL = 0.005) 

n 
m 2 3 4 5 6 
1 16210.72272 199.00000 47.46723 23.15450 14.93961 

2 198.50125 26.28427 12.91660 8.80513 6.87237 

3 55.55196 14.54411 8.71706 6.52114 5.37214 

4 31.33277 11.04241 7.22576 5.63785 4.76157 

5 22.78478 9.42700 6.47604 5.17428 4.43267 

6 18.63500 ·8:50963 6.02777 4.88978 4.22758 

7 16.23556 7.92164 5.73039 4.69771 4.08760 

8 . 14.68820 7.51382 5.51900 4.55943 3.98605 

9 13.61361 7.21483 5.36113 4.45517 3.90902 

10 12.82647 6.98646 5.23879 4.37378 3.84860 

11 12.22631 6.80645 5.14124 4.30848 3.79996 
12 11.75423 6.66095 5.06165 4.25494 3.75995 

13 11.37354 6.54095 4.99548 4.21025 3.72647 

14 ll.06025 6.44030 4.93962 4.17239 3.69803 

15 10.79805 6.35469 4.89182 4.13989 3.67359 

16 10.57546 6.28098 4.85047 4.11171 3.65236 

17 10.38418 6.21687 4.81434 4.08703 3.63373 

18 10.21809 6.16059 4.78251 4.06524 3.61727 

19 10.07253 6.11079 4.75425 4.04586 3.60261 
20 9.94393 6.06643 4.72899 4.02851 3.58947 

25 9.47531 5.90162 4.63452 3.96338 3.54005 

30 9.17968 5.79499 4.57284 3.92065 3.50753 

50 8.62576 5.58922 4.45252 3.83683 3.44350 

75 8.36627 5.48995 4.39385 3.79572 3.41198 

100 8.24064 5.44119 4.36488 3.77536 3.39634 

150 8.11767 5.39300 4.33614 3.75513 3.38079 

200 8.05716 5.36912 4.32187 3.74507 3.37304 

250 8.02116 5.35486 4.31333 3.73905 3.36840 

300 7.99729 5.34538 4.30765 3.73504 3.36531 
00 7.8794385766 5.2983173665 4.2793854889 3.7150647501 3.3499204687 
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Table C.3.2 continued. (1 - alphaVarUCL) Percentage 
Points of the Studentized Variance (alphaVarUCL = 0.005) 

n 
7 8. 10 25 

·· 11.07304 8.88539 6.54109 2.96674 
· 5.75703 · · 5.03134 4.14098 2.39439 
4.66274 4.17893 3.55707 2.22167 
4.20189 3:81099 3.29645 2.13823 

. 3.94921 3.60665 3.14915 2:08904 
3.78993 . 3.47681 3.05454 ·2.05660 
3.68042 3.38706 2~98864 2.03359 
3.60053 3.32133 2.94013 · 2.01642 
3.53970 3.27113 2:90292 2.00312 
3.49183 3;23154 2.87348 1.99251 
3.45319 . 3.19951 2.'84960 1.98385 
3.42134 3.17308 2.82985 1.97665 
3.39464 3.15089 2.81324 1.97057 
3.37194 3.13200 2.79908 1.96536 
3.35239 .3.11572 2.78686 · 1.96085 
3.33539 3.10155 2.77621 1.95691 

. 3.32046 3.08910 2.76685 1.95344 
J.30726 3.07808 · 2;75855 1.95036 
3.29549 3.06825 2.75114 l.94760 
3.28494 3.05943 2.74449 1.94512 
3.24518 3.02617 2.71937 1.93571 
3.21896 3.00420 · 2.70274 1.92944 
3.16721 2.96076 2.66978 1.91695 
3.14167 2.93929 2.65344 1.91071 
3.12899 2.92861 2.64530 1.90760 
3.11636 2.91797 2.63719 1.90449 
3.11006 2.91267 2.63314 ._ 1.90293 
3.10629 2.90949 2.63072 1.90200 
3.10378 2.90738 2.62910 . 1.90138 

3.0912640298 2.8968199821 2.6210389757 l.8982713307 

294 

50 
2.11305 
1.85121 
1.76595 
1.72354 
1.69813 
1.68121 
1.66912 
1.66005 
1;65300 

1.64736 
1.64274 
1.63890 
1.63564 
1.63285 
1.63043 
1.62832 
1.62645 
1.62479 
1.62330 
1.62197 
1.61688 
1.61350 
1.60672 
1.60333 
1.60163 
1.59994 
1.59909 
l.59858 
1.59824 

1.5965450633 



Table C.3.3. alphaVarLCL Percentage Points 
of the Studentized Variance (alphaVarLCL = 0.001) 

n 
m 2 3 4 s 6 
1 0.00000247 0.00100100 0.00709 0.01871 0.03361 
2 · 0.00000200 0.00100075 0.00753 0,02041 0.03715 
3 0.00000185 0.00100067 0.00770 0.02109 0.03859 
4 0;00000178 0.00100063 0.00779 0.02146 0.03938 
s 0.00000173 0.00100060 0.00785 0.02169 0.03987 
6 0.00000171 0.00100058 0.00789 0.02185 0.04021 
7 0.00000169 0.00100057 0.00792 0.02197 0.04046 
8 0.00000167 0.00100056 0.00794 ·0.02205 0.04065 
9 0.00000166 . 0.00100056 0.00796 0.02212 0.04080 
10 0.00000165 0.00100055 0.00797 0.02218 0.04092 
11 0;00000164 0.00100055 0.00798 0.02222 0.04101 
12 0.00000164 0.00100054 0.00799 0.02226 0.04110 
13 0.00000163 0.00100054 0.00800 0.02230 0.04117 
14 0.00000163 0.00100054 0.00801 0.02232 0.04123 
15 0.00000162 0.00100053 0.00801 0.02235 0.04128 
16 0.00000162 0.00100053. 0.00802 0.02237 0.04133 
17 0.00000162 0.00100053 0.00802 0.02239 0.04137 
18 0.00000162 0.00100053 0.00803 0.02241 0.04141 
19 0.00000161 0.00100053 0.00803 0.02242 0.04144 
20 0.00000161 0.00100053 0.00803 0.02244 0.04147 
25 0.00000160 0.00100052 0.00805 0.02249 0.04158 
30 0.00000160 0.00100052 0.00806 0.02252 0.04166 
so 0.00000159 0.00100051 0.00807 0.02259 0.04181 
75 0.00000158 0.00100051 0.00808 0.02263 0.04189 
100 0;00000158 0.00100051 0.00809 0.02265 0.04193 
150 0.00000158 0.00100050 0.00809 0.02266 0.04196 
200 0.00000157 0.00100050 0.00809 0.02267 0.04198 
250 0.00000157 0.00100050 0.00809 0.02268 0.04200 
300 0.00000157 0.00100050 0.00809 0.02268 0.04200 

00 0.0000015708 0.0010005003 0.0080991953 0.0227010089 0.0420425205 
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Table C.3.3 continued. alpha VarLCL Percentage 
Points of the Studentized Variance (alphaVarLCL = 0.001) 

n 
7 8 10 25 

0.04993 0.06658 .. 0.09894 0.26771 
0.05559 0.07444 0.11096 0.29660 
0.05791 

. , 

0.07767 0.11593 0.30841 
. 0.05918 0.07944 0.11864 0.31484 
0.05998 0.08055 0.12036 0.31890 
0.06053 0.08132 0.12155 0 .. 32110· 
0.06093 · 0.08189 0.12241 0.32374 
0.06124 0.08231 0.12307 0.32530 
0.06148 ·0.08265 0.12359 0.32652 
0.06167 0.08292 · 0.12402 0.32752 
0.06183 0.08315 0.12436 0.32833 
0.06197 0.08334 0.12466 0.32902 
0.06208 ·0.08350 0.12490 0.32960 
0.06218 0.08364 0.12512 0.33011 
0.06227 0.08376 0.12530 0.33055 
0.06235 0.08386 0.12547 0.33093 
0.06241 0,08396 0.12561 0.33127 
0.06247 0.08404 0.12574 0.33157 
0.06253 0.08412 0.12586 0.33185 
0.06257 0.08418 0.12596 0.33209 
0.06276 0.08444 0.12636 0.33303 
0.06288 0.08462 0.12663 0.33366 
0.06313 0.08497 0.12717 0.33493 
0.06326 0.08514 0.12744 0.33558 
0.06332 0.08523 0.12758 0.33590 
0.06338 0.08532 0.12772 0.33622 
0.06342 0.08537 0.12779 0.33638 
0.06343 0.08539 0.12783 0.33648 
0.06345 0.08541 0.12786 0.33655 

0.0635111259 0.0854991075 0.1279943940 0.3368700659 
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50 
0.40576 
0.44132 
0.45558 
0.46331 
0.46816 
0.47149 
0.47392 
0.47577 
0.47722 
0.47840 
0.47937 
0.48018 
0.48087 
0.48147 
0.48198 
0.48244 
0.48284 
0.48320 
0.48352 
0.48381 
0.48492 
0.48567 
0.48716 
0.48792 
0.48830 
0.48868 
0.48887 
0.48899 
0.48906 

0.4894454026 



Table C.3.4. Two Stage Short Run Control Chart Factors for 
1 haM O 002 1 h V UCL O 005 d 1 h V LCL O 001 alp ean= 7,alp a ar = , an alp a ar = 

n 2 
m A41 B81 B71 A42 B82 B72 
1 ----- ----- ----- 295.51103 16210.72272 0.00000247 
2 10.83583 1.99988 0.00000493 18.76822 198.50125 0.00000200 
3 5.77696 2.97008 0.00000300 8.16986 55.55196 0.00000185 
4 4.31278 3.79505 0.00000247 5.56777 31.33277 0.00000178 
5 3.66033 4.43395 0.00000222 4.48297 22.78478 0.00000173 
6 3.29958 4.92027 0.00000208 3.90411 18.63500 0.00000171 
7 3.07298 5.29511 0.00000199 3.54838 16.23556 0.00000169 
8 2.91825 5.58990 0.00000193 3.30898 14.68820 0.00000167 
9 2.80619 5.82654 0.00000188 3.13742 13.61361 0.00000166 
10 2.72145 6.02010 0.00000184 3.00867 12.82647 0.00000165 
11 2.65518 6.18103 0.00000182 ,\ 2.90861 12.22631 0.00000164 
12 2.60199 6.31679 0.00000179 2.82866 11.75423 0.00000164 
13 2.55836 6.43275 0.00000177 2.76335 11.37354 0.00000163 
14 2.52195 6.53289 0.00000176 2.70901 . 11.06025 0.00000163 
15 2.49111 6.62020 0.00000174 2.66311 10.79805 0.00000162 
16 2.46466 6.69697 .0.00000173 2.62383 10.57546 0.00000162 
17 2.44172 6.76499 0.00000172 2.58984 10.38418 0.00000162 
18 2.42165 . 6.82567 0.00000171 2.56014 10.21809 0.00000162 
19 2.40393 6.88011 0.00000170 . 2.53397 10.07253 0.00000161 
20 2.38819 6.92924 . 0.00000170 2.51074 9.94393 0.00000161 
25 2.33000 7.11692 0.00000167 2.42514 9.47531 0.00000160 
30 2.29261 7.24284 0.00000165 2.37035 9.17968 0.00000160 
50 2.22106 7.49628 0.00000162 2.26594 8.62576 0.00000159 
75 2.18683 7.62366 0.00000160 2.21619 8.36627 0.00000158 
100 2.17009 7.68749 0.00000159 2.19190 8.24064 0.00000158 
150 2.15359 7.75141 ·. 0.00000159 2.16800 8.11767 0.00000158 
200 2.14543 7.78339 0.00000158 2.15618 8.05716 0.00000157 
250 2.14056 7.80259 0.00000158 2.14914 8.02116 0.00000157 
300 2.13733 7.81539 0.00000158 2.14447 7.99729 0.00000157 
= 2.1213040749 7.8794385766 0.0000015708 2.1213040749 7 .8794385766 0.0000015708 

Table C.3.4 continued. Two Stage Short Run Control Chart Factors 
ti 1 h M O 0027 1 h V UCL O 005 d 1 h V LCL O 001 ora1p a ean= , a1p a ar = ,an a!p a ar = 

n 2 
m A41 B81sart B71sart A42 B82sart B72sart 
1 ----- ----- ----- 295.51103 159.57363 0.00197 
2 10.83583 1.77240 0.00278 18.76822 15.89779 0.00160 
3 5.77696 1.94464 0.00195 8.16986 8.08985 0.00148 
4 4.31278 2.11446 0.00170 5.56777 5.95495 0.00142 
5 3.66033 2.24014 0.00159 4.48297 5.01647 0.00138 
6 3.29958 2.33115 0.00152 3.90411 4.49965 0.00136 
7 3.07298 2.39857 0.00147 3.54838 4.17535 0.00135 
8 2.91825 2.44997 0.00144 3.30898 3.95386 0.00133 
9 2.80619 2.49025 0.00141 3.13742 3.79338 0.00132 

10 2.72145 2.52256 0.00140 3.00867 3.67192 0.00132 
11 2.65518 2.54900 0.00138 2.90861 3.57688 0.00131 
12 2.60199 2.57102 0.00137 2.82866 3.50054 0.00131 
13 2.55836 2.58962 0.00136 2.76335 3.43789 0.00130 
14 2.52195 2.60553 0.00135 2.70901 3.38557 0.00130 
15 2.49111 2.61929 0.00134 2.66311 3.34122 0.00130 
16 2.46466 2.63131 0.00134 2.62383 3.30317 0.00129 
17 2.44172 2.64189 0.00133 2.58984 3.27016 0.00129 
18 2.42165 2.65128 0.00133 2.56014 3.24126 0.00129 
19 2.40393 2.65966 0.00132 2.53397 3.21574 0.00129 
20 2.38819 2.66719 0.00132 2.51074 3.19305 0.00129 
25 2.33000 2.69568 0.00131 2.42514 3.10913 0.00128 
30 2.29261 2.71455 0.00130 2.37035 3.05515 0.00127 
50 2.22106 2.75194 0.00128 2.26594 2.95168 0.00127 
75 2.18683 2.77044 0.00127 2.21619 2.90211 0.00126 
100 2.17009 2.77964 0.00127 2.19190 2.87784 0.00126 
150 2.15359 2.78881 0.00126 2.16800 2.85390 0.00126 
200 2.14543 2.79338 0.00126 2.15618 2.84206 0.00126 
250 2.14056 2.79612 0.00126 2.14914 2.83500 0.00126 

300 2.13733 2.79794 0.00126 2.14447 2.83031 0.00126 

= 2.1213040749 2.8070337683 0.0012533145 2.1213040749 2.8070337683 0.0012533145 
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Table C.3.4 continued. Two Stage Short Run Control Chart Factors 
for alphaMean=0.0027, alphaVarUCL=O 005, and alphaVarLCL=O 001 

3 
A41 BSl B71 A42 B82 B72 

17 .69484 199.00000 0.00100100 
2.87519 1.99000 0.00200000 4.97997 26.28427 0.00100075 
2.40967 2.78787 0.00150038 3.40779 14.54411 0.00100067 
2.20599 3.31601 0.00133378 2.84792 11.04241 0.00100063 
2.09497 3.67043 0.00125047 2.56580 9.42700 0.00100060 
2.02564 3.92057 0.00120048 2.39677 8.50963 0.00100058 
1.97838 4.10537 0.00116715 2.28444 7.92164 0.00100057 
1.94415 4.24706 0.00114335 2.20446 7 .51382 0.00100056 
1.91823 4.35898 0.00112549 2.14465 7.21483 0.00100056 
1.89794 4.44953 0.00111161 2.09825 6.98646 0.00100055 
1.88162 4.52426 0.00110050 2.06121 6.80645 0.00100055 
1.86822 4.58695 0.00109141 2.03097 6.66095 0.00100054 
1.85702 4.64030 0.00 I 08383 2.00581 6.54095 0.00100054 
1.84751 4.68623 0.00107742 1.98455 6.44030 0.00100054 
1.83935 4.72618 0.00107193 1.96635 6.35469 0.00100053 
1.83226 4.76125 0.00106716 1.95059 6.28098 0.00100053 
1.82605 4.79228 0.00106300 1.93682 6.21687 0.00100053 
1.82057 4.81993 0.00105932 1.92468 6.16059 0.00100053 
1.81569 4.84472 0.00105605 1.91390 6.11079 0.00100053 
1.81132 4.86707 . 0.00105313 1.90426 6.06643 0.00100053 
1.79489 4.95234 0.00104217 1.86818 5.90162 0.00100052 
1.78410 5.00947 0.00103498 1.84459 . · 5.79499 0.00100052 
1.76290 5.12441 0.00102091 1. 79852 5.58922 0.00100051 
1.75249 5.18218 0.00101401 1.77601 5.48995 0.00100051 
1.74733 5.21115 0.00101060 1.76489 5.44119 0.00100051 
1.74220 5.24016 0.00100721 1.75386 5.39300 0.00100050 
1.73965 5.25468 0.00100553 1.74837 5.36912 0.00100050 
i.73812 5.26340 0.00100452 1.74509 5.35486 0.00100050 
1.73710 5.26921 0.00100384 1.74290 5.34538 0.00100050 

1.7320375243 5.2983173665 0.0010005003 .1.7320375243 5.2983173665 0.0010005003 

Table C.3.4 continued. Two Stage Short Run Control Chart Factors 
t: 1 haM 00027 1 h V UCL 0005 d I h V LCL 0001 orarp ean= , arp a ar = , an a1p1 a ar = 

3 
A41 B81snrt B71snrt A42 B82snrt B72snrt 

----- ----- ----- 17.69484 15.91775 0.03570 
2.87519 1.59177 0.05046 4.97997 5.45415 0.03365 
2.40967 1.77629 0.04121 3.40779 3.97519 0.03297 
2.20599 1.89811 0.03807 2.84792 3.42822 0.03263 
2.09497 1.97649 0.03648 2.56580 3.14794 0.03243 
2.02564 2.03008 0.03552 2.39677 2.97847 0.03230 
1.97838 2.06878 0.03488. 2.28444 2.86521 0.03220 
1.94415 2.09794 0.03442 2.20446 2.78427 0.03213 
1.91823 2.12067 0.03408 2.14465 2.72359 0.03207 
1.89794 2.13888 0.03381 2.09825 2.67643 0.03203 
1.88162 2.15377 0.03359 2.06121 2.63872 0.03199 
1.86822 2.16619 0.03341 2.03097 2.60790 0.03196 
1.85702 2.17668 0.03327 2.00581 2.58223 0.03194 
1.84751 2.18568 0.03314 1.98455 2.56053 0.03191 
1.83935 2.19347 0.03303 1.96635 2.54194 0.03190 
1.83226 2.20029 0.03294 1.95059 2.52584 0.03188 
1.82605 2.20629 0.03286 1.93682 2.51176 0.03186 
1.82057 2.21163 0.03279 1.92468 2.49935 0.03185 
1.81569 2.21641 0.03272 1.91390 2.48832 0.03184 
1.81132 2.22070 0.03267 1.90426 2.47845 0.03183 
1.79489 2.23700 0.03245 1.86818 2.44150 0.03179 
1.78410 2.24785 0.03231 1.84459 2.41733 0.03176 
1.76290 2.26950 0.03203 1.79852 2.37007 0.03171 
1.75249 2.28029 0.03190 1.77601 2.34697 0.03168 
1.74733 2.28568 0.03183 1.76489 2.33555 0.03167 
1.74220 2.29106 0.03176 1.75386 2.32422 0.03166 
1.73965 2.29375 0.03173 1.74837 2.31859 0.03165 
1.73812 2.29536 0.03171 1.74509 2.31521 0.03165 
1.73710 2.29644 0.03170 1.74290 2.31297 0.03164 

I. 7320375243 2.3018074130 0.0316306866 1.7320375243 2.301807 4130 0.0316306866 
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Table C.3A continued. Two Stage Short Run Control Chart Factors 
ti I h M O 0027 I h V UCL O 005 d I h V LCL O 001 or a1p1 a ean= . , a1p1 a ar = , an a1p1 a ar = 

n 4 
m A41 B81 B71 A42 B82 B72 
1 ----- ----- ----- 7.07531 47.46723 0.00709 
2 1.80725 1.95874 0.01407 3.13025 12.91660 0.00753 
3 1.71844 2.59776 0.01125 2.43023 8.71706 0.00770 
4 1.66424 2.97585 0.01024 2.14852 7.22576 0.00779 
s 1.63082 3.21838 0.00972 1.99733 6.47604 0.00785 

"6 1.60849 3.38586 0.00941 1.90319 6.02777 0.00789 
7 1.59259 3.50808 0.00919 1.83897 5.73039 0.00792 
8 1.58073 3.60108 0.00904 1.79237 5.51900 0.00794 
9 1.57154 -3.67416 0.00892 1.75703 5.36113 0.00796 
10 1.56422 3.73308 0.00883 1.72931 5.23879 0.00797 
11 1.55825 3.78158 0.00876 1.70698 5.14124 0.00798 
12 1.55330 3.82219 0.00870 1.68862 5.06165 0.00799 
13 1.54912 3.85669 0.00865 1.67324 4.99548 0.00800 
14 1.54555 3.88635 _0.00861 1.66018 · 4.93962 0.00801 
15 1.54246 3.91213 0.00857 1.64896 4.89182 0.00801 
16 1.53976 3.93474 0.00854 1.63920 4.85047 0.00802 
17 1.53738 3.95473 0.00852 1.63064 4.81434 0.00802 
18 1.53527 3.97253 0.00849 · 1.62307 4.78251 0.00803 
19 1.53339 3.98849 0.008.47 1.61634 4.75425 0.00803 
20 1.53170 4.00286 0.00845 1.61030 4.72899 0.00803 
25 1.52528 4.05766 0.00838 1.58757 4.63452 · 0.00805 
30 1.52103 4.09434 0.00833 .. 1.57260 4.57284 0.00806 
so 1.51256 4.16804 0.00824 1.54312 4.45252 0.00807 
75 1.50836 4.20505 0.00819 1.52860 4.39385 0.00808 
100 1.50626 4.22360 · 0.00817 1.52140 4.36488 0.00809 
150 1.50416 4.24217 0.00814 1.51422 4.33614 0.00809 
200 1.50312 4.25146 0.00813 1.51065 4.32187 0.00809 
250 1.50249 4.25704 0.00813 1.50851 4.31333 0.00809 
300 1.50207 4.26076 0.00812 1.50709 4.30765 0.00809 - 1.4999884964 4.2793854889 0.0080991953 1.4999884964 4.2793854889 0.0080991953 

Table C.3.4 continued. Two Stage Short Run Control Chart Factors 
ti I haM 00027 al h V UCL 0005 d I h V LCL=OOOI or am ean= , IP a ar = , ah am a ar -

n 4 
m A41 B8lsort B71sort A42 B82sort B72sqrt 
1 ----- --- ----- 7.07531 7.47804 0.09137 
2 l._80725 1.51907 0.12876 3.13025 3.74618 0.09044 
3 1.71844 1.68002 0.11055 2.43023 3.03546 0.09022 
4 1.66424 1.77356 0.10404 2.14852 2.74460 0.09014 
s 1.63082 1.83171 0.10068 1.99733 2.58754 0.09009 
6 1.60849 1.87097 0.09862 1.90319 2.48947 0.09007 
7 1.59259 1.89917 0.09722 1.83897 2.42248 0.09005 
8 1.58073 1.92037 0.09622 1.79237 2.37385 0.09004 
9 1.57154 1.93688 0.09546 1.75703 2.33694 0.09004 
10 1.56422 1.95009 0.09486 1.72931 2.30799 0.09003 
11 1.55825 1.96090 0.09439 1.70698 2.28467 0.09003 
12 1.55330 1.%991 0.09399 1.68862 2.26549 0.09002 
13 1.54912 1.97753 0.09367 1.67324 2.24943 0.09002 
14 1.54555 1.98406 0.09339 1.66018 2.23579 0.09002 
15 1.54246 1.98972 0.09315 1.64896 2.22407 0.09001 
16 1.53976 1.99467 0.09294 1.63920 2.21388 0.09001 
17 1.53738 1.99903 0.09276 1.63064 2.20494 0.09001 
18 1.53527 2.00292 0.09260 1.62307 2.19704 0.09001 
19 1.53339 2.00639 0.09246 1.61634 2.19001 0.09001 
20 1.53170 2.00951 0.09233 1.61030 2.18370 0.09001 
25 1.52528 2.02137 0.09185 1.58757 2.15998 0.09001 
30 1.52103 2.02927 0.09153 1.57260 2.14437 0.09000 
so 1.51256 2.04505 0.09091 1.54312 2.11362 0.09000 
75 1.50836 2.05293 0.09060 1.52860 2.09848 0.09000 
100 1.50626 2.05687 0.09045 1.52140 2.09097 0.09000 
150 1.50416 2.06080 0.09030 1.51422 2.08350 0.09000 
200 1.50312 2.06277 0.09022 1.51065 2.07978 0.09000 
250 1.50249 2.06395 0.09018 1.50851 2.07755 0.09000 
300 1.50207 2.06474 0.09015 1.50709 2.07606 0.09000 - 1.4999884964 2.0686675636 0.0899955292 1.4999884964 2.0686675636 0.0899955292 
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Table C.3.4 continued. Two Stage Short Run Control Chart Factors 
ti l haM 00027 l h V UCL 0005 d l h V LCL=OOOl oratp ean= . , a1p a ar = ; an a1p1 a ar -

n s 
m A41 B81 B71 A42 B82 B72 
1 ----- ----- .. ---~ .. 4.45422 23.1.5450 0.01871 
2 1.39519 1.91720 0.03674 2.41654 8.80513 0.02041 
3 1.40341 2.44471 0.03031 1.98472 6.52114 0.02109 
4 1.39422 2.73965 0.02793 1.79993 5.63785 0.02146 
s 1.38606 2.92485 0.02668 1.69757 5.17428 0.02169 
6 1.37977 3.05139 0.02592 1.63257 4.88978 0.02185 
7 1.37493 3.14317 0.02540 1.58764 4.69771 0.02197 
8 1.37114 3.21274 0.02503 1.55473 4.55943 0.02205 
9 1.36810 3.26726 0.02474 1.52958 4.45517 0.02212 

10 1.36562 3.31112 0.02452 1.50975 4.37378 0.02218 
11 1.36355 3.34717 0.02434 1.49370 4.30848 0.02222 
12 1.36181 3.37733 0.02420 1.48045 .4.25494 0.02226 
13 1.36033 3.40292 0.02407 1.46932 4.21025 !).02230 
14 1.35904 3.42491 0.02397 1.45984 4.17239 0.02232 
15 1.35792 3.44400 0.02388 1.45168 4.13989 0.02235 
16 1.35694 3.46075 0.02380 1.44457 4.11171 0.02237 
17 1.35606 3.47554 0.02374 1.43832 4.08703 0.02239 
18 1.35528 3.48871 0.02367 1.43279 4.06524 0.02241 
19 1.35458 3.50051 0.02362 1.42785 4.04586 0.02242 
20 1.35395 · 3.51113 0.02357 1.42343 4.02851 0.02244 
25 1.35153 3.55162 0.02339 1.40672 3.96338 0.02249 
30 1.34990 3.57870 0.02327 1.39568 3.92065 0.02252 
so 1.34662 3.63305 0.02304 1.37383 3.83683 0.02259 
75 1.34497 3.66033 0.02293 1.36302 3.79572 0.02263 
100 1.34414 3.67399 0.02287 1.35765 3.77536 0.02265 
150 1.34330 3.68767 0.02281 1.35229 3.75513 0.02266 
200 1.34289 3.69451 0.02279 1.34962 3.74507 0.02267 
250 1.34264 3.69862 0.02277 1.34802 3.73905 0.02268 
300 1.34247 .3.70136 0.02276 1.34695 3.73504 0.02268 
00 1.3416304973 3.7150647501 0.0227010089 1.3416304973 '3.7150647501 0.0227010089 

Table C.3.4 continued. Two Stage Short Run Control Chart Factors 
ti l haM 00027 l h V UCL 0005 d l h V LCL=OOOl oratp ean= , a1p a ar = , an alp. a ar -

n s 
m A41 B81sqrt B71sqrt A42 B82sqrt B72sqrt 
1 ---- ----- _;. __ 

4.45422 5.11913 0.14553 
2 1.39519 1.47303 0.20392 2.41654 3.06129 0.14739 
3 1.40341 1.61306 0.17960 1.98472 2.60735 . 0.14828 

4 1.39422 1.68999 0.17062 1.79993 2.41178 0.14880 
5 · 1.38606 1.73713 0.16592 1.69757 2.30330 0.14913 
6 1.37977 1.76879 0.16301 1.63257 2.23443 0.14937 
7 1.37493 1.79146 0.16104 1.58764 2.18685 0.14954 
8 1.37114 1.80848 0.15961 '1.55473 2.15203 0.14967 
9 1.36810 1.82173 0.15853 1.52958 2.12543 0.14977 
10 1.36562 1.83233 0.15768 1.50975 2.10447 0.14986 
11 1.36355 1.84100 0.15700 1.49370 2.08751 0.14993 
12 1.36181 1.84822 0.15644 1.48045 2.07352 0.14999 
13 1.36033 1.85433 0.15597 1.46932 2.06178 0.15004 
14 1.35904 1.85957 0.15557 1.45984 2.05178 0.15008 
15 1.35792 1.86411 0.15522 1.45168 2.04317 0.15012 
16 1.35694 1.86807 0.15493 1.44457 2.03567 0.15015 
17 1.35606 1.87158 0.15466 1.43832 2.02909 0.15018 
18 1.35528 1.87469 0.15443 1.43279 2.02326 0.15021 
19 1.35458 1.87747 0.15423 1.42785 2.01806 0.15023 
20 1.35395 1.87998 0.15404 1.42343 2.01340 0.15025 
25 1.35153 1.88949 0.15335 1.40672 1.99581 0.15033 
30 1.34990 1.89583 0.15289 1.39568 1.98419 0.15039 
so 1.34662 1.90849 0.15199 1.37383 1.96123 0.15050 
75 1.34497 1.91481 0.15154 1.36302 1.94989 0.15056 

100 1.34414 1.91798 0.15132 1.35765 1.94424 0.15058 

150 1.34330 1.92114 0.15110 1.35229 1.93862 0.15061 

200 1.34289 1.92271 0.15100 1.34962 1.93582 0.15063 
250 1.34264 1.92366 0.15093 1.34802 1.93414 0.15063 

300 1.34247 1.92429 0.15089 1.34695 1.93303 0.15064 
00 1.3416304973 1.9274503237 0.1506685398 1.3416304973 1.9274503237 0.1506685398 

300 



Table C.3.4 continued. Two Stage Short Run Control Chart Factors 

£ 1 h M O 0027 1 h V UCL O 005 d I h V LCL O 001 or a1p. a ean=. , a1p1 a ar = , an a1p a ar = 
n 6 
m A41 B81 B71 A42 B82 B72 
1 ----- ----- ----- 3.34141 14.93961 0.03361 
2 1.17112 1.87453 0.06504 2.02845 6.87237 0.03715 
3 1.21554 2.32374 0.05471 1.71903 5.37214 0.03859 
4 1.22511 2.56667 0.05080 1.58162 4.76157 0.03938 
s 1.22802 2.71731 0.04874 1.50401 4.43267 0.03987 
6 1.22897 2.81957 0.04747 1.45413 4.22758 0.04021 
7 1.22922 2.89346 0.04660 1.41938 4.08760 0.04046 
8 1.22920 2.94932 0.04597 1.39378 3.98605 0.04065 
9 1.22906 2.99301 0.04550 1.37413 3.90902 0.04080 

IO 1.22888 3.02813 0.04512 1.35857 3.84860 0.04092 
11 1.22868 3.05696 0.04482 1.34595 3.79996 0.04101 
12 1.22849 3.08106 0.04458 1.33551 3.75995 0.04110 
13 1.22830 3.10149 0.04437 1.32672 3.72647 0.04117 
14 1.22813 3.11904 0.04419 1.31923 3.69803 0.04123 
15 1.22797 3.13428 0.04404 1.31276 3.67359 0.04128 
16 1.22782 3.14763 0.04391 1.30712 3.65236 0.04133 
17 1.22768 3.15942 0.04380 1.30216 3.63373 0.04137 
18 1.22756 3.16992 0.04370 1.29776 3.61727 0.04141 
19 1.22744 3.17931 0.04361 1.29383 3.60261 0.04144 
20 1.22733 3.18778 0.04352 1.29031 3.58947 0.04147 
25 1.22689 3.22002 0.04322 1.27699 3.54005 0.04158 
30 1.22657 3.24156 0.04302 1.26816 3.50753 0.04166 
so 1.22589 3.28478 0.04262 1.25066 3.44350 0.04181 
75 1.22552 3.30645 0.04243 1.24197 3.41198 0.04189 
100 1.22533 3.31731 0.04233 1.23765 3.39634 0.04193 
150 1.22514 3.32817 0.04223 1.23333 3.38079 0.04196 
200 1.22504 3.33360 0.04219 1.23118 3.37304 0.04198 
250 1.22498 3.33686 0.04216 1.22989 3.36840 0.04200 
300 1.22494 3.33904 0.04214 1.22903 3.36531 0.04200 
= 1.2247354787 3.3499204687 0.0420425205 1.2247354787 3.3499204687 0.0420425205 

Table C.3.4 continued. Two Stage Short Run Control Chart Factors 

£ 1 h M 00027 1 h V UCL 0005 d I h V LCL=OOOl or a1p a ean= , aip a ar = , an a1p a ar -
n 6 
m A41 B8lsqrt B7lsqrt A42 B82sqrt B72sqrt 
1 ----- ----- ----- 3.34141 4.06205 0.19267 
2 1.17112 1.43887 · 0.26801 2.02845 2.68777 0.19762 
3 1.21554 1.56291 0.23982 1.71903 2.35671 0.19975 
4 1.22511 1.62899 0.22918 1.58162 2.20954 0.20093 
s 1.22802 1.66915 0.22355 1.50401 2.12655 0.20169 
6 1.22897 1.69603 0.22006 1.45413 2.07331 0.20220 
7 1.22922 1.71525 0.21768 1.41938 2.03627 0.20258 
8 1.22920 1.72967 0.21595 1.39378 2.00902 0.20288 
9 1.22906 1.74088 0.21464 1.37413 1.98814 0.20310 

