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Chapter 

1 
Introduction 

1.1 Objective 
1.2 Contributions 
1.3 Outline 

2 
3 
5 

In this chapter, we first discuss the objectives of this research. Then, we summarize 

the contributions of this research. We distinguish between what is new and what was 

developed previously. Finally, we will outline the contents of each chapter. 
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1.1 Objective 

This research addresses a problem commonly associated with the radial basis 

function (RBF) network. This problem is called the curse of dimensionality; the number of 

RBF nodes increases exponentially with the number of inputs. Due to this problem, RBF 

networks can only be used in models with low dimensional inputs. Many excellent methods 

have been proposed that have successfully reduced the number of nodes used in RBF 

networks. However, most of these methods are not suitable for online implementation. 

Online construction of small RBF networks is especially desirable for adaptive control, 

adaptive filtering and system identification of nonlinear systems. 

Hence, this research focuses on developing online learning schemes that can 

construct small and parsimonious RBF networks. We have shown in this research that this 

goal can be achieved by modifying the off-line least squares learning method (LS) and the 

off-line orthogonal least squares (OLS) learning method for on-line operation combined 

with the subset selection techniques. These modifications have resulted in the development 

of a time- and order- update framework. Using this framework, two new recursive time

and order- update algorithms, the Recursive Least Squares with Automatic Weight 

Selection (RLS-AWS) algorithm and the QR Recursive Least Squares with Automatic 

Weight Selection (QR-RLS-AWS), have been developed. The theoretical framework and 

the synthesis of these on-line learning schemes are documented from Chapter 4 to Chapter 

9. 
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1.2 Contributions 

In the following, we summarize the new contributions from this research. This 

summary distinguishes what is new and what was developed previously. 

• The main contribution of this research is the time- and order- update framework. 

This framework is adopted by combining three schemes: time-update, order-update, 

and subset selection. Using this framework, two new recursive time- and order

update algorithms, the RLS-AWS and the QR-RLS-AWS, are mathematically 

derived. 

• Initially, both algorithms utilize the recursive forward selection method as their 

subset selection mechanism. Later, we have improved the algorithm's subset 

selection solution by developing the recursive Efroymson method for the RLS

AWS algorithm and the QR-RLS-AWS algorithm. These techniques also have not 

been documented anywhere. 

• When numerical ill conditioning is not an issue, both algorithms yield the same 

solution. However, when numerical ill conditioning becomes a problem, we have 

shown that the QR-RLS-AWS algorithm yields a much more accurate solution than 

the RLS-AWS algorithm. 

• We have applied these algorithms to the RBF network. Results have shown that 

these algorithms can effectively construct a small RBF network while operating in 

real-time. 

3 



• The time-update scheme involves the RLS algorithm and the QR-RLS algorithm, 

which are readily available from adaptive filtering theory (Haykin 1996, Sayed & 

Kailath 1992). 

• Meanwhile, the least squares order-update scheme is mathematically derived based 

on block matrix inversion lemma. These derivations are tailored to order-increase

update and/or order-decrease-update the parameters in the RLS algorithm and it has 

not been documented anywhere. 

• In addition, the orthogonal least squares order-update scheme based on the QR 

Givens rotations is mathematically derived. These derivations are tailored to order

increase-update and/or order-decrease-update the parameters in the QR-RLS 

algorithm and it has not been documented anywhere. 

Although our primary interest has been in the application of these algorithms to the 

RBF network, the algorithms are general purpose recursive subset selection algorithms. 

They can be used for any linear-in-parameters model for which recursive subset selection 

is needed. 
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1.3 Outline 

This thesis contains eleven chapters. Starting from the basic neural network 

building block, the artificial neural network architectures are introduced in Chapter 2. 

Then, a class of neural network architecture, the radial basis function (RBF) network, is 

discussed in detail along with frequently used mathematical notation. 

Chapter 3 defines the scope and the objective of this research. We first discuss the 

importance of the on-line learning scheme using the RBF network. Then, we develop 

online learning schemes, based upon the off-line least squares (LS) and off-line orthogonal 

least squares (OLS) learning method, that can efficiently construct small RBF networks. 

These off-line LS and OLS learning methods are made on-line by employing the time

update and the order-update algorithms of the least squares and orthogonal least squares 

methods. 

