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CHAPTER ONE 

INTRODUCTION 

"Mr. Watson, come here, I want you." Since Alexander Graham Bell transmitted 

that first message in 1876, researchers have been seeking ever more efficient methods for 

transmitting voice long distances. One of the major innovations along the way was the 

conversion of voice from an analog signal to a digital one. Periodic regenerators in the 

transmission path could now re-amplify degraded binary signals, thereby preserving their 

fidelity. Transmitting voice digitally not only improved its quality, but also facilitated 

multiplexing, signaling, switching, operability in harsh channel conditions, and services 

that were impossible with the analog system. And it significantly increased the prospects 

for further reductions in bandwidth. 

In the 1930's, Homer Dudley realized some of those potential gams by 

developing the world's first voice coder, or vocoder, a parametric algorithm for modeling 

the physiology of human voice production [23]. Vocoders achieve low transmission rates 

by sending, not the digitized sound waves themselves, but parameters of the voice model. 

Vocoders sometimes sacrifice quality, however, to achieve the low rates. In harsh 

communications environments, where higher bandwidth may not be available, this 

sacrifice is considered acceptable. 

Other factors have influenced the evolution of long distance v01ce 

communication. Early systems, the telephone included, delivered voice across wireline or 

wireless channels that were designed solely for transmitting voice. These circuit-switched 
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networks introduced very little communication delay, .and provided channels dedicated to 

each talker for the duration of the transmission. Researchers knew the transmission 

characteristics, such as signal-to-noise ratio and error probabilities, of these channels 

from extensive studies and developed vocoders to operate within these environments. 

In 1971, the Advanced Research Projects Agency (ARPA) created what is now 

known as the Internet to connect heterogeneous machines at universities and military 

installations. It was designed to transmit bursty computer data that had no real-time 

delivery requirements. This first long-distance, packet-switched network made more 

efficient use of network resources for data transmission than the venerable circuit

switched network of the telephone system. Transmission channels were not dedicated to a 

single user, but were shared among all users. The network transmitter partitioned files 

into small segments and placed each segment into separate packets. Packet headers 

contained all the information required to direct the packets through the network to the 

correct destination and, once there, to reassemble the file. Packet headers also provided a 

way for the receiver to determine when packets were corrupted. Re-transmitting packets 

that were lost or received with errors achieved error-free transmission with increased 

delay. This successful experiment that created the Internet fueled the development of 

several packet-switched protocols for both wireline and wireless long-distance data 

networks. Frame relay and asynchronous transfer mode (ATM) are both examples of 

higher speed packet-switched protocols that rely on links with low errors. Digital cellular 

communication networks also use packets for integrated voice and data communications. 
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The massive connectivity available · through the Internet motivated the 

development of diverse applications, including v01ce transmission. The International 

Telecommunication Union (ITU) began investigating network voice transmission in the 

middle 1980's. Their goal was to provide a uniform basis for speech packetization. In 

1990, the ITU study group completed G.764 ([38]), the packet voice protocol. In 1995, a 

packetization guide was released as an appendix to the protocol [39]. G.764 defines a 

protocol for speech packetization in very high quality circuit applications. The protocol 

defines formats and procedures for the transport of digitized voice and channel signaling 

over a wideband packet network. The protocol is designed to exploit the bursty nature of 

packet-switched networks by transmitting speech in spurts. G.764 also has procedures for 

handling congestion in the network gracefully, and the G.764 appendix provides 

suggestions for recovering when voice packets are discarded due to errors, delays, or 

excessive congestion. Using this protocol, however, will not guarantee high quality 

transmission of long distance voice. The standard does not address performance issues, 

speech coding methods, services, implementation techniques, equipment, establishment 

of the (permanent virtual) circuit, or recovery of missing packet information. The 

appendix provides guidelines for some of these areas, but many of them are left for 

further research. Regardless of these challenges, G. 7 64 meets the goal of its designers

providing a uniform basis for speech packetization. 

Modem computers come equipped with the hardware necessary to communicate 

with the Internet and to record and play voice. Some consumers are now choosing voice 

transmission over the Internet (and other high-speed networks) as a lower-cost alternative 

to the long distance telephone network. The U.S. military is considering the use of 
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existing packet-switched networks for v01ce communications rather than building 
r 

specialized networks for their growing communications requirements. Packet-switched 

voice transmission will not achieve widespread acceptance, though, until high quality 

voice can be transmitted across low quality networks. Low quality networks are not 

robust and can corrupt, delay, or remove packets. Any of these effects renders packets 

unusable, and consequently the data is unavailable when the voice signal is regenerated. 

Improper handling of missing speech packets subsequently deteriorates the voice signal. 

Clearly, a remedy for this problem is desired ([74]). 

This thesis describes two methods for coping with missing speech packets. The 

first method, Naturalness Preserving Transform Reconstruction, transforms the data prior 

to transmission and recreates the missing samples at the receiver via properties of the 

transform. The second method, Markov Chain Prediction, forecasts the missing speech 

parameters based on information in previous packets. These two methods are compared 

with conventional frame repetition. Performance data for Internet packet switching is 

more readily available than for other, newer protocols; therefore, Internet statistics 

influence the discussions. All research, however, has assumed a generic packet-switched 

network with no special capabilities. 

Chapter Two contains brief descriptions of the waveform and parametric voice 

coding algorithms used in this work. Chapter Three characterizes the challenges of 

transmitting voice across packet-switched networks, and Chapter Four describes the 

network simulator used in this study. Chapter Five provides an overview of current 

techniques from literature. Proposed solutions to the problem are detailed in Chapter Six, 
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which describes Naturalness Preserving Transform Reconstruction, and Chapter Seven, 

which describes Markov Chain Prediction. Chapter Eight discusses future research for 

these solutions; Chapter Nine lists other applications· of this research; and Chapter Ten 

contains conclusions. 
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CHAPTER TWO 

VOICE CODING 

Internet telephony first requires conversion of a talker's voice into digital samples 

that can be packetized and transmitted. The initial conversion from the analog signal 

emanating from the talker's voice to a digital one has a well-defined solution. However, 

this initial digital signal is usually compressed to require fewer network resources. The 

experiments in this thesis used several different voice compression techniques that are 

described in the following sections. 

Everyone who uses digital voice communications desires high quality and is 

usually only fully satisfied with sampling rates of 8,000 or 10,000 samples/second and 16 

bits/sample. But this demands a substantial transmission rate ( 128,000-160,000 

bits/second). Voice encoding can reduce this, often prohibitive, bandwidth requirement, 

however. There are three categories of voice-coding algorithms (vocoders): waveform 

coders, parametric coders, and hybrid coders. 

Waveform coders capture the shape of the sound wave and are designed to 

transmit sounds from any source including music, modem tones, or voice. They generally 

produce higher quality re-synthesis than parametric coders but demand considerably 

higher bit rates (16 - 64 kilobits/second). The µlaw coder and adaptive differential pulse 

coded modulation (ADPCM) coder are examples of common waveform coders, both of 

which are used by the telephone system. 
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Parametric coders, conversely, entail a mathematical model of the source of the 

sound wave, the parameters 'of which are encoded. These coders are only designed to 

encode sound from the human vocal production system. They divide the speech signal 

into frames of 20-30 milliseconds (ms) and analyze each frame of speech to compute the 

parameters of the model. A synthesizer on the receiving end reconstructs the speech 

signal using these transmitted parameters. Parametric coders can operate at very low rates 

(600 - 8,000 bits/second), but degrade rapidly when transmitting sounds other than 

human voice. At very low bit rates, parametric coders cannot currently retain individual 

talker characteristics, and the identity of the speaker is difficult, or impossible, to 

recognize. Multi-band excitation (MBE) and mixed excitation linear prediction (MELP) 

are two popular examples of parametric coding. 

Hybrid coders combine the principles of both waveform and parametric coding-

they often use parametric coding for filter parameters and waveform coding for the 

excitation signal. Code excited linear prediction (CELP), which has many variations, is a 

commonly encountered hybrid coder. All three-parametric, waveform, and hybrid coders 

were used for this project. 

The selected parametric and hybrid coders use linear prediction (LP) to model 

speech. Linear prediction is based on mean squared error and exploits the relative short-

time stationarity of human voice signals (10-20 ms) to approximate the present speech 

sample as a linear combination of past speech samples, 

p 

s(i) = Iaks(i-k). (2.1) 
k=I 
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Vocoder designers choose the prediction order,p, large enough to represent the spectrum 

accurately, but small enough so ·that the· quantizer requires few bits to represent the p 

prediction coefficients. The prediction order generally varies from·8 to 20. 

The prediction residual is the error between the signal created by (2.1) and the 

original signal, 

e(i) = s(i)- s(i). (2.2) 

The quantized LP residual signal is used as the excitation for the synthesis filter. The 

time-varying all-pole synthesis filter shown in (2.3) represents tlie composite spectrum 

effects of sound radiation at the lips and nose, vocal tract shape, and glottal excitation. 

1 
H(z)=--p--

1-Lakz-k 
k=I 

(2.3) 

In its simplest form, the residual excitation for this filter is chosen from two sources: a 

· periodic signal (e.g., an impulse train) for voiced speech, and random noise (usually 

Gaussian) for unvoiced speech. The analyzer determines the p prediction coefficients 

(ak), gain, voiced/unvoiced switch and, for voiced speech, the fundamental frequency 

(loosely referred to as pitch) of the impulse train that are transmitted to the receiver. 

Prior to quantization, the prediction coefficients are often transformed to other 

domains with better quantization or interpolation properties, such as line spectral 

frequencies. Line spectral frequencies (LSFs) or line spectral pairs (LSPs) are the 

frequencies of the zeros of two (p + 1) -order polynomials that lie on the unit circle. The 

two polynomials are calculated by decomposing the z-domain representation of the 

8 



inverse filter. One polynomial corresponds to a lossless model of the vocal tract with 

glottis closed and the other polynomial corresponds to the lossless open glottis model. 

For those readers familiar with speech coding, a brief description of the voice 

coders used in this analysis is given below. References to more thorough descriptions are 

provided in each section. Six coders were used: three waveform coders, two hybrid 

coders, and a parametric coder. 

Pulse Coded Modulation (PCM) 

Pulse coded modulation, developed at Bell Laboratories, was the first digital 

representation of speech. It is a high quality, low complexity voice coding method, but 

because no compression is performed, it is also the least efficient. Samples are converted 

every 125 µs (8000 samples/second), uniformly quantized to 2R amplitude levels, and 

stored digitally. The number of bits, R, used to represent each sample is usually 16, and 

so 128 kilobits/second are required for storage. All digital voice coders employ PCM as 

the first step in the encoding process. More information about PCM can be found in [19]. 

µlaw 

The sensitivity of the human ear is logarithmic in nature, a feature which the 

uniform quantization in PCM does not make use. µlaw coders exploit this logarithmic 

sensitivity by using more finely spaced quantization levels for small signal amplitudes 

and coarser spaced quantization levels for large signal amplitudes. Currently, North 

American telecommunication companies use a µlaw coder for digital transmission with 

the non-linear quantizer 
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I I- X log(l + (µJxJ I Xmax)) ( ) 
Y - max sgn X 

· log(l+ µ) . 
(2.4) 

When th~ input, x, is near its mean, the quantization of the output, y, has finer resolution. 

As x approaches its maximum or minimum values, the quantization grows coarser. 

Coding with µlaw requires only 8 bits/sample to represent speech with the same fidelity 

as 16-bit PCM. Phone companies in the U.S. use 8 bits/sample (64 kilobits/second) and 

µ=256. Figure 2.1 compares the quantization used by PCM and µlaw. More information 

about µlaw coding (also called companding) can be found in [70]. 

Comparison of Uniform and Non-Uniform Quantization 
1-, ----------------------------------------------~ 

0.8'-

0.6:... 
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::::, 
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Figure 2.1 Comparison of Uniform and Non-Uniform Quantization 
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Differential Pulse Coded Modulation (DPCM) 

.. Differential pulse coded modulation (DPCM) exploits the correlation that exists 

between successive speech samples. It linearly quantizes the differences between 

successive samples rather than quantizing the individual samples. Because differences 

between sequential samples are generally smaller than sampled speech amplitudes, fewer 

bits are required. Most DPCM coders refine the general DPCM approach by using a 

fixed, low-order linear predictor. With this technique, the difference between the 

predicted sample and the input sample is uniformly quantized. The same predictor is 

available at the receiver to calculate the speech samples. Figure 2.2 shows a block 

diagram of a DPCM encoder, and Figure 2.3 shows a block diagram of a DPCM decoder. 

Quantizer Coded 1--........---+ 

Speech 

Predictor 

Figure 2.2 DPCM Encoder 

Coded 

Speech--~~EB"-+t-4-~ 1~~~~~~~~~-~-----.-----+~ Speech 

L Predictor j+---1 
Figure 2.3 DPCM Decoder 

In the experiments of this thesis, 7 bits were used to linearly quantize the 

differences from first-order prediction (56 kilobits/second). More information on 

differential quantization can be found in [76]. 
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Code Excited Linear Prediction (CELP) 

This vocoder quantizes the excitation signal for the linear prediction filter using 

two codebooks, one adaptive, and one stationary. The codebook indices are determined 

using analysis-by-synthesis search procedures with a perceptually weighted distortion 

measure. The Federal Standard 1016 (FS1016) CELP analyzer operates on 30 ms frames 

of speech sampled at 8000 samples per second (16 bits per sample, 240 samples per 

frame). The short-term spectrum· of the speech signal is modeled using a 10th order LP 

filter. The residual signal is calculated on four subframes. Long term periodicity, or pitch, 

is modeled using an adaptive codebook (ACB) vector quantizer, which contains the most 

recent excitation samples. The residual from exciting the LP filter with the scaled 

adaptive codebook vector is modeled using a stochastic codebook (SCB) vector 

quantizer. The search procedures for both codebooks choose the optimal scaled excitation 

vectors by minimizing a time-varying perceptually weighted distortion measure. The 

optimal excitation is calculated by adding the scaled adaptive codebook vector to the 

scaled stochastic codebook vector. The adaptive codebook is updated each subframe with 

the optimal excitation vector from the previous frame. The ternary valued (0, ±1) 

stochastic codebook is fixed. 

The FS1016 CELP analyzer produces 144 bits from each 30-ms analysis frame. 

These bits represent the ten line spectral frequencies (LSFs) representing the LP filter 

coefficients, four adaptive codebook vector indices and gains, four stochastic codebook 

indices and gains, and forward error correction and synchronization bits. The CELP 

synthesizer· combines the scaled vectors from the adaptive and stochastic codebooks to 

form the excitation for the LP filter. The output from the LP filter is postfiltered to 
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reduce the effects of quantization noise. Campbell, Tremain, and Welch provide more 

detailed information onthe CELP algorithm in [10]. Figure 2.4 provides a block diagram 

of the CELP synthesizer. 

Adaptive 
Codebook 

~ J_:x--tl'l}~~v-: __ _, 

Stochastic 
Codebook 

Figure 2.4 

Postfilter __.Speech 

L Fs 

CELP Synthesizer 

Global System for Mobile Communication (GSM 6.10) 

The GSM full rate speech coder uses a regular pulse excitation-long term 

prediction (RPE-L TP) linear predictive algorithm. It is based on linear prediction of the 

signal and subframe analysis of the residual. The GSM 6.10 coder operates on 20 ms 

frames of speech sampled at 8,000 samples per second (13 bits per sample, 160 samples 

per frame). The short-term spectrum of the signal is modeled using an gth order LP filter. 

The residual signal is calculated on four subframes. The long term prediction (L TP) 

parameters (lag and gain) are estimated in an open-loop method using the residual from 

the current subframe and three previous subframes. The L TP parameters and the short-
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term residual are combined to select the pulses for the excitation signal. The normalized 

quantized excitation signal is used to estimate the residual for the next frame. 

The GSM 6.10 coder produces 260 bits from the 20 ms input frame. These bits 

represent eight log area ratios (LARs) representing LP filter coefficients, four L TP lags, 

four L TP gains, and four sets of RPE parameters (position of selected subsequence, 

maximum amplitude, and pulses). The GSM synthesizer interpolates the decoded, de-

normalized RPE parameters and adds the L TP contribution to create the excitation for the 

LP synthesis filter. More information on the GSM coder can be found in [25]. Figure 2.5 

provides a block diagram of the GSM synthesizer. 
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Figure 2.5 GSM Synthesizer (taken from [25]) 

Mixed Excitation Linear Prediction (MELP) 

Speech 

MELP is based on the traditional LP vocoder with either a periodic impulse train 

(for voiced speech) or white noise (for unvoiced speech) exciting an all-pole filter. MELP 

14 



has four additional features over classic linear prediction: mixed pulse and n01se 

excitation; periodic or aperiodic pulses, adaptive spectral enhancement, and pulse 

dispersion filtering. The MIL-STD-3005 MELP algorithm analyzer operates on 22.5 ms 

frames of speech sampled at 8,000 samples per second (16 bits per sample, 180 samples 

per frame). The short-term spectrum of the signal is modeled using a 10th order LP filter. 

· The pitch is calculated in an open loop method using the LP residual. The magnitude of 

the residual spectrum is measured, and these Fourier magnitudes are used to enhance the 

periodic excitation. A voicing decision is produced over each of five frequency bands to 

determine the excitation mixture. 

The MELP analyzer produces 54 bits from the 22.5 ms input frame. These bits 

represent the ten line spectral frequencies (LSFs) representing the LP filter coefficients, 

bandpass voicing, pitch, Fourier magnitudes, aperiodic flag, forward error correction, and 

synchronization. The MELP synthesizer uses the pitch and Fourier magnitudes to 

produce the voiced component and a random noise generator to produce the unvoiced 

component. The bandpass voicing bits determine how to mix these two signals and form 

the LP excitation. More information on the MELP algorithm can be found in [ 64] and 

[65]. Figure 2.6 provides a block diagram of the MELP synthesizer. 
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Frame-repetition, a simple and convenient technique, is used as the baseline for 

evaluating other missing frame compensation approaches. It is easy to implement for any 

voice-coding algorithm-any missing information is simply replaced using the most 

recently received data. This simplicity is why it is widely used as a compensation method 

([29], [35]). Knowing the limits at which frame-repetition will still render intelligible 

speech gives a baseline against which to judge other frame compensation schemes. These 

limits were determined for both CELP and MELP using several speech files with varying 

backgrounds, microphones, and talkers. 

Frame-repetition with MELP showed that when more than 15-20% of the frames 

are lost, speech quality is noticeably degraded. When more than 10% of the frames are 

missing, with missing frames occurring in pairs, frame repetition degrades noticeably. 

This is to be expected since speech is slowly time varying. The CELP algorithm is not as 
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robust-speech quality noticeably degrades with a missing frame rate of 2.5%. If two 

contiguous frames are lost, quality was noticeably degraded when more than 2% of the 

frames are missing. It therefore seems likely that improvements can be made in this area. 
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CHAPTER THREE 

TRANSMITTING VOICE ON PACKET-SWITCHED SYSTEMS 

The wireline telephone system is the dominant voice communication system of 

the world. Because of our extensive experience with it, we compare all our long-distance 

communication against this standard. It was designed and optimized to facilitate real-time 

voice conversations and generally provides high quality. When a user places a call, the 

telephone system identifies a two-wire circuit (talking and listening) for each participant 

and essentially guarantees quality connections for the duration of the call. If a circuit 

cannot be established, the call is not placed, and the user receives a busy signal. 

However, the telephone network is not efficient. Even if a dominant talker prevents 

participants from taking part, the unused circuits remain connected. Although the 

connection is high quality, circuit switching offers no protection against system failure 

while the connection is active-if any link in the circuit fails, then the call is lost. 

Packet-switched networks, such as the Internet, were designed and optimized for 

transferring text and other non-real-time data between computers. Data is divided into 

packets, and each packet is sent individually. Packet headers contain the information 

necessary for the packet to reach its destination. Packet headers can be quite lengthy, but 

most of them contain source and destination addresses, error checking, and sequencing 

information. When a packet arrives at a router located between the source and destination 

nodes, it is first stored in memory, then, using the information in the packet header and 

any available network congestion information, the router selects a suitable output link 

and forwards the packet toward its destination. Some protocols also analyze the error 
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checking bits at the. router. Dependingon the switching protocol, the packets of a data file 

from the same transmitter may follow different routes to the receiver. When a packet 

reaches its destination, the receiver analyzes the information in the packet header to 

determine which application it belongs to, its location or ordering in the application 

whether errors are present, and whether any packets between it and the previous one are 

m1ssmg. 

Packet switched networks are robust; node failures do not severely impact the 

network due to the absence of fixed routing between the transmitter and the receiver. 

Because the bursty nature of data makes it uneconomical to use continuously connected 

circuits, all users share the available bandwidth. Faulty data is a more severe problem 

than timeliness, so most packet protocols are designed to guarantee integrity, regardless 

of the time required to transmit the information. Data integrity is maintained by 

retransmitting unacceptable or missing packets. 

Figure 3 .1 illustrates different ways in which voice traffic enters a wide area 

packet switched network. 