IO 1.22888 1.74985 0.21361 1.35857 1.97162 0.20329 
11 1.22868 1.75718 0.21278 1.34595 1.95823 0.20344 
12 1.22849 1.76329 0.21209 1.33551 1.94715 0.20357 
13 1.22830 1.76846 0.21152 1.32672 1.93784 0.20368 
14 1.22813 1.77289 0.21103 1.31923 1.92991 0.20377 
15 1.22797 1.77672 0.21062 1.31276 1.92306 0.20386 
16 1.22782 1.78008 0.21025 1.30712 1.91710 0.20393 
17 1.22768 1.78304 0.20993 1.30216 1.91185 0.20399 
18 1.22756 1.78567 0.20965 1.29776 1.90720 0.20405 
19 1.22744 1.78802 0.20940 1.29383 1.90306 0.20410 
20 1.22733 1.79014 0.20917 1.29031 1.89933 0.20415 
25 1.22689 1.79818 0.20833 1.27699 1.88527 0.20432 
30 1.22657 1.80354 0.20777 1.26816 1.87596 0.20444 
so 1.22589 1.81425 0.20666 1.25066 1.85752 0.20468 
75 1.22552 1.81959 0.20612 1.24197 1.84839 0.20480 
100 1.22533 1.82227 0.20585 1.23765 1.84384 0.20486 
150 1.22514 1.82494 0.20558 1.23333 1.83930 0.20492 
200 1.22504 1.82627 0.20544 1.23118 1.83704 0.20495 
250 1.22498 1.82708 0.20536 1.22989 1.83569 0.20497 

300 1.22494 1.82761 0.20531 1.22903 1.83478 0.20498 

= 1.2247354787 1.8302787954 0.2050427285 1.2247354787 1.8302787954 0.2050427285 
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Table C.3.4 continued. Two Stage Short Run Control Chart Factors 
fi l haM 00027 l h V UCL 0005 d l h V LCL 0001 or alp. ean= . , alp. a ar = , an alp. a ar = 

n 7 
m A41 B81 B71 A42 B82 B72 
1 ----- ----- ----- 2.73231 11.07304 0.04993 
2 1.02719 1.83434 0.09510 1.77914 5.75703 0.05559 
3 1.08754 2.22651 0.08113 1.53801 4.66274 0.05791 
4 1.10628 2.43398 0.07575 . 1.42820 4.20189 0.05918 
s 1.11481 2.56154 0.0729d 1.36536 3.94921 o.05998 
6 1.11954 2.64775 0.07112 1.32466 3.78993 · 0.06053 
7 1.12249 2.70988 0.06991 1.29614 :i:68042 0.06093 
8 ·. 1.12448 2.75676 0.06904 1.27504 3.60053 ·0.06124 
9 1.12591 2.79339 0.06837 1.25880 3.53970 0.06148 
10 1.12697 · 2.82279 .0.06785 l.24592 3.49183 0.06167 
11 1.12780 2.84692 0.06743 1.23544 3.45319 0.06183 
12 -J.12845 2.86707 0.06708 1.22676 3.42134 ·0.06197 
13 1.12898 2.88415 0.06679 1.21944 .-3.39464 0.06208 
14 1.12942 2.89881 0.06654 1.21319 3.37194 0.06218 
15 1.12979 2.91154 0.06633 1.20780 3.35239 0.06227 
16 L13011 2.92268 0.06615 1.20309 3.33539 0.06235 
17 1.13038 2.93253 0.06598 . 1.19895 3.32046 0.06241 
18 -1.13061 2.94129 ·0.06584 1.19527 3.30726 0.06247 
19 1.13082 2.94913 0.06571 f.19199 3.29549 0.06253 
20 1.13100 · 2.95620 0.06560 1.18904 3.28494 0.06257 
25 1.13166 2.98308 0.06517 1.17787 3.24518 0.06276 
30 1.13208 3.00104 0.06489 1.17047 3.21896 0.06288 
so· 1.13286 3.03705 0.06433 1.15575 3.16721 0.06313 
75 1.13322. 3.05509 0.06405 1.14843 3.14167 0.06326 
100 1.13339 3.06412 0.06392· 1.14478 3.12899 0.06332 
150 1.13356 3.07316 0.06378 1.14114 3.11636 0.06338 
200 l.13j64 ·3.07769 0.06371 . 1.13933 3.11006 0.06342 
250 1.13369 3.08040 . 0.06361 1.13824 3.10629 0.06343 
300 1.13372 3.08221. 0.06365 l.13751 3.10378 0.06345 
~ 1.1338847231 3.0912640298 0.0635 lll 259 1.1338847231 3.0912640298 0.0635111259 

Table C.3.4 continued. Two Stage Short Run Control Chart Factors 
fi l haM O 0027 I h V UCL O 005 d l h C O 0 or alp. ean= , alp. a ar = , an alp aVarL L= 01 

n 7 
m A41 B8lsqrt B7lsqrt A42 B82sort B72sort 
1 ----- ---- ---- 2.73231 3.46855 0.23290 
2 1.02719 1.41174 0.32145 1.77914 2.44983 0.24073 
3 1.08754 1.52352 0.29082 1.53801 2.18952 0.24401 
4 1.10628 1.58193 0.27908 1.42820 2.07131 0.24582 
s 1.11481 1.61723 0.27282 1.36536 2.00389 0.24696 
6 :1.11954 1.64080 0.26892 1.32466 1.96034 0.24774 
7 1.12249 1.65764 0.26625 1.29614 1.92989 0.24832 
8 1.12448 1.67026 0.264jl 1.27504 1.90741 0.24876 
9 1.12591 1.68007 0.26284 1.25880 1.89014 0.24910 
10 1.12697 1.68791 0.26168 1.24592 1.87645 0.24938 
11 1.12780 1.69433 0.26075 1.23544 1.86533 0.24961 
12 1.12845 1.69967 0.25998 1.22676 1.85612 0.24980 
13 1.12898 1.70418 0.25933 1.21944 1.84837 0.24997 
14 1.12942 1.70806 0.25879 1.21319 1.84176 0.25011 
15 1.12979 1.71141 0.25831 1.20780 1.83605 0.25023 
16 1.13011 1.71434 0.25790 1.20309 1.83107 0.25034 
17 1.13038 1.71693 0.25754 1.19895 1.82669 0.25044 
18 1.13061 1.71923 0.25723 1.19527 1.82280 0.25052 
19 1.13082 1.72128 0.25694 1.19199 1.81933 0.25060 
20 1.13100 1.72313 0.25669 1.18904 1.81622 0.25067 
25 . 1.13166 1.73016 0.25573 1.17787 1.80444 0.25093 
30 1.13208 1.73484 0.25510 1.17047 1.79664 0.25111 
so 1.13286 1.74419 0.25385 1.15515 1.78115 0.25147 
75 1.13322 1.74887 0.25323 1.14843 1.77346 0.25165 
100 1.13339 1.75120 0.25292 1.14478. 1.76963 0.25174 
150 1.13356 1.75353 0.25262 1.14114 1.76581 0.25183 
200 · i.13364 1.15470 0.25247 1.13933 1.76390 0.25188 
250 1.13369 1.75540 0.25238 1.13824 1.76276 0.25190 
300 1.13372 1.75587 0.25232 1.13751 1.76200 0.25192 - 1.1338847231 1.7581990871 0.2520141382 1.1338847231 1.7581990871 0.2520141382 
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Table C.3.4 continued. Two Stage Short Run Control Chart Factors 
for alphaMean=0.0027, alphaVarUCL=O 005, and alphaVarLCL=O 001 

8 
A41 B81 B71 A42 B82 B72 

2.34703 8.88539 0.06658 
0.92530 1.79768 0.12486 1.60267 5.03134 0.07444 
0.99316 2.14668 0.10765 1.40453 4.17893 0.07767 
1.01678 2.32844 0.10095 1.31265 3.81099 0.07944 
1.02844 2.43950 0.09737 1.25958 3.60665 0.08055 
1.03531 2.51432 0.09513 . 1.22499 3.47681 0.08132 
1.03980 2.56813 . 0.09361 1.20066 3.38706 0.08189 
1.04296 2.60868 0.09250 1.18261 3.32133 0.08231 
1.04530 2.64032 0.09166 1.16868 3.27113 0.08265 
1.04710 2.66571 0.09100 1.15762 3.23154 0.08292 
1.04853 2.68653 0.09047 1.14860 3.19951 0.08315 
1.04968 2.70391 0.09003 1.14113 3.17308 0.08334 
1.05064 2.71863 0.08966 1.13482 3.15089 0.08350 
1.05144 2.73127 0.08935 1.12943 3.13200 0.08364 
1.05213 2.74223 0.08908 1.12477 3.11572 0.08376 
1.05272 2.75184 0.08885 1.12071 3.10155 0.08386 
1.05323 2.76032 0.08864 1.11712 3.08910 0.08396 
1.05369 2.76786 0.08846 1.11395 3.07808 0.08404 
1.05409 2.77461 0.08830 1.11111 3.06825 0.08412 
1.05444 2.78069 0.08815 1.10855 3.05943 0.08418 
1.05577 2.80383 0.08761 1.09888 3.02617 0.08444 
1.05663 2.81928 0.08725 1.09246 3.00420 0.08462 
1.05830 2.85024 0.08654 1.07968 2.96076 0.08497 
1.05910 2.86574 0.08619 1.07332 2.93929 0.08514 
1.05950 2.87351 0.08602 1.07014 2.92861 0.08523 
1.05989 2.88127 0.08584 1.06697 . 2.91797 0.08532 
1.06008 2.88516 0.08576 1.06539 2.91267 0.08537 
1.06019 2.88749 0.08570 1.06444 2.90949 0.08539 
1.06027 2.88904 0.08567 1.06381 2.90738 0.08541 

1.0606520375 2.8968199821 0.0854991075 l.0606520375 2.8968199821 0.0854991075 

Table C.3.4 continued. Two Stage Short Run Control Chart Factors 
ti 1 h M 00027 1 h V UCL 0005 d 1 h V LCL=OOOl or alp a ean= , alp a ar = , an alp a ar -

8 
A41 B8lsqrt B7lsort A42 B82sort B72sort 

----- ----- ----- 2.34703 3.08885 0.26739 
0.92530 1.38936 0.36615 1.60267 2.28344 0.27774 
0.99316 1.49153 0.33401 1.40453 2.06872 0.28203 
1.01678 1.54419 0.32153 1.31265 1.96968 0.28438 
1.02844 1.57590 0.31483 1.25958 1.91273 0.28586 
1.03531 1.59703 0.31065 1.22499 1.87575 0.28688 
1.03980 1.61210 0.30778 1.20066 1.84981 0.28762 
1.04296 1.62340 0.30570 1.18261 1.83061 0.28819 
1.04530 1.63218 0.30411 1.16868 1.81582 0.28863 
1.04710 1.63919 0.30286 1.15762 1.80408 0.28900 
1.04853 1.64493 0.30185 1.14860 1.79453 0.28929 
1.04968 1.64970 0.30102 1.14113 1.78662 0.28954 
1.05064 1.65374 0.30033 1.13482 1.77996 0.28976 
1.05144 1.65720 0.29973 1.12943 1.77426 0.28994 
1.05213 1.66020 0.29922 1.12477 1.76935 0.29010 
1.05272 1.66282 0.29878 1.12071 1.76506 0.29024 
1.05323 1.66513 0.29839 1.11712 1.76128 0.29036 
1.05369 1.66719 0.29805 1.11395 1.75793 0.29047 
1.05409 1.66902 0.29774 1.11111 1.75494 0.29057 
1.05444 1.67068 0.29746 1.10855 1.75225 0.29066 
1.05577 1.67696 0.29643 1.09888 1.74208 0.29101 
1.05663 1.68114 0.29574 1.09246 1.73533 0.29123 
1.05830 1.68950 0.29439 1.07968 1.72192 0.29170 

1.05910 1.69367 0.29372 1.07332 1.71525 0.29193 

1.05950 1.69575 0.29339 1.07014 1.71193 0.29205 

1.05989 1.69784 0.29306 1.06697 1.70861 0.29217 

1.06008 1.69888 0.29289 1.06539 1.70696 0.29223 

1.06019 1.69951 0.29280 1.06444 1.70597 0.29226 
1.06027 1.69992 0.29273 1.06381 1.70531 0.29228 

1.0606520375 l. 7020046951 0.2924023042 l .0606520375 1.7020046951 0.2924023042 
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Table C.3.4 continued. Two Stage Short Run Control Chart Factors 
ti I h M O 0027 1 h V UCL O 005 d I h V LCL O 001 or alp, a ean= . , alp. a ar = , an alp1 a ar = 

n 10 
m A41 B81 B71 A42 B82 B72 
1 ----- ----- ----- 1.88245 6.54109 0.09894 
2 0.78799 1.73479 0.18007 1.36485 4.14098 0.11096 
3 0.86077 2.02296 0.15769 1.21731 3.55707 0.11593 
4 0.88861 2.16991 0.14882 l.14719 3.29645 0.11864 
5 0.90317 2.25894 0.14403 1.10615 3.14915 0.12036 
6 0.91209 2.31864 0.14104 1.07920 3.05454 0.12155 
7 0.91810 2.36144 0.13899 1.06013 2.98864 0.12241 
8 0.92242 2.39363 0.13750 1.04593 2.94013 0.12307 
9 0.92568 2.41872 0.13636 1.03494 2.90292 0.12359 

10 0.92822 2.43883 0.13547 1.02618 2.87348 0.12402 
11 0.93025 2.45530 0.13475 1.01904 2.84960 0.12436 
12 0.93192 2.46904 0.13415 1.01311 2.82985 0.12466 
13 0.93331 2.48068 0.13365 1.00809 2.81324 0.12490 
14 0.93449 2.49066 0.13323 1.00381 2.79908 0.12512 
15 0.93550 2.49932 0.13287 1.00010 2.78686 0.12530 
16 0.93638 2.50689 0.13255 0.99685 2.77621 0.12547 
17 0.93715 2.51358 0.13227 0.99400 2.76685 0.12561 
18 0.93783 2.51953 0.13203 0.99146 2.75855 0.12574 
19 0.93843 2.52486 0.13181 0.98919 2.75114 0.12586 
20 0.93897 2.52965 0.13161 0.98715 2.74449 0.12596 
25 0.94099 2.54789 0.13087 0.97941 2.71937 0.12636 
30 0.94231 2.56005 0.13038 0.97427 2.70274 0.12663 
50 0.94491 2.58442 0.12941 0.96400 2.66978 0.12717 
75 0.94618 2.59662 0.12894 0.95888 2.65344 0.12744 
100 0.94681 2.60272 0.12870 0.95633 2.64530 0.12758 
150 0.94744 2.60882 0.12846 0.95378 2.63719 0.12772 
200 0.94775 2.61188 0.12835 0.95250 2.63314 0.12779 
250 0.94794 2.61371 0.12828 0.95173 2.63072 0.12783 
300 0.94806 2.61493 0.12823 0.95122 2.62910 0.12786 
= 0.9486760225 2.6210389757 0.1279943940 0.9486760225 2.6210389757 0.1279943940 

Table C.3.4 continued. Two Stage Short Run Control Chart Factors 
ti I haM 00027 1 h V UCL 0005 d I h V LCL 0001 or am ean= 'a!p a ar = , an a1p. a ar = 

n 10 
m A41 B81sqrt B7lsqrt A42 B82sqrt B72sqrt 
1 ----- ----- ----- 1.88245 2.62945 0.32340 
2 0.78799 1.35414 0.43628 1.36485 2.06339 0.33777 
3 0.86077 1.44219 0.40266 1.21731 1.90356 0.34364 
4 0.88861 1.48676 0.38936 l.14719 1.82826 0.34685 
5 0.90317 1.51345 0.38216 l.10615 1.78447 0.34887 
6 0.91209 1.53119 0.37765 1.07920 1.75583 0.35025 
7 0.91810 1.54383 0.37454 1.06013 1.73564 0.35127 
8 0.92242 1.55329 0.37228 1.04593 1.72064 0.35204 
9 0.92568 1.56063 0.37055 1.03494 1.70906 0.35265 
10 0.92822 1.56650 0.36920 1.02618 1.69985 0.35314 
11 0.93025 1.57130 0.36810 1.01904 1.69234 0.35354 
12 0.93192 1.57529 0.36719 1.01311 1.68611 0.35388 
13 0.93331 1.57867 0.36644 1.00809 1.68086 0.35417 
14 0.93449 1.58156 0.36579 1.00381 1.67637 0.35442 
15 0.93550 1.58406 0.36523 1.00010 1.67248 0.35464 
16 0.93638 1.58625 0.36475 0.99685 1.66909 0.35483 
17 0.93715 1.58818 0.36432 0.99400 1.66610 0.35500 
18 0.93783 1.58990 0.36395 0.99146 1.66345 0.35515 
19 0.93843 1.59143 0.36361 0.98919 1.66108 0.35528 
20 0.93897 1.59282 0.36331 0.98715 1.65895 0.35540 
25 0.94099 1.59806 0.36218 0.97941 1.65088 0.35587 
30 0.94231 1.60155 0.36143 0.97427 1.64552 0.35618 
50 0.94491 1.60852 0.35994 0.96400 1.63485 0.35681 
75 0.94618 1.61201 0.35921 0.95888 1.62954 0.35712 
100 0.94681 1.61375 0.35885 0.95633 1.62689 0.35728 
150 0.94744 1.61549 0.35848 0.95378 1.62424 0.35744 
200 0.94775 1.61636 0.35830 0.95250 1.62292 0.35752 
250 0.94794 1.61688 0.35820 0.95173 1.62213 0.35757 
300 0.94806 1.61722 0.35812 0.95122 1.62160 0.35760 

= 0.9486760225 1.6189623145 0.3577630417 0.9486760225 1.6189623145 0.3577630417 
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Table C.3.4 continued. Two Stage Short Run Control Chart Factors 
ti I h O 0027 1 h V UCL O 005 d I h V LCL O 001 or a Ip aMean= , alp a ar = , an alp a ar = 

n 25 
m A41 B81 B71 A42 B82 B72 
1 ----- ----- ----- 0.95593 2.96674 0.26771 
2 0.44979 1.49581 0.42235 0.77906 2.39439 0.29660 
3 0.50923 1.63462 0.38745 0.72015 2.22167 0.30841 
4 0.53486 1.70188 0.37288 0.69051 2.13823 0.31484 
s 0.54919 1.74173 0.36484 0.67262 2.08904 0.31890 
6 0.55835 1.76812 0.35974 0.66065 2.05660 0.32170 
7 0.56471 1.78688 0.35622 0.65207 2.03359 0.32374 
8 0.56938 1.80091 0.35363 0.64562 2.01642 0.32530 
9 0.57296 1.81180 0.35166 0.64059 2.00312 0.32652 

10 0.57579 1.82050 0.35010 0.63656 1.99251 0.32752 
11 0.57809 1.82761 0.34884 0.63326 1.98385 0.32833 
12 0.57998 1.83353 0.34780 0.63051 1.97665 0.32902 
13 0.58158 1.83853 0.34693 0.62817 1.97057 0.32960 
14 0.58294 1.84281 0.34618 0.62617 1.96536 0.33011 
15 0.58411 1.84652 0.34554 0.62444 1.96085 0.33055 
16 0.58513 1.84977 0.34498 0.62292 1.95691 0.33093 
17 0.58603 1.85263 0.34449 0.62158 1.95344 0.33127 
18 0.58682 1.85517 0.34405 0.62038 1.95036 0.33157 
19 0.58753 1.85745 0.34366 0.61931 1.94760 0.33185 
20 0.58817 1.85950 0.34332 0.61835 1.94512 0.33209 
25 0.59058 1.86727 0.34200 0.61469 1.93571 0.33303 
30 0.59217 1.87244 0.34113 0.61225 1.92944 0.33366 
so 0.59533 1.88279 0.33941 0.60736 1.91695 0.33493 
75 0.59689 1.88795 0.33856 0.60491 1.91071 0.33558 
100 0.59767 1.89053 0.33813 0.60368 1.90760 0.33590 
150 0.59845 1.89311 0.33771 0.60245 1.90449 0.33622 
200 0.59884 1.89440 0.33750 0.60184 1.90293 0.33638 
250 0.59907 1.89518 0.33737 0.60147 1.90200 0.33648 
300 0.59922 1.89569 0.33729 0.60122 1.90138 0.33655 
~ 0.5999953985 1.8982713307 0.3368700659 0.5999953985 1.8982713307 0.3368700659 

Table C.3.4 continued. Two Stage Short Run Control Chart Factors 
ti I h M O 0027 1 h V UCL O 005 d I h V LCL O 001 or atp a ean= , a1p1 a ar = , an a1p1 a ar = 

n 25 
m A41 BSlsart B71sart A42 B82sart B72sart 
1 ----- ----- ----- 0.95593 1.74045 0.52282 
2 0.44979 1.23584 0.65669 0.77906 1.55546 0.54746 
3 0.50923 1.28520 0.62570 0.72015 1.49571 0.55727 
4 0.53486 1.30910 0.61276 0.69051 1.46608 0.56257 
s 0.54919 1.32319 0.60559 0.67262 1.44837 0.56589 
6 0.55835 1.33248 0.60103 0.66065 1.43658 0.56817 
7 0.56471 1.33907 0.59788 0.65207 1.42816 0.56983 
8 0.56938 1.34398 0.59556 0.64562 1.42186 0.57109 
9 0.57296 1.34779 0.59378 0.64059 1.41696 0.57208 

10 0.57579 1.35082 0.59238 0.63656 1.41303 0.57289 
11 0.57809 1.35330 0.59124 0.63326 1.40983 0.57355 
12 0.57998 1.35536 0.59031 0.63051 1.40716 0.57410 
13 0.58158 1.35710 0.58952 0.62817 1.40489 0.57457 
14 0.58294 1.35859 0.58884 0.62617 1.40296 0.57498 
15 0.58411 1.35988 0.58826 0.62444 1.40128 0.57533 
16 0.58513 1.36101 0.58776 0.62292 1.39981 0.57564 
17 0.58603 1.36200 0.58731 0.62158 1.39851 0.57591 
18 0.58682 1.36288 0.58692 0.62038 1.39736 0.57616 
19 0.58753 1.36367 0.58657. 0.61931 1.39633 0.57638 
20 0.58817 1.36438 0.58625 0.61835 1.39540 0.57658 

25 0.59058 1.36707 0.58506 0.61469 1.39188 0.57733 
30 0.59217 1.36886 0.58427 0.61225 1.38953 0.57784 
so 0.59533 1.37244 0.58271 0.60736 1.38483 0.57886 
75 0.59689 1.37422 0.58194 0.60491 1.38248 0.57937 

100 0.59767 1.37511 0.58155 0.60368 1.38130 0.57963 

150 0.59845 1.37600 0.58117 0.60245 1.38013 0.57989 
200 0.59884 1.37645 0.58098 0.60184 1.37954 0.58002 

250 0.59907 1.37671 0.58086 0.60147 1.37919 0.58009 

300 0.59922 1.37689 0.58079 0.60122 1.37895 0.58015 
~ 0.5999953985 l .3777776783 0.5804050877 0.5999953985 1.3777776783 0.5804050877 
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Table C.3.4 continued. Two Stage Short Run Control Chart Factors 
fi 1 h M O 0027 1 h V UCL O 005 d I h V LCL O 001 or alp a ean= . , aip a ar = , an alp a ar = 

n 50 
m A41 B81 B71 A42 B82 B72 
1 ----- ----- ----- 0.63533 2.11305 0.40576 
2 0.30862 1.35754 0.57728 0.53455 1.85121 0.44132 
3 0.35299 1.44205 0.54231 0.49921 1.76595 0.45558 
4 0.37264 1.48214 0.52736 0.48107 1.72354 0.46331 
5 0.38377 1.50566 0.51902 0.47002 1.69813 0.46816 
6 0.39095 1.52114 0.51369 0.46257 1.68121 0.47149 
7 0.39596 1.53211 0.50999 0.45722 1.66912 0.47392 
8 0.39966 1.54029 0.50728 0.45317 1.66005 0.47577 
9 0.40250 1.54662 0.50519 0.45001 1.65300 0.47722 
10 0.40476 1.55168 0.50355 0.44748 1.64736 0.47840 
11 0.40659 1.55580 0.50221 0.44540 1.64274 0.47937 
12 0.40811 1.55923 0.50111 0.44366 1.63890 0.48018 
13 0.40938 1.56213 0.50018 0.44218 1.63564 0.48087 
14 0.41047 1.56460 0.49939 0.44092 1.63285 0.48147 
15 0.41141 1.56675 0.49871 0.43982 1.63043 0.48198 
16 0.41223 1.56863 0.49811 0.43886 1.62832 0.48244 
17 0.41296 1.57028 0.49759 0.43801 1.62645 0.48284 
18 0.41360 1.57175 0.49712 0.43725 1.62479 0.48320 
19 0.41417 1.57306 0.49671 0.43657 1.62330 0.48352 
20 0.41468 1.57424 0.49634 0.43596 1.62197 0.48381 
25 0.41662 1.57872 0.49494 0.43364 1.61688 0.48492 
30 0.41791 1.58170 0.49401 0.43208 1.61350 0.48567 
50 0.42047 1.58765 0.49217 0.42896 1.60672 0.48716 
75 0.42174 1.59062 0.49125 0.42740 1.60333 0.48792 
100 0.42237 1.59210 0.49080 0.42662 1.60163 0.48830 
150 0.42300 1.59359 0.49035 0.42583 1.59994 0.48868 
200 0.42332 J.59433 0.49012 0.42544 1.59909 0.48887 
250 0.42351 1.59477 0.48999 0.42520 1.59858 0.48899 
300 0.42363 1.59507 0.48990 0.42505 1.59824 0.48906 
= 0.4242608150 1.5965450633 0.4894454026 0.4242608150 1.5965450633 0.4894454026 

Table C.3.4 continued. Two Stage Short Run Control Chart Factors 
fi I h M 00027 I h V UCL 0005 d I h V LCL=OOOI or alp a ean= , alp a ar = , an alp. a ar -

n 50 
m A41 B8lsqrt B7lsqrt A42 B82sqrt B72sqrt 
1 ----- ----- ----- 0.63533 1.46107 0.64025 
2 0.30862 1.17110 0.76368 0.53455 1.36407 0.66602 
3 0.35299 1.20392 0.73830 0.49921 1.33115 0.67612 
4 0.37264 1.21950 0.72743 0.48107 1.31451 0.68154 
5 0.38377 1.22862 0.72135 0.47002 1.30445 0.68492 
6 0.39095 1.23460 ·. 0.71746 0.46257 1.29772 0.68723 
7 0.39596 1.23884 0.71475 0.45722 1.29289 0.68892 
8 0.39966 1.24199 0.71275 0.45317 1.28925 0.69020 
9 0.40250 1.24443 0.71122 0.45001 1.28642 0.69120 
10 0.40476 1.24637 0.71001 0.44748 1.28415 0.69202 
11 0.40659 1.24795 0.70903 0.44540 1.28229 0.69268 
12 0.40811 1.24927 0.70822 0.44366 1.28074 0.69324 
13 0.40938 1.25038 0.70753 0.44218 1.27942 0.69372 
14 0.41047 1.25133 0.70695 0.44092 1.27830 0.69413 
15 0.41141 1.25216 0.70645 0.43982 1.27732 0.69449 
16 0.41223 1.25287 0.70601 0.43886 1.27646 0.69480 
17 0.41296 1.25351 0.70562 0.43801 1.27571 0.69508 
18 0.41360 1.25407 0.70528 0.43725 1.27503 0.69532 
19 0.41417 1.25457 0.70498 0.43657 1.27443 0.69554 
20 0.41468 1.25502 0.70470 0.43596 1.27389 0.69574 
25 0.41662 J.25674 0.70367 0.43364 1.27183 0.69650 
30 0.41791 1.25788 0.70298 0.43208 1.27045 0.69702 
50 0.42047 1.26015 0.70162 0.42896 1.26769 0.69804 
75 0.42174 1.26129 0.70094 0.42740 1.26631 0.69856 
100 0.42237 1.26185 0.70061 0.42662 1.26562 0.69882 
150 0.42300 1.26242 0.70027 0.42583 1.26493 0.69908 
200 0.42332 1.26270 0.70010 0.42544 1.26458 0.69921 
250 0.42351 1.26287 0.70000 0.42520 1.26438 0.69929 
300 0.42363 1.26298 0.69994 0.42505 1.26424 0.69934 
= 0.4242608150 1.2635446424 0.6996037468 0.4242608150 1.2635446424 0.6996037468 
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APPENDIX D.1 ,.... Analytical Results for Chapter 6 
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Show: The distribution of the standard deviation s with v 1 degrees of freedom may be 

represented as follows: 

[ 
( vi) {vi ) (vi) vi-s2 

] 

( 
1 J '-- -ln(vl) --1 ·ln(2)-gamrnln - +(vl-l)·ln(s)--2 p(s) = _ . e 2 2 2 2-cr 

crvl 

vi 
-vl-s 2 

vl2 
From Lord ( 1950), p( s) = vi • s vi-I • e 2-cr2 

22-l 1v1J vi • - ·CT 
2 . 

[ 
~ -vl·S21 I. VI 2 vi-I -;:;;i-

n vi ) ·S ·e 
2,-1 r(vl vi 

- • - ·CT 

=>p(s)=e 2 

= O'~I • e 2 :in(Vl) 2 -1 ·ln(2)-gamrnln 2 +(vl-l)·ln(s)- z.crz ( J [ (vi) {vi ) (vi) vi-s 2 
] 

308 



Show: The mean of the distribution of the standard deviation s with v 1 degrees of 

freedom may be represented as follows: 

c4 = cr -( :i]'' { :-f ~' }-""( ¥ J J 

( 
2 J0.5 rf'~l 

From Mead (1966), E(s) = c4 = cr- vl ·ti 
2 o.s e z 

( 
1n(r( vi+!)) l 

=> c4 = cr{ vi J · ;( r(¥)) 

2 0.5 .· /amml.\-2 
[ 

Jvl+l) J 
= "{ v1) · e'-{¥) 
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· .. Show: The standard deviation of the distribution of the standard deviation s with vl 

degrees of freedom may be represented as follows: 

2 

.. . rn1+2 ml+l -· -. 2. 0" 2 2 2 
From Mead (1966), var(s) = c5' =( 7J} 1 ~l) - 1 ~) 

= cr-[( :1 }[[ e~~l J-:{"if~'lH i¥lll Jr 

= cr -[ ( :1} [ r·f ';' l--( ~) _ :{-{ ",'')-.. -{ ~·))Jr 
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Show: The distribution of the studentized standard deviation t = (s/s') with vl degrees of 

freedom for s and v2 degrees of freedom for s' may be represented as follows: 

p3( t) = e p1c1J-p2c1> 

· where 

pl(t) = ln(2)+( i }1n(v1)+( v;} ln(v2)+ gamml{ vi :vl )+ (vi-1)· ln(t) 

{ vlJ Jv2J (vl+v2J ( ) p2(t)=gammI 2 +gamml.\ 2 + 2 ·In vl·t 2 +v2 

"' " 1 J . - 2. vl 2 . v2 2 . ~ vl ~ v2 . cl-1 

From Irwm (1931), p3(t) _ 1 J 1. ·J 1 2 vl v2 ( 2 )v +v 
- · - ' vl · t + v2 2 
2 2 

r 
vi v2 1 In 2-v12.v22.r(7}vl-l 

J- 2 · vl+v2 

r(~}r(v2 }(v1-t2+v2)2 
~ p3(t) = e 

( ~ .'!2 (vl+v2) vH) [ (vi) (v2)( 2 ~] = e 1n 2-vl - -v2 2 -r - 2-. -t -In r 2 -r 2 . vl-t +v21 2 

( 
vi v2 Ti 1 + 2 J J Let pl(t)=In 2·vl2 ·V22 ·il v 2 v . ·tv1-1 

[Ti vl J Ti v2 J ( )v1+v2 ] p2( t) = In i l z · i l 2 · vl · t 2 + v2 -2-

( continued on the next page) 

311 



(continued from the previous page) 

=> pl(t) = ln(2) +( ~} ln(vl)+( v;} !n(v2)+ 1"( 1 vi :v2) )+ (vl-1)-ln(t) 

=> pl(t) = ln(2) +( ~} !n(vl) +( v;} ln(v2)+ gamml{ vi: v2 )+ (v!-1)- ln(t) 

J vl) J v2) ( vl + v2) ( ) p2(t) = gammL\ 2 + gamml.\ 2 + 2 . · ln vl · t 2 +v2 

=> p3(t) = ePI<t)-p2(tJ 
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. Derive: .c4star = c4 2 + c: 
, ( 2 J0.5 

We first need to determine the mean and variance of the distribution of the mean standard 

. deviation s/ er . 

Note: By definition,':)= c4 

=>(: }E(s) = c4=> E(s) = c4·cr 

since E(s) = c4·cr. 