To understand these new algorithms, Chapter 4 reviews the least squares and the 

orthogonal least squares methods. It also discusses the necessary tools for solving the time

update and the order-update. 

Then, the concept of time-update is introduced in Chapter 5. In this chapter, the 

necessary tools developed in Chapter 4 are used in developing the recursive least squares 

(RLS) algorithm and the numerically more accurate QR recursive least squares (QR-RLS) 

algorithm. 

In Chapter 6, we first develop the order-update algorithms. Then, the concept of 

subset selection is introduced. Among these subset selection methods, we discuss the 

orthogonal least squares learning method (also called the forward selection method) in 

s 



detail. Later, we discuss how we can use the order-update algorithms in the forward 

selection method. 

In Chapter 7, the time-update and forward subset selection method, which utilizes 

the order-update algorithm, are combined to develop the Recursive Least Squares with 

Automatic Weights Selection (RLS-AWS) and QR Recursive Least Squares with 

Automatic Weight Selection (QR-RLS-AWS) algorithms. Detailed implementations of 

these new algorithms for the RBF networks are discussed. Several simple simulated results 

are shown to illustrate the performance and the node saving ability of the new algorithms. 

In Chapter 8, we focus on improving the RLS-AWS algorithm. These 

improvements include alleviating the storage requirement, improving the algorithm's 

subset selection solution by developing the recursive Efroymson algorithm, and reducing 

the computation. 

In Chapter 9, we focus on improving the QR-RLS-AWS algorithm. A new 

discovery has led us to rework the QR-RLS-AWS method in Chapter 7. Detailed discussion 

of this new scheme is derived and discussed. Then, we show how we can improve the 

algorithm's subset selection solution by developing the recursive QR-Efroymson 

algorithm. 

In Chapter 10, we will discuss the numerical stability of the algorithms developed 

in Chapter 7, 8 and 9. Then, we will test these algorithms in two function approximation 

problems and two system identification problems. 

Finally, Chapter 11 summarizes our research and lists some of the key results of this 

research. 
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This chapter introduces the relevant neural network architectures and frequently 

used mathematical notation. Readers are encouraged to pay special attention to sec-

tion 2.4, and section 2.5 as it defines the framework of a class of neural network ar-

chitecture, which will be used in the entire thesis. 
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2.1 Introduction 

In section 2.2, we show how an artificial neuron evolves from a biological neuron 

to a single-layer of neurons then to multiple-layers of neurons (feedforward network). We 

will also define the mathematical notation and the symbolic representation of the 

feedforward network. Then, a short section is given to show the universal approximation 

capability of the feedforward network. Section 2.3 introduces the Radial Basis Function 

(RBF) network and ties it into the feedforward network architecture. This section also 

shows that the RBF network possesses the same universal approximation capability as the 

feedforward network. In section 2.4, we begin to discuss a class of RBF network, which we 

will use in later chapters. Special attention is given to the mathematical notation that 

describes how the RBF network architecture changes for time-updates and/or order

updates. Lastly, section 2.5 will discuss the architecture of the special RBF network for 

subset selection, which will be the key neural network architecture of this entire thesis. 
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2.2 Basic Neural Network Architectures 

We will begin with a biological neuron and show how it is engineered to become an 

artificial neuron and a multiple-input neuron. Then, we provide a brief introduction to the 

neuron's transfer functions. After this brief introduction, we show how several artificial 

neurons are engineered to become a layer of neurons, and later to a multiple-layer network. 

At each engineering stage, we show how the artificial neural network mimics the biological 

neural network counterparts. Simultaneously, mathematical notation and representations 

are introduced. Lastly, we discuss the function approximation capabilities of a multilayer 

perceptron. 

2.2.1 Biological Neural Networks 

The work on artificial neural networks is inspired by the studies of how the human 

brain processes information; more importantly, the information processing nerve cell called 

the neuron. The struggle of understanding how the brain operates owes much to the 

pioneering work of Ramon & Cajal ( 1911 ), who first introduces the idea of neurons. 
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2.2.1.1 Single Biological Neuron 

A xon 

Figure 2 - 1 Biological Neurons 

It has been understood that each neuron consists of four parts; dendrites, synapses, 

cell body and axons. The junction point between the dendrites and the cell body are the 

synapses. When a neuron is at work, it receives input signals, which are the electrical 

signals, from the axons of adjacent neurons to the dendrites. Then, these inputs are 

modulated by the complex chemical process in the synapses, which carry it into the cell 

body. The cell body sums and thresholds all the modulated incoming electrical signals and 

passes them on to the axon. The axon, a single long fiber, then carries the outgoing 

electrical signal from the cell body to the other neurons. 