19 



.LAN. 

VOIP 
Service 

Provider 

Figure 3.1 

Wide 
Area 

Network 

Internet 
Service 

Provider 

D 
................... ;::-:····:···:/ 

Wireless 
Transceiver 

Voice Connection to Wide Area Network 

Originally, voice communication required a computer at both terminals. Each computer 

has a speaker and a microphone, and the digitized voice is transmitted between the 

computer and the common wide area network (WAN) (usually the Internet) through an 

Internet service provider (ISP) or a local area network (LAN). Modem voice over 

Internet protocol (VOIP) providers offer voice communication through the Internet 

without requiring a computer at either end. The user calls the VOIP service using the 

telephone and the VOIP provider supplies the connection through the Internet to another 

telephone or computer. Wireless communications using WANs is growing in popularity, 

but it is not yet common. The wireless transceiver provides the WAN connection for a 
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computer with a wireless connection or a wireless phone. Any one of these connection 

arrangements can communicate with any other. 

Why is transmission of voice across packet-switched networks a challenging 

problem? Packet-switched networks usually provide a simple, single-class, best-effort 

service. Two computers can always be connected (i.e., no busy signal), but the path may 

be unreliable. Unreliable paths result in very high packet delay, which is treated the same 

as packet loss for real-time applications. Standard designs of high-speed networks show a 

significant variability in performance, and real-time guarantees cannot be given to 

applications ([30]). Unreliable connections are unavoidable and can be caused by several 

events: 1) A congested network node will drop packets that cannot be queued; 2) 

Excessive channel bit error rates may render packets unacceptable to the receiver; and 3) 

Heavy loading of the workstations may lead to scheduling difficulties in multi-tasking 

operating systems. Packets discarded or delayed by network nodes (e.g., routers and 

gateways) due to congestion are anticipated to become more prominent in future 

integrated packet networks (IPNs). DaSilva et al. [18] predict that the speed and capacity 

of future IPNs is likely to be limited by switching in general, and nodal packet processing 

in particular. 

Queuing Theory 

Network analyzers evaluate congestion and delay using mathematical models. 

The most common, simplified models of computer networks use queuing systems based 

on statistics to predict these parameters. In queuing models, each server contains a 
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transmitter, a receiver,- and a buffer. The server receives packets and stores them in the 

buffer until they are transmitted. 

Queuing models contain six elements: arrival process, service process, number of 

servers, dispatching discipline, queue limiting size, and item population. The arrival 

process is randomly distributed and represents how jobs arrive in the system from the 

outside world. The service process is also randomly distributed and models the length of 

time a server will be occupied by a job. The number of servers available to process 

packets is a constant value. The dispatching discipline contains the rules for determining 

priority for servicing jobs. The queue limiting size is the maximum number of waiting 

jobs that can be accommodated. The item population is the number of potential 

customers. 

One type of very simple queuing model that describes the activity in a single 

server disregards packet size and varies only the arrival process, service process, and 

number of servers. These models consider the dispatching discipline as first-in-first-out 

(FIFO), and the queue limiting size and item populations are treated as infinite. 

The inter-arrival times of packets at the server are represented by (3.1). 

(3.1) 

The simplest queuing model is Markovian (or memoryless) for both the arrival process 

and the service process. In a memoryless model, random packet arrival times are modeled 

as a Poisson process with rate "A. The inter-arrival times of packets at a node are 

independently and identically distributed by the exponential probability shown in (3 .2). 
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P{T,,+I -T,, ~ t} = 11e-AJ, t ~ 0 (3.2) 

In (3.2), A represents the mean number of arrivals of jobs per second, i.e., the average 

arrival rate. 

Markovian models also represent service times exponentially. That 1s, the 

probability that a server will be occupied by a job for more than t seconds is 

P{Sn ~ t} = µe-µ1, t ~ 0. (3.3) 

The mean service rate is represented by µ, and Sn represents the transmission time. When 

both the arrival and service processes of a single server are Markovian, the queue is 

referred to as M/M/1 (arrival process/service process/number of servers). Other service 

distributions considered for queuing are deterministic (D) and general (G). An M/G/1 

queue has a single server with a Markovian arrival rate but the service times have a 

distribution that is not necessarily exponential (i.e., general). An MID/1 queue has a 

single server with a Markovian arrival rate and a constant service time. 

A number of studies in recent years have demonstrated that for some 

environments, the traffic pattern is correlated ([57], [79], [87]). Bursty traffic patterns 

tend to exhibit certain degrees of correlation between arrivals, and show long-range 

dependence on time. This characteristic has been labeled self-similar traffic. Self

similarity is a distinctive property of fractals ( objects whose appearances are unchanged 

regardless of the scale at which they are viewed). Poisson traffic models exhibit short

term burstiness, but long-term smoothness. In contrast, self-similar traffic exhibits 

burstiness at all time scales. The Hurst, or self-similarity parameter H ( 0.5 ~ H ~ 1.0 ), is a 
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measure of the length of the long-range dependence of a stochastic process. Hurst 

parameters near 0.5 show few self-similar characteristics; parameters near 1.0 show much 

self-similarity. A stochastic process, x(t), is defined as statistically self-similar if, for 

any real a> 0, each of the three conditions listed in (3.4)-(3.6) for the mean, variance, 

and autocorrelation exist. 

E[x(t)] = E[x~t)] ' 
a 

(3.4) 

V [ ( )] = Var[x(at)] 
ar x t 2H , 

a 
(3.5) 

R ( ) = Rx(at,as) 
x t,s 2H • 

a 
(3.6) 

where His the Hurst self-similarity parameter. Leland et al ([57]) performed analysis that 

showed that, if the input is self-similar, increased delays and increased buffer size 

requirements will be experienced in any multiplexing of self-similar streams. 

Regardless of the models used to calculate traffic parameters, it is the mean values 

upon which most designers rely. Using A to represent mean packet arrival rate andµ to 

represent mean packet service rate, a system utilization parameter, p, can be defined by 

A 
p=-. 

µ 
(3.7) 

If the mean packet service rate exceeds the mean packet arrival rate,µ > A , then the 

system utilization is less than unity, p < 1, and the server is likely to be in an uncongested 

state (if variance about the means is not substantial). In an uncongested server, all packets 

are serviced before the buffer reaches its capacity. However, if the mean packet service 
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rate is equal to or below the mean packet arrival rate, µ ~ A , then system utilization is 

greater than unity, p ~ 1 , and the server is considered congested. Congested servers drop 

packets when the buffers reach capacity, resulting in missing voice segments for packet-

speech applications. 

In an uncongested M/M/1 model ( µ > A), the average queue length, LQ, is given 

by 

p ;i, 
LQ=-=--. 

1- p µ-A 
(3.8) 

The average delay, T, is related to the average queue length by Little's result ([97]), 

shown in (3.9). 

(3.9) 

Using Little's result and the queue length, L, the average delay, T, can be computed by 

T=-1-. 
µ-A 

(3.10) 

If µ>>A, the delay through the server is small. As µ~A, the delay increases. 

Excessive service delays at intermediate nodes subsequently delay packet arrival times at 

the destination. The destination server may have to wait for the individual packets that 

comprise a file. If different nodes with varying delays service sequential packets, packets 

can arrive at the destination out of order. If the delay is not constant, packet-speech play-

out exhibits an unpleasant jitter. If the delay is excessive, the packets must be considered 

lost, which results in speech gaps. 
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The number of packets waiting in the buffer, the waiting time of a packet, and the 

total queuing time per job are· all random variables whose mean values can be computed 

using queuing theory. However, the average delay, T, and system utilization, p, are 

considered the most important variables. 

Channel Errors 

Channel errors are dependent on the transmission media and equipment. Optical 

communication channels have low bit error rates, typically on the order of 10-9 • Error 

rates for analog channels vary from 10-3 to 10-7 and are typically modeled as 1 o-s. Bit 

error rates for purely digital facilities and newer analog facilities are usually closer to 

10-7 • Errors also tend to occur in bursts on both analog and digital channels, so the 

conditional probability of additional errors in a block of bits increases significantly after 

the first error occurs. Wireless channels are especially troublesome due to the multipath 

signals. In narrowband systems this results in Rayleigh fading which is characterized by 

deep fades of signal with resulting in large bursts of errors ([78]). The Rayleigh 

distribution has the probability density function given by (3 .11 ). 

(3.11) 

The root mean squared (RMS) value of the received signal, r, is cr. 

Data packets with errors are unusable. The detected errors are typically not 

corrected. At network nodes, packets with errors are simply discarded. At the destination, 

re-transmission is requested when packets with errors are received. Real-time packet-
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speech applications do not have time to request replacement packets, so gaps in the 

speech signal will occur when errors cause the packet to· be discarded. 

Many vocoders add error detection and correction (EDAC) bits to each frame of 

compressed speech. The EDAC bits protect parameters that most affect the quality of the 

synthesized speech. The receiver uses the EDAC algorithm to determine whether the 

channel has.corrupted any protected bits and restores them. Error detection and correction 

is effective for inaccuracies within the frame, but it is ineffective if the entire frame is 

lost. 

Packet Loss Measurements 

The previous sections provided a mathematical description of packet loss, packet 

delay, and bit errors. However, measured statistics do not strictly follow these 

mathematical descriptions. Several authors discuss measured loss statistics on the Internet 

([1], [6], [8], [35], [45], [49], [62], [63], [81], [86]). Internet loss rates are difficult to 

quantify because measuring methods vary among authors and because the characteristics 

of the network depend on the unknown behavior of other connections throughout the 

network. It is not unusual, according to Khansari ([ 45]) and Sanghi et al. ([81 ]), to lose 

about 10% of the transmitted packets, and rates can reach as high as 40%. Delay is 

difficult to quantify since busy periods vary across circuits. There is general agreement 

that packet loss is highly correlated, i.e., given that packet n is lost, the probability that 

packet n+ 1 is also lost increases. Studies of packet switched networks have shown that 

packet losses are most likely to occur in pairs or triplets. 
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As discussed previously, packet loss translates to frame loss in a voice 

transmission system, and packets arriving too late to be synthesized are unusable and will 

be considered missing. Missing voice frames not only decrease the quality of the voice 

transmission, they also decrease the intelligibility. Low-rate voice coding algorithms 

achieve their high compression by removing much of the redundancy in speech. The 

frames of low rate algorithms therefore have a high entropy rate, hence missing frames 

have an even greater effect on the quality and intelligibility of highly compressed speech. 

Missing-frame compensation algorithms are therefore needed to achieve acceptable voice 

quality when packet-switched networks are used for transmission of voice. 
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CHAPTER FOUR 

LITERATURE SEARCH 

Although researchers have been trying to compensate for missing voice samples 

in packet-switched speech since 1981, the problem is not yet solved. Five categories of 

missing-frame compensation techniques have been discussed in the literature: redundant 

information, loss reduction, network intervention, frame reconstruction, and proprietary. 

Proprietary techniques are rarely elaborated on, and as such, are not discussed herein. 

Redundant Information Methods 

One of the newest approaches is to include information about previous voice 

frames in the current packet, i.e., redundant information. If packet n is lost, the redundant 

information in packet n+ 1 is used to construct the missing frame. For example, the 

Internet FreePhone product, described in [29], creates packets containing both the current 

compressed voice information and a more compressed version of voice from previous 

packets. The present voice signal is compressed to 40 kbits/second. The past voice signal 

is compressed to 4.8-24 kbits/second. This method has been applied to other vocoders as 

well ([6] and [36]). Erdol, Castelluccia, and Zilouchian describe a method in [24] that 

appends short-time parameters describing PCM speech segments in future packets. Chin, 

Hui, and Choo ([13]) describe a system that varies the amount and type of redundant 

information depending on channel conditions. Kostas, et al, ([ 49]) and Moffat, Davis and 

O'Neill ([66]) also discuss redundant methods, but in less detail. 
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Loss Reduction Techniques 

Loss reduction techniques attempt to reduce the impact of the expected packet 

loss on voice quality. This technique divides the voice __ frame into separate packets and 

gives each packet a priority rating based on it's importance in providing high quality 

voice. The network then discards the less. import~t packets before the more important 

ones. When only low priority packets are lost, the effect is not as deleterious. 

Wong and Goodman, and Lara-Barron and Lockhart ([99], [52]) propose and 

discuss selective discarding techniques in which the speech segments are classified 

according to whether they can be reconstructed with adequate fidelity if they are lost. 

Pitch repetition ( discussed in the frame reconstruction section of this chapter) is used for 

voiced frame reconstruction. Unvoiced frames are reconstructed by repeating the 

previous frame. The reconstructed speech is compared with the original speech in the 

transmitter. If the speech segment can be accurately reconstructed, it is marked as low 

priority. 

In [61], Lockhart and Lara-Barron keep the transmitter and receiver synchronized 

(e.g., filter memories) by assuming that the lower priority packets will not be received. 

When a packet is lost, the receiver uses the same reconstruction procedure to recover the 

missing speech samples as the transmitter. When low priority packets are not lost as 

expected, the receiver uses them as supplemental information to improve the speech. This 

method produces lower quality speech in loss-free environments than other approaches. 

For certain applications, this degradation is considered acceptable given the improved 

performance in adverse channels. Suzuki ([91]) proposes marking frames of ADPCM 
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speech by. priority for ATM networks but does not provide much detail on how the 

priority is determined. 

Yin, Li, and Stem ·([104]) discuss embedded coding and introduce a detection 

threshold method for speech energy. Their method compares the energy in the speech 

segment to two thresholds. Speech segments whose energy is below both thresholds are 

considered silence, and no packet is transmitted. Segments with energy between both 

thresholds are considered semi-silence, and the packets are considered low priority. 

Segments with energy exceeding both thresholds are considered talk-spurts, and are 

classified as high priority. 

Kitawaki, et al., Sriram, and Suzuki and Taka ([47], [86], and [91]) propose_ 

embedded coding techniques for ADPCM which place the least significant bits (LSBs) 

and most significant bits (MSBs) in separate Internet packets or A TM cells. The LSB 

cells are given lower priority, and are not used for speech synthesis if they are lost. 

Yong ([105]) discusses three different network CELP reconstruction techniques 

that prioritize speech information. The first method classifies based on the energy in the 

frame and the stationarity of the speech. Frames with low energy or little change from the 

previous frame are given low priority. The second method divides the quantized 

parameter bits into low and high priority. Yong suggests the spectral and pitch parameter 

bits should be classified as high priority. The third method relies on an embedded coder. 

Speech is coded in two stages with the first stage coding the speech and the second stage 

coding the residual. The second stage is classified as low priority. 
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Jayant and Christensen, Jayant, Chen and Chen, and Zagursky and Ginters ([41], 

[42], [12], [107]) propose variations of loss reduction which place sequential speech 

samples in separate packets regardless of the importance of the samples. In [ 41 ], Jayant 

and Christensen divide bits from pulse coded modulation (PCM) between packets (i.e., 

odd samples in one packet and even samples in another packet). At the receiver, simple 

interpolatim1 b_etween received samples is used to reconstruct missing packets. This 

method fails if the network loses sequential packets containing adjacent samples. Chen 

and Chen's method is an Lth packet interleaving procedure. They employ Wiener and 

Kalman-based sample interpolation schemes to recover the missing samples. Zagursky 

and Ginters block code PCM samples (voice samples are written to the columns of a 

matrix and read from the rows of the matrix into the packets). They describe first- and 

second-order interpolation algorithms to replace missing samples. 

Yuk, Rym, Lee, and Cho, [106] divide voice data into two classes based on the 

required communication quality. When congestion occurs, the transmitter reduces the bit 

rate of the conversations that do not require high quality. If this decrease is not sufficient, 

the transmitter decreases the bit rate of the conversations that require high quality. 

Network Intervention 

New protocols are being developed to provide guaranteed quality of service 

(QoS) to users willing to pay for it. Network intervention techniques take advantage of 

these new protocols to give voice packets a higher priority than data packets or to 

establish a real-time connection between two communicators. 
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Goodman and Wei's 1991 paper ([33]) describes a packet reservation multiple 

access (PRMA) system in which a terminal that generates a sequence of packets obtains a 

reservation of uncontested use of subsequent time slots. At the end of a talk-spurt, the 

terminal stops transmitting and the base station informs all terminals that the slot is 

available for contention in the next frame. 

Shah, Atungsiri, Kondoz, and Evans investigate multiplexing low bit rate speech 

in thin-route telephony ([84]). They state that in multiplexer applications, the encoder is 

quite close to the multiplexer subsystem that makes the decision to drop speech frames. 

The encoder can therefore be immediately informed if a frame is dropped and adjust its 

filter memories so the encoding of the following frames take that frame loss into account. 

Bolot and Vega-Garcia ([6]) propose controlling the rate at which packets are sent over a 

connection to match the send rate to the capacity of the connection to minimize packet 

loss. Internet Protocol version 6 (1Pv6), the next generation Internet protocol, will 

provide the ability to guarantee network resources. Resource Reservation Protocol 

(RSVP), which is in use now, allows reservation of appropriate amounts of bandwidth for 

each call. 

Frame Reconstruction 

Frame reconstruction techniques use the data in the successfully received packets 

to calculate the data in the missing packets. They require no knowledge of network 

protocols, and all the information from a voice frame is kept together. 

The easiest and least complex frame reconstruction technique is the venerable 

silence substitution method, where silence covers missing voice frames. Repeating the 
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previous packet is an only slightly more complex alternative that is more acceptable· to 

listeners than silence -substitution. Noise filling algorithms that substitute scaled Gaussian 

noise for missing speech segments are other slightly more complex options. Pitch 

replication techniques ([51] and [32]) calculate the pitch from T samples of the speech 

prior to the lost frame. The missing packet is reconstructed by repeating the last T 

samples received. Yong ([105]) builds on this idea by using the CELP pitch parameter 

from the previously received frame to create the excitation for the missing frame. 

Sanneck ([82]) proposes a variant of frame repetition in which the transmitter 

divides speech into chunks based on the pitch period. Each chunk contains one pitch 

period if the speech is voiced, or -a larger number of samples (larger than the maximum 

pitch period) if the speech is unvoiced. Chunks containing transitional speech are split at 

the transition. Each packet contains two chunks. If the receiver detects a missing packet, 

adjacent chunks of the previous and following packets are reused. 

A more complex method using pattern matching is proposed by Goodman, et al. 

([32]). A template created from the M speech samples that arrived just before the missing 

packet is compared with a history (typically 1000 samples) of speech saved from past 

packets. The samples following the best match are used for the missing packet. Wasem, 

et al. ([98]) discuss this one-sided template matching and also propose a two-sided 

method using search windows in both the past and future. 

DaSilva, Petr, and Frost ([18]) propose coding and reconstruction techniques 

based on the classification of the speech. The transmitter classifies the speech segments 

and places this information in the packet header. Background noise is encoded using 2-bit 
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ADPCM and reconstructed by randomly choosing ,a block from the sample history. 

Voiced speech and fricatives are encoded using 4-bit ADPCM. _ Voiced speech is 

reconstructed using pitch repetition and weighted Gaussian noise is generated to replace 

the fricatives. A fourth class, called "other", is encoded using 8-bit µlaw and 

reconstructed using packet repetition. 

Husain and Cuperman also classify information for frame reconstruction using 

CELP coders ([3 7]). Their algorithm uses four classes of speech: silence, unvoiced, 

voiced, and transition. The class information is assumed to be available at the receiver 

regardless of channel characteristics, and the excitation signal is reconstructed based on 

it. The receiver creates voiced excitation by refining the pitch information received from 

the previous frame, and unvoiced excitation by using a Gaussian generated signal. The 

spectral coefficients are extrapolated based on the least-squares fading memory 

polynomial filter, which makes use of the discrete Laguerre polynomials. 

The International Consultative Committee on Telegraphy and Telephony's 

(CCITT) G.729 coder, as described by Salami, et al in [80], and G.723.1 ([49]) 

reconstruct the current frame by replacing the missing excitation signal with one of 

similar characteristics. 

Performance 

The quality of reconstructed speech from these methods varies greatly. Generally, 

the more expensive methods (i.e., those requiring greater amounts of bandwidth, 

memory, delay, computation, cash, etc.) yield better results. 
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Redundantinetlfods can substantially improve the quality of voice in a packet-loss 

environment. However, adding redundant information increases the size of packets and 

therefore the traffic on the network (potentially elevating the congestion and hence 

further increasing the packet loss and delay problem). Because reconstruction cannot 

begin until the next packet is received, there is an unavoidable delay built into this 

process. Excessive delay can render two-way communication impossible. 

Loss reduction techniques mitigate the effects of missing voice frames. However, 

the protocols of the packet-switched network must be known to use these procedures. 

This dependence eliminates portability to other packet-switched networks. Since the 

receiver must wait for all the packets containing the information in a voice frame to 

arrive, the participants will experience additional delay. 

Network intervention methods have the potential to eliminate packet loss and 

delay. But new protocols must first complete lengthy standardization procedures. 

Integration of the new protocols into existing networks will require time, and some 

networks may never be upgraded. As with loss reduction techniques, specific protocol 

dependency will eliminate portability to other networks. 