=> 8(!)=( :}( ! }(m·c4-cr)=c4 

(continued on the next page) 
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(continued from the previous page) 

Note: By definition, var(:)= c5 2 

=> ( :, } Var(s) = c5 2 => Var(s) = c5 2 • cr 2 

since the si 's are independent. · 

since Var(s) = c5 2 • cr 2 • 

(continued on the next page) 
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(continued from the previous page) 

Derive: c4star = c4 2 + c: ( 2 J0.5 

According to Johnson and Welch (1939), the mean of the x distribution with v2 degrees 

of freedom is calculated using the following equation (with some modifications in 

notation): 

E(x) = ,Ji,. f'(0.5. v2 + 0.5) 
f'(0.5 · v2) 

=> E(X · c4starJ = (c4star·J· E(x) = Ji.(c4starJ·(f'(0.5 -v2 + 0.5)] 
/v2 /v2 /v2 r(o.5-v2) 

Equating the squared means of the distribution of the mean standard deviation s/cr and 

the (x · c4star )/ M distribution with v2 degrees of freedom results in the following: 

c4 2 = 2 ·( c4star 2 J ·( f'(0.5 · v2 + 0.5) J2 

v2 f'(0.5 · v2) 

4 2 42 (V2) ( ['(0.5 ·V2) J2 

=> c star = c · - · 
2 f'(0.5 · v2 + 0.5) 

(continued on the next page) 
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(continued from the previous page) 

Using results obtained from Johnson and Welch (1939) (with some modifications in 

notation), the equation to calculate the variance of the X distribution with v2 degrees of 

freedom may be determined as follows: 

Var(x) = E(x2 )-(E(x))2 = 2 . r(0.5 · v2 + 1) -(Ji. r(0.5 · v2 + 0.5) )
2 

r(0.5 · v2) r(0.5 · v2) 

=> Var(x) = 2 . (0.5 -v2) · r(0.5 -v2) _ 2 ·(rco.5 -v2 + o.5))2 = v2 _ 2 ·(rco.5. v2 + o.5))2 

r(0.5 · v2) rco.5 · v2) r(0.5 · v2) 

=> vl'IJ X · c4star) = (c4star 2 
)· Var(x) =(c4star2 )·[v2 _ 2 ·(r(0.5 · v2 +0.5))

2
] -l ./v2 v2 v2 rco.5. v2) 

Equating the variances of the distribution of the mean standard deviation s/cr and the 

(x · c4star )/ M distribution with v2 degrees of freedom results in the following: 

c52 =(c4star 2 
)· [v2 - 2 ·( r(0.5 ·V2 + 0.5))

2
] 

m v2 rco.5 · v2) 

c5 2 ·V2 2 
=>( r(0.5. v2 + 0.5) )2 = m. c4star2 -v 

r(0.5 · v2) - 2 

( 
r(0.5-v2) ) 2 =---2 __ _ 

=> rco.5. v2 + 0'.5) ( c52 ) 
v2· 1-----

m ·c4star2 

(continued on the next page) 
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(continued from the previous page) 

Substituting 

( f'(0,5-v2) J2 =---2 __ _ 

f'(0.5 · v2 +0.5) ( c5 2 J V2· 1-----
m· c4star 2 

into 

4 2 42 (V· 2) ( f'(0.5 ·V2) ·J2 

c star =c · - · 
2 f'(0,5 · v2 +0.5) 

gives the following equation: 

2 2 (v21 c4star = c4 · 2 ) · 
v2-(1- m.:::tar' J 

2 

c4 2 c4star 2 • c4 2 

=> c4star2 = -----= -----
c52 2 c5 2 

1----- c4star - -
m·c4star2 m 

c42 c5 2 

=> 1 = 2 => c4star2 = c4 2 +-. -
2 · c5 m 

c4star --
m 

=> c4star = c4 2 + c! ( 2 J0.5 
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Show: s/ c4 is an unbiased estimate of cr; i.e., show E(s/ c4) = cr 

m 

'c: J=( c~ }E(n=( c~} ~s, =( c~ }( ! }~ i,, J 

since E(s) = c4· cr (a result shown earlier in this appendix (Appendix D.l)). 

=> { : 4 J=( c~ }( ! }(m,c4-cr)= cr 

Note: This result may also be obtained as follows. It is shown earlier in this appendix 

(Appendix D.1) that the following holds: 

{!J=c4 

=> (:} E( S ) = c4 => ( c~} E( S ) = cr => { c: J = cr 
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Derive: B42 = (tB4/c4star), where tB4 is the (1-alphaStandUCL) percentage point of the 

distribution of the studentized standard deviation t = (s/ s') with v 1 degrees of freedom 

for sand v2 degrees of freedom for s' (alphaStandUCL is the probability of a Type I 

error on the s chart above the upper control limit). 

Notes: The ensuing derivation is based on the derivation of n: in the appendix of Hillier 

(1969). The values denotes the standard deviation of a subgroup drawn while in the 

second stage of the two stage procedure. 

We need to determine the value B42 such.that the following holds: 

P(s ~· B42 ·; ) = 1 ~ alphaStandUCL 

=> i{ ~,; B42) = I - alphaStandUCL 

We know s/cr is the statistic for the distribution of the standard deviations with vl 

degrees of freedom. We now need an independent estimate of cr, denoted by s', based on 

s. Replacing cr with this independent estimate results in the statistic for the distribution 

of the studentized standard deviation t = (s/s'), which has vl degrees of freedom for s 

and v2 degrees of freedom for s'. The equation to calculate v2 is based on the fact that 

we have applied the Patnaik (1950) approximation to the distribution of the mean 

standard deviation. If we were to use ;jc4 (which is an unbiased estimate of cr, a result 

( continued on the next page) 
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(continued from the previous page) 

shown earlier in this appendix (Appendix D.1)) as this independent estimate, then we 

would not have the appropriate equation for v2. As a result, we need to use ;/c4star. 

s s s · c4star 

=* cr ~ [ c4:rar r s 

where (s · c4star )/ ; is the statistic for the distribution of the studentized standard 

deviation t = (s/s') with vl degrees of freedom for sand v2 degrees of freedom for s'. 

=} 1-alphaStandUCL = J s · c~star ~ tB4J = J ! ~ _tB_4_J 
~ l s ~ l s c4star 

where tB4 is defined above. 

Setting B42 = =} 1- alphaStandUCL = = ~ B42 = P s ~ B42 · s tB4 · 1s J ( -) 
c4star s 
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Show: p3(t) = f(t 2 )· 2 · t, where p3(t) is the distribution of the studentized standard 

deviation t = (s/s') with vl degrees of freedom for sand v2 degrees of freedom for s' 

and f is the F distribution with v 1 numerator degrees of freedom and v2 denominator 

degrees of freedom. 

Bain and Engelhardt (1992) give the F distribution as follows: 

Let x = t 2 

=} dx = 2 · t dt =} f(x) dx = f (t 2 ): 2 · t dt 

vi vl+v2 1 vl+v2) 
- I -~-

2 2 vl 2 2 ~-1 vl 2 2 

=> r(t )-2-tdt = i¥}i 4) { vz) ·(t ), -(1+ vz ·t ) ·2·tdt 

(continued on the next page) 

t vi-I 

vl+v2 dt 
(v2 + vl · t2 )-2-
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(continued from the previous page) 

vi v2 r{ 21 
= 2-v12 -v22 ·1 vl~v J. 

1:1}f;J 
vi-I 

t dt 
vl+v2 

(vl · t 2 + v2)_2_ 

= p3(t) dt 

=} p3(t) = f (t 2 )· 2. t 
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Show: p( s) ~ { v~:' } 2 · ;; · s , where p( s) is the distribution of the standard deviation s 

with v 1 degrees of freedom and c is the x2 distribution with v 1 degrees of freedom. 

Bain and Engelhardt (1992) give the x2 distribution as follows: 

-x 1 ~-I 
c(x) = · x 2 • e 2 

2¥ -rg1J 
vl · s2 

Let x =--2 -

cr 

=> dx = 2 ds => c(x) dx = c --2- · 2 ds 2-vl·s (vl·s 2 
)· 2-vl·s 

cr cr cr 

vi J~i 

( 
2 ) ( 2 )--! l.±_l => c vl·s . 2·Vl·s ds = 1 . ~ 2 ·e 2 • 2·Vl·s ds 

cr' cr' 2 4 -1 ~I) cr' cr' 

~-I 2 vi -vl·s 
Vl 2 ·Vl ( ) I -= . s 2 2- . s . e 2•cr2 ds 

2 4. Z-' · 1 ~I} (cr' )¥-• -cr' 

vi 
-VJ·S 2 

vl2 = . S vi-I • e 2·cr2 ds 

2¥-1 ivlJ vi • - ·CT 
2 

= p(s) ds 

(
vl·s 2 ) 2-vl·s 

=>p(s)=c -- ·---crz cr2 
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Show: (;/ c: )2 is an unbiased estimate of cr 2 ; i.e., show El(;/ c: )2 J = cr 2 

m 2 

E[UJ] =( (c~)' }E[(S )' ]= ( (c~)'} E ~s, 

~E[( cS; )}( (c~)' }(~,}El( ts, JJ 

=( (c;)' }( ~, ll v1 ts, H{ ts, Jn 
=( (c~)' }( ~' }l t Var(s,)+[ tE(s,)Jl 
since the si 's. are independent. 

since Var(s) = c; · cr 2 and E(s) = c 4 • cr 

(results shown earlier in this appendix (Appendix D.l)). 

~ E[U:)} ( (c~)' }( ~,} ~ -c; · cr' + (m ·c, · cr)'] 

(continued on the next page) 
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(continued from the previous page) 

= (j2. 

c2 
c2 +-5 

4 
m 

(c: )2 

= cr 2 ·[(c:)2 J 
(c: )2 

( 2 )0.5 
since c: = c~ + ~ (a result shown earlier in this appendix (Appendix D.1)). 
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APPENDIX D.2 - Computer Program ccfss.mcd for Chapter 6 
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Page 1 of program: ccfss.mcd 

ENTER the following 5 values: 

(1) alphaMean := 0.0027 alphaMean - alpha for the X chart. 

(2) alphaStandUCL := 0.005 alphaStandUCL - alpha for the s chart above the UCL. 

(3) alphaStandLCL := 0.001 alphaStandLCL - alpha for the s chart below the LCL *. 

(4) m:= 5 m - number of subgroups. 

(5) n := 5 n - subgroup size for the (X,s) charts. 

* Note - lfno LCL is desired, leave alphaStandLCL blank (do not enter zero). 

Please PAGE DOWN to begin the program. 

(1.1) TOL := 10- 12 cr := 1.0 vl := n - 1 

[ (vl) (vl ) (vl) vli] l ) 2 -ln(vl)- 2 -1 -ln(2)-gmim]n 2 +(vl-1)-ln(s)- 2.i 
p(s) := (- · e vl 

Ci 

04 • cr( :J' ( •-'* v~l )--( ~l)) 

[ [ (vl+2) (vl) ( (vl+l) (vl))J]0.5 
c5 := cr· ( :J· egmim]n - 2- -gmim]n 2 - e2·\gmimln - 2- -gmim]n 2 
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Page 2. of program: ccfss.mcd 

(2.1) P(S) := r p(s) ds 
0 

DUCL(S) := P(S) - (1 - alphaStandUCL) 

Sseedl(start) := S0 ~ start 

S1 ~ start+ 0.01 

Ao~ DUCL{So) 

A1 ~ DUCL{S1) 

while Ao·A1 > 0 

s 

So~ S1 

S1 ~ S1 + 0.01 

Ao~A1 

A1 ~ DUCL{S1) 

seedB4 := Sseedl(0.01) 

sB4 := zbrent{DUCL,seedB4o,seedB41,TOL) 

X· e2·(gm:a:nlri(0.5-x)~gm:a:nlri(O . .S·x+0.5)) _ 2 
(2.2) h(x" := · . ~ J . 

DLCL(S) .:= P(S) - alphaStandLCL 

Sseed2(start) := S0 ~ start 

S1 ~ start+ O.Dl 

A0 ~ DLCL{S0) 

A1 ~ DLCL{S1) 

while Ao·A1 > 0 

s 

So~ S1 

S1 ~ S1 + 0.01 

Ao~A1 

A1 ~ DLCL{S1) 

seedB3 := Sseed2(0.001) 

sB3 := zbrent{DLCL,seedB30 ,seedB31,TOL) 

c:? c:? 
.r:=-.-2 

m-c4 
rprevm := ----

(m - 1)-c.f 

-1 (1) (3) (3) 2 (33) 3 (12.:5.:5) 4 v(A) := A + 4 - 16 ·A+ 64 ·A + 2.:56 ·A - 4096. ·A cl(x) := h(x) - r 

v2 := zbren{ d, v[ (;}( :~rJ- 0..:5,v[ (;}( :~rJ + 0..:5,TOLJ dprevm(x) := h(x) - rprevm 

v2prevm := zbren{ dprevm, v[ (m ~ l }( :~rJ- 0..:5, v[ (m ~ l }( :~rJ + 0..:5,TOLJ 
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Page 3 of program: ccfss.mcd 

(3.1) pl(t) := ln(2) + ( ~l }1n( vl) + ( ~2 }1n( v2) + ganunh-{ vl ; v2 ) + ( vl - 1)-ln(t) 

. ( vl) . ( v2) ( vl + v2) ( ::i ) p2(t) := ganunln 2 + ganunln 2 + 2 ·ln vl-t + v2 

p3(t) := epl(t)-p2(t) 

P3(1) := IT p3(t) dt 
0 

(3.2) Tseedl(start) := T0 ~ start 

T 1 ~ start + 0 .1 

Ao~ P3(To) 

A1 ~ P3{T1) 

while A1 < (1 - alphaStandUCL) 

To~T1 

T1~T1+0.l 

Ao~A1 

A1 ~ P3(T1) 

T guess ~ linterp( A , T , 1 - alphaStandUCL) 

Tguess 

seedl := Tseedl(0.1) Dl(x) := P3(x) - (1 - alphaStandUCL) 

tB4 := zbrent(Dl ,seedl - 0.1,seedl +0.1,TOL) 

1 := root[ IP3(seedl) - (1 - alphaStandUCL) I ,seedl] 
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Page 4 of program: ccfss.mcd 

(4.1) Tseed2(start) := T0 f- start 

T 1 f- start+ 0.001 

Ao f- P3(To) 

A 1 f- P3(T 1) 

while A 1 < alphaStanclLCL 

Tof-T1 

T1 f- T1 + 0.001 

Ao f-A1 

A1 f- P3(T 1) 
T guess f- linterp( A , T , alphaStanclLCL) 

Tguess 

seed.2 := Tseed.2(0.00001) 

D2(x) := P3(x) - alphaStanclLCL 

tB3 := zbrent(D2, seed.2 - 0.001, seed.2 + 0.001, TOL) 

1 := root( IP3(seed2) - alphaStanclLCLI ,seed.2) 
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Page 5 of program: ccfss.mcd 

(5.1) plprevm(t) := ln(2) + ( ~l }1n( vl) + ( "'2p;evm }1n( v2prevm) + gammln( vl + v;prevm) + ( vl - 1)-ln(t) 

( vl) ( v2prevm) ( vl + v2prevm) ( :i \ p2prevm(t) := gammln 2 + gammln 2 + 2 . ·ln vl·t + v2prevm) 

p3prevm(t) := eplpmom(t)-p:lpmom(t) 

P3prevm(1) := f T p3prevm(t) dt 
0 

(5.2) Tseed3(start) := T0 ~ start 

T 1 ~ start + 0.1 

A0 ~ P3prevm(T0) 

A1 ~ P3prevm(T 1) 

while A1 < (1 - alphaStandUCL) 

To ~T1 

T1~T1 +0.1 

Ao~A1 

A1 ~ P3prevm(T1) 

Tguess ~ lintetp(A,T,1- alphaStandUCL) 

Tguess 

seed3 := Tseed3(0.1) Dlprevm(x) := P3prevm(x) - (1 - alphaStandUCL) 

tB4prevm := zbrent(Dlprevm, seed3 - 0.1,seed3 + 0.1, TOL) 

1 :"' root[ IP3prevm(seed3) - (1 - alphaStandUCL) I, seed3] 
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Page 6 of program: ccfss.mcd 

(6.1) Tseed4(start) := T0 t- start 

T 1 t- start+ 0.001 

Ao t- P3prevm(T0) 

A 1 t- P3prevm(T 1) 

while A 1 < alphaStanclLCL 

To t-T1 

T1 t-T1 + 0.001 

Ao t-A1 

A 1 t- P3prevm(T 1) 

T guess t- linterp( A, T, alphaStanclLCL) 

· Tguess 

seed.4 := Tseed.4(0.00001) 

D2prevm(x) := P3prevm(x) - alphaStanclLCL 

tB3prevm := zbrent(D2prevm, seed.4 - 0.001 , seed.4 + 0.001, TOL) 

1 := root( IP3prevm(seed4) - alphaStanclLCLj, seed4) 
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Page 7 of program: ccfss.mcd 

(7.1) ( 2)0.5 
2 c5 

c4star :"' c4 + -
- - m 

cl. al h 1 alphaMean 
a L p a:"' - --2--

( 
. 2 )0.5 

- 2 c5 
c4starprevm :"' c4 + --

. m-1 
crit _ t :"' qt( adj_ alpha, v2) crit _ z :"' qnomi( adj_ alpha ,0 , 1) 

(7.2) A3l·: .. ( crit_t)·(m- l)o . .s 
c4star n·m 

A32 :"' ( crit_t )·(m + 1 )o . .s 
c4star n·m 

A3 :"' crit_z 

4 o . .s 
C ·n 

841 :"' . m·t84prevm 

c4starprevm·(m - 1) + tE4prevm 

831 :"' m-t83prevm 

c4starprevm·(m - 1) + t83prevm 

FINAL -RESULTS: 

842 := tE4 
c4star 

832 :"' t83 
c4star 

(1) alphaM:ean"' 0.0027 Control Chart Factors 

(2) alphaStanclUCL"' 0.005 First Stage Second Stage Conventional 

(3) alphaStanclLCL "' 0.001 
A31 "' 1.44561 A32 "' 1.77051 A3 "' 1.4272883468 

(4) m=5 

(5) ll"' 5 
841 = 1.92584 842"' 2.40542 84 = 2.0505104733 

831 "' 0.18442 832 "' 0.15452 83 = 0.1602881356 

Mean, Stand. Dev., · vl "'4 (1 - alphaStandUCL) and alphaStandlCL 
and Variance of the Percentage Points of the Distributions of the 
Dist. of the Stand. Dev; v2"' 19.2129357766 Studentized Stand. Dev. and the Stand. Dev. 

c4"' 0.939985603 c4star"' 0.95229 tE4"' 2.29066 t83 = 0.14715 

c5 "' 0.3412141061 v2prevm = 15.41602 tE4prevm = 2 .39394 t83prevm = 0.14615 

c52 = 0.1164270662 c4starprevm = 0.95534 s84 = 1.9274503237 s83 = 0.1506685398 
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APPENDIX D.3 - Tables Generated from ccfss.mcd 
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Table D.3.1. v2 (Degrees of Freedom) and c4• (c4star) Values 
n 2 3 4 5 6 

m v2 C v2 C v2 c, v2 c, v2 c, 
1 1.00000 1.00000 2.00000 1.00000 3.00000 1.00000 4.00000 1.00000 5.00000 1.00000 
2 1.91952 0.90460 3.86384 0.94483 5.83358 0.96146 7.81543 0.97046 9.80353 0.97607 
3 2.81729 0.87049 5.7077 1 0.92571 8 65095 0.94827 11.61757 0.96041 14.59593 0.96796 
4 3.70617 0.85292 7.545 12 0.91600 I f.46358 0.94160 15.41 602 0.95534 19.38531 0.96388 
5 4.59060 0.84220 9.37970 0.91012 14.27420 0.93758 19.21294 0.95229 24.17345 0.96142 
6 5.47253 0.83497 11.21 278 0.90618 17.08379 0.93489 23.00907 0.95025 28.96096 0.95978 
7 6.3529 1 0.82978 13.04498 0.90336 19.89278 0.93296 26.80475 0.94879 33.74812 0.95861 
8 7.23227 0.82586 14.87662 0.90123 22.70140 0.93152 30.60015 0.94770 38.53505 0.95773 
9 8.1 1092 0.82280 16.70788 0.89958 25.50976 0.93039 34.39536 0.94684 43.32 182 0.95704 

10 8.98907 0.82034 18.53888 0.89825 28.31794 0.92949 38.19043 0.94616 48.10849 0.95649 
11 9.86684 0.81832 20.36967 0.89717 31. 12599 0.92875 41.98541 0.94560 52.89508 0.95604 
12 10.74432 0.81664 22.20032 0.89626 33.93394 0.928 13 45.78031 0.9451 3 57.68161 0.95567 
13 11.62158 0.81521 24.03086 0.89549 36.74182 0.92761 49.57516 0.94474 62.468 10 0.95535 
14 12.49866 0.81399 25.86131 0.89483 39.54963 0.92716 53.36996 0.94440 67.25455 0.95508 
15 13.37559 0.81292 27.69168 0.89426 42.35740 0.92677 57.16473 0.94411 72.04098 0.95484 
16 14.25241 0.81 199 29.52199 0.89376 45.165 13 0.92643 60.95947 0.94385 76.82738 0.95463 
17 15.12913 0.81 117 31.35226 0.89332 47.97283 0.92613 64.75418 0.94362 81.61376 0.95445 
18 16.00577 0.81044 33. 18249 0.89293 50.78050 0.92586 68.54888 0.94342 86.40012 0.95429 
19 16.88234 0.80978 35.01268 · 0.89258 53.58815 0.92563 72.34356 0.94324 91. 18648 0.95415 
20 17.75886 0.80919 36.84284 0.89226 56.39578 0.92541 76.13822 0.94308 95.97282 0.95401 
25 22. 14078 0.80694 45.99333 0.89106 70.43371 0.92459 95.11138 0.94246 119.9044 0.95352 
30 26.52202 0.80544 55.14349 0.89025 84.47143 0.92405 114.0844 0.94205 143.8359 0.95319 
so 44.04420 0.80243 91.74277 0.88865 140.6214 0.92296 189.9757 0.94122 239.5611 0.95253 
75 65.94485 0.80092 137.4909 0.88784 210.8082 0.92241 284.8394 0.94081 359.2174 0.95220 
100 87.84479 0.80016 183.2386 0.88744 280.9948 0.92214 379.7029 0.94060 478.8735 0.95203 
150 131.6440 0.79940 274.7337 0.88703 42 1.3678 0.92186 569.4298 0.94040 718.1855 0.95186 
200 175.4428 0.79902 366.2287 0.88683 561.7407 0.92173 759.1566 0.94030 957.4975 0.95178 
250 219.2414 0.79879 457.7236 0.88671 702.1135 0.92165 948.8833 0.94023 1196.809 0.95173 
300 263.0400 0.79864 549.2185 0.88663 842.4863 0.92159 1138.610 0.94019 1436.121 0.95170 
c, 0 .7978845608 0.8862269255 0.92131 773 19 0.9399856030 0.9515328619 
c, 0.6028102750 0.4632513752 0.3888105411 0.341 2141061 0.3075470901 

c.2 (Var.) 0 .3633802276 0.2146018366 0.15 11736368 0.1164270662 0.0945852126 

Table D.3.1 continued. v2 (Degrees of Freedom) and c/ (c4star) Values 
n 7 8 10 25 so 
m v2 c, v2 c. v2 c, v2 c, v2 c, 
1 6.00000 1.00000 7.00000 1.00000 9.00000 1.00000 24.00000 1.00000 49.00000 1.00000 
2 11.79520 0.97990 13.78907 0.98267 17.78069 0.98642 47.76168 0.99483 97.75573 0.99746 
3 17.58086 0.97310 20.56981 0.97683 26.55475 0.98186 7 1.52078 0.99311 146.5 102 0.99661 
4 23.36398 0.96969 27.34836 0.97389 35.32710 0.97957 95.27923 0.99224 195.2643 0.99619 
5 29.14606 0.96763 34.12602 0.9721 3 44.09875 0.97819 119.0374 0.99172 244.0184 0.99593 
6 34.92762 0.96626 40.90323 0.97095 52.87006 0.97727 142.7955 0.99137 292.7723 0.99576 
7 40.70888 0.96528 47.68019 0.97010 61.64117 0.97661 166.5535 0.99113 341.5262 0.99564 
8 46.48995 0.96454 54.45698 0.96947 70.41214 0.97612 190.3114 0.99094 390.2801 0.99555 
9 52.27089 0.96397 61.23366 0.96898 79.18304 0.97573 214.0693 0.99080 439.0340 0.99548 
10 58.05175 0.9635 1 68.01027 0.96858 87.95388 0.97543 237.8272 0.99068 487.7879 0.99542 
11 63.83254 0.963 13 74.78682 0.96826 96.72467 0.975 18 261.5851 0.99059 536.5417 0.99537 
12 69.6 1328 0.96282 81.56333 0.96799 105.4954 0.97497 285.3429 0.99051 585.2956 0.99534 
13 75.39398 0.96256 88.33981 0.96777 114.2662 0.97479 309. 1008 0.99044 634.0494 0.99530 
14 81.17466 0.96233 95.11627 0.96757 123.0369 0.97464 332.8586 0.99038 682.8033 0.99528 
15 86.95531 0.96213 101.8927 0.96740 131.8076 0.97451 356.6165 0.99033 731.5571 0.99525 
16 92.73594 0.96196 108.6691 0.96725 140.5783 0.97439 380.3743 0.99029 780.3110 0.99523 
17 98.51655 0.96 181 115.4455 0.96712 149.3490 0.97429 404.1321 0.99025 829.0648 0.99521 
18 104.2972 0.96167 122.2219 0.96701 158. 1196 0.97420 427.8900 0.99022 877.8186 0.99519 
19 110.0777 0.96155 128.9983 0.96690 166.8903 0.97412 451.6478 0.99019 926.5725 0.99518 
20 115.8583 0.96144 135.7747 0.96681 175.6610 0.97404 475.4056 0.99016 975.3263 0.99517 
25 144.7611 0.96103 169.6565 0.96645 219.5142 0.97377 594.1947 0.99006 1219.095 0.99512 
30 173.6638 0.96075 203.5382 0.96622 263.3673 0.97358 712.9837 0.98999 1462.865 0.99508 
50 289.2742 0.96020 339.0646 0.96574 438.7796 0.97321 1188.140 0.98985 2437.941 0.99501 
75 433.7869 0.95992 508.4723 0.96551 658.0448 0.97303 1782.085 0.98978 3656.787 0.99498 
100 578.2994 0.95978 677.8800 0.96539 877.3099 0.97294 2376.030 0.98974 4875.632 0.99496 
150 867.3244 0.95965 1016.695 0.96527 1315.840 0.97284 3563.920 0.98971 7313.324 0.99495 
200 1156.349 0.95958 1355.510 0.96521 1754.370 0.97280 475 1.810 0.98969 9751.014 0.99494 
250 1445.374 0.95953 1694.326 0.96517 2192.900 0.97277 5939.700 0.98968 12188.71 0.99493 
300 1734.399 0.9595 1 2033.141 0.96515 2631.430 0.97275 7127.590 0.98968 14626.39 0.99493 
c, 0.9593687887 0.9650304561 0.9726592741 0.9896403756 0.994911 3047 
c, 0.282 1551475 0.2621377857 0.23223681 12 0.1435685446 0.1007546319 

c.' (Var.) 0.0796 115273 0.0687162187 0.0539339365 0.02061 19270 0.0101514958 
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Table D.3.2. (1 - alphaStandUCL) Percentage Points 
of the Studentized Standard Deviation (alphaStandUCL = 0.005) 

n 
m 2 3 4 5 6 
1 127.32134 14.10674 · 6.88965 4.81191 · 3.86518 
2 15.33836 5.29746 3.65688 2.99975 2.64128 
3 8.05912 3.92624 2.99837 2.57854 2.33344 
4 5.97848 3.40499 2.72320 2.39394 2.19458 
5 5.04664 3.13442 2.57307 2.29066 2.11568 
6 4.52848 2.96960 2.47875 2.22474 2.06484 
7 4.20146 2.85892 2.41406 2.17904 2.02936 
8 3.97730 2.77957 2.36696 2.14550 2.00320 
9 3.81447 2.71993 2.33114 2.11985 1.98311 
10 3.69101 2.67348 2.30299 2.09959 1.96720 
11 3.59428 2.63629 2.28029 2.08319 1.95429 
12 3.51649 2.60586 2.26159 2.06964 1.94360 
13 3.45261 2.58049 2.24592 2.05825 1.93461 
14 3.39922 2.55902 2.23261 2.04856 1.92694 
15 3.35395 2.54062 2.22116 2.04020 1.92032 
16 3.31508 2.52467 2.21120 2.03292 1.91455 
17 · 3.28135 2.51072 2.20246 2.02653 1.90947 
18 3.25181 2.49841 2.19473 2.02086 1.90497 
19 3.22572 2.48747 2.18784 2.01581 1.90096 
20 3.20252 2.47768 2.18167 2.01127 1.89735 
25 3.11665 2.44098 2.15842 1.99416 1.88372 
30 3.06138 2.41695 2.14311 1.98285 1.87469 
50 2.95538 2.36990 2.11291 1.96046 1.85678 
75 2.90455 2.34688 2.09802 1.94938 1.84790 
100 2.87966 2.33549 2.09063 1.94387 1.84348 
150 2.85512 2.32418 2.08327 1.93838 1.83907 
200 2.84297 2.31856 2.07961 1.93564 1.83686 
250 2.83572 2.31519 2.07742 1.93400 1.83555 

300 2.83091 2.31295 2.07595 1.93290 1.83467 
00 2.8070337683 2.3018074130 2.0686675636 l.9274503237 1.8302787954 
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Table D.3.2 continued. (1 - alphaStandUCL) Percentage 
Points of the Studentized Standard Deviation (alphaStandUCL = 0.005) 

n 
m 7 8 10 25 50 
1 3.32762 2.98084 2.55756 1.72242 1.45363 
2 2.41271 2.25269 2.04067 1.54824 1.36083 

3 2.17013 2:05216 1.89083 1.49129 1.32910 
4 2.05855 1.95860 1.81957 1.46291 1.31302 
5 1.99448 1.90448 .· l.77791 1.44590 1.30328 
6 1.95293 1.86921 1.75058 1.43456 1.29675 
7 1.92380 1.84440 1.73127 1.42646 1.29206 

8 1.90224 . 1.82600 1.71690 1.42038 1.28854 

9 1.88565 1.81181 . 1.70579 1.41565 1.28579 

10 1.87249 1.80053 1.69694 1.41187 1.28359 
11 1.86179 1.79136 l.68973 1.40878 1.28178 
12 1.85292 1.78374 1.68375 1.40620 1.28027 
13 1.84545 . 1.77733 1.67869 1.40401 1.27899 
14 1.83907 1.77184 1.67437 1.40214 1.27790 
15 1.83356 1.76710 1.67063 1.40052 1.27695 
16 1.82876 1.76297 l.66736 1.39910 1.27611 
17 1.82453 1.75933 1.66448 1.39785 1.27538 
18 1.82078 l.75609 1.66193 1.39673 1.27472 

19 1.81743 1.75321 1.65965 1.39574 1.27414 
20 1.81442 1.75061 1.65759 1.39484 1.27361 

25 1.80303 1.74079 1.64981 1.39143 1.27161 
30 1.79547 1.73427 1.64464 1.38915 1.27027 

50 1.78047 1.72129 1.63433 1.38461 1.26758 
75 1.77301 1.71484 1.62919 1.38233 1.26624 

100 1.76930 1.71162 1.62663 1.38119 1.26557 

150 1.76559 1.70841 1.62407 1.38005 1.26489 

200 1.76374 1.70681 1.62279 1.37949 1.26456 

250 1.76263 1.70585 1.62203 1.37914 1.26435 

300 1.76189 1.70521 1.62152 1.37892 1.26422 
00 1.7581990871 1. 7020046951 l.6189623145 1.3777776783 1.2635446424 
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Table D.3.3. alphaStandLCL Percentage Points of 
the Studentized Standard Deviation (alphaStandLCL = 0.001) 

n 
m 2 3 4 5 6 
1 0.001.57 0.03164 0.08418 0.13680 0.18333 
2 0.00142 0.03163 0.08668 0.14270 0.19254 
3 0.00137 0.03163 0.08767 0.14507 0.19624 
4 0.00134 0.03163 0.08820 0.14635 0.19825 
5 0.00132 0.03163 0.08854 0.14715 0.19951 
6 0.00131 0.03163 0.08877 0.14770 0.20037 
7 0.00130 0.03163 0.08893 0.14810 0.20101 

8 0.00130 0.03163 0.08906 0.14841 0.20149 
9 0.00129 0.03163 0.08916 0.14865 0.20186 
10 0.001.29 0.03163 0.08924 0.14884 0.20217 
11 0.00129 0:03163 0.08931 0.149.00 0.20242 
12 0.00128 0.03163 0.08936 0.14914 0.20263 
13 0.00128 0.03163 0.08941 0.14925 0.20281 
14 0.00128 0.03163 0.08945 0.14935 0.20297 
15 0.00128 0.03163 0.08949 0.14944 0.20310 
16 0.00128 0.03163 0.08952 0.14951 0.20322 
17 0.00127 0.03163 · 0.08955 0.14958 0.20333 
18 0.00127 0.03163 0.08957 0.14964 0.20342 

19 0.00127 0.03163 0.08959 0.14969 0.20350 

20 0.00127 0.03163 0.08961 0.14974 0.20358 
25 0.00127 0.03163 0.08969 0.14992 0.20387 
30 0.00127 0.03163 0.08974 0.15004 0.20406 

50 0.00126 0.03163 0.08984 0.15029 0.20445 

75 0.00126 0.03163 0.08989 0.15042 0.20465 

100 0.00126 0.03163 0.08992 0.15048 0.20475 

150 0.00126 0.03163 0.08994 0.15054 0.20484 

200 0.00126 0.03163 0.08996 0.15057 0.20489 

250 0.00125 0.03163 0.08996 0.15059 0.20492 

300 0.00125 0.03163 0.08997 0.15061 0.20494 
00 0.0012533145 0.0316306866 0.0899955292 0.1506685398 0.2050427285 
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Table D.3.3 continued. alphaStandLCL Percentage Points 
of the Studentized Standard Deviation (alphaStandLCL = 0.001) 

n 
m 7 8 10 25 50 
1 0.22344 0.25804 0.31456 0.51741 0.63699 
2 0.23553 0.27258 0.33285 0.54446 0.66424 

