
RECURSIVE TIME-AND ORDER- UPDATE

ALGORITHMS FOR RADIAL BASIS

FUNCTION NETWORKS

By

MENG HOCK FUN

Bachelor of Engineering
Oklahoma State University

Stillwater, Oklahoma
1993

Master of Engineering
Oklahoma State University

Stillwater, Oklahoma
1996

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
August, 2001

RECURSIVE TIME-AND ORDER- UPDATE

ALGORITHMS FOR RADIAL BASIS

FUNCTION NETWORKS

Thesis Approved:

~t>--

~ ege

II

ACKNOWLEDGMENTS

In this acknowledgement, I wish to express my heart-felt gratitude to my major ad

viser, Dr. M. T. Hagan. My achievement today would not be possible without his generous

financial support, guidance, encouragement, advice, and friendship throughout my entire

graduate studies at Oklahoma State University. I would like to thank my other committee

members Dr. Carl Latino, Dr. Gary Yen and Dr. Eduardo Misawa for their helpful sugges

tions and assistance.

I would like to express my special appreciation to my wife, Amelia, for her strong

encouragement at difficult times and loving support. In addition, I would like to thank my

beloved mother, my sisters and my brother for their encouragement.

Finally, I would like to thank Halliburton Energy Services and Department of Elec

trical Engineering for their financial support in this research.

iii

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION ... 1

1.1 Objective 2
1.2 Contributions .. 3
1.3 Outline 5

CHAPTER2
NETWORK ARCHITECTURES 7

2.1 Introduction 8
2.2 Basic Neural Network Architectures 9

2.2.1 Biological Neural Networks 9
2.2.1.1 Single Biological Neuron 10
2.2.1.2 Massive Interconnections and Parallel Structure 10

2.2.2 Artificial Neural Networks 11
2.2.3 Single Artificial Neuron 11
2.2.4 Transfer Function 12
2.2.5 Multiple-Input Neuron 13
2.2.6 A Layer of Neurons 14
2.2.7 Multilayer Network 16
2.2.8 Universal Approximation Capability 17

2.3 The Radial Basis Function Network 19
2.3.1 The Radial Basis Functions 19
2.3.2 The RBF Network Architecture 21
2.3.3 Universal Approximation Capability 23

2.4 Mathematical Preliminaries 24
2.4.1 RBF Network - Linear in Parameters 24
2.4.2 Time-Update Framework ... 27
2.4.3 Order-Update Framework 29

2.4.3.1 Order-Increase-Update .. 29
2.4.3.2 Order-Decrease-Update .. 31

2.4.4 Time and Order Update Framework 32
2.5 Special RBF Network for Subset Selection .. 35
2.6 Summary 37

CHAPTER3
PROBLEM STATEMENT .. 38

3.1 Introduction 39
3.2 Objective 39
3.3 Illustrative Example 42
3.4 The Research Outline 45

iv

CHAPTER4
THE LEAST SQUARES METHOD47

4.1 lntroduction 48
4.2 Linear Model ... 48
4.3 Solving the Linear Model 50

4.3.1 The Linear Least Squares Problem 50
4.3.2 Characterization of Least Squares Solution 51

4.4 Orthogonal Projection 52
4.4.1 Subspace Projection ... 53
4.4.2 Matrix Projection and Geometrical Interpretation 54

4.5 Orthogonal Transformation 56
4.5.1 Motivation 56
4.5.2 Orthogonal Least Squares Method 57

4.6 Givens Rotations 58
4.6.1 Givens QR Methods ... 61

4.7 Summary ... 62

CHAPTERS
TIME-UPDATE ALGORITHMS 63

5.1 Introduction 64
5.2 Matrix Inversion Lemma 66
5.3 Recursive Least Squares Algorithm 67

5.3.1 Time-Update for the Parameter 69
5.3.2 Time-Update for the Sum of Squares Errors 71
5.3.3 Implementation Considerations 74

5.4 QR Recursive Least Squares Method 76
5.4.1 Introduction 76
5.4.2 Preliminary Setup for QR-RLS Algorithm 77
5.4.3 Forming the QR-RLS Algorithm 82
5.4.4 Orthogonal Matrix Operation 85
5.4.5 Implementation Considerations 87

5.5 Results Summary 88

CHAPTER6
ORDER-UPDATE AND SUBSET SELECTION 89

6.1 Introduction 90
6.2 Order-Update Algorithms 91

6.2.1 Block Matrix Inversion Lemma 92
6.2.2 Recursive Order-Update Algorithm for LS Method 93

6.2.2.1 Order-Update for the Parameter 94
6.2.2.2 Recursive Order-Update for the Sum of Squared Errors 96
6.2.2.3 Implementation Considerations 99

6.2.3 Recursive QR Order-Update Algorithm 101
6.2.3.1 QR Recursive Order-Update for Q, R, and Parameter .101

V

6.2.3.2 Implementation Considerations 104
6.3 Subset Selection .. 105

6.3.1 Background 105
6.3.2 Comparison of Subset Selection Methods 108
6.3.3 Forward Selection and Order-Update 108

CHAPTER 7
TIME- AND ORDER- UPDATE 111

7.1 Introduction 112
7 .2 The Subset Selection Model ... 113
7.3 Recursive Time- and Order- Update 116

7.3.1 Recursive Least Squares with Automatic Weight Selection (RLS-
AWS) 122

7.3.2 QR Recursive Least Squares with Automatic Weight Selection
(QR-RLS-A WS) 125

7 .4 Fixing Centers .. 127
7.4.1 Centers Selects from Fixed Range/Grid 127
7.4.2 Centers Selected from Time Point 128
7.4.3 Centers Selection for the New Algorithms 128

7 .5 Preliminary Results 129
7.5.1 Compare QR-RLS-AWS and RLS-AWS 130
7.5.2 Accuracy Test 13 l
7.5.3 Batch and Recursive Test 132

7.6 Summary 133

CHAPTERS
RLS-A WS ALGORITHM IMPROVEMENT 134

8.1 Introduction 135
8.2 Alleviate the Storage Requirement 136

8.2.1 Time-Update Correlation Matrix 136
8.2.2 Improvement of the Forward Selection Method 139
8.2.3 Restructuring Time-Update Correlation Matrix 141

8.3 Order-Decrease-Update Algorithms 142
8.3.1 Block Matrix Inversion Lemma for Matrix Downdating 144
8.3.2 Recursive Order-Decrease-Update Algorithm for the LS

Method 147
8.3.2.1 Recursive Order-Decrease-Update for the Parameter .. 149
8.3.2.2 Recursive Order-Decrease-Update for the Sum of Squared

Errors 150
8.4 Recursive Backward Elimination 154
8.5 Recursive Efroymson Algorithm 155

8.5.1 Batch Efroymson Algorithm .. 155
8.5.2 Recursive Efroymson Algorithm 157

8.5.2.1 StoppingRule 157

vi

8.5.2.2 Restructuring the Time-Update Correlation Matrix 158
8.5.3 RLS-AWS Algorithm: Efroymson Method 161

8.5.3.1 Subset Selection with Efroymson Method 162
8.6 Implementation Consideration .. 167

8.6.1 Exponential Windowing 167
8.6.2 Reduce Computational Time 169

8.7 Summary 170

CHAPTER9
QR-RLS-A WS ALGORITHM IMPROVEMENT 171

9.1 Introduction 172
9 .2 Square Root Error Reduction Term .. 172
9.3 The New QR-RLS Structure 176
9.4 Recursive QR-Order-Update Algorithms 179

9.4.1 Recursive QR-Order-Increase-Update 180
9.4.2 Recursive QR-Order-Decrease-Update 182

9.5 Recursive Subset Selection Algorithms .. 186
9.5.1 Recursive QR Forward Selection Method 186
9.5.2 Recursive QR Backward Elimination Method 188
9.5.3 Recursive QR Efroymson Algorithm 190

9 .6 Implementation Considerations 194
9 .6.1 Exponential Windowing .. 195
9 .6.2 Reduce Computational Time 195

9.7 Summary ... 196

CHAPTER 10
NUMERICAL TESTING AND APPLICATIONS 197

10.1 Introduction 198
10.2 Numerical Stability of the Algorithms 199
10.3 Applications 202

10.3.1 Chaotic Time Series 202
10.3.1.1 Recursive Forward Selection Method and Recursive

Efroymson Method ... 203
10.3.1.2 Effects of the Stopping Rules 206
10.3.1.3 Summary 208

10.3.2 1-D Function Approximation 209
10.3.3 2-D Function Approximation 212

10.3.3.1 Comparison of Batch Forward Selection Method and Re-
cursive Efroymson Method 213

10.3.4 Magnetic Levitation System 216
10.3.4.1 On-line Adaptation Results 217
10.3.4.2 Comparison to Multilayer Feedforward Network 221

10.4 Summary 222

VII

CHAPTER 11
SUMMARY AND CONCLUSIONS 223

11 .1 Research Summary 224
11.2 Conclusions 226

REFERENCES
REFERENCES 227

viii

LIST OFT ABLES

Table Page

10-1 Numerical Test Results 199

10 - 2 Solution of Improved QR-RLS-AWS Algorithm After X-times Order-Update .. 200

10 - 3 Sum of Squared Errors Comparison between the Recursive Efroymson Method and
the Batch Forward Selection Method 214

ix

LIST OF FIGURES

Figure Page

2 - 1 Biological Neurons .. 10

2 - 2 Biological Neuron to Artificial Neuron ... 11

2 - 3 Simplified Representation of an Artificial Neuron ... 12

2 - 4 Three Typical Transfer Functions ... 13

2 - 5 Multiple-Input Neuron ... 14

2 - 6 Multiple-Input Neuron - Simplified Representation ... 14

2 - 7 A Layer of Neurons ... 15

2 - 8 Two-Layer Network .. 16

2 - 9 Two-Layer Feedforward Network - Simplified Representation 17

2 - 10 Radial Basis Function Node .. 19

2 - 11 The Radial Basis Function Network .. 21

2 - 12 Special RBF Network for Subset Selection ... 35

3 - 1 Desired Target and the RBF Hidden Layer Outputs .. .43

3 - 2 Orthogonal Least Squares Centers Selection .. 44

4 - 1 Geometrical Interpretation of the Orthogonal Projection 55

4 - 2 Givens QR Annihilation on a 4x3 Matrix ... 61

5 - 1 Givens Rotations Applied to the Pre-Array in the QR-RLS Algorithm 86

5 - 2 QR-RLS Algorithm for Next Iteration .. 86

X

Figure Page

6 - 1 Ideal Subset Selection .. 105

7 - 1 The Subset Selection Model .. 113

7 - 2 The Time- and Order- Update Algorithm Flow Chart .. 116

7 - 3 The QR-RLS-A WS and RLS-A WS algorithms Result 130

7 - 4 RLS-AWS Algorithm Blow Out 131

7 - 5 QR-RLS-A WS Algorithm No Blow Out 132

7 - 6 Batch OLS algorithm ... 133

8 - 1 Flow Chart for RLS-AWS with Efroymson Method .. 163

8 - 2 System Trajectory Travels over the RBF Nodes Planted in 2-D Spaces 170

9 - 1 The Obtainable Subsets Given a Four-Nodes Linear Model 174

9 - 2 Flow Chart for QR-RLS-A WS with Efroymson Method 189

10 - 1 Input-Output of Logistic Map and the Potential Nodes of the RBF Network 203

10 - 2 Comparison of Efroymson Method and Forward Selection Method 205

10 - 3 Effects of F-to-enter and F-to-delete ... 207

10 - 4 The Target Function and the Input Patterns .. 209

10 - 5 1-D Function Approximation Results for Different Smoothing Factor 211

10 - 6 A Comparison of the Errors .. 212

10 - 7 Surface Function 213

10 - 8 Errors Comparison for a 82 Nodes RBF Network Constructed by Recursive Efroym-
son Algorithm and Batch Forward Selection Method ... 214

10 - 9 Magnetic Levitation System 216

10 - 10 System Identification Scheme .. 217

xi

Figure Page

10 - 11 Input Sequence and Output of the Plant ... 218

10 - 12 Result of On-Line Adaptation After 80 Time Point ... 219

10 - 13 Results of On-Line Adaptation After 10000 Time Point 220

10 - 14 Number of Selected Nodes and Tracking Error ... 220

10 - 15 Error Comparison: The Trained RBF Network and Multilayer Network 222

xii

Chapter

1
Introduction

1.1 Objective
1.2 Contributions
1.3 Outline

2
3
5

In this chapter, we first discuss the objectives of this research. Then, we summarize

the contributions of this research. We distinguish between what is new and what was

developed previously. Finally, we will outline the contents of each chapter.

1

1.1 Objective

This research addresses a problem commonly associated with the radial basis

function (RBF) network. This problem is called the curse of dimensionality; the number of

RBF nodes increases exponentially with the number of inputs. Due to this problem, RBF

networks can only be used in models with low dimensional inputs. Many excellent methods

have been proposed that have successfully reduced the number of nodes used in RBF

networks. However, most of these methods are not suitable for online implementation.

Online construction of small RBF networks is especially desirable for adaptive control,

adaptive filtering and system identification of nonlinear systems.

Hence, this research focuses on developing online learning schemes that can

construct small and parsimonious RBF networks. We have shown in this research that this

goal can be achieved by modifying the off-line least squares learning method (LS) and the

off-line orthogonal least squares (OLS) learning method for on-line operation combined

with the subset selection techniques. These modifications have resulted in the development

of a time- and order- update framework. Using this framework, two new recursive time

and order- update algorithms, the Recursive Least Squares with Automatic Weight

Selection (RLS-AWS) algorithm and the QR Recursive Least Squares with Automatic

Weight Selection (QR-RLS-AWS), have been developed. The theoretical framework and

the synthesis of these on-line learning schemes are documented from Chapter 4 to Chapter

9.

2

1.2 Contributions

In the following, we summarize the new contributions from this research. This

summary distinguishes what is new and what was developed previously.

• The main contribution of this research is the time- and order- update framework.

This framework is adopted by combining three schemes: time-update, order-update,

and subset selection. Using this framework, two new recursive time- and order

update algorithms, the RLS-AWS and the QR-RLS-AWS, are mathematically

derived.

• Initially, both algorithms utilize the recursive forward selection method as their

subset selection mechanism. Later, we have improved the algorithm's subset

selection solution by developing the recursive Efroymson method for the RLS

AWS algorithm and the QR-RLS-AWS algorithm. These techniques also have not

been documented anywhere.

• When numerical ill conditioning is not an issue, both algorithms yield the same

solution. However, when numerical ill conditioning becomes a problem, we have

shown that the QR-RLS-AWS algorithm yields a much more accurate solution than

the RLS-AWS algorithm.

• We have applied these algorithms to the RBF network. Results have shown that

these algorithms can effectively construct a small RBF network while operating in

real-time.

3

• The time-update scheme involves the RLS algorithm and the QR-RLS algorithm,

which are readily available from adaptive filtering theory (Haykin 1996, Sayed &

Kailath 1992).

• Meanwhile, the least squares order-update scheme is mathematically derived based

on block matrix inversion lemma. These derivations are tailored to order-increase

update and/or order-decrease-update the parameters in the RLS algorithm and it has

not been documented anywhere.

• In addition, the orthogonal least squares order-update scheme based on the QR

Givens rotations is mathematically derived. These derivations are tailored to order

increase-update and/or order-decrease-update the parameters in the QR-RLS

algorithm and it has not been documented anywhere.

Although our primary interest has been in the application of these algorithms to the

RBF network, the algorithms are general purpose recursive subset selection algorithms.

They can be used for any linear-in-parameters model for which recursive subset selection

is needed.

4

1.3 Outline

This thesis contains eleven chapters. Starting from the basic neural network

building block, the artificial neural network architectures are introduced in Chapter 2.

Then, a class of neural network architecture, the radial basis function (RBF) network, is

discussed in detail along with frequently used mathematical notation.

Chapter 3 defines the scope and the objective of this research. We first discuss the

importance of the on-line learning scheme using the RBF network. Then, we develop

online learning schemes, based upon the off-line least squares (LS) and off-line orthogonal

least squares (OLS) learning method, that can efficiently construct small RBF networks.

These off-line LS and OLS learning methods are made on-line by employing the time

update and the order-update algorithms of the least squares and orthogonal least squares

methods.

To understand these new algorithms, Chapter 4 reviews the least squares and the

orthogonal least squares methods. It also discusses the necessary tools for solving the time

update and the order-update.

Then, the concept of time-update is introduced in Chapter 5. In this chapter, the

necessary tools developed in Chapter 4 are used in developing the recursive least squares

(RLS) algorithm and the numerically more accurate QR recursive least squares (QR-RLS)

algorithm.

In Chapter 6, we first develop the order-update algorithms. Then, the concept of

subset selection is introduced. Among these subset selection methods, we discuss the

orthogonal least squares learning method (also called the forward selection method) in

s

detail. Later, we discuss how we can use the order-update algorithms in the forward

selection method.

In Chapter 7, the time-update and forward subset selection method, which utilizes

the order-update algorithm, are combined to develop the Recursive Least Squares with

Automatic Weights Selection (RLS-AWS) and QR Recursive Least Squares with

Automatic Weight Selection (QR-RLS-AWS) algorithms. Detailed implementations of

these new algorithms for the RBF networks are discussed. Several simple simulated results

are shown to illustrate the performance and the node saving ability of the new algorithms.

In Chapter 8, we focus on improving the RLS-AWS algorithm. These

improvements include alleviating the storage requirement, improving the algorithm's

subset selection solution by developing the recursive Efroymson algorithm, and reducing

the computation.

In Chapter 9, we focus on improving the QR-RLS-AWS algorithm. A new

discovery has led us to rework the QR-RLS-AWS method in Chapter 7. Detailed discussion

of this new scheme is derived and discussed. Then, we show how we can improve the

algorithm's subset selection solution by developing the recursive QR-Efroymson

algorithm.

In Chapter 10, we will discuss the numerical stability of the algorithms developed

in Chapter 7, 8 and 9. Then, we will test these algorithms in two function approximation

problems and two system identification problems.

Finally, Chapter 11 summarizes our research and lists some of the key results of this

research.

6

Chapter

2
Network Architectures

2.1 Introduction 8
2.2 Basic Neural Network Architectures 9

2.2.1 Biological Neural Networks 9
2.2.2 Artificial Neural Networks 11
2.2.3 Single Artificial Neuron 11
2.2.4 Transfer Function 12
2.2.5 Multiple-Input Neuron 13
2.2.6 A Layer of Neurons 14
2.2.7 Multilayer Network 16
2.2.8 Universal Approximation Capability 17

2.3 The Radial Basis Function Network 19
2.3.1 The Radial Basis Functions 19
2.3.2 The RBF Network Architecture 21
2.3.3 Universal Approximation Capability 22

2.4 Mathematical Preliminaries 24
2.4.1 RBF Network - Linear in Parameters 24
2.4.2 Time-Update Framework 27
2.4.3 Order-Update Framework 29
2.4.4 Time and Order Update Framework 32

2.5 Special RBF Network for Subset Selection 35
2.6 Summary 37

This chapter introduces the relevant neural network architectures and frequently

used mathematical notation. Readers are encouraged to pay special attention to sec-

tion 2.4, and section 2.5 as it defines the framework of a class of neural network ar-

chitecture, which will be used in the entire thesis.

7

2.1 Introduction

In section 2.2, we show how an artificial neuron evolves from a biological neuron

to a single-layer of neurons then to multiple-layers of neurons (feedforward network). We

will also define the mathematical notation and the symbolic representation of the

feedforward network. Then, a short section is given to show the universal approximation

capability of the feedforward network. Section 2.3 introduces the Radial Basis Function

(RBF) network and ties it into the feedforward network architecture. This section also

shows that the RBF network possesses the same universal approximation capability as the

feedforward network. In section 2.4, we begin to discuss a class of RBF network, which we

will use in later chapters. Special attention is given to the mathematical notation that

describes how the RBF network architecture changes for time-updates and/or order

updates. Lastly, section 2.5 will discuss the architecture of the special RBF network for

subset selection, which will be the key neural network architecture of this entire thesis.

8

2.2 Basic Neural Network Architectures

We will begin with a biological neuron and show how it is engineered to become an

artificial neuron and a multiple-input neuron. Then, we provide a brief introduction to the

neuron's transfer functions. After this brief introduction, we show how several artificial

neurons are engineered to become a layer of neurons, and later to a multiple-layer network.

At each engineering stage, we show how the artificial neural network mimics the biological

neural network counterparts. Simultaneously, mathematical notation and representations

are introduced. Lastly, we discuss the function approximation capabilities of a multilayer

perceptron.

2.2.1 Biological Neural Networks

The work on artificial neural networks is inspired by the studies of how the human

brain processes information; more importantly, the information processing nerve cell called

the neuron. The struggle of understanding how the brain operates owes much to the

pioneering work of Ramon & Cajal (1911), who first introduces the idea of neurons.

9

2.2.1.1 Single Biological Neuron

A xon

Figure 2 - 1 Biological Neurons

It has been understood that each neuron consists of four parts; dendrites, synapses,

cell body and axons. The junction point between the dendrites and the cell body are the

synapses. When a neuron is at work, it receives input signals, which are the electrical

signals, from the axons of adjacent neurons to the dendrites. Then, these inputs are

modulated by the complex chemical process in the synapses, which carry it into the cell

body. The cell body sums and thresholds all the modulated incoming electrical signals and

passes them on to the axon. The axon, a single long fiber, then carries the outgoing

electrical signal from the cell body to the other neurons.

2.2.1.2 Massive Interconnections and Parallel Structure

There are billions of biological neurons in the brain and each neuron has massive

interconnections with adjacent neurons. Although biological neurons are several orders of

magnitude slower than silicon logic gates, the brain makes up for this relatively slow

operating rate by having a massive parallel structure and massive interconnections between

10

neurons. Because of this massive parallel structure, all neurons can operate at the same

time, which enables the brain to perform many tasks faster than any conventional computer.

2.2.2 Artificial Neural Networks

Since the brain is capable of such massive information processing, engineers and

mathematicians mimic the brain by developing the artificial neural network. They start by

imitating one biological neuron with a single dendrite, cell body and axon.

2.2.3 Single Artificial Neuron

lxndrite

\
·~., . ..-.. ynapsc ,,, ,,,,

V'
/o/ * / w1 P-------___;;.-1

Axon

'
\

j

' '

':q
a output

Figure 2 - 2 Biological Neuron to Artificial Neuron

Figure 2 - 2 shows a single-input/single-output artificial neuron m symbolic

representation that mimics a biological neuron with one dendrite and one axon. The input,

p , is multiplied by a scalar artificial weight, w 1 , to form w 1p, which imitates the electrical

signal modulated by the synaptic weight. Then, the weighted input, w 1p, is sent to a

summer I. to sum an externally applied bias w0 , which imitates the modulated electrical

11

signal carried by the dendrite. The summer I, and the transfer function f closely resemble

the cell body, which has the effect of summing and thresholding the modulated electrical

signal. After the weighted input, w 1p, and bias, w0 , are processed by the summer and the

activation function, it is sent to the output a, which represents the electrical signal carried

by the axon.

Mathematically, an artificial neuron can be described by the following equation:

(2 - 1)

p--------l a

Figure 2 - 3 Simplified Representation of an Artificial Neuron

We will use a simplified symbolic representation, as shown in Figure 2 - 3, to denote an

artificial neuron. This representation models how the dendrite and the axon interconnect to

the cell body in a biological neuron. Specifically, the input p represents the dendrites, the

output a represents the axon, and the transfer function f(w 1p + w0) is represented by a

node, which mimics the cell body.

2.2.4 Transfer Function

The transfer function, denoted by f(•) in Figure 2 - 2 and Figure 2 - 3, defines

the output of a neuron. A particular transfer function is chosen by a designer to perform a

particular task. Three of the most common transfer functions are hyperbolic tangent

sigmoidal, hard limiter and linear. Figure 2 - 4 shows these typical transfer functions:

12

a={~ n~O

n<O
a = n

Figure 2 - 4 Three Typical Transfer Functions

The hyperbolic tangent transfer function is shown on the left of Figure 2 - 4. This

transfer function is commonly used in multilayer perceptron networks, because it is a

monotonically increasing function and it is differentiable. In the center, we have the hard

limiting transfer function. Neurons that use this transfer function are commonly referred to

as McCulloch-Pitts neurons. Since the output has the value of 1 or 0, it is commonly used

for binary classification. Lastly, a linear transfer function is shown on the right. This

transfer function is commonly used in the last layer of a feedforward network for function

approximation applications.

The reader can refer to (Hagan et al. 1996, Haykin 1994) for a list of other transfer

functions. Note that from now on, we will use "neuron" for artificial neuron and "neural

network" for artificial neural network.

2.2.5 Multiple-Input Neuron

To mimic the multiple dendrite connections in a biological neuron, a neuron with

multiple inputs is illustrated in Figure 2 - 5. As shown, the neuron has r inputs

p 1 p 2 ... Pr weighted by rweights w 1, 1 w 1, 2 ... wl,r

13

P1

P2
p 3 __ --+ __ _;::,,.. a

Pr

Figure 2 - 5 Multiple-Input Neuron

Mathematically, if we assume that the bias term is weighted by a constant input of

l,p0 = 1,thatisp = ~0 p 1 p2 ... pJT and 1w = [w1, 0 w1, 1 w1, 2 ... w1,J,thenthe

output is

(2 - 2)

Using Eq. (2 - 2), we can draw the simplified symbolic representation of a multiple-input

neuron as in Figure 2 - 6.

a

Pr

Figure 2 - 6 Multiple-Input Neuron - Simplified Representation

2.2.6 A Layer of Neurons

It is apparent that a biological neural network derives its computing power through

its massive parallel structure and massive interconnections. To mimic the massive parallel

biological structure, we can connected several multiple-input neurons in parallel. This

14

forms a layer of neurons, which operate in parallel. Figure 2 - 7 shows a single-layer of s

neurons. As shown, the inputs are interconnected to each neuron forming the parallel

structure.

P1

P2

p3._~~--=

Pr

Figure 2 - 7 A Layer of Neurons

We can express the output of a layer of neurons using vectors and matrices:

a = f(Wp)

The weights and biases are lumped into one weight matrix W , as in

(2 - 3)

(2 - 4)

where the row indices indicate the number of neurons, s, and the column indices indicate

the number of inputs, r. Meanwhile, the input p is expressed in vector form as

(2 - 5)

15

Multiplied together, W p forms the net input vector n . The transfer function f(•) then

processes the net input vector element by element to form the output vector a.

2.2. 7 Multilayer Network

Neural networks achieve the massive interconnections of the biological neurons by

cascading several layers of neurons. Typically, a network with multiple-layers of neurons

is called a multilayer feedforward network. Each layer has its own weights, biases, net input

and output. To distinguish between layers, a superscript is used to identify the layer number.

For example, W I is the weight and bias matrix for the first layer. Figure 2 - 8 shows two

layers of neurons (two-layer feedforward network) with r inputs, s 1 neurons in the first

layer and s2 neurons in the second layer. If a network has more than 1 layer, we refer to the

layer in between the input and output layer as the hidden layer.

Pr

Po=
Figure 2 - 8

A mathematical equation that describes the total output of the two-layer

feedforward network is given by

16

(2 - 6)

The simplified symbolic representation can also be used in modeling a multilayer

feedforward network. Figure 2 - 9 shows a simplified representation of Figure 2 - 8. This

representation has the advantage of showing how each node is linked to the inputs and the

outputs. This will make it easier to demonstrate the relationship between the multilayer

network and the radial basis network, which will be presented later. Note that Po, and a0

are the biases.

ap
Po= 1

P1

P2
a22

Pr

Figure 2 - 9 Two-Layer Feedforward Network - Simplified Representation

2.2.8 Universal Approximation Capability

One of the key features of the neural network that attracts many researchers is its

universal approximation capability. According to Hornik's (1989 & 1991) universal

approximation theorem, a multilayer feedforward neural network, with one or more hidden

layers of squashing nonlinear transfer functions, is capable of approximating any real-

valued continuous function arbitrarily well over a compact interval provided that sufficient

17

hidden neurons are available. Independently, Funahashi (1989) and Cybenko (1989)

arrived at the same neural network universal approximation capability using functional

analysis.

The term "squashing function" refers to a class of transfer functions, which includes

tangent sigmoidal, hyperbolic tangent and more. Later, Leshno et al. (1993) showed that a

locally bound piecewise continuous transfer function also has the universal approximation

capability. An example of such a function is the linear saturation function. Thus, neural

networks such as the multilayer perceptrons, which use tangent sigmoidal transfer

functions in the hidden layers and linear transfer functions in the output layer, are universal

approximators that can approximate any continuous function to an arbitrary degree of

accuracy.

18

2.3 The Radial Basis Function Network

The radial basis function network was introduced by Powell (1987a, 1987b) for

multidimensional interpolation. Then, it was exploited by Broomhead & Lowe (1988) in

the context of neural network design. In the following, we introduce the fundamental

building block of the RBF network - the radial basis functions.

2.3.1 The Radial Basis Functions

Figure 2 - 10 ith Radial Basis Function Node

Rather than using monotonically increasing transfer functions such as the tangent

sigmoidal, the RBF network utilizes radial basis functions as the transfer functions. Figure

2 - 10 shows the mathematical operation of a radial basis function node. As shown, the

Euclidean distance between the input vector p, and the center vector ci of the Fh radial

basis function is first computed to form the net input ni of ith radial basis function. Then,

the net input is fed into the nonlinear radial basis function f(•) . Typically, this radial

basis function is also called the local receptive field, since it only activates if the distance

is close to the centers. The following are two radial basis functions often used in practice

(Broomhead & Lowe 1988; Poggio & Girosi 1990a).

19

Thin plate spline function:

f(n) = (~r In(~), for cr > 0 and n::?: 0 (2 - 7)

Gaussian function:

(2 - 8)

Theoretical investigations and practical results have shown that the type of radial

basis functions are not crucial to the performance of the RBF networks. Hence, this

research will confine our discussion to the use of the Gaussian function only. In the

Gaussian function, cr is the standard deviation, and it determines the width of the Gaussian

function. It is sometimes referred to as the smoothing factor.

20

2.3.2 The RBF Network Architecture

y

Figure 2 - 11 The Radial Basis Function Network

In terms of the network architecture, the RBF network is a two-layer feedforward

network. In fact, the two-layer network architecture as shown in Figure 2 - 9 is the multi

input multi-output RBF network architecture. However, since multi-output RBF networks

can always be separated into several single-output RBF networks, we will only consider the

multi-input single-output RBF network. Figure 2 - 11 shows such a Radial Basis Function

(RBF) network architecture. The main difference between a RBF network and a two-layer

perceptron is its hidden layer transfer function. The RBF network uses the radial basis

functions discussed in section 2.3.1. Also, the hidden layer has no bias. As in the

feedforward network, the RBF network uses linear transfer functions in the output layer.

21

The following pair of mathematical equations represents a RBF network with r

inputs, q hidden nodes and a scalar output:

q

a0 = 1 , ai = J(IIP - cill), and y = L xiai (2 - 9)

i = 0

where

P = ~ 1 p 2 ... pJ Tis the input vector,

ci = [c1, i c2, i ... er, J T is the i1h RBF center vector,

II • II denotes the Euclidean norm,

a0 = 1 is the second layer bias input,

ai is the ifh Gaussian radial basis function output except a0 ,

xi is the i1h weight, and x0 is the bias,

y is the output of the RBF network, and

f(•) is the Gaussian radial basis function.