2.2.1.2 Massive Interconnections and Parallel Structure 

There are billions of biological neurons in the brain and each neuron has massive 

interconnections with adjacent neurons. Although biological neurons are several orders of 

magnitude slower than silicon logic gates, the brain makes up for this relatively slow 

operating rate by having a massive parallel structure and massive interconnections between 
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neurons. Because of this massive parallel structure, all neurons can operate at the same 

time, which enables the brain to perform many tasks faster than any conventional computer. 

2.2.2 Artificial Neural Networks 

Since the brain is capable of such massive information processing, engineers and 

mathematicians mimic the brain by developing the artificial neural network. They start by 

imitating one biological neuron with a single dendrite, cell body and axon. 

2.2.3 Single Artificial Neuron 

lxndrite 

\ 
·~., . ..-.. ynapsc ,,, ,,,, 

V' 
/o/ * / w1 P-------___;;.-1 

Axon 

' 
\ 

j 

' ' 

':q 
a output 

Figure 2 - 2 Biological Neuron to Artificial Neuron 

Figure 2 - 2 shows a single-input/single-output artificial neuron m symbolic 

representation that mimics a biological neuron with one dendrite and one axon. The input, 

p , is multiplied by a scalar artificial weight, w 1 , to form w 1p, which imitates the electrical 

signal modulated by the synaptic weight. Then, the weighted input, w 1p, is sent to a 

summer I. to sum an externally applied bias w0 , which imitates the modulated electrical 
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signal carried by the dendrite. The summer I, and the transfer function f closely resemble 

the cell body, which has the effect of summing and thresholding the modulated electrical 

signal. After the weighted input, w 1p, and bias, w0 , are processed by the summer and the 

activation function, it is sent to the output a, which represents the electrical signal carried 

by the axon. 

Mathematically, an artificial neuron can be described by the following equation: 

(2 - 1) 

p--------l a 

Figure 2 - 3 Simplified Representation of an Artificial Neuron 

We will use a simplified symbolic representation, as shown in Figure 2 - 3, to denote an 

artificial neuron. This representation models how the dendrite and the axon interconnect to 

the cell body in a biological neuron. Specifically, the input p represents the dendrites, the 

output a represents the axon, and the transfer function f(w 1p + w0) is represented by a 

node, which mimics the cell body. 

2.2.4 Transfer Function 

The transfer function, denoted by f( • ) in Figure 2 - 2 and Figure 2 - 3, defines 

the output of a neuron. A particular transfer function is chosen by a designer to perform a 

particular task. Three of the most common transfer functions are hyperbolic tangent 

sigmoidal, hard limiter and linear. Figure 2 - 4 shows these typical transfer functions: 

12 



a={~ n~O 

n<O 
a = n 

Figure 2 - 4 Three Typical Transfer Functions 

The hyperbolic tangent transfer function is shown on the left of Figure 2 - 4. This 

transfer function is commonly used in multilayer perceptron networks, because it is a 

monotonically increasing function and it is differentiable. In the center, we have the hard 

limiting transfer function. Neurons that use this transfer function are commonly referred to 

as McCulloch-Pitts neurons. Since the output has the value of 1 or 0, it is commonly used 

for binary classification. Lastly, a linear transfer function is shown on the right. This 

transfer function is commonly used in the last layer of a feedforward network for function 

approximation applications. 

The reader can refer to (Hagan et al. 1996, Haykin 1994) for a list of other transfer 

functions. Note that from now on, we will use "neuron" for artificial neuron and "neural 

network" for artificial neural network. 