Frame reconstruction techniques are generally the most portable. Many do not add 

any delay, and most don't excessively increase network traffic. Unfortunately, these 

techniques presently do not offer very high quality results. 

It is difficult to compare the test results of these systems because several different 

methods were used for testing. Some researchers used formal mean opinion score (MOS) 
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testing and others performed these tests informally. Signal-to-noise ratios were used for 

much testing since the majority of the techniques were used for waveform coders. All 

researcher~ agre~, however, that silence substitution is the least acceptable method for 

compensating for missing frames. Silence substitution works at packet loss rates up to 

only 1-2%. Packet repetition is considered only slightly better than silence substitution. 
- ' i 

Some intelligibility. can still be maintained up to loss rates of 40%. All other procedures 

out perform these two baselines. 

There is currently no high-quality, portable, low-delay m1ssmg frame 

compensation scheme available that works for any waveform or parametric voice-coding 

algorithm. The techniques described in the literature are either specific to a particular 

voice-coding algorithm or reliant on a specific packet-switching protocol. 
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CHAPTER FIVE 

NETWORK SIMULATOR 

Testing the missing-speech compensation routines required either access to the 

protocol structures of a working packet-switched network or a network simulator. A 

network simulator provides more flexibility, so this choice is preferred. Software 

packages for network simulators are available, but they are complex, expensive, and 

difficult to modify. Since flexibility was desired and strict adherence to particular 

protocols was not required, the missing-speech compensation routines were evaluated on 

a network simulator written in Matlab. 

Figure 5.1 shows a block diagram of this network simulator. 

Bits In---+ Synchronization I 

Bits Out 
Post 

Processing 
Resyn 

Packet 
~ Transmitter 

Packet chronization I+- Receiver 

Figure 5.1.Block Diagram ofNetwork Simulator 

Network 
Effects 

+-

The input and output data files contain one bit per word. The synchronization and 

resynchronization blocks are designed for alignment and were not needed for the 

algorithms described in this paper. 
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In the Matlab simulation, the user can choose the desired protocol for the "Packet 

Transmitter" and "Packet Receiver" blocks in addition to the size of the data portion of 

the packet. The most prevalent wide area network (WAN) protocol, · Transmission 

Control Protocol/Internet Protocol (TCP/IP) is available and can be chosen singly (TCP 

or IP alone) or as a pair. Both TCP and IP are aligned on octet boundaries, which 

restricted the flexibility with regard to this project (frames of bits from some vocoders, 

e.g. MELP, must be split between packets). A generic packet protocol is available to offer 

more flexibility with various voice-coding algorithms. The generic protocol can also be 

used to represent multiple protocol situations (e.g., TCP/IP~ATM~TCP/IP) that occur 

frequently on wide area networks. The generic protocol has all the features of a network 

protocol: a packet header containing source and destination addresses, sequence 

information, data size, etc., and a packet data area. The generic protocol does not have the 

error protection capability of TCP/IP, but this information is not necessary to evaluate 

packet loss. A final choice that simulates a wire (i.e., no packet structure) is also 

available. 

Packets are corrupted in the "Network Effects" block. Four types of errors were 

used: Random Bit Error, Random Block Error, Pattern, and Random Packet Loss. The 

user also selects the percentage of errors that affect the packets or the bits in the packets. 

The "Random Bit Error" option inserts uniformly distributed errors across all packets. 

"Random Block Errors" are similar to random bit errors, but the bits are first grouped into 

blocks. The user specifies the number of bits there are per block. Errors are distributed 

uniformly across all blocks. When a block is in error, 50% of the bits within the block are 

corrupted (with a uniform distribution); hence the data is irretrievable. If a non-uniform 
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distribution of errors is required, the "Pattern" option will load . a user~created Matlab 

variable file (MAT-file).·The file format is similar to the input and output bit files, i.e., 

one bit per word. The bits to be corrupted are represented with a "l" and all other bits are 

represented with a "O" in the pattern file. The pattern bits are reshaped and replicated, if 

necessary, to match the size of the input data bitstream. The "Random Packet Loss" 

option selects random packets for obliteration using a uniform distribution with a user

selected probability. 

The missing-speech compensation algorithms compnse the "Post Processing" 

block. It uses sequence numbers in the packet header to locate missing frames. The 

following frame compensation algorithms are available for user selection: 

• Nothing 

• Silence Insertion 

• Frame Repetition 

• Frame Interpolation 

• Naturalness Preserving Transform 

• Markov Chain Prediction 

If no frame compensation is performed, i.e., the "Nothing" option, the received samples 

are played sequentially regardless of timing. The "Silence Insertion".option generates the 

appropriate bits needed to create silence in the output speech in place of the missing 

packets. "Frame Repetition", the most common solution fo the missing speech frame 

40 



problem, repeats the last correctly received frame of speech until a new frame is received. 

"Frame Interpolation", which adds a one-frame delay to the process, interpolates the 

speech parameters for the missing frame using the past or future frames. The last two 

options ("Naturalness Preserving Transform" and "Markov Chain Prediction") are 

described in Chapters Five and Six. Some of the options require knowledge of the voice

coding algorithm ( e.g., "Silence Insertion", "Markov Chain Prediction", and "Frame 

Interpolation"). For these choices, the output bit stream contains markers to indicate the 

location of the missing bits that the voice coding software uses for the missing-frame 

compensation. 

The Matlab graphical user interface (GUI) editor provided an easy method to 

improve the user interface of the network simulator and to offer user-selectable voice 

coding before and after the network simulation. A picture of the network simulator GUI 

is shown in Figure 5.2. 
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Figure 5.2. Network Simulator Graphical User Interface 

Using the GUI, the user can determine the presence of diagnostic data and informational 

graphs, select input and output file locations, choose voice coding algorithms, and specify 

parameters for the network simulator. Once the correct inputs are entered, the "Start" 

button activates the program. 

The flexibility to add or change code and the ability to easily change parameters 

made this program a valuable tool for analyzing the effectiveness of missing frame 

compensation algorithms. 
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CHAPTER SIX 

NATURALNESS PRESERVING TRANSFORM 

The Naturalness Preserving Transform (NPT) is a unitary transform based on a 

stochastic operator that uses the Hadamard matrix. This transform was first described in 

[101] and later in [102]. The NPT's success for reconstructing missing portions of images 

([101], [102], [27]) made it a viable consideration for reconstruction of missing speech. 

Naturalness Preserving Transform Description 

The original NPT designed by Y arlagadda and Hershey operates in two 

dimensions, but Osinubi and King later modified the transform to operate in one 

dimension ([70]). Both the one- and two-dimensional transforms are described in the 

following sections. 

Both transforms use a stochastic operator, \J', defined as 

\J',,(a) = al11 + (1-a)H;,. (6.1) 

The weighting factor, a, has restrictions O ~a~ 1, a* 0.5. H~ 1s the normalized 

n 

Hadamard matrix, Hn , ([102]) of order n, defined as 2 2 Hn . The size of the stochastic 

operator matrix, and therefore all other matrices relating to the transform, is dependent on 

the size restrictions of the Hadamard matrix, i.e., square matrices with 2n rows and 

columns. 

Two-Dimenensional NPT 

The two-dimensional NPT is defined by 
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(6.2) 

where Pn is a 2n x 2n matrix containing the data to be transformed. The mverse 

transform is given by 

Pn = 'Pn(-a-)n,, 'Pn( a ) , a*.!_. 
. 2a - 1 2a -1 · · 2 

(6.3) 

The beauty of the transform is that every sample point in the NPT-coded matrix, 

Tin, contains information about the entire 2n x 2n original sample matrix, P,,. Using this 

feature, Y arlagadda and Hershey describe an iterative process for reconstructing portions 

of images that have been lost due to jamming or errors on the communication channel. 

The reconstruction technique, described m [101], performs the iterative 

computation of (6.4) and (6.5) at the ith stage. 

p (i) = 'I' ( a )n (i-l)q, ( a .) 
" " 2a - 1 " " 2a - 1 

(6.4) 

(i) A (i) 
TI,, = 'P,,(a)P,, 'P11 (a) (6.5) 

The non-excised values in TI11 are substituted at each stage in TI,~;> to obtain TI,~;> . The 

posited known values in P,, are substituted into P,~i) to obtain P,~;> . The convergence of this · 

algorithm is detailed in [102]. 

The speech reconstruction experiments described in this chapter use the two-

dimensional NPT. 
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One-Dimensional NPT 

Osinubi, King, et al. have. written several papers ([70]-[72]) .describing their use 

of the one-dimensional NPT for reconstructing signals. The one-dimensional NPT of the 

data vector, S1, is given by 

Rq = \J'(a)SiJ 

The inverse one-dimensional NPT is defined by 

Sq= q,-1(a)Rq = \J'(P)Rq 

/3= a 
2a-l 

1 
a*-

2 

(6.6) 

(6.7) 

They have also developed an iterative method for reconstructing lost segments from a 

one-dimensional signal. Their method is very similar to Y arlagadda and Hershey's, 

except it is in one dimension. 

A Design for Naturalness Preserving Transform Speech Reconstruction 

Reconstruction of missing voice frames is similar to reconstruction of missing 

image information. Since voice is a one-dimensional signal and the NPT operates on two-

dimensional signals, the speech samples must be transformed from 1 x P vectors to 

2" x 2" matrices. Previous experiments revealed that NPT reconstruction produces 

optimal results when adjacent samples remain together, either in the rows or columns of 

the matrix, so the transform can capitalize on the correlation between them. Data 

compression algorithms usually exploit the correlation between adjacent samples to 

reduce the bit rate, but for NPT reconstruction, the inter-sample correlation allows for 

45 



fast convergence. The experiments described in this chapter placed sequential speech 

samples into the matrix rows. 

The matrix is transformed and transmitted using several packets. Each packet 

contains a header that includes sequence numbers, and the receiver reads the sequence 

numbers in the packet header at the destination. The receiver uses the sequence number 

to insure that all the packets have arrived and that they have arrived in the correct order. 

If the receiver detects a missing packet, the voice data is reconstructed using a modified 

version of the image reconstruction process described previously. 

As shown in (6.4) and (6.5), successful image reconstruction at the receiver 

requires known values of P,, (the original image) and TI,, (the transformed image). The 

latter information is available from the received packet(s). The known values of P,,, P;,,;1 , 

are not as easily obtained. In [101] and [102], the authors use stationary image 

information e.g., a cloudless sky, since the image samples are nearly equal and trivial to 

reproduce. Equivalent stationary or near stationary regions in speech occur on a short

time basis between words when only the background noise is present. Background noise 

samples are generally low magnitude and accuracy is unimportant. During the call setup 

procedure, the transmitter provides background noise samples (which could simply be 

silence) to the receiver so that P;,,;1 is known on both ends of the conversation. If the 

speech utterance cannot be divided so that background samples are present in a 211 x 211 

segment, the transmitter inserts P;,,;1 into a predetermined location of the matrix as 

overhead. The artificially inserted background noise is removed at the receiver prior to 

playing the speech. Some speech compression methods remove silence portions at the 
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transmitter and later recover them at the receiver. NPT reconstuction performs the 

opposite operation, i.e., it adds siferice atthe transmitter and removes it at the receiver. 

Successful reconstruction is dependent on the weighting parameter. This is seen 

by evaluating (6.2). Substituting (6.1) into (6.2) produces 

~' = (al11 +(1-a)H;1)P11 (al11 +(1-a)H:) (6.8) 
,_ 

and rearranging and combining terms results in 

II,, = a 2P11 + a(l- a)[P11H;, + H;,P11 ] + (1- a) 2H;,P11H;,. (6.9) 

When a ~ 1 the resulting transformed matrix closely resembles the original data matrix 

because P11 is weighted more heavily than H;,P,,H;, in (6.9). (This is why the transform 

was named "naturalness preserving.") When a~ 0, the resulting transformed matrix has 

a strong Hadamard component due to the heavier weighting of H;1P11 H;, in (6.9). 

Although the transformed samples are closer to the correct values when a ~ 1 , the 

individual matrix elements contain less information about the input data values and 

contribute less to the reconstruction process since each element in the matrix formed by 

H;1P11 H;, is a combination of all of the elements of P. This can be seen in the following 

2 x 2 example with 

and 

H'--1 [1 1 ] 
1 - ,.fi. 1 -1 . 
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Substituting these values into (6.9) produces 

IIi = a2[Pi1 P12J+a(l-a)-1-[2Pi1 +2Pt2 
P21 P22 J2 Pu + P22 

P11+P22 ] 
P21 -2P22 + P12 

+.!.(1-a)2[Pi1 + P21 + P12 + P22 Pi1 + P21 - Pi2 - P22J 
2 Pu - P21 + P12 - P22 Pu - P21 - P12 + P22 

Clearly, each element in the matrix produced from H:P,,H: is a combination of all the 

elements in P1 . When a ---+ 0 the stronger Hadamard component causes the individual 

elements of the transform matrix to contribute more toward reconstruction, resulting in 

considerably fewer iterations for reconstruction. The effect of varying a is illustrated in a 

later section. 

If analysis of the sequence numbers in the packet headers indicates that one or 

more packets are missing, the process described by (6.4) and (6.5) reconstructs the 

missing speech samples. In (6.4), the correctly received rows of II,, are used to form 

fI~i). The reconstruction algorithm uses the P;,,u to form P~i). Intuitively, the quality of 

the reconstruction improves as the size of P;,,;1 increases. However, since these known 

samples must intermittantly be transmitted as overhead when the matrix of speech 

doesn't already contain background noise, efficiency requires as few of these samples as 

possible to sufficiently reconstruct the speech. The reconstruction process uses the 

transformed signal, II,~;>, to determine when to cease iteration. The non-excised rows of 

this signal become progressively more like the non-excised rows of the received 

transformed signal, II,, with successive iterations. A simple Euclidean distance is 
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sufficient to measure -the error between II,'.il andIIn. Figure 6.1 illustrates the 

reconstruction process in more detail. 
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Figure 6.1. NPT Reconstruction Process 

The success of the system described in this figure is described in the following sections. 

Naturalness Preserving Transform Speech Reconstruction Parameters 

The matrix size, 2n x 2n, number of samples in Pinit, and value of the weighting 

factor, a, all contribute to the success of the algorithm. This section describes some 

experiments with these parameters. 

Matrix Size and Number of Known Samples 

Intuitively, as more information is available for reconstruction, the quality of the 

reconstructed signal should improve and the number of iterations required for 
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convergence should decrease. This can be seen in the plot of Figure 6.2. This plot 

illustrates the effect of increasing the size of P;n;, on a 32 x 32 matrix of speech. This 

comparison excised the last eight rows of the matrix, reconstructed it, and measured the 

reconstruction SNR. 
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Figure 6.2. Post-reconstruction SNR Comparison for P;n;, 

The SNR greatly increased above seven rows of known information. Studies of P;n;, 

conducted during this research show that this change occurs when the amount of known 

information equals the amount of excised information. However, acceptable 

reconstruction is still achieved when the amount of known data is less than the amount of 

lost data. 
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Using a 16 x 16 matrix (n = 4 ), ,and only 16 samples (6.25% of the matrix) of 

known information for Pinit , the first iteration of the reconstruction process immediately 

calculates a signal that is very similar to the original signal when 50% of the transformed 

data is removed. Successive iterations continually refine the signal. Figure 6.3 shows an 

example of NPT reconstruction of a voiced segment and Figure 6.4 shows an example of 

unvoiced reconstruction. Each plot in these figures represents one matrix (32 ms, 256 

samples) of speech. All five plots in each figure have the same scaling for both horizontal 

and vertical axes. The top plot in each figure shows the original speech segment. A 

dashed line in the top plots mark the ends of the known background noise (zeros in this 

case). The second plot in each figure shows the transmitted transformed data, and the 

third plot shows the received transformed data with missing packets (replaced by all 

zeros). The fourth plot in each figure shows the result following a single iteration of the 

NPT reconstruction process. The basic shape of the original waveform can clearly be 

seen in the fourth plot. The fifth plot in each figure shows the final reconstructed signal 

after many iterations. Details of the original signal that are not present after the first 

iteration are clearly seen in the final signal .. 
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Figure 6.3. NPT Reconstruction of Vowel III ("i" of "fish") 
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Figure 6.4. NPT Reconstruction of Fricative Isl (''s" of "bus") 
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Weighting Factor 

Both the number of iterations and the success of reconstruction are dependent on 

choosing a correctly. The two experiments described below removed the last 64 samples 

in every 16 x 16 matrix of a one-sentence speech segment. The reconstruction algorithm 

used four rows for Pinit to recover the missing samples for the matrix. 

Figure 6.5 illustrates how the number of iterations required to successfully 

reconstruct the missing data varies as a increases from zero to one in steps of 0.05, 

a¢. 0.5. The top line (marked with circles) shows the maximum number of iterations that 

occurred in the file. The middle line (marked with squares) shows the mean number of 

iterations that occurred in the file, and the lower line (marked with X's) shows the 

minimum number of reconstruction iterations that were required in this file. 
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Figure 6.5. Reconstruction Iterations Comparison for Weighting Factor 

Measurements were taken only at the values of a marked with circles, squares, or X's, 

i.e. although the line connecting the symbols passes through a = 0.5 , this weighting 

factor was not used. This plot shows less than 3 5 iterations for reconstruction when 

a< 0.5, with a slight decrease as a~ 05. However, the number of iterations increases 

drastically to over 300 when a > 0.5 , except for a = 1.0 . When a = 1.0, the transformed 

signal is no different than the original signal. No reconstruction can be performed since 

the non-excised samples of the transformed signal are the same as the input signal and 

contain no information about the missing samples. 

Figure 6.6 shows how the signal-to-noise ratio varies as a increases from zero to 

one in steps of 0.05, a* 0.5. The top line (marked with circles) shows the maximum 
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SNR in the file. The middle line (marked with squares) shows the mean SNR in the file, 

and the lower line (marked with X's) shows the minimum reconstruction SNR in the file. 
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Figure 6.6. Post-reconstruction SNR Comparison for Weighting Factor 

Measurements were taken only at the values of a marked with circles, squares, or X's, 

i.e. although the line connecting the symbols passes through a= 0.5, this weighting 

factor was not used. The SNR decreases slightly (2-3 dB) as a~ 0.5. However, there is 

a tremendous decrease in SNR to nearly-1100 dB when a= 0.55. The SNR improves as 

a~ LO above 0.5, but SNR for a< 0.5 is always greater than SNR for a> 0.5. When 

a < 0.5 the reconstructed speech cannot be differentiated from the uncorrupted speech. 

However, when a> 0.5, the reconstructed speech is quite noisy, though still intelligible. 
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Although the previous discussion indicates the weighting factor must be low, not 

all successful NPT reconstruction is reliant on low values of a. In [101], the authors 

describe an image application using a near 1.0. This application involves a "man-in-the-

loop" to reconstruct missing regions in jammed images. With a higher value of a, the 

. -

transformed image is similar to the original image. The operator then has a coarse version 

of the image to start with, and can use this to calculate Pinit and guide the reconstruction 

interactively. 

Naturalness Preserving Transform Implementation 

Delay, complexity and performance are important in implementing any real-time 

speech processing technique. Delay is a measurement of the time accumulated between a 

person talking and the listener hearing the voice. Complexity consists of the number of 

operations (multiplication, addition, etc) and the amount of memory required to complete 

the reconstruction process. Performance includes the quality and intelligibility of the 

reconstructed signal. Not only should the listener understand what the talker is saying, the 

sound of the reconstructed speech should be pleasant. An implementation of the NPT for 

speech reconstruction is also described in [48]. 

Delay 

Delay is directly related to the size of the NPT matrix. The size restrictions of the 

Hadamard matrix control the NPT matrix size. An nth order Hadamard matrix is square 

with 2" rows and columns (several packets). The transmitter must accumulate a buffer of 

speech prior to transforming it. The transmitter must then buffer the transformed samples 

until they can be sent to the receiver. After the receiver reconstructs the samples it must 
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buffer the speech samples until the computer can play them. The entire process 

accumulates a delay of three -buffers. Speech is -usually sampled at -8,000 or 10,000 

samples per second. At 8,000 Hz, this equates to-125 µs for each sample and 125 · 22" µs 

for each buffer. The accumulated delay then totals 375 · 22" µs. 

The delay for frame repetition is less than for NPT reconstruction. Frame 

repetition requires only the delay necessary to buffer one packet of speech data. It is still 

necessary to buffer speech at the transmitter and receiver, but the number of samples in 

the frame repetition buffer is considerably smaller ( one packet versus several). 

Complexity 

The speed of the processor and the amount of memory required are important 

implementation issues. Estimates of both complexity measurements for NPT 

reconstruction are discussed separately followed by a comparison of NPT complexity 

with frame repetition. 

Number of Operations 

Calculations for the NPT and its inverse dominate the complexity of the 

reconstruction process. The number of operations for these calculations can be reduced 

considerably by postponing the normalization of the Hadamard matrix until after the 

matrix operations. The expanded transformation of equation (6.9) then becomes 

TI" = a 2Pn + T"12 a(l- a)[P,,H,, + H,,Pn] + T"(l-a) 2 H,,PnH,, (6.10) 

The Hadamard matrix elements are all ±1, so matrix multiplication reduces to 24" 

addition and subtraction operations. 
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Further simplification follows from the nth root (A) of H 11 -described in [102]. 