22

2.3.3 Universal Approximation Capability

Like the multilayer perceptron, the universal approximation theorem is also

available for the RBF network. Park & Sandberg (1991) show that by using a fixed

smoothing factor in all the radially symmetric kernel functions, a RBF network with such

kernel functions in the hidden layer is broad enough for universal approximation.

Furthermore, Poggio & Girosi (1990b) show that a regularization RBF network has the best

approximation property in addition to the universal approximation ability. This means that

given an unknown nonlinear function y1, there always exists a choice of coefficients that

approximates y f better than all other possible choices.

These existing theorems show that the RBF networks are universal approximators

and can approximate any continuous function with as much accuracy as the multilayer

network.

23

2.4 Mathematical Preliminaries

In this section, we lay down the fundamental mathematical notation for the RBF

network that we will be using in later chapters. The intention of this section is to allow

readers to become familiar with the mathematical notations and symbols of the RBF

network architectures that we will be frequently using.

2.4.1 RBF Network - Linear in Parameters

Assume that we have a set of k input data { d(j), p(j)} J = 0 , where d(j) is the

desired response and p(j) is the network input. Then the RBF network output is

q

(2 - 10)

i = 0

For this research, we fix all the RBF centers ci and the standard deviation cr in the

hidden layer. Then there will be no unknown parameters in the hidden layer. Thus, the

hidden layer performs a fixed nonlinear transformation with no adjustable parameters. The

hidden layer output is

ai(j) = J(IIPU)- cill), for j = O ... k and i = O ... q. (2 - 11)

If we write out every element of ai(j) , we form the following matrix A :

24

a 0(0) a1 (0) ... aqCO)

A= a0(1) a 1(1) ... aqCl) (2 - 12)

where row j is the response of the first layer to input vector pU). In the future, we will

refer to k as the current time step, since one new data vector will come into the network at

each time step. We will refer to q as the model order, which refers to the number of neurons

in the first layer. The A matrix is k x q .

The error eU) between the desired response dU) and the RBF network output yU)

is given as follows:

q

eU) = dU)- L xiaiU), for O ~j ~ k . (2 - 13)

i = 0

By defining

e = [e(O) e(l) ... e(k)] T, (2 - 14)

d = [d(O)d(l) ... d(k)]T,and (2 - 15)

X = [xo XI X2 . . . X J T' (2 - 16)

we can form the error vector as

e = d-Ax . (2 - 17)

In statistics, the above model is called the linear model, since the output of the RBF network

is a linear combination of the weights x , and the Gaussian node outputs A . Hence, methods

25

used for solving the linear model can be applied to this linear-in-parameter RBF network.

For the rest of this document, the terms "linear model" and "RBF network" refer to the

same type of network. Note that Eq. (2 - 17) will be used in Chapter 4 for analysis of the

batch least squares method and the batch orthogonal least square method.

The main thrust in this research is the calculation of the optimal linear parameters,

xj, in the RBF network. The optimal parameters are those that minimize the sum of squared

errors eT e.

In the remainder of this chapter we will develop notation that we will use in future

chapters. This notation will be critical to the understanding of the four major problems

addressed in this research: time-update, order-update, combined time- and order- update,

and subset selection. The time-update (described in Chapter 5) is the process of updating

the optimal linear parameters when a new data vector is received (k increased by 1). The

order-update consists of two parts: the order-increase-update and the order-decrease

update. Initially, the order-update (described in Chapter 6), which we called order-increase

update later in Chapter 8 and Chapter 9, is developed for the recalculation of the optimal

linear parameters when a new neuron is added to layer 1 (q is increased by 1). Later in

Chapter 8 and Chapter 9, we introduce the order-decrease-update to work in conjunction to

the order-increase-update. Note that the order-decrease-update is the recalculation of the

optimal linear parameters when an existing neuron is deleted from layer 1 (q is decreased

by 1). The combined time- and order- update is the process in which we perform both a time

and an order update during the same time step. Keep in mind that the order-update part in

26

the combined time- and order- update can be order-increase-update only (discussed in

Chapter 7) or the combined order-increase-update and order-decrease-update (discussed in

Chapter 8 and Chapter9). The subset selection occurs before an order update. It is the

process of selecting significant nodes or deselecting insignificant nodes in an RBF network.

(Subset selection is described in Chapter 6.)

Our notation will be slightly different for each of the four problems discussed

above. The objective will be to minimize the amount of redundant notation required for a

specific problem.

2.4.2 Time-Update Framework

Let us assume that in addition to the current set of k time points, { dU), PU) }J = 0 ,

we receive new data { d(k + 1), p(k + 1)}, and we would like to update the linear model

in Eq. (2 - 17). Then, the RBF hidden layer output becomes

aJJ) =J(IIPU)-cill),forj = O ... k+l andfori = O ... q. (2 - 18)

The matrix in Eq. (2 - 12) will have an extra row appended to it. Hence, the old hidden layer

output matrix is denoted by A(k),

a0(0) a1 (0) ... aqCO)

A(k) = ao(l) a1(1) ... a/1) (2 - 19)

while the new hidden layer matrix is denoted by A(k + 1),

27

a 0(0) a 1 (0) aqCO)

ao(l) a1(1) aqCl)

A(k + 1) = (2 - 20)

a0(k) a 1 (k) aqCk)

a0(k+ 1) a 1(k+ 1) ... aqCk+ 1)

Furthermore, by applying the time-indexing notation to Eq. (2 - 17), we obtain the old error

vector:

e(k) = d(k) -A(k)x(k) (2 - 21)

where

e(k) = [e(O) e(l) ... e(k)] T, (2 - 22)

d(k) = [d(O) d(l) ... d(k)] T, (2 - 23)

(2 - 24)

The updated error after the new data is incorporated will be

e(k + 1) = d(k + 1) - A(k + 1)x(k + 1) (2 - 25)

where

(2 - 26)

d(k+ 1) = [d(O) d(l) ... d(k) d(k+ l~T' (2 - 27)

(2 - 28)

28

Note that x(k+ 1) minimizes eT(k+ l)e(k+ 1), whereas x(k) minimizes eT(k)e(k).

Using this time-indexing notation, we will derive the recursive time-update algorithms,

which we will discuss in Chapter 5.

2.4.3 Order-Update Framework

In the order-update framework, we will consider the order-increase-update and the

order-decrease-update. The order-increase-update is the recalculation of the optimal linear

parameters when a new neuron is added to the RBF network and the order-decrease-update

is the recalculation of the optimal linear parameters when an existing neuron is deleted from

the RBF network.

2.4.3.1 Order-Increase-Update

Suppose we want to add a neuron (Gaussian node) to layer 1 of the RBF network.

Then, the hidden layer output of the RBF network becomes

aiU) = J(IIPU)- cill), for j = O ... k, and i = O ... q + 1. (2 - 29)

This also means that the new Gaussian node forms an extra column appended to Eq. (2 -

12). In terms of notations, will add a subscript q to a vector or matrix to denote the order-

indexing. Hence, the hidden layer matrix at order q is denoted by Aq,

a0(0) a 1 (0) ... aqCO)

A = a 0(1) a 1(1) ... aqCl)
q (2 - 30)

and the hidden layer matrix at order q + 1 is denoted by A q + 1 ,

29

a 0(0) a 1 (0) .. . aqCO) aq + 1 (0)

= a 0(1) a 1(1) ... aqCl) aq+ 1(1) (2 - 31)

If we apply the order-indexing notation to the error vector of Eq. (2 - 17), we obtain:

(2 - 32)

where

(2 - 33)

(2 - 34)

(2 - 35)

Since the order-update cannot affect the desired response d, there is no subscript q

attached. Meanwhile, the updated error vector will satisfy the following

(2 - 36)

where

(2 - 37)

d = [d(O)d(l) ... d(k~T' (2 - 38)

[- - - JT X = q + I XQ X] ... Xq Xq + I · (2 - 39)

30

-
Note that each element xi in the parameter vector xq + 1 is updated, and it will not have the

same value as xi in the parameter vector xq. Also, because of the added Gaussian node, a

-
new parameter xq + 1 is created in the parameter vector xq + 1 • Note that each element eU)

in eq + 1 is the newly computed error, so it is different from eq. Using this order-indexing

notation, we will derive the order-increase-update algorithms, which we will discuss in

Chapter 6.

2.4.3.2 Order-Decrease-Update

Suppose we want to remove an existing neuron (assume that it is the yth neuron

where v is between O and q) from layer 1 of the RBF network. Then, the hidden layer

output of the RBF network becomes

aiU) = f(IIPU) - cili), for j = O ... k, and i = 0 ... v- 1, v + l. .. q. (2 - 40)

This also means that the new Gaussian node has the v column removed. Because we have

one less neuron, the order decreases by 1 to q - 1 . Hence, the hidden layer matrix at order

q- 1 is denoted by Aq- 1 ,

a0(0) a 1 (0)

A = ao(l) a1(l)
q-1

av_ 1(0) av+i(O) ... aqCO)

av - I (1) av+ I (1) . . . a qC 1) (2 - 41)

If we apply the order-indexing notation to the error vector of Eq. (2 - 17), we obtain:

e = d-A x q-1 q-1 q-1 (2 - 42)

31

where

(2 - 43)

d = [d(O) d(l) . . . d(k~T' (2 - 44)

[- - - JT X = . q - I XQ XI ... Xq - I (2 - 45)

-
Note that each element Xi in the parameter vector xq- 1 is updated, and it will not have the

same value as xi in the parameter vector xq. Also, because an existing Gaussian node is

removed, there will be one less parameter in xq- 1 • Using this order-indexing notation

method, we will derive the order-decrease-update algorithms, which we will discuss in

Chapter 8 and Chapter 9.

2.4.4 Time and Order Update Framework

By combining the time-indexing and order-indexing notations described in section

2.4.2 and section 2.4.3, we can arbitrarily indicate the location of a vector or matrix

according to time and according to order. For example, the hidden layer matrix at order

index q and time index k is denoted by A qC k) ,

32

a0(0) a 1 (0) .. .

A (k) = ao(l) a1(1) .. .
q (2 - 46)

We will express the last row vector and the last column vector of AqCk) using the notation

shown in Eq. (2 - 47), and Eq. (2 - 48).

(2 - 47)

(2 - 48)

We can make up the matrix A qC k) using the row vector of Eq. (2 - 4 7) or the column vector

of Eq. (2 - 48):

(2 - 49)

Again, if we apply the time and order-indexing notations to Eq. (2 - 17), we obtain:

eqCk) = d(k) -AqCk)xqCk) (2 - 50)

where

(2 - 51)

d(k) = [d(O) d(l) ... d(k)] T, (2 - 52)

33

(2 - 53)

After an order-increase-update and a time-update, the new hidden layer matrix is:

a0(0) a 1 (0) aqCO) aq+l(O)

a 0(1) a1 (1) aqC 1) aq+1Cl)

Aq+iCk+l) = (2 - 54)

a0(k) a 1 (k) aqCk) aq+l(k)

a0 (k + 1) a 1 (k + 1) . .. a qC k + 1) a q + 1 (k + 1)

Meanwhile, the updated error vector will satisfy the following

(2 - 55)

where

(2 - 56)

d(k+ 1) = [d(O) d(l) ... d(k) d(k+ l~T' (2 - 57)

(2 - 58)

Note that the parameter vector xq + 1 (k + 1) is updated, and it will not be the same as the

parameter vector xqCk). Also, because of the added Gaussian node, a new parameter

xq + 1 (k + 1) is created in the parameter vector xq + 1 (k + 1). Similarly, eq + 1 (k + 1) is the

newly computed error, so it is different than eqCk) .

34

2.5 Special RBF Network for Subset Selection

pl (0), ... , pl (k)¥:::---7"--r---::::"'4

P2 (0), ... , P2 (k)~:::-"~~-7'-::_::::::::~

Figure 2 - 12 Special RBF Network for Subset Selection

In this section, we will define the special RBF network architecture that we will be

using in Chapter 7. As shown in Figure 2 - 12, the architecture of this network consists of

a RBF network and a subnet of Gaussian nodes with no output layer. We will assume that

all the nonlinear parameters are fixed in both networks. The main idea here is to create a

set of Gaussian nodes that are not used in the computation of the network output but can be

made available if they are needed to improve the approximation ability of the network.

Chapter 6 will explain how we choose which unused node to add to the computation of the

network output.

The RBF network mathematical equation is described in Eq. (2 - 46) and Eq. (2 -

50). Meanwhile, the RBF network subnet without the output layer is described as

35

q:)j) = J(IIPU) - ciil), for j = 0 ... k and for i = 1. .. q. (2 - 59)

We use an under bar to indicate the nodes associated with the subnet and a subscript to

indicate the number of nodes in the subnet. If we write out every element, a .U) , of the
-l

subnet this forms the following matrix:

~/0) ~2(0) .. .

~qCk) =
~/1) ~2(1) .. .

a (k)
-q

To denote the last row vector of ~qCk), we introduce a left subscript. That is:

Meanwhile, the last column vector of ~qCk) is denoted as

a (k) = [a (0) a (1) ... a (k)lT.
-q -q -q -q J

(2 - 60)

(2 - 61)

(2 - 62)

~q(k) represents the unselected nodes and AqCk) represents the selected nodes. Note that

~qCk) and AqCk) may have different numbers of columns.

36

2.6 Summary

Having presented the relevant neural network background and notation, we have

built the framework for later chapters. For now, we will restrict our research to two-layer

single-input/single-output RBF networks for function approximation. Although the work

done in this research is based on the RBF network, it can be applied to all nonlinear models/

approximators that have a linear-in-parameters structure, such as the fuzzy basis function

network, functional-linked network, Volterra series model and more.

37

Chapter

3
Problem Statement

3.1 Introduction
3.2 Objective
3.3 Illustrative Example
3.4 The Research Outline

39
39
42
45

RBF neural networks have always suffered from the curse of dimensionality; the

number of RBF nodes increases exponentially with the number of inputs. This prob-

Lem is especially acute when RBF networks are used in on-line control techniques

such as stable adaptive control. Hence, this research explores on-line learning tech-

niques that will construct small RBF networks. Many methods have been proposed to

solve this problem, but most of these attempts are for off-line use. In fact, very few

methods have been found that can efficiently construct small RBF network on-line.

In this research, we design and implement on-line learning methods based upon the

off-line least squares and orthogonal least squares learning methods. This chapter

defines the problem addressed by this research.

38

3.1 Introduction

This research focuses on real-time adaptive control and identification of nonlinear

systems using a class of radial basis function (RBF) networks. In real-time applications,

such as stable adaptive control, a large number of RBF nodes are needed to guarantee a

minimum network reconstruction error. This limits the use of this technique to systems with

low input dimension. The RBF network suffers from the curse of dimensionality; the

number of nodes needed increases exponentially with the number of inputs. We would like

to construct small RBF networks in real-time, while guaranteeing the minimum network

reconstruction error. To achieve these capabilities, we develop real-time algorithms based

on the off-line least squares and orthogonal least squares methods.

3.2 Objective

The control and identification of a nonlinear system can often be viewed as a

nonlinear function approximation problem. If this nonlinear function is continuous and

differentiable over a compact subset of its domain, then according to universal

approximation theorems (Park & Sandberg 1991, Poggio & Girosi 1990a, 1990b), there

exists a linear combination of radial basis functions that can uniformly approximate this

nonlinear function to any degree of accuracy, provided that enough basis functions are

available. The RBF network can be mathematically represented as:

q

y(p) = I, xiaJp, ci) (3 - 1)

i = 0

39

where a; is the RBF node, ci is the center, p = [p 1, p 2, ••• , Pr] is a set of input signals,

and X; is the output weight.

However, because radial basis functions are local receptive fields, the number of

basis functions employed can be very large. The resulting expansions will thus be capable

of only approximating the nonlinear function y(p) on a particular subset of the input space.

Worst of all, the number of RBF nodes exponentially increases with the number of inputs.

This phenomenon is referred to as the curse of dimensionality. (Hay kin 1994)

The curse of dimensionality problem becomes particularly acute in stable adaptive

control using the RBF network (Sanner 1993, Sanner & Soltine 1992, 1995, Tzirkel &

Fallside 1992). In this technique, the RBF network (used inside the relevant region) is

combined with a sliding mode controller (used outside of the relevant region) to achieve

globally stable adaptive control. To guarantee the stability of the controller, the RBF

network has to be constructed in such a way that it yields a minimum network

reconstruction error. According to Sanner (1993), this criteria is guaranteed by constructing

the RBF centers on an equally spaced mesh grid covering a relevant region. To achieve

small reconstruction error, hundreds of RBF nodes may be needed to cover a relevant range

in each dimension, and therefore several thousand RBF nodes may be needed to cover the

relevant region of the input space. Consequently, this limits the control technique to low

dimensional systems.

To alleviate this problem, several stable adaptive control techniques (Fabri &

Kadirkamanathan 1996, Liu & Kadirkamanathan 1996) were introduced by employing a

40

growing RBF network combined with the sliding mode controller. These techniques also

assume that the centers are equally spaced and cover a relevant region. However, it only

activates the RBF nodes when the nonlinear system inputs are near their RBF centers.

Hence, the RBF network grows larger and larger as the nonlinear system visits various

regions of the state space. Accordingly, this technique may save many RBF nodes

depending on whether or not the nonlinear system visits the corresponding centers.

However, in the worst scenario, no saving of RBF nodes will occur when the nonlinear

system visits all of the input space.

Again, these techniques are clearly unsatisfactory, as they do not reduce the growth

of the RBF nodes, i.e. no saving of RBF nodes will occur when the nonlinear system visits

all of the state space. Therefore, they suffer from curse of dimensionality as well.

For practical purposes, it is desired to construct small RBF networks on-line. Small

RBF networks often provide better performance, because they generalize better. A search

of existing literature has revealed very few ad-hoc techniques (Karayiannis & Mi, 1997)

that can select small RBF networks, while operating in real-time and simultaneously

guaranteeing a minimum reconstruction error. On the other hand, there exist many off-line

(batch) techniques that can select small RBF networks and guarantee a minimum

reconstruction error. Off-line techniques usually collect a finite set of input-output data and

perform complex calculations to determine the number of nodes required. In general, these

techniques can be classified into three categories:

1. network pruning techniques - such as the optimal brain damage method (Cun et al.

1990), and the optimal brain surgeon method (Hassibi & Stork 1992).

41

2. network growing techniques - such as the orthogonal least squares method (Chen et

al. 1991), and the cascade correlation learning architectures (Fahlman & Lebiere

1990).

3. network parameter determination - such as the Bayesian regularization method

(MacKay 1992, 1994).

The orthogonal least squares (OLS) method is a simple and efficient method. This

method guarantees a level of network reconstruction error and produces a small RBF

network. This procedure first assumes that each input data is a potential RBF center. A set

of RBF hidden layer outputs is obtained by feeding the input data into the hidden layer

using all of the potential RBF centers. Then, one by one, the potential RBF center that

produces the largest reduction in network error is added to the network. This selection

process continues until an adequate network reconstruction error has been reached. We will

demonstrate this concept through the following example.

3.3 Illustrative Example

Assume that we have the following sine wave function

yfp) = sin(p) 0 $. p $. 21t sampling interval = 1t/8. (3 - 2)

A set of potential RBF hidden layer outputs are created using the potential RBF centers

selected from the input data and cr = 1. As shown in Figure 3 - 1, 17 RBF nodes (right

figure) are available to approximate the sine wave function (+ mark in left figure). These

42

nodes are arranged from left to right as { a 1, a 2, .•• , a 17 } , with centers at

{O, 1t/8, ... , 21t}.

Targets

" +

3
p

Figure 3 - 1 Desired Target and the RBF Hidden Layer Outputs

Intuitively, if we were to select the RBF nodes visually, we would select two RBF

nodes, one at the peak and the other at the valley (corresponding to RBF a 5 and a 13 nodes)

of the sine wave. The outputs of these two nodes would seem to best match the curvature

of the sine wave.

The OLS method finds the optimal nodes one by one in several steps. It begins with

no nodes. At each step, a node that produces the largest reduction in the network error is

selected from the RBF hidden layer outputs and is added into the network. These steps are

repeated until a target network reconstruction error is reached. This procedure is best

explained by a graphical example as shown in Figure 3 - 2.

Figure 3 - 2(a) shows the first step of this algorithm. It adds node a 5 into the

network, since this node provides the largest reduction in network error. However, one node

is not enough to capture the whole sine wave. Hence, in a second step, (Figure 3 - 2(b))

43

another node a 13 is selected to aid the reconstruction of the sine wave. Together, both nodes

approximate the complete sine wave, as shown in Figure 3 - 2(c). (By adding more nodes,

we can further improve the approximation.)

Sel&ct 1st node Select 2nd node

(a) (b)
0 .-4 + 0.-4 +

- 0.2

-0.6

- 0.8

3 3
k k

The RBFoutptA

08 (c)

O.at +

0.2

3
k

Figure 3 - 2 Orthogonal Least Squares Center Selection

44

3.4 The Research Outline

The OLS learning algorithm is a simple and efficient algorithm for selecting a small

size RBF network. However, one drawback with this method is that the training is done in

batch mode only. (Batch means that the entire training set must be available. A recursive

algorithm can update the parameter estimates as each new data point is received.)

This research has found a way to produrt~ on-line LS and OLS learning methods.

This goal is achieved by considering three majo.=- is~ue~: time-update, order-update, and

subset selection. The time-update is the process of updating the RBF weights when a new

time point data is received. Two time-update algorithms, the recursive leasr squares (RLS)

algorithm and the QR recursive least squares (QR-RLS) algorithm, are discussed in

Chapter 5 to address this issue.

The order-update is the recalculation of the optimal RBF weights ,vhen a new RBF

node is added (order-increase-update) or deleted (order-decrease-update). Chapter 6

addresses this issue by deriving the recursive order-increase-update procedures for least

squares and orthogonal least squares methods to recalculate the. optimal weights.

Meanwhile, the subset selection occurs !Jefore the order-update. It is a proC,,ess of selecting

the optimal node for the RBF network and deciding whether an order-update is necessary

at a particular tirne point. This issue is also disccssed in Chapter 6.

If we take all three processes t0gether, we arrive at c: time- and order- update

framework, which can be used to ~elect useful RBF nodes sub-optimally and recursively.

Because the framework can be applied t;) the RLS method and the QR-RLS method, two

45

algorithms are developed. We call these algorithms Recursive Least Squares with

Automatic Weight Selection (RLS-AWS) and QR Recursive Least Square with Automatic

Weight Selection (QR-RLS-AWS).

In Chapter 8 and 9, we devote our efforts to improve the RLS-AWS and the QR

RLS-AWS algorithms. These improvements include alleviating the storage requirement,

improving the algorithm's subset selection solution by developing the recursive Efroymson

method, and reducing the computation efforts. Subsequently, we make these algorithms

practical for real-time usage.

With these two algorithms, we hope to alleviate the problem of the curse of

dimensionality by producing moderate RBF network sizes.

46

Chapter

4
The Least Squares Method

4.1 Introduction 48
4.2 Linear Model 48
4.3 Solving the Linear Model 50

4.3.1 The Linear Least Squares Problem 50
4.3.2 Characterization of Least Squares Solution 51

4.4 Orthogonal Projection 52
4.4.1 Subspace Projection 53
4.4.2 Matrix Projection and Geometrical Interpretation 54

4.5 Orthogonal Transformation 56
4.5.1 Motivation 56
4.5.2 Orthogonal Least Squares Method 57

4.6 Givens Rotations 58
4.6.1 Givens QR Methods 61

4.7 Summary 62

In chapter 2, we pointed out that the RBF network with fixed centers and fixed stan-

dard deviation could be viewed as a linear model. In this chapter, we will discuss the

necessary tools for solving this "linear" RBF network: the least squares method and

the orthogonal least squares method.

47

4.1 Introduction

This chapter is organized as follows. In section 4.1, we introduce the linear model.

In section 4.2, we formulate the linear model solution as a linear least squares problem.

Then, we characterize the least squares solution as a solution to the normal equations. The

Orthogonality Theorem and Uniqueness Theorem are summarized as the backbone proofs

for this least squares method. In section 4.3, we view the least squares problem

geometrically. The concept of matrix projection through the subspace projection is

introduced and a geometrical interpretation of the matrix projection is discussed. In section

4.4, we highlight the numerical problems, which occur when we use the normal equations

to solve the least squares problem. A better least squares method based on an orthogonal

transformation is introduced. We discuss several orthogonalization tools, but detailed

attention is given to the Givens rotation. The Givens rotation will serve as the central

process for the Givens QR algorithm; hence, it is discussed in detail in section 4.5. Readers

are encouraged to pay extra attention to the Givens rotation operations as they are central

to the QR recursive least squares algorithm in chapter 6, 7, 8 and 9.

4.2 Linear Model

Linear models exist in all scientific disciplines. The linear model might seem to be

highly restricted, but many industrial processes can be described very accurately by these

types of models. In fact, it is one of the most widely used models in industrial applications,

48

such as in control, signal processing, etc. In linear models, one assumes that the desired

vector d E 9\m is related to the unknown parameter vector x E 9\n by a linear relation

Ax= d, (4 - 1)

where A E 9\m x n is a known data matrix. This equation has an exact solution when we can

match the desired vector d exactly with a linear combination of the columns of A. For

example, if m = 3, n = 1,

(4 - 2)

then x = 2 produces an exact solution. However, in many instances, d cannot be

expressed in the form of Ax. For example, if m = 3, n = 1,

(4 - 3)

no value of x can ever produce d exactly. This leads us to an extension of the linear model,

Ax+ e = d (4 - 4)

where e is the error vector. The solution of Eq. (4 - 4) is to find a parameter x such that

Ax is as close as possible to d; in other words, find the "best" fit (albeit not perfect)

between Ax and d.

49

4.3 Solving the Linear Model

4.3.1 The Linear Least Squares Problem

How do we measure the distance between Ax and d ? There are many possible

ways. One choice is motivated by statistical considerations and leads to a simple solution.

It is the Euclidean vector norm (the two-norm). This leads to the minimization problem

(4 - 5)

where 11 • 11 2 denotes the Euclidean vector norm. If d - Ax = e, then

Of course, there are other norms we can use, such as the Holder vector p-norms

II • IIP, which are defined by

1 $.p$.oo. (4 - 6)

For our research, however, we will only focus on the two-norm. In fact, the two-norm

minimization problem is the linear least squares problem. In the following section, we will

characterize the set of all solutions to the least squares problem.

50

4.3.2 Characterization of Least Squares Solution

The solution of the least squares problem has been widely discussed in many books.

We will not attempt to cover this material in great detail, but will give a brief review on

some of the characteristics of the least squares solution. For more detail, see (Bjorck 1996,

Golub & VanLoan 1996, and Haykin 1996).

There are two unique least squares properties; the orthogonality condition and the

uniqueness condition. We summarize these two properties in the following two theorems.

Theorem 4 - 1 Orthogonality Condition

Let us denote the set of all solutions to the least squares problem Eq. (4 - 5) by

S = {x E Rnl lid -Axlb = min}. (4 - 7)

It can be shown that x E S if and only if the following orthogonality condition holds:

(4 - 8)

Proof (See Bjorck 1996 pp.5).

Theorem 4 - 1 is known as the principle of orthogonality (Haykin 1996). If we

expand Eq. (4 - 8), we obtain

(4 - 9)

which is called the normal equation. This implies that the solution of Eq. (4- 5) must satisfy

the normal equation. Assuming for now that the inverse matrix (AT A)-1 exists, we may

solve the linear least squares problem as

(4 - 10)

51

It is important to know when this solution is unique. This is covered by the following

Uniqueness Theorem.

Theorem 4 - 2 Uniqueness

If A E 9\ m x n has full rank n , then there exists a unique least squares solution x

and a residual e = d -Ax, which is given by

x = (ATAt1ATd, and

Proof (See Bjorck 1996 pp.7).

(4 - 11)

Theorem 4 - 2 shows that we may expect a unique solution to the least squares

problem only when the data matrix A has linearly independent columns. In this case, the

inverse matrix (AT A)-1 is non-singular (therefore invertible) and the least squares solution

1s umque.

On the other hand, if rank(A) < n , then an infinite number of solutions can be

found for minimizing the sum of squared errors. We defer discussion of this issue to the

later part of the chapter. In the meantime, we assume that data matrix A is of full column

rank, so that the least squares estimate x has the unique value defined by Eq. (4 - 10).

4.4 Orthogonal Projection

Notice in Eq. (4 - 11) that the residual e contains a term A(AT A)- 1 AT. This term

is called the projector. To understand the concept of projection and its relationship with the

least squares solution, we must first understand the concept of projection onto a subspace.

52

4.4.1 Subspace Projection

Let S be a subspace of 9tm and s E S be an element in S. Then, the orthogonal

complement of S, denoted by S .l , is defined as the set of all m-dimensional vectors that are

orthogonal to vectors in S. i.e. if a is an element in S .l, then

S .l = { a E 9t m I a Ts = 0 for all s E 9t m} . (4 - 12)

Note that S .l is also a subspace of 9tm . Together, S and S .l comprise all of 9tm, and have

no vectors in common except for the zero vector:

(4 - 13)

An important relationship between the S and S .l is that any m-vector d can be represented

as

(4 - 14)

Let S be a subspace of 9t m , then P s, a unique m x m matrix, is an orthogonal

projector onto the subspace S if it satisfies the following properties (Bjorck 1996):

1. Every vector in the subspace S can be written as a linear combination of the

columns of Ps, i.e., the vector d5 lies in S if and only if d5 = Psd for some m-

vector d .

2. Pf = Ps (Symmetric Property).

3. Pi = Ps (Idempotent Property).

53

It is important to note that these properties also apply to the orthogonal complement

- -
projector I - P s. If we apply the projector P s to any m-vector d, it will produce d s - the

portion of d that lies in S.

(4 - 15)

-
Similarly, if we apply the orthogonal complement projector I - P s to any m-vector

d , it will produces d s .1 - the portion of d that lies in SJ_ .

(4 - 16)

4.4.2 Matrix Projection and Geometrical Interpretation

The notion of subspace projection is closely tied to the matrix projection. As in

subspace projection, we can decompose a m-vector d into a sum of two quantities. In

matrix projection, these two quantities fall into the range space of A and the null space of

(4 - 17)

where dR E range(A) and dN E null(AT) . The matrix projector, PA, is a projector onto

the range of A with properties similar to the subspace projector Ps . (Bjorck 1996)

- -
1. PAd = dR and (1-PA)d = dN.

2. i>J = PA (Symmetric Property).

54

3. Pl = PA (Idempotent Property).

Using Eq. (4 - 17) and Property (1), we can decompose am-vector d into

- -
d = PAd+(I-PA)d. (4 - 18)

PA projects the d vector onto the column space of the matrix A E 9\m x n where

(4 - 19)

and

T T -
1-A(A A)A = I-PA (4 - 20)

is the orthogonal complement projector (or simply orthogonal projector). When applying

- A

the matrix projector PA to the desired data vector d , we get an estimated data vector d .

Likewise, if we apply the orthogonal projector, I - PA , to the desired vector d, we obtain

A

the error vector e = d - d . This projection operator can be illustrated by the following

diagram.

A

d A

d

e

Figure 4 - 1 Geometrical Interpretation of the Orthogonal Projection

55

As shown, the objective is to minimize the length of the error vector e, so that the

~

desired response, d , is as close as possible to the estimated data vector d .

4.5 Orthogonal Transformation

4.5.1 Motivation

Although the normal equation is the fastest way to solve the least squares problem,

it suffers from a lack of accuracy. This problem is illustrated by the following example.