3 · 0.24041 0.27844 0.34022 0.55519 0.67490 
4 0.24305 0.28162 0.34422 0.56098 0.68060 
5 0.24471 0.28362 0.34673 0.56460 0.68416 
6 0.24585 0.28499 0.34845 0.56708 0.68660 
7 0.24669 0.28599 0.34971 0.56889 0.68837 
8 0.24732 0.28675 0.35067 0;57026 0.68972 
9 0.24782 0.28736 0.35142 0.57135 0.69077 
10 · 0.24822 0.28784 0.35203 0.57222 0.69163 
11 024856 0.28824 0.35254 0.57294 0.69233 
12 0.24884 0.28858 0.35296 0.57354 0.69292 
13 0.24907 0.28886 0.35332 0.57405 0.69342 
14 0.24928 0.28911 · 0.35362 0.57450 0.69385 
15 0.24945 0.28932 0.35389 0.57488 0.69423 
16 0.24961 0.28951 0.35413 0.57522 0.69455 
17 0.24975 0.28968 0.35434 0.57552 0.69485 
18 0.24987 0.28982 0.35452 0.57578 0.69511 
19 0.24998 0.28996 0.35469 0.57602 0.69534 
20 0.25008 0.29008 0.35484 0.57624 0.69555 
25 0.25046 0.29053 0.35542 0.57706 0.69635 
30 0.25072 0.29084 0.35580 0.57761 0.69688 
50 0.25123 0.29146 0.35658 0.57872 0.69796 
75 0.25149 0.29177 0.35697 0.57928 0.69851 

100 0.25162 0.29193 0.35717 0.57956 0.69878 
150 0.25175 0.29209 0.35737 0.57984 0.69905 
200 0.25182 0.29217 0.35747 0.57998 0.69919 
250 0.25186 0.29221 0.35752 0.58007 0.69927 

300 0.25188 0.29224 0.35756 0.58012 0.69933 
00 02520141382 0.2924023042 0.3577630417 0.5804050877 0.6996037468 
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Table D.3.4. Two Stage Short Run Control Chart Factors for 
alphaMean=O 0027, alphaStandUCL=O 005, and alphaStandLCL=O 001 

2 
A31 B41 B31 A32 B42 B32 

235.78369 127.32134 0.00157 
11.70380 1.98441 0.00314 20.27157 16.95587 0.00157 
6.69217 2.68348 0.00235 9.46416 9.25818 0.00157 
5.12908 3.02106 0.00209 6.62162 7.00946 0.00157 
4.41023 3.18338 0.00196 5.40140 5.99224 0.00157 
4.00626 3.27080 0.00188 4.74027 5.42349 0.00157 
3.75013 3.32336 0.00183 4.33028 5.06335 0.00157 
3.57422 3.35784 0.00179 4.05278 4.81596 0.00157 
3.44634 3.38200 0.00177 3.85313 4.63598 0.00157 
3.34938 3.39981 0.00175 3.70287 4.49937 0.00157 
3.27342 3.41346 0.00173 3.58585 4.39225 0.00157 
3.21236 3.42425 0.00171 · 3.49220 4.30605 0.00157 
3.16224 3.43300 0.00170 3.41560 4.23522 0.00157 
3.12037 3.44023 0.00169 3.35182 4.17601 0.00157 
3.08489 3.44631 0.00168 3.29788 4.12579 0.00157 
3.05444 3.45150 0.00168 3.25170 4.08265 0.00157 
3.02803 3.45597 0.00167 3.21171 4.04522 0.00157 
3.00491 3.45988 0.00166 3.17675 4.01242 0.00157 
2.98450 3.46331 0.00166 3.14594 3.98345 0.00157 
2.96635 3.46636 0.00165 3.11857 3.95768 0.00157 
2.89928 3.47759 0.00164 3.01766 3.86230 0.00157 
2.85617 3.48479 0.00162 2.95302 3.80088 0.00157 
2.77366 3.49858 0.00160 2.82970 3.68305 0.00157 
2.73419 3.50522 0.00159 2.77090 3.62654 0.00157 
2.71489 3.50849 0.00159 2.74218 3.59887 0.00157 
2.69587 3.51172 0.00158 2.71390 3.57157 0.00157 
2.68646 3.51333 0.00158 2.69993 3.55806 0.00157 
2.68085 3.51429 0.00158 2.69160 3.55000 0.00157 
2.67713 3.51492 0.00158 2.68607 3.54465 0.00157 

2.6586603867 3.5180951058 0.0015707967 2.6586603867 3.5180951058 0.0015707967 

Table D.3.4 continued. Two Stage Short Run Control Chart Factors 
for alphaMean=O 0027, alphaStandUCL=O 005, and alphaStandLCL=O 001 

3 
A31 B41 B31 A32 B42 B32 

15.68165 14.10674 0.03164 
2.95828 1.86761 0.06134 5.12390 5.60680 0.03348 
2.57119 2.21123 0.04940 3.63621 4.24135 0.03417 
2.39128 2.34285 0.04505 3.08713 3.71725 0.03453 
2.29099 2.40840 0.04280 2.80588 3.44396 0.03476 
2.22764 2.44716 0.04142 2.63578 3.27705 0.03491 
2.18416 2.47270 0.04049 2.52205 3.16478 0.03502 
2.15253 2.49078 0.03982 2.44074 3.08418 0.03510 
2.12851 2.50426 0.03931 2.37975 3.02355 0.03516 
2.10966 2.51469 0.03892 2.33232 2.97631 0.03521 
2.09448 2.5230 I 0.03860 2.29438 2.93847 0.03526 
2.08199 2.52981 0.03834 2.26336 2.90748 0.03529 
2.07154 2.53545 0.03812 2.23752 2.88164 0.03532 
2.06267 2.54023 0.03794 2.21566 2.85977 0.03535 
2.05504 2.54432 0.03778 2.19693 2.84102 0.03537 
2.04842 2.54786 0.03764 2.18071 2.82477 0.03539 
2.04261 2.55095 0.03752 2.16652 2.81055 0.03541 
2.03748 2.55368 0.03741 2.15400 2.79799 0.03542 
2.03291 2.55611 0.03732 2.14288 2.78684 0.03544 
2.02882 2.55828 0.03723 2.13293 2.77685 0.03545 
2.01343 2.56641 0.03691 2.09564 2.73942 0.03550 
2.00331 2.57173 0.03670 2.07124 2.71490 0.03553 
1.98341 2.58216 0.03629 2.02348 2.66687 0.03559 
1.97363 2.58728 0.03609 2.00012 2.64336 0.03563 
1.96878 2.58981 0.03599 1.98856 2.63173 0.03564 
1.96396 2.59233 0.03589 1.97709 2.62017 0.03566 
1.96156 2.59358 0.03584 1.97139 2.61443 0.03567 
1.96012 2.59433 0.03581 1.96797 2.61099 0.03567 
1.95916 2.59483 0.03579 1.96570 2.60870 0.03568 

l.9543950590 2.5973115315 0.0356914078 1.9543950590 2.5973115315 0.0356914078 
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Table D.3.4 continued. Two Stage Short Run Control Chart Factors 
£ 1 h M O 0027 1 h S dUCL O 005 d I h S dLCL O 001 or aip a ean= , a1p a tan = , an atp. a tan --

D 4 
m A31 B41 B31 A32 B42 B32 
1 ----- ----- ----- 6.51861 6.88965 0.08418 
2 1.83276 1.74650 0.15529 3.17444 3.80345 0.09015 
3 1.78740 1.96613 0.12940 2.52776 3.16194 0.09245 
4 1.75114 2.05256 0.11958 2.26072 2.89208 0.09367 
5 1.72737 2.09812 0.11441 2.11558 2.74437 0.09443 
6 1.71103 2.12622 0.11122 2.02452 2.65138 0.09495 
7 1.69922 2.14528 0.10905 1.96209 2.58752 0.09532 
8 1.69032 2.15907 0.10748 1.91664 2.54097 0.09561 
9 1.68337 2.16951 0.10629 1.88207 2.50555 0.09583 
10 1.67781 2.17769 0.10536 1.85489 2.47770 0.09601 
11 l.67326 2.18427 0.10461 1.83297 2.45523 0.09616 
12 1.66947 2.18969 0.10399 1.81491 2.43672 0.09628 
13 1.66627 2.19422 0.10348 1.79977 2.42120 0.09639 
14 1.66352 2.19807 0.10304 1.78691 2.40801 0.09648 
15 1.66114 2.20137 0.10266 1.77583 2.39666 0.09656 
16 1.65906 2.20425 0.10234 1.76620 2.38679 0.09663 
17 1.65723 2.20677 0.10205 1.75775 2.37813 0.09669 
18 1.65560 2.20900 0.10180 1.75028 2.37046 0.09674 
19 1.65414 2.21099 0.10157 1.74361 2.36364 0.09679 
20 1.65283 2.21277 0.10137 .1.73764 2.35752 0.09683 
25 1.64785 2.21947 0.10061 1.71514 2.33446 0.09700 
30 1.64454 2.22388 0.10011 1.70031 2.31926 0.09711 
50 1.63794 2.23258 0.09912 1.67103 2.28928 0.09734 
75 1.63465 2.23687 0.09864 1.65659 2.27450 0.09745 
100 1.63301 2.23900 0.09840 1.64942 2.26716 0.09751 
150 1.63137 2.24112 0.09816 1.64228 2.25985 0.09757 
200 1.63055 2.24218 0.09804 1.63872 2.25621 0.09760 
250 1.63005 2.24281 0.09797 1.63659 2.25403 0.09761 
300 1.62973 2.24323 0.09792 1.63517 2.25258 0.09762 
= 1.6280903367 2.2453356665 0.0976813167 I .6280903367 2.2453356665 0.0976813167 

Table D.3.4 continued. Two Stage Short Run Control Chart Factors 
£ 1 h M O 0027 1 h S dUCL O 005 d I h S dLCL O 001 or atp. a ean= , a1p a tan = , an atp. a tan = 

D 5 
m A31 B41 B31 A32 B42 B32 
1 ----- ----- ----- 4.18690 4.81191 0.13680 
2 1.40670 1.65588 0.24067 2.43647 3.09107 0.14705 
3 1.44282 1.82147 0.20546 2.04046 2.68484 0.15105 
4 1.44648 1.88912 0.19174 1.86740 2.50585 0.15319 
5 1.44561 1.92584 0.18442 1.77051 2.40542 0.15452 
6 1.44401 1.94891 0.17987 1.70858 2.34121 0.15543 
7 1.44244 1.96476 0.17676 1.66559 2.29665 0.15610 
8 1.44105 1.97632 0.17451 1.63400 2.26392 0.15660 
9 1.43985 1.98513 0.17279 1.60980 2.23886 0.15700 
10 1.43882 1.99207 0.17145 1.59068 2.21907 0.15731 
11 1.43794 1.99768 0.17037 1.57518 2.20303 0.15758 
12 1.43717 2.00230 0.16947 1.56237 2.18979 0.15780 
13 1.43651 2.00618 0.16873 1.55161 2.17865 0.15798 
14 1.43592 2.00948 0.16809 1.54243 2.16917 0.15814 
15 1.43541 2.01232 0.16755 1.53451 2.16099 0.15828 
16 1.43495 2.01479 0.16707 1.52762 2.15387 0.15841 
17 1.43453 2.01697 0.16666 1.52155 2.14760 0.15852 
18 1.43416 2.01889 0.16629 1.51618 2.14206 0.15861 
19 1.43383 2.02060 0.16596 1.51139 2.13711 0.15870 
20 1.43352 2.02214 0.16567 1.50709 2.13267 0.15878 
25 1.43234 2.02794 0.16456 1.49083 2.11591 0.15908 
30 1.43154 2.03178 0.16383 1.48008 2.10482 0.15928 
50 1.42988 2.03935 0.16239 1.45877 2.08288 0.15968 
75 1.42903 2.04310 0.16169 1.44821 2.07202 0.15988 
100 1.42860 2.04496 0.16133 1.44296 2.06661 0.15998 
150 1.42817 2.04682 0.16098 1.43772 2.06123 0.16008 
200 1.42795 2.04774 0.16081 1.43511 2.05854 0.16013 
250 1.42782 2.04830 0.16070 1.43354 2.05693 0.16017 
300 1.42773 2.04867 0.16064 1.43250 2.05586 0.16019 

= 1.4272883468 2.0505104733 0.1602881356 1.4272883468 2.0505104733 0.1602881356 
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Table D.3.4 continued. Two Stage Short Run Control Chart Factors 

£ I h M O 0027 I h S dUCL O 005 d I h S dLCL O 001 or a1p a . ean= , a1p a tan = , an a1p a tan = 
D 6 

m A31 B41 B31 A32 B42 B32 
1 ----- ----- ----- 3.17946 3.86518 0.18333 
2 1.17743 1.58892 0.30986 2.03936 2.70604 0.19726 
3 1.24158 1.72504 0.26932 1.75586 2.41068 0.20274 
4 1.26077 1.78217 0.25320 1.62765 2.27682 0.20568 
5 1.26929 1.81368 0.24452 1.55456 2.20058 0.20751 
6 1.27392 1.83367 0.23909 1.50732 2.15137 0.20877 
7 1.27676 1.84749 0.23538 1.47428 2.11699 0.20968 
8 1.27866 1.85762 0.23267 1.44986 2.09162 0.21038 
9 1.28000 1.86537 0.23061 1.43108 2.07213 0.21093 
10 1.28099 1.87148 0.22900 1.41619 2.05668 0.21137 
11 1.28176 1.87643 0.22769 1.40409 2.04415 0.21173 
12 1.28236 1.88052 0.22662 1.39407 2.03376 0.21203 
13 1.28284 1.88395 0.22572 1.38563 2.02503 0.21229 
14 1.28324 1.88688 0.22495 1.37842 2.01758 0.21252 
15 1.28358 1.88940 0.22429 1.37220 2.01114 0.21271 
16 1.28386 1.89160 0.22372 1.36677 2.00553 0.21288 
17 1.28410 1.89353 0.22321 1.36199 2.00060 0.21303 
18 1.28431 1.89524 0.22277 1.35776 1.99622 0.21316 
19 1.28449 1.89677 0.22237 1.35397 1.99231 0.21328 
20 1.28465 1.89814 0.22202 1.35058 1.98881 0.21339 
25 1.28524 1.90331 0.22068 1.33772 1.97554 0.21380 
30 1.28560 1.90673 0.21979 1.32919 1.96676 0.21408 
50 1.28626 1.91350 0.21805 1.31225 1.94932 0.21464 
75 1.28657 1.91686 0.21719 1.30384 1.94067 0.21492 
100 1.28671 1.91853 0.21676 1.29964 1.93636 0.21506 
150 1.28685 1.92019 0.21633 1.29546 1.93207 0.21520 
200 1.28692 1.92102 0.21612 1.29337 1.92992 0.21527 
250 1.28696 1.92152 0.21599 1.29212 1.92864 0.21532 
300 1.28699 1.92185 0.21591 1.29128 1.92778 0.21534 
= 1.2871184251 l .9235056072 0.2154867548 1.2871184251 l .9235056072 0.2154867548 

( 

Table D.3.4 continued. Two Stage Short Run Control Chart Factors 
£ 1 h M O 0027 I h S dUCL O 005 d I h S dLCL O 001 or am a ean= ,atp a tan = , an a1p1 a tan = 

D 7 
m A31 B41 B31 A32 B42 B32 
1 ----- ----- ----- 2.62129 3.32762 0.22344 
2 1.03107 1.53785 0.36527 1.78587 2.46221 0.24037 
3 1.10629 1.65538 0.32187 1.56453 2.23012 0.24705 
4 1.13254 1.70560 0.30434 1.46210 2.12290 0.25065 
5 1.14554 1.73357 0.29484 1.40300 2.06120 0.25290 
6 1.15322 1.75143 0.28887 1.36451 2.02112 0.25444 
7 1.15826 1.76382 0.28477 1.33745 1.99300 0.25556 
8 1.16182 1.77293 0.28178 1.31737 1.97217 0.25641 
9 1.16445 1.77991 0.27951 1.30189 1.95614 0.25708 

10 1.16648 1.78543 0.27772 1.28959 1.94341 0.25762 
11 1.16809 1.78990 0.27627 1.27958 1.93305 0.25807 
12 1.16940 1.79359 0.27508 1.27127 1.92447 0.25844 
13 1.17048 1.79670 0.27408 1.26426 1.91724 0.25876 
14 1.17139 1.79935 0.27323 1.25828 1.91107 0.25903 
15 1.17217 1.80164 0.27250 1.25310 1.90573 0.25927 

16 1.17284 1.80363 0.27186 1.24858 1.90108 0.25948 
17 1.17342 1.80538 0.27130 1.24461 1.89698 0.25967 

18 1.17394 1.80694 0.27080 1.24107 1.89335 0.25983 

19 1.17439 1.80832 0.27036 1.23792 1.89010 0.25998 

20 1.17480 1.80956 0.26997 1.23509 1.88718 0.26011 

25 1.17631 1.81426 0.26848 1.22435 1.87614 0.26062 

30 1.17730 1.81737 0.26749 1.21722 1.86882 0.26096 

50 1.17920 1.82354 0.26555 1.20303 1.85427 0.26165 

75 1.18012 1.82660 0.26459 1.19596 1.84704 0.26199 

100 1.18058 1.82812 0.26411 1.19244 1.84343 0.26216 

150 1.18102 1.82964 0.26363 1.18892 1.83984 0.26234 

200 1.18125 1.83040 0.26340 1.18717 1.83804 0.26243 

250 1.18138 1.83085 0.26325 1.18611 1.83696 0.26248 

300 1.18147 1.83115 0.26316 1.18541 1.83625 0.26251 

= 1.1819070377 !.8326623794 0.2626874474 1.1819070377 l .8326623794 0.2626874474 
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Table D.3.4 continued. Two Stage Short Run Control Chart Factors 
fi I h M O 0027 I h S dUCL O 005 d I h S dLCL O 001 or a1P a ean= , a1p a tan = , an a1P a. tan --

n 8 

m A31 B41 B31 A32 B42 B32 
1 ----- ----- ----- 2.26496 2.98084 0.25804 
2 0.92789 1.49759 0.41022 1.60716 2.29241 0.27738 
3 1.00745 1.60218 0.36540 1.42475 2.10084 0.28504 
4 1.03713 1.64745 0.34708 1.33893 2.01111 0.28917 
s 1.05244 1.67283 0.33709 1.28897 1.95909 0.29175 
6 1.06174 1.68909 0.33080 1.25627 1.92514 0.29352 
7 1.06797 1.70041 0.32647 1.23318 1.90124 0.29481 
8 1.07242 1.70874 0.32330 1.21601 1.88350 0.29578 
9 1.07577 1.71513 0.32089 1.20275 1.86981 0.29656 
10 1.07837 1.72019 0.31899 1.19218 1.85893 0.29718 
11 1.08045 1.72429 0.31746 1.18358 1.85007 0.29769 
12 1.08216 1.72769 0.31619 1.17643 1.84272 0.29812 
13 1.08357 1.73054 0.31513 1.17039 1.83653 0.29848 
14 1.08477 1.73298 0.31423 1.16523 1.83123 0.29880 
15 1.08580 1.73508 0.31345 1.16077 .... 1.82665 0.29907 
16 1.08669 1.73691 0.31277 1.15687 1.82265 0.29931 
17 1.08747 1.73852 0.31218 1.15344 1.81913 0.29952 
18 1.08816 1.73995 0.31165 1.15039 1.81601 0.29971 
19 1.08877 1.74123 0.31118 1.14766 1.81322 0.29988 
20 1.08931 1.74237 0.31076 1.14521 1.81071 0.30003 
25 1.09136 1.74670 . 0.30917 1.13592 1.80121 0.30062 
30 1.09269 1.74957 0.30812 1.12975 1.79490 0.30101 
so 1.09531 1.75526 0.30605 1.11744 1.78235 0.30180 
75 1.09659 1.75808 0.30502 1.11131 1.77611 0.30220 
100 1.09722 1.75948 0.30451 1.10825 1.77299 0.30240 
150 1.09785 1.76089 0.30401 1.10519 1.76988 0.30260 
200 1.09816 1.76159 0.30375 1.10366 1.76833 0.30270 
250 1.09834 1.76201 0.30360 1.10275 1.76740 0.30276 
300 1.09847 1.76229 0.30350 1.10214 1.76678 0.30280 
= 1.0990865943 1.7636797722 0.3029980062 I .0990865943 1.7636797722 · 0.3029980062 

Table D.3.4 continued. Two Stage Short Run Control Chart Factors 
fi I h M O 0027 I h S dUCL O 005 d I h S dLCL O 001 or atpl a ean= , a1P a tan = , an alp a tan = 

n 10 
m A31 B41 B31 A32 B42 B32 
1 ----- ----- ----- 1.83098 2.55756 0.31456 
2 0.78934 1.43782 0.47857 1.36718 2.06875 0.33743 
3 0.87005 1.52535 0.43308 1.23044 1.92577 0.34651 
4 0.90213 1.56383 0.41417 1.16465 1.85752 0.35140 
s 0.91929 1.58559 0.40377 1.12589 1.81755 0.35446 
6 0.92995 1.59959 0.39719 1.10033 1.79129 0.35656 
7 0.93721 1.60937 0.39265 1.08220 1.7727.3 0.35809 
8 0.94247 1.61658 0.38932 1.06867 1.75890 0.35925 
9 0.94646 1.62212 0.38679 1.05818 1.74821 0.36016 

10 0.94959 1.62651 0.38478 1.04981 1.73969 0.36090 
11 0.95211 1.63008 0.38316 1.04298 1.73275 0.36151 
12 0.95418 1.63303 0.38183 1.03730 1.72698 0.36202 
13 0.95591 1.63552 0.38070 1.03250 1.72211 0.36245 
14 0.95738 1.63764 0.37975 1.02839 1.71794 0.36283 
15 0.95864 1.63947 0.37892 1.02483 1.71433 0.36315 

16 0.95974 1.64107 0.37820 1.02172 1.71118 0.36344 
17 0.96070 1.64247 0.37757 1.01897 1.70841 0.36369 
18 0.96155 1.64372 0.37702 1.01654 1.70595 0.36391 
19 0.96230 1.64483 0.37652 1.01436 1.70374 0.36411 

20 0.96298 1.64583 0.37607 1.01240 1.70176 0.36430 

25 0.96553 1.64961 0.37439 1.00496 1.69425 0.36499 

30 0.96721 1.65212 0.37327 1.00001 1.68926 0.36546 

so 0.97052 1.65709 0.37107 0.99013 1.67931 0.36639 
75 0.97214 1.65956 0.36998 0.98519 1.67435 0.36687 

100 0.97295 1.66079 0.36944 0.98273 1.67188 0.36710 

150 0.97375 1.66202 0.36889 0.98026 1.66941 0.36734 

200 0.97415 1.66264 0.36863 0.97903 1.66817 0.36746 

250 0.97439 1.66300 0.36846 0.97830 1.66743 0.36753 

300 0.97455 1.66325 0.36836 0.97780 1.66694 0.36758 

= 0.9753425971 1.6644701362 0.3678194937 0.9753425971 1.6644701362 0.3678194937 
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Table D.3.4 continued. Two Stage Short Run Control Chart Factors 
f, I h M O 0027 I h S dUCL O 005 d I h S dLCL O 001 or atpJ a ean= , am a tan = , an a1p1 a tan = 

n 25 

m A31 B41 B31 A32 B42 B32 
1 ----- ----- ----- 0.94603 1.72242 0.51741 
2 0.44990 1.26536 0.68196 0.77925 1.55628 0.54729 
3 0.51111 l.31284 0.64455 0.72281 l.50164 0.55905 
4 0.53775 1.33430 0.62831 0.69424 l.47435 0.56536 
5 0.55272 1.34660 0.61919 0.67694 1.45797 0.56931 
6 0.56231 1.35458 0.61334 0.66534 1.44704 0.57201 
7 0.56899 l.36018 0.60926 0.65701 1.43923 0.57398 
8 0.57391 l.36432 0.60627 0.65075 l.43337 0.57548 
9 0.57768 1.36752 0.60397 0.64586 1.42880 0.57665 
10 0.58066 l.37006 0.60214 0.64194 l.42515 0.57760 
11 0.58308 l.37212 0.60067 0.63873 l.42216 0.57838 
12 0.58508 1.37383 0.59944 0.63605 l.41967 0.57904 
13 0.58676 l.37527 0.59842 0.63378 l.41756 0.57959 
14 0.58820 1.37651 0.59754 0.63183 1.41576 0.58007 
15 0.58944 l.37757 0.59678 0.63014 1.41419 0.58049 
16 0.59052 l.37850 0.59612 0.62865 1.41282 0.58086 
17 0.59147 l.37932 0.59554 0.62735 1.41161 0.58118 
18 0.59231 l.38005 0.59503 0.62618 l.41053 0.58147 
19 0.59306 l.38070 0.59457 0.62514 l.40957 0.58173 
20 0.59374 l.38128 0.59415 0.62420 1.40870 0.58196 
25 0.59628 l.38349 0.59260 0.62063 l.40540 0.58285 
30 0.59797 1.38495 0.59156 0.61825 1.40320 0.58345 
50 0.60132 l.38787 0.58951 0.61347 1.39881 0.58465 
75 0.60298 1.38932 0.58850 0.61108 l.39660 0.58526 
100 0.60381. l.39004 0.58799 0.60988 1.39550 0.58556 
150 0.60463 l.39076 0.58749 0.60868 l.39440 0.58587 
200 0.60505 1.39112 0.58723 0.60808 l.39385 0.58602 
250 0.60529 l.39134 0.58708 0.60772 l.39352 0.58611 
300 0.60546 l.39148 0.58698 0.60748 1.39330 0.58617 
~ 0.6062761922 l.3922003510 0.5864808086 0.6062761922 1.3922003510 0.5864808086 

Table D.3.4 continued. Two Stage Short Run Control Chart Factors 
f, I h M O 0027 I h S dUCL O 005 d I h S dLCL O 001 or am a ean= , a1p a tan = ,an a1p1 a tan = 

n 50 
m A31 B41 B31 A32 B42 B32 
1 ----- ----- ----- 0.63210 1.45363 0.63699 
2 0.30864 l.18488 0.77825 0.53458 1.36429 0.66594 
3 0.35361 1.21656 0.74938 0.50008 1.33362 0.67719 
4 0.37361 l.23096 0.73664 0.48232 l.31805 0.68321 
5 0.38496 l.23922 0.72942 0.47148 1.30861 0.68696 
6 0.39229 1.24459 0.72477 0.46417 l.30227 0.68952 
7 0.39742 l.24836 0.72152 0.45890 l.29772 0.69139 
8 0.40120 l.25116 0.71913 0.45492 l.29430 0.69280 
9 0.40411 1.25332 0.71728 0.45181 l.29163 0.69391 
10 0.40642 l.25503 0.71582 0.44932 l.28949 0.69481 
11 0.40830 l.25642 0.71464 0.44727 l.28773 0.69555 
12 0.40985 l.25758 0.71365 0.44556 l.28627 0.69617 

13 0.41116 l.25856 0.71283 0.44410 l.28503 0.69669 
14 0.41228 l.25939 0.71212 0.44286 l.28396 0.69714 
15 0.41324 l.26011 0.71151 0.44177 l.28304 0.69754 
16 0.41408 l.26074 0.71098 0.44083 1.28223 0.69788 
17 0.41482 1.26129 0.71051 0.43999 l.28152 0.69819 

18 0.41548 l.26178 0.71010 0.43924 1.28088 0.69846 

19 0.41607 1.26222 0.70973 0.43857 1.28031 0.69871 

20 0.41659 1.26261 0.70939 0.43797 1.27980 0.69893 

25 0.41859 1.26411 0.70813 0.43568 l.27785 0.69977 

30 0.41991 1.26510 0.70730 0.43415 1.27655 0.70033 

50 0.42253 1.26707 0.70564 0.43107 1.27394 0.70146 

75 0.42384 l.26805 0.70482 0.42953 1.27263 0.70203 

100 0.42449 l.26854 0.70441 0.42876 1.27197 0.70232 

150 0.42514 1.26903 0.70400 0.42798 l.27132 0.70261 

200 0.42546 1.26928 0.70379 0.42759 1.27099 0.70275 

250 0.42566 1.26942 0.70367 0.42736 1.27079 0.70284 

300 0.42578 l.26952 0.70359 0.42721 1.27066 0.70289 
~ 0.4264307914 l.2700073227 0.7031820259 0.4264307914 l.2700073227 0.7031820259 
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APPENDIX E.l - Analytical Results for Chapter 7 
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. ( 2 '2 )0.5 Denve: d2starMR = d2 + d2 · r 

We first need to determine the mean and variance of the distribution of the mean moving 

range °N'JR/ cr . 

Note: By definition, '~) = d2 

cc; ( ~} E(MR) = d2 cc; E(MR) = d2 · c, 

P( MR J ( 1 ) ( 1 ) m-l ( 1 J ( 1 J m-l 
=> l_--;- = cr · m-1 · ~E(MRJ= cr · m-1 · ~(d2 ·cr) 

since E(MR) = d2 · cr. 

(continued on the next page) 
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·(continued from the previous page) 

From Palm and Wheeler (1990), Var(~1R/d2)= cr2 • r 

where 

· b·(m-1)-c 
r=----

(m-1)2 

with 

2·11: . h 
b=--3+v3 

3 

C = 1t -2+J3 
6 

cc}r=( :, } va{ 1: )={:, }( d~'} var(MR) 

cc} va{~J=d2' -r 

(continued on the next page) 
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(continued from the previous page) 

Derive: d2starMR = (d2 2 + d2 2 • r )°'5 

According to Johnson and Welch (1939), the mean of the x distribution with v degrees of 

freedom is calculated using the following equation (with some modifications in notation): 

E(x) = Ji. 1(0.5 · V + 0.5) 
r(0.5 ·V) 

==> E(X · d2starMR J =[ d2starMR J· E(x) =Ji·[ d2starMR J·(r(0.5 ·V + 0.5)J 
..JV ..JV ..JV r(0.5 ·V) 

Equating the squared means of the distribution of the mean moving range MR/ a and the 

(x · d2starMR )/ ..JV distribution with v degrees of freedom results in the following: 

d22 = 2 ·( d2starMR 2 J :( r(0.5 · v + 0.5) J2 

v r(0.5-v) 

==> d2starMR 2 = d22 · (v) ·( r(0.5 · v) J2 

2 r(0.5 · V + 0.5) 

(continued on the next page) 
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(continued from the previous page) 

Using results obtained from Johnson and Welch (1939) (with some modifications in 

notation), the equation to calculate the variance of the X distribution with v degrees of 

freedom may be determined as follows: 

Var(x) = E(x 2 )- (E(x))2 = 2 . r(0.5 · V + 1) -(../2. r(0.5 · v + 0.5) J
2 

· r(0.5-v) T(0.5-v) 

=} Var(x) = 2 . (0.5 · Y) · r(0.5 ·V) _ 2 ·(r(0.5 ·V + 0.5)]2 = V _ 2 ·(r(0.5 · V + 0.5)]2 

r(0.5. v) r(0.5. v) r(0.5 · v) 

=} v!CIJ x ·d2starMRJ = (d2starMR 2 J·[v- 2 ·(r(0.5 -v +0.5)J
2

] -l .Jv V r(0.5 · V) 

Equating the variances of the distribution of the mean moving range MR/ cr and the 

(x · d2starMR )/ .Jv distribution with v degrees of freedom results in the following: 

d22. r = (d2starMR 2 J·[v _ 2 ·(r(0.5 -v+ 0.5)J
2
] 

V r(0.5 ·V) 

d2 2 • f ·V 

=} ( r(0.5. V + 0.5) J2 = d2starMR 2 - V 

r(0.5-v) -2 

(continued on the next page) 
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(continued from the previous page) 

( · rco.s ·v) J2 2 

~ r(0.5·v+0.5) = (1 d2 2 ·r J 
v · - d2starMR 2 

· Substituting 

( r(0.5-v) J2 =---2 __ _ 

r(0.5-v+0.5) ·( d2 2 ·r J 
V· 1-----

. d2starMR 2 

into 

d2starMR 2 = d22 ·(v)·( r(0.5 ·V) J2 
2 . r(0.5·V + 0.5) 

gives the following equation: 

2 
2 2 (V) d2starMR = d2 · 2 · 

V { 1- -d2-:-:-2MR_· r_, J 

d2 2 d2starMR 2 · d2 2 
~ d2starMR 2 = 2 = -------

d2 · r d2starMR 2 - d22 · r 
1-----

d2starMR2 

d2 2 

~ 1 = 2 2 ~ d2starMR 2 = d2 2 + d2 2 . r 
d2starMR - d2 · r 

~ d2starMR = (ct22 + d22 . r )°"5 
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Show: MR/d2 is an unbiased estimate of cr; i.e., show E(MR/d2)= cr 

( MR J ( 1 ) ( I ) m-l J 1 ) ( 1 ) m-l 
==> E d2 = d2 . m-1 . ~E(MRJ-( d2 . m-1 . ~(d2·cr) 

since E(MR) = d2 · cr (a result shown earlier in this appendix (Appendix E.1)). 

==> P( MRJ=(-1 )·(-1 )·((m-l)·d2·cr)= cr l_ d2 d2 m-1 

Note: This result may also be obtained as follows. It is shown earlier in this appendix 

(Appendix E.l) that the following holds: 

f:)=d2 
=>(: }E(MR)= d2 =>( d~ }E(MR)=cr=>f: J= er 
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Derive: D42 = (qD4/d2starMR), where qD4 is the (1-alphaMRUCL) percentage point of 

the distribution of the studentized range Q = (w /s) for subgroup size two with v degrees 

of freedom (alphaMRUCL is the probability of a Type I error on the MR chart above the 

upper control limit). 