SinceH11 = A11 , it follows thatH 11P11 = A"P,,. Each row and each column -or A contains 

only two non-zero values. The non-zero elements in A are always ± 1, so multiplication 

by A is also reduced to computing addition and subtraction only. Specifically, 2211 

addition operations are required to multiply a matrix by A. Multiplication by A;, then 

requires n · 2" _ addition operations. The multiplicative terms containing a and powers of 

2 can be pre-calculated and stored, so the only operations required per iteration are the 

matrix multiplication, addition, and scaling. The NPT transform calculation requires 

3 · 2 211 multiplication operations for scaling ( scalar x matrix ) and ( 4n + 3)2 211 addition 

operations. The expanded inverse transform has the same form as equation (6.10) and 

thus requires the same number of multiplication and addition operations per iteration. The 

appendix contains more details on the calculation of the number of operations required 

for the NPT transformation. 

Memory 

Because the number _of bytes in a word of memory is processor dependent, 

memory usage will be represented by words. The NPT and its inverse both require the 

same amount of memory. The scalars that weight the matrices can be pre-calculated and 

stored in 3 words. The temporary storage required for the matrix operations can be 

shared, so the NPT and its inverse each require sufficient space for 6 matrices ( 6 · 2 211 

words). The elements of the Hadamard matrix, H 11 , and it's nth root A, have only three 

possible values, 0 or ± 1 . Efficient storage schemes will enable these low-resolution 
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matrices to occupy· less than one word per matrix element. The appendix contains more 

details on ,the calculation of the memory requirements for the NPT transformation. 

The NPT and its inverse can be implemented on special purpose hardware since 

t~~Y are. achievable with a small amount of memory and few operations. Special purpose 

hardware will be attractive as the Hadamard transform can be implemented by a section 

and it can be used several times. The applications for the proposed method in the speech 
. . . . . . . 

coding area are abundant. 

Frame Repetition 

Frame repetition is less complex than NPT reconstruction. The transmitter 

performs only the voice coding and packet construction-there is no additional 

processing. The receiver only needs enough memory to store the previous packet of 

received data, and the only operations required for reconstruction are for memory 

transfers (i.e., copying the stored speech into the output buffer) in the case of a missing 

packet. 

Performance 

Performance of voice coding algorithms can be measured using either objective or 

subjective tests. Objective tests mathematically compare the original speech signal to the 

speech signal that emerges from the vocoder. Signal-to-noise ratio is a popular objective 

test. However, mathematical analysis cannot yet accurately measure the human hearing 

process. Subjective tests using human listeners are the most accurate procedure for 

measuring the response of human ears. The following sections contain results for both 

methods. 
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Signal-to-Noise Ratio 

The SNR of the NPT iterative reconstruction process was measured for three 

different segments of a speech data file: purely voiced, fricative, and transition regions. 

These segments represented three different classes of speech. The voice system produces 

voiced speech by oscillating the vocal cords. This creates a signal that is short-term semi

periodic. Forcing air through a constriction at some point in the vocal tract creates 

fricative or unvoiced sounds. Fricative sounds have no periodic component and resemble 

low magnitude random noise. A transition is a change from one of these classes to 

another. The characteristics of the vocal tract are changing, and the characteristics of the 

waveform correspondingly change. 

Figure 6.7 displays the four speech segments that were used to measure SNR. The 

left plot contains the transition segment, the second plot contains the unvoiced segment, 

the third plot contains the voiced segment, and the right plot contains a segment of 

background noise from a modern office. 
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Figure 6.7. Transitional, Unvoiced, Voiced, and Background Speech 

From each segment the routine selected one representative 16x16 (256 samples) 

matrix, simulated a random 25% loss, reconstructed the missing data using frame 

repetition and NPT reconstruction, and calculated the SNR. The latter method used four 

rows of known information. The result of these calculations is shown in Table 6.1. 

Transition Voiced Unvoiced Background 

NPT Reconstruction 88.39 85.58 65 .81 46.73 

Frame Repetition -0.93 2.676 2.16 2.76 

Table 6.1 NPT SNR Comparison (in decibels) 

As this table shows, frame repetition results in very low SNR and is a far inferior 

method to NPT reconstruction, especially in the difficult transition class. As packet loss 
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increases, the SNR for both methods decreases, but NPT is always considerably higher. 

In the transition region, frame repetition does not have the correct information for the 

missing data. The voiced portion of the segment is completely different from the silence 

portion. The voiced case should do better than the unvoiced or background noise case in 

frame repetition because there is approximately periodic information in the voiced case 

whereas no such information exists in the other two cases. The SNR measurements are 

only on a segment of speech. These examples are isolated cases, but SNR measurements 

over other segments of speech validate the superiority of NPT over existing methods for 

speech applications. 

Listening 

Subjective tests with eleven listeners compared NPT reconstruction against frame 

repetition. The NPT configuration was the same for the listening test as for the SNR 

measurements described previously. The program placed one quarter of each transformed 

matrix into separate packets prior to simulating random packet loss. 

The test files contained male and female talkers, and they were processed with 

PCM, µlaw, and differential pulse coded modulation (DPCM). These three waveform 

coders were tested to evaluate the performance ofNPT on compressed data. 

The transformed coded-speech data was subjected to simulated random individual 

packet loss of 5%, 10%, 15%, 20%, and 25% then reconstructed using NPT 

reconstruction and frame repetition prior to waveform decoding. 

62 



Listeners compared four sentences· (two· -male and two female talkers) in each 

coder/error combination. All sentences were processed with both NPT reconstruction and 

frame repetition and the errors occurred in the same samples for both reconstruction 

methods. The test randomized the sentence order and listeners chose which sentence 

sounded the best. Table 6.2 shows the preference for NPT reconstruction for all sentences 

and all listeners. 

5% 

PCM 95% 

µlaw 84% 

DPCM 86% 

Table 6.2 

10% 

100% 

98% 

98% 

15% 

95% 

98% 

91% 

20% 

98% 

98% 

95% 

25% 

98% 

100% 

82% 

Preference for NPT Reconstruction 

As this table shows, listeners overwhelmingly preferred the NPT reconstruction to the 

frame repetition, which should not be a surprise as the available NPT data has 

information about every sample in the original data. 

The 25% overhead for this testing is somewhat high. The reconstructed speech 

quality deteriorates as the overhead decreases, but a smaller informal listening test 

showed that even at only 6% overhead, NPT reconstruction is still the preferred method

even in error rates as high as 50%. Reconstruction using NPT can also be considered as a 

scalable lossy error correction method-as the channel deteriorates the transmitter can add 

more redundancy to the matrices. Conventional error correction methods cannot be scaled 

so easily. Post processing of the reconstructed speech can further improve the quality and 

allow a decrease in the necessary overhead. 
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Because ,of .the, naturalness in the transform of the NPT, the speech sounds are 

much smoothef compared to . other techniques, such as frame repetition or silence 
. .. 

insertion; These techniques require further processing to smooth the transition between 

existing and reconstructed frames. After NPT reconstruction one could use filtering, also, 

to further improve the- · quality of the speech. Since the NPT uses additions and 

subtractions, due to the structure of the Hadamard matrix, any effects of white noise 

errors will be significantly reduced. In other words, NPT has automatic low pass filtering 

effects. Furthermore, since the recovery uses the redundant information in the data, P;n;, , 

the smoothing effects are minimal. 

Replication techniques depend on signal stationarity to mask the replacement 

signal. Even though the SNR is quite low, it may not be correspondingly audible in 

stationary regions. In non-stationary regions, signal replication is quite audible. Signal 

stationarity is not guaranteed, especially in transitional regions. The NPT performs well 

in any class of speech because it depends on the inherent information in the surviving 

transformed packets to reproduce the missing samples. 

NPT Quantization 

The tests described in the previous section used unquantized NPT coefficients. 

The experiments in this section show that adequate quantization will not reduce the 

ability to perform high quality reconstruction of missing speech samples. These 

experiments use both a uniform quantizer and an optimal quantizer for the NPT-

transformed samples. The last four rows in each of 144 16 x 16 matrices ( 4.6 seconds) of 
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a one-sentence speech segment were removed. The reconstruction algorithm used 64 

samples for Pinit to recover the missing samples for the 144 matrices in the file. 

The uniform quantization implementation divided the signal into 2R equally 

spaced levels, where R is the number of bits available for quantization. It then chose the 

level closest to the NPT coefficient as· the quantized value. The reconstruction process 

used the quantized NPT coefficients to recreate the missing speech samples. 

The effect of quantization on the individual NPT coefficients is considered first. 

Figure 6.8 shows the change in quantization noise as the number of bits per NPT 

coefficient increases. Quantization noise is measured using SNR on the ordinate. The 

number of bits per NPT coefficient R is shown on the abscissa. The top line, marked with 

circles, represents the maximum SNR due to quantization from the file. The middle line, 

marked with squares, represents the mean SNR due to quantization from the file, and the 

lower line, marked with X's, represents the minimum SNR due to quantization noise 

from the file. 
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Figure 6.8. Uniform Quantization Noise Comparison 

Signal-to-noise ratio increases nearly linearly as the number of bits increases, and the 

-6dB/bit rule of thumb for uniform quantization is evident in this plot. The uncorrupted 

quantized NPT coefficients produce intelligible speech for this file when the rate is 

greater than 5 bits/coefficient, and the speech is indistinguishable from the original when 

the rate is greater than 13 bits/coefficient. 

Listening evmces that below 6 bits the corrupted, reconstructed file is 

unintelligible and above 13 bits the corrupted reconstructed quantized speech and the 

corrupted reconstructed unquantized speech sound the same. Figure 6.9 and Figure 6.10 

present noise measurements for NPT reconstruction using quantized coefficients. Figure 

6.9 illustrates the change in the number of iterations required for reconstruction as the 
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number of quantization levels increases. The· ordinate contains the mean number of 

iterations and the abscissa shows the number of bits per NPT coefficient. The dotted line 

near the top of the plot shows the mean number of iterations (21.618) required for NPT 

reconstruction using unquantized coefficients. 

Mean Number of Reconstruction Iterations Comparison for Quantization 
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Figure 6.9. Mean Number of Reconstruction Iterations Comparison for Uniform 

Quantization 

The number of iterations increases quickly until it reaches the unquantized measurement. 

Above seven bits the mean number of reconstruction iterations matches the number 

required by unquantized NPT. The coarsely quantized transformation matrices (less than 

8 bits) provide fewer possibilities in the search space, and are therefore reconstructed 

more quickly. 
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Figure 6.10 compares ·the SNR between the ·original speech and the corrupted 

reconstructed speech as the number of quantization levels increases. The ordinate shows 

the SNR and the abscissa shows . the number of bits per NPT coefficient. The top line, 

marked with circles, shows the maximum SNR for the file as the number of bits 

increases. The middle line, marked with squares, shows the mean SNR and the lower 

line, marked with X's, shows the minimum SNR for the file as the number of bits 

increases. For comparison, the plot also shows the maximum (81.207 dB), mean (60.092 

dB), and minimum (32.690 .dB) SNR for unquantized reconstruction. 
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Figure 6.10. Post-reconstruction SNR Comparison for Uniform Quantization 
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Signal-to-noise ratio increases nearly linearly until it reaches the unquantized levels. The 

linear portion_ of the maximum SNR and_ minimum SNR curves exhibit the -6dB/bit 

improvement expected from uniform quantization. 

It is well known that uniform quantization is an inefficient technique for many 

data distributions. Experiments show that NPT coefficients for speech have a distribution 

similar to the generalized Gaussian distribution described in [92]. Analysis of Lloyd-Max 

quantizers ([19], [43]) with the generalized Gaussian distribution show that equal or 

better SNR is achieved with at least two fewer bits than uniform quantization. Listening 

to the output from the optimized quantizer reveals that only three bits per sample are 

required for intelligible corrupted, reconstructed speech. Above 11 bits the corrupted, 

reconstructed quantized speech and the corrupted, reconstructed unquantized speech 

sound the same. 

NPT Reconstruction of Parametrically Coded Speech 

The methods described previously work well for waveform coded speech because 

each sample of input speech produces one sample of coded speech. However, as 

discussed in Chapter 2, parametrically coded speech produces a frame of bits to represent 

a frame of speech samples-there is no one-to-one correspondence between speech 

samples and coded samples. It is possible, however, to take advantage of the low rate 

transmission capabilities of the parametric speech coders and the advantages of NPT 

reconstruction. Two different approaches were tested using parametric coders: parametric 

coding of the transformed speech and transformation of the parametrically coded speech. 
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Parametric coding of transformed speech 

This experiment used the voice coding algorithm to quantize the transformed 

signal to a very low bit rate. Figure 6.11 illustrates the system used for this analysis. 

Speech -----+ NPT 

Speech~ 

Vocoder Analyzer 

Vocoder Synthesizer 

Transmission 
Channel 

Figure 6.11. Parametric Coding of Transformed Speech 

This system has some buffering issues since parametric coders operate on fixed size 

frames of speech (150-250 samples), and the NPT must use matrices with different fixed 

sizes (2" x 2") because of the restrictions on the Hadamard matrix. A circular buffer 

between the NPT/INPT process and the vocoder analyzer/synthesizer process will solve 

this problem. For this experiment the output from the NPT algorithm and the vocoder 

were saved onto the hard drive between steps so buffering was not an issue. 

This system was tested using both the CELP and MELP vocoders described in 

Chapter 2. For both coders, the quality of speech with no channel errors was intelligible 

but noisy with a close to 1.0. However, as a ~ 0, the resulting speech grew 

unintelligible. Since reconstruction has been shown previously to work optimally when 

a ~ 0, this problem must be remedied before the system can be used. Further 

investigation showed that as a decreases and the Hadamard component grows stronger, 

the resulting transformed data contains signal magnitudes that exceed the magnitude of 
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the input signal. The parametric vocoder analyzer is designed for data with defined 

magnitude bounds. Wheri these· bounds are exceeded, the analyzer cannot correctly code 

the signal. 

Scaling the input signal may solve this problem. The scaling factor will depend on 

the bounds of the NPT as a function of a.. Further study is required to define the NPT 

boundaries. 

Transformation of Parametrically Coded Speech 

The second experiment quantized the input signal with a low rate voice coding 

algorithm, and transformed the quantized vocoder parameters. Figure 6.12 shows the 

system used for this analysis. 

Speech MELP Matrix NPT 
Analysis Placement 

Transmission 
Channel 

MELP Matrix Speech INPT 
Synthesis Retrieval 

Figure 6.12. Transformation of Parametrically Coded Speech 

Each 16 x 16 matrix contained two frames of quantized MELP parameters. The 

resulting matrices contained a large number of zeros for use in the reconstruction process. 

Since the transformation process is a floating-point operation, the matrices were 

quantized using a simple rounding procedure prior to transmission. Reconstruction 
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worked very well with up to seven missing rows. The reconstructed speech sounded 

identical to the errorless speech. However, the speech became totally unintelligible when 

more than seven rows were lost. The reconstruction process requires considerably more 

iterations using this method. 

Discussion 

Experiments with several waveform coders indicate that NPT reconstruction is a 

high quality method for recreating missing speech samples using a modest amount of 

overhead. NPT reconstruction is not limited to waveform coders; it works well with 

parametric coders also. Since the amount of overhead is proportional to the rate of 

convergence and the quality of the resulting signal, NPT reconstruction is a scaleable 

error protection technique, and adequate quantization will not limit the quality of the 

reconstructed speech signal. 
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CHAPTER SEVEN 

-MARKOV CHAIN PREDICTION 

Statistical analysis also has challenges with missing data. When researchers 

collect information for later statistical analysis, they store the results in matrices where 

the rows of the matrix represent different cases or respondents from the test, and the 

columns represent the individual responses or measurements. When statisticians wish to 

analyze a database of information collected from surveying a sample of the population, 

there may be missing data in some categories. This missing data can result from non

response to survey questions, equipment failure, or inability of respondents to express 

preferences. Analysis of all available data will produce the most accurate results, but the 

statistician must correctly deal with the cases that have incomplete information. Several 

references discuss solutions to this problem ([59], [22], [96], [46], [67], [15]), and they 

provide many different methods for performing statistical analysis with incomplete data. 

Imputation, or replacement, is a common approach for dealing with missing data in 

statistical analysis. 

Statistical Imputation 

Imputation-based procedures "fill in" the missing values. The resultant completed 

database is then analyzed by standard statistical methods as if there were no missing 

values. Statistical literature describes several different imputation procedures, including 

mean imputation, cold deck imputation, and hot deck imputation. Mean imputation 

replaces the missing values with the mean from the responding units. This is analogous to 

simple smoothing for speech parameters and would not produce speech with very high 
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quality. Cold deck imputation replaces a missing value of an item by a constant value 

from an external source. This method is _similar to the low-quality silence substitution 

procedure discussed previously. Many.other imputation methods exist, but only hot deck 

imputation (HDI) is feasible for replacing missing speech data . 

...• •:i- 1· . 

Hot deck imputation for statistical analysis· replaces missing data with individual 
.. . 

values drawn from similar responding units. It can involve very elaborate schemes for 

selecting units for imputation, i.e., determination of the units that are similar. If the 

parameters of a missing speech frame can be imputed, or replaced, with parameters that 

have occurred in a similar situation, a listener may not be able to distinguish the 

compensated synthesized speech from the original synthesized speech. For HDI to 

succeed on speech, a technique must be defined to determine what constitutes a similar 

situation. Parameters from past speech frames are the easiest data to acquire at a receiver. 

Information from the past can be used to determine future voice activity if speech can be 

described as a Markov chain. 

Markov Chains 

A discrete stochastic process is said to be a first-order Markov process if 

Pr{X,,+1 = x,,+1IX,, = x,,,X,,_1 = x11_ 1, ••• ,X1 = x1} = 
Pr{X,,+1 = x,,+1IX,, = x,,} 

(7.1) 

is true for all states x1,x2 , ••• ,x,,,x,,+1 E~, where Xn+I is the current state. That is, the 

current value of a Markov process can be determined probabilistically by evaluating the 

previous value. The first order Markov chain described by (7.1) is often represented with 

a transition matrix P that contains the probability of moving from one state at time n to 
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another state at time n+ 1. The transition matrix elements, PiJ, represent the conditional 

probability that at time n + 1 the system is in state j given at time n the system was in 

state i: 

~i = Pr{X,,+1 = jlX,, = i} i,j = 0,1,2, ... 

00 

where PiJ ~ 0 and L PiJ = 1 for i = 0,1,2, ... 
}=0 

A stochastic process on t{ is a Markov chain of order m if 

Pr{X,,+1 = x,,+1IX,, = x,,,X,,_1 = x,,_i,···,X1 = x1} = 
Pr{X,,+1 =x,,+1JX,, =x,,,X,,_1 =x,,_1, ••• ,X,,_,,,_1 =x,,_,,,_1} 

(7.2) 

(7.3) 

for all n>m and all x1 ,x2 , ••• ,x,, ,x,,+1 Et{. That is, the current value of a Markov process 

of order m can be determined probabilistically by evaluating the previous m values. 

Properties of Markov Chains 

Several useful properties of Markov chains can be defined using the transition 

matrix defined by (7.2). If the PiJ depend only on the states and not on the time 

( PiJ = p(jJi) i,j = 0,1,2, ... ) then the conditional probabilities are constant or stationary. 

If the conditional probabilities are stationary and the ft are known for all states, then the 

process is completely defined by the transition matrix and the initial probability, q, 

q(x) = Pr{X0 = x} x = 0,1, .... (7.4) 

Texts devoted to Markov processes ([4] and [56]) describe other properties of Markov 

chains: 
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• A state i is called essential if the existence of a positive integer v and a state j 

( * i ) such that Pt> > 0 implies the existence of a positive integer w such that 

P_;~w) > 0. A state that is not essential is called inessential. 

• Let i andj be two states of a Markov chain; then i andj are said to communicate if 

there exist a v ~ 1 and a w ~ 1 such that P~v> > 0 and p~_w) > 0 . If i and 1· 
y JI 

communicate, it is written i ~ j . 

• A set of states T E .3 is called closed if no one-step transition is possible from any 

state in T to any state in .3- T , the complement of the set T ( P!i = 0 for 

i ET,j E.3-T). If T contains only one state, the state is called an absorbing 

state. If the state space contains two or more closed sets, the chain is called 

decomposable or reducible. 

• If n!i(t) denotes the number of times x,_1 = i and x, = j, and n1; = In1;(t) then 

the micro maximum likelihood estimator is J'o = n!i /1; n!i ~ 0. This estimate is 

consistent but it is not generally unbiased. However, as the sample size increases, 

the bias tends to zero. 