Consider

A=[: :l,
0 10-~

then the associated sum of squared matrix is

ATA=[2 2 l.
2 2 + 10-1~

Now, if we have an infinite precision computer, we will obtain an exact AT A

solution. However, if we use double precision arithmetic, 2 + 10-16 will be rounded to 2,

and we will obtain A' A = ~ ~, which is not invertible. Since A is the original data

matrix, this ill-conditioning problem cannot be avoided by choosing another

56

parameterization. The accuracy of the computed normal equation solution may then depend

on the square of the condition number of A.

4.5.2 Orthogonal Least Squares Method

Due to this numerical difficulty, modern least squares methods have been developed

based on orthogonal transformations. These are called the orthogonal least squares

methods. The main idea of the orthogonal transformation is to work directly with the

original data matrix A by decomposing A E 9\m x n into an upper triangular matrix

R o,m x n . h l . QT o,m x m
E .n usmg an ort ogona matnx E .;,\ .

(4 - 21)

Using this definition, the least squares minimization problem can be rewritten as

(4 - 22)

Since QT is an orthogonal matrix, its application to the error residual preserves the

Euclidean length (does not alter the two-norm) and cannot exacerbate the condition of A .

Because we are no longer solving equations, we avoid the numerical inaccuracy associated

with forming the AT A matrix.

To solve the least squares problem using the orthogonal transformations, we need

to find the orthogonal matrix. We find the orthogonal matrix by applying a sequence of

special transformations to A or by Gram-Schmidt orthogonalization methods. Because

Gram-Schmidt orthogonalization methods are not very useful in recursive least squares, we

57

will not discuss them here. The orthogonal transformations used in finding the orthogonal

matrix can be the Householder reflections or the Givens rotations. Both transformations can

be easily applied to recursive least squares. The Householder reflections introduce zeros on

a grand scale (they annihilate all but the first component of a vector) while Givens rotations

introduce zeros element by element (they annihilate one element in a vector one at a time).

We will only discuss the Givens rotations, since it will be used in Chapter 5 when we

introduce square root filtering.

4.6 Givens Rotations

The Givens rotations (Givens 1958) are also known as plane rotations or Jacobi

rotations (Jacobi 1846). It is referred to as Jacobi rotations in honor of Jacobi 1846, who

proposed a method for reducing a symmetric matrix to diagonal form. It is referred to as

Givens rotations in honor of Givens 1958, who proposed a method for reducing a general

matrix to triangular form. Also, it is referred to "plane rotation" because multiplication by

this matrix will give a plane rotation.

Let G(i, k) denotes a Givens rotation in the (i, k) plane, where k > i. The G(i, k)

matrix is the same as the M x M identity matrix, except for the four strategic elements

located on the rows i, k and columns i, k. At these locations, c = cos (8) and s = sin (8)

as in the following:

58

1 0 0 0

0 C s 0

G(i, k) = (4 - 23)
0 -s C ... 0 k

0 0 0 1

k

The above Givens rotation matrix is clearly orthogonal, as GT G = I . To illustrate the

nature of this Givens rotation, consider

(4 - 24)

(4 - 25)

Premultiplying the vector x by G(i, k{ yields

y = G(i,k{x

Y1
T

XI 1 0 0 0

Yi 0 C s 0 X· I (4 - 26)
=

Yk 0 ... -s ... C 0 xk

YM 0 0 0 1 XM

From the above, we can derive the following set of equations

59

Yk = sxi + cxk (4 - 27)

Yj = xj j ct i, and j ct k

From these equations, it is clear that we can force Yk to zero by setting

C =
X· -Xk

--1 -,ands =
Jxl +x'f Jxl +x'f

(4 - 28)

Note that it is not necessary to compute 8. Thus, the Givens rotation is the transformation

of choice when we need to zero a specified entry in a vector. In practice, we do have to

guard against overflow, and the following version of the Givens rotation (Golub & Van

Loan 1996) is often used.

Givens Rotation Algorithm

Given scalars a and b, this function computes c = cos(8) ands = sin(8) so that

[:sf[:] = [~]

function [c, s] = givens(a, b)

if b = 0

C = 1 ;s = 0

else

if lbl > lal
't = - a/ b;s = 1/ ~;c = st

else

't = -bl a;c = 1/ ~;s = ct

end

end

60

(4 - 29)

To apply the Givens rotation to a full matrix A, it is critical to exploit the simple structure

of a Givens rotation matrix when it involves a matrix multiplication. Suppose A E 9\m x n,

then the update G(i, k{ A effects just two rows of A,

A([i, k], :) = G(i, k{ A([i, k], :) . (4 - 30)

4.6.1 Givens QR Methods

With the Givens rotation capable of zeroing a specific entry in a matrix, we can

apply a sequence of Givens rotations to reduce A to an upper triangular matrix. The

following 4 by 3 case illustrates the general idea:

X X X (1.4) X X X (1.3) (1,2)

~ ~ ~

X X X X X X 0 X X

X X X 0 X X 0 X X

X X X X X X X X X

0 X X (2.4) 0 X X (2.3) 0 X X
(3.4)

~ ~ ~R
0 X X 0 X X 0 0 X

0 X X 0 0 X 0 0 X

the affected elements

Figure 4 - 2 Givens QR Annihilation on a 4x3 Matrix

The annihilation begins at the top left matrix and ends at the bottom right matrix.

The highlighted elements in the matrix are the elements that are affected by each

annihilation. On each sequence, the annihilation shows the (i,k) element that has been

zeroed. If G/i, k) denotes the j -th Givens rotation in the reduction, then Q T A = R is

61

upper triangular, where QT is represented by the sequence of Givens rotations G/i, k)

applied to the A matrix:

(4 - 31)

Givens QR Algorithm

Given A E 9\m x n with m ~ n, the following Givens QR algorithm overwrites A

with QT A = R, where R is upper triangular and Q is orthogonal.

for j= 1:n

for i = m:-1 :j + 1

[c, s] = givens(AU,j), A(i,j))

end

end

A(U, i],j:n) = [c s]T A(U, i],j:n)
-SC

(4 - 32)

Accordingly, this algorithm requires 3n2(m - n/3) flops (Golub & Van Loan 1996).

4.7 Summary

This chapter has covered the fundamental least squares techniques. It also discussed

the important concept of subspace/matrix projections. Several important tools such as the

Givens rotations and QR Givens algorithm were discussed. These tools will be used to

facilitate algorithm development in later chapters. With this introduction to the Givens

rotation and the Givens QR algorithm, we are ready to explore the time update algorithms

in the next chapter.

62

Chapter

5
Time-Update Algorithms

5.1 Introduction 64
5.1 Matrix Inversion Lemma 66
5.2 Recursive Least Squares Algorithm 67

5.2.1 Time-Update for the Parameter 69
5.2.2 Time-Update for the Sum of Squares Errors 71
5.2.3 Implementation Considerations 74

5.3 QR Recursive Least Squares Method 76
5.3.1 Introduction 76
5.3.2 Preliminary Setup for QR-RLS Algorithm 77
5.3.3 Forming the QR-RLS Algorithm 82
5.3.4 Orthogonal Matrix Operation 85
5.3.5 Implementation Considerations 87

5.4 Results Summary 88

Our main mission in this chapter is to develop the basic theory behind the time update

algorithms, specifically the Recursive Least Squares (RLS) algorithm and the QR Re-

cursive Least Squares (QR-RLS) algorithm. These algorithms serve as important

tools for the Recursive Least Squares with Automatic Weight Selection (RLS-A WS) al-

gorithm and the QR Recursive Least Squares with Automatic Weight Selection (QR-

RLS-AWS) algorithm, which will be developed in Chapter 7 - 9.

63

5.1 Introduction

We begin the development of the RLS algorithm by reviewing some basic relations

that pertain to the method of least squares. By exploiting a relation in matrix algebra known

as the matrix inversion lemma, we develop the RLS algorithm. Later, we point out that the

RLS algorithm suffers from numerical instability, and we introduce a more stable method

called the QR-RLS algorithm. We derive the QR-RLS algorithm based on the RLS

algorithm and the matrix factorization lemma. Then, we also discuss how the QR-RLS

algorithm operates using the orthogonal matrix. Each of these algorithms is discussed in

detail and a summary is given at the end of the chapter.

In the following, we extend the batch least squares method of Chapter 4 to the

recursive least squares algorithm. To ease the derivation, we introduce the time notation k

to denote the difference between the past data and the current data. Specifically, the time

index k - 1 denotes the last time step and the time index k denotes the current time step.

Let us assume that, in the last time step, we found the least squares solution to the

linear model given by Eq. (5 - 1). The least squares solution for this linear model is given

in Eq. (5 - 2),

A(k - 1)x(k - 1) = d(k - 1),

x(k - 1) = (AT(k- l)A(k-1))- 1AT(k - l)d(k - l) .

(5 - 1)

(5 - 2)

Note that A(k- 1) and d(k - 1) are the data matrix and desired response vector given by:

64

A(k-1) = ,d(k-1) =
d(O)
d(l)

d(k- 1)

Meanwhile, x(k- 1) is a parameter vector at time index k- 1 .

(5 - 3)

Now, at the current time step k, a new data vector aT(k) and a new desired response

d(k) become available, and we wish to add this new information into the linear model as

in Eq. (5 - 1). This new information is incorporated by adding a T(k) as a new row of the

data matrix A (k - 1) and adding d (k) into the desired vector d (k - 1) :

A(k) = [A(k- 1~, and d(k) = [d(k-1)1 _
aT(k) J d(k) J (5 - 4)

Together, they form a new linear model at the current time step k,

A(k)x(k) = d(k). (5 - 5)

Naturally, we could compute the whole least squares solution again, but this would

be time consuming. We usually avoid performing such an operation by finding a way to

recursively update the least squares solution. This is especially important when the new

data are arriving sequentially and the least squares solution must be computed in real time.

The recursive solution can be obtained by using a basic result in matrix algebra known as

the matrix inversion lemma.

65

5.2 Matrix Inversion Lemma

Before we derive the recursive least squares algorithm, we introduce the matrix

inversion lemma. Let A and (D + C7 A-1 B) be two square and invertible matrices, then

according to the matrix inversion lemma, we may express the inverse of the A+ BD-1 CT

matrix as follows:

(5 - 6)

In the special case where Band C are vectors (denoted by b and c respectively) and Dis

a scalar, d, Eq. (5 - 6) simplifies to

(5 - 7)

Note that (d + c7 A-1 b)-1 is a scalar and the inversion is just a simple division. Frequently,

Eq. (5 - 6) is called the Woodbury formula (Woodbury 1950) and Eq. (5 - 7) is called the

Sherman-Morrison formula (Sherman & Morrison 1949). In engineering, these formulae

are often referred to as the matrix inversion lemma. For a history, literature surveys, proofs

and applications of the matrix inversion lemma, see Hager (1989).

66

5.3 Recursive Least Squares Algorithm

In this section, we apply the matrix inversion lemma to the batch least squares

algorithm and obtain a recursive algorithm. We start by finding the least squares solution

of this new linear model

[A(k- 1)1 x(k) = [d(k - 1 ~
aT(k) J d(k) J (5 - 8)

where the new data, aT(k), and the new desired response, d(k), are added into the model.

To solve for this new linear model, we form a new minimization problem

minlle(k)lli = minlld(k) - A(k)x(k)ll 2 .
X X

(5 - 9)

Since the least squares solution of this new linear model also satisfies Eq. (5 - 2), we could

easily expand the above equation into

[Ar(k-1) a(k~ [A(k- l~x(k) = [Ar(k-1) a(k)] [d(k-1)1
aT(k) J d(k) J (5 - 10)

(AT(k- l)A(k-1) + a(k)aT(k))x(k) = AT(k- l)d(k-1) + a(k)d(k)

As mentioned previously, we can take the inverse of Eq. (5 - 10) and recalculate the

whole solution, but it is impractical and time consuming. A better way of obtaining the

solution is to apply the matrix inversion lemma, specifically the Sherman-Morrison

Formula. When we apply the Sherman-Morrison Formula to the above equation, we obtain

(AT(k- 1)A(k- 1) + a(k)aT(k) f 1 =

(AT(k - l)A(k - 1))- 1 - (AT(k - l)A(k - l))-1a(k) x (5 - 11)

(1 +aT(k)(AT(k - l)A(k - 1))- 1a(k))- 1aT(k)(AT(k - l)A(k - 1))- 1

67

Let

H(k) = (AT(k-l)A(k-l)+a(k)aT(k)f1 (5 - 12)

be the inverse correlation matrix at the current time step and

H(k-1) = (AT(k- l)A(k-1))-1, (5 - 13)

be the inverse correlation matrix at the previous time step, then Eq. (5 - 11) becomes

H(k) = H(k- 1) _ H(k- 1)a(k~aT(k)H(k- 1)
1 + aT(k)H(k- 1)a(k)

(5 - 14)

We need to find the inverse of 1 + a T(k)H(k- 1)a(k), but this term is just a scalar, and the

inverse is a simple division. Let us denote the scalar term l((k) as

K:(k) = 1 + aT(k)H(k- 1)a(k), (5 - 15)

then because H(k - 1) is non-negative definite (See Ogata 1987 Appendix for definition

of non-negative definite), aT(k)H(k- 1)a(k) ~ 0 and

I((k) ~ 1 and O ~ r 1 (k) ~ 1 . (5 - 16)

Let

k(k) = H(k- 1)a(k) = r1(k)H(k- 1)a(k)
1 +aT(k)H(k- l)a(k)

(5 - 17)

be the gain vector (for reasons that will become apparent later in the section), then Eq. (5 -

14) can be written as

H(k) = H(k-1)-k(k)aT(k)H(k - 1). (5 - 18)

68

In addition, if we multiply both sides of Eq. (5 - 17) by 1 + aT(k)H(k- 1)a(k) and expand

it out, the gain vector can be written in terms of the inverse correlation matrix at the current

time step and the new data vector.

k(k) + k(k)ar(k)H(k- 1)a(k) = H(k- 1)a(k)

k(k) = (H(k-1)-k(k)ar(k)H(k-l))a(k)

H(k)

k(k) = H(k)a(k)

5.3.1 Time-Update for the Parameter

(5 - 19)

Now we are ready to develop a recursive equation for updating the least squares

estimates for the parameter vector x(k) . Using Eq. (5 - 18), we can express the parameter

vector update in Eq. (5 - 10) as

x(k) = [H(k-1)-k(k)ar(k)H(k-l)](Ar(k-l)d(k-l)+a(k)d(k)). (5-20)

Expanding Eq. (5 - 20), we get

x(k) = H(k - l)Ar(k - l)d(k - 1)-k(k)ar(k)H(k- l)Ar(k - l)d(k - 1) +

H(k- 1)a(k)d(k)-k(k)aT(k)H(k- 1)a(k)d(k)
(5 - 21)

From Eq. (5 - 2), H(k - 1)AT(k- 1)d(k- 1) is the least squares solution for the parameter

vector x(k - 1). Therefore, substituting and rearranging the remaining terms, we reduce

Eq. (5 - 21) to

x(k) = x(k - 1)- k(k)aT(k)x (k - 1) + [H(k - 1)- k(k)aT(k)H(k - l)]a(k)d(k) .(5 - 22)

69

Notice that we can substitute Eq. (5 - 18) into Eq. (5 - 22) and we can further reduce Eq. (5

- 22) to

x(k) = x(k- 1)-k(k)a T(k)x(k- 1) + H(k)a(k)d(k). (5 - 23)

Finally, using the fact that H(k)a(k) equals the gain vector k(k), as in Eq. (5 - 19), we

obtain the desired recursive equation for updating the parameter vector x(k):

x(k) = x(k- 1)-k(k)aT(k)x(k- 1) + k(k)d(k)

= x(k-l)+k(k)(d(k)-aT(k)x(k-1))

= x(k-1) + k(k)~(k)

where ~(k) is called the a priori estimation error defined by

~(k) = d(k) - aT(k)x(k- 1) .

(5 - 24)

(5 - 25)

The term ~(k) is called the a priori estimation error because it uses the past parameters

x(k- 1) to make up the inner product a T(k)x(k- 1), which represents an estimate of the

new desired response d(k). Take note that the a priori estimation error is different from the

a posteriori estimation error

e(k) = d(k) - aT(k)x(k). (5 - 26)

70

5.3.2 Time-Update for the Sum of Squares Errors

The relationship between the a priori estimation error ~(k) and a posteriori

estimation error e(k) becomes apparent when we formulate a recursive formula for the

sum of squared errors eT(k)e(k). This recursive formula will be shown to be

eT(k)e(k) = eT(k- 1)e(k- 1) + ~(k)e(k).

Proof. We first note that

e(k) = d(k) - A(k)x(k),

and the sum of squared errors is

eT(k)e(k) = d T(k)d(k) - d T(k)A(k)x(k)

- xT(k)AT(k)d(k) + xT(k)AT(k)A(k)x(k)

(5 - 27)

(5 - 28)

(5 - 29)

Note that if we substitute x(k) = (AT(k)A(k)) - 1 A T(k)d(k) into the last term of Eq. (5 -

29), then we get

(5 - 30)

Now, let us call the term A T(k)d(k) the cross correlation vector

v(k) = AT(k)d(k). (5-31)

Then Eq. (5 - 30) can be expressed as

(5 - 32)

Since d(k) = [d(k- l)l and A(k) = [A(k-1)1 , Eq. (5 - 31) can be written as a
d(k) J aT(k) J

recursive equation

71

v(k) = v(k- 1) + a(k)d(k).

Also, the sum of squared of the desired responses becomes

dT(k)d(k) = dT(k- 1)d(k- 1) + dT(k)d(k).

Combining Eq. (5 - 34), Eq. (5 - 33), and Eq. (5 - 29), we obtain

eT(k)e(k) = dT(k- 1)d(k - 1) - vT(k- 1)x(k- 1)

+ dT(k)(d(k) - a T(k)x(k- 1)) - vT(k)k(k)<;(k)

Now, if we rewrite Eq. (5 - 32) in terms of the previous time step k - 1

eT(k - l)e(k-1) = dT(k- l)d(k-1)-vT(k- l)x(k-1),

and substitute Eq. (5 - 25), then we have

eT(k)e(k) = eT(k- 1)e(k- 1) + dT(k)<;(k) - vT(k)k(k)<;(k).

Using Eq. (5 - 31) and Eq. (5 - 19), we can express the last term of Eq. (5 - 37) as

vT(k)k(k) = dT(k)A(k)H(k)a(k)

= [H(k)AT(k)d(k){ a(k)·

= xT(k)a(k)

(5 - 33)

(5 - 34)

(5 - 35)

(5 - 36)

(5 - 37)

(5 - 38)

Finally, substituting Eq. (5 - 38) into Eq. (5 - 37), and noting that

e(k) = d(k) - aT(k)x(k) from Eq. (5 - 26), we get the final equation as in Eq. (5 - 27)

eT(k)e(k) = eT(k- l)e(k-l)+e(k)<;(k). (5 - 39)

Take note that

72

which means

e(k) = d(k) - aT(k)x(k- 1) - aT(k)k(k);(k)

= ;(k)(l - aT(k)k(k))

= ;(k)(l - r 1(k)aT(k)H(k- l)a(k))

= ;(k)(K(k) - aT(k)H(k- 1)a(k))
K(k)

= ;(k) r 1 (k)

eT(k)e(k) = eT(k - 1)e(k - 1) + ; 2(k) r 1 (k) .

(5 - 40)

(5 - 41)

These recursive sum of squared errors formulations in Eq. (5 - 39) and Eq. (5 - 41) have

two important implications. First, the product between the a priori estimation error ;(k)

and the a posteriori estimation error e(k) make up the new estimation error, which

contributes to the new sum of squared errors. Second, due to the fact that O ::;; r 1 (k) ::;; 1

and ; 2(k) is a non-negative scalar, the sum of squared errors eT(k)e(k) accumulates error

as time increases. Note that due to numerical round-off error, ; 2(k)r 1(k) can never be

zero. This also implies that as k--? oo, eT(k)e(k) will grow without bound and the

algorithm becomes unstable! Numerous studies have shown that the RLS algorithm can

become divergent due to the accumulation of numerical errors (Slock & Kailath 1991, Yang

1994, Ardalan & Alexander 1987).

To ensure stability of the RLS algorithm, the exponential windowing method has

been widely incorporated into the RLS algorithm. However, if we can ensure that the sum

of squared errors stay within a certain bound eT(k)e(k)::;; t, numerical error will not be an

issue. We will address this in greater detail in the next chapter.

73

5.3.3 Implementation Considerations

The following sequence of equations constitutes the RLS algorithm: Eq. (5 - 17),

Eq. (5 - 24), Eq. (5 - 25), and Eq. (5 - 18). To complete the RLS algorithm, we need to find

a way to initialize it. We cannot simply set H(O) = 0, because that would imply we have

an infinite correlation matrix. One simple way of initialization, according to Haykin (1996),

is to modify the correlation matrix expression slightly. We can express the inverse

correlation matrix as

H(k) = [A r(k)A(k) + cn1-1 (5 - 42)

where I is an identity matrix and <> is a small positive constant. Using this expression,

when k = 0, we have

H(O) = B-1 I. (5 - 43)

Now we can initialize the parameters at time step k = 0 as

x(O) = 0 . (5 - 44)

This initialization procedure incorporating Eqs. (5 - 43) and (5 - 44) is referred to

as a soft constrained initialization in statistical analysis (Hubing & Alexander 1990). The

positive constant <> is the only parameter required for initialization. Through practical

experiments, a typical value for <> should be small compared to 0.01 oj , where oj is the

variance of the input data A(k). Note that the exact value of<> is insignificant for large data

samples. It is also interesting to note that using this initialization procedure, we are no

longer computing the solution that minimizes the sum of squared errors as in Eq. (5 - 9).

74

Instead, we are computing the solution that minimizes the sum of squared errors plus the

sum of squared parameters, pre-multiplied by the positive constant 8 (Sayed & Kailath,

1994):

(5 - 45)

One of the problems encountered in applying the RLS algorithm is numerical

instability, which can arise due to its serious sensitivity to round-off errors. Due to this fact,

in the next section, we will develop the RLS algorithm based on the QR decomposition.

This algorithm is derived from the square-root Kalman filter, which does not suffer from

numerical instability.

75

5.4 QR Recursive Least Squares Method

5.4.1 Introduction

Prior to the 1994 paper by Sayed and Kailath, the QR-RLS algorithm was derived

by using the pre-windowed version of the data matrix, which was then triangularized by

applying the QR decomposition (Golub & VanLoan 1989). The paper by Sayed and Kailath

reveals for the first time how this QR decomposition of a pre-windowed data matrix can be

deduced directly from their square-root Kalman filter counterparts. This technique resulted

in three versions of the square-root Kalman filter algorithm for RLS estimation: the QR

RLS algorithm, the extended QR-RLS algorithm and the inverse QR-RLS algorithm. The

motivation for using the QR decomposition in adaptive filtering is to exploit its good

numerical properties. Since we will be using the QR-RLS algorithm to derive the Recursive

OLS-AWS algorithm in Chapter 7, in this chapter we will discuss the QR-RLS algorithm

in detail. Readers who are interested in the extended QR-RLS algorithm and the inverse

QR-RLS algorithm can refer to Sayed and Kailath (1994) or Haykin (1996) for details.

76

5.4.2 Preliminary Setup for QR-RLS Algorithm

To derive the QR-RLS algorithm, we first need to set up the necessary recursive

equations. For reasons that will become apparent later, we are looking for these particular

recursive equations

H(k) = H(k-1) + F(k-1),

H(k)x(k) = H(k- l)x(k-1) +f(k-1),

x(k)H(k) = x(k- 1)H(k- 1) + fT(k- 1), and

xT(k)H(k)x(k) = xT(k- 1)H(k- 1)x(k- 1) + f(k- 1),

(5 - 46)

(5 - 47)

(5 - 48)

(5 - 49)

where F(k- 1), f(k- 1), fT(k- 1) and f(k- 1) are terms that can be found in the RLS

algorithm.

To facilitate the development of these recursive equations, Eq. (5 - 10) is repeated

in the following:

(AT(k- l)A(k-1) + a(k)aT(k))x(k) = AT(k- l)d(k-1) + a(k)d(k). (5 - 50)

Note that Eq. (5 - 50) is the least squares solution for the new linear model which can be

written as

AT(k)A(k)x(k) = AT(k)d(k). (5-51)

Since H(k) = AT(k)A(k) and H(k-1) = AT(k- l)A(k-1), we can obtain our first

recursive equation by comparing equations (5 - 50) and (5 - 51)

IH(k) = H(k- 1) + a(k)aT(k) I- (5 - 52)

77

To obtain the second recursive equation, we first note that we can express Eq. (5 -

50) as

H(k)x(k) = AT(k- 1)d(k- 1) + a(k)d(k), (5 - 53)

and Eq. (5 - 2) as

H(k- l)x(k-1) = A(k- l)d(k-1). (5 - 54)

Substituting Eq. (5 - 54) into Eq. (5 - 53), we obtain the second recursive equation

jH(k)x(k) = H(k- l)x(k-1) +a(k)d(k)I- (5 - 55)

It is obvious that the third recursive equation is the transpose of the second recursive

equation. Therefore, it can be expressed as

(5 - 56)

We are now ready to form the last recursive equation. First, we left multiply Eq. (5

- 55) by xT(k),

xT(k)H(k)x(k) = xT(k)H(k- 1)x(k- 1) + xT(k)a(k)d(k). (5 - 57)

If we define

rl(k) = 1
1 + a T(k)H(k- 1)a(k)'

(5 - 58)

then we can express Eq. (5 - 24) as

x(k) = x(k - 1) + r 1 (k)H(k- 1)a(k)~(k) . (5 - 59)

Note that H(k - 1) is symmetric, which implies H T(k - 1) = H(k- 1). Therefore, we

can express the transpose of x(k) as

78

(5 - 60)

Left multiply both sides by a(k) to obtain

(5 - 61)

where ~T(k) = dT(k) - xT(k- 1)a(k). If we add dT(k) to both sides of the Eq. (5 - 61),

we get

x T(k)a(k) = dT(k) - (dT(k) - xT(k - 1)a(k)) + r 1 (k)a T(k)H(k - 1)a(k)~T(k)

= dT(k) - r 1 (k)(~T(k) K(k) - a T(k)H(k - 1)a(k) ~T(k))

= dT(k) - r 1 (k)~T(k)(1 + aT(k)H(k- 1)a(k) - aT(k)H(k- 1)a(k))

= dT(k) - r 1 (k)~T (k)

Substitute Eq. (5 - 60) into the middle term of Eq. (5 - 57), we obtain

xT(k)H(k)x(k) = xT(k- 1)H(k- 1)x(k- 1) +

r 1 (k)a T(k)H(k- 1)~T(k)H(k- 1)x(k- 1) + xT(k)a(k)d(k).

(5 - 62)

(5 - 63)

Now, if we substitute Eq. (5 - 62) into Eq. (5 - 63) and manipulate the equation as follows,

xT(k)H(k)x(k) = xT(k- l)H(k- l)x(k-1) + r 1(k)aT(k)x(k- l)~T(k) +

+ (dT(k)- r 1(k)~T(k))d(k)

xT(k)H(k)x(k) = xT(k - 1)H(k- 1)x(k - 1) + dT(k)d(k) +

+ rl (k)~T(k)(aT(k)x(k - 1) - d(k))

-~(k)

we obtain the final recursive equation

(5 - 64)

I xT(k)H(k)x(k) + r 1(k)~T(k)~(k) = xT(k - l)H(k - l)x(k - 1) +dT(k)d(k) 1.(5 - 65)

Before proceeding to the derivation of the QR-RLS algorithm, we first state a

matrix factorization result that plays an important role in the derivation.

79

Lemma 5 -1 Matrix Factorization Lemma

Given the data matrix A(k) E 9\m x n and an upper triangular matrix R(k) E 9\n x n

with n ::s; m , the matrix factorization lemma states that

A(k)T A(k) = RT(k)R(k) (5 - 66)

if and only if there exist an orthogonal matrix Q(k) E 9\m x n such that

A(k) = Q(k)R(k). (5 - 67)

Proof. This proof is shown in (Stewart 1973, Golub & Van Loan 1996, Sayed & Kailath

1994, Haykin 1996). Nevertheless, we will repeat it here. Assume that the condition Eq. (5

- 67) holds, then by multiplying the AT(k) times both sides, and substituting Eq. (5 - 67)

into the right hand side, we get

AT(k)A(k) = RT(k)QT(k)Q(k)R(k). (5 - 68)

Since QT(k)Q(k) = I, we obtain Eq. (5 - 66).

The converse implication is proof by invoking the singular value decomposition

(SVD) theorem. According to the SVD theorem (Golub & Van Loan 1996),

(5 - 69)

where U A (k) and VA (k) are n-by-n and m-by-m unitary matrices, respectively and ~ A (k)

is an n-by-m matrix defined by the singular values of the matrix A(k). Similarly, R(k) can

be factored as

(5 - 70)

Eq. (5 - 66) implies that we have

80

and

Now, let

Q(k) = UA(k)Ub(k)

and substitute Eq. (5 - 71) and Eq. (5 - 72) into Eq. (5 - 69). This produces

A(k) = U 8 (k)1:8 (k)VJ(k).

Now multiply Eq. (5 - 73) times Eq. (5 - 70) and we get

Q(k)R(k) = UA(k)1:8 (k)Vb(k) = A(k).

81

(5-71)

(5 - 72)

(5-73)

(5 - 74)

(5 - 75)

5.4.3 Forming the QR-RLS Algorithm

So far, we have formed the necessary recursive equations and stated the matrix

factorization lemma for the QR-RLS algorithm, but we have not talked about why we need

these four particular equations Eq. (5 - 46) through Eq. (5 - 49). These four equations can

be lumped together to form a natural positive definite squared matrix equality. Then, using

the matrix factorization lemma, we can form a factored matrix equality. This factored

matrix equality contains all the necessary parameters such as the correlation matrix H(k)

and the parameter vector x(k), which are needed for the parameter updates.

Keeping in mind this general idea regarding what we are going to do next, we can

now rewrite the four recursive equations as

RT(k)R(k) = RT(k- l)R(k-l)+a(k)aT(k) , (5 - 76)

RT(k)R(k)x(k) = R T(k- 1)R(k- 1)x(k- 1) + a(k)d(k), (5 - 77)

(5 - 78)

xT(k)RT(k)R(k)x(k) + ,c-T12(k)~T(k)r 112(k)~(k) =
xT(k- 1)RT(k- 1)R(k- 1)x(k- 1) + dT(k)d(k)

(5 - 79)

Because of the symmetry of the above equations, we may group these recursive equations

into one matrix, which forms the following matrix equality:

[
RT(k - I)R(k - I) + a(k)aT(k) 1 RT(k - I)R(k - I)x(k - I) + a(k)d(k) l _

xT(k- I)RT(k- I)R(k- I)+ dT(k)aT(k) ; xT(k - I)RT(k- I)R(k- I)x(k- I)+ dT(k)d(k)J -

[
R T(k)R(k) 1 R T(k)R(k)x(k) l

xT(k)RT(k)R(k): xT(k)RT(k)R(k)x(k) + rT12(k)<;T(k)r112(k)<;(k~

Now we may express the matrix equality in Eq. (5 - 80) in factored form as

82

(5 - 80)

A[(k)

Rf{k)

[
R(k-1) R(k- l)x(k-1)1

ar(k) d(k) J =
(5-81)

where R 1 (k) is an upper triangular matrix. The above matrix equality fits Eq. (5 - 66);

therefore, from the matrix factorization lemma, there exists an orthogonal matrix Q 1 (k)

that relates the block elements above as

(5 - 82)

[R(k-1) g(k-1)1 = Qi(k)[R(k) g(k) l,
ar(k) d(k) J or r 112(k);(k~

(5 - 83)

or

Qf(k)[R(k-1) g(k-1~ = [R(k) g(k) l
ar(k) d(k) J or r 112(k);(k~

(5 - 84)

where g(k) = R(k)x(k) and g(k-1) = R(k- l)x(k-1).