2.2.5 Multiple-Input Neuron 

To mimic the multiple dendrite connections in a biological neuron, a neuron with 

multiple inputs is illustrated in Figure 2 - 5. As shown, the neuron has r inputs 

p 1 p 2 ... Pr weighted by rweights w 1, 1 w 1, 2 ... wl,r 
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P1 

P2 
p 3 __ --+ __ _;::,,.. a 

Pr 

Figure 2 - 5 Multiple-Input Neuron 

Mathematically, if we assume that the bias term is weighted by a constant input of 

l,p0 = 1,thatisp = ~0 p 1 p2 ... pJT and 1w = [w1, 0 w1, 1 w1, 2 ... w1,J,thenthe 

output is 

(2 - 2) 

Using Eq. (2 - 2), we can draw the simplified symbolic representation of a multiple-input 

neuron as in Figure 2 - 6. 

a 

Pr 

Figure 2 - 6 Multiple-Input Neuron - Simplified Representation 

2.2.6 A Layer of Neurons 

It is apparent that a biological neural network derives its computing power through 

its massive parallel structure and massive interconnections. To mimic the massive parallel 

biological structure, we can connected several multiple-input neurons in parallel. This 

14 



forms a layer of neurons, which operate in parallel. Figure 2 - 7 shows a single-layer of s 

neurons. As shown, the inputs are interconnected to each neuron forming the parallel 

structure. 

P1 

P2 

p3._~~--= .... 

Pr 

Figure 2 - 7 A Layer of Neurons 

We can express the output of a layer of neurons using vectors and matrices: 

a = f(Wp) 

The weights and biases are lumped into one weight matrix W , as in 

(2 - 3) 

(2 - 4) 

where the row indices indicate the number of neurons, s, and the column indices indicate 

the number of inputs, r. Meanwhile, the input p is expressed in vector form as 

(2 - 5) 
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Multiplied together, W p forms the net input vector n . The transfer function f( • ) then 

processes the net input vector element by element to form the output vector a. 

2.2. 7 Multilayer Network 

Neural networks achieve the massive interconnections of the biological neurons by 

cascading several layers of neurons. Typically, a network with multiple-layers of neurons 

is called a multilayer feedforward network. Each layer has its own weights, biases, net input 

and output. To distinguish between layers, a superscript is used to identify the layer number. 

For example, W I is the weight and bias matrix for the first layer. Figure 2 - 8 shows two 

layers of neurons (two-layer feedforward network) with r inputs, s 1 neurons in the first 

layer and s2 neurons in the second layer. If a network has more than 1 layer, we refer to the 

layer in between the input and output layer as the hidden layer. 

Pr 

Po= 
Figure 2 - 8 

A mathematical equation that describes the total output of the two-layer 

feedforward network is given by 
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(2 - 6) 

The simplified symbolic representation can also be used in modeling a multilayer 

feedforward network. Figure 2 - 9 shows a simplified representation of Figure 2 - 8. This 

representation has the advantage of showing how each node is linked to the inputs and the 

outputs. This will make it easier to demonstrate the relationship between the multilayer 

network and the radial basis network, which will be presented later. Note that Po, and a0 

are the biases. 

ap 
Po= 1 

P1 

P2 
a22 

Pr 

Figure 2 - 9 Two-Layer Feedforward Network - Simplified Representation 

2.2.8 Universal Approximation Capability 

One of the key features of the neural network that attracts many researchers is its 

universal approximation capability. According to Hornik's (1989 & 1991) universal 

approximation theorem, a multilayer feedforward neural network, with one or more hidden 

layers of squashing nonlinear transfer functions, is capable of approximating any real-

valued continuous function arbitrarily well over a compact interval provided that sufficient 
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hidden neurons are available. Independently, Funahashi (1989) and Cybenko (1989) 

arrived at the same neural network universal approximation capability using functional 

analysis. 

The term "squashing function" refers to a class of transfer functions, which includes 

tangent sigmoidal, hyperbolic tangent and more. Later, Leshno et al. (1993) showed that a 

locally bound piecewise continuous transfer function also has the universal approximation 

capability. An example of such a function is the linear saturation function. Thus, neural 

networks such as the multilayer perceptrons, which use tangent sigmoidal transfer 

functions in the hidden layers and linear transfer functions in the output layer, are universal 

approximators that can approximate any continuous function to an arbitrary degree of 

accuracy. 
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2.3 The Radial Basis Function Network 

The radial basis function network was introduced by Powell (1987a, 1987b) for 

multidimensional interpolation. Then, it was exploited by Broomhead & Lowe (1988) in 

the context of neural network design. In the following, we introduce the fundamental 

building block of the RBF network - the radial basis functions. 