Not all these properties are necessary for missing frame compensation using Markov 

chain prediction. 
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Chapman-Kolmogorov Equation for Step Transitions 

A prediction of the future state at time X k+m given only the current value at time 

X k is contained in the m-step transition probabilities given by 

P~m,m+k> = Pr{X = 1·1x = i} 
y m+k k • (7.5) 

The step probability PJ"'·"'+k) is often represented by PJ"'>. All possible paths (sequences 

of states) between Xk and Xm+k must be considered to determine the step probabilities; 

A recursive procedure for calculating the m-step transition probabilities is given by the 

Chapman-Kolmogorov equation. The discrete form of this equation is 

p~m,m+k) = " p(m,r) p~r,m+k) m < r < m + n 
y L.J ,r IJ , • (7.6) 

keS 

Letting p<m> represent the m-step transition matrix, the Chapman-Kolmogorov equation 

for the process's transition matrix can be written by 

p<"'> = P"'. (7.7) 

That is, the m-step state transition matrix is simply the one-step state transition matrix 

raised to the mth power. 

Speech Parameters and Markov Chains 

If speech is considered a Markov process of order m, then a set of hot deck similar 

responding units can be found by evaluating probabilities of sequential vocoder 

parameters, i.e., the Markov chain probabilities. This method is similar to the waveform 

replication techniques discussed in Chapter Five. However, waveform repHcation uses a 

history buffer containing less than a half-second of speech to determine the best 
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substitution data. A Markov chain method can use statistics of voice coding parameters 

collected off-line on large amounts of speech. Statistics collected from ample data will 

provide a much better estimate of the behavior of speech parameters, and this behavior 

can be used to determine the most likely missing parameters. The receiver will have the 

parameter statistics available so when a speech frame is lost, it can use the collected 

statistical information to determine the most likely parameters. 

For this notion to succeed, the conditional probabilities, PiJ, must be stationary 

and the initial state, q(x), defined by (7.4), must be known. It is facile to assume that all 

speech begins in silence, so the initial state consists of vocoder parameters representing 

silence. It is also reasonable to assume that the transition probabilities are not dependent 

on time since a speech signal is considered statistically stationary on a short time basis. If 

there are any closed sets in the state space, these may be employed to more efficiently 

predict missing parameters. 

Prior experiments with voice coders for this research showed that the quality of 

reconstructed speech is more degraded by inaccurate pitch and gain than by inaccuracies 

in the other parameters. If accurate values for pitch and gain can be determined, the other 

parameters can be calculated using simple methods, such as smoothing or replication. 

Increased prediction accuracy may be obtained by including additional vocoder 

parameters (e.g., spectrum) at the expense of increased complexity. 

Examination of approximately 21 seconds of speech processed through MELP 

(952 frames) indicated that the individual transition probabilities for pitch and gain 

resembled a second order Markov process. Figure 7.1 illustrates the second order pitch 
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transitions for MELP pitch. The current pitch value is shown on the abscissa and the 

percentage of transitions to that value is shown on the ordinate. In this figure, both of the 

previous pitch values were quantized to the unvoiced state (represented with pitch=O). 

Over half of the frames with this transition characteristic remained in the unvoiced state; 

however, there were several other transitions to other pitch values. 

0.6 

0.5 

-~ 0.4 
:0 

C'Cl 
..0 e 
a.. 

Pitch Transitions, O ~o ~ x 

1)~-----
1 ------- Most probable next pitch 

Transitions from 

Next Pitch 

Figure 7.1 Probability of 2nd order pitch transitions 

The statistics from the speech data were used to create a lookup table based on the 

highest probability transitions for pitch and gain ( e.g., 0 ~ 0 ~ 0 for the pitch data in 

Figure 7.1). Markov Chain Prediction (MCP) was tested on a short speech segment by 

determining pitch and gain values in missing frames via table lookup. All other 

parameters were simply repeated. The resulting speech from this method was not 
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-acceptable. Evaluation of the reconstructed speech indicated that errors occurred because 

the pitch parameter also contains voicing information. Several of the most probable 

speech :transitions were voiced~unvoiced or unvoiced~unvoiced; however, some 

transitions did not fo!low the majority and transitioned to voiced (an example of this can 

be seen between 50 and 90 on the abscissa in Figure 7.1). These incorrect pitch/voice 

transitions were the source of the quality degradation. This indicates that either pitch may 

need to be paired with another parameter (such as gain) to create a state, or that pitch 

should be modeled as a higher order Markov chain. 

A 21-second speech file was used to count the number of different pitch-gain 

pairs. This short file contained 428 different pitch-gain states, and over half of these 

states (239) only occurred once. Analysis of the first-order transition probabilities of the 

states showed that most of the states had equiprobable transitions. This data indicated that 

higher-order Markov chains should represent the pitch-gain state transitions. 

Higher Order Markov Chains and the Mixture Transition Distribution 

The calculation of the transition probabilities using the micro maximum 

likelihood estimator for an mth order Markov chain with S states requires sm+ 1 + sm 

memory locations ( sm+t locations to store the individual mth-order state-to-state 

transition counts and sm locations to store the number of times each state is visited). 

Once the transition probabilities have been calculated, sm memory locations are required 

to store the state transition table for lookup. 
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The MELP encoder logarithmically quantizes pitch to seven bits. Of the 128 

possible values Jor pitch, only 100 represent valid pitch values. (Quantized pitch values 

with Hamming· weights of one or two are reserved for error protection.) Representing 

pitch as a second-order Markov chain requires approximately 106 memory locations to 

calculate the transition probabilities. The MELP encoder uniformly quantizes log(gain) 

to five bits: Representing the pitch-gain state as a second-order Markov chain requires 

over 78 x 106 memory locations. Calculating the transition probabilities for these 

parameters as 3rd order Markov chains requires over 108 memory locations for pitch 

alone and over 33 x 109 memory locations for the pitch-gain state. The storage 

requirements for a second-order chain are formidable, but the storage requirements for a 

3rd order chain are excessive (and prohibitive for many computers). Prior to evaluation of 

higher order Markov chains for states of one or more vocoder parameters, a low-memory 

method of creating the lookup table is needed. 

King uses Markov chain random processes (MCRP) based on step probabilities 

([ 46]) to model speech. He creates an MCRP with the same power spectrum as the data. 

The resulting transition matrix is used to generate an MCRP time series that 

approximates the speech. The advantage of using MCRP's to predict the speech is that 

step probability transition matrices do not require large amounts of memory and can be 

calculated using the Chapman-Kolmogorov equations. However, the nature of speech 

indicates that important information may be contained in the path between states, not just 

the end points. 
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In [76] and [77], Raftery describes a low-memory method for determining the 

transition probabilities for· high-order Markov chains using the mixture transition 

distribution (MTD} shown in (7.8}: 

m 

= L(/J1qUoli1) 
J=I 

(7.8) 

where (fJ 1 is the }th of m lag weights, and q(i0 li1) is the transition probability from state 

i1 , the }th state, to state i0 , the current state, in the Markov chain. Raftery's papers do 

not specify approaches for calculating { (fJ} , the lag weights, or Q = { q (ii j)} , the 

transition matrix. He does define the properties for the parameters, however. The 

transition matrix is a column stochastic matrix satisfying 

s 
q(ilj) ~ 0 and Lq(rlJ) = 1,j = 1, ... ,S. (7.9) 

r=I 

A row stochastic matrix is permissible if appropriate indexing is used. The conditional 

probability p(i0 lii,···,i,,,) must be ~ 0, and the lag weights must sum to 1 (there is no 

restriction that O :s; (fJ 1 :s; 1 , although this considerably simplifies the procedure for finding 

the optimal Q and (fJ 's). The MTD reduces the number of independent parameters to 

S(S-l)+m-1. 

Raftery suggests that maximum likelihood estimation be used to find Q and { (fJ} 

usmg 

log L = Z:n(i0 ,ii,···,i,,,)logp(i0 lii,···,i,,,). (7.10) 
n(io ,ii,. ··,im) 
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The number of times that the sequence im ~ im-1 ~ ... ~ io occurs is represented by 

n(i0 ,ii, ... ,im). The sum is over all i0 ,ii, ... ,im with n(i0 ,ii, ... ,im) > 0. For models with 

high values of m or S, the number of potential patterns, (i0 ,ii, ... ,i,,,), can be extremely 

large. Raftery suggests labeling patterns as 

m 
i = 1 + I(ij -1)sm+l-j. 

j=O 
(7.11) 

The MTD method may not provide mathematically accurate transition probabilities; 

however, the location of most probable next states is more important than accuracy of 

specific probabilities for this application. 

Estimation of Mixture Transition Distribution Parameters 

Because there is no algebraic solution to the maximization of the log-likelihood of 

the MTD model, Berchtold ([5]) has developed a procedure to calculate the lag weights 

and transition matrix that produce the highest log-likelihood. His process requires an 

initialization step and an optimization step. 

Initialization of Mixture Transition Distribution Parameters 

Selection of the proper initial parameters insures that the optimization process 

will converge to the global maximum. Incorrect initial parameters may cause the 

optimization process to converge to local maxima. 

The transition matrix, Q, of the MTD model simultaneously represents all step 

probabilities of the data, i.e., each of the following situations is represented: 
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P(X, ·= jlX,_1 = i) 

(7.12) 

P(X, = jlX,-m = i) 

The MTD lag weight parameters, rp1, ••• ,<pm, scale the transition probability, qif, 

according to the lag. 

Berchtold assumes that the initial lag weights and transition matrix are related to 

the strength of the relations or association between each lagged period and the present. 

To determine the initial values, he first forms a cross-table containing the number of 

events of the form X,-g = ig and X, = i0 , where g is the lag between states. The cross-

table takes the form 

(7.13) 

where Cg(p,q) is the number of times X,_g = state# p and X, = state#q. There are m 

separate cross-tables, one for each lag. 

Berchtold uses Theil's association measure ([93]), u, to compute the strength of 

the relation between each lag (i.e. m delays) and the present. Theil's association measure 

is based on Shannon's entropy and takes a value on the space [0,1]. A value of O indicates 

independence between the rows and columns of the cross-table and a value of I indicates 

perfect association. Theil's u is calculated by 
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s s (C(i ·)C (· 1·)) 
LLCg(i,j)log2 g ' . . g ' 
i=lj=I Cg(1,1)TCg 

ug = s (C ( ")) ' 
"'C (· ") lo g ·,J ~ g ,] g2 ,.,.,,, 
1=l .1 L-g 

(7.14) 

where 

s 
Cg(i,) = L Cg(i,j) (7.15) 

j=l 

1s a row sum, 

s 
Cg(·,j) = L Cg(i,j) (7.16) 

i=l 

is a column sum, and 

s s 
reg ~II Cg(i,j) (7.17) 

i=lj=l 

is a matrix sum. 

The initial lag weight vector is calculated by normalizing the association measure, 

(7.18) 

and the initial transition matrix is the kth order transition matrix, 

Qk where k = argmaxg=I, ... ,m ug (7.19) 
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Qg = [P(X, = jlX,_g = ig)] 

= 

Cg(l,l) Cg(l,S) 

Cg(l,) Cg(l,) . . . . 
Cg(S,S) 

Cg(S,) 

(7.20) 

These initial parameters are guaranteed to cause the optimization process to converge to a 

global maximum. 

Optimization of Mixture Transition Distribution Parameters 

Berchtold's optimization process iteratively modifies the lag weights and 

transition matrix until the increase in log-likelihood falls below a threshold. The set of 

MTD parameters is divided into S+ 1 subsets: S rows of the transition matrix and the 

vector of m lag weights. Each of these subsets sum to one .. The optimization process 

analyzes the partial derivatives for each of these subsets to determine which elements 

within the subsets to modify. The partial derivative with respect to the kth lag parameter 

is calculated by 

Blog(L) " (" . ) q;k;o = .L..Jn 10, ••• ,1111 • • • , 

Brpk n(i0 , ... ,,.,) p(zoll1,· · · ,1111) 
(7.21) 

and the partial derivatives with respect to the rows of the transition matrix are calculated 

by 

(7.22) 

The partial derivative gives a measure of the local impact produced by the change 

of one parameter upon the log-likelihood. An increase or decrease in one parameter 
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requires a corresponding decrease or increase of another parameter to maintain the 

constant sum. The log-likelihood· is . improved by increasing the parameter corresponding 

to the largest derivative and decreasing the parameter corresponding to the smallest 

derivative. The algorithm changes both parameters by the same amount, 5. Modification 

of the lag weights follows the iterative procedure shown in Figure 7 .2. 

Calculate lag 
\\eight partial 

derivative. 

Choose maximum 
and minimum partial 
derivatives (8max, 0mm) 

Ad just 8 to insure 

q.,( ama,J + 8 ~ 1 
and 

q.,( 8 min) - 8 2 0 

Figure 7.2 

<f.'(Oma,J+ = 8 
q.,( 0min )- = 8 

Calculate log(L) with 
new parameters 

? 

8<omm 
? 

NO 

8=8+2 

YES 

YES 

Calculation of Optimal Lag Weights 

i 
C Stop 

J 

The optimization process improves the transition matrix by following the procedure 

illustrated in Figure 7.2 on each individual row. During each iteration of the optimization 

process, all S + 1 MTD sets are individually evaluated and improved, if improvement is 
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possible. After all sets are evaluated, the· optimization process calculates the improved 

log-likelihood. When the increase in · log-likelihood falls below a threshold, the 

optimization process ends. The overall optimization process is shown in Figure 7.3. 

No 

Yes 

Figure 7.3 

Start 

Calculate 
New cp 

Calculate 
New 
Q(i,:) 

Calculate 
log(L),,ew 

Overall Optimization Process 

Figure 7.3 does not detail all optimization processing. However, the operational flow is 

clearly evident. 
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Mixture Transition Distribution Implementation 

Markov chain prediction with the MTD was tested with two vocoders: MIL-STD-

3005 MELP and GSM 6.10. Since previous experiments in this research demonstrated 

that independent prediction of vocoder parameters performed badly, the states of the 

Markov chain contained combinations of vocoder parameters, e.g., all triads of pitch, 

gain, and spectrum parameters that occur in the training data. Selecting the vocoder 

parameters to include in the state is a challenging problem. If all of the parameters are 

included, the amount of memory required to calculate the transition table and lag weights 

is prohibitive for most computers (approximately 9 x 1015 combinations for the MELP 

algorithm). Even limiting the number of parameters to three or four can result in too 

many combinations for a desktop computer to manage, depending on the number of 

quantized values for each parameter. 

It is likely that not all combinations of vocoder parameters will occur. However, 

as the number of possible parameter combinations increases, the amount of training data 

required to find even the more probable combinations also increases. If the training 

routines for calculating the optimal transition matrix and lag weights do not have 

sufficient data, then the operational data will contain parameter combinations that didn't 

occur in the training data thereby disabling prediction and decreasing the quality of the 

reconstructed speech. 

MCP with Mixed Excitation Linear Prediction 

The first test of this system used the MELP 2400 bit/second MIL-STD-3005 

algorithm described in Chapter Two. The parameters comprising the state were chosen 
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from the 24 most important parameters published in the standard ([65]). These bits are 

shown in Table 7.1. 

Parameter Bits Voicing 

LSFl 1-7 Voiced and Unvoiced 

LSF2 3-6 Voiced and Unvoiced 

Gain2 2-5 Voice and Unvoiced 

Pitch/Voicing 2-7 Voiced and Unvoiced 

Bandpass Voicing 4 Voiced 

Aperiodic Flag 1 Voiced 

Sync 1 Voiced and·Unvoiced 

Table 7.1 Twenty-four Most Important MELP Bits 

The first column lists the MELP parameters, and the second column provides the bits 

from those parameters that are considered among the most important. The third column 

tells which voicing state requires the parameter. If all these parameters except sync are 

used to define a state, the number of possible combinations is 8,388,608-requiring over 

1000 terabytes of memory to train and over 200 terabytes of memory to store the 

transition matrix once it is calculated. Informal listening indicated that if all other 

parameters from missing MELP frames are repeated, having the correct seven-bit 

pitch/voicing and five-bit second-gain parameters (i.e. pitch/voicing, gain2) had the 

largest effect on quality, so the states represent this parameter pair. 
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MELP Mixture Transition Distribution Parameters 

The state look-up matrix, which matches pitch-gain pairs to state numbers, is 

ordered on quantized pitch values first, then on quantized gain values i.e., 

(P=0,G=0),(P=0,G=l),(P=0,G=2), ... ,(P=l27,G=31). The training data for 

calculating the optimal transition matrix and lag weights consisted of 25 approximately 

equal sized speech files from 25 different talkers ( 12 females, 13 males) totaling 19. 6 

minutes (52,293 MELP frames). The training data contained 2,209 of the possible 4096 

pitch-gain states. The ordered pitch-gain pairs associated with each state are shown in 

Figure 7.4. 

=1:1: 
(I) -ro 

u5 

2209 

0 
31 

Quantized Gain 

MELP State Matrix 

127 

Quantized Pitch 

Figure 7.4 MELP State Matrix 
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The quantized pitch-gain pair values are shown on the abscissa and ordinate, with the 

state number indicated by the height. Gaps in the plot show quantized pitch values with 

Hamming weights of one or two bits that MELP does not use. It is evident in this plot 

that the lower, voiced pitches did not occur with all possible gains. 

Berchtold's initialization and -optimization procedures were performed for a 

second-order Markov chain. The training data contained 34,591 second-order transitions 

of the pitch-gain states with a slightly higher association for first-order transitions 

( rpinit = [0.52,0.48] ). The optimization procedure analyzed the lag weights and 2209 rows 

of the transition matrix 28 times to produce the optimal MTD parameters. Figure 7.5 

shows the changes in log-likelihood and lag weights throughout the optimization process. 
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Figure 7.5 MELP MTD Optimization 
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The top plot shows the improvement in log-likelihood. The initial log-likelihood is 

denoted as an X, the log-likelihood measurements due to changes in lag weights are 

marked with dots, and the locations where the first row of the transition matrix is 

modified are shown with plus-marks. The bottom plot illustrates the changes in lag 

weights to improve the log-likelihood. The values of the first lag weight, rp1 , are denoted 

by X's and the values of the second lag weight, rp2 , are marked with O's. Over 7200 

changes were made to the MTD parameters in 28 iterations to provide an increase of 

12,085 in log-likelihood. 

The sharp increases prior to the first four dots on the top plot illustrate how the 

initial lag weight alterations yield substantial improvements in log-likelihood. As the lag 

weights converge to the optimal values, the magnitude of the log-likelihood improvement 

decreases. The decreasing slope of the line between lag weight changes indicates that the 

transition matrix exhibits the same trend of diminishing improvement as it converges to 

the optimal value. The decreasing · distance between successive plusses on the log

likelihood line depicts the abating number of rows that are changed each time the 

optimization process evaluates the transition matrix as the individual rows approach their 

optimal values. 

The bottom plot shows that rp1 -+ 1 and rp2 -+ 0 to reach their optimal values. 

The first four changes are more substantial than the later ones, and by the seventh 

iteration, the lag weights have reached their optimal values. The lag weights remain 

unchanged through the final 75% of the iterations. 
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The optimization procedure produced second-order lag weights, [0.953 0.047]. 

The lag weights indicate a nearly' first-order Markov chain. Figure 7.6 shows the 

transition matrix produced with th~ optimization process .. 
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Figure 7.6 MELP Optimal Transition Matrix 

This figure uses three different sized dots to represent the magnitude of the probabilities 

in the transition matrix. The smallest dots mark the 20,803 locations where O < Q ~ 0.5 . 

The medium dots represent the 112 locations where 0.5 < Q < 1.0 , and the largest dots 

represent the 409 locations where Q = 1.0 . 

Only 0.44% of the transition matrix is non-zero. This indicates the potential for 

stronger prediction than if the probabilities were spread among more matrix elements. A 
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linear concentration of non-zero probabilities is evident along the diagonal, left edge, and 

bottom edge of tile transition matrix. The heavy weighting of the first lag weight, 

indicating a strong association for first order transitions, must be considered when 

analyzing the structure in the transition matrix. The diagonal concentration indicates the 

tendency of the final state to repeat, i.e., if the transition is s0 ~ sh, the tendency is for 

the following state to remain sh. 

Knowledge of the pitch and gam values compnsmg the individual states is 

required to analyze the probability concentrations along the left and bottom edges. The 

pitch value of the first 29 states is zero, which synthesizes unvoiced speech in the 

receiver. The gain value of the first 29 states increases from zero to 29, which synthesizes 

logarithmically increasing energy in the receiver. The first state, therefore, represents 

unvoiced speech with zero energy, i.e., silence. Correspondingly, the first column 

represents the probabilities when the next state is silence, and the first row represents the 

probabilities when the current state is silence. The concentrations along the left and 

bottom edge of the plot show that many states transition to and from silence. 

The optimal transition matrix has a large number rows (18.5%) with only one 

probability ( = 1.0). These rows in the initial transition matrix contained one probability, 

also. The training data showed a larger association for first order transitions, so the initial 

transition matrix is the transition matrix of the first order Markov chain, according to 

(7 .19) and (7.20). This suggests two possibilities: 1) these state transitions occurred only 

once, or 2) these transitions always ended in the same state. If the former possibility is 

true, then this transition is rare if sufficient data was used to train the initial parameters. If 
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the latter possibility is true, then this transition can be predicted with high confidence. 