The block elements shown in Eq. (5 - 84) form the backbone of the QR-RLS

algorithm. The main idea of this equation is to put all the recursive equations in the form of

pre-array A 1 (k) and post-array R 1 (k) matrices.

83

The pre-array matrix A 1 (k) (shown on the left hand side of Eq. (5 - 84)) consists

of R (k - 1) , the past gain vector g (k - 1) , the current input data a T (k) and the

current desired response d(k). The pre-array matrix is not a triangular matrix, due

to the non-zero elements in the current input data.

The post-array matrix R 1 (k) (shown on the right hand side of Eq. (5 - 84)) is a

upper triangular matrix. This post-array matrix is the result of the orthogonal matrix

operating on the pre-array matrix.

When the current input data aT(k) is presented to the algorithm, its elements are

placed just underneath R(k - 1) in the pre-array. Because the only non-triangular elements

in the pre-array are the input data, the orthogonal matrix only needs to operate on the input

data. The orthogonal matrix operates by annihilating the input data one by one until all

elements become zero entries in the lower left of the matrix. As soon as the all the input

elements annihilated, a triangular matrix is obtained. This triangular matrix is called the

post-array matrix and it consists of current R(k), the current gain vector g(k) and the term

r 112(k)~(k). Once the post-array is found, the computed R(k) and g(k) are substituted

back to the pre-array to initiate the next iteration.

Having computed the updated block values R(k) and g(k), we may solve the least

squares parameter vector x(k) using the formula

x(k) = R-1 (k)g(k). (5 - 85)

84

Since, R(k) is a triangular matrix, x(k) 1s easily solved using the method of back

substitution.

5.4.4 Orthogonal Matrix Operation

So far, we have not focused on the detailed operation of the orthogonal matrix. We

only know that we need to choose the orthogonal matrix so that it will produce a triangular

block of zeros in the lower left of the post-array. An orthogonal matrix that fits this

requirement is the Givens rotation. Through successive applications of a sequence of

Givens rotations, we can develop a systematic annihilation process to zero-out non-zero

elements in the lower triangle of the pre-array as prescribed in Eq. (5 - 83) or Eq. (5 - 84).

Please refer to Chapter 4.5 for a detailed discussion of how the Givens rotation operates.

Since the pre-array has a unique structure, where R(k- 1) is already a triangular matrix

and aT(k) contains the only non-zero elements in the lower left triangle, we only need to

annihilate the elements in aT(k) to achieve the triangular structure of the post-array. We

illustrate this idea in the following:

85

X X X X

[R(k-1) g(k-1)] 0 X X X
~ ~ =

aT(k) d(k) 0 0 X X

X X X X

X X X X X X X X

0 - ~
0 X X X [R(k) g(k) J =

0 0 X X 0 0 - OT r 112 (k)<;(k)

0 - 0 0 -- the affected elements

Figure 5 - 1 Givens rotations applied to the pre-array in the QR-RLS algorithm

As shown in Figure 5 - 1, we annihilate the current input data a T (k) from left to

right. The Givens QR algorithm described in Chapter 4.5 is used, except that we skip all

zero elements contained in R(k- 1). This reduces the total amount of computation by an

order of magnitude. The floating point computation is O(n2) compare to O(n 3) ifwe were

to annihilate the entire lower triangle.

Once the post-array matrix is found, the next iteration is initiated by substituting the

elements R(k) and g(k) back into the pre-array, together with the next input data

a T (k + 1) and next desired responses d (k + 1) as shown in Figure 5 - 2. (Note that the

detailed Givens rotations operations are omitted)

[R(k) g(k) l _ _ [R(k+ 1) g(k+ 1) l
aT(k+l)d(k+l~ - ... ~ - OT r 112(k+l)<;(k+l)j

Figure 5 - 2 QR-RLS algorithm for the next iteration

86

5.4.5 Implementation Considerations

To initialize the QR-RLS algorithm, we may set R(O) = 0 and g(O) = 0. This is

the exact initialization of the QR-RLS algorithm, which covers the time period O ~ k ~ M.

Note that the soft initialization used by the RLS is not necessary, because the QR-RLS

algorithm does not incur any problem when the initial values are set to zeros. With this

initialization process, the QR-RLS can operate in real-time by substituting the elements

(R(k) and g(k)) found in the post-array back into the pre-array with a new input vector

aT(k) and a new desired response d(k). In general, the QR-RLS algorithm is considered

a better numerical procedure than the RLS algorithm because of the following properties:

1. It works directly with the incoming data vector rather than working with the

correlation matrix of the input data as in the standard RLS algorithm (Gentleman &

Kung 1981, Haykin 1991).

2. It uses the numerically well-behaved Givens rotation, which preserves the two

norms of the least squares solution.

3. It propagates R(k) rather than H(k) or H(k). Since the condition number of R(k)

equals the condition number of A(k), it results in a significant reduction in the

dynamic range of the data handled by the QR-RLS.

With this numerically stable QR-RLS for the time-update algorithm, we will later discuss

how we can couple this time-update algorithm and the order-update algorithm presented in

Chapter 6 to form the QR-RLS-AWS algorithm.

87

5.5 Results Summary

Recursive Least Squares Algorithm

Initialize the algorithm by setting H(O) = <5-I I, and x(O) = 0

Fork = 1, 2, ,

read a(k) and d(k)

k(k) = H(k =-1)a(k)
1 + aT(k)H(k- 1)a(k)

;(k) = d(k) - aT(k)x(k- 1)

x(k) = x(k - 1) + k(k);(k)

H(k) = H(k-1)-k(k)aT(k)H(k-1)

QR-Recursive Least Squares Algorithm

Initialize the algorithm by setting R(O) = 0, and g(O) = 0

Fork = 1, 2, ,

read a(k) and d(k)

Q[(k)[R(k-1) g(k-1~ =
aT(k) d(k) J [R(k) g(k) J

OT r112(k);(k)

Givens rotations are used to annihilate the a T (k)

x(k) = R-1 (k)g(k)

88

Chapter

6
Order-Update and Subset

Selection

6.1 Introduction 90
6.2 Order-Update Algorithms 91

6.2.1 Block Matrix Inversion Lemma 92
6.2.2 Recursive Order-Update Algorithm for LS Method 93
6.2.3 Recursive QR Order-Update Algorithm 101

6.3 Subset Selection 105
6.3.1 Background 105
6.3.2 Comparison of Subset Selection Methods 108
6.3.3 Forward Selection and Order-Update 108

In this chapter, we first develop the recursive order-update algorithms for the linear

model using the least squares method and the orthogonal least squares method. Then,

we introduce the concept of subset selection. Among these subset selection methods,

we discuss the forward selection in detail. Later, we discuss how we can use the re-

cursive order-update algorithms in the forward selection method. These combined al-

gorithms, together with time-update algorithms (discussed in chapter 5), will be used

in the next chapter to create the RLS-AWS and QR-RLS-AWS algorithms.

89

6.1 Introduction

In Chapter 5, we discussed procedures for updating the parameters of a linear model

as each new data point is received. These procedures, called time-update algorithms,

assume that the order (size) of the linear model remains the same. In this chapter, we will

derive and analyze recursive procedures for updating the parameters of a linear model when

the order of the model is increased (a new basis function is added). These order-update

algorithms assume that no new data are received. In Chapter 7, we will combine the time

update algorithms and the order-update algorithms to form the complete RLS-AWS and the

QR-RLS-AWS algorithms.

In addition to the order-update algorithms, this chapter will also discuss subset

selection methods. Before an order-update is made, we need to select the appropriate data

vector (or basis function center in the case of RBF networks) to use for the additional order.

The process of selecting the data vector is called subset selection.

The order-update algorithm is originally derived from a standard least squares

perspective. However, due to numerical round-off error, an improved version of this

algorithm is developed based on the QR decomposition.

We will begin with a brief overview of subset selection methods. Then, we will

focus on the forward selection method and will discuss it in detail. Later, we point out that

the order-update algorithm can be used as the update mechanism for the forward selection

method. Together, the recursive order-update algorithm and the forward subset selection

90

form a complete order-update algorithm, which can be used together with the time-update

algorithm of Chapter 5 to form a complete adaptive training procedure.

To ease the derivations, in the rest of this chapter we introduce the subscript

notation q, which denotes the current order.

6.2 Order-Update Algorithms

In this section, we will derive recursive order-update algorithms for the linear

model using the batch least squares method. These methods allow us to efficiently

recalculate the new least squares solution when a new data vector is added into the model.

Suppose we have a linear model

where the data matrix Aq and the parameter vector xq are given by:

Aq = [a1 a2 ••. aJ
xq = [x1 Xz ... xJ T

The batch least squares solution of this linear model is

(6 - 1)

(6 - 2)

(6 - 3)

Note that since the order of the model (the dimension of xq) does not affect the desired

response, d, there is no subscript q attached.

Now, suppose a new input data vector aq + 1 becomes available (a new basis

function is added), and we would like to add it into the linear model Eq. (6 - 1). This new

91

input data vector is incorporated by adding aq + 1 into the columns of the data matrix Aq ,

and the size of the old parameter xq has to increase by one to accommodate the added data

vector:

-

Aq + 1 = [Aq aq + J
r

xq + 1 = [iq xq + J
(6 - 4)

Note that Xq represents the updated least squares solution of the new linear model that is

updated from the old parameter xq. Eq. (6 - 4) forms a new linear model

(6 - 5)

and the least squares solution of this new model is

(6 - 6)

We could compute xq + 1 using Eq. (6 - 6), but this would be time consuming. An

alternative is to recursively compute xq + 1 based on the previously computed parameter

vector xq. This recursive solution can be obtained by using a basic result in block matrix

algebra known as the block matrix inversion lemma.

6.2.1 Block Matrix Inversion Lemma

Before we derive the recursive order-update algorithms, we introduce the block

matrix inversion lemma. This lemma plays an important role in the derivation of the

recursive order-update algorithm. Let H E 9t(n + m) x (n + m) be a square matrix such that

92

where A E 9tnxn, BE 9tnxm, CE 9tmxn and DE 9tmxm, then

H-1 = [A-1 + A-1B(D- CA-IB)-ICA-1

-(D- CA-IB)-ICA-1

-A-1B(D- CA-IB)-1

(D- CA-1B)-1

(6 - 7)

] (6 - 8)

provided that IAI :;t: 0 and IDI :;t: 0 (Ogata 1987). In the special case where B and C are

vectors (denoted as b and cT respectively) and Dis a scalar, d, Eq. (6 - 8) simplifies to

H-1 = [A-1 +A-1b(d-cTA-lb)-lcTA-I

-(d- cTA-1 b)-1cTA-I

-A-1 b(d- cTA-1 b)-1

(d-cTA-1b)- 1
] (6 - 9)

where (d - cT A-1 b)-1 is a scalar and the inversion is just a division. Readers can refer to

Duncan (1944) or Hager (1989) for a proof of this block matrix inversion lemma.

6.2.2 Recursive Order-Update Algorithm for LS Method

In the following, we apply the block matrix inversion lemma to the batch least

squares algorithm, and obtain a recursive order-update algorithm. We first note that the new

linear model in Eq. (6 - 5) can be written as

(6 - 10)

and the least squares solution to this new linear model is the solution of

93

(6 - 11)

As mentioned previously, we can take the inverse of the left block matrix in Eq. (6

- 11) and recalculate the whole solution as shown below,

(6 - 12)

but it is impractical and time consuming. A better way of obtaining the solution is to apply

the block matrix inversion lemma and find a recursive updating formula for Eq. (6 - 12).

6.2.2.1 Order-Update for the Parameter

By applying the block matrix inversion lemma we can express the inverse of the

block matrix in Eq. (6 - 12) as

(6 - 13)

r(ATA)-I+ (ATA)-I AT a p-23 T A rATA)-1·-(ATA)-I AT a p-2J q q q q q q + I q q + I q' q q I q q q q + l q
--------------------------------~---------------p-2a T A (ATA)- 1 t p-2

q q+l q q q ' q

where

(6 - 14)

Now, we can apply the inversion result of Eq. (6 - 13) to Eq. (6 - 12),

94

After some algebra simplification, we obtain

Since the optimal parameter and the error vector at order index q are xq = (AJAq)-1 AJd

and eq = d-AqCAJAq)- 1 AJd, we can further reduce the solution to

(6 - 17)

can also be calculated as

(6 - 18)

Eq. (6 - 17) is the recursive order-update for the new linear model. It utilizes the old

parameter vector, xq, the old error vector, eq, the old data matrix, Aq, and the new data

vector aq + 1 , which are readily available. The significance of this equation is that it is does

not require a new matrix inversion (we assume that (AJAq)- 1 already exists). A detailed

discussion of the algorithm implementation will be presented in Section 6.2.2.3.

95

6.2.2.2 Recursive Order-Update for the Sum of Squared Errors

In the following, we derive a recursive formula for the sum of squared errors. First,

we multiply Aq + 1 times both sides of the Eq. (6 - 17), and we get

When we subtract both sides of Eq. (6 - 19) from the desired response d, and note that

d-Aqxq = eq andd-Aq+Ixq+I = eq+I aretheerrorvectorsatorderindexqandq+l

respectively, we obtain

(6 - 20)

S. T . 1 mce, aq + 1 eq 1s a sea ar,

(6 - 21)

the transpose of the error vector e J + 1 can be written as

(6 - 22)

The sum of squared errors e J + 1 e q + 1 is

eJ+leq+I = eJeq-eJ(aq+ 1 -AqCAJAq)-1AJaq+I)P;/al+Ieq

- (aJ + 1 - aJ + 1 AqCAJAq)- 1 AJ)eqCp;/al + 1 eq) + (6 - 23)

(aJ+ 1 -aJ+ 1AqCAJAq)- 1AJ)(aq+ 1 -AqCAJAq)-1AJaq+ 1)(p;/al+ 1eq)2•

Since

(6 - 24)

(6 - 25)

96

we can rewrite Eq. (6 - 23) as

T _ T T(I A (ATA)-IAT) -2 T
eq+leq+I - eqeq-eq - q q q q aq+IPq aq+Ieq

- ar + I (I-A/AIAq)-1 AI)eqCp;/aI + I eq) +

aI+ 1 (I-A/AIAq)-1 AI)(I-A/AIAq)-1 AI)aq+ 1 (p;/aI+ 1 eq)2

can easily show that the projection of the error is the error itself

(I -A/AIAq)-1 AI)eq = (I -A/AIAq)- 1 AI)(I -A/AIAq)- 1 AI)d

= (I-A/AIAq)-1 AI)d

= e q

Hence, we can further reduce Eq. (6 - 26) to

In fact, because ar + I e q = e I aq + I is a scalar, we can write

Also, since ar + I (I -A/AIAq)- 1 AI)aq + I = pJ, the whole equation reduces to

then we can write

97

(6 - 26)

(6 - 27)

(6 - 28)

(6 - 29)

(6 - 30)

(6 - 31)

The term

(6 - 32)

is called the error reduction term since it measures the error reduction caused by the added

data vector.

This recursive sum of squared errors formulation in Eq. (6 - 30) has three important

implications. First, due to the fact that (a;+ 1 e q)2 and p ;/ are non-negative scalars, the

error reduction term err q is a non-negative scalar.

(6 - 33)

Second, the new sum of squared errors will always be less than or equal to the old sum of

squared errors

(6 - 34)

Lastly, the error reduction term can never be greater than the old sum of squared errors.

(6 - 35)

These implications imply that order-update will decrease the sum of squared errors

provided that the added data vector a;+ 1 is selected properly. We will discuss how we can

choose this added data vector in section 6.3. In the next section, we will discuss how to

implement this recursive order-update algorithm.

98

6.2.2.3 Implementation Considerations

To facilitate the implementation of the algorithm, intermediate calculations such as

the added data parameter w q and the orthogonal complement projection of the added data

aq + 1 are performed:

(6 - 36)

(6 - 37)

With these definitions, we can now write the inverse correlation matrix update as

- [H + p-2w wT -w p-2J Hq + 1 = q q q q q q

-p-2wT p-2
q q q

(6 - 38)

and optimal parameter update as

(6 - 39)

where

(6 - 40)

Hence, we can recursively update these equations in the following sequences: Eq. (6 - 36),

Eq. (6 - 37), Eq. (6 - 40), Eq. (6 - 38) and Eq. (6 - 39). The sum of squared errors and the

next iteration error vector can be calculated using Eq. (6 - 31) and Eq. (6 - 18), respectively.

99

Example 6 -1

T T
Let A 1 = [1 2 o] and d = [s 5 1] be the data vector and the desired

response. Then, the inverse correlation matrix, the parameter vector and the error vector

Now, we would like to add a new vector a2 = [o 1 -1] Tinto A1 andfonn a new

data matrix A 2 = [A 1 a2] . Using the recursive order-update algorithm, we can calculate

a2-A1w1 = H i-f pf=
6 = 5 and update the

error reduction term err2
10 = 3 . Then, we can update the inverse correlation matrix

H2 H}2 ~~, the parameter vector x2 = H~~] and the updated error vector

D

To calculate the inverse correlation matrix, we have to successively apply Eq. (6 -

38). If each successive expansion accumulates a small amount of rounding error, the

inverse correlation matrix may lose its positive definiteness after many iterations and

become unstable. Fletcher (1969) has suggested occasionally re-starting the recurrence,

and Ben-Israel & Greville (1965) have suggested an iterative method to improve the

numerical accuracy of the inverse correlation matrix. However, both suggestions may result

100

m more computation. Due to this fact, we have developed a recursive order-update

algorithm based on the QR decomposition. This new algorithm is described in the

following section.

6.2.3 Recursive QR Order-Update Algorithm

6.2.3.1 QR Recursive Order-Update for Q, R, and Parameter

By using the QR decomposition described in section 4.4.2, we can decompose the

original data matrix Aq E ':Jim x n into

(6 - 41)

where Qq E ':Jim x n is an orthogonal matrix and Rq E ':)in x n is an upper triangular matrix.

Applying this QR decomposition to Eq. (6 - 11), we obtain

(6 - 42)

Note that since Qq is an orthogonal matrix, QlQq = I, we can factor the left hand side

matrix into

[Rq r~T[Rq r~x + 1 = [RlQidj
0 p O p q aT 1d

q+

(6 - 43)

whererq = Q;aq+J , andpq = Jal+,aq+I -r;rq.(Inhere, Pq isthesquarerootofEq.

(6 - 14). We can show this fact by applying the QR decomposition to Eq. (6 - 14).) Eq. (6 -

43) also implies that

101

_ [Rq rql
Rq+I - 0 pJ. (6 - 44)

By applying the inverse twice to Eq. (6 - 43), we find the new parameter as

x + 1 = [Rq r~-I [Rq r~-T[R~Q~dJ.
q O p O p aT 1d q+

(6 - 45)

Using the block matrix inversion lemma, we can simplify the inverse matrices to

0
]

-T = Rq+ 1 , and (6 - 46)

(6 - 47)

where Rq = Rq1 , and Rq + 1 = Rq~ 1 • Substituting Eq. (6 - 46) and Eq. (6 - 47) into Eq.

(6 - 45), we can simplify the parameter update equation to

(6 - 48)

where

(6 - 49)

(6 - 50)

(6-51)

102

Both Eq. (6 - 48) and Eq. (6 - 17) yield the same result except that Eq. (6 - 48) is

computed using the QR decomposition, which does not suffer from the numerical

inaccuracy of the previous algorithm.

In the following, we show that the orthogonal matrix Qq + 1 can be updated

recursively: Let Aq + 1 = Qq + 1 Rq + 1 , then

(6 - 52)

If we right multiply Eq. (6 - 52) by Rq~ 1 , we obtain

(6 - 53)

We note that Rq + 1 = Rq~ 1 and we can substitute Eq. (6 - 47) into Eq. (6 - 53),

(6 - 54)

which simplifies to

(6 - 55)

Meanwhile, using a similar derivation to the one used in section 6.2.2.2, we obtain

a recursive sum of squared errors formula, as in Eq. (6 - 30). The only difference is in the

calculation of p q, which uses the orthogonal matrix in Eq. (6 - 50).

103

6.2.3.2 Implementation Considerations

Eq. (6 - 30), Eq. (6 - 47), Eq. (6 - 55), and Eq. (6 - 48) are calculated one by one to

update the order. The following example illustrates the calculation.

Example 6 - 2

T T
We repeat Example 6 - 1 with A 1 = [1 2 o] , d = [5 5 1] , x 1 = 3, and

e 1 = [2 -1 1] T_ Then, we can find Q 1 = }s [1 2 o] T' and R.1 = }s. Again, we would

like to add a2 = [o 1 -1] T into the model to form a new data vector A2 = [A 1 a2] .

Now, we find r 1
2

= Q f a 2 = ,/5 , and p I = Jar a2 - r fr I = A which we can

use in calculating the error reduction term err1 and the new inverse R2:

Then, we use the R1 to update the parameter vector

104

1 _-1.
= _1 ,/6

,/5 0 _1
,/6

Finally, we calculate the new error vector e2 and update the orthogonal matrix Q2 for the

next iteration:e2 = } [4 -2 -2] T' and Q2 =

1-2
J6

2 _1

J6
0--1

J6

D

Since the algorithm uses the QR decomposition to calculate the inverse, it is

numerically more accurate than the algorithm in section 6.2.2. The only drawback in this

algorithm is that it requires extra storage for the orthogonal matrix Qq.

6.3 Subset Selection

6.3.1 Background

In section 6.2, we developed an efficient algorithm for increasing the order of the

model by adding a data vector aq + 1 . In this section, we will concentrate on how to choose

which data vector to add. If the wrong data vector is chosen, it will only reduce the squared

error by a small amount. The correct data vector will result in the largest reduction in the

squared error.

To find good data vectors, we turn our attention to a statistical method known as

subset selection (Weisberg 1980, Cohen 1983, Miller 1990). The objective of subset

selection, as its name implies, is to select a small subset of input data vectors from a larger

set. Ideally, subset selection ensures that we select an optimal set of data vectors for the

105

linear model. Simultaneously, it excludes many data vectors that do not affect the desired

response. The following figure demonstrates this idea.

al

82

a 3 - -

a 4

85

+

Figure 6 - 1 Ideal Subset Selection

Suppose we have input data vectors a 1 ••• a5 and we know that a2 and a3 are not

contributing significantly to the model. Hence, it is best to exclude these two data vectors

from the model. By excluding the less significant data vectors, the model will not only

compute faster, but also requires fewer parameters. It is generally best to use the simplest

model that explains the data.

In the following, we will summanze several commonly used subset selection

methods, which have been documented in several journals and books. It should be noted

there are many more subset selection algorithms (Dixon et al. 1988, Miller 1984, 1990,

SAS 1985) than are discussed in this chapter, but we choose to limit our presentation here.

Exhaustive Search Method:

The exhaustive search method evaluates the sum of squared errors for all

combinations of data vectors and selects the subset with the minimum error. When the

number of data vectors is large, this algorithm becomes too expensive. Some authors feel

that it is not useful to look at all possible models, since some models would not be

meaningful (Draper & Smith 1981). Therefore, several algorithms have been developed

106

which find the best subset without computing all possible models (Fumival & Wilson 1974,

Hocking 1976). However, like the exhaustive search method, there are many possible

combinations that have to be sifted through when the number of data vectors is large (Hoerl

et al. 1986). In general, exhaustive search algorithms are considered too computational

intensive for large data sets.

Backward Elimination Method:

The backward elimination method starts with a model that includes all possible

input data vectors. Then, it eliminates one input data vector at a time from the model. At

each elimination step, the eliminated input data vector is selected in such a way that it

results in the smallest increase in the sum of squared errors of the model. This elimination

process continues until a stopping rule is satisfied.

Forward Selection Method

The forward selection method begins with no data vector in the model. Then, it

moves data vectors into the model one at a time from a set of input data vectors. At each

step, forward selection finds one data vector from all possible input data vectors and moves

it into the model. The criterion for the selected data vector is that it will produce the largest

reduction in the sum of squared errors when moved into the model. Forward selection

continues until a stopping rule is satisfied.

Stepwise (Efroymson's) Method:

In forward selection, a data vector selected at an early stage may become

unimportant in a later stage. Similarly, in backward elimination, a data vector deleted at an

early stage may become important in a later stage. Hence, an idea to combine these two

107

methods is proposed by Efroymson (1960). After each data vector is added into the model,

a test is made to see if any of the data vectors in the model can be deleted without

appreciably increasing the sum of squared errors.

6.3.2 Comparison of Subset Selection Methods

Several extensive studies of these subset selection methods are conducted in (Miller

1990, Biondini et al. 1977, Derksen 1992). In these studies, the exhaustive search method

and the backward elimination method are the worst performers in terms of computational

time. Forward selection gives the fastest results, but not necessarily the optimal subset. The

stepwise method gives the most accurate results, but requires more computation than

forward selection. In fact, Berk (1978) has empirically shown that the average difference

between the sum of squared errors of the stepwise and extensive search methods rarely

exceeded 7 percent. Although the stepwise method yields better results than forward

selection, for simplicity and computational reasons, we will only consider the forward

selection method here.

6.3.3 Forward Selection and Order-Update

In the following, we will first discuss the forward selection method in detail and

then explain its relationship to the recursive order-update method of section 6.2. The

forward selection method assumes that there exists a large input data set

~ = [~ 1 ~ 2 ... ~n], where all the data vectors in the set are potential candidates for the

108

model. To begin, it finds the first data vector, a. , that produces the largest reduction in the
-1

sum of squared errors

J = e Te = (d - a .x) T (d - a .x) ,
-I -I

where the least squares solution is given as

According to Miller (1990), Eq. (6 - 56) can be rewritten as

(a! d)2 = dTd __ -_1 __
T .

a . a .
-I -I

(6 - 56)

(6 - 57)

(6 - 58)

It is clear from Eq. (6 - 58) that the first data vector selected has to maximize the error

reduction term

[
(a! d)2]

err = max -iT
a . a .
-1 -I

i = 1. .. n. (6 - 59)

Suppose ~ 1 produces the largest error reduction, then ~ 1 will be removed from ~

and added into the model A . To find the next data vector, select another data vector, a .,
-}

from ~ . Since the error vector e = d - ~ 1 x is orthogonal to ~ 1 , forward selection searches

the space of ~j that are orthogonal ~ 1 to find the amount of additional error reduction.

Specifically, it forms

(6 - 60)

109

and substitutes it into Eq. (6 - 59) to find the data vector which maximizes the error

reduction term. This calculation is repeated for each data vector in ~ , and the one that

maximizes the error reduction is added into the model. This process is repeated until the

total error reduction reaches a preselected value.

Note that we have referred to, Eq. (6 - 59) from the forward selection method and

Eq. (6 - 30) from the order-update algorithm by the same name: error reduction. We can

verify that these terms are equivalent by substituting Eq. (6 - 60) into Eq. (6 - 59) using

a. = a + 1 and a 1 = Aq. Hence, the order-update algorithms discussed in section 6.2 can
-} q -

be used as the update mechanism for the forward selection method.

Currently, there are several variations for computing the error reduction term in Eq.

(6 - 59): the Gauss-Jordan pivoting method (Miller 1990), and Modified/Classical Gram-

Schmidt methods - also called the Orthogonal Least Squares (OLS) methods (Chen 1991).

However, none of these methods have provided a convenient way of incorporating the

time-update algorithms, which is why we have developed the order-update algorithms

described in this chapter. By coupling the recursive order-update algorithms with the

forward selection method, we have created two new methods which can update the forward

selection using the parameters from the time-update algorithms. In the next chapter, we will

show how we can combine forward selection method with RLS and QR-RLS methods.

110

Chapter

7
Time- and Order- Update

7.1 Introduction 112
7.2 The Subset Selection Model 113
7.3 Recursive Time- and Order- Update 116

7.3.1 Recursive Least Squares with Automatic Weight Selec
tion (RLS-A WS) Algorithm 122
7.3.2 QR Recursive Least Squares with Automatic Weight Se-
lection (QR-RLS-A WS) Algorithm 125

7.4 Fixing Centers 127
7.4.1 Centers Selects from Fixed Range/Grid 127
7.4.2 Centers Selected from Time Point 128
7.4.3 Centers Selection for the New Algorithms 128

7.5 Preliminary Results 129
7.5.1 Compare QR-RLS-A WS and RLS-A WS 130
7.5.2 Accuracy Test 131
7.5.3 Batch and Recursive Test 132

7.6 Summary 133

This chapter proposes a new time- and order- update framework. This framework

combines the time-update algorithms from chapter 5 and the order-update alga-

rithms from chapter 6 and creates two new algorithms called the Recursive Least

Squares with Automatic Weight Selection (RLS-AWS) algorithm and QR-Recursive

Least Squares with Automatic Weight Selection (QR-RLS-A WS) algorithm. Some pre-

liminary results are discussed as well.

111

7 .1 Introduction

In this chapter, we introduce two new algorithms called Recursive Least Squares

with Automatic Weight Selection (RLS-AWS) algorithm and QR Recursive Least Squares

with Automatic Weight Selection (QR-RLS-AWS) algorithm. Both algorithms are based

upon the time-update algorithms in Chapter 5 and the order-update algorithms in Chapter 6.

To explain how these new algorithms work, we will begin with a short discussion

of the subset selection model. Then, the recursive time- and order- update framework are

discussed. The actual implementation of the two new algorithms will be provided along

with some preliminary results of these new algorithms.

For notation, we will combine the time-update notation described in Chapter 5 and

order-update notation described in Chapter 6. The subscript q represents the order index,

while the bracket (k) represents the time index. For example, AqCk) represents the input

data matrix at order q and time k. Detailed notation will be discussed in the following.

112

7 .2 The Subset Selection Model

•
Figure 7 - 1 The Subset Selection Model

Figure 7 - 1 depicts the architecture of the subset selection model. As shown, the

linear model is formed by using one part of the input data. Specifically, the output of the

model is

q

y(k) = L ai(k)xi. (7 - 1)

i = 0

If we accumulate the time data from O ... k , we can express the model as matrix and vectors

y(O) a0 (0) a 1 (0) .. . a qC O) XI (k)

y(l) a0 (1) a 1 (1) .. . a qC 1) xi(k)

= (7 - 2)

(k) a0(k) a 1 (k) ... aqCk) xqCk)
"---v---' "---v---'

YqCk) AqCk) xqCk)

113

Note that the data arrives sequentially in time, and at each time point a new row is added to

the selected input data matrix AqCk). For example, at time point k, the following row is

added to the input data matrix:

(7 - 3)

In addition, the columns of AqCk) represent the various orders of the model. For example,

when the order is increased to q, the following column is added to the selected input data

matrix:

(7 - 4)

Meanwhile, let us assume that there are a set of q potential nodes for the RBF

network that have not been selected. The data for these potential nodes are contained in the

potential input data matrix:

qi (0) q2(0) ..

= q)(l) q2(1) ..

a (k)
-q

(7 - 5)

Each of the potential input data vectors are stored as a column. A superscript is used to

denote the index of the potential data vector. For example,

(7 - 6)

114

denotes the q-th column of A (k). This A (k) matrix contains a set of potential data - _q _q

vectors ranging from 1 .. . q. [Note that there is no bias contained in these potential input

data vectors, so the index begins with 1.)