2.3.1 The Radial Basis Functions 

Figure 2 - 10 ith Radial Basis Function Node 

Rather than using monotonically increasing transfer functions such as the tangent 

sigmoidal, the RBF network utilizes radial basis functions as the transfer functions. Figure 

2 - 10 shows the mathematical operation of a radial basis function node. As shown, the 

Euclidean distance between the input vector p, and the center vector ci of the Fh radial 

basis function is first computed to form the net input ni of ith radial basis function. Then, 

the net input is fed into the nonlinear radial basis function f( • ) . Typically, this radial 

basis function is also called the local receptive field, since it only activates if the distance 

is close to the centers. The following are two radial basis functions often used in practice 

(Broomhead & Lowe 1988; Poggio & Girosi 1990a). 
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Thin plate spline function: 

f(n) = (~r In(~), for cr > 0 and n::?: 0 (2 - 7) 

Gaussian function: 

(2 - 8) 

Theoretical investigations and practical results have shown that the type of radial 

basis functions are not crucial to the performance of the RBF networks. Hence, this 

research will confine our discussion to the use of the Gaussian function only. In the 

Gaussian function, cr is the standard deviation, and it determines the width of the Gaussian 

function. It is sometimes referred to as the smoothing factor. 
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2.3.2 The RBF Network Architecture 

y 

Figure 2 - 11 The Radial Basis Function Network 

In terms of the network architecture, the RBF network is a two-layer feedforward 

network. In fact, the two-layer network architecture as shown in Figure 2 - 9 is the multi

input multi-output RBF network architecture. However, since multi-output RBF networks 

can always be separated into several single-output RBF networks, we will only consider the 

multi-input single-output RBF network. Figure 2 - 11 shows such a Radial Basis Function 

(RBF) network architecture. The main difference between a RBF network and a two-layer 

perceptron is its hidden layer transfer function. The RBF network uses the radial basis 

functions discussed in section 2.3.1. Also, the hidden layer has no bias. As in the 

feedforward network, the RBF network uses linear transfer functions in the output layer. 

21 



The following pair of mathematical equations represents a RBF network with r 

inputs, q hidden nodes and a scalar output: 

q 

a0 = 1 , ai = J(IIP - cill), and y = L xiai (2 - 9) 

i = 0 

where 

P = ~ 1 p 2 ... pJ Tis the input vector, 

ci = [c1, i c2, i ... er, J T is the i1h RBF center vector, 

II • II denotes the Euclidean norm, 

a0 = 1 is the second layer bias input, 

ai is the ifh Gaussian radial basis function output except a0 , 

xi is the i1h weight, and x0 is the bias, 

y is the output of the RBF network, and 

f( • ) is the Gaussian radial basis function. 
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2.3.3 Universal Approximation Capability 

Like the multilayer perceptron, the universal approximation theorem is also 

available for the RBF network. Park & Sandberg ( 1991) show that by using a fixed 

smoothing factor in all the radially symmetric kernel functions, a RBF network with such 

kernel functions in the hidden layer is broad enough for universal approximation. 

Furthermore, Poggio & Girosi ( 1990b) show that a regularization RBF network has the best 

approximation property in addition to the universal approximation ability. This means that 

given an unknown nonlinear function y1, there always exists a choice of coefficients that 

approximates y f better than all other possible choices. 

These existing theorems show that the RBF networks are universal approximators 

and can approximate any continuous function with as much accuracy as the multilayer 

network. 
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2.4 Mathematical Preliminaries 

In this section, we lay down the fundamental mathematical notation for the RBF 

network that we will be using in later chapters. The intention of this section is to allow 

readers to become familiar with the mathematical notations and symbols of the RBF 

network architectures that we will be frequently using. 