Notes: The ensuing derivation is based on the derivation of n: in the appendix of Hillier 

(1969). The value MR denotes the moving range of a subgroup of size two drawn while 

in the second stage of the two stage procedure. 

We need to determine the value D42 such that the following holds: 

P(MR ~ D42 · MR ) = 1- alphaMRUCL 

=> 1: ,s; D42) = 1-alphaMRUCL 

We know MR/cr is the statistic for the: distribution of the range W = (w/cr) for subgroup 

size two. We now need an independent estimate of cr based on MR. Replacing cr with 

this independent estimate results in the statistic for the distribution of the studentized 

range Q = (w/s) for subgroup size two, which has v degrees of freedom. The equation 

to calculate vis based on the fact that we have applied the Patnaik (1950) approximation 

to the distribution of the mean moving range. If we were to use MR/d2 (which is an 

unbiased estimate ofcr, a result shown earlier in this appendix (Appendix E.1)) as this 

(continued on the next page) 
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(continued from the previous page) 

independent estimate, then we would not have the appropriate equation for v. As a result, 

we need to use "MR/ d2starMR . 

MR MR "MR · d2starMR 
=> -- - - --==---

cr -(d2:.:-~r MR 

where ("MR · d2star"MR )/ "MR is the statistic for the distribution of the studentized range 

Q = (w/s) for subgroup size two with v degrees of freedom. 

=> 1- alpha"MRUCL = J "MR . ~ar"MR ~ qD4) = J "MR ~ qD4 ). 
~ l "MR ~ l MR d2star"MR 

where qD4 is defined above. 

Setting D42 = qD4 => 1- alphaMRUCL = J MR ~ D42) = P(MR ~ D42 ·MR) 
d2starMR ~ l MR 
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Show: (MR/ct;(MR))2 is an unbiased estimate of cr 2 ; i.e., show El(MR/ct;(MR))2 J= cr 2 

m-1 
2 

E . MR 1 dz z E i=1 [( - ]2] ( J L MRi 
=} ct;(MR) = (ct;(MR))2 . 2 ·r·cr + -m---1-

(the fact that Var(MR/cr )=ct;· r is shown earlierin this appendix (Appendix E.l)). 

since E(MR) = d 2 • cr (a result shown earlier in this appendix (Appendix E.l)). 

=?E[[ .MR J2

]=(( 1 )'J·[d;·r-cr2 +( 1 
2 J·((m-l)·d 2 ·cr)2] d 2 (MR) ct;(MR) (m-1) 

(continued on the next page) 
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(continued from the previous page) 

=(( I rJ·cr2·(ct;+d;·r) 
ct;(MR) -

=(( I )'J·cr2·(ct;(MR))2 
ct;(MR) 

since ct; (MR)= (ct;+ ct;· r )°"5 (a result shown earlier in this appendix (Appendix E.1)). 
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APPENDIX E.2 - Computer Program ccfsMR.mcd for Chapter 7 
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Page 1 of program: ccfsMR.mcd 

ENTER the following 4 values: 

(1) alphaind := 0 .0027 alpha Ind • alpha for the X chart. 

(2) alphaMRUCL := 0.005 alphaMRUCL - alpha for the MR chart above the UCL. 

(3) alphaMRLCL := 0.001 alphaMRLCL - alpha for the MR chart below the LCL *. 

(4) m:=5 m - number of subgroups (i.e., the number of MRs plus one). 

* Note - If no LCL is desired, leave alphaMRLCL blank (do not enter zero). 

Please PAGE DOWN to begin the program. 

(1.1) TOL := 10- lO 

2 -x 

f(x) := dnorm(x,0,1) I := [(2·11f 0·5]. e-:l 

P(\V) := 2· f 00 f(x) ·(F(x + \V) - F(x)) dx 
-oo 

2 
d2·=-

. 0.5 11 
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F(x) := pnorm(x,0,1) I:= r f(t) dt 
0 



Page 2 of program: ccfsMR.mcd 

(2.1) DUCL(VV) := P(VV) - (1 - alphaMRUCL) 

Wseedl(start) := W0 ~ start 

W1 ~ start+ O.Dl 

A0 ~ DUCL(W0) 

A1 ~ DUCL(W1) 

while A0-A1 > D 

w 

Wo~W1 

W1 ~ W1+ D.Dl 

Ao~A1 

A1 ~ DUCL(W1) 

seedD4 := Wseedl(0.01) 

DLCL(VV) := P(VV) - alphaMRLCL 

Wseed2(start) := W0 ~ start 

W1 ~ start+ O.Dl 

A0 ~ DLCL(W0) 

A1 ~ DLCL(W1) 

while A0-A1 > 0 

w 

Wo~W1 

W1 ~ W1 + 0.01 

Ao~A1 

A1 ~ DLCL(W1) 

seedD3 := Wseed2(0.001) 

wD4 := zbrent(DUCL, seedD4o, seedD4i, TOL) wD3 := zbrent{DLCL, seedD30 , seedD31, TOL) 

X· e2·(gm:,mh\(0.5-x)-gm:,mh\(0.5-x+0.5)) _ 2 
(2.2) h(x) := ----------

2 
b := 2-,c - 3 + 30.5 

3 
C := ~ - 2 + 30.S 

6 

clfseed(y) := clfo ~ 0.9 

clf1 ~ 1.1 

Ao~ y{clfo) 

A1 ~ y(clf1) 

while A0-A1 > 0 

elf 

clfo ~ clf1 

clf1 ~ clf1 + 0.5 

Ao~A1 

A1 ~ y(clf1) 

b·(m-1) - C 
r := --'----'--

(m - 1)2 

d(x) := h(x) - r 

seedv := clfseed(d) 

. b·(m - 2) - C 
rprevm:= 

2 (m- 2) 

dprevm(x) := h(x) - rprevm 

seedvprevm := clfseed(dprevm) 

v := zbrent(d,seedv0 ,seedv1,TOL) 

vprevm := zbrent( dprevm, seedvprevmo, seedvprevm1, TOL) 
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Page 3 of program: ccfsMR.mcd 

Ill 

i-2s.w v-i i-2s.w 

(l.1) Pl(~~ [(, :},-;T] ,-;T P(',V) dW 

0 

Io, 

2 v-1 2 
1-x 1-x 

P7{~ ~ rn "(,,-2 ) -e-2 dx 

. z 

(5) CV P3(z) := ; · e ·(Pl(z) + P2(z)) 

(3.2) Zseedl(start) := Z0 ~ start 

Z1 ~ start+ 5.0 

Ao~ P3(Zo) 

A1 ~ P3(Z1) 

while A 1 < (1 - alphaI\IIRUCL) 

Zo ~ Z1 

21 ~ Z1 + 5.0 

Ao~A1 

A1 ~ P3(Z1) 

Zguess ~ linterp(A,Z,1 -' alphaI\IIRUCL) 

Zguess 

seedl := Zseed1(5.0) 

zbrent(D,seedl - 5.0,seedl + 5.0,TOL) 
qD4 := ---'-----------"'--

5 

I:= 
root[ IP3(seedl) - (1 - alphaI\IIRUCL) j ,seedl) 

5 
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D(x) := P3(x) - (1 - alphaI\IIRUCL) 



Page 4 of program: ccfsMR.mcd 

(4.1) Zseed2(start) := Zv0 f- 0.0 

Av0 f- 0.0 

Z f- start 

while (P3(Z) < alphaMRLCL) 

Z t- Z + 1.0 

for i E 1.. 6 

Zvi t- Z + (l.O)·(i - 1) 

Avi t- P3(ZvJ 

for ie 7 .. 20 

Zvi t- Z + (l.O)·(i- 1) 

Avi f- P3(ZvJ 

Zguess t- linterp(Av,Zv,alphaMRLCL) 

A f- ratint(Zv,Av,Zguess) 

Aguess t-Ao 

while jAguess - alphaMRLCLI > 10- 15 

if (Aguess - alphaMRLCL) > 10- 15 

Av1 f- Aguess 

. Zv1 f- Zguess 

if (Aguess - alphaMRLCL) < -10- 15 

Av0 f- Aguess 

Zv0 f- Zguess 

Zguess t- linterp(Av,Zv,alphaMRLCL) 

A f- ratint(Zv,Av,Zguess) 

Aguess t-Ao 

Zguess 

seed2 := Zseed2(1.0) 

D3 seed2 
q ·=--. 5 

root( jP3(seed2) - alphaMRLCLj ,seed2) 
qD3 := ----'------------

5 
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Monitor Results 

qD3 = 1.9340341866 X 10-3 

qD3 = 1.9340341866 X 10-3 



Page 5 of program: ccfsMR.mcd 

(5.1) 

I"' ( 2)~-l 1-i 
P2pm,,(,) ,. ( ~} 55 ,., ,~, . • ' <h 

·- ln(2). ( vprevm) 1n( vprevm) ( vprevm) ( vprevm) cvprevm .- + -- · -- - -- - gammln --
2 2 2 2 

P3prevm(z) := (;}ec~·(Plprevm(z) + P2prevm(z)) 

(5.2) Zseed3(start) := 2 0 ~ start 

Z1 ~ start+ 5.0 

A0 ~ P3prevm(Z0) 

A1 ~ P3prevm(Z1) 

while A1 < (1 - alphaMRUCL) 

Zo~ Z1 

2 1 ~ 2 1 + 5.0 

Ao~A1 

A 1 ~ P3prevm(Z1) 

Zguess ~ linterp(A,Z,1 - alphaMRUCL) 

Zguess 

seed3 := Zseed3(5.0) Dprevm(x) := P3prevm(x) - (1 - alphaMRUCL) 

zbrent(Dprevm,seed3 - 5.0,seed3 + 5.0,TOL) 
qD4prevm := ---------------

5 

I:= 
root[ jP3prevm(seed3) - (1 - alphaMRUCL) I ,seed3] 

5 
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Page 6 of program: ccfsMR.mcd 

(6.1) Zseed.4(start) := Zv0 f- 0.0 

Avof- 0.0 

Z f- start 

while (P3prevm(Z) < alphaMRLCL) 

Zf-2+1.0 

for i e 1.. 6 

'

Zvi f- Z + (l.O)·(i - 1) 

Avi f- P3prevm(ZvJ 

for ie7 .. 20 

'

Zvi f- Z+ (l.O)·(i- 1) 

Avi f- P3prevm(ZvJ 

Zguess f- linteip(Av,Zv,alphaMRLCL) 

A f- ratint(Zv,Av,Zguess) 

Aguess f-Ao 

while. IAguess - alphaMRLCLI > 10-15 

if (Aguess - alphaMRLCL) > 10- 15 

'

Av1 f- Aguess 

Zv1 f- Zguess 

if (Aguess"'" alphaMRLCL) < -10- 15 

'

Avo f- Aguess 

Zv0 f- Zguess 

Zguess f- linteip(Av,Zv,alphaMRLCL) 

A f- ratint(Zv ,Av ,Zguess) 

Aguess f- A0 

Zguess 

seed4 := Zseed.4(1.0) 

seed4 
qD3prevm := --

5 

D root( IP3prevm(seed4) - alphaMRLCLI, seed4) q 3prevm := _.....;...;.__;;;._.........;. _ _.;.._~---'----'--'-
5 
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Monitor Resul1s 

. -3 
qD3prevm = 1.9793483369 x 10 

qD3prevm = 1.9793483369 x 10-3 



Page 7 of program: ccfsMR.mcd 

d. al h 1 alphalnd aJ_pa:= - 2 

( 2 2 ,o.5 
d2starMRprev:m := d2 + d2 ·rprevmJ crit _ t := qt( adj_ alpha, v) crit_z := qnonn(adj_alpha,0,1) 

(7.2) E21 := ( crit t )-(~)0.5 
d2starMR m 

, E22 := ( crit t )-(~)0.5 
d2starMR m 

D41 := m·.qD4prev:m D42 := qD4 
d2starMRprev:m·(m - 1) + qD4prev:m d2starMR 

D3l := m·qD3prev:m D32 := qD3 
d2starMRprev:m·(m - 1) + qD3prev:m d2starMR 

FINAL RESULTS: 

(1) alphalnd = 0.0027 Control (;hart Factors 

(2) alphaMRUCL = 0.005 First Stage Second Stage 

(3) alphaMRLCL = 0.001 
E21 = 734996 E22 = 9.00182 

(4) m=5 
D41 = 3.83736 D42 = 92788 

D31 = 0.00196 D32 = 0.00157 
For: 

(# of MRs) = m - 1 = 4 

E2 := crit_z 
d2 

D4 := wD4 
d2 

D3:= wD3 
d2 

Conventional 

E2 = 2.6586603867 

D4 = 3.5180951058 

D3 = 0.0015707967 

v = 2.8121232012 
Mean of the Distribution of the Range for Subgroup Size Two 
and the Variance of the Distribution of the Mean Moving Range 

d2starMR = 1.23124 d2 = 1.1283791671 d22·r = 0.2427219561 

(# of MRs) = (m - 1) - 1 = 3 Harter. Clemm. and Guthrie's (1959) Table 11.2 Results for n=2 

vprev:m = 2.19944 qD4 = 11.42447 qD4prev:m = 16.63594 wD4 = 3.9697452252 

d2 starMRprev:m = 1.26009 qD3prev:m = 0.00198 wD3 = 0.0017724543 
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APPENDIX E.3 - Tables Generated from ccfsMR.mcd 
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* Table E.3.1. v (Degrees of Freedom) and d2 (MR) (d2starMR) Values 

m V d/(MR) m V d/(MR) 
2 1.00000 1.41421 16 9.49655 1.15842 
3 1.58682 1.31072 17 10.10245 1.15660 
4 2.19944 1.26009 18 10.70825 1.15499 
5 2.81212 1.23124 19 11.31397 1.15356 
6 3.42328 1.21271 20 11.91962 1.15227 
7 4.03312 1.19982 25 14.94711 1.14740 
8 4.64196 1.19034 30 17.97377 1.14418 
9 5.25006 1.18308 50 30.07712 1.13780 
10 5.85761 1.17734 75 45.20381 1.13464 
11 6.46473 1.17269 100 60.32965. 1.13306 
12 7.07152 1.16885 150 90.58051 1.13150 
13 7.67805 1.16562 200 120.83094 1.13072 
14 8.28438 1.16287 250 151.08121 1.13025 
15 8.89053 1.16049 300 181.33139 1.12994 

d2 1.1283791671 
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m 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Table E.3.2. Partial Re-creation of Table 11.2 
for P=0.995 (alphaMRUCL=0.005) and P=0.001 

(alphaMRLCL=0.001) in Harter, Clemm, and Guthrie (1959) 
q04 q03 m q04 

180.05956 0.00222 16 5.13700 
34.23460 0.00206 17 5.05126 
16.63594 0.00198 18 4.97717 
11.42447 0.00193 19 4.91251 
9.12057 0.00190 20 4.85560 
7.86303 0.00188 25 4.64991 
7.08300 0.00187 30 4.52154 
6.55624 0.00186 50 4.28392 
6.17842 0.00185 75 4.17390 
5.89503 0.00184 100 4.12094 
5.67501 0.00184 150 4.06929 
5.49947 0.00183 200 4.04394 
5.35628 0.00183 250 4.02888 
5.23734 0.00182 300 4.01890 

q03 
0.00182 
0.00182 
0.00181 
0.00181 
0.00181 
0.00180 
0.00180 
0.00179 
0.00178 
0.00178 
0.00178 
0.00178 
0.00178 
0.00177 

00 3.9697 452252 0.0017724543 
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Table E.3.3. Two Stage Short Run Control Chart Factors for 
al h Ind O 0027 al h MR.UCL O 005 d al h MRLCL O 001 lp a = ' LP a = 'an Lp1 a = 

m E21 D41 D31 E22 D42 D32 
2 117.89184 -- - 204.19466 127.32134 0.00157 
3 22.24670 2.95360 0.00235 31.46159 26.11886 0.00157 
4 10.72641 3.58790 0.00209 13.84773 13.20218 0.00157 
s 7.34996 3.83736 0.00196 9.00182 9.27880 0.00157 
6 5.87022 3.89898 0.00188 6.94574 7.52080 0.00157 
7 5.06862 3.89368 0.00183 5.85274 6.55349 0.00157 
8 4.57470 3.86822 0.00179 5.18723 5.95038 0.00157 
9 4.24308 3.83885 0.00177 4.74391 5.54166 0.00157 

10 4.00644 3.81088 0.00175 4.42928 5.24776 0.00157 
11 3.82972 3.78583 0.00173 4.19525 5.02691 0.00157 
12 3.69307 3.76385 0.00171 4.01479 4.85521 0.00157 
13 3.58441 3.74470 0.00170 3.87161 4.71806 0.00157 
14 3.49606 3.72800 0.00169 3.75537 4.60610 0.00157 
15 3.42287 3.71338 0.00168 3.65920 4.51303 0.00157 
16 3.36128 3.70053 0.00168 3.57836 4.43448 0.00157 
17 3.30877 3.68916 0.00167 3.50948 4.36732 0.00157 
18 3.26348 3.67906 0.00166 3.45012 4.30926 0.00157 
19 3.22404 3.67004 0.00166 3.39843 4.25857 0.00157 
20 3.18937 3.66194 0.00165 3.35304 4.21395 0.00157 
25 3.06459 3.63141 0.00164 3.18972 4.05258 0.00157 
30 2.98713 3.61141 0.00162 3.08841 3.95179 0.00157 
so 2.84471 3.57258 0.00160 2.90218 3.76510 0.00157 
75 2.77924 3.55387 0.00159 2.81655 3.67863 0.00157 

100 2.74785 3.54471 0.00159 2.77546 3.63699 0.00157 
150 2.71730 3.53570 0.00158 2.73548 3.59637 0.00157 
200 2.70234 3.53124 0.00158 2.71588 3.57644 0.00157 
250 2.69346 3.52859 0.00158 2.70425 3.56460 0.00157 
300 2.68758 3.52682 0.00158 2.69655 3.55675 0.00157 - 2.6586603867 3.5180951058 0.0015707967 2.6586603867 3.5180951058 0.0015707967 
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APPENDIX F.1 - Simulation Program cc.f90 for Chapter 8 
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Last change: C 23 Apr 2001 10:13 pm 

module random_mod 

****************************************************************** 
***** This module contains the subroutine that generates ***** 
***** Uniform (0, 1) random variates using the Marse-Roberts***** 
***** code (see Marse and Roberts (1983)) ***** 
****************************************************************** 

implicit none 

contains 

subroutine random(uniran, seed) 

*****************************~*****~******************** 
***** This subroutine generates Uniform (0, 1) ***** 
***** random variates using the Marse-Roberts code***** 
******************************************************** 

implicit none 
INTEGER, parameter :: D0UBLE=SELECTED_REAL_KIND{p=15) 
REAL(KIND=DOUBLE), INTENT(OUT) : : uniran 
INTEGER, INTENT(IN OUT) : : seed 
INTEGER:: hi15, hi31, lowl5, lowprd, ovflow 
INTEGER, PARAMETER:: multl = 24112, mult2 

hilS = seed I b2e16 

b2e15 = 32768, b2e16 
modlus = 2147483647 

lowprd = (seed - hi15 * b2e16) * multl 
lowlS = lowprd I b2e16 
hi31 = hilS * multl + lowlS 
ovflow = hi31 I b2e15 

26143, & 
65536, & 

seed= (((lowprd - lowlS * b2e16) - modlus) + & 
(hi31 - ovflow * b2e15) * b2e16) + ovflow 

if (seed< 0) seed= seed+ modlus 

hilS = seed I b2e16 
lowprd = (seed - hilS * b2e16) * mult2 
low15 = lowprd I b2e16 
hi31 = hilS * mult2 + low15 
ovflow = hi31 I b2e15 
seed= (((lowprd - lowlS * b2e16) - modlus) + & 

(hi31 - ovflow * b2e15) * b2e16) + ovflow 

if (seed< 0) seed= seed+ modlus 

uni ran (2 * (seed I 256) + 1) I 16777216.0 

return 
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end subroutine random 

end module random_mod 

module Stage_2 

************************************************* 
! ***** This module conta:i:ns the subroutines ***** 

***** that perform Stage 2 control charting***** 
***** for each ·control chart combination ***** 
************************************************* 

USE random_mod 
implicit none 

contains 

subroutine Xbar_R~2(mean, sd, n, m_Xbar, m_R, Xbar2; Range2, & 
answer2, shifttype2, shiftsize2mean, & 
shiftsize2sd, shifttime2, falsealarm, RL, seed} 

********************************************************* 
***** Stage 2 Control Charting for (Xbar, R} Charts***** 

! ********************************************************* 

implicit none 
INTEGER, parameter:: DOUBLE=SELECTED_REAL_KIND(p=l5} 
INTEGER:: i, j, subgroup 
INTEGER, INTENT(IN) :: n, m_Xbar, m_R, shifttime2 
INTEGER, INTENT(IN OUT) :: seed 
REAL(KIND=DOUBLE) .. UCCFR2, LCCFR2, CCFXbar2, pi 
REAL(KIND=DOUBLE) .. Xbarsum, Rsum, Xbarbar, Rbar 
REAL(KIND=DOUBLE) .. UCLR2, LCLR2, UCLXbar2, LCLXbar2 
REAL(KIND=DOUBLE) .. Xsum, rl, r2, X, large, small, Xbar, R 
REAL(KIND=DOUBLE) .. templ, temp2, temp3, temp4, temp5 
REAL(KIND=DOUBLE), INTENT(IN) mean, sd 
REAL(KIND=DOUBLE), INTENT(IN) :: Xbar2(m_Xbar), Range2(m_R) 
REAL(KIND=DOUBLE), INTENT(IN) :: shiftsize2mean, shiftsize2sd 
REAL(KIND=DOUBLE), INTENT(OUT) :: falsealarm, RL 
CHARACTER(LEN=l), INTENT(IN) :: answer2 
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! 

CHARACTER(LEN=2), INTENT(IN) 

REWIND(l) 
falsealarm 0 
subgroup= 0 
Xbarsum = 0 
Rsum = 0 

shifttype2 

Read second stage short run control chart factors from input file 

do i = l, (m_R - 1) 
READ(l, *) 

end do 

READ(l, *) templ, temp2, temp3, temp4, UCCFR2, LCCFR2 

REWIND(l) 

do i = 1 , ( m Xbar .., 1) 
READ(l, *) 

end do 

READ(l, *) templ, temp2, temp3, CCFXbar2, temp4, temp5 

templ = templ * temp2 * temp3 * temp4 * temp5 
pi = ACOS (-1. 0) 

Construct second stage control limits 

do i = 1, m_Xbar 
Xbarsum = Xbarsum + Xbar2(i) 

end do 

do i = 1, m_R 
Rsum = Rsum + Range2(i) 

end do 

Xbarbar = Xbarsum I m_Xbar 
Rbar = Rsum I m_R 
UCLR2 = UCCFR2 *.Rbar 
LCLR2 = LCCFR2 * Rbar 
UCLXbar2 Xbarbar + CCFXbar2 * Rbar 
LCLXbar2 = Xbarbar - CCFXbar2 * Rbar. 

If a shift occurs in Stage 2, then determine the 
number of false alarms before the shift occurs 

if (answer2 == 'Y') then 

do i = 1, (shifttime2 - 1) 
Xsum = 0 

do j = 1, n 
call random(rl, seed) 
call random(r2, seed) 

X =mean+ sd * ((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 
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Xsum = Xsum + X 

if (j == 1) then 
large X 
small= X 

else 

if (X >· large) large X 

if (X < small) small= X 

end if 

. end do 

Xbar = Xsum In 
R = large·- small 

if · ( ( ( Xbar > UCLXbar2) . or . ( Xbar < LCLXbar2 ) ) . or . & 

( (R > UCLR2 ) . or . ( R < LCLR2 ) ) ) & 

falsealarm = falsealarm + 1 

end do 

end if 

Determine run leng,th (RL) 

do 
Xsum - 0 

do j 1, n 
call random(rl, seed) 
call random(r2, seed) 

if {answer2 == 'Y') then 

if {shifttype2 == 'MN') then 
X = (mean+ shiftsize2mean) + sd * & 

((SQRT(-2. * LOG{rl))) * {COS(2. *pi* r2))) 
else if (shifttype2 == 'Sq') then 

X =mean+ (sd + shiftsize2sd) * & 
((SQRT(-2. * LOG{rl))) * {COS{2. *pi* r2))) 

else if (shifttype2 == 'MS') then 
X = (mean+ shiftsize2mean) + {sd + shiftsize2sd) * & 

({SQRT(-2. * LOG{rl))) * {COS(2. *pi* r2))) 
end if 

else 
X = mean + sd * ( (SQRT(-2. * LOG{rl))) * & 

(COS{2. *pi* r2))) 
end if 

Xsum = Xsum + X 

if (j == 1) then 
large= X 
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small x 
else 

if (X > large) large X 

if (X < small) small X 

end if 

end do 

subgroup= subgroup+ 1 
Xbar = Xsum In 
R = large - small 

if ( ( (Xbar > UCLXbar2) . or. (Xbar < LCLXbar2)) . or. & 
((R > UCLR2) .or. (R < LCLR2))) then 

RL = subgroup 
exit 

end if 

end do 

return 
end subroutine Xbar_R_2 

subroutine Xbar...;.v_2(mean, sd, n, m_Xbar, m_v, Xbar2, v2, & 
answer2, shifttype2, shiftsize2mean, & 
shiftsize2sd, shifttime2, falsealarm, RL, seed) 

********************************************************* 
***** Stage 2 Control Charting for (Xbar, v) Charts***** 
********************************************************* 

implicit none 
INTEGER, parameter D0UBLE=SELECTED_REAL_KIND(p=15) 
INTEGER:: i, j, subgroup 
INTEGER, INTENT(IN) : : n, m_Xbar, m_v, shifttime2 
INTEGER, INTENT(IN OUT) :: seed 
REAL(KIND=DOUBLE) .. UCCFv2, LCCFv2, CCFXbar2, pi 
REAL(KIND=DOUBLE) Xbarsum, vsum, Xbarbar, vbar 
REAL(KIND=DOUBLE) UCLv2, LCLv2, UCLXbar2, LCLXbar2 
REAL(KIND=DOUBLE) .. Xsum, X2sum, rl, r2, X, Xbar, v 
REAL(KIND=DOUBLE) .. templ, temp2, temp3, temp4, temp5 
REAL(KIND=DOUBLE), INTENT(IN) .. mean, sd 
REAL(KIND=DOUBLE), INTENT(IN) :: Xbar2(m_Xbar), v2(m_v) 
REAL(KIND=DOUBLE), INTENT(IN) :: shiftsize2mean, shiftsize2sd 
REAL(KIND=DOUBLE), INTENT(OUT) :: falsealarm, RL 
CHARACTER(LEN=l), INTENT(IN) .. answer2 
CHARACTER(LEN=2), INTENT(IN) :: shifttype2 

REWIND(l) 
falsealarm 0 
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subgroup= 0 
Xbarsurn = 0 
vsum = 0 

Read second stage short run control chart factors from input file 

do i = 1, (m_v - 1) 
READ(l, *) 

end do 

READ(l, *) templ, temp2, temp3, temp4, UCCFv2, LCCFv2 

REWIND(l) 

do i = 1, (m_Xbar - 1) 
READ(l, *) 

end do 

READ(l, *} templ, temp2, temp3, CCFXbar2, temp4, temp5 

templ = templ * temp2 * temp3 * temp4 * temp5 
pi = ACOS (-1. 0) 

Construct second stage control limits 

do i = 1, m_Xbar 
Xbarsurn = Xbarsurn + Xbar2(i) 

end do 

do i = 1, m_v 
vsum = vsum + v2(i) 

end do 

Xbarbar = Xbarsum I m_Xbar 
vbar = vsum I m_v 
UCLv2 = UCCFv2 * vbar 
LCLv2 = LCCFv2 * vbar 
UCLXbar2 Xbarbar + CCFXbar2 * SQRT(vbar) 
LCLXbar2 = Xbarbar - CCFXbar2 * SQRT(vbar) 

If a shift occurs in Stage 2, then determine the 
number of false alarms before the shift occurs 

if (answer2 == 'Y') then 

do i = 1, (shifttime2 - 1) 
Xsum = 0 
X2sum = 0 

do j = 1, n 
call random(rl, seed) 
call random(r2, seed) 

X =mean+ sd * ((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 
Xsum = Xsum + X 
X2surn = X2sum + (X**2} 

end do 
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Xbar = Xsum In 
v = (n * X2sum - (Xsum**2)) I (n * (n - 1.)) 

if (((Xbar > UCLXbar2) .or. (Xbar < LCLXbar2)) .or. & 
((v > UCLv2) .or. (v < LCLv2))) & 

falsealarm = falsealarm + 1 

end do 

end if 

Determine run length (RL) 

do 
Xsum = 0 
X2sum = 0 

do j = 1, n 
call random(rl, seed) 
call random(r2, seed) 

if (answer2 == 'Y') then 

if (shifttype2 == 'MN') then 
X = (mean+ shiftsize2mean) + sd * & 

((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 
else if (shifttype2 == 'SD') then 

X =mean+ (sd + shiftsize2sd) * & 
((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 

else if (shifttype2 == 'MS') then 
X = (mean+ shiftsize2mean) + (sd + shiftsize2sd) * & 

((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 
end if 

else 
X 

end if 

mean+ sd * ((SQRT(-2. * LOG(rl))) * & 
(COS(2. *pi* r2))) 

Xsum = Xsum + X 
X2sum = X2sum + (X**2) 

end do 

subgroup= subgroup+ 1 
Xbar = Xsum In 
v = (n * X2sum - (Xsum**2)) I (n * (n - 1.)) 

if (((Xbar > UCLXbar2) .or. (Xbar < LCLXbar2)) .or. & 
((v > UCLv2) .or. (v < LCLv2))) then 

RL = subgroup 
exit 

end if 

end do 

return 
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end subroutine Xbar_v_2 

subroutine Xbar_sqrtv_2(mean, sd, n, m_Xbar, m_v, Xbar2, v2, & 
· answer2, shifttype2, shiftsize2mean, & 

shiftsize2sd, shifttime2,. falsealarm, RL, & 

seed) 

************************************************************* 
***** Stage 2 Control Charting for (Xbar, sqrtv) Charts***** 
************************************************************* 

implicit none 
INTEGER, parameter : : DOUBLE=SELECTED_REAL_KIND (p=l5) 
INTEGER·:: i, j, subgroup 
INTEGER, INTENT(IN) : : n, m_Xbar, m_v, shifttime2 
INTEGER, INTENT ( IN OUT) : : seed 
REAL(KIND=DOUBLE) UCCFsqrtv2, LCCFsqrtv2, CCFXbar2, pi 
REAL(KIND=DOUBLE) Xbarsum, vsum, Xbarbar, vbar 
REAL(KIND=DOUBLE) UCLsqrtv2, LCLsqrtv2, UCLXbar2, LCLXbar2 
REAL(KIND=DOUBLE) Xsum, X2sum, rl, r2, X, Xbar, sqrtv 
REAL(KIND=DOUBLE) .. templ, temp2, temp3, temp4, temp5 
REAL ( KIND=DOUBLE) , INTENT ( IN) mean, sd 
REAL ( KIND=DOUBLE) , INTENT ( IN) : : Xbar2 ( m_Xbar) , v2 ( m_ v) 
REAL(KIND=DOUBLE), INTENT(IN) : : shiftsize2mean, shiftsize2sd 
REAL(KIND=DOUBLE), INTENT(OUT) : : falsealarm, RL 
CHARACTER(LEN=l), INTENT(IN) answer2 
CHARACTER(LEN=2), INTENT(IN) :: shifttype2 

REWIND(l) 
falsealarm 0 
subgroup= 0 
Xbarsum = 0 
vsum = 0 

Read second stage short run control chart factors from input file 

do i = 1 , ( m_ v - 1 ) 
READ(l, *) 

end do 

READ(l, *) templ, temp2, temp3, temp4, UCCFsqrtv2, LCCFsqrtv2 

REWIND(l) 

do i = 1, (m_Xbar - 1) 
READ(l, *) 

end do 

READ(l, *) templ, temp2, temp3, CCFXbar2, temp4, temp5 

templ = templ * temp2 * temp3 * temp4 * temp5 
pi = ACOS ( -1. 0) 
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! . 