(7 - 7)

As with the selected input data matrix A qC k) , the k -th time data in ~ q< k) corresponds to

the last row of the potential input data matrix. A left subscript denotes the row of the matrix

(7 - 8)

Keep in mind that the main idea here is to have the algorithms select the best input

data vector from a set of potential data vectors [~ 1 (k) ~2(k) ... ~/k)J and add it into the

model to improve the RBF network performance. Simultaneously, the algorithm will utilize

only the new time point and old computed parameters to update the model. In the following,

we will look at the general idea of how we implement the time- and order- update together.

115

7.3 Recursive Time- and Order- Update

Subset Selection Algorithm
r-----------,

Figure 7 - 2 The Time- and Order- Update Algorithm Flow Chart

Figure 7 - 2 shows a general framework for the time- and order- update algorithm.

This framework feeds a new time point into a time-update algorithm, then into the subset

selection and order-update algorithms. The whole process is repeated at each time point. In

the following, we will explain the operations contained in each block.

New Data Point

As each new data point is presented to the network, this produces a new row of the

selected input data vector qa(k), a new row of the potential input data vector a(k), and a
q-

new desired response d(k). These new data are presented to a time-update algorithm.

116

Time-Update Algorithm

Two time-update algorithms, the RLS algorithm and the QR-RLS algorithm

discussed in Chapter 5, can be used to accommodate the time adjustment. In the RLS

algorithm, the necessary parameters are the inverse correlation matrix Hq(k), the weights

and bias xqCk), and the sum of squared errors SSEqCk). In the QR-RLS algorithm, the

parameters are the R-factor RqCk), the gain vector gqCk), and the sum of squared errors

SSEqCk). [Note that some intermediate steps to obtain these parameters are not shown

here. Details are provided in section 7.3.1 and section 7.3.2.) After the time-update, the

time-updated parameters are presented to the subset selection and order-update algorithms.

Subset Selection and Order-Update Algorithms

The role of the subset selection and order-update algorithms are to ensure the time-

update algorithm provides adequate network performance. The subset selection algorithm

first computes the error reduction terms for every potential input data vector, and

determines if an order-update is necessary.

Subset Selection:

Recall from Chapter 6 that the error reduction term measures the error reduction

caused by the added data vector (potential RBF node). Because we have a set of potential

input data vectors, we need to repeat this calculation for every one of them a.(k)
-l

l = 1. .. q.

117

Consider the error reduction equation, Eq. (6 - 32). With slight modification, we can

rewrite it to compute the error reduction for every potential data vector ~/k) 1 = 1 .. . q

using the time- and order- indexing method:

errCil(k) = p(i)-2(k)(a .\k)e (k)/ 1 = 1. .. q_ q q -I q (7 - 9)

where

eqCk) = d(k)-AqCk)(Al(k)AqCk))- 1 Al(k)d(k), and (7 - 10)

(7 - 11)

It is not hard to see that some of the terms in Eq. (7 - 10) and Eq. (7 - 11) are actually

the time updated parameters which have already been calculated by the time-update

algorithm. Using these facts, we can simply substitute the time updated parameters into the

error reduction terms. Specifically, the error reduction terms can be computed as:

Error Reduction Calculation if RLS Algorithm is Used

(7 - 12)

where

(7 - 13)

Error Reduction Calculation if QR-RLS Algorithm is Used

(7 - 14)

where

(7 - 15)

118

The above method saves significant computation, as we do not perform the matrix

inversion. However, because A (k) , A (k) and d (k) appear in the calculation, we do have
q -q

to store the data matrix, potential data matrix and the desired response vector.

A (k) = [AqCk- 1)1 , A (k) = [~q_Ck- 1)l, d(k) = [d(k- 1)1
q qa(k) J _q q~(k) J d(k) J (7 - 16)

The time updated parameters, together with the data matrices described in Eq. (7 - 16), are

used in calculating the error reduction terms. Once computed, the best error reduction term

is picked (The best error reduction produces the largest number).

errqCk) = max[errii)(k)] (7 - 17)

Update Order:

To decide whether an order-update is needed, the sum of squared errors is calculated

using the time updated sum of squared errors SSEqCk).

SSEq + 1 (k) = SSEqCk) - errqCk) (7 - 18)

The resulting sum of squared errors SSEq + 1 (k) is compared to a pre-selected threshold

value y. If SSEq + 1 (k) ~ y, then the network performance is inadequate, and we proceed

to perform an order-update. Otherwise, no update is necessary.

Order-Update Algorithm:

If an order-update is necessary, we first need to identify which potential data vector

-
produces the largest error reduction. Assuming that i is the index that produces the largest

119

-
error reduction term, i = index[max[errii)(k)]], then we need to move ~{k) from

A (k) to A (k) as a~(k) becomes part of the linear model. If the RLS algorithm is used, _q q -1

the order-update will update the inverse correlation matrix Hq + 1 (k) using Eq. (6 - 38), the

weights xq + 1 (k) using Eq. (6 - 39), and the sum of squared errors SSEq + 1 (k) using Eq.

(7 - 18). If the QR-RLS algorithm is used, the order-update will update the R-factor

Rq + 1 (k), the gain vector gq + 1 (k), and the sum of squared errors SSEq + 1 (k) using Eq.

(7 - 18). Note that in Chapter 6, we rely on the orthogonal matrix QqCk) to obtain an

accurate recursive QR order-update algorithm. We have not come up with update equations

for Rq + 1 (k) and gq + 1 (k). In the following, we will derive these update equations from

Chapter 6.

To find an update for Rq + 1 (k), we use the fact that Qr(k) = R;/(k)Ar(k) from

Eq. (6 - 41), and from Eq. (6 - 44) we can write

R;/(k)Ar(k)~i(k~

P/k) J
(7 - 19)

Meanwhile, the gain vector gqCk) can be derived from the weight update equation.

Recall from Eq. (6 - 47), the weight update equation is

(7 - 20)

120

If we multiply Rq + 1 (k) in Eq. (7 - 19) times the weight update equation above, we obtain

[
R (k) R-T(k)AT(k)a (kJ[[x (kj [-Rq- 1(k)QqT(k)a;(k)pq-2(k)a/(k)eqCkJ] (? 21) R (k)x (k) = q q q _, q + - - _

q+l q+l
0 PqCk) 0 p;j2Ck)~/Ck)eqCk)

Make use of the fact that Q~(k) = R/(k)A~(k) from Eq. (6-41), gqCk) = RqCk)xqCk)

and gq + 1 (k) = Rq + 1 (k)xq + 1 (k), then we obtain the gain vector update equation

(7 - 22)

Once the necessary parameters are updated, the parameters are presented back to the time-

update algorithm, as shown in Figure 7 - 2. Another cycle will start as soon as another data

point is received.

Theoretically, (Golub & Van Loan 1996) updating the orthogonal matrix QqCk)

yields numerical results that are more accurate. However, it requires storing the orthogonal

matrix QqCk). This matrix QqCk) is of the size of the data matrix AqCk) and it can be very

large because it is time dependent. On-line implementation by storing the QqCk) matrix is

possible but impractical. Meanwhile, updating RqCk) and gqCk) will be less numerically

accurate (theoretically) but it does not require storage of the QqCk) matrix. Chen et al.

(1991) have pointed out that the OLS algorithm can avoid numerical ill-conditioning, such

as the near linear dependency caused by some RBF nodes being too close together. In light

of this fact, we would expect the algorithm to work properly if the condition of the data

121

matrix A (k) is not too severe. However, it is important to know under what condition q

these algorithms will work properly. Hence, we will also conduct an empirical numerical

study in Chapter 10.

In the next two sections, we will discuss the implementation of two time- and order-

update algorithms.

7.3.1 Recursive Least Squares with Automatic Weight

Selection (RLS-AWS)

In this section, we will discuss the implementation of recursive least squares with

automatic weight selection (RLS-AWS). This algorithm combines the recursive least

squares (RLS) algorithm in Chapter 5 and the order-update algorithm described in Eq. (7 -

12) and Eq. (7 - 13). This algorithm can begin with a bias as the only node and recursively

add more nodes as time goes on; or begin with no parameter, in which case the order-update

is used to select the first parameters. We can initialize the inverse correlation matrix to

U:0(0) = o-1 I where o is a small positive constant. Below is the implementation of the

RLS-AWS algorithm.

RLS-AWS Algorithm

Initialization: q = 0, Ho(O) = 0- 1 I , and Xo(O) = 0

Fork = 1, 2,

Read New Data: {qa(k), d(k), q~(k)}

122

Time-Update: RLS Algorithm:

Store data matrix, potential data matrix and desired response

A (k) = [AqCk-1)1, A (k) = [~qCk- l)l, d(k) = [d(k- l~
q qa(k) J _q q~(k) J d(k) J

Parameters xqCk), Hq(k), SSEqCk), AqCk), ~qCk), and d(k) are passed to the

order-update algorithm.

Order-Update Algorithm:

Compute Error Reduction Term

For 1 :::; i:::; q compute

123

p<i)\k) = a.T(k)a.(k)- uUl(k)z(i)(k) q -l -l q q

Update Order?

Pick errqCk) = max[errii)(k)] for 1 $ i $ q

SSEq + 1 (k) = SSEqCk) - errqCk)

If SSEq + 1 (k) ~ y, update parameters. Otherwise, no update necessary

Update Parameters

Keep SSEq + 1 (k). Let i = index[max[errii)(k)]], then move ~;(k) from

~qCk) to Aq(k) which produces Aq+ 1(k) and ~q_ 1(k). Then update

124

7.3.2 QR Recursive Least Squares with Automatic

Weight Selection (QR-RLS-AWS)

The QR Recursive Least Squares with Automatic Weight Selection (QR-RLS-

AWS) algorithm combines the QR recursive least squares (QR-RLS) algorithm in Chapter

5 and the order-update algorithm as described in Eq. (7 - 19) and Eq. (7 - 22). Similar to the

RLS algorithm, this algorithm can begin with a bias as the only parameter or can begin with

no parameter (order-update is used to select parameter), and recursively adds more

parameters as time goes on. The initialization procedure is the same as the QR-RLS

algorithm, where we initialize R0(0) = 0 . Below is the implementation of the QR-RLS-

AWS algorithm.

QR-RLS-AWS Algorithm

Initialization: q = 0, R/0) = 0, and gqCO) = 0

Fork = 1, 2,

Read New Data: {qa(k), d(k), q~(k)}

Time-Update: QR-RLS Algorithm

Solve using Givens Rotation

SSE/k) = SSE/k- 1) + r 1 (k)!;2(k)

125

Store data matrix, potential data matrix and desired response

A (k) = [A/k-1)1, A (k) = [~/k-1)1, d(k) = [d(k- 1~
q qa(k) J _q q~(k) J d(k) J

Parameters gqCk), R/k), SSEqCk), AqCk), ~qCk), and d(k) are passed to

the order-update algorithm.

Order-Update:

Compute Error Reduction Term

For 1 $ i $ q

rii)(k) = Rt(k)uii)(k), Solve using back-substitution

cpCi)(k) = a.T(k)d(k)- rCil(k)g (k) q -l q q

pCi)\k) = aT(k)a.(k)- rCil(k)rCi)(k) q -l -l q q

Update Order?

Pick errqCk) = max[errii)(k)] for 1 $ i $ q

If SSEq + 1 (k)?:. y, update parameters. Otherwise, no update necessary.

Update Parameters:

126

Keep SSEq+ 1(k). Let i = index[max[errrl(k)]], then move ~1(k) from ~qCk)

to AqCk) which produces Aq+ 1(k) and ~q-I(k). Also, update

For parameter updates, implement Eq. (7 - 19) and Eq. (7 - 22)

R (k) = [RqCk) r qCk)l
q+I O pqCk~

g (k) = [gqCk) l
q + I Pq' (k)<J>qCk)j

7 .4 Fixing Centers

To implement the two algorithms in the RBF network, we need to define how we

fix the parameters of the RBF hidden layer. Specifically, how do we select the RBF fixed

centers and fixed standard deviation. In general, there are two techniques.

7 .4.1 Centers Selects from Fixed Range/Grid

This technique equally spaces the centers in the input space. If the RBF network has

two inputs, then the centers are placed according to a grid (Fabri & Kadirkamanathan 1996,

Sanner 1993, Sanner & Saltine 1992). By placing the centers in a grid fashion over the input

space, the gradient descent method can be used to train this network in real-time. However,

there are two drawbacks to this method. First, due to substantial centers placed over the

127

input spaces, the network size is very large. Therefore, this type of network suffers from the

curse of dimensionality - the number of hidden nodes increase exponentially with respect

to the dimension of the input spaces. Second, the gradient descent method has a slow rate

of convergence. Algorithms with fast rate of convergence utilize second order information,

such as the RLS and QR-RLS, are impractical due to the large number of weights. Despite

these drawbacks, this method is good for low dimensional inputs, in control applications.

7 .4.2 Centers Selected from Time Point

Centers selected from time points is a technique used in the original RBF network

(Powell 1987a). In the original paper, the RBF centers are chosen from every time data

point, which usually produces a very large set. Lowe (1989) considers a subset of centers

randomly selected from the training data sets. This approach is considered to be "sensible"

by the author, if the training data are distributed in a representative manner. However,

arbitrarily selected centers are clearly unsatisfactory. Chen et al. (1991) developed an

alternative procedure based on the orthogonal least squares method. The procedure first

assumes that a set of potential RBF centers are chosen from every time point. Then, the one

by one in a rational way, the RBF centers are chosen until an adequate network has been

constructed.

7.4.3 Centers Selection for the New Algorithms

Because the two new algorithms are an extension of the orthogonal least squares

method, we will consider center selection from the time point data. In the following we will

128

assume that as a new time point becomes available, a potential center is placed on that time

point.

Hence, there are as many potential centers as the number of time points, and it is up

to the algorithm to pick the best centers for the network. In the following we will give some

preliminary results based on this methodology.

7 .5 Preliminary Results

In this section, we will use a single-input/single-output function to test the function

approximation capabilities of our new algorithms. This function to be approximated is

y(k) = sin(k) + cos(2k) with sampling interval = rr/20

The standard deviation and the threshold criteria is selected as

cr = 1 and "(= 10-3 .

(7 - 23)

(7 - 24)

Meanwhile, the RBF network begins with no parameter; thus, subset selection is used to

select the centers at time point k = 0. As mentioned previously, when the current data is

presented, an RBF potential center based on that data point is created as well. In the

following, all the figures have two subplots. In the top plot, + (plus marks) are all the

potential centers, o (circle marks) are the selected centers and - (solid lines) are the RBF

network outputs. The bottom plot shows the sum of squared errors.

129

7.5.1 Compare QR-RLS-AWS and RLS-AWS

Our first experiment is to compare the QR-RLS-AWS algorithm and the RLS-AWS

algorithm. Figure 7 - 3 shows the result of both algorithms. Only one figure is shown

because both algorithms yield identical RBF network output. Even the sum of squared

errors is the same. This comes as no surprise since both algorithms are derived from the

least squares method. The reason why we developed the QR-RLS-AWS algorithm is

because of its numerical accuracy.

+ Desired Response; o RBF modes; - RBF output

5 10

X 10-3

15
k (time)

Sum of Squares Error

20 25

a.-~~~..--~~~..---~~~..--~~~~~~~~~~

6

4

2

0

-2

-4

-6
-s~~~~.,__~~~.,__~~~-'--~~~--'------~~~--'------~_J

0 5 10 15
k(time)

20 25

Figure 7 - 3 The QR-RLS-AWS and RLS-AWS algorithms Result

130

7.5.2 Accuracy Test

To test if the QR-RLS-AWS is numerically more accurate, we reduce the threshold

value. In fact, a threshold value of y = 1 o-4 is enough to show the numerical instability of

the RLS-A WS. Figure 7 - 4 shows this phenomena. As shown, erratic RBF network output

behavior emerges after the some time passes.

Using the same threshold value, we tested the QR-RLS-AWS algorithm. As shown

in Figure 7 - 5, it remains stable.

+Desired Response; o RBF nodes; -RBF output

-1

-2

-3

~'-----~~~-'-~~~~~~~~~~~~'-----~_.__~-'-------'
0 2 4 6 8 10 12 14 16 18 20

k (time)

Sum of Squares Error

2

0

-1'-~---'----~~~----'--~-'--~---'-~__,._~-----'~~J..._~_L_~-'-~
0 2 4 6 8 10 12 14 16 18 20

Figure 7 - 4 RLS-A WS Algorithm Instability

131

+Desired Response; o RBF nodes; -RBF output

-1

0 5 10 15 20 25
k(time)

X 10- 3 Sum of Squares Error
4

2

0

-2

-4
0 5 10 15 20 25

k(tlme)

Figure 7 - 5 QR-RLS-AWS Algorithm No Blow Out

7.5.3 Batch and Recursive Test

Since the two new algorithms are extensions of the batch orthogonal least squares

method (Chen et al. 1991), a test is conducted to compare them. The batch result is shown

in Figure 7 - 6. If we compare the number of centers selected by the batch OLS method to

the new algorithms (Figure 7 - 3), we can see that the batch OLS method selects fewer

centers, 44 compared to 53, out of 178 possible centers. This result is not surprising if we

consider the fact that the algorithm is recursive in nature, and the future time points are not

available to the new algorithm. Another difficulty arises when a center selected at an early

stage becomes unimportant in a later stage. This algorithm is not designed to take out

insignificant centers. Hence, more centers are selected using the new algorithms.

132

X 10-3

8

6

4

2

0

-2

-4

-6

-8
0

7.6 Summary

5

5

+ Desired Response; o RBF nodes; - RBF output

10

10

15
k (time)

Sum of Squares Error

15
k (time)

20

20

Figure 7 - 6 Batch OLS algorithm

25

25

Keep in mind that these preliminary results are tested on a simple 1 dimensional

function. Further tests are needed to verify the performance capability of these algorithms.

Also, there is still room for improvement in algorithm design and implementation. We will

explore these improvement in the next chapters.

133

Chapter

8
RLS-AWS Algorithm

Improvement
8.1 Introduction 135
8.2 Alleviate the Storage Requirement 136

8.2.1 Time-Update Correlation Matrix 136
8.2.2 Improvement to Forward Selection Method 139
8.2.3 Restructuring Time-Update Correlation Matrix 141

8.3 Order-Decrease-Update Algorithms 142
8.3.1 Block Matrix Inversion Lemma for Matrix Downdate144
8.3.2 Recursive Order-Decrease-Update Algorithm for LS Meth-
od 147

8.4 Recursive Backward Elimination 154
8.5 Recursive Efroymson Algorithm 155

8.5.1 Batch Efroymson Algorithm 155
8.5.2 Recursive Efroymson Algorithm 157
8.5.3 RLS-A WS Algorithm: Efroymson Method 161

8.6 Implementation Consideration 167
8.6.1 Exponential Windowing 167
8.6.2 Reduce Computational Time 169

8. 7 Summary 170

In this chapter, we devote our efforts to improve one of the recursive time- and order-

update algorithms proposed in chapter 7: the RLS-A WS algorithm. These improve-

ments include alleviating the storage requirement, improving the algorithm '.s subset

selection solution, and reducing the computation. Subsequently, we make this alga-

rithm practical for real-time usage.

134

8.1 Introduction

In this chapter, we will discuss several ways to improve the performance of the

Recursive Least Squares with Automatic Weights Selection (RLS-AWS) algorithm.

We first tackle the storage improvement of the algorithm by devising a way to store

time independent terms, which are needed for the RLS-AWS calculation, instead of the

time dependent terms such as the data matrix and the potential data matrix. These time

independent terms form a matrix, which we call the time-update correlation matrix. With

this modification, we improve the storage requirement of RLS-AWS algorithm to a fixed

size. We will also explain how this modification can be applied to the RLS-AWS algorithm

with the recursive forward selection method and the recursive Efroymson method.

Second, we improve the algorithm's subset selection solution by developing a

recursive Efroymson method for the RLS-AWS algorithm. In chapter 7, the RLS-AWS

algorithm works by adding the best potential nodes into the network to ensure adequate

network performance. In addition to adding the best potential nodes, the recursive

Efroymson method also deletes under-performing nodes from the network to ensure a

smaller network. In chapter 7, we explained how we can add the best potential nodes when

the order of the model is increased (a new radial basis function node is added). In this

chapter, we will explain how we can remove the least important nodes from the network

when the order of the model is decreased (a new radial basis function node is removed).

Because both procedures are order-update methods, we will call the order-update in chapter

6 and chapter 7 as order-increase-update and order-update in this chapter as order-decrease-

135

update. Later in the section, we will combine the order-decrease-update and the order

increase-update to form the recursive Efroymson method for the RLS-AWS algorithm.

Lastly, we will discuss how we can reduce computation by utilizing the localized

character of the RBF network. In addition, we will incorporate an exponential window to

the new algorithms.

8.2 Alleviate the Storage Requirement

One of the major limitations of the RLS-A WS algorithm described in section 7 .3.1

is the requirement to store the data matrix AqCk) and the potential data matrix ~qCk).

Because these data matrices accumulate data at every time step, the sizes of these data

matrices become very large rapidly over time. Hence, it is impractical to implement this

algorithm in a real-time system if we are required to store these data matrices.

8.2.1 Time-Update Correlation Matrix

In this section, a modification is made to the implementation of this RLS-A WS

algorithm. With this modification, we reduce the storage requirement to a fixed size and

completely eliminate the dependency on time making real-time implementation possible.

The basic idea of this modification is instead of storing the data matrix, we store

matrices and vectors that are not time dependent but that are sufficient for the error

reduction calculation. These matrices and vectors can be combined to form one big matrix

136

and are updated by the newly arrived time data vector qa(k), the newly arrived potential

time data vector a(k) and the newly arrived desired response d(k). In the following, we
q-

will show how we form this time-update correlation matrix and how we use it in the RLS-

A WS algorithm.

The correlation of the data matrix is defined as

(8 - 1)

The data matrix in Eq. (8 - 1) can be rewritten as

A (k) = [A/k- 1)1,
q qa(k) J (8 - 2)

where A/k- 1) is the data matrix of previous time step and qa(k) is the current time data

vector. If we substitute Eq. (8 - 2) into Eq. (8 - 1), we obtain a recursive equation for the

correlation matrix

(8 - 3)

T
Let the previous time step correlation matrix be H/k- 1) = AqCk - 1)A/k- 1), then

the current time step correlation matrix is

T
HqCk) = H/k- 1) + qa(k)qa (k). (8 - 4)

Eq. (8 - 4) implies that if we stored the previous time step correlation matrix H / k - 1) , we

can obtain the updated correlation matrix using the current time data vector qa(k). The

137

important thing here to remember is that the size of the correlation matrix HqCk) is q x q

(the storage size is fixed), and its size is not varying with time.

Using the same technique, we can derive recursive equations for A~(k)d(k),

T T T T .
~q(k)~qCk), Aq(k)~q(k), ~qCk)AqCk) and ~qCk)d(k). In fact, we can bmld these

recursive equations into one matrix as follows

[
A~(k)AqCk) A~(k)~q(k) A~(k)d(k~ =

~;(k)AqCk) ~;(k)~qCk) ~;(k)d(k~

(8 - 5)

[
A~(k- l)AqCk-1) A~(k- l)~q(k-1) A~(k- l)d(k-1~ + (8 - 6)

~;(k- l)A/k-1) ~;(k- l)~qCk-1) ~;(k- l)d(k-1~

[:;::j [qaT(k) ~T(k) d(k~

138

[
HqCk-1) U~q\k- 1) vqCk- l)J +
(q)T U - (k- 1) H (k- 1) v (k- 1) q _q -q

(8 - 7)

Eq. (8 - 7) is called the time-update correlation matrix. Its function is to perform a

time-update calculation so that U~q)(k), HqCk), !!qCk), v qCk), and ~/k) are updated.

The size of this matrix is (q + q) x (q + q + l) ; however, because it is symmetric, we only

need to store the upper triangular elements of HqCk), and !!qCk) . (U~q)(k), v qCk) and

v (k) are stored in full). Total storage reduces to (q + q)2 / 2 + 3(q + q) / 2. In addition,
-q - -

the update in Eq. (8 - 7) requires - O((q + q)2) flops.

8.2.2 Improvement of the Forward Selection Method

Eq. (8 - 7) is the key to the storage savings as the updated matrix contains all the

necessary terms to compute the error reduction equations. In the following, we repeat the

error reduction equations from Chapter 7, and show how these terms in error reduction are

associated with the terms in Eq. (8 - 7).

(8 - 8)

where

139

<J>~il 1 = ~f(k)d(k) - ~f(k)A/k) (A!(k)AqCk))-1 A!(k)d(k)
'-----v-' '-----v-' '-----v-' and

'
Hq(k)

p~il 1 \k) = ~f (k)~i(k) - ~f(k)A/k) (A!(k)AqCk))-1 A!(k)~ik)
'-----v-' ~ '-----v-'

h(i, i)(k)
-q

Hq(k) g(i)(k)
q

(8 - 9)

(8 - 10)

Specifically, v<i)(k) is the i1h element of the v (k) vector, h(i, i)(k) is the diagonal
-q -q -q

element associated with the ifh row and the ifh column of the H (k) matrix, and uq<i)(k) -q

is the i1h column vector of the U~q)(k) matrix. Together with the inverse Hessian matrix

Hq(k) update of Eq. (6 - 13), we have all the necessary terms required for the error

reduction calculation. Keep in mind since xqCk) = Hq(k)v qCk), and xqCk) is readily

available from the time-update (RLS) algorithm, we can use it directly in this computation.

In term of floating point operation, the forward selection requires - 0(2qq2).

Take note that Eq. (8 - 7) not only contains all the necessary terms for the order-

increase-update algorithm, but it also contains all the necessary terms for the order-

lu<q)(k)l
decrease-update. Specifically, q is needed for order-increase-update

!!qCk)
and

[
HqCk) J [v (k~ T is needed for order-decrease-update. Meanwhile, q is essential for both

v~q) (k) ~q(k)

140

order-update methods. However, if only the order-increase-update is necessary, we will

only need

[
u~q)(k- 1) v qCk- 1)~ [qa(k)~ [T ~ = + a (k) d(k) ·
H (k-1) v (k-1) q~(k) q _ _ q -q -

(8 - 11)

8.2.3 Restructuring Time-Update Correlation Matrix

It is important to note that once we determine that an order-increase-update is

necessary, we will need to move the selected potential node into the model. This change

directly affects the time-update correlation matrix. In particular, we will need to restructure

those terms associated with the selected potential node in the time-update correlation

matrix. In the following, we will show how we restructure the time-update correlation

matrix Eq. (8 - 11) when we only need an order-increase-update.

Let the lh node be the selected potential node for the order-increase-update.

Before the restructuring, we have

h(I , l)(k) h(l , 2)(k) .. . h(l,q)(k)
-q -q -q

h (2• I) (k) h (2• 2) (k) . . . h (2' q) (k) = -q -q -q (8 - 13)

141

and

u~1)(k) ... u~q- l)(k)

h(l, l)(k)
-q

(8 - 14)

h(q-1, l)(k) ... h(2, q- l)(k)
-q -q

The highlighted terms are the terms involved. After the restructuring, we will have

uf)(k) ... u~q- I)(k) : v qCk)
I

h(q, l)(k) ... h(q, q- l)(k) : V (k)
_:! _______ :! _____ i ~J __ _

h(I, l)(k) ... h(l,q-l)(k) : V (k)
-q -q I _)

(8 - 15)

I

h (q - I, I) (k) . . . h (2' q - I) (k) : V (k)
-q -q ,-q- I

Specifically, we will move the lh row and delete the lh column of the time-update

correlation matrix ofEq. (8 - 11).

8.3 Order-Decrease-Update Algorithms

In this section, we will derive the order-decrease-update algorithms for the linear

model using the batch least squares method. These methods allow efficient recalculation of

the new least squares solution when an existing node is removed from the model. Suppose

we have a linear model

142

AqCk)xqCk) = d(k) (8 - 16)

where the data matrix AqCk) and the parameter vector xqCk) are given by:

AqCk) = [a 1(k) ... aq_ 1(k) aqCk~

xqCk) = [x1 (k) ... xq- 1 (k) xqCk~ T

(8 - 17)

The batch least squares solution of this linear model is given by

(8 - 18)

where

(8 - 19)

Now, suppose we find that the existing node aqCk) is no longer useful to the linear

model, and we would like to remove it. By removing aqCk) from the data matrix, the last

column of AqCk) is removed.

(8 - 20)

Also, the size of x / k) will shrink by one. If we were to recompute the batch least

squares solution for this changes, the optimal solution for this new parameter will be given

by

(8 - 21)

where Hq-I(k) = (A;_ 1(k)Aq_ 1(k))-1. Unfortunately, the computation of xq_ 1(k)

using Eq. (8 - 21) is very time consuming. A better alternative is to recursively compute

143

xq- 1 (k) based on the previously computed xqCk) and Hq(k). This recursive solution can

be obtained by modifying the block matrix inversion lemma in chapter 6 for matrix

downdate.

8.3.1 Block Matrix Inversion Lemma for Matrix Down
dating

Similar to the recursive order-increase-update algorithm, the block matrix

inversion lemma plays an important role in the derivation of the recursive order-decrease-

update algorithm. In this section, we modify the block matrix inversion lemma for a matrix

downdate. We repeat the special case of the block matrix inversion lemma here so that we

can use it to derive a version of the block matrix inversion lemma for the matrix-downdate.

The block matrix inversion lemma for the matrix update assumes that we know A - l and

we have HE 9\(n + m) x (n + m) (a square matrix) such that

H = [A bl
cT dj

(8 - 22)

where A E 9\ n x n , b E 9\ n x 1 , c TE 9\ 1 x n , and d E 9\ 1 x 1 . Then, H-1 can be found as

H- 1 = [A- 1 + A-1 b(d - cTA-lb)- lcTA- 1

- (d - cT A- I b)-1 cT A- I

-A-1 b(d - cT A - 1 b)-1

(d-cTA- 1b)-1
l (8 - 23)

The objective of the block matrix inversion lemma for the matrix downdate (the

opposite of the block matrix inversion lemma for matrix-update) is to obtain A-1 while

144

assuming that we have H-1 • To show this result, we first simplify Eq. (8 - 23) by letting

l
By rearranging Eq. (8 - 24), we get

-A-1 bL\-1] .

L\- 1

Since the second term on the right hand side of Eq. (8 - 25) can be factored into

[
A - ibL\-lcTA-1

-cT A - IL\- 1

we have

(8 - 24)

(8 - 25)

(8 - 26)

(8 - 27)

The significance ofEq. (8 - 27) is that the factorized vectors and scalar are elements in H- 1 ;

in other words, we can obtain A - I by using only the elements in H- 1 . Specifically, L\-1 1s

the last diagonal element of H- 1 , [-A -I bL\-ll is the last row vector of H-1 , and
L\-1 J

[J
T

-cT A-I L\-1 - 1
is the last column vector of H . In term of floating point operation, this

L\- 1

matrix downdate requires - O(q(q + 2)).

145

In addition, this order-decrease-update procedure also applies to any order. That is

if we have

[J [
A11 h1 A12j A~1 b~ A~2

= Af1 Af2 'H = cT d cT and H-1 = c*T d* c*T
A# A# I 2 I I

21 22 A b A A * b * A* 21 2 22 21 2 22

, then

(8 - 28)

To prove Eq. (8 - 28), let us assume that

(8 - 29)

and there exist a row permutation matrix Prow and a column permutation matrix P col

such that B = ProwHPcol· Then, according to Eq. (8- 27), we have

(8 - 30)

P~~l = P[01, we get

146

(8 - 31)

Left multiply equation above by P col and right multiply equation above by Prow, we get

[
Af1 Af2 0) -b~

-I
P # # P =H-P * col A21 A22 0 row col -b2

OT OT O d*

(8 - 32)

Multiply out Eq. (8 - 32), we obtain Eq. (8 - 28).