The first-order cross-table (used to calculate Qinit) for this implementation contained 404 

states with only one transition, indicating that most of the rows with only one probability 

werethe consequence of unique state transitions. 

MELP Mixture Transition Distribution Performance 

When the receiver detected a missing frame, it calculated the probability of 

transitioning to each of the 2209 states from the previous two states using (7.8). If the 

highest MTD conditional probability exceeded a minimum threshold, the algorithm chose 

the state with this probability .. lt then used the pitch and gain associated with the selected 

state to synthesize the missing frame, and all other parameters were repeated. If the 

highest calculated MTD probability did not exceed the threshold, then the algorithm 

repeated all vocoder parameters from the previous frame, since frame repetition sounds 

better than poorly predicted speech. If the prediction algorithm encountered a pitch-gain 

pair that was not represented in the state matrix, it used frame repetition. When several 

sequential frames were missing, the receiver used the same procedure for each missing 

frame i.e., it used the parameters of the previous predicted frames to predict the 

parameters for future frames. Most of the predicted states exceeded the minimum 

threshold, but occasionally a pitch-gain pair occurred in the test data that wasn't in the 

state matrix, and therefore could not be predicted. 

MELP missing frame compensation using MTD was compared to frame repetition 

using both objective and subjective methods. The difference between missing speech 

compensated with the two techniques was quantified objectively with spectral and energy 
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distance measures and evaluated subjectively by discussions with volunteer listeners. The 

evaluation process insured that all MCP test segments contained pitch-gain pairs that 

were predictable, i.e. all pairs in the test data also occurred in the training data, and the 

highest calculated MTD probability exceeded the threshold. 

SPECTRUM AND ENERGY DISTANCE MEASURES 

Although no simple objective distance measure adequately models human 

perception, the LP norms have been shown to have some correlation with human hearing 

for measuring spectral differences ([34]). The LP norms for the difference between two 

spectral models, V ( B) , with sampling frequency Fs are defined by d P where 

(d )P = fFS/2 IV(B)lp dB 
P -FS/2 F, 

s 
(7.23) 

Speech researchers commonly use the L2 norm, or Euclidean distance measure, to 

measure spectral distance for speech. The discrete form of the L2 norm for the difference 

between two sampled spectrums, V ( k) , is 

k 
(d2)2 = I V 2(k) (7.24) 

n=I 

This distance measure provides an assessment of the effects on spectrum, however, a 

time-domain measure is also beneficial for evaluating the two frame compensation 

techniques. A simple but perceptual time domain measurement is the energy in the 

speech segment. The speech energy is calculated using 

E 2 = Yx yr (7.25) 
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where Y is a row vector containing the samples in the segment. The energy measurement 

is directly related to the gain parameter in the MCP states. 

Voiced, unvoiced, background, and transitional segments of speech were 

randomly chosen for the distance measurements. The network. simulator described in 

Chapter Four removed four frames of speech from the segments and replaced them using 

MCP and frame repetition. Figure 7.7 shows the speech segments used for the objective 

analysis. 
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Figure 7.7 Speech used for MELP Objective Error Calculations 

The labels of the twelve plots in Figure 7.7 denote their contents. The plots labeled 

"Clean" show MELP-synthesized speech with no missing speech. The plots labeled 

"RPT" show speech received with four missing frames and compensated with frame 

repetition. The plots labeled "MCP" show speech received with four missing frames and 
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compensated with Markov Chain Prediction. Each plot shows a few frames of 

uncorrupted speech on each side of the· compensated frames. There is not a substantial 

difference between the voiced speech plots for MCP and frame repetition, but the 

samples compensated using frame repetition have a constant frequency and constant 

magnitude. The effect of this trait is examined further in the discussion on the listening 

test. The unvoiced and transitional speech looks similar for both compensation 

techniques. Neither method is accurate for the transitional speech segment. Markov chain 

prediction increases the signal magnitude for the low-energy portion of the transitional 

speech and the background speech. Fortunately, the low magnitude of the signal keeps 

the perceptual effects of this error negligible. 

The objective measurements calculated the distance between the clean speech and 

each of the compensation techniques for the speech segments shown in Figure 7.7. Table 

7 .2 shows the distance measures for these segments. 
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MCP RPT 

L2 on LP Spectrum 

Voice 31.231 dB 31.648 dB 

· Unvoiced 48.828 dB 48.601 dB 

Transition 48.309 dB 58.698 dB 

Background 56.620 dB 56.620 dB 

Energy Error 

Voice 0.482 dB 0.678 dB 

Unvoiced 1.138 dB 1.826 dB 

Transition 3.021 dB 2.929 dB 

Background 0.055 dB 0.055 dB 

Table 7.2 Objective Measurements for MCP and Frame Repetition with MELP 

Both measurements show that MCP performs better {i.e. the distance is smaller) when the 

missing segments occurred in voiced segments. When the segment is unvoiced, MCP has 

a lower error in energy, but frame repetition has a lower error in the spectrum. The 

spectral match is considerably better for MCP in the transitional speech segment, but the 

energy match is better for frame repetition in this segment. Both techniques perform 

similarly in the background segment for both measures. 

PERCEPTUAL OPINION OF MELP MCP 

Initial listening to speech with packet loss indicated that when less than four 

frames were lost, the parameter smoothing in the MELP algorithm caused lost speech 

compensated using MCP to be perceptibly indistinguishable from lost speech 
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compensated usmg frame repetition. The network simulator removed four to eight 

sequential frames of MELP data (90-180 ms of speech) from a single word in a speech 

sentence for test files containing both male and female talkers. Careful listening to the 

affected words indicated that Markov chain prediction improved the quality of the 

corrupted speech in many of the missing speech segments. In most of the remaining 

segments, the difference in quality was indistinguishable. Figure 7.8 shows speech with 

frame loss reconstructed using both frame repetition and Markov chain prediction. 

Word (trash) with no errors 

l-.,( ~ 111~~ V/Nl~~ w ...... ~1.~JJ1\(11ffli1:\!M!rl:~~ 
I 

I 

Word (trash) with 6 repeated frames 

Word (trash) with 6 predicted frames 

Figure 7.8 Comparison of Reconstructed Speech 

The first plot of this figure shows the word "trash" when the MELP bits were transmitted 

across a network with no packet loss. The second plot shows the same speech segment 

when six frames are lost and reconstructed using frame repetition, and the third plot 
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shows the speech segment when six frames are lost and reconstructed using Markov 

chain probabilities to predict the six missing MELP frames. The section of the plot 

containing the missing speech is marked with dashed lines in all three plots for 

comparison. It is clear that each frame in the second plot has constant energy until the 

voiced~unvoiced transition ("a" ~"sh") is reached at the end of the vowel. MELP 

contains some smoothing that alters the magnitude at this point. The imputed speech 

frames in the third plot clearly do not maintain constant energy. Although it is not evident 

visually, the repeated speech in the second plot had a constant frequency that paired with 

the constant magnitude to produce an unpleasant buzz. The predicted speech in the third 

plot varies in frequency as well as magnitude producing a more acceptable sound. 

Several volunteer listeners compared the two methods for many files of speech. 

Most of the listeners stated that the low-rate voice-coding algorithm introduced 

irregularities that masked the effects of the missing frames, making it difficult to choose a 

preference. When the individual words with the compensated frames were isolated for 

comparison, the listeners preferred MCP to frame repetition. 

MCP with Global System/or Mobile Communications 

The GSM algorithm described in Chapter Two provided a higher quality 

alternative for testing Markov chain prediction. Based on the results from the MELP 

algorithm, pitch and gain were chosen as candidates for the state information. Pitch is 

represented by long term prediction (LTP) lag. Two gains are calculated for this vocoder, 

a block gain, and an L TP gain. The GSM 6.10 standard ([25]) provides a ranking of the 

importance of speech parameters. Table 7.3 provides these parameters. 
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Class Parameters Bits in Class -
MSB:• -- LARI, Block Amplitude 1 5 

2 MSB: LAR2,LAR3 3 
MSB-1: LARI 

3 MSB: LAR4, LARS, LAR6 31 
MSB-1: LAR2, LAR3, Block Amplitude 
MSB-2: LAR1,LAR2 
MSBsl-5: LTP lag 

4 MSB: LAR 7, L TP gain, grid position 25 
MSB-1: LAR4, LARS, LAR6 
MSB-2: Block Amplitude 
MSB-3: LARI 
MSBsS-6: LTP lag 

5,6 Rest of bits 196 

Table 7.3 GSM Bits in Order of Importance 

The first column lists the class numbers in which the GSM designers designated the bits. 

The second column lists the parameters and the bits, and the third column specifies the 

number of bits in each class. The second column uses abbreviations to decrease space. 

"MSB" represents the most significant bit. "MSB-1" represents the second most 

important bit, and "MSB-2" represents the third most important bit. "MSBsl-5" 

represents the first five most significant bits, and the fifth and sixth most important bits 

are "MSBs5-6". 

As the table shows, the block amplitude's importance is ranked higher than LTP 

gain. Combining the six bits of the quantized block gain with the seven-bit quantized 

L TP lag results in 8,192 possible pitch-gain pairs-too many to represent on a desktop 

computer, even if only half of the pairs occur in speech. The L TP gain, however, is 

quantized with only four bits. Pairing the L TP gain with pitch creates only 2048 possible 

combinations. Even if all the combinations occur naturally, the memory on a desktop 
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computer will not be exceeded. As described in Chapter Two, the pitch and lag gain are 

calculated each sub-frame-four times per GSM frame. 

GSM Mixture Transition Distribution Parameters · 

The training data for calculating the optimal lag weights and transition matrix 

consisted of 26 approximately equal sized speech files from 26 different talkers ( 13 

males, 13 females) totaling 20.4 minutes. This represented 61,227 GSM 6.10 frames and 

244,908 sub-frames. The training data contained 324 of the possible 2048 pitch-gain 

states. The pitch-gain pairs in the state matrix were again ordered first on pitch and then 

on gain. Berchtold's initialization and optimization procedure was performed for a 

second-order Markov chain. The training data contained 219,354 second-order transitions 

of the pitch-gain states with a slightly higher association for second-order transitions 

( 'Pinit = [0.49 0.51]). Figure 7 .9 iHustrates the change log-likelihood and lag weights 

throughout the optimization process. 
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Figure 7.9 GSM MTD Optimization 

The top plot shows the improvement in log-likelihood. The initial log-likelihood is 

denoted as an X, the log-likelihood measurements due to changes in lag weights are 

marked with dots, and the locations where the first row of the transition matrix is 

modified are shown with plusses. The bottom plot illustrates the changes in lag weights. 

The values of the first lag weight are denoted by X's and the values of the second lag 

weight are marked with O's. Over 18,000 changes were made to the MTD parameters in 

120 iterations to provide an increase of 84,806 in log-likelihood. 

The top plot shows that the first change in lag weights produces over 82% of the 

entire log-likelihood improvement. The next two lag weight changes produce noticeable 

improvements, but the remaining lag weight changes improve the log-likelihood little 
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more than the individual transition matrix row improvements. The flattening of the slope 

between plusses shows how the improvements decrease as the transition matrix 

converges to its optimal value. The decreasing space between plusses shows that fewer 

transition rows contribute to improvement during each iteration, also. The lag weights 

converge to their optimum in 28 changes during the first 43 iterations. 

The bottom plot shows that rp1 ~ 0 and rp2 ~ 1 as they converge to the optimum 

values. The first three changes are more substantial than the remaining 25, and by the 44th 

iteration, the lag weights have reached their optimum value. The lag weights remain 

unchanged during the final 63% of the iterations. 

The optimization procedure produced second-order lag weights, [0.27 0.73]. 

These lag weights indicate the possibility that this could be a third-order system, but 

third-order initialization and optimization produced lag weights [0.211 0.774 0.015] 

showing that this is a second-order system. Figure 7 .10 shows the optimal transition 

matrix. 
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Figure 7.10 Second Order GSM Transition Matrix 

This figure uses three different sized dots to represent the magnitude of the probabilities 

in the transition matrix. The smallest dots mark the 47,184 locations where O < Q ~ 0.05. 

The medium dots represent the 539 locations where 0.05 < Q ~ 0.02, and the largest dots 

represent the 11 locations where Q > 0.2 . 

The GSM transition matrix has a completely different character than the MELP 

transition matrix. The only common attribute IS the prominent main diagonal, which 

contains the largest probabilities for the GSM transition matrix. Over 45% of the matrix 

is non-zero, and this accounts for the lower priorities overall. The highest probability in 

this matrix IS 0.6, and only two probabilities are greater than 0.3. These lower 
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probabilities forewarn the possibility of weak prediction. None of the rows contain only a 

single probability, and all of the second-order transitions occurred more than once. 

The second-order cross-table exhibited a higher association measure; therefore the 

initial transition matrix contained the second-order step probabilities. The prominent 

diagonal for this matrix indicates the propensity for second-.order repetition, i.e., if the 

second-order state transition is sa ~ sb, the tendency is forthe following state to be sa. 

Four other diagonal concentrations are evident in this plot, two above and two below the 

diagonal. Since the state matrix is ordered first on pitch, then on gain, these diagonals 

illustrate the tendency of the third state to have a larger gain, but the same pitch as the 

first state. 

GSM MCP Implementation and Performance 

Markov chain prediction for GSM followed the same algorithm as for MELP. 

However, because of the sub-frame design of the GSM coder, each 20 ms frame required 

four predictions-one for each 5 ms sub-frame. The prediction algorithm used the third 

and fourth sub-frames from the last correctly received frame to predict the first sub-frame 

of the missing frame, and shifted forward in sub-frames to predict the subsequent sub

frames, as shown in Figure 7 .11. 
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Figure 7 .11 GSM Sub-frame Prediction 

If the probability of the predicted replacement state did not exceed the m1mmum 

threshold, the previous sub-frame was repeated. All pitch-gain pairs found in the test data 

corresponded to a state identified in the training data, but many of the predictions were 

below the minimum threshold. 

GSM missing frame compensation using MTD was compared to frame repetition 

using both objective and subjective methods. The difference between missing speech 

compensated with the two techniques was quantified objectively with spectral and energy 

distance measures and evaluated subjectively by a listening test with volunteer listeners. 

The evaluation process insured that all MCP test segments contained pitch-gain pairs that 

were predictable, i.e. all pairs in the test data also occurred in the training data, and the 

highest calculated MTD probability exceeded the threshold. 

SPECTRUM AND ENERGY DIFFERENCE 

The GSM objective evaluation used the same spectral and energy distance as the 

MELP objective evaluation (equations (7.24) and (7.25)). Voiced, unvoiced, background, 

and transitional segments of speech were once again randomly chosen for the distance 
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measurements. Four frames ·of speech.were removed from the segments and replaced 

using MCP and frame·repetition. ·Figure7.12 shows the speech segments. 
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Figure 7.12 Speech Used for GSM Objective Error Calculations 

The labels of the twelve plots in Figure 7.12 denote their contents. The plots labeled 

"Clean" show GSM-synthesized speech with no errors. The plots labeled "RPT" show 

speech with four missing frames compensated with frame repetition, and the plots labeled 
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''MCP" show- speech -with four missing frames compensated with Markov Chain 

Prediction. Each ·plot· shows a few frames of speech on each side of the compensated 

frames. A visual analysis of these plots yields results similar to that of the MELP plots. 

The voiced speech segment shows a marked improvement in the speech reconstructed 

using MCP over that of frame repetition. The compensated unvoiced and transitional 

speech appears similar for both methods. The background speech appears to have the 

same energy for each compensation technique, but the signals look very different. With 

the low magnitude of the signal, however, the differences are imperceptible. 

The objective measurements calculated the distance between the clean speech and 

each of the compensation techniques for the speech segments shown in Figure 7.12. 

Table 7.4 lists the objective measures for these speech segments. 

MCP RPT 

Lz on LP Spectrum 

Voice 18.051 dB 19.896dB 

Unvoiced 9;686 dB 10.662 dB 

Transition 52.302 dB 52.303 dB 

Background 48.438 dB 34.887 dB 

Energy Differences 

Voice 0.124 dB 1.772 dB 

Unvoiced 0.147 dB 0.162 dB 

Transition 4.085 dB 4.085 dB 

Background 4.149 dB 3.214 dB 

Table 7.4 Objective Measures for MCP and Frame Repetition with GSM 
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Both objective measures show that the MCP error is smaller, and is therefore superior to 

frame repetition in the voiced and unvoiced segments. Both compensation approaches 

perform similarly for the transitional segment, and frame repetition is better for the 

background segment. 

PERCEPTUAL OPINION OF GSM MCP 

Initial listening to speech with packet loss indicated that when less than three 

frames were lost, lost speech compensated using MCP was perceptibly indistinguishable 

from lost speech compensated using frame repetition. The network simulation program 

removed three to six sequential frames of GSM data (60-120 ms of speech) from a single 

word in one-sentence test files containing both male and female talkers. Sixteen listeners 

compared missing speech reconstructed with Markov chain prediction to missing speech 

reconstructed using frame repetition. Replication of the last correctly received sub-frame 

sounded better than replication of the four sub-frames of the last correctly received frame, 

so the listening test compared sub-frame repetition to MCP. Listeners chose the file that 

sounded better. The listening test provided a "No Difference" choice for listeners who 

considered the quality of both files equal. The results shown in Table 7.5 discount the 

"No Difference" responses. 

3 Missing 4 Missing 5 Missing 6 Missing 
Frames Frames Frames Frames 

Markov Chain Prediction 59% 83% 62% 75% 

Frame Repetition 41% 17% 38% 25% 

Table 7.5 Results of Listening Test for GSM 6.10 
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As Table 7.5 shows, listeners preferred speech reconstructed using MCP to speech 

reconstructed using frame repetition. 

Markov Chain Prediction Using Future Frame 

Using information on both sides of the missing frame, i.e., both past and future 

frames, has the potential to further improve the accuracy of the prediction and therefore 

improve the quality of the reconstructed speech. In the previous discussion, the prediction 

algorithm used only past frames to predict the missing speech, and the variable argument . 

from (7.8) was i0 • However, if a future frame is used to aid prediction, the variable 

argument from (7.8) is i1 , i.e., the receiver calculates the probability of transitioning to i0 

from i"' ~ im-i ~--·~ i2 and each of the S possible states for i 1 • The receiver selects the 

i1 producing the highest probability to reconstruct the missing speech segment. This 

procedure is statistically valid if the data is stationary. 

Markov chain prediction usmg future frames was tested using the MELP 

algorithm. Speech quality is noticeably improved for one missing franJ.e, especially in 

transition regions. However, a frame from the future must be available to predict the 

missing parameters. Since most packet losses occur in clusters, this procedure is only 

applicable for the last missing frame. 

Markov Chain Prediction Complexity 

Complexity of Markov chain prediction is dependent on the number of states and 

the order of the Markov chain. As the size of these factors grows, the number of 

operations and memory required for both training ( creating the optimal lag weights and 
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transition matrix) and utilization (determining parameters for missing frames) increases. 

Training requires far more resources than utilization. The number of operations for 

utilization can be decreased at the expense of memory by pre-calculating all possible 

transition probabilities and storing them in a look-up table. 

Memory 

The amount of storage required for MTD training and utilization is dependent on 

many factors: the number of states, S; the Markov chain order, m; the number of vocoder 

parameters in a state, d; the number of bits in the parameter used as a lookup variable, b; 

and the number of mth-order state transitions, N, in the training data (i.e., N is the number 

of unique mth-order state transitions in n(i0 , ••• ,i"') ). The voice-coding algorithm that 

creates the bit-files used for training also requires storage space, but it will not be 

considered for this analysis. This analysis assumes that every variable and constant will 

occupy one word of memory. Since the number of bytes per word changes for different 

processors, (i.e., a digital signal processing chip may have only four bytes per word, and 

a desktop computer can have four to 64 bytes per word), the estimates reported are for 

memory words, not bytes. 

The training process consists of an initialization process and an optimization 

process to create the lag weights and transition matrix. The amount of memory required 

for these processes is shown in Table 7.6. 
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Initialization · · 

Optimization 

Total 

Table 7.6 

Words of Memory 

S2(m+1)+S(2+d)+2(m+N)+3·2b +9 

2(S2 +m+N) 

S2(m+3)+S(2 +d)+4(m+ N) +3·2b + 9 

Memory Words Needed for MTD Training 

The appendix contains more information on the calculation of estimates for the amount of 

memory occupied by training. 

The MTD calculates conditional probability each time a m1ssmg frame is 

detected. The amount of memory required for utilization is far less than the amount of 

memory required for training. Only the transition matrix and lag weights are needed, 

resulting in S2 +m+ 1 words of memory. The appendix contains more information on the 

calculation of estimates for the amount of memory occupied by utilization. 

Number of Operations 

The number of operations required for MTD training and utilization is dependent 

on four factors: the number of states, S; the Markov chain order, m; the amount of 

training data; and the number of mth-order state transitions, N, in the training data. 