Construct second stage control limits 

do i = 1, m.:_Xbar 
Xbarsum = Xbarsum + Xbar2(i) 

end do 

do i = 1, m_v 
vsum = vsum + v2(i) 

end do 

Xbarbar = Xbarsum I m_Xbar 
vbar = vsum I m_v 
UCLsqrtv2 = UCCFsqrtv2 * SQRT(vbar) 
LCLsqrtv2 = LCCFsqrtv2 * SQRT (vbar). 
UCLXbar2 Xbarbar + CCFXbar2 * SQRT(vbar) 
LCLXbar2 = Xbarbar - CCFXbar2 * SQRT(vbar) 

If a shift occurs in Stage 2, then determine the 
number of false alarms before the shift occurs 

if (answer2 == 'Y') then 

do i = 1, (shifttime2 - 1) 
Xsum = 0 
X2sum = 0 

do j = 1, n 
call random(rl, seed) 
call random(r2, seed) 

X =mean+ sd * ((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 
Xsum = Xsum + X 
X2sum = X2sum + (X**2) 

end do 

Xbar = Xsum In 
sqrtv = SQRT((n * X2sum - (Xsum**2)) I (n * (n - 1.))) 

if (((Xbar > UCLXbar2) .or. (Xbar < LCLXbar2)) .or. & 
((sqrtv > UCLsqrtv2) .or. (sqrtv < LCLsqrtv2))) & 

falsealarm = falsealarm + 1 

end do 

end if 

Determine run length (RL) 

do 
Xsum = 0 
X2sum = 0 

do j = 1, n 
call random(rl, seed) 
call random(r2, seed) 

if (answer2 == 'Y') then 
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if (shifttype2 == 'MN') then 
X = (mean+ shiftsize2mean) + sd * & 

( (SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2))) 
else if (shifttype2 ;= 'SD') then 

X =mean+ (sd + shiftsize2sd) * & 
( (SQRT(-2. * LOG(:tl))) .* (COS(2. * pi * r2))) 

else if (shifttype2 == 'MS') then 
X = (mean·+ shiftsize2mean) + (sd + shiftsize2sd) * & 

( (SQRT(-'2; * LOG(rl))) * (COS(2. * pi * r2))) 
end if 

else 
X mean+ sd * ((SQRT(-2. * LOG(rl))) * & 

(COS(2. *pi* r2))) 
end if 

Xsum = Xsum + X 
X2sum = X2sum + (X**2) 

end do 

subgroup= subgroup+ 1 
Xbar = Xsum In 
sqrtv = SQRT ( (n *. X2sum - (Xsum**2)) I (n * (n - 1.))) 

if (' (. (Xbar > UCLXbar2) . or. (Xbar < LCLXbar2)) . or. & 

((sqrtv > UCLsqrtv2) .or. (sqrtv. < LCLsqrtv2))) then 
RL = subgroup 
exit 

end if 

end do 

return 
end subroutine Xbar_sqrtv_2 

subroutine Xbar_s_2(mean, sd, n, m_Xbar, m_s, Xbar2, s2, & 
answer2, shifttype2, shiftsize2mean, & 
shiftsize2sd, shifttime2, falsealarm, RL, seed) 

********************************************************* 
***** Stage 2 Control Charting for (Xbar, s) Charts***** 
********************************************************* 

implicit none 
INTEGER, parameter ::·D0UBLE=SELECTED_REAL~KIND(p=l5) 
INTEGER : : i, j , . subgroup 
INTEGER, INTENT(IN) : : n, m_Xbar, m_s, shifttime2 
INTEGER, INTENT(IN OUT) :: seed 
REAL(KIND=DOUBLE) .. UCCFs2, LCCFs2, CCFXbar2, pi 
REAL(KIND=DOUBLE) .. Xbarsum, ssum, Xbarbar, sbar 
REAL(KIND=DOUBLE) .. UCLs2, LCLs2, UCLXbar2, LCLXbar2 
REAL(KIND=DOUBLE) .. Xsum, X2sum, rl, r2, X, Xbar, s 

378 



REAL(KIND=DOUBLE) :: templ, temp2, temp3, temp4, tempS 
REAL(KIND=DOUBLE), INTENT(IN) mean, sd 
REAL(KIND=DOUBLE), INTENT(IN) ;; Xbar2(m_Xbar), s2(m_s) 
REAL(KIND=DOUBLE), INTENT(IN) :: shiftsize2mean, shiftsize2sd 
REAL(KIND=DOUBLE), INTENT(OUT) : : falsealarm, RL 
CHARACTER(LEN=l), INTENT(IN) .. answer2 
CHARACTER(LEN=2), INTENT(IN) :: shifttype2 

REWIND(l) 
falsealarm 0 
subgroup= 0 
Xbarsum = 0 
ssum = 0 

Read second stage short run control chart factors from input file 

do i = 1, (m_s - 1) 
READ ( 1, *) 

end do 

READ(l, *) templ, temp2, temp3, temp4, UCCFs2, LCCFs2 

REWIND(l) 

do i = 1, (m_Xbar - 1) 
READ(l, *) 

end do 

READ(l, *) templ, temp2, temp3, CCFXbar2, temp4, temps 

templ = templ * temp2 * temp3 * temp4 * tempS 
pi = ACOS(-1.0) 

Construct second stage control limits 

do i = 1, m_Xbar 
Xbarsum = Xbarsum + Xbar2(i) 

end do 

do i = 1, m_s 
ssum = ssum + s2(i) 

end do 

Xbarbar = Xbarsum I m_Xbar 
sbar = ssum I m_s 
UCLs2 = UCCFs2 * sbar 
LCLs2 = LCCFs2 * sbar 
UCLXbar2 Xbarbar + CCFXbar2 * sbar 
LCLXbar2 = Xbarbar - CCFXbar2 * sbar 

If a shift occurs in Stage 2, then determine the 
number of false alarms before the shift occurs 

if (answer2 == 'Y') then 

do i = 1, (shifttime2 - 1) 
Xsum = 0 
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X2sum = 0 

do j = 1, n 
call random(rl, seed) 
call random(r2, seed) 

X =mean+ sd * ((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 
Xsum = Xsum + X 
X2sum = X2sum + (X**2) 

end do 

Xbar = Xsum In 
s = SQRT((n * X2sum - (Xsum**2)) I (n * (n - 1.))) 

if (((Xbar > UCLXbar2) .or. (Xbar < LCLXbar2)) .or. & 
( ( s > UCLs2) . or. ( s < LCLs2) ) ) & 

falsealarm = falsealarm + 1 

end do 

end if 

Determine run length (RL) 

do 
Xsum = 0 
X2sum = 0 

do j = 1, n 
call random(rl, seed) 
call random(r2, seed) 

if (answer2 == 'Y') then 

if (shifttype2 == 'MN') then 
X = (mean+ shiftsize2mean) + sd * & 

((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 
else if (shifttype2 == 'SD') then 

X =mean+ (sd + shiftsize2sd) * & 
((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 

else if (shifttype2 == 'MS') then 
X = (mean+ shiftsize2mean) + (sd + shiftsize2sd) * & 

((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 
end if 

else 
X mean+ sd * ((SQRT(-2. * LOG(rl))) * & 

(COS(2. *pi* r2))) 
end if 

Xsum = Xsum + X 
X2sum = X2sum + (X**2) 

end do 

subgroup= subgroup+ 1 
Xbar = Xsum In 
s = SQRT((n * X2sum - (Xsum**2)) I (n * (n - 1.))) 
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if (((Xbar > UCLXbar2) .or. (Xbar < LCLXbar2)) .or. & 
((s > UCLs2) .or. (s < LCLs2))) then 

RL = subgroup 
exit 

end if 

end do 

return 
end subroutine Xbar_s_2 

subroutine X_MR_2(mean, sd, m_X, m_MR, X2, MR2, & 
answer2, shifttype2, shiftsize2mean, & 
shiftsize2sd, shifttime2, falsealarm, RL, seed) 

******************************************************* 
***** Stage 2 Control Charting for (X, MR) Charts***** 
******************************************************* 

Note: m_MR IS THE NUMBER OF SUBGROUPS; NOT THE NUMBER OF MRs 

implicit none 
INTEGER, parameter:: D0UBLE=SELECTED_REAL_KIND(p=15) 
INTEGER:: i, flag, subgroup 
INTEGER, INTENT(IN) :: m_X, tn__:MR, shifttime2 
INTEGER; INTENT(IN OUT) :: seed 
REAL(KIND=DOUBLE) .. UCCFMR2, LCCFMR2, CCFX2, pi 
REAL(KIND=DOUBLE) Xsum, MRsum, Xbar, MRbar 
REAL(KIND=DOUBLE) .. UCLMR2, LCLMR2, UCLX2, LCLX2 
REAL(KIND=DOUBLE) .. rl, r2, X_l, X_2, MR 
REAL(KIND=DOUBLE) .. templ, temp2, temp3, temp4, tempS 
REAL(KIND=DOUBLE), INTENT(IN) .. mean, sd 
REAL(KIND=DOUBLE), INTENT(IN) : : X2 (m_X), MR2 (m_MR - 1) 
REAL(KIND=DOUBLE), INTENT(IN) :: shiftsize2mean, shiftsize2sd 
REAL(KIND=DOUBLE), INTENT(OUT) :: falsealarm, RL 
CHARACTER(LEN=l), INTENT(IN) .. answer2 
CHARACTER(LEN=2), INTENT(IN) :: shifttype2 

REWIND(l) 
falsealarm = 0 
subgroup= 0 
Xsum = 0 
MRsum = 0 
flag= O 

Read second stage short run control chart factors from input file 

do i = 2, (m MR - 1) 
READ(l, *) 

end do 

READ(l, *) templ, temp2, temp3, temp4, UCCFMR2, LCCFMR2 
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REWIND(l) 

do i = 2 , ( m_X - 1 ) 
READ(l, *) 

end do 

READ(l, *) templ, temp2, temp3, CCFX2, temp4, temps 

templ = templ * temp2 * temp3 * temp4 * tempS 
pi = ACOS(-1.0) 

Construct second stage control limits 

do i = 1, m_X 
Xsum = Xsur'n + X2(i) 

end do 

do i = 1, 
MRsum 

end do 

(m MR - 1) 
MRsutn + MR2(i) 

Xbar = Xsum I m_X 
MRbar = MRsum I (m_MR - 1) 
UCLMR2 = UCCFMR2 * MRbar 
LCLMR2 = LCCFMR2 * MRbar 
UCLX2 = Xbar + CCFX2 * MRbar 
LCLX2 = Xbar - CCFX2 * MRbar 

If a shift occurs in Stage 2, then determine the 
!, number of false alarms before the shift occurs 

! 

if ((answer2 == 'Y') .and. (shifttime2 == 2)) then 
call random(rl, seed) 
call. random(r2, seed) 

X_l =mean+ sd * ((SQRT(.:..2. * LOG(rl))) * & 
(COS(2. *pi* r2))) 

if ( (X...:l > UCLX2) . or. (X_l < LCLX2) ) & 

falsealarm = falsealarm + 1 

flag= 1 
end if 

if ((answer2 == 'Y') .and. (shifttime2 > 2)) then 

do i = 1, (shifttime2 - 2) 

if (i == 1) then 
call random(rl., seed) 
call random(r2, seed) 

X_l =mean+ sd * ((SQRT(-2. * LOG(rl))) * & 
(COS(2. *pi* r2))) 

if ((X~l > UCLX2) .or. (X_l < LCLX2)) & 
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falsealarm falsealarm + 1 

end if 

call random(rl, seed) 
call random(r2, seed) 

X_2 =mean+ sd * ((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 
MR= ABS(X_2 - X_l) 

if ( ( (X_2 > UCLX2) .or. (X_2 < LCLX2)) .or. & 

((MR> UCLMR2) .or. (MR< LCLMR2))) & 
falsealarm = falsealarm + 1 

X_l = X_2 
flag = 1 

end do 

end if 

Determine run length (RL) 

do 

if (flag== 0) then 
call random(rl, seed) 
call random(r2, seed) 

if (answer2 == 'Y') then 

if (shifttype2 == 'MN') then 
X_l = (mean+ shiftsize2mean) + sd * & 

((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 
else if (shifttype2 == 'SD') then 

X_l =mean+ (sd + shiftsize2sd) * & 
((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 

else if (shifttype2 == 'MS') then 
X_l = (mean+ shiftsize2mean) + (sd + shiftsize2sd) * & 

((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 
end if 

else 
X_l mean+ sd * ((SQRT(-2. * LOG(rl))) * & 

(COS(2. *pi* r2))) 
end if 

subgroup 
flag = 1 

subgroup+ 1 

if ((X_l > UCLX2) .or. (X_l < LCLX2)) then 
RL = subgroup 
exit 

end if 

end if 

call random(rl, seed) 
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call random(r2, seed) 

if (answer2 == 'Y') then 

if (shifttype2 == 'MN') then 
X_2 = (mean+ shiftsize2mean) + sd * & 

((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 
else if (shifttype2 == 'SD') then 

X_2 =mean+ (sd + shiftsize2sd) * & 
((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 

else if (shifttype2 == 'MS') then 
X_2 = (mean + shiftsize2rnean)' + (sd + shiftsize2sd) * & 

( (SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2))) 
end if 

else 
X_2 mean + sd * ( ( SQRT ( -2. * LOG ( rl) ) ) * & 

(COS(2. *pi* r2))) 
end if 

subgroup= subgroup+ 1 
MR= ABS(X_2 - X_l) 

if (((X_2 > UCLX2) 
( (MR > UCLMR2) 

RL = subgroup 
exit 

end if 

X_l = X_2 
end do 

return 
end subroutine X_MR_2 

end module Stage_2 

module D_and_R 

. or . ( X_2 < LCLX2 ) ) . or . & 

.or. (MR< LCLMR2))) then 

************************************************************** 
***** This module contains the subroutines that perform ***** 
***** each of the six Delete and Revise (D&R) procedures***** 
************************************************************** 
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implicit none 

contains 

subroutine D_and_R_l(m, save_m, choicel, Cenl, Spreadl, & 
Cenlstatus, Spreadlstatus, new_m, & 
Cen2, Spread2, countl, stops) 

*************************** 
***** D&R Procedure 1 ***** 
*************************** 

implicit none 
INTEGER, parameter :: DOUBLE=SELECTED_REAL_KIND(p=15) 
INTEGER:: i, flag 
INTEGER, INTENT ( IN) : :. save_m, choicel 
INTEGER, INTENT(OUT) :: new_m, countl, stops 
INTEGER, INTENT(IN OUT) :: m 
REAL(KIND=DOUBLE) Spreadltemp(save_m), Cenltemp(save_m) 
REAL(KIND=DOUBLE) Spreadlsum, Cenlsum, Spreadlbar, Cenlbar 
REAL(KIND=DOUBLE) CCFCenl, UCCFSpreadl, LCCFSpreadl 
REAL(KIND=DOUBLE) UCLSpreadl, LCLSpreadl, UCLCenl, LCLCenl 
REAL(KIND=DOUBLE), INTENT(OUT) :: Spread2(save_m), Cen2(save_m) 
REAL ( KIND=DOUBLE) , INTENT ( IN OUT) : : Spreadl ( save_m) , Cenl ( save_m) 
CHARACTER(LEN=l) :: Spreadlstatusternp(save_rn) 
CHARACTER(LEN=l) :: Cenlstatustemp(save_m) 
CHARACTER(LEN=l), INTENT(IN OUT) Spreadlstatus(save_m) 
CHARACTER(LEN=l), INTENT(IN OUT) :: Cenlstatus(save_m) 

m = save_m 
countl = 0 

do 
REWIND(l) 
new_m = 0 
Spreadlternp = 0 
Cenltemp = 0 
Spreadlstatustemp 
Cenlstatusternp 
Spreadlsum = 0 
Cenlsurn = 0 
flag = 0 

Delete out-of-control (OOC) subgroups 

do i = 1, m 

if ((Spreadlstatus(i) == 'I') .and. & 
(Cenlstatus(i) == 'I')) then 

new_m = new_m + 1 
Spreadlternp(new_m) = Spreadl(i) 
Spreadlsum = Spreadlsum + Spreadltemp(new_m) 
Cenlternp(new_rn) = Cenl(i) 
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! 

.Cenlsurn 
else 

cycle 
end if 

Cenlsurn +.Cenltemp{new_m) 

end do 

if {new_m == 0) then 
WRITE{*, *) 
WRITE{*, *) "{# of subgroups) =.Qin D&R procedure 1" 
WRITE{*, *) "- replication does not count" 
return 

end if 

if {new_m m) exit 

if {new_m -- 1) then 
WRITE{*, *) 
WRITE{*, *) "D&R procedure 1 stopped" 
WRITE{*, *) "- {# of subgroups) = 1" 
stops= stops+ 1 
exit 

end if 

Read first stage short run control chart factors from input file 

do i = 1, {new_m - 1) 
READ(l, *) 

end do 

READ(l, *) CCFCenl, UCCFSpreadl, LCCFSpreadl 

Construct first stage control limits 

Cenlbar = Cenlsurn I new_m 
Spreadlbar = Spreadlsurn . I new_m 

if (choicel == 2) then 
UCLSpreadl = UCCFSpreadl * Spreadlbar 
LCLSpreadl = LCCFSpreadl * Spreadlbar 
UCLCenl = Cenlbar + CCFCenl * SQRT(Spreadlbar) 
LCLCenl = Cenlbar - CCFCenl * SQRT(Spreadlbar) 

else if {choicel ~= 3) then 
UCLSpreadl = UCCFSpreadl * SQRT(Spreadlbar) 
LCLSpreadl = LCCFSpreadl * SQRT(Spreadlbar) 
UCLCenl = Cenlbar + CCFCenl * SQRT(Spreadlbar) 
LCLCenl = Cenlbar - CCFCenl * SQRT(Spreadlbar) 

else 
UCLSpreadl = UCCFSpreadl * Spreadlbar 
LCLSpreadl = LCCFSpreadl * Spreadlbar 
UCLCenl Cenlbar + CCFCenl * Spreadlbar 
LCLCenl = Cenlbar - CCFCenl * Spreadlbar 

end if 

Determine out-of-control (OOC) subgroups 

do i = 1, new_m 
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if ((Spreadltemp(i) > UCLSpreadl) .or. & 
(Spreadltemp(i) < LCLSpreadl)) then 

Spreadlstatustemp(i) = 'O' 
flag = 1 

else 
Spreadlstatustemp(i) 'I' 

end if· 

if ( ( Cenltemp ( i) > UCLCenl) . or; & 
(Cenltemp(i) < LCLCenl)) then 

Cenlstatustemp(i) = '0' 
flag = 1 

else 
Cenlstatustemp(i) = 'I' 

end if 

end do 

,if ( flag 

!ll = new_m 
Spreadl = 0 
Cenl = 0 

0) exit 

Spreadl = Spreadltemp 
Cenl = Cenltemp 
Spreadlstatus = ' ' 
Cenlstatus = ' ' 
Spreadlstatus = Spreadlstatustemp 
Cenlstatus = Cenlstatustemp 
countl = 1 

end do 

Cen2 = 0 
Spread2 = 0 
Cen2 = Cenltemp 
Spread2 = Spreadltemp 

return 
end subroutine D_and_R_l 

subroutine D_and_R_2(m, save_m, choicel, Cenl, Spreadl, & 
Spreadlstatus, mCen, mSpread, Cen2, & 
Spread2, count2Spread, count2Cen, stops) 

*************************** 
***** D&R Procedure 2 ***** 
*************************** 

implicit none 
INTEGER, parameter :: D0UBLE=SELECTED_REAL_KIND(p=15) 
INTEGER:: i, flag 
INTEGER, INTENT(IN) :: save_m, choicel 
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INTEGER, . INTENT (OUT} : : rnSpread, rnCen 
INTEGER, INTENT(OUT} :: count2Spread, count2Cen, stops 
INTEGER, INTENT ( IN OUT} : : rn 
REAL(KIND=DOUBLE} Spreadlternp(save_rn}, Cenlternp(save_rn} 
REAL(KIND=DOUBLE} Spreadlsurn; Cenlsurn, Spreadlbar, Cenlbar 
REAL ( KIND=DOUBLE} CCFCenl, . UCCFSpreadl, LCCFSpreadl, ternpl 
REAL(KIND=DOUBLE) UCLSpreadl, LCLSpreadl, UCLCenl, LCLCenl 
REAL ( KIND=DOUBLE} , INTENT (OUT} : : Spread2 ( save_rn) , Cen2 ( save_rn} 
REAL ( KIND=DOUBLE} , INTENT ( IN OUT} : : Spreadl ( save_rn} , Cenl ( save_rn} 
CHARACTER(LEN=l} :: Spreadlstatusternp(save_rn} 
CHARACTER(LEN=l}, INTENT(IN OUT} Spreadlstatus(save_rn} 

D&R procedure 2 for the control chart for spread 

rn = save_rn 
count2Spread 0 

do 
REWIND(l} 
rnSprea.d = 0 
Spreadlternp = 0 
Spreadlstatusternp 
Spreadlsurn = 0 
flag = O 

Delete out-.of-control (OOC} subgroups 

if (choicel /= 5) then 

do i = 1, rn 

if (Spreadlstatus(i} == 'I') then 
rnSpread = rnSpread + 1 
Spreadlternp(rnSpread} = Spreadl(i} 
Spreadlsurn = Spreadlsurn + Spreadlternp(rnSpread} 

else 
cycle 

end if 

end do 

else if (choicel 5) then 

do i = 1 , ( rn - 1 } 

if (Spreadlstatus(i} == 'I'} then 
rnSpread = rnSpread + 1 
Spreadlternp(rnSpread} = Spreadl(i} 
Spreadlsurn = Spreadlsurn + Spreadlternp(rnSpread} 

else 
cycle 

end if 

end do 

end if 
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if (mSpread == 0) then 
WRITE(*, *) 
WRITE(*, *) "(# of subgroups for the control chart" 
WRITE(*, *) " for spread) = 0 in D&R procedure 2" 
WRITE(*, *} "- replication does not count" 
return 

end if 

Spreadlbar = Spreadlsum I mSpread 

if (choicel 5) mSpread = mSpread + 1 

if (mSpread m) exit 

if ((choicel /= 5) .and. (mSpread == 1)) then 
WRITE(*, *) 
WRITE(*, *) "D&R procedure 2 for the control" 
WRITE(*, *) "chart for spread stopped" 
WRITE ( *, *) " - ( # of subgroups) = 1" 
stops= stops+ 1 
exit 

end if 

if ((choicel == 5) .and. (mSpread == 2)) then 
WRITE(*, *) 
WRITE(*, *) "D&R procedure 2 for the control" 
WRITE{*, *) "chart for spread stopped" 
WRITE(*, *) "- (# of subgroups) = 2" 
stops= stops+ 1 
exit 

end if 

Read first stage short run control chart factors from input file 

if (choicel /= 5) then 

do i = 1, (mSpread - 1) 
READ(l, *) 

end do 

else if (choicel == 5) then 

do i = 2, (mSpread - 1) 
READ(l, *) 

end do 

end if 

READ(l, *) templ, UCCFSpreadl, LCCFSpreadl 

Construct first stage control limits 

templ = templ * 1 

if (choicel == 3) then 
UCLSpreadl UCCFSpreadl * SQRT(Spreadlbar) 
LCLSpreadl = LCCFSpreadl * SQRT(Spreadlbar) 
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else 
UCLSpreadl = UCCFSpreadl * Spreadlbar 
LCLSpreadl = LCCFSpreadl * Spreadlbar 

end if 

if (choicel == 5) mSpread =. mSpread - 1 

! Determine out-of-control (OOC) subgroups 

do i = 1, mSpread 

if ( ( Spreadl temp ( i) > UCLSpreadl) . or. & 
(Spreadltemp(i) < LCLSpreadl)) then 

Spreadlstatustemp(i) = 'O' 
flag = 1 

else 
Spreadlstatust.emp(i) - 'I' 

end if 

end do 

if (choicel · 5 ) . mSpread = mSpread + 1 

if (flag==· 0) exit 

m·= .mSpread 
Spreadl = 0 
Spreadl = Spreadltemp 
Spreadlstatus = ' ' 
Spreadlstatus = Spreadlstatustemp 
count2Spread = 1 

end do 

Spread2 = 0 
Spread2 = Spreadltemp 

D&R.procedure 2 for the control chart for centering 

m = save_m 
count2Cen 0 

do 
REWIND(l) 
mCen = 0 
Cenltemp = 0 
Cenlsum = 0 

. do i = 1, m 
Cenlsum Cenlsum + Cenl(i) 

end do 

Read first stage short run control chart factor from input file 

if (choicel /= 5) then 

do i = 1, (m - 1) 
READ(l, *) 
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end do 

else if (choicel 

do i = 2, (m - 1) 
READ(l, *) 

end do 

. end if 

READ(l, *) CCFCenl 

5) then 

Construct first stage control limits 

·Cenlbar = Cenlsum I m 

if ( (choicel == 2) . or. (choicel == 3)) then 
UCLCenl Cenlbar + CCFCenl * SQRT(Spreadlbar) 
LCLCenl Cenlbar CCFCenl * SQRT(Spreadlbar) 

else 
UCLCenl 
LCLCenl 

Cenlbar + CCFCenl * Spreadlbar 
= Cenlbar CCFCenl * Spreadlbar 

end if 

Delete out-of-control (OOC) subgroups 

do i = 1, m 

if ((Cenl(i) > UCLCenl) .or. (Cenl(i) < LCLCenl)) cycle 

mCen = mCen + 1 
Cenltemp(mCen) Cenl(i) 

end do 

if (mCen == 0) then 
WRITE(*, *) 
WRITE ( *, *) " ( # of subgroups· for the control chart" 
WRITE(*, *) " for centering) = 0 in D&R procedure 2" 
WRITE(*, *) "- replication does not count" 
return 

end if 

if ((choicel ~= 5) .and. (mCen == 1)) then 
WRITE(*, *) 
WRITE(*, *) "(# of subgroups for the control chart" 
WRITE(*, *) " for centering) = 1 in D&R procedure 2" 
WRITE(*, *) "- replication does not count" 
return 

end if 

if (mCen == m) exit 

if ((choicel /= 5) .and. (mCen == 1)) then 
WRITE(*, *) 
WRITE(*, *) "D&R procedure 2 for the control" 
WRITE(*, *) "chart for centering stopped" 
WRITE ( *, *) " - ( # of subgroups) = 1" 

391 



stops - stops+ 1 
exit 

end if 

if ( ( choicel == 5) . and. (mCen == 2)) then 
.. WRITE ( * I *) 
WRITE(*, *) "D&R procedure 2 for the control" 
WRITE(*, *) "chart for centering stopped" 
WRITE(*, *) "- (# of ·subgroups) = 2" 
stops= stops+ 1 
exit 

end if 

m = mCen 
Cenl = 0 
Cenl = Cenltemp 
count2Cen = 1 

end do 

Ceri2 
Cen2 

return 

0 
Cenltemp 

end subroutine D_and_R_2 

subroutine D_and~R_3(m, choicel, Cenl, Spreadl, Spreadlstatus, & 
mCen, mSpread, Cen2, Spread2) 

*************************** 
***** D&R Procedure 3 ***** 
*************************** 

implicit none 
INTEGER, parameter :: D0UBLE=SELECTED_REAL_KIND(p=l5) 
INTEGER : : i 

· INTEGER, INTENT ( IN) : : m,. choicel 
INTEGER, INTENT (OUT) : : mCen, mSpread 
REAL ( KIND=DOUBLE) , INTENT ( IN) : : Cenl (m) , Spreadl (m) 
REAL(KIND=DOUBLE), INTENT(OUT) :: Cen2(m), Spread2(m) 
CHARACTER(LEN=l), INTENT(IN) :: Spreadlstatus(m) 

mSpread = 0 
mCen = m 
Spread2 = 0 
Cen2 = Cenl 

Delete out~of-control (OOC) subgroups 

if (choicel /= 5) then 

do i = 1, m 

if (Spreadlstatus(i) 'I') then 
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mSpread = mSpre.ad + 1 
Spread2(mSpread) = Spreadl(i) 

else 
cycle 

end if 

end do 

else if (choicel -- 5) then 

do i = l, (m - 1) 

if (Spreadlstatus(i) == 'I') then 
mSpread = mSpread + 1 
Spread2(mSpread) = Spreadl(i) 

else· 
cycle 

. end if 

end do 

end if 

if (mSpread == 0) then 
WRITE(*, *) 
WRITE(*, *) "(# of.subgroups for the control chart" 
WRITE(*, *) " for spread) = O in D&R procedure 3" 
WRITE(*, *) "- replication does not count" 
return 

end if 

if (choicel -- 5) mSpread = mSpread + 1 

return 
end subroutine D_and_R_3 

subroutine D_and_R_5(m, Cenl, Spreadl, Cenlstatus, Spreadlstatus, & 
new_m, Cen2, Spread2) 

*************************** 
***** D&R Procedure 5 ***** 
*************************** 

implicit none 
INTEGER, parameter:: DOUBLE=SELECTED_REAL_KIND(p=l5) 
INTEGER : : i 
INTEGER, INTENT(IN) :: m 
INTEGER, INTENT(OUT) :: new_m 
REAL(KIND=DOUBLE), INTENT(IN) :: Cenl(m), Spreadl(m) 
REAL(KIND=DOUBLE), INTENT(OUT) :: Cen2(m), Spread2(m) 
CHARACTER(LEN=l), INTENT(IN) : : Cenlstatus(m), Spreadlstatus(m) 

new_m = 0 
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Spread2 = 0 
Cen2 = 0 

Delete out-of-control (OOC) subgroups 

do i = l, m 

if ((Spreadlstatus(i) == 'I') .and. (Cenlstatus(i) 
new_m = new_m + 1 
Spread2(new_m) = Spreadl(i) 
Cen2(new_m) = Cenl(i) 

else 
cycle 

end if 

end do 

if (new_m == 0) then 
WRITE(*, *) 
WRITE(*, *) "(#·of subgroups) = O in D&R procedure 5" 
WRITE(*, *) "-·replication does not count" 
return 

end if 

return 
end subroutine D_and_R_S 

'I')) then 

subroutine D_and_R_6(m, choicel, Cenl, Spreadl, Spreadlstatus, & 
mCen, mSpread, Cen2, Spread2) 

*************************** 
***** D&R Procedure 6 ***** 
*************************** 

implicit none 
INTEGER, parameter : .: DOUBLE=SELECTED_REAL_KIND (p=15) 
INTEGER : : i 
INTEGER, INTENT(IN) :: m, choicel 
INTEGER, INTENT(OUT) : : mCen, mSpread 
REAL(KIND=DOUBLE) :: Spread2sum, Cenlsum, Spread2bar, Cenlbar 
REAL(KIND=DOUBLE) :: CCFCenl, UCLCenl, LCLCenl 
REAL(KIND=DOUBLE), INTENT(IN) :: Cenl(m), Spreadl(m) 
REAL(KIND=DOUBLE), INTENT(OUT) : : Cen2(m), Spread2(m) 
CHARACTER(LEN=l), INTENT(IN) :: Spreadlstatus(m) 

D&R procedure 6 for the control chart for spread 

REWIND(l) 
mSpread = 0 
mCen = 0 
Spread2 = 0 
Cen2 = 0 
Spread2sum = 0 
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Cenlsum = 0 

Delete out-of-control (OOC) subgroups 

if (choicel /= 5) then 

do i = 1, m 

if (Spreadlstatus(i) == 'I') then 
mSpread = mSpread + 1 
Spread2(mSpread) = Spreadl(i) 
Spread2sum = Spread2sum + Spread2(mSpread) 

else 
cycle 

end if 

end do 

else if (choicel -- 5) then 

do i = 1 , ( m - 1 ) 

if (Spreadlstatus(i) == 'I') then 
mSpread = mSpread + 1 
Spread2(mSpread) = Spreadl(i) 
Spread2sum = Spread2sum + Spread2(mSpread) 

else 
cycle 

end if 

end do 

end if 

if (mSpread == 0) then 
WRITE(*, *) 
WRITE(*, *) "(# of subgroups for the control chart" 
WRITE(*, *) " for spread) = 0 in D&R procedure 6" 
WRITE(*, *) "- replication does not count" 
return 

end if 

D&R procedure 6 for the control chart for centering 

Read first stage short run control chart factor from input file 

if (choicel /= 5) then 

do i = 1, (m - 1) 
READ(l, *) 

end do 

else if (choicel 

do i = 2 , ( m - 1 ) 
READ(l, *) 

end do 

5) then 
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end if 

READ(l, *) CCFCenl 

Construct first stage control limits 

do i = 1, rn 
Cenlsurn 

end do 
Cenlsurn + Cenl(i) 

Spread2bar = Spread2surn I rnSpread 

if (choicel == S) rnSpread = rnSpread + 1 

Cenlbar = Cenlsurn I rn 

if ( ( choicel == 2) . or. ( choicel == 3) ) then 
UCLCenl Cenlbar + CCFCenl * SQRT(Spread2bar) 
LCLCenl Cenlbar CCFCenl * SQRT(Spread2bar) 

else 
UCLCenl 
LCLCenl 

Cenlbar + CCFCenl * Spread2bar 
= Cenlbar CCFCenl * Spread2bar 

end if 

Delete out~of-control (OOC) subgroups 

do i = 1, rn 

if ((Cenl(i) > UCLCenl) .or. (Cenl(i) < LCLCenl)) cycle 

rnCen = rnCen + 1 
Cen2(rnCen) = Cenl(i) 

end do 

if (rnCen == 0) then 
WRITE(*, *) 
WRITE(*, *) "(# of subgroups for the control chart" 
WRITE ( *, *) " for centering)· = 0 in D&R procedure 6" 
WRITE(*, *) "- replication does not count" 
return 

end if 

if ((choicel == 5) .and. (rnCen == 1)) then 
WRITE(*, *) 
WRITE(*, *) "(# of subgroups for the control chart" 
WRITE(*, *) " for centering) = 1 in D&R procedure 6 11 

WRITE ( *, *) " - replication does not count" 
return 

end if 

return 
end subroutine D_and_R_6 
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end module D_and_R 

module Stage_l 

********************************************************************* 
***** This module contains the subroutines that perform Stage 1 ***** 
***** control charting for each control chart combination ***** 
********************************************************************* 

USE random_mod 
implicit none 

contains 

subroutine Xbar_R-'-l(mean, sd, n, m, ahswerl, shifttypel, & 
shiftsizelmean, shiftsizelsd, shifttimel, & 
Xbar, R, Xbarstatus, Rstatus, seed) 

********************************************************* 
***** Stage 1 Control Charting for (Xbar, R) Charts***** 
********************************************************* 

implicit none 
INTEGER, parameter:: DOUBLE=SELECTED_REAL_KIND(p = 15) 
INTEGER : : i , j 
INTEGER, INTENT(IN) :: n, m, shifttimel 
INTEGER, INTENT(IN OUT) : : seed 
REAL(KIND=DOUBLE) UCCFRl, LCCFRl, CCFXbar1, pi 
REAL(KIND=DOUBLE) Xsum, rl, r2, X, large, small 
REAL(KIND=DOUBLE) Xbarsum, Rsum, Xbarbar, Rbar 
REAL(KIND=DOUBLE) UCLRl, LCLRl, UCLXbarl, LCLXbarl 
REAL(KIND=DOUBLE), INTENT(IN) :: mean, sd 
REAL(KIND=DOUBLE), INTENT(IN) :: shiftsizelmean, shiftsizelsd 
REAL(KIND=DOUBLE), INTENT(OUT) :: Xbar(m), R(m) 
CHARACTER(LEN=l), INTENT(IN) : : answerl 
CHARACTER(LEN=2), INTENT(IN) : : shifttypel 
CHARACTER(LEN=l), INTENT(OUT) :: Xbarstatus(m), Rstatus(m) 

REWIND(l) 
Xbarsum = 0 
Rsum = 0 

Read first stage short run control chart factors from input file 
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do i = 1, (m - 1) 
READ(l, *) 

end do 

READ(l, *) CCFXbarl, UCCFRl, LCCFRl 

pi= ACOS(-1.0) 

· ! Generate first stage subgroups 

do i = l, m 
Xsum = 0 

do j l, n 
call random(rl, seed) 
call .random(r2, seed) 

if ( (answerl == 'Y'") .and. (i >= shifttimel)) then 

if (shifttypel == 'MN') then 
X = (mean+ shiftsizelmean) + sd * & 

( (SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2))) 
, else if (shifttypel == 'SD')· then 

X = mean + ( sd + shiftsize.lsd) * & 

((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 
else if (shifttypel == 'MS') then 

X = (mean+ shiftsizelmean) + (sd + shiftsizelsd) * & 
((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 

end if 

else 
X mean + sd * ( (SQRT(-2. * LOG(rl))) * & 

(COS(2. *pi* r2))) 
end if 

Xsum = Xsum + X 

if (j == 1) then 
large X 
small= X 

else 

if (X > large) large,: X 

if (X < small) small= X 

end if 

end do 

Xbar(i) = Xsum In 
. R(i) = large - small 
Xbarsum = Xbarsum + Xbar(i) 
Rsum = Rsum + R(i) 

end do 
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Construct first stage control limits 

Xbarbar = Xbarsum Im 
Rbar = Rsum Im 
UCLRl = UCCFRl * Rbar 
LCLRl = LCCFRl * Rbar 
UCLXbarl = Xbarbar + CCFXbarl * Rbar 
LCLXbarl = Xbarbar - CCFXbarl * Rbar 

! Determine out-of-control (OOC) subgroups 

do i = 1, m 

if ((R(i) > UCLRl) .or. (R(i) < LCLRl)) then 
Rstatus(i) '0' 

else 
Rstatus(i) 'I' 

end if 

if ((Xbar(i) > UCLXbarl) .or. (Xbar(i) < LCLXbarl)) then 
Xbarstatus(i) '0' 

else 
Xbarstatus(i) 'I' 

end if 

end do 

return·· 
end subroutine Xbar_R_l 

subroutine Xbar_v_l(mean, sd, n, m, answerl, shifttypel, & 
shiftsizelmean, shiftsizelsd, shifttimel, & 
Xbar, v, Xbarstatus, vstatus, seed) 

********************************************************* 
***** Stage 1 Control Charting for (Xbar, v) Charts***** 
********************************************************* 

implicit none 
INTEGER, parameter:: DOUBLE=SELECTED_REAL_KIND(p 15) 
INTEGER : : i , j 
INTEGER, INTENT(IN) :: n, m, shifttimel 
INTEGER, INTENT(IN OUT) :: seed 
REAL(KIND=DOUBLE) .. UCCFvl, LCCFvl, CCFXbarl, pi 
REAL(KIND=DOUBLE) .. Xsum, X2sum, rl, r2, X 
REAL(KIND=DOUBLE) Xbarsum, vsum, Xbarbar, vbar 
REAL(KIND=DOUBLE) .. UCLvl, LCLvl, UCLXbarl, LCLXbarl 
REAL(KIND=DOUBLE), INTENT(IN) :: mean, sd 
REAL(KIND=DOUBLE), INTENT(IN) :: shiftsizelmean, shiftsizelsd 
REAL(KIND=DOUBLE), INTENT(OUT) :: Xbar(m), v(m) 
CHARACTER(LEN=l), INTENT(IN) :: answerl 
CHARACTER(LEN=2), INTENT(IN) :: shifttypel 
CHARACTER(LEN=l), INTENT(OUT) :: Xbarstatus(m), vstatus(m) 
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! 