8.3.2 Recursive Order-Decrease-Update Algorithm for
the LS Method

In the following, we apply the result of the matrix downdate in section 8.3.1 to the

batch least squares algorithm, and obtain a recursive order-decrease-update algorithm. We

first note that the old inverse Hessian matrix before the downdating, taken directly from Eq.

(6 - 13), is

(8 - 33)

Now, we apply the inversion result of Eq. (8 - 27) to Eq. (8 - 33), we get

147

(8 - 34)

Here, we introduce qHq- 1 (k) as a matrix with zero elements inserted to the qth row and

column of Hq- 1 (k). The left superscript indicates which row and column in Hq- 1 (k) get

zero elements inserted. Due to the fact that the inverse Hessian matrix is symmetric, we can

further simplify Eq. (8 - 34) to

(8 - 35)

where

(8 - 36)

Keep in mind that ii~q)(k) and h~q, q)(k) are the q1h column vector and the q1h diagonal

- q-
element of Hq(k); therefore, the Hq- 1 (k) can be updated using only the elements in

Hq(k). Similarly, we can extend this result to the removal of the i1h order of Hq(k) using

Eq. (8 - 28)

(8 - 37)

148

Take note that iiti\k) is the i1h column vector of Hq(k) and Ji~i, i)(k) is the i1h diagonal

element of Hq(k).

8.3.2.1 Recursive Order-Decrease-Update for the Parameter

Applying the result of Eq. (8 - 37) to Eq. (8 - 21), we obtain the optimal parameter

for the new linear model with q1h order removed

x q _ 1 (k) = Hq - I (k) A f- 1 (k) d (k) . (8 - 38)

Keep in mind that we will need to extract Hq - 1 (k) from qHq - 1 (k) to compute Eq. (8 -

38). Also, if we were to use the time-update correlation matrix for Eq. (8 - 38), we will need

toextractvq_ 1(k) = Af_ 1(k)d(k) fromvqCk) = Af(k)d(k) becausevqCk) isprovided

by the time-update correlation matrix. However, with the following modification, we can

compute the new parameter using qHq- 1 (k) and v qCk) directly.

(8 - 39)

The result of Eq. (8 - 39) is the optimal solution of the new parameter qxq- 1 (k) but with a

zero element inserted to the q1h row of xq- 1 (k). Again, the left superscript indicates which

row in xq- 1 (k) gets a zero element inserted.

Now, if we were to apply the generalized form of the matrix downdate Eq. (8 - 37),

then we obtain

(8 - 40)

149

8.3.2.2 Recursive Order-Decrease-Update for the Sum of Squared Er
rors

Recall from section 6.2.2.2 that the sum of squared error of a linear model will

always be reduced in value when an order is added. This result is verified by the derivation

of the recursive sum of squared error formula in Eq. (6 - 30) when we consider adding a

new node to a linear model.

Now, assume that a new node is included in the model (that means we have q nodes

in the model), and we would like to remove the last (q1h) node. The same recursive sum of

squared errors formula applied in the recursive order-update can be used to find the new

sum of squared errors. This is done by the rearranging the recursive sum of squared error

formula in Eq. (6 - 30)

(8 - 41)

and we get

SSEiqJ 1 (k) = SSE/k) + erriqJ 1 (k). (8 - 42)

Note that we change the order index from q + 1 to q - 1 to reflect an order-decrease-

update.

Notice that instead of having a minus sign in the recursive sum of squared errors

formula, we have a plus sign. This implies that if we take out the q1h node, the new sum of

squared error SSEiqJ 1 (k) will increase by the amount given by err<q)(k). The same error

reduction term err<q)(k), used by the order-increase-update, is also a measurement of the

150

error increase for the order-decrease-update. Therefore, applying Eq. (8 - 35) to calculate

the error reduction term will give us an idea of how much the q1h node contributes to the

linear model. Specifically, we need to use Eq. (8 - 35) to calculate the inverse Hessian

q- q-
matrix of Hq-l(k), then extract Hq-I(k) from Hq-I(k) and use it in the following

error reduction calculation

(8 - 43)

where

(8 - 44)

(8 - 45)

Together with the inverse Hessian matrix Hq- 1 (k) computed in Eq. (8 - 35), we have all

the necessary terms required for the error reduction calculation.

We can extend the result of Eq. (8 - 45) to calculate the error reduction for any i1h

node available in the linear model using Eq. (8 - 37) instead of Eq. (8 - 35). Also, we can

use the time-update correlation matrix in Eq. (8 - 7) to compute the necessary terms needed

for the error reduction. To accommodate these changes, we modify Eq. (8 - 44) and Eq. (8

- 45) as follow:

(8 - 46)

T
ai (k)AqCk)

j-

Hq- 1 (k) Af (k)d(k)
~.and (8 - 47)

T = ai (k)d(k) -
'--v---'

bCil(k) q vqCk)

151

j-

= a[(k)ai(k) - a[(k)AqCk) Hq- I(k) Af(k)aJk)
'---------.,--' '---------.,--' '---------.,--'

h(i, i)(k)
q

This modification works by using the fact that

h(i)(k)
q

i- -
AqCk) Hq- 1 (k)Af (k) = Aq- 1 (k)Hq-1 (k)Af _ 1 (k).

(8 - 48)

(8 - 49)

With this modification, we can apply the time-update correlation matrix to the error

reduction calculation. Specifically, vii)(k) is the ith element of the v qCk) vector, hii, i)(k)

is the diagonal element associated with the irh row and the ith column of the HqCk) matrix,

j-

and hii)(k) is the ith column vector of the HqCk) matrix. Also, Hq- I(k) is used directly

in the error reduction calculation, which avoid the trouble of extracting Hq - 1 (k) from

j-

Hq- 1 (k). In term of floating operations, the computation of the order-decrease-update of

the ith node requires - 0(2q2 + 7 q). In the following, we will show an example using this

order-decrease-update algorithm.

Example 8 -1

Assume that we have the following data matrix and desired response

0.1 -0.2 0.3 0.1

A/4)
-0.5 0.3 0.3 , and d(4) -0.2 = =
0.8 -0.2 0.4 -0.5

(8 - 50)

0.6 -0.8 0.9 1

Then, the time-update correlation matrix is

152

[
1.26 -0.81 0.74 ; 0.31~

= -0.81 0.81 -0.771-0.78 ·

0.74 -0.77 1.15 I 0.67
I

(8 - 51)

[Note that because there is no unselected node, the time-update correlation matrix does not

contain the terms H (k), Uq(k) and v (k) .] The inverse correlation matrix is given by _q -q

[
2.2329 2.3852 0.1602~

H3(4) = 2.3852 5.9443 2.4452 ·

0.1602 2.4452 2.4037

Now, if we wish to remove the last node, we can apply Eq. (8 - 37) with i = 3

3- _ r0.1602~ [o.1602 2.4452 2.4037] [2.2222 2.2222 oj
H2(4) = H3(4) - 2.4452 2.4037 = 2.2222 3.4568 0 ·

2.4037 0 0 0

Using the solution in Eq. (8 - 53), we can calculate the new parameter as

[
2.2222 2.2222 oj [o.31 ~

\ie 4) = 2.2222 3.4568 0 -0.78

0 0 0 0.67
[
-1. 04441 [~ -1.0444

= -2.0074 , xi(4) = ,
O -2.0074

and the error reduction term as

[J T[j [~ 0.74 2.2222 2.2222 0 0.31
<P~3)(4) = 0.67 - -0.77 2.2222 3.4568 0 -0.78 = -0.1028,

1.15 0 0 0 0.67

[~ T[j [~ 2.2329 2.2222 2.2222 0 2.2329
pp)\4) = 1.15- 2.3852 2.2222 3.4568 0 2.3852 = 0.416.

0.1602 0 0 0 0.1602

153

(8 - 52)

(8 - 53)

(8 - 54)

(8 - 55)

(8 - 56)

(3)(4) = (-0.1028)2 = 00254
err3 0.416 . . (8 - 57)

The result of the order-decrease-update for i = 2 and i = 1 is as follows

2ii2(4) = 11.2;58 ~ - 0-~2091, 'x,<4) = I-0.~451, err\2>(4) = 0.8583 (8- 58)

l-0.8209 0 1.3978 l 0.6821 J

= [-l.~2J, err\1>(4) = 0.5041.
-0.171~J

8.4 Recursive Backward Elimination

(8 - 59)

In Example 8 - 1, the calculation of error reduction errP)(4) yields the smallest

value when we remove the third node. This seems to suggest that removing this node from

the model is probably a good idea since it does not contribute much to the model. Indeed,

this idea is called the backward elimination. We have briefly discussed the batch backward

elimination in chapter 6. As discussed, this method calculates the error reduction for all the

nodes for a set of data, then removes the node that yields the smallest computed error

reduction term one at a time until an error criterion is met. In term of floating point

operation, this operation requires - 0(2q3 + 7 q2).

It is true that the batch backward elimination method works well in finding a small

subset in a linear model (Miller, 1990). Unfortunately, it is not true if we were to use this

154

backward elimination method for real-time operation. This is because recursive backward

elimination can only increase the sum of squared errors of a linear model, as we explained

in section 8.3.2.2. Therefore, it cannot compensate for the new changes induces by the

newly added real-time data.

At this point, the reader might ask why we introduce the recursive backward

elimination method if it does not work in real-time. The reason is that backward elimination

can work together with forward selection to form the Efroymson algorithm.

8.5 Recursive Ef roymson Algorithm

In the following, we will first discuss the batch Efroymson algorithm (Most of the

batch Efroymson materials are taken from Miller (1990), and Efroymson (1960). Readers

can consult these books and journals for detailed discussion). Then, we will use some of the

procedures from the batch Efroymson algorithm to develop the recursive Efroymson

algorithm.

8.5.1 Batch Efroymson Algorithm

As described in chapter 6, the batch Efroymson algorithm works by combining

forward selection and backward elimination. Specifically, the batch Efroymson algorithm

will first use the forward selection method to find the best potential node among all the

unselected nodes. The best potential node is the node that produce the largest decrease in

155

the sum of squared errors. The sum of squared errors before, SSEq, and after, SSEq + 1 , the

addition of this node are then used in the calculation of the following ratio

W = SSE9 -SSEq+ 1

e SSEq+ll(N-q-2)
(8 - 60)

where N is the total number of data points and q is the total number of nodes in the model.

The calculated We is compared to the F-to-enter value Fe. If We> Fe, the node is added

to the model. Otherwise, no node is added.

Right after forward selection, backward elimination is applied to see if any of the

previously selected nodes can be deleted without appreciably increasing the sum of squared

errors. The node that incurs the least sum of squared error is picked. Then, the sum of

squared errors before, SSEq, and after, SSEq- 1 , the deletion of that selected node are used

in the calculation of the following ratio

_ SSE9 _ 1 - SSE9
Wd - SSEql (N-q-1).

(8 - 61)

This W d value is calculated and compare to F-to-delete value F d. If W d < F d, the node is

removed from the model. Otherwise, no node is removed. This process is repeated until no

further additions and deletions are possible which satisfy the criteria.

According to Miller (1990), this process is guaranteed to converge as long as we set

Fd <Fe. Also, the stopping rule is derived assuming that We and Wd have an F-

distribution under the null hypothesis; that is, the model is the true model and subject to

error residuals being independent and normally distributed. Typically, Fe and F d values

156

are taken from an F-distribution table. A typical value for Fe is 2 and a typical value for

Fd is 1.5. However, according to Miller (1990), these values can be manually set as long

as F d < Fe. Specifically, large Fe and small F d will yield a smaller model with a larger

sum of squared errors; small Fe and large F d will yield a larger model with a smaller sum

of squared errors. We can also use other techniques such as Mallow's (1973) statistic,

adjusted R2 statistic, or Akaike's (1969) Information Criterion (AIC) to derive different

stopping rules.

8.5.2 Recursive Efroymson Algorithm

While the batch Efroymson algorithm is an off-line learning method, the recursive

Efroymson algorithm operates in on-line fashion. That means it will have to deal with a

time-update while simultaneously applying the Efroymson algorithm to add and/or delete

orders from the model.

8.5.2.1 Stopping Rule

Using the error reduction calculations for forward selection, Eq. (8 - 8), and

backward elimination, Eq. (8 - 46),

erriil 1 (k) = SSEqCk) - SSEiil 1 (k) for i = 1 < i < q, and

errii~ 1 (k) = SSEii~ 1 (k) - SSEqCk) for i = 1 < i < q,

157

(8 - 62)

(8 - 63)

the recursive Efroymson is a straight forward extension to the batch Efroymson algorithm.

The result of Eq. (8 - 62) and Eq. (8 - 63) can be used directly in the We and Wd

calculations

errU) 1 (k) w = +
e SS£ii1 1 (k) l (k- q - 2)

(8 - 64)

_ err4i~ 1(k)

Wd - SSEqCk)l(k- q- 1)
(8 - 65)

The calculated We and W d are compared to Fe and F d. If We > Fe, the node is added to

the model. If W d < F d, the node is removed from the model. Otherwise, no node is removed

or added.

Keep in mind that because we need to accommodate for the real-time operation, an

assumption is made such that these stopping rules are applied only once for each time-

point. In other words, we will have only one deletion and/or deletion takes place in one

time-step. This assumption assumes that the repeating process of the recursive Efroymson

algorithm takes place as time-point increases. Note that this repeating process is vital for

the error convergence of the algorithm. In Chapter 10, we will run numerous simulation

tests to validate this assumption.

8.5.2.2 Restructuring the Time-Update Correlation Matrix

Similar to section 8.2.3, we need to restructure the time-update correlation matrix

when we use the recursive Efroymson method for the order-increase-update and order-

decrease-update. Here, we made an assumption that if a node is removed from the model

158

(even the node that has just been added), that node is added back to the potential nodes for

future selection. This assumption assumes that it is possible for the algorithm to reselect it

again in the future.

With this assumption, we revisit the restructuring of the time-update correlation

matrix. Suppose we expanded U~q)(k), !!/k), and ~/k), as shown in Eq. (8 - 12) and

Eq. (8 - 13), of the time-update correlation matrix

[
H (k) ; u<q)(k): v (kj

- - 'I_ - ...j - q_ - ..! _q - -

U(q)T(k)I H (k) : V (k)
q ' -q '-q

Hq(k) ; ui1l(k) ... u~q - '\k)
I

uC1i1'(k) I h(l , l)(k) ... h(l,q-l)(k)
q I -q -q

I

I (8 - 66)
U~q -l)T(k):h(q - l, 1\k) ... h(2,q- l)(k)

I -q -q

and we determine that it is necessary to add the qth potential node into the model. Then we

will need to move the lh row and the lh column of the time-update correlation matrix of

Eq. (8 - 66). The highlighted terms are the affected elements. After the restructuring, we

obtain

- . (8 - 67)

I

h(q - l , '\k) ... h<2,q - l\k) :v (k)
- q - q ,-q - l

159

Note that the above method assumes that we will add the selected potential node to the

q + 1 position of the data matrix. It is also possible to add the selected node to other

positions but we will not discuss that here.

Similarly, suppose we expand the matrix

hil , l)(k) h~l,2>(k) ... h~l,q)(k)

and HqCk)
= hf' I l(k) hf' 2)(k) ... hf, q)(k)

(8 - 69)

(Note that iuqCk) is the row-wise expansion of U~q)(k) with the left subscript to indicate

fh row). Now, the time-update correlation matrix can be written as

I I (8 - 70)
h(q, 2l(k) h(q, q)(k) 1 U T(k) 1 V (k) q . .. q lq q I q
----------~---~--

2uq(k) .. . quq(k) I !!qCk) I ~/k)

Suppose we want to remove the 1st node in the model. We remove it from the model and

append the unwanted node to the last column of the potential data matrix. To accommodate

this change, we need to restructure the time-update correlation matrix as follows:

160

hf· 2>(k) ... hf· q)(k); 20/(k)
I

h(q, 2)(k) h(q, q)(k) 1 U T(k) q . .. q lq q (8 - 71)
- - - - - - - - - -1- - - -

2uqCk) ... quqCk) 1 !!qCk)

8.5.3 RLS-AWS Algorithm: Efroymson Method

Using the stopping rules and the time-update correlation matrix above, we are now

ready to describe the complete RLS-AWS with Efroymson method.

Figure 8 - 1 shows the new framework for the RLS-A WS algorithm with

Efroymson method. This framework is similar to the general time- and order- update

framework except that we have added the time-update correlation matrix block and we use

a different subset selection algorithm: Efroymson method.

As shown in Figure 8 - 1, the algorithm begins by feeding new real-time data

{qa(k), d(k), q~(k)} to the time-update algorithm and the time-update correlation

matrix. Then, the time-update algorithm will produce parameters xqCk), Hq(k), and

SSEqCk) for the Efroymson algorithm. Simultaneously, the time-update correlation matrix

will produce parameters HqCk), !!qCk), V~q)(k), v qCk), and v_/k) for the Efroymson

algorithm. Using the parameters from both the time-update algorithm and the time-update

correlation matrix, the Efroymson algorithm will proceed to add/delete order. In the

following, we will explain the operations contained in the Efroymson algorithm.

161

8.5.3.1 Subset Selection with Efroymson Method

The role of the Efroymson algorithm is to ensure the time-update algorithm

provides adequate network performance. To ensure adequate network performance, we

have adopted the following rule: we will first apply the deletion of nodes. If no deletion of

nodes is necessary, then we will apply the addition of nodes. If the addition of the nodes is

not necessary, then no order-update is necessary.

Hence, the algorithm will first determine if an order-decrease-update is necessary.

This is done by computing the error reduction terms for every selected node. Then, it selects

the least error reduction term and uses it to calculate Wd in Eq. (8 - 65). This Wd value is

compare to a preselected F-to-delete value to determine if an order-decrease-update is

necessary. If an order-decrease-update is necessary, we will update the parameters and

restructure the time-update correlation matrix.

If an order-decrease-update is not necessary, then the algorithm will first determine

if an order-increase-update is necessary. This is done by computing the error reduction

terms for every potential node. Then, it selects the largest error reduction term and uses it

to calculate We in Eq. (8 - 64). This We value is compared to a preselected F-to-enter value

to determine if an order-increase-update is necessary. If an order-increase-update is

necessary, we will update the parameters and restructure the time-update correlation

matrix. At this stage, if order-increase-update is not necessary, then the algorithm will not

have any order-update. The cycle repeats with a new data point. In the following, we

summarize the whole algorithm.

162

I No

Figure 8 - 1 Flow Chart for RLS-AWS with Efroymson Method

Recursive Efroymson Algorithm

Initialization: \

!!qCO) = Oq x q• v0(0) = 0, ! (0) = 0 1 x q
- - - q -

[Input Data: J

163

Time-Update Correlation Matrix: \

Parameters HqCk), !!/k), U~'l)(k), v qCk), and !/k) are passed to compute

error reduction terms in subset selection.

Time-Update: RLS Algorithm \

Parameters xqCk), Hq(k), SSEqCk) are passed to compute error reduction terms

in subset selection.

164

Compute Error Reduction Terms \

For Order-Increase-Update:

For 1::;; i::;; q compute

P(i) 1\k) = h(i,i)(k)-uCil(k)z(i)(k) q + -q q q

end

For Order-Decrease-Update:

For i = 1 ... q compute

iiii\k) is the ifh column vector of H.q(k), and

Ji~i, i)(k) is the ith diagonal element of Hq(k).

end

165

1 Stopping Rules: \

For Order-Increase-Update

errq+l(k) .
If SSEq + 1 (k)/(k- q- 2) > Fe , order-increase-update parameters.

For Order-Decrease-Update

SSEq- I (k) = SSE/k) + errq- 1 (k)

If SSEqCk)/(k-q- l) <Fd order-decrease-update parameters.

Update Parameters:

For Order-Increase-Update

Keep SSEq+ 1 (k). Let i = index[errr>(k)] then update

Hq + 1 (k) = [
Hq(k) + zqCk)Pqi 1 (k)z~(k):-z/k)Pqi 1 (k~

-Pqi 1 (k)z~(k) : Pqi 1 (k) J

166

For Order-Decrease-Update

Keep SSEq- 1 (k). Let i = index[min[errii~ 1 (k)]], then

i j-

calculate xq- 1 (k) = Hq- 1 (k)v qCk), and extract xq- 1 (k)

i
Extract Hq - 1 (k) from Hq - 1 (k)

8.6 Implementation Consideration

In this section, we will consider applying the recursive Efroymson algorithm to the

special RBF network described in chapter 2. Also, we will discuss a method to reduce the

computational time and incorporate exponential windowing.

8.6.1 Exponential Windowing

In recursive implementation, we often use an exponential window with the least

squares algorithm. Since the time- and order- update algorithms are derived using least

squares, we can easily incorporate an exponential window to the new algorithms as well.

Since many books and journal (Haykin, 1996; Sayed & Kailath 1994) have in-depth

coverage of the derivation and usage of exponential windows in recursive least squares, we

will use these their results to derive a version of exponential windowing for the recursive

algorithms discussed here.

167

As discussed in Haykin (1996 pp.565), when an exponential window is used, the

correlation matrix and the cross correlation vector can be rewritten as follows:

(8 - 72)

v qCk) = 11,v qCk- 1) + qa(k)d(k) (8 - 73)

where A is the exponential window weighting factor. Typically, A is a constant less than 1

but greater than 0. A typical value is 0.95. By combining these equations with the derivation

of the time-update correlation matrix, we can obtain the time-update correlation matrix

with exponential window

[
HqCk-1) u~q)(k-1) vqCk- l)J

= A +
(q)T

U - (k- 1) H (k- 1) v (k- 1)
q _q -q

(8 - 74)

By incorporating the exponential window into the time-update correlation matrix, we will

also need to use exponential windowing in the time-update algorithm (RLS algorithm).

This is also discussed in Haykin (1996), and we will only provide the result here.

168

1 Time-Update: RLS Algorithm with Exponential Windowing\

SSEqCk) = SSEqCk- 1) + i;J(k) ~ 1 (k)

8.6.2 Reduce Computational Time

Because the RBF network is localized in space, the output of qa(k) and a(k) will
q-

contain many elements near zero. These elements are near zero because their centers are far

fro the current input. For instance, Figure 8 - 2 illustrates a system trajectory. The circles

(filled and unfilled) represent the potential and selected nodes. We can see that near the

point X, the majority of the nodes (open circles) have output near zero, and only a small

number of nodes (filled circles) have non-zero output.

169

e e e e O O O 0

e e O O O 0

• • •
• •
0 0

0 0

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Figure 8 - 2 System Trajectory Travels over the RBF Nodes Planted in 2-D Spaces

If we assume that nodes that are far away from the current input are not contributing

much to the output, then we can assume those nodes are not candidates for addition or

deletion. In other words, we will only consider potential nodes that have non-zero output

as candidates for order-increase-update and will only consider selected nodes that have

non-zero output as candidates for order-decrease-update.

To implement this scheme, all we have to do is to find those qa(k) and q~(k)

outputs that are near zero and eliminate them from consideration in the order-update. With

this implementation, we can save a tremendous amount of computation.

8.7 Summary

In this chapter, we have explored several improvements to the RLS-AWS

algorithm. These improvements have resulted in reduced storage, better subset selection

(using recursive Efroymson) and reduced computational time for the RLS-A WS algorithm.

We will test these improvements on several system identification problems in chapter 10.

In the next chapter, we will look for improvements in the QR-RLS-AWS algorithm.

170

Chapter

9
QR-RLS-AWS Algorithm

Improvement
9.1 Introduction 172
9.2 Square Root Error Reduction Term 172
9.3 The New QR-RLS Structure 176
9.4 Recursive QR-Order-Update Algorithms 179

9.4.1 Recursive QR-Order-Increase-Update 180
9.4.2 Recursive QR-Order-Decrease-Update 182

9.5 Recursive Subset Selection Algorithms 186
9.5.1 Recursive QR Forward Selection Method 186
9.5.2 Recursive QR Backward Elimination Method 188
9.5.3 Recursive QR Efroymson Algorithm 190

9.6 Implementation Considerations 194
9.6.1 Exponential Windowing 195
9.6.2 Reduce Computational Time 195

9.7 Summary 196

In this chapter, we improve the QR-RLS-AWS method that we developed in chapter 7.

This improvement has lead to a better implementation framework that utilizes the

Givens QR algorithm. Using this technique, we have developed a QR version of the

recursive Efroymson algorithm. Also, we propose several improvements which re-

duce the computation and include exponential windowing.

171

9.1 Introduction

In this chapter, we will discuss a new way of implementing the QR-RLS-AWS

algorithm. We will start by discussing an interesting property that we obtain after we have

performed the QR time-update algorithm. Then, this key property is linked to the

explanation of the square root error reduction term. With this discovery, we can calculate

the QR-order-increase-update (discussed in section 9.4) and QR-order-decrease-update

(discussed in section 9.4.2) without recomputing the whole orthogonal least squares

solution. These order-update technique can be incorporated into the forward selection

method and the backward elimination method. Later, by combining both subset selection

methods, we form the recursive QR-Efroymson algorithm.

9.2 Square Root Error Reduction Term

Before we explain the square root error reduction term, let us recall the post-array

matrix of the QR-RLS algorithm from chapter 5. From Figure 5 - 1, the post-array matrix

is given by

[
R(k) g(k) l

OT r 11 2 (k)~(k)J
(9 - 1)

This post-array is the direct result of the QR-time-update on the pre-array as explained in

chapter 5. To ease the explanation, we will concentrate on the top two terms of the matrix

in Eq. (9 - 1)

172

[R(k) g(k)] (9 - 2)

where R(k) is the upper triangular squared matrix and g(k) is the gain vector (Haykin,

1996). These R(k) and g(k) provide the batch orthogonal least squares solution to the

following linear model

d(k) = A(k)x(k) + e(k)

where we consider

A(k) = Q(k)R(k), and

g(k) = QT(k)d(k) = R(k)x(k).

With this solution, the sum of squared error can be rewritten as

eT(k)e(k) = ((d(k)-A(k)x(k))T(d(k)-A(k)x(k)))

= (d(k) -Q(k)g(k))T(d(k) - Q(k)g(k))

(9 - 3)

(9 - 4)

(9 - 5)

= dT(k)d(k) - dT(k)Q(k) g(k) - gT(k) QT(k)d(k) + gT(k) QT(k)Q(k) g(k) (9 - 6)
'--.,,-' '--.,,-' '--.,,-'

g(k) I

and we obtain

eT(k)e(k) = dT(k)d(k) - gT(k)g(k). (9 - 7)

Assume that we have q + 1 nodes in the model, then

Similarly, if we assume that we have q nodes in the model, then the sum of squared error

for the model that excludes the q + 1 node is

(9 - 9)

173

Therefore, by substituting Eq. (9 - 9) into Eq. (9 - 8), we get

eI + I (k)eq + I (k) = dT(k)d(k) - gr(k)- gl(k) ... - gJ(k) - gJ + I (k)
(9 - 10)

SSEq + 1 (k) SSEqCk)

If we compare Eq. (9 - 10) to the recursive sum of squared errors formula in Eq. (6 - 30),

we can conclude that gJ + 1 (k) is the error reduction term; in other words, gq + 1 (k) is the

square root error reduction term. From Eq. (9 - 10), we can conclude two important

observations.

1. Eq. (9 - 10) is a recursive equation, and it applies to any i-th order for i between 1

and q.

2. The i-th error reduction term gr(k) measures how much the sum of squared error

has been increased when the i-th node is added into the model that contained node

1 to node i-1; or it measures how much the sum of squared error has been decreased

when the i-th node is deleted from the model that contained node 1 to node i.

These observations indicate that if we compute the post-array matrix for a model that

contains i nodes, then we can easily obtain the sum of squared errors information for the

other i - 1 models. These i - 1 models are subsets of the model that contains i nodes. For

example, if we have a model that has four nodes (shown in Figure 9 - 1), and we have

calculated the post-array matrix using Eq. (9 - 2), then, we can obtain the sum of squared

errors for the other three models as shown in Figure 9 - 1.

174

83

111 Node that has just been added

Figure 9 - 1 Obtainable subsets given a four-node linear model

Also, these observations suggest that the ordering of the nodes in a model affects

the meaning of g/k). For example, if we switch the order of nodes a3 and a4 in the four-

node linear model shown in Figure 9 - 1, then g3(k) measures the increase in the sum of

squared error when the a4 node is added into the model that contains node a 1 and a2 ; or

it measures the decrease in the sum of squared error when the a4 node is removed from the

model that contains node a 1 , a2 , and a4 .

Now, given the two facts above, suppose we want to find the value of g/k) in the

example above (the order of nodes a3 and a4 in the four-node linear model is switched),

how can we proceed to find it without recomputing Eq. (9 - 2)? If we examine Eq. (9 - 2),

we will see that each column of R(k) belongs to a designated node. All we need to do is

175

swap the columns corresponding to the desired nodes and re-triangulate them by applying

the re-orthogonalization process. We will explain these techniques in detail in sections 9 .4

and 9.5.

9.3 The New QR-RLS Structure

In section 9.2, we have discovered that we can find the sum of squared errors for

several subsets in a model. To use this technique for subset selection, we need to change

the QR-RLS algorithm structure so that it contains both selected and potential nodes.

Specifically, instead of computing the R(k) and g(k) for the selected nodes only, we

compute the R(k) and g(k) for both selected and potential nodes. The reason we

compute the R(k) and g(k) for both selected and potential nodes is so that we can think

of it as the complete linear model and we would like to find out the sum of squared errors

for a particular subset in this model (the model that contains only the selected nodes). These

changes are as follows. First, we form the pre-array as shown on the left-hand-side of Eq.

(9 - 11).

R (k-1) S(q)(k-1) g (k-1) q q q

oqxq ~qCk-1) ~/k-1)

T
q~ (k) d(k)

R (k) s(q)(k)
q q

~ oqxq ~qCk-1)

OT
q

T
q~ (k)

gqCk)

g (k- 1)
-q

r 112(k)c;(k)

(9 - 11)

Then, we annihilate the current input data qaT(k) one by one from left to right. The Givens

QR algorithm described in Chapter 4.5 is used, except that we skip all zero elements

contained in RqC k - 1) and O q x q. The Givens rotation operates by annihilating the input

176

data one by one until all elements become zero entries, as shown on the right-hand-side of

Eq. (9 - 11). As soon as the all the current input data elements qa T(k) have been annihilated,

we obtain the post-array elements, as in Eq. (9 - 1). At this instance, we will use Eq. (5 -

41) to compute time-update increase in the sum of squared error

(9 - 12)

Once we have computed this term, we can continue to annihilate the current potential data

q~T(k) until all entries become zero, as shown on the right-hand-side of Eq. (9 - 13).

RqCk) s(q)(k) q gqCk) RqCk) S~q)(k) gqCk)

oq x q ~qCk-1) g (k- 1) -? oqxq ~qCk) ~/k) (9 - 13) -q

OT T r1 12(k)<;(k) OT OT X q q~ (k) q q

The x term represents the increase in the sum of squared errors from both selected and

potential nodes. Typically, we will ignore this value. However, it gives us a good indication

of how much error reduction we can have if we were to use all the nodes (selected and

potential) in our model. The right-hand-side matrix is the post-array matrix for our new

QR-RLS algorithm. In particular, we are interested in the matrix elements excluded in the

last row, as shown below.