Initialization and optimization of the lag weights and transition vector comprise 

the training process. Increasing the amount of training data increases the number of 

operations required by the voice-coding algorithm. Vocoder complexity is a substantial 

part of the processing requirements, but it is not quantified for this analysis. Increasing 

the amount of training data also increases the possibility of finding new states and new 
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.mth-order state transitions. Table 7.7 shows the number of operations (adds, multiplies, 

and divides) for initialization and optimization training processes. 

Initialization Optimization 

+ m(605S2 +604S + 1)+ N(603+m) N(m(S+2) +S +604) +2 

X m(l 804S2 + l802S) + N(l 802 + m) N(m(S+2)+S + 1803) 

m(3S(S+l)+l)+S2 +2N N(S+3) 

Table 7.7 Number of MTD Operations for Training by Type 

The appendix contains details on the calculation of estimates for the number of 

operations consumed by training. The total number of operations (initialization + 

optimization) for training is shown in Table 7.8. 

Total 

+ N(I207 + 3m+ S(m + 1)) + m(I + S(604 + 605S)) + 2 

X N(1802+m(S+3))+S(2m(902S+901)+ l)+ 1803 

N(S +5) +S(S(l + 3m) +3m) + m 

Table 7.8 Total Number ofMTD Operations 

The number of transitions dominates the other factors (m << S << N ). Training will take 

fewer operations if less training data is used, but the resulting predicted speech would be 

low quality. 

Using the MTD to calculate conditional probabilities consumes far fewer 

processor operations than training. Calculation of all S possible replacement states to 

determine which state will best replace the missing data requires Sm adds and Sm 
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multiplies. The appendix contains details on the calculation of estimates for the number 

of operations consumed by utilization. Creating a lookup table can decrease the number 

of operations required for utilization at the expense of additional memory. 

Markov Chain Prediction Delay 

The amount of delay accrued for Markov chain prediction is dependent on the 

placement of the missing frame in the conditional probability, p(i0 I i1 , ••• , i,,,) , and the 

frame size for the voice-coding algorithm. If the missing frame is i0 , then only past 

frames are required to calculate the probabilities. Markov chain prediction using state 

information from only past frames adds no delay to the communication process. If the 

missing frame is considered any of i1 , ••• , i,,, , then future frames are required to calculate 

the probabilities. If future frames are used, then one frame of delay for each future state 

desired is added to the communication process. 

Discussion 

Experiments with both MIL_STD-3005 and GSM 6.10 indicated that Markov 

chain prediction works best in non-transitional areas of speech. In voiced speech the 

difference is more noticeable than in unvoiced speech, due to the higher magnitude in the 

voiced signal. When the number of missing frames is small, there is no noticeable 

difference in the quality of frame repetition and MCP. When the number of sequential 

missing frames is larger, MCP doesn't always reproduce the correct sound, but it does 

synthesize speech that's more appealing than frame repetition. If the voice coding 

algorithm degrades the quality of speech appreciably, the effects of missing frames are 

difficult to detect, and frame repetition performs as well as MCP. 
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Frame repetition is less complex than MCP, but there is a memory/computation 

tradeoff for MCP. If memory is available for lookup tables, MCP requires very little 

computation. If memory is precious, direct calculation of the Markov chain probabilities 

for each state requires little memory. Chapter Nine provides a comparison of MCP and 

other missing frame compensation techniques. 
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CHAPTER EIGHT 

OTHER .APPLICATIONS AND SUGGESTIONS FOR FUTURE STUDY 

As with all research, the algorithms described in this thesis have application 

beyond the problem that motivated their discovery and their analysis is not exhausted. 

This chapter lists other applications that could benefit from these techniques and 

describes research that may yield improvements. 

Other Applications 

Although this work is directed toward frame loss in packet-switched networks, its 

usefulness is not restricted to this environment. Successful frame-loss compensation 

techniques can be used to overcome other communication challenges. 

Wireless v01ce communications is a rapidly growing field for personal 

communication. It uses low rate voice coding algorithms to provide more efficient use of 

the wireless spectrum. A wireless transmitter sends individual vocoder frames 

sequentially to the receiver. Deep fades, a common malady in wireless communications, 

. essentially remove entire portions of the signal. Frame compensation techniques can 

restore the frames affected by deep fading. Commercial wireless communication, such as 

the aviation industry where speech conversations sometimes contain missing portions, 

can similarly benefit. 

Communications through harsh channels may not result in the loss of entire 

frames, but the received data may be too corrupted for the error detection and correction 

routines. Receivers can use frame compensation techniques to provide high quality 

communication even in the presence of bursty errors. 
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Hostile parties often use jamming to prevent communication. Spread spectrum 

techniques can reduce. the effects of jamming ·:by ·Spreading the signal across many 

frequencies, but some signal portions may still pass through jammed frequencies and 

these portions will accordingly suffer signal loss and therefore frame loss. Frame 

compensation techniques can restore the missing frames that are corrupted by jamming. 

Suggestions for Future Study 

The two solution,s for coping with m1ssmg speech described in this thesis, 

Naturalness Preserving Transform reconstruction and Markov chain prediction, are 

superior to common techniques. However, further research may yield improvements to 

the efficiency of the algorithms and to the resulting speech quality. This chapter describes 

several possible research areas for both methods. 

Naturalness Preserving Transform Reconstruction 

Adding a second loop to the NPT may improve the ability to reconstruct missing 

frames. The first loop computes the NPT transform of speech segments as discussed 

previously. The second loop computes an NPT transform on a combination of 

transformed segments. The transmitter sends the doubly transformed segment across the 

network. 

This paper discusses scalar quantization for the transformed speech signal, but 

more efficient quantization techniques, such as vector quantization, have not yet been 

addressed. Effective vector-quantization designs will substantially decrease the bit rate. 
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The ·. effects of random bit errors on NPT reconstruction have not been 

investigated. Reconstruction using NPT relies on knowing the location of correct 

transform data. Random errors in the received transformed· data will effect the accuracy 

of reconstruction, and the level of speech quality deterioration as a function of bit errors 

should be determined. If the reduction in speech quality is deleterious, adequate recovery 

techniques will be required. 

It is desirable to further reduce the overhead required for NPT reconstruction 

without severely sacrificing quality. A low-quality signal that has been reconstructed 

from a minimal amount of overhead information may be improved through common 

post-processing techniques. 

The analysis of NPT reconstruction with parametric coders was not extensive. A 

study of the amount of overhead required for vocoder parameters will improve the 

efficiency for this application. Also, other waveform and parametric voice coding 

algorithms should be tested. 

Special purpose hardware development of the NPT algorithm is another area of 

research, as the speech applications in the commercial telephony are abundant. 

Markov Chain Prediction 

Currently, sequential m1ssmg frames are replaced usmg the same procedure, 

therefore a prediction error in an early frame propagates to ensuing frames. Trellis-type 

decoding combined with the Markov chain prediction may generate more accurate 

prediction of consecutive missing speech frames. It may also be advantageous to 
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calculate the accumulated probabilities of sequential m1ssmg frames for threshold 

comparison rather than individual probabilities. 

Memory limitations restrict the number of parameters comprising a state. It is 

possible that a cascading transition matrix structure would allow consideration of more 

parameters without substantially increasing memory requirements. The first transition 

matrix, Q1 , contains the transition probabilities for combinations of two or three 

parameters. The second transition matrix, Q2 , contains the transition probabilities for one 

to two additional parameter combinations, and subsequent transition matrices represent 

other parameters. The inter-dependence of the parameters is not exploited with this 

procedure, but the parameters can be predicted rather than simply repeated, thereby 

increasing quality without substantial memory increases. 

Transition reg10ns are challenging for MCP. An extensive study of vocoder 

parameters may reveal combinations or sequences of combinations that accurately predict 

voice transitions. When a possible transition is detected, the prediction algorithm could 

use alternate parameter combinations and transition matrices for prediction. This will 

improve both the quality and the intelligibility of the reconstructed speech. 

The MCP implementation described in this paper is a generic algorithm and does 

not incorporate any vocoder-specific enhancements. If MCP employs characteristics of 

individual vocoders to improve prediction or enhance the predicted parameters the 

resulting speech will sound better. 
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The structure of the MCP transition matrix was not thoroughly analyzed in this 

study. It is possible that a thorough study of the structure of the transition matrix will 

reveal techniques for more efficient storage, or dependencies for improved prediction. 

Repetition is employed for missing parameters that cannot be predicted, i.e., if the 

parameter is not included in the state table, if the transition probability is below the 

threshold, or if a parameter combination is found in the input data that does not exist in 

the state table. This simple algorithm certainly contributes to quality degradation in the 

resulting speech. Higher quality solutions to these situations, such as smoothing, should 

be identified and incorporated. 
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CHAPTER NINE 

CONCLUSIONS 

This thesis describes two original and innovative techniques for improving the 

quality of voice communication across lossy packet-switched networks. The two 

techniques, Naturalness Preserving Transform reconstruction and Markov Chain 

Prediction, improve speech quality by recreating the missing speech data that was 

contained in lost packets. Both techniques are portable across networks and across voice 

coding algorithms. Based on both objective and subjective measurements, the resulting 

speech quality from both algorithms is far superior to baseline frame repetition. 

The Naturalness Preserving Transform is based on a stochastic operator that uses 

a normalized Hadamard matrix. This unitary transform has properties that enable an 

iterative reconstruction process that can achieve very high quality speech on networks 

with high packet loss rates. The reconstruction process relies on knowing a portion of the 

original speech matrix, which it inserts as overhead if necessary. Naturalness Preserving 

Transform reconstruction requires conversion of data at both the transmitter and the 

receiver, and will increase the bit rate of the original voice-coding algorithm to some 

extent. The magnitude of the bit rate increase depends on the amount of overhead and the 

quantization efficiency. 

The Markov Chain Prediction technique models v01ce coding parameters or 

combinations of parameters as states in a Markov chain. It relies on state transition 

probabilities that were previously calculated from training data and predicts missing 

parameters using data from previous packets and the from state transition probabilities. 
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Since high order Markov chains with many states can require prohibitive amounts of 

memory to store the transition probabilities, the algorithm employs a Mixture Transition 

Distribution to represent the Markov chain. A Mixture Transition Distribution calculates 

high-order state transition probabilities using a two-dimensional state transition matrix 

that represents all step transitions, and a lag weight vector that scales the step transitions. 

The lag weight vector and transition matrix are calculated from large amounts of training 

data. 

A direct comparison of the attributes of Naturalness Preserving Transform 

reconstruction, Markov Chain Prediction, and baseline frame repetition is difficult 

because of the diversity of the techniques. For instance, the memory requirement of 

Naturalness Preserving Transform reconstruction is dependent on the size of the 

Hadamard matrix, while the memory requirement of Markov Chain Prediction is 

dependent on the number of states, and neither of the dependencies can be accurately 

scaled for direct comparison. This is not to say that no comparisons can be made, 

however. Several important features of the methods can indeed be ranked, as shown in 

Table 9.1. 

In the table, ranking ranges from one to three where one is the best and three is 

the worst. "Memory" refers to the amount of memory required for operation of the 

procedure, "Number of Operations" refers to the quantity of processor operations 

required by the procedure, and "Delay" refers to additional time between the talker and 

the listener in addition to what system already requires. "Speech Quality" refers to the 

quality of the resulting speech when the channel experiences high packet loss rates. 

126 



"Vocoder Porta~ility" refers to dependence on particular features of specific voice coding 

algorithms, and "Network Portability" refers to dependence particular features of specific 

network protocols. "Overhead" refers to additional bits in addition to what the voice 

coding algorithm already produces, and "Ease of Upgrade" refers to the complexity of 

introducing the algorithm to an existing communication system. An ideal system requires 

little memory, requires few processor operations, accrues no delay, produces high quality 

speech, is portable across vocoders and networks, adds no overhead, and is easy to insert 

into existing network communications systems. 

NPT Markov Chain Frame 
Reconstruction Prediction Repetition 

Memory 2 3 1 

Number of Operations 3 2 1 

Delay 2 1 1 

Speech Quality 1 2 3 

Vocoder Portability 1 1 1 

Network Portability 1 1 1 

Overhead 2 1 1 

Ease of Upgrade 2 1 1 

Table 9.1 Comparison of Missing Frame Compensation Algorithms 

Note that for many attributes, two or three methods are equally ranked. Frame repetition 

is a portable, low complexity, no overhead, and no delay method, but the resulting speech 

is very low quality. The transition table of Markov chain prediction requires more 

memory than the other algorithms, but it consumes fewer operations, it requires less 
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delay, and ·is more easily implemented than Naturalness Preserving Transform 

reconstru~tion. However, Naturalness Preserving Transform reconstruction produces the 

highest quality speech of the three techniques. A unique feature of Naturalness 

Preserving Transform reconstruction is its overhead/quality scalability-reconstructed 

speech quality improves with additional overhead data. It is more difficult to implement 

"than the other two methods since it requires a transform at both the transmitter and the 

receiver, while Markov chain prediction and frame repetition operate only in the receiver. 

Both of the new procedures discussed in this thesis are superior in different 

applications. If a new system is being designed, and delay and overhead are not 

· constraints, then Naturalness Preserving Transform reconstruction is the optimal 

technique. If an existing system is to be upgraded without introducing incompatibility 

between legacy and new equipment, Markov chain prediction is the optimal technique. 

Frame repetition is optimal if expected packet loss will be low, and if memory, processor, 

and delay constraints are very tight. 

Packet loss is inevitable in all packet-switched networks. Transmission of voice 

using voice-coding algorithms across these lossy packet-switched networks will result in 

missing voice frames. High quality voice can·still be maintained in this environment with 

the missing frame compensation schemes described in this thesis. 
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. APPENDIX 

Calculation of Naturalness Preserving Transform Complexity, Number 
of Operations 

It is necessary to expand the NPT into its component matrices before analyzing 

the number of operations. 

~ = \f'n(a)Pn \f'n(a) 

= [aln +(l-a)H~]Pn[aln +(1-a)H~] 

= alnPnaln +alnPn(l-a)H~ +(l-a)H~Pnaln +(l-a)H~Pn(l-a)H~ 
(A.1) 

= a 2Pn + a(l- a)PnH~ + a(l- a)H~Pn + (1- a)2H~PnH~ 

The transform algorithm can save operations by normalizing the Hadamard matrix, H~ , 

after the matrix is combined with P,, . The transform then becomes 

II,, = a 2P,, + 2-ri a(l- a)(P,,H,, + H,,P,,) + r" (1- a) 2 H11 P11 H11 • (A.2) 

Since the entries of H,, are all ±1, matrix multiplication is reduced to only addition and 

subtraction. The algorithm can save further operations by pre-calculating the following 

variables and storing them, since they remain constant with regard to changes in P,, : 

a2 
' 

and 

Table A. l shows the calculations needed for each iteration when the above modifications 

are applied to the transform. Note that the matrices Hn, Pn are both N x N matrices 

where N = 2". 
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Calculation X + 

a 2 P n Ni 

PnHn (N - l)N 2 

HnPn (N -l)N2 

PnHn +HnPn Ni 

scalar· (PnHn + HnPn) Ni 

H,,PnHn 2(N -l)N2 

scalar· HnPnHn N2 
Add 3 matrices together 2N 2 

Total 3N2 (4(N -1) + 3)N2 

Table A.I Number of Operations for Transformation 

Further reduction can be achieved by using the root, A, of Hn. A is a matrix of the 

same size as Hn with 2n -2 zeros and two ±1 's in each row and column. When A is 

multiplied by an N x N (= 2" x 2") matrix, 22n additions result. Since H,, =A", it 

follows thatH,,Pn = A np,,. This operation requires n · 22" additions. Table A.2 shows the 

number of calculations required for each iteration using the root of H,,. For simplicity, 

-n 

i; = 2 2 a(l- a) (A.3) 

and 

(A.4) 

in this table. 
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Calculation X + 

a 2 P 2211 0 
II 

~(P11 H 11 +H11 P11 ) 2211 2n. 2211. 2211 

bB 11P11H 11 2211 2n ·2211 

Total 3.2211 (4n + 3)2 211 

Table A.2 Number of Operations for Transformation, Reduced 

The number of operations for the inverse transformation is equal to the number of 

operations for the transformation. 
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Calculation of Naturalness Preservi:'1:~ Transform Complexity, Memory 

The calculation to determine the amount of memory needed to perform the 

transform will also use the expanded form of the NPT from (A.2). This equation is 

divided into three parts: 

;(PnHn + HllPll) ' 

and bH11 P11 H11 • 

(A.5) 

(A.6) 

(A.7) 

Where ~ and o have the same value as defined in (A.3) and (A.4). Since different 

processors have varying numbers of bytes per word of memory, all calculations will be 

based on the number of memory words, assuming.that every variable or matrix element is 

stored in one word of memory. Each of the matrices ( H,,, P 11 ) and their products and 

sums require N 2 = 22" words and each of the scalar calculations require one word. Table 

A.3 presents the amount of memory occupied by the NPT. 
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Term Memory Words 

a 2P n 
a2 
pn 

;(PnH,, + HnPn) 

; 
pn 

H,, 
PnH,, 
HnPn 

bHnP,,Hn 
8 

H,, 
P,, 

H,,P,, 

HnP,,H,, 
Total 

TableA.3 

N2 

1 

N2 
N2 

0 

0 
N2 
N2 
N2 
0 

0 
0 

0 
0 

0 

6N2 +1 

Reusable 

Reusable after adding to a 2 P,, 
Use reusable memory 

Already Stored 

Reusable 

Reusable 

Use reusable memory 

Use reusable memory 
Use reusable memory 

Use reusable memory 

Use reusable memory 

Use reusable memory 

NPT Memory Requirements 

142 



Calculation of Mixture Transition Distribution Complexity, Number of 
Operations · 

Training the MTD and using the MTD require different numbers of operations. 

Training is performed once to compute the lag weights and transition matrix needed for 

calculating the conditional probabilities. MTD is used operationally when the conditional 

probabilities are calculated for a frame of missing speech. The number of operations 

required for training is dependent on the amount of training data. The number of 

operations required for operational use is dependent on the number of states and the 

Markov chain order. Training requires far more resources than utilization. 

Training 

Training involves two separate steps: initialization and optimization. If the correct 

initial values are used, the optimization process will converge to the parameters with the 

global maximum likelihood. The following analysis calculates the number of operations 

separately for each step, and provides measurements from training for two vocoders. 

Initialization 

The initialization process is as follows: 1) Find all states in the training data; 2) 

Calculate the initial lag weights; 3) Calculate the initial transition matrix; 4) Calculate the 

initial log-likelihood. Figure A.1 illustrates these steps. 
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Each of the initialization activities shown in this figure is analyzed separately in the 

following sections. 

DETERMINATION OF MARKOV ST ATES 

The initialization algorithm finds the states by first running the analyzer of the 

voice coding algorithm on all the training data. The vocoder analyzer creates a bit-file 

containing a frame of quantized parameters for each frame of speech. The initialization 

procedure then looks at each frame of parameters in the bit-file. For each frame, it 

extracts the bits corresponding to the parameters that comprise the state. If the frame 

contains a parameter combination that has not yet occurred, the combination is added to 

the state table. 
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The number of operations required for this procedure is dominated by the number 

of operations required for the vocoder analyzer and the amount of training data. Once the 

vocoder creates the bit files, the parameter extraction procedure uses a table to determine 

which bits to extract from each frame of data. Each parameter combination is compared 

to the existing state table to determine if it is a new state. As the state table grows, the 

comparison requires more operations. When a new state is found in the training data, the 

state number and parameters are added to the matrix. The operations needed to perform 

these steps are mainly programming constructs (e.g., looping, indexing). 

CALCULATION OF INITIAL LAG WEIGHTS 

Both the initial lag weight and the initial transition matrix calculations require 

Theil's association measure. The association measure calculation uses the m x S x S 

cross-table. The number of operations performed to create the cross-table is dependent on 

the amount of training data. For each frame of training data, the parameter combination 

must be extracted using a table lookup; the state number corresponding to this parameter 

must be extracted, also using a table lookup; and m transitions must be tallied in the 

cross-table (one addition per transition per order). 

Once the cross-table 1s created, the initialization algorithm calculates the m 

association measures using 

s s (C (i ·)C (· 1')) LLCg(i,j)log2 g ' . . g ' 
i=Ij=I Cg(1,1)TCg 

U=--------,-----,---
g ~c (· ')lo· (Cg(·,J)) 

~ g ,J g2 TC 
J=I g 

(A.8) 
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The number of operations for this equation is dependent on the number of states. The 

equation contains two logarithmic calculations. Unless special purpose processors are 

used, logarithms are calculated from series expansion. The logarithmic series 

[ ( )3 ( )5 ] x-1 1 x-1 1 x-1 
ln(x)=2 --+- -- +- -- +··· 

x+l 3 x+l 5 x+l 
(A.9) 

can be used to calculate the natural logarithm. It requires two additions, one multiply, and 

a division for the first term, and for each additional term, one addition and three 

multiplies (assuming the fraction (x-1)/(x + 1) and its powers are calculated once and 

saved for the next term). Another division is needed to get the base-two logarithm of the 

argument (assuming ln(2) is stored as a constant) bringing the total number of operations 

for n terms to 2 + n additions, 1 + 3n multiplies, and two divisions. The number of terms 

required in the series expansion is dependent on the magnitude of the argument and the 

error threshold. As x ~ 0 and x ~ oo , the number of terms necessary to maintain a 

given error increases. Large logarithmic arguments are not a concern for the association 

measure calculation, but the argument may be small. Six hundred terms is sufficient to 

compute ln(0.003) to within 0.0001 of the true value, so n = 600 will be used for this 

analysis. 