REWIND(l) 
Xbarsum = 0 
vsum = 0 

Read first stage short run control chart factors from input file 

do i = 1, (m - 1) 
READ(l, *) 

end do 

READ(l, *) CCFXbarl, UCCFvl, LCCFvl 

pi = ACOS(-1.0) 

Generate first stage subgroups 

do i = 1, m 
Xsum = 0 
X2sum = 0 

do j = 1, n 
call random(rl, seed) 
call random(r2~ seed) 

if ((answerl == 'Y') .and. (i >= shifttimel)) then 

if (shifttypel == 'MN') then 
X = (mean+ shiftsizelmean) + sd * & 

((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2))) 
else if (shifttypel == 'SD') then 

X =mean+ (sd + shiftsizelsd) * & 
((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 

else if (shifttypel == 'MS') then 
X = (mean+ shiftsizelmean) + (sd + shiftsizelsd) * & 

((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 
end if 

else 
X mean+ sd * ((SQRT(-2. * LOG(rl))) * & 

(COS(2. *pi* r2))) 
end if 

Xsum = Xsum + X 
X2sum = X2sum + (X**2) 

end do 

Xbar(i) Xsum In 
v(i) = (n * X2sum - (Xsum**2)) I (n * (n - 1.)) 
Xbarsum = Xbarsum + Xbar(i) 
vsum = vsum + v(i) 

end do 

Construct first stage control limits 

Xbarbar = Xbarsum Im 
vbar = vsum Im 
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UCLvl = UCCFvl * vbar 
LCLvl = LCCFvl * vbar 
UCLXbarl = Xbarbar + CCFXbarl * SQRT(vbar) 
LCLXbarl = Xbarbar - CCFXbarl * SQRT(vbar) 

! Determine out-of-control (OOC) subgroups . 

. do i = 1, m · 

if ((v(i) > UCLvl) .or. (v(i) < LCLvl)) then 
vstatus(i) '0' 

else 
vstatus(i) 'I' 

end if 

if ((Xbar(i) > UCLXbarl) .or. (Xbar(i) < LCLXbarl)) then 
Xbarstatus(i) = '0' 

else 
Xbarstatus(i) = 'I' 

end if· 

end do 

return 
end subroutine Xbar_v_l. 

subroutine Xbar_sqrtv_l(mean, sd, n, m, answerl, shifttypel, & 
shiftsizelmean, shiftsizelsd, shifttimel, & 
Xbar, v, Xbarstatus, sqrtvstatus, seed) 

************************************************************* 
***** Stage 1 Control Charting for (Xbar, vA0.5) Charts***** 
************************************************************* ,-

implicit none 
INTEGER, parameter:: DOUBLE=SELECTED_REAL_KIND(p 15) 
INTEGER : : i, j 
INTEGER, INTENT(IN) :: n, m, shifttimel 
INTEGER, INTENT(IN OUT) :: seed 
REAL(KIND=DOUBLE) .. UCCFsqrtvl, LCCFsqrtvl, CCFXbarl, pi 
REAL(KIND=DOUBLE) Xsum, X2sum, rl, r2, X 
REAL(KIND=DOUBLE) .. Xbarsum, vsum, Xbarbar, vbar 
REAL(KIND=DOUBLE) .. UCLsqrtvl, LCLsqrtvl, UCLXbarl, LCLXbarl 
REAL(KIND=DOUBLE), INTENT(IN) : : mean, sd 
REAL(KIND=DOUBLE), INTENT(IN) :: shiftsizelmean, shiftsizelsd 
REAL(KIND=DOUBLE), INTENT(OUT) : : Xbar(m), v(m) 
CHARACTER(LEN=l), INTENT(IN) :: answerl 
CHARACTER(LEN=2), INTENT(IN) :: shifttypel 
CHARACTER (LEN=l), INTENT (OUT) : : Xbarstatus (m), sqrtvstatus (m) 

REWIND(l) 
Xbarsum = 0 
vsum = 0 
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,Read first stage short run control chart factors from input file 

do i = 1, (m - 1) 
READ(l, *) 

end do 

READ(l, *) CCFXbarl, UCCFsqrtvl, LCCFsqrtvl 

pi = ACOS (-1. 0) 

Generate first stage subgroups 

do i = 1, m 
Xsum = 0 
X2sum = 0 

do j = 1, n 
call random(rl, seed) 
call random(r2, seed) 

if ( (answerl == 'Y' ) .. and. (i >= shifttimel)) then 

if (shifttypel =·= 'MN') then 
X = (mean+, shiftsizelmean) + sd * & 

, ( (SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2))) 
else if (shifttypel == 'SD') then 

X =mean+ (sd + shiftsizelsd) * & 
((SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2))) 

e.lse if (shifttypel == 'MS') then 
X = (mean+ shiftsizelmean) + (sd + shiftsizelsd) * & 

. ( (SQRT(-2. * LOG(rl))) * (COS(2. * pi * r2))) 
end if 

else 
X mean+ sd * ((SQRT(-2. * LOG(rl))) * & 

(COS(2. *pi* r2))) 
end if 

Xsum = Xsum + X 
X2sum = X2sum + (X**2) 

end do 

Xbar(i) Xsum In 
v(i) = (n * X2sum - (Xsum**2)) I (n * (n - 1.)) 
Xbarsum = Xbarsum + Xbar(i) 
vsum = vsum + v(i) 

end do 

Construct first stage control limits 

Xbarbar = Xbarsum Im 
vbar = vsum Im 
UCLsqrtvl = UCCFsqrtvl * SQRT(vbar) 
LCLsqrtvl = LCCFsqrtvl * SQRT(vbar) 
UCLXbarl Xbarbar + CCFXbarl * ,SQRT(vbar)_"' 
LCLXbarl = Xbarbar - CCFXbarl * SQRT(vbar) 
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Determine out-of-control (OOC) subgroups 

do i = 1, m 

if ( (SQRT(v(i)) > UCLsqrtvl) .or. (SQRT(v(i)) < LCLsqrtvl)) then 
sqrtvstatus(i) '0' 

else 
sqrtvstatus(i) 'I' 

end if 

if ( (Xbar ( i) > UCLXbarl) . or. (Xbar ( i) < LCLXbarl) ) then 
Xbarstatus(i) '0' 

else 
Xbarstatus(i) 'I' 

end if 

end do 

return 
end subroutine Xbar_sqrtv_l 

subroutine Xbar_s_l(mean, sd, n, m, answerl, shifttypel, & 
shiftsizelmean, shiftsizelsd, shifttimel, & 
Xbar, s, Xbarstatus, sstatus, seed) 

****~**************************************************** 
***** Stage 1 Control Charting for (Xbar, s) Charts***** 
********************************************************* 

implicit none 
INTEGER, parameter:: DOUBLE=SELECTED_REAL_KIND(p 15) 
INTEGER : : i, j 
INTEGER, INTENT(IN) :: n, m, shifttimel 
INTEGER, INTENT(IN OUT) :: seed 
REAL(KIND=DOUBLE) UCCFsl, LCCFsl, CCFXbarl, pi 
REAL(KIND=DOUBLE) .. Xsum, X2sum, rl, r2, X 
REAL(KIND=DOUBLE) Xbarsum, ssum, Xbarbar, sbar 
REAL(KIND=DOUBLE) UCLsl, LCLsl, UCLXbarl, LCLXbarl 
REAL(KIND=DOUBLE), INTENT(IN) : : mean, sd 
REAL(KIND=DOUBLE), INTENT(IN) : : shiftsizelmean, shiftsizelsd 
REAL(KIND=DOUBLE), INTENT(OUT) : : Xbar(m), s(m) 
CHARACTER(LEN=l), INTENT(IN) :: answerl 
CHARACTER(LEN=2), INTENT(IN) :: shifttypel 
CHARACTER(LEN=l), INTENT(OUT) : : Xbarstatus(m), sstatus(m) 

REWIND(l) 
Xbarsum = 0 
ssum = 0 

Read first stage short run control chart factors from input file 

do i = 1, (m - 1) 
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.. READ{l, *) 
.end do 

READ{l, *) CCFXbarl, UCCFsl, LCCFsl 

pi = ACOS(-1.0) 

Generate first stage subgroups 

do i = 1, m 
Xsum = 0 
X2sum = 0 

do j = l, n 
call random{rl, seed) 
call random{r2, seed) 

if ( {answerl == 'Y') .and. {i. >= shifttimel)) then 

if {shifttypel == 'MN') then 
X = {mean+ shiftsizelmean) + sd * & 

{{SQRT(-2. * LOG{rl))) * {COS{2. *pi* r2))) 
else if {shifttypel == 'SD') then 

X =mean+ (sd + shiftsizelsd) * & 
( (SQRT(-2. * LOG{rl))) * (COS(2. * pi * r2) )) 

else if (shifttypel == 'MS') then 
X = (mean+ shiftsizelmean) + (sd + shiftsizelsd) * & 

((SQRT(-2. * LOG(rl))) ~ (COS(2. *pi* r2))) 
end if · 

else 
X mean+ sd * ((SQRT(-2. * LOG(rl))) * & 

(COS(2. *pi* r2))) 
end if 

Xsum = Xsum + X 
X2sum = X2sum + (X**2) 

end do 

Xbar(i) = Xsum In 
s(i) = SQRT( (n * .X2sum - · (Xsum**2)) I (n * (n - 1.))) 
Xbarsum = Xbarsum + Xbar(i) 
ssum = ssum + s(i) 

end do 

Construct first stage control limits 

Xbarbar = Xbarsum Im 
sbar = ssum Im 
UCLsl = UCCFsl * sbar 
LCLsl = LCCFsl * sbar 
UCLXbarl Xbarbar + CCFXbarl * sbar 
LCLXbarl = Xbarbar - CCFXbarl * sbar 

Determine out-of-control (OOC) subgroups 

do i = 1, m 
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if ((s(i) > UCLsl) .or. (s(i) < LCLsl)) then 
sstatus(i) '0' 

else 
sstatus(i) = 'I' 

end if 

if ((Xbar(i) > UCLXbarl) .or. (Xbar(i) < LCLXbarl)) then 
Xbarstatus(i) - '0' 

else 
Xbarstatus(i) 'I' 

end if 

end do 

return 
end subroutine Xbar_s_l 

subroutine X_MR_l(mean, sd, m,.answerl, shifttypel, & 
shiftsizelmean, shiftsizelsd, shifttimel, & 
X, MR, Xstatus, MRstatus, seed) 

! ************~****************************************** 
***** Stage 1 Control Charting for (X, MR) Charts***** 
******************************************************* 

implicit none 
INTEGER, parameter:: DOUBLE=SELECTED_REAL_KIND(p 15) 
INTEGER : : i 
INTEGER, INTENT(IN) : : m, shifttimel 
INTEGER, INTENT(IN OUT) : : seed 
REAL(KIND=DOUBLE) .. UCCFMRl, LCCFMRl, CCFXl, pi 
REAL(KIND=DOUBLE) .. rl, r2 
REAL(KIND=DOUBLE) Xsum, MRsum, Xbar, MRbar 
REAL(KIND=DOUBLE) UCLMRl, LCLMRl, UCLXl, LCLXl 
REAL (KIND=DOUBLE), INTENT (IN) : : mean, sd 
REAL (KIND=DOUBLE) ,· INTENT ( IN) : : shiftsizelmean, shiftsizelsd 
REAL(KIND=DOUBLE), INTENT(OUT) : : X(m), MR(m - 1) 
CHARACTER(LEN=l), INTENT(IN) :: answerl . 
CHARACTER(LEN=2), INTENT(IN) :: shifttypel 
CHARACTER(LEN=l), INTENT(OUT) :: Xstatus(m), MRstatus(m - 1) 

REWIND(l) 
Xsum = 0 
MRsum = 0 

Read first stage short run control chart factors from input file 

do i = 2, (m - 1) 
READ(l, *) 

end do 

READ(l, *) CCFXl, UCCFMRl, LCCFMRl 
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pi = ACOS (-1. 0) 

Generate first stage subgroups 

call random(rl, seed) 
call random(r2, seed) 

if ( (answerl == 'Y') .and. (shifttimel 

if (shifttypel == 'MN') then 

1)) then 

X(l) = (mean+ shiftsizelmean) + sd * & 
((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 

else if (shifttypel == 'SD') then 
X(l) =mean+ (sd + shiftsizelsd) * & 

((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 
else if (shifttypel == 'MS') then 

X(l) (mean+ shiftsizelmean) + (sd + shiftsizelsd) * & 
((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 

end if 

else 
X (1) mean+ sd * ((SQRT(-2. * LOG(rl))) * & 

(COS(2. *pi* r2))) 
end if 

Xsum Xsum + X(l) 

do i 2, m 
call random(rl, seed) 
call random(r2, seed) 

if ((answerl == 'Y') .and. (i >= shifttimel)) then 

if (shifttypel == 'MN.') then 
X(i) = (mean+ shiftsj.zelmean) + sd * & 

((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 
else if (shifttypel == 'SD') then 

X(i) =mean+ (sd + shiftsizelsd) * & 
((SQRT(-2. * LOG(rl))) * (COS(2. *pi* r2))) 

else if (shifttypel == 'MS') then 
X(i) (mean+ shiftsizelmean) + (sd + shiftsizelsd) * & 

( ( SQRT ( -2. * LOG ( rl) ) ) * (COS ( 2. * pi * r2) ) ) 
end if 

else 
X(i) 

end if 

mean+ sd * ((SQRT(-2. * LOG(rl))) * & 
(COS(2. *pi* r2))) 

MR(i - 1) = ABS(X(i) - X(i - 1)) 
Xsum = Xsum + X(i) 
MRsum = MRsum + MR(i - 1) 

end do 

Construct first stage control limits 
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Xbar =Xsurn Im 
MRbar = MRsurn I (m - 1) 
UCLMRl = UCCFMRl * MRbar 
LCLMRl = LCCFMRl * MRbar 
UCLXl. = Xbar + CCFXl * MRbar 
LCLXl = Xbar - CCFXl * MRbar 

Determine out-of-control (OOC) subgroups 

do i = 1 , ( m - 1 ) 

if ((MR(i) > UCLMRl) .or. (MR(i) < LCLMRl)) then 
MRstatus(i) '0' 

else 
MRstatus(i) 'I' 

end if 

end do 

do i 1, m 

if ((X(i) > UCLXl) .or. (X(i) < LCLXl)) then 
Xstatus(i) '0' 

else 
Xstatus(i) 'I' 

end if 

end do 

return 
end subroutine X_MR_l 

end module Stage_l 

program cc 

********************************************************** 
***** Two Stage Short Run Variables Control Charting***** 
********************************************************** 

USE Stage_l 
USE D_and_R 
USE Stage_2 
implicit none 
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INTEGER, parameter : :. DOUBLE=SELECTED_REAL_KIND (p = 15) 
INTEGER k, 1, rep, n, m, save_m, new_m, mCen, mSpread 
INTEGER choicel, choice2, shifttimel, shifttime2 
INTEGER seed= 1973272912, maxRL = 50000 
INTEGER countl, count2Spread, count2Cen, skips= 0, stops= 0 
INTEGER sumcountl = 0, sumcount2Spread = 0, sumcount2Cen = 0 
REAL(KIND=DOUBLE) mean, sd 
REAL(KIND=DOUBLE) shiftsizelmean = 0, shiftsizelsd = 0 
REAL(KIND=DOUBLE) shiftsize2mean = 0, shiftsize2sd = 0 
REAL(KIND=DOUBLE) RL, sumRL = 0, sumRL2 = 0, ARL, SDRL 
REAL(KIND=DOUBLE) falsealarm, Pfalsealarm, APPL, SDPFL 
REAL(KIND=DOUBLE) sumPfalsealarm = 0, sumPfalsealarm2 = 0 
REAL, ALLOCATABLE, DIMENSION(:) : : RunL, RLnum 
REAL(KIND=DOUBLE), ALLOCATABLE, DIMENSION(:) Cenl, Spreadl 
REAL(KIND=DOUBLE), ALLOCATABLE, DIMENSION(:) : : Cen2, Spread2 
CHARACTER(LEN=l3) :: text 
CHARACTER(LEN=l) :: answerl, answer2, answer3 
CHARACTER(LEN=2) :: shifttypel, shifttype2 
CHARACTER(LEN=50) :: filenamein, filenameout 
CHARACTER(LEN=l), ALLOCATABLE, DIMENSION(:) 
CHARACTER(LEN=l), ALLOCATABLE, DIMENSION (:) 

Cenlstatus 
Spreadlstatus 

WRITE(*, *) "Enter mean-->" 
READ(*, *) mean 
WRITE(*, *) "Enter standard deviation-->" 
READ(*, *) sd 
WRITE(*, *) "Enter number of times to replicate two stage" 
WRITE(*, *) " short run control charting procedure--> " 
READ(*, *) rep 

Enter contrdl chart combination choice 

WRITE ( *' *) II------------------------------------------

WRITE ( *, *) " Enter 1, 2, 3, 4, or 5 for the" 
WRITE(*, *) "control chart combination you wish to use:" 
WRITE ( *' *) II------------------------------------------

WRITE ( *, *) "l. (Xbar, R)" 
WRITE ( *, *) "2. (Xbar, v)" 
WRITE ( * , *) "3 . ( Xbar, v" 0 . 5) " 
WRITE ( * , *) "4 . ( Xbar, s) " 
WRITE(*, *) "5. (X, MR)" 
WRITE(*, *) 
WRITE(*, *) "Enter choice--> " 
READ(*, *) choicel 

do 

if ((choicel 
(choicel 

1) .or. (choicel 
4) .or. (choicel 

2) .or. (choicel 
5)) exit 

3) .or. & 

WRITE(*, *) "Invalid choice - please enter l, 2, 3, 4, or 5 -->" 
READ(*, *) choicel 

end do 

if (choicel == 1) then 
text= "(Xbar, R)" 
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else if (choicel -- 2) then 
text = "(Xbar, v) II 

else if (choicel -- 3) then 
text = "(Xbar, v"O. 5) " 

else if (choicel --
text = "(Xbar, s) II 

else if (choicel 
text = "(X, MR)" 

.end if 

4) 

5) 

if (choicel /= 5) then 

then 

then 

WRITE(*, *) "Enter n, the subgroup size--> " 
READ(*, *) n 

end if 

Enter data for Stage 1 

WRITE(*, *) "Enter m, the number of subgroups, for Stage 1:" 
WRITE(*, *) 

if (choicel /= 5) then 
WRITE(*, *). " (Note: m cannot be smaller than 2 for " TRIM(text) 

else if (choicel == 5) then 
WRITE ( * I *) II 

end if 
(Note: m cannot be smaller than 3 for" TRIM(text) 

WRITE(*, *) " control charts.)" 
WRITE(*, *) 
WRITE(*, *) " Enter m --> " 
READ(*,*) m 

do 

if ( ( (choicel /= 5) .and. (m >= 2)) .or. & 

((choicel 5) .and. (m >= 3))) exit 

WRITE(*, *) "The value for. m, the number of subgroups," 
WRITE ( *, *) "is too small." 

. WRITE ( * I *) 
WRITE(*, *) "Enter a value form-->" 
READ(*, *) m 

end do 

save_m = m 

ALLOCATE (Cenl (m), Spreadl (m)) 
ALLOCATE(Cen2(m), Spread2(m)) 
ALLOCATE(Cenlstatus(m), Spreadlstatus(m)) 
ALLOCATE(RunL(rep)) 
ALLOCATE(RLnum(maxRL)) 

RunL = 0 
RLnum = 0 

WRITE(*, *) "Would you like to force a sustained shift" 
WRITE(*, *} " in the mean, the standard deviation, or" 
WRITE(*, *) " both in Stage 1 (Y or N)? -->" 
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READ(*, *) answerl 

do 

if ( (answerl == 'Y') .or. (answerl == 'N')) exit 

WRITE(*, *) "Invalid choice - please ·enter Y or N -->" 
READ(*, *) answerl 
cycle 

end do 

if (answerl == 'Y') then 
WRITE(*, *) "Enter MN for a sustained shift in the mean," 
WRITE(*, *) " SD for a sustained shift in the standard" 
WRITE ( *, *) " deviation,. or MS for a sustained shift 11 

WRITE(*, *) " in both in Stage 1 --> 11 

READ(*, *) shifttypel 

do 

.if ( ( shifttypel 
(shifttypel 

'MN'.) .or. (shifttypel 
-- 'MS')) exit 

'SD') .or. & 

WRITE(*, *) "Invalid choice - please enter MN, SD, or MS-->" 
READ(*, *) shifttypel 
cycle 

end do 

if (shifttypel == 'MN') then 
WRITE(*, *)· "Enter shift size in mean using the same" 
WRITE(*, *) " units as the mean-->" 
READ(*, *) shiftsizelmean 

else if (shifttypel == 'SD') then 
WRITE(*, *) "Enter shift size in standard deviation using the" 
WRITE(*, *) " same units as the standa·rd deviation --> " 
READ(*, *) shiftsizelsd 

else if (shifttypel == 'MS') then 
WRITE(*, *) "Enter shift size in mean using the same" 

·WRITE(*, *) " units as the mean --> " 
READ(*, *) shiftsizelmean 
WRITE(*, *) "Enter shift size in standard deviation using the" 
WRITE(*, *) " same units as the standard deviation-->" 
READ(*, *) shiftsizelsd 

end if 

WRITE(*, *) "Enter the number of the first subgroup after the" 
WRITE ( *, *) " shift in Stage 1 --> " 
READ(*, *) shifttimel 

end if 

Enter data for Stage 2 

WRITE(*, *) "Would you like to force a sustained shift" 
WRITE(*, *) " in the mean, the standard deviation, or" 
WRITE(*, *) " both in Stage 2 (Y or N)? -->" 
READ(*, *) answer2 
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do 

if ((answer2 == 'Y') .or. (answer2 == 'N')) exit 

WRITE ( *, *) "Invalid choice - please enter Y or N --> " 
READ(*, *) answer2 
cycle 

end do 

if (answer2 == 'Y') then 
WRITE(*, *) "Enter MN for a sustained shift in the mean," 
WRITE(*, *) " SD for a sustained shift in the standard" 
WRITE(*, *) deviation, or MS for a sustained shift" 
WRITE ( *, *) " in both in Stage 2 --> " 
READ(*, *) 'shifttype2 

do 

if ( (shifttype2 
(shifttype2 

'MN') .or. (shifttype2 
'MS')) exit 

'SD') . or. & 

WRITE(*, *) "Invalid choice - please enter MN, SD, or MS-->" 
READ(*, *) shifttype2 
cycle 

end do 

if (shifttype2 == 'MN') then 
WRITE(*, *) "Enter shift size in mean using the same" 
WRITE(*, *) " units as the mean-->" 
READ(*, *) shiftsize2mean 

else if (shifttype2 == 'SD') then 
WRITE(*, *) "Enter shift size in standard deviation using the" 
WRITE(*, *) " same units as the standard deviation-->" 
READ(*, *) shiftsize2sd 

else if (shifttype2 == 'MS') then 
WRITE(*, *) "Enter shift size in mean using the same" 
WRITE(*, *) " units as the mean-->" 
READ(*, *) shiftsize2mean 
WRITE(*, *) "Enter shift size in standard deviation using the" 
WRITE(*, *) " same units as the standard deviation-->" 
READ(*, *) shiftsize2sd 

end if 

WRITE(*, *) "Enter the number of the first subgroup after the" 
WRITE(*, *) " shift in Stage 2 (the first subgroup drawn in" 
WRITE(*, *) Stage 2 is subgroup number one) -->" 
READ(*, *) shifttime2 

end if 

WRITE(*, *} "Would you like to use a different starting value" 
WRITE ( *, *) for seed (Y or N)? --> " 
READ(*, *) answer3 

do 

if ( ( answer3 'Y') .or. (answer3 'N')) exit 
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WRITE ( *, *·) "Invalid choice - please enter Y or N --> " 
READ(*, *) answer3 
cycle 

end do 

if (answer3 == 'Y') then 
WRITE(*, *) "Enter a value for seed--> " 
READ(*,.*) seed 

end if 

Enter D&R procedure choice 

WRITE(*, *) 11 ------------------------------------------------------

if (choicel I= 5) then 
WRITE(*, *) II Enter l, 2, 3, 4, 5, or 6 for the" 

else 
WRITE(.*, *) II Enter 2, 3 ,· 4, or 6 for the" 

end if 

WRITE(*, *) " Delete and Revise (D&R) procedure you wish to use:" 
WRITE(*, *) II------------------------------------------------------

if (choicel /= 5) then 
WRITE ( * , * ) 1 . ( i) 
WRI.TE ( * , * ) 
WRITE(*, *) 
WRITE ( *, *) . 

(ii) 

Deletes out-of-control (OOC) initial" 
subgroups on either the control chart for" 
centering or spread entirely (i.e., if a" 
subgroup shows OOC on either control chart," 
it is deleted from both charts)." 
Recalculates the control limits for both" 
charts using the subgroups remaining after" 
step (i)." 

WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE ( * , * ) II 

WRITE ( * , * ) II 

WRITE(*, *) 

(iii) ·Determines OOC subgroups." 
(iv) Repeats steps (i)-(iii) until no initial" 

subgroups show OOC on either chart." 

WRITE(*, *) "Press the Enter·key ·to continue ... " 
READ(*,*) 

end if 

WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 

. WRITE ( * , * ) 

2. (i) 

(ii) 

(iii) 
(iv) 

(v) 

(vi) 

Deletes out-of-control (OOC) initial" 
subgroups on the control chart for spread." 
Recalculates the control limits for the" 
control chart for spread using the subgroups" 
remaining after step (i) ." 
Determines OOC subgroups." 
Repeats steps (i)-(iii) until no initial" 
subgroups show OOC on the control chart for" 
spread." 
Determines the control limits for the chart" 
for centering using the parameter estimate" 
for spread obtained after completing steps" 
(i)-(iv) and the overall average obtained" 
from all of the initial subgroups." 
Repeats steps (i)-(ii) for the control chart" 
for centering until no initial subgroups" 
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WRITE ( * , * ) " show OOC . " 
WRITE(*, *) 
WRITE ( *, *) · "Press the Enter key to continue ... " 
READ(*,*) 
WRITE ( *, *) 11 3 . 
WRITE ( * , *) II 

WRITE ( * , *) II 

WRITE(*, *) 

Deletes out-of-control (OOC) initial subgroups on" 
the control chart for spread just once. No D&R is" 
performed on the control chart for centering." 

WRITE(*, *) "Press the Enter key to continue ... " 
READ(*, *) 
WRITE ( * , * ) " 4 . 
WRITE ( * , . * ) II 

WRITE ( * , * ) II 

WRITE ( * , * ) II 

WRITE(*, *) 

Does not perform D&R. This means all of the" 
initial subgroups will be used to determine second" 
stage control ·limits for both the control charts" 
for centering a.nd spread. " 

WRITE(*, *) "Press the Enter key to continue ... " 
READ(* I *) 

if (choicel /= 5) then 
WRITE ( *, *) "5. Deletes out-of-control (OOC) ini.tial subgroups" 
WRITE(*, *) " on either the control chart for centering or" 
WRITE(*, *) " spread entirely (i.e., if a subgroup shows OOC" 
WRITE(*, *) " on either control chart, it is deleted from both" 
WRITE(*, *) II charts). D&R is performed just once." 
WRITE(*, *) 
WRITE(*, *) "Press the Enter key to continue ... " 
READ(*,*) 

end if 

WRITE(*,*) 
WRITE(* I *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(* I '*) 
WRITE(*, *) 
WRITE(* I *) 

6. (i) Deletes out-of-control (OOC) initial" 
subgroups on the control chart for spread" 
just once." 

(ii) Determines the control limits for the chart" 
for centering using the parameter estimate" 
for spread obtained after completing step i" 
and the overall average obtained from all of" 
the initial subgroups." 

(iii) Performs step (i) for the control chart for" 
centering." 

'if (choicel ./= 5) then 
WRITE(*, *) "Enter 1, 2, 3, ·4,. 5, or 6 --> " 

else 
WRITE(*, *) "(Note: D&R procedures 1 and 5 are not valid for" 
WRITE(*, *) " (X, MR) control charts)" 
WRITE(*, *) 
WRITE(*,*) "Enter 2, 3, 4, or 6 -->" 

end if 

READ(*, *) choice2 

do 

if ( ( choicel 
(choice2 
(choice2 

5) .or. ((choice2 == 1) .or. (choice2 == 2) .or. & 
3) .or. (choice2 == 4) .or. (choice2 == 5) .or. & 
6))) exit 
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WRITE(*, *) "Invalid choice - please enter" 
WRITE(*, *) " 1, 2, 3, 4, 5, or 6 --> " 
READ(*, *) choice2 

end do 

do 

if ( (choicel /= 5) .or. ( (choice2 == 2) .or. (choice2 
(choice2 4) .or. (choice2 6))) exit 

if ({choice2 1) .or. (choice2 5)) then 

3) .or. & 

WRITE{*, *) "Invalid D&R procedure for (X, MR) control charts." 
WRITE(*, *) 
WRITE(*, *) "Enter 2, 3, 4, or 6 --> " 
READ(*, *) choice2 

else 
WRITE{*, *) "Invalid choice·~ please enter 2, 3, 4, or 6 -->" 
READ(*, *) choice2 

end if 

end do 

Enter input file name 

*) "----------------------------------------------WRITE(*, 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 

"Enter the name (including the location) of the" 
text file (extension .txt) that has the two" 
stage short run control chart factors for" 

if (choicel /=5) then 
WRITE{*, 10) TRIM(text), " charts for n = ", n, "·" 

else 
WRITE ( *, *) " " , TRIM (text) , " charts: " 

end if 

WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, 20) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 

fl 

fl 

fl 

" 
fl 

(Note 1: the file should have at least the" 
factors for all values of m up to and" 
including m = ", m, ".)" 

(Note 2: the name (including the location)" 
of the text file must be no longer than" 
50 characters.)" 