177

rl rl r1; sl I sl gl I 2 q1 I Sq- I q

r2
I

2 s2 0 r21 s2 I gz 2 qi I ... sq- I q
• I •
: I : I

I I

0 0 0 r41 sr . .. s4 _ I S4 : gq = _______ } _____ ~---~-L __ _

0 0 0 0 r 1 r 1 r1 1 g _) -q-) -q I _]

(9 - 14)

- - I

I
I

0 0 0 0 q-1 JI
r- rq- 1g
-q-1 -q 1-q-I

I

0 0 0 0 0 rq I

llq -q I
I

The R q (k) and the !! q (k) are the R-factors (triangular matrices) for selected nodes and

potential nodes. They contain q(q + 1)/2 and q(q + 1)/2 elements, respectively. S~q)(k)

contains the R-factor cross terms between the selected nodes and the potential nodes. It

contains q x q elements. Meanwhile, gqCk) and ~/k) are the gain vectors (or the square

root error reduction vectors) for the selected and potential nodes. The total number of

elements is (q + q) (q + q + 3) I 2 . In terms of floating operation, we will require -

0(3n2 + 9n) flops to obtain the post-array in Eq. (9 - 13).

In the following, we will introduce an example of the post-array matrix that contains

four selected nodes q = 4 and five potential nodes q = 5. This example will be used to

explain the QR-order-increase-update and QR-order-decrease-update.

178

rl I I I I I I t I
I r2 r3 r4 St S2 S3 S4 S5 gl

0 2 2 2 2 2 2 2 2
r2 r3 r4 St S2 S3 S4 S5 g2

0 0 3 3 3 3 3 3 3
r3 r4 s1 S2 S3 S4 S5 g3

0 0 0 4 4 4 4 4 4

[R4(k) Si5>(k) g4(k~
r4 St s2 S3 S4 S5 g4

= 0 0 0 0 rl I I I I (9 - 15)
05 x4 !!5(k) ~/k)

_ J ~2 ~3 ~4 ~5 SI

2 2 2 2 0 0 0 0 0 ~2 ~3 ~4 ~5 S2

0 0 0 0 0 0 3 3 3
~3 ~4 ~5 S3

0 0 0 0 0 0 0 4 4
~4 ~5 S4

0 0 0 0 0 0 0 o ~~ S5

In the next section, we will use this new result to form the recursive QR-order-increase-

update and the recursive QR-order-decrease-update algorithms.

9.4 Recursive QR-Order-Update Algorithms

In this section, the result of the new QR-RLS algorithm, the post-array matrix given

by Eq. (9 - 14), is computed and is readily available. By applying the results in section 9.2

to this new QR-RLS algorithm, we obtain two recursive order-update algorithms called the

recursive QR-order-increase-update and the recursive QR-order-decrease-update

algorithms. The recursive QR-order-increase-update allows the addition of a potential node

into the model and the recursive QR-order-decrease-update allows the removal of a

selected node from the model. Both algorithms are obtained without recomputing the whole

orthogonal least squares solution.

179

9.4.1 Recursive QR-Order-Increase-Update

In the recursive QR-order-increase-update, the objective is to add an ith potential

node to the model containing q nodes, without recomputing the whole orthogonal least

squares solution. By using the result discussed in section 9.2, we can achieve this objective

by doing the following.

1. In Eq. (9 - 14), move the i1h column of potential nodes to the q + 1 column of the

selected nodes.

2. Re-triangulate the matrix obtain in (I) so that it becomes an upper triangular matrix.

This is done by applying the Givens rotation successively. This process is also

called re-orthogonalization. Due to the structure of the matrix obtain in (1), we will

only need to apply the Givens rotation to the following matrix

r! rl rl I rl rl g
-I - I -2 :i - 1 -i + I -q -1

X X X

r? 0 r2 2 r2 r2 g 0 -I -2 :i- I -i + I -q -2 ~
X X X (9 - 16)

r! 0 0 I ri ri 0 0 ... X . .. X ... :i - I g.
-l -i + I -q -l

Once we finish the re-orthogonalization process, the upper right-hand term contains g q + 1 •

By squaring this term, we can find out the reduction in the sum of squared error.

(9 - 17)

Keep in mind that the above re-orthogonalization process calculates the error reduction and

also generates the next iteration. If we only want to find the square root error reduction term

180

g q + 1 , then we only need to apply the Givens rotation to the first and last column of Eq. (9

- 16).

r.1
81 -l X

2 0 X ~i 82 ~ (9 - 18)

r~ g. 0 X
-l -l

The above computation only requires 6i flops.

Example 9 -1

Consider a model that consists of four selected nodes q = 4 and five potential

nodes q = 5, where the post-array matrix is given by Eq. (9 - 15). Suppose we want to add

the third node of the potential nodes to the model, then the post-array matrix will be

I 1 1 I I I I I I r1 r2 r3 r4 s3 s1 s2 s4 s5 g 1

0 22222222 r2 r3 r4 s3 s 1 s2 s4 s5 g2

0 0 rl rl Sj Sf sl sJ sJ g3
000 444444

r4 S3 SI s2 S4 S5 g4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0

(9 - 19)

Next, we will apply the Givens rotation to the highlighted post-array matrix elements in Eq.

(9 - 19). By applying the Givens rotation successively, we transform Eq. (9 - 19) to an upper

181

triangular matrix. Note that the highlighted terms are the terms involved in the Givens

rotations.

I I I I l
~3 ~I ~2 ~4 ~5 81

r2 0 2 2 2
-3 ~2 ~4 ~5 82

r3 0 0 3 3
-3 ~4 ~5 83

X

= 0

0

X X

X X

0 X

X

X

X

X

X

X

(9 - 20)

As explained in Eq. (9 - 18), we can perform Givens rotations on the first and last columns

of Eq. (9 - 20).

X

X

9.4.2 Recursive QR-Order-Decrease-Update

(9 - 21)

In the recursive QR-order-decrease-update, the objective is to remove the ph node

from a model that contains q nodes, without recomputing the whole orthogonal least

squares solution. By using the results discussed in section 9.2, we can achieve this objective

by doing the following.

1. In Eq. (9 - 14), move the ph column of selected nodes to the first column of the

potential nodes.

182

2. Apply the re-orthogonalization process to the matrix obtained in (1) until it

becomes an upper triangular matrix. Due to the structure of the matrix obtain in (1),

we will only need to apply the Givens rotation to the following matrix

ri I 1+
ri 2 1+ rj I q-

rj
q ri

l s1 sj
q gj

ri+ I
l + 1

ri+ I
1+2

rj + 1
q-1

rj+ I
q 0 s1 + I sj + I

q gj+ I

0 ri+ 2
1+2

rj+ 2
q-1

rj+2
q 0 s1+ 2 sj + 2

q gj+2

0 0 q-1
rq-1

q-1
rq 0 sr-1 q-1 ... sq gq-1 (9 - 22)

0 0 0 rq
q 0 sr sq

q gq

X X X X

~
0 X X X

0 0 ... X . ..

Once we finish the re-orthogonalization process, the lower right-hand term contains gq. By

squaring this term, we can find out the reduction in the sum of squared error.

SSEq- 1 (k) = SSEqCk) + gJ(k) (9 - 23)

The above re-orthogonalization process finds the error reduction terms and also calculates

the extra cross terms so that the algorithm can restart for the next iteration. If we only need

to find the square root error reduction term gq, then we only need to apply the Givens

rotation to the following subset of the matrix in Eq. (9 - 22)

183

ri 1 j+ ri 2 J+ rj I q- rj q gj

ri + 1
J + 1

ri + 1
1+2

rj+ I
q-1

rj + I q gj + 1 X X X

0 ri + 2
]+2

ri+2
q-1

rj + 2 q gj+2 --4
0 X X (9 - 24)

0 0 q-1
rq-1

q-1 rq gq- I
0 0 ...

0 0 0 rq q gq

The above computation only requires 3j(j + 1) flops.

Example 9 - 2

Consider the model we used in Example 9-1. Suppose we want to delete the second

node from the model, then the post-array matrix will be

r1 r1 r1 r1 sl I I I I
I 3 4 2 I S2 S3 S4 S5 gl

0

0

0

0 0 0 0 r1 I I I I (9 - 25)
-1 :2 ~3 ~4 ~5 SI

0 0 0 0 0 2 2 2 2
:2 ~3 ~4 ~5 S2

0 0 0 0 0 0 r3 r3 r3 g
_3 . .4 _5 _3

0 0 0 0 0 0 0 4 4
~4 ~5 S4

0 0 0 0 0 0 0 o ~l S5

Successive Givens rotations are applied to the highlighted post-array matrix elements in

Eq. (9 - 25). A step by step Givens rotation operation is shown in the following.

184

2 2 2 2 2 2 2 2 r3 r4 r2 SI S2 S3 S4 S5 g2

r3 r3 0 3 3 3 3 3 = 3 4 SI S2 S3 S4 S5 g3

0 r4 0 4 4 4 4 4 X 0 X X X X X
4 SI S2 S3 S4 S5 g4

[~ ~
(9 - 26)

[~
X X X X X X X

:] X X X X X X X

0 X X X X X X

Again, ifwe only want the error reduction term gq, then we only need to apply the Givens

rotation to Eq. (9 - 24) as follows

rj r] g2

3 3 r3 r4 g3

0 rj g4

185

X

X

0

X

X
(9 - 27)

9.5 Recursive Subset Selection Algorithms

In this section, we will use the QR-order-update techniques to develop several

recursive subset selection algorithms. Specifically, we will extend the results of the QR

order-increase-update to develop the recursive OR forward selection method; and we will

extend the results of the QR-order-decrease-update to develop the recursive OR backward

elimination method. Then, we will combine both methods to develop the recursive

Efroymson algorithm.

9.5.1 Recursive QR Forward Selection Method

In the recursive QR forward selection method, the recursive order-increase-update

is used to compute the square root error reduction term for all the potential nodes. Since we

are only interested in the square root error reduction terms, Eq. (9 - 18) is used. Once we

calculate all the square root error reduction terms, the best potential node, which yields the

largest sum of squared error reduction, is picked. The computation required to calculate all

of the square root error reduction terms is - 6cJ.2. Keep in mind that Eq. (9 - 18) cannot be

used to restart the next iteration, we will need to update the post-array matrix using Eq. (9

- 16) once we find out which potential node we need to add. Once this post-array matrix is

updated, we can also use it to compute the parameters by solving a triangular system using

back-substitution. The complete algorithm is given below.

186

rJ
-j

r!
-i

r!.
-j

Recursive QR Forward Selection Algorithm

Initialized g = g< 1) •
-1 -q + 1

For i = 2 ... q, compute

end

r~ g
-1 -i

X

0 X

0 X

g (k) - max[g(i)] i = i'ndex(max[8q(i+) 1]) , q+l - -q+I '

Update Parameters

rl rl r-1 rJ rl
81 -1 -2 -i - 1 -i + 1 -q

X X X

0 r2 r! r! r2
82 0 X X -2 -i - 1 -i + 1 -q ~

0 0 ri ri ri 0 0 ... X g .
-i - 1 -i + 1 -q -1

187

(9 - 28

X (9 - 29

X

9.5.2 Recursive QR Backward Elimination Method

As with recursive backward elimination in chapter 8, the recursive QR backward

elimination proposed here is used in conjunction with recursive forward selection only. In

recursive QR backward elimination, the recursive order-decrease-update is used to

compute the square root error reduction term for all the nodes in the model. The idea is to

examine the nodes one by one and to remove the least contributing node. The least

contributing node produces the smallest increase in the sum of squared error. Since we are

only interested in obtaining the square root error reduction terms, Eq. (9 - 24) is used. Once

we calculate all the square root error reduction terms, the node that yields the smallest sum

of squared error increase is picked. The computation required to compute all the square root

error reduction terms is q(q + 1)2 - O(q3). Keep in mind that Eq. (9 - 24) cannot be used

to generate the next iteration because we did not orthogonalize the cross terms. So, we will

need to update the post-array matrix using Eq. (9 - 22). Again, once this post-array matrix

is updated, we can also use it to compute the parameters by solving a triangular system

using back-substitution method. The complete algorithm is given below.

188

Recursive Backward Elimination Algorithm

For j = l ... q- 1, compute

rl I j+ rl 2 j+ rj I q- rj q gj

rl + 1
J + I

rl+ 1
1+2

rj+ 1
q-1

rj + 1
q gj + 1 X X X

0 j+2 rj+ 2 rj +2
gj+2 0 X X rj + 2 ... q-1 q ~

0 0 q-1 rq-1 gq- I
0 0

rq-1 q

0 0 0 rq q gq

g (k) = min[gU)] q -q J = index(min[gU)])
-q

SSEq- I (k) = SSEqCk) + gJ(k)

Update Parameters

r~ 1 j+

rJ + 1
j + I

0

0

0

r~ 2 j+

rJ + 1
j+2

rJ + 2
j+2

rj I q-

rj + 1
q-1

... rj + 2
q-1

0 0

rj q rl
}

s{

rj + 1
q 0 s{ + I

rj + 2
q 0 s{ + 2

sj g-. q }

sj + I
q g] + I

sj + 2 g-
q j+2 ~

189

X X X X

0 X X X

0 0 ... X ... X

9.5.3 Recursive QR Efroymson Algorithm

As with the recursive Efroymson algorithm discussed in chapter 8, the recursive QR

Efroymson algorithm works by combining the recursive QR forward selection method and

the recursive QR backward elimination method. The same stopping rule used by the

Recursive Efroymson algorithm discussed in chapter 8 are used here. Thus, by combining

the recursive QR forward selection and the recursive QR backward elimination, we obtain

the recursive QR Efroymson algorithm. The complete algorithm is summarized below.

Subset Selection: Efroymson Method
r------------------,

I No

L------------------
Figure 9 - 2 Flow Chart for QR-RLS-AWS with Efroymson Method

190

Recursive QR-Efroymson Algorithm

I
Initialization: \

q = 0, RqCO) = 0, S~q)(O) = 0, !!qCO) = 0, ~/0) = 0 and gqCO) = 0

1 Input Data: \

{qa(k), d(k), (q)~(k)}

Time-Update: QR-RLS Algorithm

Solve using Givens Rotation

R (k-1) s(q)(k- l) g (k-1) R (k) sCq\k) gq(k) q q q q q

oqxq !!qCk-1) ~/k-1) -t oqxq !!qCk-1) ~/k-1)

qaT(k) q~T(k) d(k) 0~ q~T(k) r 112(k);(k)

SSEqCk) = SSEqCk- 1) + r 1 (k);2(k)

Continue to solve using Givens Rotation

RqCk) scq)Ck) q gqCk) RqCk) S~q)(k) gqCk)

oqxq !!qCk-1) g (k- 1) -t oqxq !!qCk) ~/k) -q

OT T ,c-112(k);(k) OT OT X q q~ (k) q q

191

Compute Square Root Error Reduction Terms

For QR-Order-Increase-Update:

For 1 $ i $ q

r .1
81 -l X

2
~i 82 ~

0 X

r! g.
-l -l

0 X

end

For QR-Order-Decrease-Update:

For 1 jq

end

ri I 1+
ri+ I
l + I

0

0

0

ri 2 1+

ri + 1
1+2

ri+ 2
1+2

ri 1 q- ri q gj

ri + I
q-1

ri + I
q gj+ I

ri + 2
q-1

ri+2
q gj+2

0 0

192

X X

~
0 X

0 0

X

X

Stopping Rules:

For Order-Increase-Update

2 w = g~+i(k)
SSEq+ 1(k) = SSEqCk)-gq+ 1(k), e c·)

SSEq\ 1 (k)l(k- q - 2)

If We> Fe, update parameters

For Order-Decrease-Update

, } = index(min[gy)])

SSEq- I (k) = SSEqCk) + gJ(k), Wd =

If W d < F d, update parameters

Update Parameter:

For Order-Increase-Update

r! rl rl l rl rl g ~i- I ...
-1 -1 -2 -i + I -q _)

r; 0 r2 2 r2 r2 g
~i- l ...

-1 -2 -i + l -q -2

r! 0 . . . 0 r_1! _ 1 ri 1 ... ri g.
-1 -i + -q_ -I

---?

193

SSEqCk)/(k-q-1)

X X X

0 X X X

0 0 ... X ... X

For Order-Decrease-Update

ri I 1+
ri 2 1+ rj I q-

rj
q ri

l s1 sj
q gj

ri+ I
l + I

ri + I
1+2

rj+ I
q-1

rj+ I
q 0 s1 + I sj+ I

q gj+ I

0 ri + 2
1+2

rj+ 2
q-1

rj + 2
q 0 s1 + 2 sj + 2

q gj+2

0 0 rq-1
q-1

q-1
rq 0 sr-1 q-1

sq gq-1

0 0 0 rq q 0 sf sq
q gq

X X X X

-?
0 X X X

0 0 .. . X . ..

9.6 Implementation Considerations

In this section, we apply the QR recursive Efroymson algorithm to the special RBF

network described in chapter 2. We will first discuss how we can incorporate an exponential

window into the recursive QR Efroymson algorithm. Then, we will discuss a technique to

reduce the computational time.

194

9.6.1 Exponential Windowing

Because the QR-time-update algorithm is the QR Recursive Least Squares

algorithm discussed in chapter 5, an exponential window can be easily incorporated.

According to Haykin (1996), an exponential window can be incorporated into the pre-array

of the QR-RLS algorithm, Figure 5 - 1, in the following fashion

[AR(k- 1) Ag(k- 1 ~ ~ [R(k) g(k) J
aT(k) d(k) J OT r 112(k)~(k)

where A is the exponential window weighting factor O :::; A :::; 1 .

(9 - 30)

If we apply these changes to the pre-array of the QR-time-update, we get the

following modification for Eq. (9 - 11).

AR/k-1) AS~q)(k-1) AgqCk-1) R (k) sCq\k) q q

Oqxq A!!qCk-1) A~/k-1) ~ 0 q X q !!qCk - 1)

T
q~ (k) d(k)

9.6.2 Reduce Computational Time

gqCk)

g (k- 1)
-q

(9 - 31)

As explained in chapter 8, because the RBF network is localized many elements in

qa(k) and a(k) will be near zero. Therefore, we only need to consider selected/potential
q-

nodes that have non-zero output as candidates for order-decrease-update/order-increase-

update. To implement this scheme, all we have to do is to find those a(k) and a(k) that
q q-

195

are close to zero and eliminate them in the order-update. Thus, this implementation affects

the FOR loop calculation in the recursive QR forward selection and recursive QR backward

elimination. Specifically, we find the indexes of the non-zero elements by thresholding the

a(k) and a(k) output. With this implementation, we can save a tremendous amount of
q q-

computation. This will be illustrated in chapter 10.

9.7 Summary

In this chapter, we have abandoned the old QR-RLS-AWS methodology and have

developed a completely new scheme based on the QR-RLS algorithm. This new QR-RLS-

AWS algorithm is developed based on the Givens QR techniques. We also explored several

possible improvements to this new QR-RLS-AWS algorithm. These improvements have

resulted in reduced storage, better subset selection (using recursive QR Efroymson) and

reduced computation. Theoretically, this algorithm should be numerically more stable than

the RLS-AWS algorithm developed in chapter 7. In the next chapter, we will test the

numerical stability of this algorithm. Then, we will test the algorithm on several system

identification problems.

196

Chapter

10
Numerical Testing and

Applications
10.1 Introduction
10.2 Numerical Stability of the Algorithms
10.3 Applications

10.3.1 Chaotic Time Series

198
199
202
202

10.3.1.1 Recursive Forward Selection Method and Recur-
sive Efroymson Method 203

10.3.1.2 Effects of the Stopping Rules 206
10.3.1.3 Summary 208

10.3.2 1-D Function Approximation 209
10.3.3 2-D Function Approximation 212

10.3.3.1 Comparison of Batch Forward Selection Method
and Recursive Efroymson Method 213

10.3.4 Magnetic Levitation System 216
10.3.4.1 On-line Adaptation Results 217
10.3.4.2 Comparison to Multilayer Feedforward Net-

work 221
10.4 Summary 222

This final chapter consists of two parts. The first part tests and compares the a/go-

rithms numerical stability by using a test setup described by Trefethen (1997). The

second part of the chapter applies the best algorithm (based on numerical testing) to

function approximation and system identification problems. We will use the tests to

analyze the effects of the parameter settings and also to compare the algorithm to the

batch forward selection method and the multilayer feedforward network.

197

10.1 Introduction

One of the biggest questions regarding the algorithms proposed in this research is

the numerical stability of the algorithms. To answer this question, we will conduct a

numerical stability test to show the algorithms stability in section 10.2. As shown in the test,

out of these four algorithms, the improved QR-RLS-AWS algorithm has shown excellent

numerical stability. For this reason, we will only use the improved QR-RLS-AWS

algorithm for further testing. We will apply the improved QR-RLS-AWS algorithm to the

RBF network on four test problems. The first test is to identify the underlying dynamics of

a chaotic time-series. We will use this test to compare two subset selection methods: the

recursive forward selection method and the recursive Efroymson method. Both methods

utilize the improved QR-RLS-AWS framework. Also, we will examine the effects of the

Efroymson algorithm parameter settings. In the second test, we will use a 1-D function

approximation problem and examine the effect of the smoothing factor. In the third test, we

will compare the results of the batch forward selection method to the recursive Efroymson

method. In the last test, we will apply the recursive Efroymson algorithm to identify a

magnetic levitation system. We will also compare these results to a multilayer feedforward

network.

198

10.2 Numerical Stability of the Algorithms

In this section, we will conduct a numerical stability test of the four algorithms, the

RLS-AWS, the QR-RLS-AWS, the improved RLS-AWS, and the improved QR-RLS-

AWS, proposed in previous chapters. To have a baseline for comparison, we use a least

squares solving test illustrated by Trefethen (1997 pp.137). Since this test has a known

solution, it will be easy for us to compare the numerical stability of various algorithms.

The test illustrated by Trefethen (1997) is to solve a least squares solution of a

100x15 Vandermonde matrix. The MATLAB setup is as follows:

m 100; n = 15;
t (0 :m-1) '/ (m-1); % Set t to a interval of [0, 1]
A = [] ;

for i=l:n,
A= [A t.A(i-1)] ;% Construct Vandermonde matrix

end
d exp(sin(4*t));
d = d/2006.787453080206; % Normalization

The idea behind this test is to least squares fit the function exp (sin (4t)) on the

interval [O, 1] by a polynomial degree of 14. The last line of code is to normalize the least

squares solution so that the parameter x 15 = 1 . Trefethen (1997) has shown QR, SYD,

normal equation and other computation results in his test.

Since the numerical stability of the time-update algorithms, the RLS and the QR-

RLS algorithms, have been thoroughly analyzed in Haykin (1996), we will only test the

numerical stability of the order-update algorithms. In all four algorithms, we assume that

199

we have time-updated the algorithms and we will perform the order-update. Specifically,

in both RLS-AWS and QR-RLS-AWS algorithms, we will add each column of A(:, i) one

by one to update the order. In the improved RLS-AWS algorithm, we will first update the

time-correlation matrix Eq. (8 - 7) and then perform the order-update. In the QR-RLS-AWS

algorithm, we will use the post-array matrix Eq. (9 - 13) to perform the order-update.

Methods X15 Relative Error

RLS-AWS 0.01192845328609 0.99 X lQ-l

QR-RLS-AWS -0.32387348994992 1.32 X lQ-l

improved RLS-AWS 0.01192845328609 0.99 X lQ-l

improved QR-RLS-
0.99999994604243 5.40 X lQ-8

AWS

Normal Equation -0.70348736838334 1.70 X lQ-I

QR Householder 0.99999937299332 6.27 X lQ-?

SVD l .00000004860933 4.86 X lQ-8

Table 10 - 1 Numerical Test Results

Table 10 - 1 summaries the results. We also included three other batch techniques:

the normal equation (NE), QR Householder (QR-H), and the Singular Value

Decomposition (SVD) for comparison. As shown, the RLS-AWS, the QR-RLS-AWS and

the Improved RLS-AWS all fail to compute the accurate value. Note that the RLS-AWS and

the Improved RLS-AWS yield identical results because the Improved RLS-AWS uses the

same computation but just computed in every update. All three algorithms yield poor

results. This is not surprising, as all three algorithms are constructed based on the least

200

squares method. The improved QR-RLS algorithm yields the most accurate solution among

the four algorithms. In fact, the relative error is comparable to the batch SYD algorithm and

better than the QR Householder algorithm.

To further test the order-update part of the Improved QR-RLS-AWS algorithm, we

perform the order-increase-update and the order-decrease-update many times randomly to

see if the solution degrades with each order-update.

(X) # of times order-increase/
X15 Relative Error

decrease-update is performed

50 0.99999994604033 5.40 X 10-8

100 0. 99999994603604 5.40 X lQ-8

200 0. 99999994604022 5.40 X 10-8

400 0.99999994603823 5.40 X 10-8

Table 10 - 2 Solution of Improved QR-RLS-AWS Algorithm After X-times Order-Update

Table 10 - 2 shows the solution of the improved QR-RLS-AWS algorithm after 50,

100,200 and 400 randomly chosen order-increase/decrease-updates. As shown, the relative

error is kept fairly constant even after 400 random updates. This implies that the solution

does not degrade after each order-update. We can conclude that the improved QR-RLS-

AWS method has good numerical stability.

201

10.3 Applications

In this section, we will apply the algorithms developed in previous section to the

four problems related to system identification and function approximation. We will only

use the improved QR-RLS-AWS algorithm, since it is numerically more accurate than the

other three methods Note that if numerical accuracy is not an issue, all methods should

yield the same result. In all tests, the RBF network begins with a bias as a node that is not

subject to subset selection. Subset selection is used to select the node centers from the

potential nodes beginning with time point k = 0. We will compare the result of two

different subset selection methods: the recursive forward selection and the recursive

Efroymson method. In the following, we will describe the test setup and the result that we

obtained.

10.3.1 Chaotic Time Series

The chaotic time series generated by the logistic map is a difference equation

described by Eq. (10 - 1).

z(k+ 1) = 4z(k)(l -z(k)) (10 - 1)

This is a first-order nonlinear process where the previous sample z(k) determines

the value of the present sample z(k + 1) . This logistic map is known to be chaotic on the

interval [O, 1]. The input-output relationship of this logistic map is plotted on the left of

Figure 10 - 1. Before the training, the smoothing factor of the RBF network is selected as

cr2 = 0.125 , and 51 potential RBF network nodes with centers equally spaced at 0.02 in

202

the interval [0, 1] . The output of these 51 potential nodes is plotted on the right hand side

of Figure 10 - 1.

o.,

o.,

fo.s
" •..

0.3

Logislic Map: y(k~l) • 4y(/c)(l-y(k))

~ u u u u u u u u
y(k/

Hidden l ayer Output

~ u u u u u u u u
y

Figure 10 - 1 Input-Output of Logistic Map and the Potential Nodes of the RBF Network

10.3.1.1 Recursive Forward Selection Method and Recursive Efroymson
Method

In the following, we will identify the logistic map using the recursive forward

selection method and the recursive Efroymson method. Simultaneously, we will compare

their performance. The threshold criterion for the forward selection method is set at

y = 10-2 . The F-to-enter and F-to-delete parameters for the Efroymson method are set at

Fe = 2 and F d = 1.5 . For this test, an initial condition z(0) = 0.39 is used.

The top two plots of Figure 10 - 2 show the result of the logistic map constructed

by the RBF network for 10, 25, and 75 samples using the recursive forward selection

method and the recursive Efroymson method. Each sample is presented to the network only

once and the training samples are indicated in the top two plots by the plus mark+. Both

203

techniques have managed to reconstruct the logistic map after 75 samples. (This is

indicated by the convergence of the tracking error as shown in the bottom two plots of

Figure 10 - 2.) However, the number of nodes used in the recursive forward selection

method is greater than in the recursive Efroymson method (8 nodes versus 5 nodes). The

placement of these node centers is indicated by the unfilled circles in the top two plots of

Figure 10 - 2. The middle two plots show the number of selected nodes (bias included)

during the training. As shown, the recursive forward selection algorithm continues to

selecting nodes until the error criterion is reached. One difficulty with the recursive forward

selection algorithm is that it is possible that the centers selected at an early stage of the

training can become unimportant in a later stage. Since the recursive forward selection

algorithm is not designed to take out insignificant nodes, more nodes are selected.

Meanwhile, the recursive Efroymson algorithm has the ability to take out insignificant

nodes during the course of training. This is shown in the middle left plot of Figure 10 - 2,

where it took out one node when at k = 8 . Hence, the recursive Efroymson method is able

to keep RBF network size smaller than the forward selection method.

204

0.8

0.6

OA

:i 1 0.2

i
0

~
-0.2

-0.,

-0.6

-0.8

LogiSlie Map ConSlrUClion using Efl"oymson Method

0.5
y(k)

0.7

t ol Nodes Selecied versus Samples: Effoymsoo Method

30 40 50

'

Tracking Error: Elroymson Method

20 30 40 50 60

'

• kz1Q
- - k-25
-k:75

10

10

l ogistic Map Construction using Forward Selection Method
1.2r-- ~ -~-'---~ -~-~-'---~--r--~-===cci

08

, k- 10
- - b25
-k:75

-0.2L_-~-~-~-~-~-~--~-~-~--'
0 U U U U U

y(k)

t ol Nodes Selecled ve,sus Samples: Forward Selection Method
10r--~--~--~--~--~- -~--~-,

10 20 30 40 50 60 10

'

TrackingE11or·Forward Seleclion Method

-5

-10
10 20 30 40 50 60 10

'

Figure 10 - 2 Comparison of Efroymson Method and Forward Selection Method

205

10.3.1.2 Effects of the Stopping Rules

In this section, we will examine the effects of the stopping rules for the recursive

Efroymson algorithm using the chaotic time-series as our test problem. We have used the

same test setup described in the previous section but will change the values of Fe and F d.

As explained in Chapter 8, we have made an assumption that the recursive Efroymson

algorithm is executed at each time-point to ensure fast real-time operations. Since this

assumption is crucial for the error convergence, we will need to make sure that the error

converges over time. Through numerous experiments, we have demonstrated that this

method works well. This is illustrated in the convergence of the tracking error as shown in

the bottom left plot of Figure 10 - 2.

According to Miller (1990), the criteria F d < Fe has to be satisfied for the batch

Efroymson algorithm to ensure the error convergence. We have shown that this is also true

for the recursive Efroymson algorithm. As shown in top left plot of Figure 10 - 3, when

F d >Fe (Fe = 2 and F d = 20), the recursive Efroymson algorithm would repeatedly

select a node in one iteration, then deselect the node in the next iteration. Hence, the

tracking error would not convergence (top right plot of Figure 10 - 3).

206

2.5

i'5

0

, i----J L__J L

05

,0 "

2.5

I
1i
r5

0

0.5

,0 "

"

I
1i

i
0

,0 "

20

20

20

F•"'2.F,,=20

25 30

'

F ... 20.F,, • 1.5

25

'

F• • 2. F,, • O

25

'

30

j

35

]

35 " 45 50

]

35 50

0.8

0.6

02

0

--0.2

--0.,

--0.6

"

0.8

o.,

0.2

0

--0.2

--08
,0 "

0.8

0.8

o•

0.2

--0.2

,0 "

Tracking Emx F• =2. F,, .. 20

25

'

TradiingErrOl"~.,zo.F,, ... 1.5

20 25 30
k

Tracking Emx: ~ .. 2, F,, • o

20 25

'
30

Figure JO - 3 Effects of F-to-enter and F-to-delete

207

35 " 45 50

35 " 45 50

35

When the Fe is set to a higher value (e.g. Fe = 20), fewer nodes will be selected.