The number of operations required to compute each of the m association measures 

is listed in Table A.4. 
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Operation + 

Numerator: 
Cg(i,) S2 

Cg(·,j) S2 

Cg(i,)Cg(·,j) 

TCg s 

Cg(i,j)TCg 

Cg(i,)Cg(·,j) 

Cg(i,j)TCg 

lo 2( C,(i,-)C,(·,j) J 
g · Cg(i,j)TCg 602S2 

C (i ") lo ( c, (i,-)C, (·, j) J 
g ' 1 g2 C C ")TC g l,J g 

:t:t ( C U.-)C (·.j)) 
C (i, J) log ' ' 

;., j•I g 
2 c, (i, j)TC, 

S2 

Denominator: 
Cg(·,j) 

TCg 

Cg(·,j) 

TCg 

lo 2( C,(·,j) J 602S g TC g 

X 

S2 

S2 

s2 

1801S2 2S2 

S2 

s 

1801S 2S 
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s 
S additions for each L 

i=I 

s 
S additions for each L 

J=l 

1 multiply for each 
s s 

LL 
i=I J=l 

Can calculate using 
s s 
L Cg(i,) or L Cg(·,j), 
i=l J=I 

calculate once and reuse. 
1 multiply for each 

s s 

LL 
i=l j=I 

s s 
1 divide for each L L 

i=l J=I 

Calculate for each 
s s 

LL 
i=l J=I 

1 multiply for each 
s s 

LL 
i=I J=I 

Use numerator calculation 

Use numerator calculation 

s 
1 divide for each L 

j=I 

s 
Calculate for each L 

.i=I 



Operation 

C (· ")lo 2( C,(·,j)J 
g ,J g TC 

g 

±c (· ")lo ( c,(·,j) J 
. g ,J g2 TC 

J=I g 

Total 

+ 

s 

605S2 

+604S 

X 

s 

1804S2 

+1802S 
3S2 

+3S 

s 
1 multiply for each L 

}=I 

Table A.4 Number of Operations for Computation of each MTD Association 
Measure 

More efficient methods of computing logarithms will have the greatest impact on this 

operation. 

The initial lag weights are calculated from the association measures using 

(A.10) 

This calculation is d~pendent on the Markov chain order, m. The denominator requires m 

additions, but the resulting sum can be saved and reused for the remainder of the lag 

weight calculations. One divide is also needed for each lag weight. The total number of 

calculations needed to calculate all the initial lag weights ism adds and m divides. 

CALCULATION OF INITIAL TRANSITION MA TRIX 

Calculation of the initial transition matrix depends on parameters calculated for 

the initial lag weights, i.e., the cross-tables and association measures. The association 

measure determines which cross-table to use in 
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Cg(l,1) Cg(l,S) 

Cg(l,) Cg(l,:) 

Qg = (A.11) 
Cg(S,l) Cg(S,S) 

Cg(S,•) Cg(S,) 

This equation is dependent on the number of states. Some computation can be saved by 

re-using row sums from the association measure calculation. If the row sums are not 

recalculated, the computation requires S2 divides. 

CALCULATION OF INITIAL LOG-LIKELIHOOD 

The initial log-likelihood is needed as a baseline for the optimization procedure. It 

is calculated using 

log L = In(i0 ,ii, ... ,i,,,)logp(i0 lii, ... ,i,,,). (A.12) 
n(i0 ,i1 , ... ,i,,,) 

The sum is over all mth order transitions that occur at least once, so the calculation is 

dependent on the number of mth order transitions found in the training data, N. The 

conditional probability in this equation is computed using 

Ill 

PCioli1··.im) = L'P1q(ioli) · (A.13) 
}=1 

One multiply is needed for each of the m sums. The number of operations needed to 

calculated the conditional probability ism additions and m multiplies. Table A.5 shows 

the number of operations required to calculate log-likelihood. 
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Operation + X 

.... m additions and m 

PCioli, .. .im) Nm Nm 
multiplies for each L 

nQ>O 

logp(i0 li,: . .i,,,) 602N 1801N 2N Calculate for each L 
nQ>O 

n(i0 ,i1 , ••• ,i"') log p(i0 li, ... im) N Calculate for each L 
11()>0 

L n(i0 , i1 , ••• , i.,,) log p(i0 I i1 ••• i,,,) 
n(i0 ,i, .... .i~)>O N 

Total 603N 1802N 

+Nm +Nm 2N 

Table A.5 Number of Operations for Log-likelihood Calculation 

A more efficient method for computing logarithms will decrease processor requirements. 

TOT AL NUMBER OF OPERATIONS FOR INITIALIZATION 

Once the initialization procedure calculates the Markov states from the vocoder 

bitstream and creates the cross-table, the initialization procedure requires 

m(605S2 + 604S + 1) + N(603 + m) additions, m(l 804S2 + 1802S) + N (1802 + m) 

multiplies, and m(3S(S + 1) + 1) + S 2 + 2N divides, where S is the number of states, m is 

the Markov chain order, and N is the number of mth order transitions existing in the 

training data. This number excludes manipulation of data, error checking, and 

programming constructs. 
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IMPLEMENTATION MEASUREMENTS 

A better understanding of the number of operations required for initialization can 

be obtained by observing actual implementations. The MELP second-order MTD 

implementation contained 34,591 transitions ( m = 2, N = 34,591) from 52,293 frames of 

training data. The initialization algorithm required 60 minutes on a 400 MHz Pentium II 

processor to calculate the initial lag weights and transition matrix for 2209 states 

( S = 2209) using Matlab routines. The GSM second-order MTD implementation 

contained 219,354 transitions ( m = 2, N = 219,354) from 244,908 sub-frames of training 

data. The initialization algorithm required 297 minutes (4.96 hours) on a 400 MHz 

Pentium II processor to calculate the initial lag weights and transition matrix for 324 

states ( S = 324) using Matlab routines. In addition to processing the data, the 

initialization routines for both voice-coding algorithms performed error checking and 

wrote status information to the display and to digital files. It's apparent from these 

measurements that the number of mth order transitions has a greater effect on the number 

of operations than the number of states. 

Optimization 

The number of operations required for the optimization algorithm depends on the 

number of iterations required to meet the user-defined log-likelihood improvement 

threshold. For each iteration, the optimization algorithm performs the following 

procedure: 1) Calculate partial derivatives for the lag weights; 2) Apply and evaluate 

changes in lag weights; 3) Calculate partial derivatives for each row of the transition 

matrix; 4) Apply and evaluate changes in the transition matrix rows. 
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The partial derivative for the lag weights is calculated using 

(A.14) 

The number of operations needed for this computation is dependent on the Markov chain 

order, m, and on the number of mth-order state transitions, N, in the training data. Table 

A.6 shows the number of operations for this calculation. 

Operation + X 

p(i0 li1, ••• , im) Nm Nm 

qikio 
N 

PUoliw··,im) 

n(io, ... ,im) 
qikiO 

N 
PUolil' ... ,im) 

L n(i0 , • •• ,i,..) 
qi1i0 

N 
p(i0 I i 1 , ••• , i,,,) n(i0 •••• .i.) 

Total N(m+l) N(m+l) N 

m additions, m multiplies 

foreach L 
n(io,···,i,,,) 

1 divide for each L 
n(i0 , ••• ,i,,,) 

1 multiply for each L 
n(io,···,im) 

1 addition for each L 
n(i0 , .•• ,i,.) 

Table A.6 Number of Operations for Lag Weight Partial Derivative 

The partial derivative for each row of the transition matrix is calculated using 

(A.15) 

This calculation is the same form as the partial derivative for the lag weights and requires 

the same number of operations, N(m + 1) additions, N(m + 1) multiplies, and N divides 

per row. The number of operations to calculate the partial derivative for the entire 

transition matrix is therefore SN(m + 1) additions, SN(m + 1) multiplies, and SN divides. 
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The modification for both the lag weights and the rows of the transition matrix 

follows the same procedure: the element corresponding to the maximum partial 

derivative is increased by 8; the element corresponding to the minimum partial derivative 

is decreased by 8; the log-likelihood is calculated with the modified elements; if the log-

likelihood is improved, the next set is modified; if the log-likelihood is not improved, the 

procedure is repeated with .!. 8 . The element modification requires two additions. The 
2 

log-likelihood calculation, calculated previously, is dependent on the Markov chain 

order, m, and the number of mth order transitions in the training data, N. It requires 

N ( 603 + m) additions, N (1802 + m) multiplies, and 2N divides and obviously dominates 

the element modification process. 

TOT AL NUMBER OF OPERATIONS FOR 0PTIMIZA TION 

Each iteration of the optimization process requires N(m(S + 2) + S + 604) + 2 

additions, N(m(S+2)+S+1803) multiplies, and N(S+3) divides where m is the 

Markov chain order, N is the number of mth order transitions in the training data, and Sis 

the number of states. This estimate does not include data manipulation, error checking, or 

programming constructs. 

IMPLEMENTATION MEASUREMENTS 

A better understanding of the number of operations required for optimization can 

be obtained by observing actual implementations. The MELP second-order MTD 

implementation contained 34,591 transitions ( m = 2, N = 34,591) from 52,293 frames of 

153 



training data. The optimization algorithm ran for 91.5 hours on a 400 MHz Pentium II 

processor using a DOS executable written in C-code to reach a log-likelihood change 

threshold of 0.1. The GSM second-order MTD implementation contained 219,354 

transitions ( m = 2, N = 219,354) from 244,908 sub-frames of training data. The 

optimization algorithm ran for 5 hours on a 400 MHz Pentium II processor using a DOS 

executable written in C-code to reach a log-likelihood change threshold of 0.1. In 

addition to processing the data, the. optimization routines for both voice coding 

algorithms performed error checking and wrote status information to the display and to 

digital files. It's apparent from these measurements that the number of states has a greater 

effect on the number of operations than the number of mth order transitions. However, 

convergence is dependent on the nature of the data and is probably the most dominant 

factor. 

Utilization 

Once the initialization algorithm calculates the optimal lag weights and transition 

matrix, the implementation is comparatively simple. When the receiver detects a missing 

frame, the probability for each of the possible next states is calculated using (A.13). The 

number of operations for the conditional probability was calculated earlier to be m adds 

and m multiplies, so calculation of all S possible replacement states requires Sm adds and 

Sm multiplies to replace each missing frame. Creating a lookup table that contains the 

state with the highest probability for each mth order transition will decrease the number 

of operations. 
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Calculation of Mixture Transition Distribution Complexity, Memory 

Both MTD ~aining and utilization require data storage. Training is performed 

once to create the lag weights and transition matrix needed to calculate the conditional 

probabilities. MTDjs used operationally when the conditional probabilities are calculated 

for a frame of missing speech. Training requires far more resources than utilization. Since 

different processors have varyi~g number of bytes per word of memory, all calculations 

will be based on the number of memory words, assuming that every variable or matrix 

element is stored in one word of memory. 

Training 

Training involves two separate steps: initialization and optimization. If the correct 

initial values are used, the optimization process will converge to the parameters with the 

global maximum likelihood. The following analysis calculates the memory separately for 

each step. 

Initialization 

The initialization process performs the following procedure: 1) Find all states in 

the training data; 2) Calculate the initial lag weights; 3) Calculate the initial transition 

matrix; 4) Calculate the initial log-likelihood. This procedure is illustrated in Figure A. l. 

Each of the initialization activities are analyzed separately. 

DETERMINATION OF MARKOV STATES 

The initialization algorithm finds the states by first running the voice coding 

algorithm's analyzer on all the training data. The vocoder analyzer creates a bit-file 
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containing a frame of quantized parameters for each frame of speech. The initialization 

procedure then looks at each frame of parameters in the bit-file. For each frame, it 

extracts the -bits corresponding to the parameters that comprise the state. If the frame 

contains a parameter combination that has not yet occurred, the combination is added to 

the state table. 

The amount of memory required for this procedure is driven by the amount of 

memory required for the vocoder analyzer, the number of parameters, d, that comprise a 

state, and the amount of training data. As the number of parameters increases, the number 

of possible parameter combinations ( and therefore the number of states) increases. As the 

amount of training data increases, the number of bit-files increases and the number of 

states can also increase. If the initialization process uses a sufficient number of training 

data, the number of states will reach the maximum number of realistic combinations. The 

state table is an S x d matrix requiring Sd memory words. The Markov state table 

building process also creates a state lookup table that aids in locating the state number 

associated with each parameter combination. One parameter is chosen to be the lookup 

variable in the state lookup table. The state lookup table contains every value of the 

lookup variable and the range of states that include it, i.e., each row contains the lookup 

variable value, the first state that contains it, and the last state that contains it. The 

amount of memory required to store the lookup table is dependent on the number of 

possible values for the parameter chosen as the lookup variable. If the lookup variable 

has b bits, the state lookup table is a 2b x 3 matrix requiring 3 · 2b words. 
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CALCULATION OF INITIAL LAG WEIGHTS 

Both the initial lag weight and the initial transition matrix calculations require 

Theil' s association measure. The association measure calculation requires the m x S x S 

cross-table, which occupies mS2 words of memory. 

Once the cross-table is created, the initialization algorithm calculates the m 

association measures using (A.8). The series expansion of the logarithm (A.9) requires 

five words of memory to calculate, if temporary storage is reused. The amount of 

memory required for computing them association measures is listed in Table A.7. 
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Term 

Numerator: 
Cg(i,) 

Cg(·,J) 

Cg(i,)Cg(·,J) 

TCg 

Cg(i,j)TCg 

Cg(i,)Cg(·,J) 

Cg(i,j)TCg 

log2 
( C,(i,)C,(·,j) J 

Cg(i,j)TCg 

C (i ")Jo ( C,(i,)C,(·,j) J 
g ' 1 g2 C C ")TC g l,J g 

' ' ( C, (1,)C, (-, J) J 
LLC (i,J)log, 
/ol j•I • C,(i,j)TC, 

Denominator: 
Cg(·,}) 

TCg 

Cg(·,J) 

TCg 

Jo 2( C,(·,j) J 
g TC 

. g 

C (· ")lo 2( C,(·,j) J 
g ,J g TC 

g 

± C (· ") lo ( C,(·,j) J 
. g ,J g2 TC 

J=l g 

ug 

Total 

Memory Words 

s 
s 
1 

1 

1 

1 

3 

0 

1 

0 

0 

0 

0 

0 

1 

m 

S(mS+2)+m+9 

Reusable 

Reusable 

Reusable 

Use 2 words of reusable memory, 
reusable 

Use reusable memory 

Previously calculated 

Previously calculated 

Use reusable memory 

Use reusable memory 

Use reusable memory 

Table A.7 Number of Memory Words for Computation ofMTD Association 
Measure 
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Once the m association measures are calculated, all memory except that used to store the 

association measure and row sums is available for other uses. 

The initial lag weights are calculated from the association measures using (A. l 0). 

The m association measures are already residing in m memory words. The denominator 

sum will use one word, and the lag weights will need m words. The initial lag weight 

calculation requires 2m + 1 words. One word will be free after this calculation is 

complete. 

CALCULATION OF INITIAL TRANSITION MA TRIX 

Calculation of the initial transition matrix depends on parameters calculated for 

the initial lag weights, i.e., the cross-tables and association measures. The association 

measure determines which cross-table to use in (A.11 ). The row sums and the cross-table 

elements are already stored, so the initial S x S transition matrix calculation requires the 

S2 words required to store the matrix. 

CALCULATION OF INITIAL LOG-LIKELIHOOD 

The initial log-likelihood is needed as a baseline for the optimization procedure. It 

is calculated using (A.12). The sum is over all mth order transitions that occur at least 

once. The number of mth order transitions in the training data, N, can be extremely large, 

so Raftery suggests a labeling pattern for the state transitions by the number 

m 
i = 1 + LCi1 - I)sm+l-j (A.16) 

J=O 
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Using this pattern,_ -the· mth -order .. transitions can be stored in . an -N x 2 matrix. One 

column contains the pattern label;: one c~lumn contains the number of times the transition 

occurred. The conditional probability in the log-likelihood calculation is computed using 

(A.13). This calculation requires the S x S transition matrix, and the m x I lag weight 

vector. Table A.8 shows the amount of memory required to calculate the log-likelihood. 

Term Memory Words 

p(i0 li1 ••• i,,,) S2 +m+I 
logp(i0 li1 •• • i,,,) 5 Reusable 

n(io,i1 ' ... ,im) 2N 

n(i0 ,i1, ••• ,i,,,) log p(i0 li1 •• .i,,,) 0 Use reusable memory 

Ln(i0 ,i1 , •• '., i,,,) log p(i0 li1 ••• i,,,) 
n(i0 .i, ..... i.)>0 I 

Total S2 +2N +m+7 

TableA.8 Amount of Memory for Log-Likelihood Calculation 

Seven words of memory are free after this calculation. 

TOTAL AMOUNT OF MEMORY FOR INITIALIZATION 

Much of the memory required for initialization is used to store the transition 

matrix (Q), cross-tables (Cg), and transition counts (n(i0 , ••• ,i,,,)). These matrices are 

calculated once and reused throughout the initialization process. Memory used for 

temporary storage is freed after each calculation and can be used by subsequent 

calculations. So the total amount of memory is less than the sum of the number of words 

for the individual parts. The total amount of memory required for initialization is 

S2(m+I)+S(2+d)+2(m+N)+3·2b +9 words, where Sis the number of states, mis 

the Markov chain order, dis the number of parameters in the state, N is the number of 
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mth order transitions, and bis the number of bits in the lookup parameter. This number 

excludes manipulation of data, error checking, and programming constructs. 

Optimization 

The optimization process takes the initial lag weights, transition matrix, and 

matrix of mth order transitions and creates new lag weights and transition matrix which 

have the maximum log-likelihood. For each iteration, the optimization algorithm 

performs the following steps: 1) Calculate partial derivatives for the lag weights; 2) 

Apply and evaluate changes in lag weights; 3) Calculate partial derivatives for each row 

of the transition matrix; 4) Apply and evaluate changes in the transition matrix rows. 

The partial derivative for the lag weights is calculated usmg (A.14). This 

calculation uses the S x S transition matrix and the N x 2 transition count matrix. Table 

A.9 shows the amount of memory required for this computation. 

Terms Memory Words 

PUo li1, · · ·, i"') S2 +m+l 1 word is reusable 

qikio 
1 

PUo I ii,···, i,,,) Reusable 

n(io,···,im) 
qjkjO 

PCiolil'" · ·, im) 
2N Reuse 1 word 

L n(i0 , ••• ,i,.) 
q111o 

p(i0 lip•••,i,J 
m 

n(i0 , ••• ,i,.) 

Total S2 +2(N +m+ 1) 

Table A.9 Amount of Memory for Lag Weight Partial Derivative 

All memory except the transition matrix and lag weights is free after this calculation. 

161 



The partial derivative for each row of the transition matrix is calculated using 

(A.15). The calculation uses the m lag weights and the N x 2 transition count matrix. 

Table A. l O shows the amount of memory required for this computation. 

Terms Memory Words 

p(i0 lii, ... ,i,,,) S2 +m+l 1 word is reusable 

(fJ k 

PCio Iii,···, i,,,) 1 Reusable 

n(io' .. ; ' im) 
rpk 

PUo I ii'·· ·, im) 2N Reuse 1 word 

L n(i0 , ••• ,i,,,) 
rpk s 

PUo I ii, ... , i,,,) n(io , ... ,i.) 

Total +2(N +l)+S(l+S) 

Table A.10 Amount of Memory for Transition Row Partial Derivative 

After this calculation is complete, S + 2 words of memory are free. 

The optimization algorithm analyzes the partial derivative vectors to determine 

which elements of the lag weight vector and transition matrix to change. The memory 

required for the analysis is largely taken with programming constructs. It uses the same 

transition matrix, lag weights, and transition count vector ( S2 + m + 2N words of shared 

memory) that were used for both partial derivatives. 

Much of the memory used for the optimization process is occupied by the lag 

weights, transition matrix, and transition count matrix. These matrices are calculated once 

and reused throughout the optimization process. Memory used for temporary storage is 

freed after each calculation and can be used by subsequent calculations. So the total 

amount of memory required to optimize the lag weights and transition matrix is 

2(S2 +m+N). 
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Utilization 

Once the optimal lag weights· and transition matrix are calculated, the 

implementation is comparatively simple. When the receiver detects a missing frame, the 

probability for each of the possible next states is calculated using (A; 13 ). This calculation 

has already been shown to require S2 + m + 1 words of memory. The lookup table 

suggested in the discussion on number of operations will occupy S111 memory words, but 

will eliminate the transition table and lag weight storage. 
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