WRITE(*, *) Enter file name-->" 
READ(*, *) filenamein 
WRITE ( *, *) "----------------------------------------------
WRITE ( *, *) 

OPEN(UNIT=l, FILE=TRIM(filenamein), STATUS="old", ACTION="read") 

Enter output file name 

WRITE ( *, *) "----------------------------------------------
WRITE ( *, *) "Enter the name (including the location) of the" 
WRITE(*, *) " text file (extension .txt) that will store" 
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WRITE(*, *) II 

WRITE(*, *) 
WRITE(*, *) 
WRITE(*, *) 

the results from this program:" 

(Note: the name (including the location) of" 
the text file must be no longer than 50" 

WRITE ( *, *) characters. ) " 
WRITE(*, *) 
WRITE ( *, *) Enter file name --> " 
READ(*, *) filenameout 
WRITE ( *, *) II---------------------------------- -- ----- -----

WRITE ( *, *) 

OPEN(UNIT=2, FILE=TRIM(filenameout), STATUS="unknown", & 
ACTION= "write") 

WRITE ( *, *) "The program is running ... " 

do k = 1, rep 

Subroutines for Stage 1 control charting 

if (choicel == 1) then 
call Xbar_R_l(mean, sd, n, m, answerl, shifttypel, & 

shiftsizelmean, shiftsizelsd, shifttimel, & 
Cenl, Spreadl, Cenlstatus, Spreadlstatus, seed) 

else if (choicel == 2) then 
call Xbar_v_l(mean, sd, n, m, answerl, shifttypel, & 

shiftsizelmean, shiftsizelsd, shifttimel, & 
Cenl, Spreadl, Cenlstatus, Spreadlstatus, seed) 

else if (choicel == 3) then 
call Xbar_sqrtv_l(mean, sd, n, m, answerl, shifttypel, & 

shiftsizelmean, shiftsizelsd, shifttimel, & 
Cenl, Spreadl, Cenlstatus, Spreadlstatus, seed) 

else if (choicel == 4) then 
call Xbar_s_l(mean, sd, n, m, answerl, shifttypel, & 

shiftsizelmean, shiftsizelsd, shifttimel, & 
Cenl, Spreadl, Cenlstatus, Spreadlstatus, seed) 

else if (choicel == 5) then 
call :X_MR_l(mean, sd, m, answerl, shifttypel, & 

shiftsizelmean, shiftsizelsd, shifttimel, & 
Cenl, Spreadl, Cenlstatus, Spreadlstatus, seed) 

end if 

Subroutines for Delete and Revise (D&R) procedures 

if (choice2 == 1) then 
call D_and_R_l(m, save_m, choicel, Cenl, Spreadl, & 

Cenlstatus, Spreadlstatus, new_m, & 
Cen2, Spread2, countl, stops) 

if (new_m 
skips 
cycle 

end if 

0) then 
skips+ 1 

mCen = new_m 
mSpread = new_m 

else if (choice2 == 2) then 
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call D_and_R_2(m, save_m, choicel, Cenl, Spreadl, & 
Spreadlstatus, mCen, mSpread, Cen2, & 
Spread2, count2Spread, count2Cen, stops) 

if ((mSpread -- 0) .or. (mCen == 0)) then 
skips= skips+ 1 
cycle 

else if ((choicel -- 5) .and. (mCen 1)) then 
skips= skips+ 1 
cycle 

end if 

else if (choice2 == 3) then 
· call D_and_R_3 (m, choice·l, Cenl, Spreadl, Spreadlstatus, & 

mCen, mSpread, Cen2, Spread2) 

if. (mSpread == 0) then 
skips= skips+ 1 
cycle 

end if 

else if (choice2 -- 4) then 
mCen = m 
mSpread = m 
Cen2 = Cenl 
Spread2 = Spreadl 

else if (choice2 == 5) then 
call D_and_R_5(m, Cenl, Spreadl, Cenlstatus, Spreadlstatus, & 

new_m, Cen2, Spread2) 

if (new_m -- 0) then 
skips skips+ 1 
cycle 

end if 

mCen = new_m 
mSpread = new_m 

else if (choice2 == 6) then 
call D_and_R_6(m, choicel, Cenl, Spreadl; Spreadlstatus, & 

mCen, mSpread, Cen2, Spread2) 

if ((mSpread -- 0) .or. (mCen == 0)) then 
skips= skips+ 1 
cycle 

else if ((choicel 5) .and. (mCen 1)) then 
skips= skips+ 1 
cycle 

end if 

end if 

Subroutines for Stage 2 control charting 

. if (choicel == 1) then 
call Xbar_R_2(mean, sd, n, mCen, mSpread, Cen2, Spread2, & 

answer2, shifttype2, shiftsize2mean, & 
shiftsize2sd, shifttime2, falsealarm, RL, seed) 
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else if (choicel == 2) then 
call Xbar_v_2(mean, sd, n, mCen, mSpread, Cen2, Spread2, & 

answer2, shifttype2, shiftsize2mean, & 
shiftsize2sd, shifttime2, falsealarm, RL, seed) 

else if (choicel == 3) then 
call Xbar_sqrtv_2(mean, sd, n, mCen, mSpread, Cen2, Spread2, & 

answer2, shifttype2, shiftsize2mean, & 
shiftsize2sd, shifttime2, falsealarm, RL, seed) 

else if (choicel == 4) then 
call Xbar_s_2(mean, sd, n, mCen, mSpread, Cen2, Spread2, & 

answer2, shifttype2, shiftsize2mean, & 
shiftsize2sd, shifttime2, falsealarm, RL, seed) 

else if (choicel == 5) then 

Note: mSpread IS THE NUMBER OF SUBGROUPS, NOT THE NUMBER OF MRs 

call X_MR_2(mean, sd, mCen, mSpread, Cen2, Spread2, & 
answer2, shifttype2, shiftsize2mean, & 
shiftsize2sd, shifttime2, falsealarm, RL, seed) 

end if 

Store run length (RL) results to a vector 
and calculate appropriate sums 

RunL (k) = RL 
sumRL = sumRL + RL 
sumRL2 = sumRL2 + (RL**2) 

Determine counts for POD calculations 

do 1 = 1, maxRL 

if (RunL(k) <= 1) then 
RLnum(l) = RLnum(l) + 1 

end if 

end do 

Calculate applicable sums 

if ((answer2 == 'Y') .and. (shifttime2 > 1)) then 
Pfalsealarm = falsealarm I (shifttime2 - 1) 
sumPfalsealarm = sumPfalsealarm + Pfalsealarm 
sumPfalsealarm2 = sumPfalsealarm2 + (Pfalsealarm ** 2) 

end if 

if (choice2 1) sumcountl sumcountl + countl 

if (choice2 2) then 
sumcount2Spread = sumCount2Spread + count2Spread 
sumcount2Cen = sumcount2Cen + count2Cen 

end if 

end do 

Write input information to output file 
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, WRITE ( 2, *) "--------- --------------- ---------------- 11 

WRITE ( 2, 3 0) "mean: . . . . . . . . . . . . . . . . . . . . ", mean 
WRITE(2, 30) "standard deviation: ...... " sd 
WRITE(2, *) ".# of replications of" 
WRITE ( 2, 4 0) " two stage procedure: . . . " ( rep - skips) 
WRITE(2, *) "Control chart combination: ", TRIM(text) 

if (choicel I= St then 
WRITE ( 2 , 4 0) "n: . . . . . . . . . . . . . . . . . . . . . . . " , n 

end if 

WRITE ( 2, 40) "m ( Stage 1) : . . . . . . . . . . . . . ", save_m 
WRITE ( 2, 5 0) "D&R procedure: . . . . . . . . . . . " , choice2 
WRITE(2, *) "----------------------------------------

Write Stage 1 input information to output file 

if (answerl 'Y') then 

WRITE(2, *) 
WRITE ( 2, * l "----------------------------------------------

if (shifttypel == 'MN') then 
WRITE (2, 60) "Stage 1: shift size of ", ,shiftsizelmean, & 

" ,(same" 
WRITE(2, *) " units as the mean) in the mean" 
WRITE(2, 70)" between,subgroups" (shifttimel -1), & 

" and ", shifttimel, 11 " 

else if (shifttypel == 'SD') then 
WRITE(2, 60) "Stage 1: shift size of", shiftsizelsd, & 

" (same" 
WRITE ( 2 , * ) " 
WRITE(2, *) " 

WRITE ( 2 , 7 0) 11 

units as the standard deviation)" 
in the standard deviation between" 

subgroups " (shifttimel - 1), " and ", & 
shifttimel, " . " 

else if (shifttypel == 'MS') then 
WRITE(2, 60) "Stage 1: shift size of", shiftsizelmean, & 

" (same" 
WRITE ( 2 , * ) " 
WRITE ( 2 , 8 0) 11 

WRITE ( 2 , *) " 

WRITE ( 2 , * ) " 
WRITE ( 2 , 7 0) 11 

" and " 
end if 

else 
WRITE(2, *) 

units as the mean) in the mean" 
and a shift size of", shiftsizelsd 

(same units as the standard" 
deviation) in the standard deviation" 

between subgroups " (shifttimel - 1), & 
shifttimel, " " 

WRITE ( 2, * l "------- ------------------ -- --- --------------
WRITE ( 2, *} "Stage 1: No shifts in either the mean or the" 
WRITE(2, *) " standard deviation." 

end if 

Write Stage 2 input information to output file 

if (answer2 == 'Y') then 
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WRITE(2, *) 

if (shifttype2 == 'MN') then 
WRITE(2, 60) ."Stage 2: shift size of", shiftsize2mean, & 

" (same" 
WRITE(2, *) " units as the mean) in the mean" 
WRITE(2, 70) " between subgroups " (shiftt:ime2 - 1), & 

" and ", shifttime2, " " 
else if (shifttype2 == 'SD') then 

WRITE(2, 60) "Stage 2: shift size of ",· shiftsize2sd, & 

" (same" 
WRITE ( 2 , *) " 
WRITE ( 2 , *) .,, 
WRITE(2, 70) 11 

units as the standard deviation)" 
in the.standard deviation between" 

subgroups "·, (shifttime2 - 1), " and ", & 

shifttime2, "." 
else if (shifttype2 == 'MS') then 

WRITE(2, 60) "Stage 2: shift size of", shiftsize2mean, & 
" (same" 

WRITE ( 2 , * ) " 
WRITE(2, 80) 11 

WRITE(2, *) " 
WRITE ( 2 , * ) " 
WRITE(2, 70) 11 

" and " 
end if 

units as the mean) in the mean" 
and a shift size of", shiftsize2sd 

(same units as the standard" 
deviation) in the standard deviation" 

between subgroups "· (shifttime2 - 1), & 

shifttime2, " " 

WRITE (2, *) "---------------------------------------------

else 
WRITE(2, *) 
WRITE(2, *) "Stage 2: No shifts in either the mean or the" 
WRITE(2, *) " standard deviation." 
WRITE (2, *) 11 ---------------------------------------------

end if 

Write ARL and SDRL results to output file 

WRITE(2, *) 
WRITE (2, *) "------·-. -------------------------------------------

if (answer2 == 'Y') then 
WRITE(2, *) "Out-of-Control (OOC) Average Run Length (ARL) and" 

else 
WRITE(2, *) "In-Control (IC) Average Run Length (ARL) and" 

end if 

WRITE(2, *) "Standard Deviation of the Run Length (SDRL) results" 
WRITE(2, *) "---------------------------------------------------

ARL = sumRL I (rep - skips) 
SDRL = SQRT(((rep - skips) * sumRL2 - (sumRL**2)) I & 

((rep - skips) * ( (rep - skips) - 1))) 

WRITE(2, 80) "ARL (in number of subgroups): ", ARL 
WRITE(2, 80) "SDRL (in number of subgroups): ", SDRL 
WRITE (2, *) 11 ---------------------------------------------------

WRITE (2, *) 
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·!Write APFL-and SDPFL results to output file 

if ((answer2 == 'Y') .and. (shifttime2 > 1)) .then 
WRITE (2, *) "----------------------.--. -----------------------
WRITE (2, *) "The Avt;:!rage Probability of a False Alarm (APFL)" 
WRITE(2, *) "and the Standard Deviation of the Probability of" 

if (shifttime2 == 2) then 
WRITE(2, *) "a False Alarm (SDPFL) on the subgroup before the" 
WRITE(2, *) "shift in Stage 2:" 

else if (shifttime2 > 2) then 
WRITE(2, 90) "a False Alarm (SDPFL) in the first", & 

(shifttime2 - 1), " subgroups" 
WRITE (2, *) "before the shift in Stage 2:" 

end if 

WRITE (2·, *) "----------------. ------------------------------- 11 

· APFL ·= ;sumPfalsealarm I (rep ~ skips) 
SDPFL'·= SQRT ( ( (rep '- skips) * sumPfalsealarm2 - & 

(sumPfalsealarm**2)) I & 
( (rep - skips) * ( (rep - skips) - 1))) 

WRITE ( 2 , l O O) "APFL: " , APFL 
WRITE(2, 100)· "SDPFL: ", ·SDPFL 
WRITE (2, *) 11 -----------------.-------------.-----------------

WRITE (2, *) 
end if 

Write POD results to output file 

if (answer2 == 'Y') then 
WRITE (2, *) "------------------------------------------- 11 

WRITE(2, 90) " Starting at subgroup", shifttime2, & 
" in Stage 2:" 

WRITE (2, *) "-------------------------------------------
else 

WRITE (2, *) "-------------------------------------------
WRITE (2, *) " Starting at subgroup 1 in Stage 2:" 
WRITE (2, *) 11 -------------------------------------------

end if 

WRITE ( 2 , * ) " t 
WRITE ( 2 , * ) " 

do 1 = l, 10 

Number of RLs <= t P(RL <= t) II 

WRITE(2, 110) l, INT(RLnum(l)), RLnum(l) I (rep - skips) 
end do 

WRITE(2, llO) 15, INT(RLnum(15) )., RLnum(l5) I (rep - skips) 

do 1 = 20, 50, 10 
WRITE(2, llO) l, INT(RLnum(l)), RLnum(l) I (rep - skips) 

end do 

WRITE(2, 110) 75, INT(RLnum(75)), RLnum(75) I (rep - skips) 
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do 1 = 100, 500, 100 
WRITE(2, 110) 1, INT(RLnum(l)), RLnum(l) I (rep - skips) 

end do 

WRITE(2, 110) 750, INT(RLnum(750)), RLnum(750) I (rep - skips) 

do 1 = 1000, 5000, 1000 
WRITE(2, 110) 1, INT(RLnum(l)), RLnum(l) I (rep - skips) 

end do 

WRITE(2, 110) 7500, INT(RLnum(7500)), RLnum(7500) I (rep - skips) 

do 1 = 10000, 50000, 10000 
WRITE(2, 110) 1, INT(RLnum(l)), RLnum(l) I (rep - skips) 

end do 

WRITE(2, *) "----------------------------------- -------" 

Write applicable counts to output file 

if (choice2 == 1) then 
WRITE(2, *) 

WRITE(2, *} "The first D&R procedure iterated more than" 
WRITE(2, 90) " once a total of", sumcountl, " time(s) ." 

end if 

== 2) then if (choice2 
WRITE(2, *} 
WRITE(2, 
WRITE(2, 

*) "The second D&R procedure iterated more than" 
90) " once a total of ", sumcount2Spread, & 

" time(s) for the" 
WRITE ( 2 , * ) " 
WRITE(2, 120) 
WRITE ( 2 , * ) " 

control chart for spread and a total of" 
sumcount2Cen, " time(s) for the control chart for" 
centering. '.' 

end if 

then if ( skips > 0) 
WRITE(2, *} 
WRITE ( 2 , 9 0) 
WRITE(2, *} " 

"Replications skipped", skips, " time(s)" 
because the number of subgroups dropped" 

if (choicel /= 5) then 
WRITE ( 2 , *) " 

WRITE(2, *} " 
else if (choicel 

WRITE ( 2 , * ) " 
WRITE ( 2 , * ) " 

end if 

end if 

if (stops> 0) then 
WRITE(2, *} 

to zero after out-of-control (OOC)" 
subgroups were deleted." 
== 5) then 
to zero or to one after out-of-control" 
(OOC) subgroups were deleted." 

WRITE ( 2, 13 0) "D&R procedure 11 , choice2, 11 stopped 11 , stops, & 
" time(s)" 

WRITE(2, *} " because the number of subgroups dropped" 
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if (choicel /= 5) then 
WRITE(2, *) 11 to one after out-of-control (OOC) 11 

else if (choicel 5) then 
WRITE(2, *) 11 to two after out-of-control (OOC)" 

end if 

WRITE(2, *) 11 subgroups were deleted." 
end if 

10 FORMAT(T4, A, A, I3, A) 
20 FORMAT(T2, A, I4, A) 
30 FORMAT(A, F9.5) 
40 FORMAT(A, I4) 
50 FORMAT(A, Il) 
60 FORMAT(A, Fll.5, A) 
70 FORMAT(A, I3, A, I3, A) 
80 FORMAT(A, Fl2.5) 
90 FORMAT(A, I3, A) 
100 FORMAT(A, F7.5) 
110 FORMAT(I5, Il6, F21.5) 
120 FORMAT(T3, I3, A) 
130 FORMAT(A, Il, A, I3, A) 

stop 
end program cc 
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APPENDIX F.2 - Sample Input Files for cc.f90 
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Sample Input File Containing First and Second Stage Short 

Run Control Chart Factors for (X, R) Charts for n=3 and m: 1-5 
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0.00000 
1.56033 
1.35226 
1.25601 
1. 20246 

0.00000 
1. 86966 
2.21659 
2.35005 
2.41685 

0.00000 
0. 06112 
0.04924 
0. 04491 
0.04267 

8.35221 
2.70257 
1.91239 
1.62151 
1.47271 
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14.34466 
5.65885 
4.27295 
3.74247 
3.46631 

0.03152 
0.03337 
0.03407 
0.03443 
0.03465 



Sample Input File Containing First and Second Stage Short 

Run Control Chart Factors for (X, v) Charts for n=3 and m: 1-5 
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0.00000 0.00000 0.00000 17.69484 199.00000 0.00100100 
2.87519 1.99000 0.00200000 4.97997 26.28427 0.00100075 
2.40967 2.78787 0.00150038 3.40779 14.54411 0.00100067 
2.20599 3.31601 0.00133378 2.84792 11. 04241 0.00100063 
2.09497 3.67043 0.00125047 2.56580 9.42700 0.00100060 
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Sample Input File Containing First and Second Stage Short 

Run Control Chart Factors for {X, ~) Charts for n=3 and m: 1-5 
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0.00000 0.00000 0.00000 17.69484 15.91775 0.03570 
2.87519 1. 59177 0.05046 4.97997 5.45415 0.03365 
2. 40967 1.77629 0.04121 3.40779 3.97519 0.03297 
2.20599 1.89811 0.03807 2.84792 3.42822 0.03263 
2.09497 1. 97649 0.03648 2.56580 3.14794 0.03243 
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Sample Input File Containing First and Second Stage Short 

Run Control Chart Factors for (X, s) Charts for n=3 and m: 1-5 
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0.00000 0.00000 0.00000 15.68165 14.10674 0.03164 
2.95828 1.86761 0. 06134 5.12390 5.60680 0.03348 
2. 57119 2. 21123 0.04940 3.63621 4. 24135 0.03417 
2.39128 2.34285 0.04505 3.08713 3.71725 0.03453 
2.29099 2.40840 0.04280 2.80588 3.44396 0.03476 
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Sample Input File Containing First and Second Stage 

Short Run Control Chart Factors for (X, MR) Charts form: 2-15 
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0.00000 0.00000 0.00000 204.19466 127.32134 0.00157 
22.24670 2.95360 0.00235 31.46159 26.11886 0.00157 
10.72641 3.58790 0.00209 13.84773 13.20218 0.00157 
7.34996 3.83736 0.00196 9.00182 9.27880 0.00157 
5.87022 3.89898 0.00188 6.94574 7.52080 0.00157 
5.06862 3.89368 0.00183 5.85274 6.55349 0.00157 
4.57470 3.86822 0.00179 5.18723 5.95038 0.00157 
4.24308 3.83885 0.00177 4.74391 5.54166 0.00157 
4.00644 3.81088 0.00175 4.42928 5.24776 0.00157 
3.82972 3.78583 0.00173 4.19525 5.02691 0.00157 
3.69307 3.76385 0.00171 4.01479 4.85521 0.00157 
3.58441 3.74470 0.00170 3. 87161 4. 71806 0.00157 
3.49606 3.72800 0.00169 3.75537 4.60610 0.00157 
3.42287 3. 71338 0. 00168 3.65920 4.51303 0.00157 
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APPENDIX F.3 - Sample Output Files fromcc.f90 
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Sample Output File #1 
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mean: ................... . 
standard deviation: ..... . 
# of replications of 

two stage procedure: ... 
Control chart combination: 
n: ...................... . 
m (Stage 1): ............ . 
D&R procedure: .......... . 

Stage 1: shift size of 

0.00000 
1.00000 

4996 
(Xbar,- R) 

3 
5 
1 

1.50000 (same 
units as the mean) in the mean 
between subgroups 2 and 3. 

Stage 2: shift size of ,1.50000 (same 
uni ts as the mean)· . in the mean 
between subgroups 10 and 11. 

Out-of-Control (OOC) .Average Run Length (ARL) and 
Standard:Deviation of the Run Length (SDRL) results 

ARL (in number of subgroups): 
SDRL (in number of subgroups): 

464.85809 
693.88171 

The Average Probability of a False Alarm (APFL) 
and the Standard Deviation of the Probability of 
a False Alarm (SDPFL) in the first 10 subgroups 
before the shift in Stage 2: 

APFL: 0.03813 
SDPFL: .0.11174 

Starting at subgroup 11 in Stage 2: 

t Number of RLs <= t P(RL <= t) 
------------------ ----------

1 90 0.01801 
2 162 0.03243 
3 236 0. 04724 
4 290 0.05805 
5 340 0.06805 
6 384 0.07686 
7 422 0.08447 
8 463 0.09267 
9 508 0.10168 

10 548 0.10969 
15 674 0.13491 
20 793 0.15873 
30 1002 0.20056 
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40 1162 0.23259 
50 1277 0.25560 
75 1550 0.31025 

100 1781 0.35649 
200 2432 0.48679 
300 2893 0.57906 
400 3259 0.65232 
500 3504 0.70136 
750 3997 0.80004 

1000 4296 0.85989 
2000 4814 0.96357 
3000 4934 0.98759 
4000 4973 0.99540 
5000 4984 0.99760 
7500 4994 0.99960 

10000 4995 0.99980 
20000 4996 1.00000 
30000 4996 1.00000 
40000 4996 1.00000 
50000 4996 1.00000 
-------------------------------------------

The first D&R procedure iterated more than 
once a total of 111 time(s). 

Replications skipped 4 time(s) 
because the number of subgroups dropped 
to zero after out-of-control (OOC) 
subgroups were deleted. 

D&R procedure 1 stopped 12 time(s) 
because the number of subgroups dropped 
to one after out-of-control (OOC) 
subgroups were deleted. 
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Sample Output File #2 
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mean: ................... . 
standard deviation: ..... . 

0.00000 
1.00000 

# of replications of 
two stage procedure: ... 4995 

Control chart combination: (Xbar, R) · 
n: . . . . . . . . . . . . . . . . . . . . . . . 3 
m (Stage 1): . . . . . . . . . . . . . 5 
D&R procedure: .. .... ... .. 2 

Stage 1: shift size of 1.50000 (same 
units as the mean) in .the mean 
between subgroups 2 and 3. 

Stage 2: shift size of 1.50000 (same 
units as the mean) in the mean 
between subgroups 10 and 11. 

Out-of-Control. (OOC) Average Run Length (ARL) and 
Standard Deviation of the Run Length (SDRL) results 

ARL (in number of subgroups): 
SDRL (in number of subgroups): 

393.95576 
584.75096 

- -----------------------. ---------------------
The Average Probability of a False Alarm (APFL) 
and the Standard Deviation of the Probability of 
a False Alarm (SDPFL) in the first 10 subgroups 
before the shift in Stage 2: 

APFL: 0.03465 
SDPFL: 0.09819 

Starting at subgroup 11 in Stage 2: 

t Number of RLs <= t P(RL <= t) 
------------------ ----------

1 150 0.03003 
2 250 0.05005 
3 332 0.06647 
4 401 0.08028 
5 466 0.09329 
6 521 0.10430 
7 573 0 .11471 
8 625 0 .12513 
9 672 0 .13453 

10 711 0.14234 
15 856 0.17137 
20 1008 0.20180 
30 1258 0.25185 
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40 1425 0.28529 
50 1551 0.31051 
75 1836 0.36757 

100 2079 0.41622 
200 2709 0.54234 
300 3148 0.63023 
400 3473 0.69530 
500 3715 0.74374 
750 4143 0.82943 

1000 4411 0.88308 
2000 4862 0.97337 
3000 4954 0.99179 
4000 4984 0.99780 
5000 4991 0.99920 
7500 4995 1. 00000 

10000 4995 1.00000 
20000 4995 1.00000 
30000 4995 1.00000 
40000 4995 1. 00000 
50000 4995 ·1.00000 
-------------------------------------------
The second D&R procedure iterated· more than 

once a total of 2 tirne(s) for the 
control chart for. spread and a total of 
644 tirne(s) for the control chart for 
centering. 

Replications skipped 5 tirne(s) 
because the number of subgroups dropped 
to zero after out-of-control (OOC) 
subgroups were deleted. 

D&R procedure 2 stopped 11 tirne(s) 
because the number of subgroups dropped 
to one after out-of-control (OOC) 
subgroups were deleted .. 
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Sample Output File #3 
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mean: ................... . 
standard deviation: ..... . 
# of replications of 

two stage procedure: ... 
Control chart combination: 
n: ...................... . 
m (Stage 1): ............ . 
D&R procedure: .......... . 

Stage 1: shift size of 
units as the mean) 
between subgroups 

Stage 2: shift size of 
units as the mean) 
between subgroups 

0.00000 
1.00000 

5000 
(Xbar, R) 

3 
5 
3 

1.50000 (same 
in the mean 

2 and 3. 

1.50000 (same 
in the .mean 
10 and 11. 

Out-of-Control (OOC) Average Run Length (ARL) and 
Standard Deviation of the Run Length (SDRL) results 

ARL (in number of subgroups): 
SDRL (in number of subgroups): 

415 .. 51700 
596.72832 

The Average Probability of a False Alarm (APFL) 
and the Standard Deviation of the Probability of 
a False Alarm (SDPFL) in the first 10 subgroups 
before the shift in Stage 2: 

APFL: 0. 03844 
SDPFL: 0.10604 

Starting at subgroup 11 in Stage 2: 

t Number of RLs <= t P(RL <= t) 
------------------ ----------

1 111 0.02220 
2 206 0.04120 
3 285 0.05700 
4 343 0.06860 
5 396 0.07920 
6 441 0.08820 
7 490 0.09800 
8 543 0.10860 
9 589 0.11780 

10 623 0.12460 
15 771 0.15420 
20 926 0.18520 
30 1146 0.22920 
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40 1312 0.26240 
50 1430 0.28600 
75 1706 0.34120 

100 1933 0.38660 
200 2589 0.51780 
300 3041 0.60820 
400 3382 0.67640 
500 3632 0.72640 
750 4100 0.82000 

1000 4386 0.87720 
2000 4858 0. 97160 
3000 4958 0.99160 
4000 4989 0.99780 
5000 4996 0.99920 
7500 5000 1.00000 

10000 5000 1.00000 
20000 5000 1.00000 
30000 5000 1.00000 
40000 5000 1.00000 
50000 5000 1.00000 
-------------------------------------------
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Sample Output File #4 
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mean: ................... . 
standard deviation: ..... . 

0.00000 
1.00000 

# of replications of 
two stage procedure: ... 5000 

Control chart combination: (Xbar, R) 
n: . . . . . . . . . . . . . . . . . . . . . . . 3 
m (Stage 1): . . . . . . . . . . . . . 5 
D&R procedure: ...... ..... 4 

Stage 1: shift size of 1.50000 (same 
units as the mean) in the mean 
between subgroups 2 and 3. 

Stage 2: shift size of 1.50000 (same 
units as the mean) in the mean 
between subgroups 10 and 11. 

Out-of-Control (OOC) Average Run Length (ARL) and 
Standard Deviation of the Run Length (SDRL) results 

ARL (in number of subgroups): 
SDRL (in number of subgroups): 

422.41960 
603.47804 

The Average Probability of a False Alarm (APFL) 
and the Standard Deviation of the Probability of 
a False Alarm (SDPFL) in the first 10 subgroups 
before the shift in Stage 2: 

APFL: 0.03208 
SDPFL: 0.08711 

Starting at subgroup 11 in Stage 2: 

t Number of RLs <= t P(RL <= t) 
------------------ ----------

1 85 0.01700 
2 164 0.03280 
3 233 0.04660 
4 284 0.05680 
5 335 0.06700 
6 382 0.07640 
7 427 0.08540 
8 481 0.09620 
9 523 0.10460 

10 561 0.11220 
15 705 0.14100 
20 855 0.17100 
30 1078 0.21560 
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40 1247 0.24940 
50 1367 0.27340 
75 1647 0.32940 

100 1879 0.37580 
200 2555 0. 51100 
300 3018 0.60360 
400 3360 0.67200 
500 3608 0.72160 
750 4090 0.81800 

1000 4379 0.87580 
2000 4853 0.97060 
3000 4956 0.99120 
4000 4986 0. 99720 
5000 4995 0.99900 
7500 5000 1.00000 

10000 5000 1.00000 
20000 5000 1.00000 
30000 5000 1.00000 
40000 5000 1.00000 
50000 5000 1.00000 
-------------------------------------------
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Sample Output File #5 
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mean: ................... . 
standard deviation: ..... . 

0.00000 
1.00000 

# of replications of 
two stage procedure: ... 4999 

Control chart combination: (Xbar, R) 
n: . . . . . . ... . . . . . . . . . . . . . . . 3 
m (Stage 1) : . . . . . . . . . . . . . 5 
D&R procedure: .. ... ...... 5 

Stage 1: shift size of 1.50000 (same 
µnits.as the meari) in the mean 
between subgroups. 2 and 3. 

Stage 2: shift size of 1.50000 (same 
units as the mean)· in the mean 
between subgroups 10 and 11. 

Out-of-Control (OOC) Average Run Length (ARL) and 
Standard.Deviation of the Run.Length (SDRL) results 

ARL (in number of subgroups): 
SDRL .( in number of subgroups) : 

450.38248 
654.56502 

The Average Probability. of a False Alarm .(APFL) 
and the Standard Deviation of the Probability of 
a False Alarm (SDPFL) in the first 10 subgroups 

. before the shift in Stage 2: 

APFL: 0.03823 
SDPFL: 0.10840 

Starting at subgroup 11 in Stage 2: 

t Number of RLs <= t P(RL <= t) 
------------------ ----------

1 88 0.01760 
2 159 0.03181 
3 235 0.04701 
4 287 0.05741 
5 342 0.06841 
6 384 0.07682 
7 423 0.08462 
8 469 0.09382 
9 516 0.10322 

10 554 0 .11082 
15 685 0.13703 
20 818 0.16363 
30 1033 0.20664 
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40 1189 0.23785 
50 1301 0.26025 
75 1580 0.31606 

100 1803 0.36067 
200 2460 0.49210 
300 2915 0.58312 
400 3283 0.65673 
500 3536 0.70734 
750 4021 0.80436 

1000 4318 0.86377 
2000 4834 0.96699 
3000 4945 0.98920 
4000 4980 0.99620 
5000 4989 0.99800 
7500 4998 0.99980 

10000 4999 1.00000 
20000 4999 1.00000 
30000 4999 1.00000 
40000 4999 1. 00000 
50000 4999 1. 00000 
-------------------------------------------

Replications skipped 1 time(s) 
because the number of subgroups dropped 
to zero after out-of-control (00~) 
subgroups were deleted. · 
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Sample Output File #6 
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. . . 

mean: ................... . 
standard deviation: ..... . 

0.00000 
1.00000 

# of replicat'ions of 
two stage procedure: ... 4998 

Control chart combination: (Xbar, .R) 

n: . . . . . . . . . . . . . . . . . . . . . . . 3. 
m ( Stage 1) : . . . . . . . . . . . . . 5 
D&R procedure: ........... 6 

Stage 1: shift size of 1. 5 0 0 0 0 ( same 
units as the mean) in the mean 
between subgroups 2 and· 3. 

Stage 2: shift size of 1.50000 (same 
units as the mean) in the mean 
between subgroups 10 and 11. 

Out-of-Control (OOC) Average Run Length (ARL) and 
Standard Deviation of the Run Length (SDRL) results 

ARL (in number of subgroups): 
SDRL (in number of subgroups): 

425 .. 71108 
603.88839 

The Average Probability of a False Alarm (APFL) 
and the Standard Deviation of the Probability of 
a False Alarm (SDPFL) in the first 10 subgroups 
before the shift in Stage 2: 

APFL: 0.03441 
SDPFL: 0.09416 

Starting at subgroup 11 in Stage 2: 

t Number of RLs <= t P(RL <= t) 
------------------ ----------

1 87 0.01741 
2 160 0.03201 
3 226 0.04522 
4 274 0.05482 
5 330 0.06603 
6 369 0.07383 
7 416 0.08323 
8 464 0. 09284 
9 508 0.10164 

10 547 0.10944 
15 695 0.13906 
20 842 0.16847 
30 1072 0.21449 
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40 1239 0.24790 
50 1361 0.27231 
75 1641 0.32833 

100 1883 0.37675 
200 2544 . 0.50900 
300 3005 0.60124 
400 3347 0.66967 
500 3595 0. 71929 
750 4071 0.81453 

1000 4362 0.87275 
2000 4853 0.97099 
3000 4952 0.99080 
4000 4986 0.99760 
5000 4994 0.99920 
7500 4998 1. 00000 

' 10000 4998 1.00000 
20000 4998 1.00000 
30000 4998 . 1.00000 
40000 4998 ,1.00000 
50000 4998 1.00000 
-------------------------------------------
Replications skipped 2 time(s) 

because the number of subgroups dropped 
to zero after out-of-control (OOC) 
subgroups were deleted. 
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