This effect is illustrated in the middle left plot of Figure 10 - 3. As shown, only one node

and one bias are selected. Consequently, higher tracking error is obtained, as indicated in

the middle right plot of Figure 10 - 3.

Meanwhile, the value of F d is used for deselecting the nodes. A small F d value

(e.g. F d = 0) will cause less significant nodes to be removed from the RBF network. This

is illustrated in the bottom left plot of Figure 10 - 3. As shown, not a single node has been

removed during the on-line adaptation. Thus, this leads to small tracking error, as shown in

the bottom right plot of Figure 10 - 3.

Unfortunately, there is no one set of rules that we can follow to effectively

determine the value of Fe and F d so that the recursive Efroymson algorithm can meet a

certain network reconstruction error criteria, as in the forward selection method. This is still

an ongoing research topic even for the batch Efroymson algorithm (Miller, 1990).

10.3.1.3 Summary

Due to the possibility that the nodes selected at an early stage of training can

become unimportant in a later stage, the forward selection algorithm has to compensate by

adding more nodes. Hence, the recursive forward selection method tends to yield a large

RBF network. On the other hand, the recursive Efroymson algorithm has the capability of

removing insignificant nodes; thus, it yields much smaller RBF networks. Due to this

result, we will only use the recursive Efroymson method in the remaining tests.

208

10.3.2 1-D Function Approximation

In this test, we will perform a 1-dimensional function approximation on a function

described by Eq. (10- 2).

z(p) = 0.25+e-P120 sin(0.081tp)-O.lcos(O.Ol1tp-0.5) (10 - 2)

This function is shown in the solid line in the left plot of Figure 10 - 4. We have randomly

selected 300 input patterns (+ mark in the left plot of Figure 10 - 4) in the range of [0,50]

as our training data. These input samples are fed one-by-one to the algorithm. The sequence

of random inputs is shown in the right plot of Figure 10 - 4.

ThelunctionZ(p}z0.25+e-~sirl(0.081fP)--0.1cos(0.0111P-O.S)

~1-;~~put~ualp~~,:,~ion j

0 .6

o.,

0.2

--0.2

--0.,-~~~---~-~~--
o 10 1s 20 2s 30 35 '° •s so

p

45

100 150

'
200

Figure 10 - 4 The Target Function and the Input Patterns

300

The F-to-enter and the F-to-delete parameters are set at Fe = 0.1 and F d = 0.07 .

A total of 201 potential RBF network nodes with centers equally spaced at 0.25 in the

interval [0, 50] are chosen. Three separate tests were conducted, and each test uses a

different RBF smoothing factor, specifically cr2 = 0.5, 2, 10 are used.

According to Canon & Soltine (1995), this function has significant variation in its

local spatial bandwidth, and a regularly spaced RBF network with a single smoothing factor

209

would not be ideal to fit such a function. Indeed, this phenomenon is reflected in the

recursive Efroymson algorithm when we use it to approximate the function. Note that in

Figure 10 - 5, the unfilled circles are the selected center locations, the solid line is the RBF

network output after 300 iterations of on-line adaptation and the dotted line is the target. At

the bottom of each plot are the selected nodes.

When a small smoothing factor cr2 = 0.5 is used, many nodes (39 nodes) are used

for approximating the flat surface. (This is illustrated in Figure 10 - 5a) Meanwhile, when

a large smoothing factor cr2 = 10 is used, the RBF network has difficulty in

approximating the portion of the signal with large variations (This is illustrated in Figure

10 - 5c). Hence, a smoothing factor that is not too small or too big is required to

approximate this function. Such a choice, cr2 = 2, is illustrated in Figure 10 - 5b.

Now, since different smoothing factors perform better on different signals, we will

include both smoothing factors in the potential nodes. In other words, we let the algorithm

decide which centers and smoothing factors to use. Figure 10 - 5d illustrates this idea. We

allow potential nodes that use cr2 = 4 and cr2 = 2 to be available for the algorithm. A

total of 401 potential nodes are available. As shown, the recursive Efroymson algorithm is

able to select larger smoothing factor nodes for the flat surface and smaller smoothing

factor nodes for the regions of the signal with larger variation. In fact, this methodology

yields a smaller RBF network (13 nodes) when compared to the single smoothing factor

cr2 = 2.

210

(a)
0.8

0 .6

o.,

0.

--0 2

--0.40
10 1s 20 25 JO 35 <10 • s so

a 2 • 0 .5. 39 S&lecled Nodes o:~~
0 5 10 15 20 25 30 35 40 45 50

'

1.2

(c)

0.2

10 15 20 25 JO 35 .«I 45 50

,l . 10. 6 Selected Nodes

o:f~:]
0 5 10 15 20 25 JO 35 .«I 45 50

'

0.8
(b)

0.8

0 .2

--0.2

--0.40L ~~10,-----1~5 ____.,,20~25-~30 -----c':35-<0~--:-.,----!SO

a2 • 2. 16 Selecled Nodes

0:
\ S 10 g 20 B 30 35 m '5 SO

(d)
0.8

0 .6

ti- • 2 and ,:I• 4, 13Seled:ed Nodes

0:
0 S 10 g 20 B 30 35 <O '5 SO

'

Figure 10 - 5 1-D Function Approximation Results for Different Smoothing Factor

Figure 10 - 6 shows the errors at the conclusion of the previous tests. As shown, the

error for the two smoothing factors, cr2 = 2 and cr2 = 4 (13 nodes selected), is smaller

than for the single smoothing factor cr2 = 2 (16 nodes selected) and the single smoothing

factor cr2 = 0.5 (39 nodes).

211

An Error Comparison
0.02

- a2 = 2 and a2 = 4

.-> \
, _.-,\ i

I ·., .

10 15

I -\ .
I.

I . I .

I ,. ,

20

\ I

25
p

30

--cf=2
· · · · cf= 0.5

/
~.- . I.

35 40

Figure 10 - 6 A Comparison of the Errors

10.3.3 2-D Function Approximation

45 50

In this test, we will approximate a surface function (Chang et. al. , 1996)

(10 - 3)

for p 1 and p 2 range from -10 to 10. A 3-dimensional plot of this function is shown in

Figure 10 - 7.

212

Surface Function of z(p1,p)=(,/,-,J})sin(0.5p1)

10

-10 - 10

Figure 10 - 7 Surface Function

10.3.3.1 Comparison of Batch Forward Selection Method and Recursive
Efroymson Method

In this test, we will compare the performance of the batch forward selection method

versus the recursive Efroymson method. For the recursive Efroymson method, the potential

RBF nodes are arranged in a two-dimensional grid at intervals of 1 on each axis and in the

range of [-10, 10] x [-10, 10] ; a total of 441 potential nodes are used. To set up this

comparison test, we let the input be the potential centers. We randomly permute these

centers and apply them one by one until all 441 randomly permute centers are presented.

Meanwhile, the inputs to the batch forward selection algorithm are the 441 randomly

permute centers (applied at one time).

213

Keep in mind that because the recursive Efroymson method is an on-line adaptation

method, the future patterns are not available to the algorithm. So, a fair comparison is to

compare the network reconstruction error after all 441 input patterns has been fed into the

network. Because the value of Fe and F d determine the size of the RBF network, one way

to compare the results is to take the number of nodes that the recursive Efroymson

algorithm constructed after the on-line adaptation and compare it to the same size RBF

network that the batch forward selection method constructed.

A 82 nodes ABF nBlwork Errors: Recursive Efroymson Melhod A 82 nodes RBF netWOl'k Errors: Batch Forwaid Seklclion Melhod

0.15 0.15

0 .1 0 .1

0.05

~ 0

"
--0.05

--0.1 --0.1

-0.15 -0.15

150 200 250 300 350 400 150 200 250 :JOO 350 400
Panerns Pahems

Figure 10 - 8 Errors Comparison for a 82 Nodes RBF Network Constructed by Recursive
Efroymson Algorithm and Batch Forward Selection Method

Figure 10 - 8 shows the network reconstruction errors for an 82 node RBF network

constructed by the recursive Efroymson method (left plot) and the batch forward selection

method (right plot). As shown, the recursive Efroymson method yields a much smaller

error. In fact, the sum of squared error is about 3.5 times lower, as shown in Table 10 - 3.

214

SSE SSE
Fe Fd Nodes Recursive Efroym- Batch Forward Ratio

son Method Selection Method

2 1.5 12 134864.4249 140706.8055 1.0433

0.1 0.08 30 4612.7726 7856.3306 1.7032

0.07 0.05 37 374.9623 909.4148 2.4253

0.01 0.008 42 136.2935 392.2697 2.8781

0.005 0.004 55 19.2074 53.2040 2.7700

0.0025 0.0021 61 4.2796 13.9645 3.2630

0.001 0.0008 82 0.1282 0.4493 3.5047

Table 10 - 3 Sum of Squared Errors Comparison between the Recursive Efroymson
Method and the Batch Forward Selection Method

Table 10 - 3 summaries several RBF networks of different sizes that have

constructed with different Fe and Fd (1st and 2nd column) using the recursive Efroymson

method. At the end of the on-line adaptation, the number of nodes selected and the sum of

squared errors are recorded in the 3rd and 4th columns. To compare these results, the sums

of squared errors of the batch forward selection method, constructed with the same number

of nodes, are tabulated in the 5th column. In addition, the ratio of the two sum of squared

errors (SEE) is shown in the last column.

As shown in the table, when Fe and Fd are lowered, RBF networks with more

nodes and lower SSE are obtained. When we compare the same size RBF network

constructed using the batch forward selection method, the recursive Efroymson method

yields lower SSE. As the number of nodes increases, the ratio of the SSE increases. This

215

ratio implies that as RBF network size increases, the recursive Efroymson method selects

the same size RBF network with less network reconstruction error.

10.3.4 Magnetic Levitation System

In this last test, we will identify the magnetic levitated system, as described in the

Neural Network Toolbox version 4.0 for MATLAB. A diagram of the system is shown in

the following figure.

Figure 10 - 9 Magnetic Levitation System

The objective is to identify the magnet position. This magnet is suspended above an

electromagnet whose field changes as the current flow changes. This magnet is constrained

so that it can only move in the vertical direction. The equation of motion for this system is

d2z(t) _ _ CX (.)i2(t) _ f dz(t)
dt2 - g + Msgn 1 z(t) M dt (10 - 4)

where z(t) is the distance of the magnet above the electromagnet, i(t) is the current flow

in the electromagnet, M is the mass of the magnet, and g is the gravitational constant. The

parameter p is the viscous friction coefficient that is determined by the material in which

216

the magnet moves, and a is a field strength constant that is determined by the number of

turns of wire on the electromagnet and the strength of the magnet. These parameters are set

as follows: M = 3, g = 9.8, ~ = 12, and a= 15 .

10.3.4.1 On-line Adaptation Results

We will use the following NARMA model (Narendra & Parthasarathy, 1990; Ljung

1987) to identify the magnetic levitation system:

z(k) = f(i(k), i(k- 1), ... , i(k-N), z(k- 1), z(k- 2), ... , z(k- Nz)) (10 - 5)

Since this is a discrete time model, we assume that the continuous system can be

sampled at a specific sampling time and the input and output data are available for on-line

adaptation. To identify the magnetic levitated system (the plant), an RBF network with two

delayed plant inputs Ni = 1 and two delayed plant outputs Nz = 2 is used. Figure 10 - 10

is a diagram for this online adaptation scheme (D is the unit time delayed). z (k) is used

directly for the algorithm on-line adaptation.

i(k) z(k)
Plant

~-----1 o~------'

RBF

Figure 10 - 10 System Identification Scheme

The data for the on-line system identification is generated by applying a series of

steps with random height, occurring at random intervals, to the input of the plant with

217

sampling time of 0.01 seconds. The left plot in Figure 10 - 11 shows the input sequence

(current flow). The magnitudes of the current ranged from O < i(t) < 4, and the widths of

the intervals spanned 0.01 < t < 2. The corresponding plant output is shown in the right of

Figure 10 - 11. As shown, the output is stable in the range of O < z(t) < 6 .

Plant Input A Series of Random Steps Planl Oulput

35 ~ n !

2.5

1.5

lf

0.5

Figure 10 - 11 Input Sequence and Output of the Plant

These on-line data is fed one by one to the RBF network. A total of 1225 potential

RBF nodes are used. These potential nodes are equally spaced at intervals of 1 in a 4

dimensional space with input range of (0, 4] x (0, 4] x (0, 6] x (0, 6] for i(k), i(k-1) ,

z(k - 1) , and z(k - 2) respectively. A single smoothing factor of cr2 = 4 is used for the

RBF network. Also, small Fe = 0.0009 and Fd = 0.0008 are used since we would like

to obtain an accurate model. In addition, we utilize the reduce computational time method

as we discussed in Chapter 8.

218

On-Line Adaptation on First 80 Time Point

6

5

4

3

2

0.....__,'-----'-~~.L-'-----'-~~.L-~---'-~~'--~~~~'--~~~~
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

k

Errors

_:\~'--------'---_____._________._______._________,._______,
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

k

Figure 10 - 12 Result of On-Line Adaptation After 80 Time Point

Figure 10 - 12 shows the result of the on-line adaptation at work. As shown, the

plant received the first 80 data points (very tiny portion at the beginning of the plot), but

the algorithm has already started to learn the underlying dynamics of the magnetic

levitation system (only 6 nodes have been selected at this instant). Training was turned off

after the first 80 data points, but Figure 10 - 12 shows that the accuracy is reasonably good

on the remaining 9920 untrained data points.

219

80

60

On-Line Adaptation on 10000 Time Point
7r-----,--,-----,----,,-----,-----,-----,------;:i====::r:::==:::::;i

Plant Output
- RBFOut ut

6

5

4

3

2

o ~ ~~ ------~~--~---~---~ ~ ~~---~
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

k

Errors

orol 0.02

0.01

0

- 0.01
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

k

Figure 10 - 13 Results of On-Line Adaptation After 10000 Time Point

2000 3000 ..000 5000 6000 7000 8000 9000 10000
k

Tlacf<ing Enors

- 5

- 15
I

'I I
- 20

- 25

-35,~~,ooo-2000~--~-,ooo~~sooo- eooo~-,~ooo-eooo~~9000'-----',oooo
k

Figure 10 - 14 Number of Selected Nodes and Tracking Error

Figure 10 - 13 shows the results after 10000 data points have been fed into the

algorithm. As shown, the errors have converged to ±0.03. Overall, a total of 168 nodes

have been selected by the end of the training (left plot in Figure 10 - 14). The right plot in

220

Figure IO - 14 shows the tracking error convergence. We have enlarged the plot so that we

can see the error convergence.

One advantage of this algorithm is its ability to adapt on-line. As shown in the

tracking error plot, the algorithm seems to have slight difficulty near 9000-th data point. We

can see that the algorithm steadily selected more RBF nodes to adapt to these changes.

10.3.4.2 Comparison to Multilayer Feedforward Network

In this section, we will compare the performance of the RBF network to a multilayer

feedforward network. Specifically, we will compare the RBF network that has been adapted

for I 0000 iterations to a multilayer network that has been trained in batch mode. The plant

identification of the multilayer neural network is trained using Bayesian regularization. The

best multilayer network model is trained and used in this evaluation.

To achieve a fair comparison, we use another 10000 random step sequence to

validate both models. Because the error is very small, we will compare the errors. As shown

in Figure 10 - 15, the error for the RBF network (right plot) has slightly lower error than

the multilayer neural network (left plot).

221

Eirors: Muttilayer Nelwork
o.oo~~~~-~~~~~~~~

0.0,

-0.01

--0.02

-0.030 1000 2000 3000 4000 5000 6000 7000 8000 0000 10000
k

0.02

0.01

-0.01

--002

-0.030 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
k

Figure JO- 15 Error Comparison: The Trained RBF Network and Multilayer Network

10.4 Summary

In this chapter, we have evaluated the numerical stability of several algorithms that

we have created in previous chapters. Among these algorithms, the improved QR-RLS-

AWS method is numerically stable. We have tested this algorithm on several function

approximation and system identification problems. Through these tests, we have found that

the QR-RLS-AWS using the recursive Efroymson method has shown good results in

creating small and parsimonious RBF networks.

222

Chapter

11
Summary and Conclusions

11.1 Research Summary
11.2 Conclusion

In this last chapter, we will summarize our research.

223

224
226

11.1 Research Summary

In this research, we developed a new on-line learning framework that can

effectively construct small and parsimonious RBF networks on-line. This framework is

adopted by combining three schemes: the time-update, the order-update and the subset

selection method. The time-update scheme involves the RLS algorithm and the QR-RLS

algorithm, which are readily documented in many books and journals (Haykin 1996, Sayed

& Kailath 1992). Meanwhile, the least squares order-update scheme is mathematically

derived based on the block matrix inversion lemma. These derivations are tailored to order

increase-update and/or order-decrease-update the parameters in the RLS algorithm. The is

a new result. In addition, the orthogonal least squares order-update scheme is

mathematically derived based on the QR Givens rotations. These derivations are tailored to

order-increase-update and/or order-decrease-update the parameters in the QR-RLS

algorithm. This result is also new.

Using this framework, two new algorithms, the Recursive Least Squares with

Automatic Weight Selection (RLS-AWS) algorithm and the QR Recursive Least Squares

with Automatic Weight Selection (QR-RLS-AWS), have been developed. Both algorithms

are recursive in time and order. We first developed the subset selection mechanism of the

algorithms based on the forward selection method. This technique allows useful RBF nodes

to be added into the network sub-optimally and recursively. Later, we developed an

improved subset selection mechanism based on the Efroymson method. This method has

224

the capability of removing insignificant RBF nodes in addition to adding useful RBF nodes.

Both recursive subset selection methods are new.

In addition, we also improved the algorithms' storage requirements. In the RLS

AWS algorithm, we utilized the time-update correlation matrix to reduce storage

requirements. In QR-RLS-AWS algorithm, the storage saving is built into the algorithm as

shown in Chapter 9. Because the RBF network is localized in space, the outputs of RBF

nodes contain many near zero elements. Hence, we can consider potential nodes that have

non-zero output as candidates for order-increase-update and can consider selected nodes

that have non-zero output as candidates for order-decrease-update. With this method, we

can save tremendous amount of computation. Lastly, an exponential windowing scheme

can be easily incorporated into the algorithms.

The comparison of these algorithms to the batch forward selection method and the

multilayer network are documented in Chapter 10.

225

11.2 Conclusions

To conclude this research, we will highlight the key results:

• The QR-RLS-AWS algorithm is numerical more accurate than the RLS-AWS

algorithm. However, if numerical ill conditioning is not a problem, both algorithms

yield the same solution.

• Both subset selection schemes, the recursive forward selection method and the

recursive Efroymson method, have been adopted successfully.

• The results have shown that the recursive Efroymson method can produce a smaller

RBF network than the recursive forward selection method.

• In simulated results, the QR-RLS-AWS algorithm with Efroymson method has

consistently constructed better performance RBF networks than the batch forward

selection method.

• In addition, the simulated results also show that the constructed RBF network has

performance comparable to the multilayer network.

In conclusion, this research has successfully designed and implemented the

recursive time- and order- update algorithms for on-line learning. Although the work

described in this dissertation has focused on small RBF networks, the algorithms can be

applied to all linear models and all nonlinear models that have a linear-in-parameters

structure, such as the fuzzy basis function network, functional-link network, polynomial

network, and more.

226

References

Akaike, H. (1969). Fitting autoregressive models for prediction. Ann. Inst. Statis. Math.
Vol.21, pp.221-227.

Ardalan S.H., Alexander S.T. (1987). Fixed-point roundoff error analysis of the exponen
tially windowed RLS algorithm for time varying systems, IEEE Transactions
on Acoustics, Speech, and Signal Processing, Vol. ASSP-35, pp.770-783.

Ben-Israel A., Greville T.N.E. (1974). Generalized Inverses Theory and Applications,
Wiley, New York.

Berk K.N. (1978). Comparing subset regression procedures, Technometrics, Vo.20, pp.1-
6.

Biodini R., Simpson J., Woodley W. (1977). Empirical predictors for natural and seeded
rainfalls in the Florida Area Cumulus experiment (FACE) Journal of Applica
tion in Meteorology, Vol.16, pp.585-594.

Bjorck A. (1996). Numerical Methods for Least Squares Problems, SIAM, Philadelphia.

Broomhead D.S., Lowe D. (1988). Multivariable functional interpolation and adaptive
networks, Complex Systems, Vol.2, pp.281-355.

Cannon M., Slotine J.J.E. (1995). Space-frequency localized basis function networks for
nonlinear system estimation and control, Neurocomputing, Vol.9, No.3.

Chang E.-S., Yang H., Bos S. (1996). Adaptive orthogonal least squares learning algo
rithm for the radial basis function network, Neural Networks for Signal Pro
cessing VI. Proceedings of the 1996 IEEE Signal Processing Society
Workshop, pp.3 -12.

Chen S., Cowan C.F.N., Grant P.M. (1991). Orthogonal least squares learning algorithm
for radial basis function networks. IEEE Transactions on Neural Networks,
Vol.2, No.2, pp.302-309.

Cohen J., Cohen P. (1983). Applied Multiple Regression/Correlation Analysis for the
Behavioral Science, 2nd Edition, Hillsdale, NJ: Erlbaum.

Cun Y.L., Denker J.S., Solla S.A. (1990). Optimal brain damage, in Advances in Neural
INformation Processing Systems 2, Touretzky D.S. ed., pp.598-605, San
Mateo, CA: Morgan Kaufmann Publishers, Inc., 1990.

227

Cybenko G. (1989). Approximation by superpositions of a sigmoidal function, Mathemat
ics of Control, Signals and Systems, Vol.2, pp.303-314.

Derksen S., Keselman H.J. (1992). Backward, forward and stepwise automated subset
selection algorithms: Frequency of obtaining authentic and noise variables,
British Journal of Mathematical and Statistical Psychology, Vol.45, pp.265-
282.

Dixon W.J., Brown M.B., Engelman L., Hill M., Jennrich R.I. (1988). BMDP Statistical
Software Manual, Vol. I Berkerly: University of California Press.

Drape N., Smith H. (1981). Applied Regression Analysis, 2nd Ed. New York: Wiley.

Duncan W.J. (1944). Some devices for the solution of large sets of simultaneous linear
equations, The Philosophical Magazine Ser. 7 Vol. 35, pp.660-670.

Efroymson M.A. (1960). Multiple regression analysis. In Ralston A., Wilf H.S. Mathe
matical Methods for Digital Computers, New York: Wiley pp.191-203.

Fabri S., Kadirkamanathan V. (1996). Dynamic structure neural networks for stable adap
tive control of nonlinear systems, IEEE Transactions on Neural Networks,
Vol.7, No.5, pp.1151-1167.

Fahlman S.E., Lebiere C. (1990). The cascade-correlation learning architecture, in
Advances in Neural Information Processing Systems 2, Touretzky D.S. ed.,
pp.524-532, San Mateo, CA: Morgan Kaufmann Publishers, Inc., 1990.

Fletcher R. (1969). A technique for orthogonalization, Journal of Institute Mathematical
Applications, Vol.5, pp.162-166.

Funahashi K. (1989). On the approximate realization of continuous mappings by neural
networks, Neural Networks, Vol.2, pp.183-192.

Furnival G.M., Wilson R.B. (1974). Regression by leaps and bounds, Technometrics,
Vol.16, pp.499-511.

Gentleman W.M., Kung H.T. (1981). Matrix triangularization by systolic arrays, Proceed
ings of SPIE, Vol.298, Real Time Signal Processing IV, pp.298-303.

Givens W. (1958). Computation of plane unitary rotations transforming a general matrix
to triangular form, SIAM Journal of Applied Mathematics, Vol.6, pp.26-50.

228

Golub G.H., Van Loan C. (1989). Matrix Computations, 2nd Edition, John Hopkins Uni
versity Press, Baltimore.

Golub G.H., VanLoan C. (1996). Matrix Computations, John Hopkins University Press,
Baltimore.

Hagan M.T., Demuth H.B., Beale M. (1996). Neural Network Design, PWS Publishing
Company, Boston MA.

Hager W.W. (1989). Updating the inverse of a matrix, SIAM Review, Vol.31, pp.221-239.

Hassibi B., Stork D.G. (1992). Second order derivatives for network pruning: optimal
brain surgeon, in Advances in Neural Information Processing Systems 5, S.J.
Hanson et al. eds., pp. 164-171, San Mateo, CA: Morgan Kaufmann Publish
ers, 1992.

Haykin S. (1991). Adaptive filter theory, 2nd Editon, Prentice-Hall, Englewood Cliffs,
N.J.

Haykin S. (1994). Neural Networks A Comprehensive Foundation, Macmillan, N.Y.

Haykin S. (1996). Adaptive filter theory, 3rd Edition, Prentice-Hall, N.J.

Hocking R.R. (1976). The analysis and selection of variables in linear regression. Biomet
rics, Vol.32, pp.1-49.

Hoerl R.W., Schuenemeyer J.H., Hoerl A.E. (1986). A simulation of biased estimation and
subset regression techniques. Technometrics, Vo.28, pp.369-380.

Hornik K., Stinchcombe M., White H. (1989). Multilayer feedforward network are univer
sal approximators, Neural Networks, Vol.2, pp.359-366.

Hornik K. (1991). Approximation capabilities of multilayer feedforward networks, Neural
Networks, Vol.4, pp.251-257.

Hubing N.E. Alexander S.T. (1990). Statistical analysis of the soft constrained initializa
tionof recursive least squares algorithms, Proceedings of ICASSP, Albuquer
que, New Mexico.

Jacobi C.G.J. (1846). Uber ein Leichtes Verfahren Die in der Theorie der Sacularstroun
gen Vorkommendern Gleichungen Numerisch Aufzulosen, Crelle's J. Vol.30,
pp.51-95.

229

Karayiannis, N.B., Mi, G.W. (1997). Growing radial basis neural networks: merging
supervised and unsupervised learning with network growth techniques, IEEE
Transactions on Neural Networks, Vol.8, No.6 pp.1492-1506.

Leshno M., Lin V.Y., Pinkus A., Schocken S. (1993). Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function, Neu
ral Networks, Vol.6, pp.861-867.

Liu G.P., Kadirkamanatham V., Billings S.A. (1996). Stable sequential identification of
continuous nonlinear dynamical systems by growing radial basis function net
works. International Journal of Control, Vol.65, No. I, pp.53-69.

Ljung L. (1987). System Identification - Theory for the User. Prentice-Hall, Englewood
Cliffs, N.J.

Lowe D. (1989). Adaptive radial basis function nonlinearities, and the problem of general
ization, 1st IEE International Conference on Artificial Neural Networks, pp.
171-175, London, UK.

MacKay D.J.C. (1992). Bayesian interpolation, Neural Computation, Vol.4, pp.415-447.

MacKay D.J.C. (1994). Bayesian methods for backpropagation networks, Models of Neu
ral Networks III, Domany E., Van Hemmen J.L., Schulten K., eds., pp.211-
254, New York: Springer-Verlag.

Mallows, C.L. (1973). Some comments on CP. Technometrics, Vol.15, pp.661-675.

Miller A.J. (1984). Selection of subsets of regression variables, Journal of the Royal Sta
tistical Soceity, Series A, Vol.147, pp.389-425.

Miller A.J. (1990). Subset Selection in Regression. Chapman and Hall, N.Y.

Narendra, K.S., Parthasarathy K. (1990). Identification and control of dynamical systems
using neural networks, IEEE Transactions on Neural Networks, Vol.l, No.l,
pp.4-7.

Ogata K. (1987). Discrete Time Control Systems, Prentice-Hall, N.J.

Park J., Sandberg I.W. (1991). Universal approximation using radial basis function net
works, Neural Computation, Vol.3, pp.246-257.

Poggio T., Girosi F. (1990a). Network for approximation and learning, Proceedings of the
IEEE, Vol.78, pp.1481-1497.

230

Poggio T., Girosi F. (1990b). Regularization algorithms for learning that are equivalent to
multilayer networks, Science, Vol.247, pp.978-982.

Powell M.J.D., (1987a). Radial basis functions for multivariable interpolation: A review,
Algorithms for the Approximation, Mason J.C. and Cox M.G., Oxford,
England: Clarendon Press, pp.143-167.

Powell M.J.D. (1987b). Radial basis function approximations to polynomials, Proceedings
of 12th Biennial Numerical Analysis Conference (Dundee) pp.223-241.

Ramon y Cajal S. (1911). Histologie du systeme nerveux de l'homme et des vertebres,
Paris: Moloine; Edition Francaise Revue: Tome I, 1952;Tome II, 1955;
Madrid: Consejo Superior de Investigaciones Cientificas.

Sanner R. (1993). Stable adaptive control and recursive identification of nonlinear sys
tems using radial gaussian networks. Ph.D. thesis, Massachusetts Institute of
Technology.

Sanner R., Slotine J.-J.E. (1992). Gaussian networks for direct adaptive control. IEEE
Transactions on Neural Networks, Vol.3, No.6.

Sanner R., Slotine J.-J.E (1995). Stable adaptive control of robot manipulators using "neu
ral" networks. Neural Computation, Vol.7, No.4.

SAS Institute (1985). SAS User's Guide: Statistics, 5th ed. Cary, NC: Author.

Sayed A.H., Kailath T. (1994). A state-space approach to adaptive RLS filtering, IEEE
Signal Processing Magazine, Vol.11, pp.18-60.

Sherman J., Morrison W.J. (1949). Adjustment of an inverse matrix corresponding to
changes in the elements of a given column or a given row of the original
matrix, The Annals of Mathematical Statistics, Vol.20, pp.621.

Slock D.T.M., Kailath T. (1991). Numerically stable fast transversal filters for recursive
least squares adaptive filtering, IEEE Transactions on Signal Processing
Vol.39, pp.92-114.

Stewart G.W. (1973). Introduction to Matrix Computations, Academic Press, New York.

Trefethen, L.N., Bau D. (1997). Numerical Linear Algebra. SIAM Philadelphia, PA.

231

Tzirkel-H.E., Fallside F. (June 1992). Stable control of nonlinear systems using neural net
works, International Journal on Robust Nonlinear Control, Vol.2, No. pp.63-
86.

Weisberg S. (1980). Applied Linear Regression. New York: Wiley.

Woodbury M. (1950). Inverting modified matrices, Memorandum Rept. 42, Statistical
Research Group. Princeton University, Princeton, N.J.

Yang B. (1994). A note on the error propagation analysis of recursive least squares algo
rithms, IEEE Transactions on Signal Processing, Vol.42, pp.3523-3525.

232

VITA

Meng Hock Fun

Candidate for the Degree of

Doctor of Philosophy

Thesis: RECURSIVE TIME-AND ORDER- UPDATE ALGORITHMS FOR RADIAL
BASIS FUNCTION NETWORKS

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Johor Bahm, Malaysia on March 5, 1970, the son of Swee
Chin, Fun and Choo Mui, Yap.

Education: Graduated from Taylor's College, Kuala Lumpur, Malaysia in 1989; re
ceived Bachelor of Science degree in Electrical Engineering and Master of
Electrical Engineering degree from Oklahoma State University, Stillwater,
Oklahoma, in December 1993 and May 1996, respectively. Completed the
requirements for the Doctor of Philosophy degree in Electrical Engineering
at Oklahoma State University in August 2001.

Experience: Employed by Oklahoma State University, Department of Electrical
Engineering as a teaching assistant and as a graduate researcher from 1993
to present.

Professional Status and Memberships: Member of Phi Kappa Phi Society, Tau Beta
Phi Society, Eta Kappa Nu Society, Institute of Electrical and Electronic En
gineers Society, and United States Chess Federation.