2.4.1 RBF Network - Linear in Parameters 

Assume that we have a set of k input data { d(j), p(j)} J = 0 , where d(j) is the 

desired response and p(j) is the network input. Then the RBF network output is 

q 

(2 - 10) 

i = 0 

For this research, we fix all the RBF centers ci and the standard deviation cr in the 

hidden layer. Then there will be no unknown parameters in the hidden layer. Thus, the 

hidden layer performs a fixed nonlinear transformation with no adjustable parameters. The 

hidden layer output is 

ai(j) = J(IIPU)- cill), for j = O ... k and i = O ... q. (2 - 11) 

If we write out every element of ai(j) , we form the following matrix A : 
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a 0(0) a1 (0) ... aqCO) 

A= a0(1) a 1(1) ... aqCl) (2 - 12) 

where row j is the response of the first layer to input vector pU). In the future, we will 

refer to k as the current time step, since one new data vector will come into the network at 

each time step. We will refer to q as the model order, which refers to the number of neurons 

in the first layer. The A matrix is k x q . 

The error eU) between the desired response dU) and the RBF network output yU) 

is given as follows: 

q 

eU) = dU)- L xiaiU), for O ~j ~ k . (2 - 13) 

i = 0 

By defining 

e = [e(O) e(l) ... e(k)] T, (2 - 14) 

d = [d(O)d(l) ... d(k)]T,and (2 - 15) 

X = [xo XI X2 . . . X J T' (2 - 16) 

we can form the error vector as 

e = d-Ax . (2 - 17) 

In statistics, the above model is called the linear model, since the output of the RBF network 

is a linear combination of the weights x , and the Gaussian node outputs A . Hence, methods 
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used for solving the linear model can be applied to this linear-in-parameter RBF network. 

For the rest of this document, the terms "linear model" and "RBF network" refer to the 

same type of network. Note that Eq. (2 - 17) will be used in Chapter 4 for analysis of the 

batch least squares method and the batch orthogonal least square method. 

The main thrust in this research is the calculation of the optimal linear parameters, 

xj, in the RBF network. The optimal parameters are those that minimize the sum of squared 

errors eT e. 

In the remainder of this chapter we will develop notation that we will use in future 

chapters. This notation will be critical to the understanding of the four major problems 

addressed in this research: time-update, order-update, combined time- and order- update, 

and subset selection. The time-update ( described in Chapter 5) is the process of updating 

the optimal linear parameters when a new data vector is received (k increased by 1). The 

order-update consists of two parts: the order-increase-update and the order-decrease

update. Initially, the order-update (described in Chapter 6), which we called order-increase

update later in Chapter 8 and Chapter 9, is developed for the recalculation of the optimal 

linear parameters when a new neuron is added to layer 1 (q is increased by 1). Later in 

Chapter 8 and Chapter 9, we introduce the order-decrease-update to work in conjunction to 

the order-increase-update. Note that the order-decrease-update is the recalculation of the 

optimal linear parameters when an existing neuron is deleted from layer 1 ( q is decreased 

by 1). The combined time- and order- update is the process in which we perform both a time 

and an order update during the same time step. Keep in mind that the order-update part in 
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the combined time- and order- update can be order-increase-update only (discussed in 

Chapter 7) or the combined order-increase-update and order-decrease-update (discussed in 

Chapter 8 and Chapter9). The subset selection occurs before an order update. It is the 

process of selecting significant nodes or deselecting insignificant nodes in an RBF network. 

(Subset selection is described in Chapter 6.) 

Our notation will be slightly different for each of the four problems discussed 

above. The objective will be to minimize the amount of redundant notation required for a 

specific problem. 

2.4.2 Time-Update Framework 

Let us assume that in addition to the current set of k time points, { dU), PU) }J = 0 , 

we receive new data { d(k + 1 ), p(k + 1)}, and we would like to update the linear model 

in Eq. (2 - 17). Then, the RBF hidden layer output becomes 

aJJ) =J(IIPU)-cill),forj = O ... k+l andfori = O ... q. (2 - 18) 

The matrix in Eq. (2 - 12) will have an extra row appended to it. Hence, the old hidden layer 

output matrix is denoted by A(k), 

a0(0) a1 (0) ... aqCO) 

A(k) = ao(l) a1(1) ... a/1) (2 - 19) 

while the new hidden layer matrix is denoted by A(k + 1), 
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a 0(0) a 1 (0) aqCO) 

ao(l) a1(1) aqCl) 

A(k + 1) = (2 - 20) 

a0(k) a 1 (k) aqCk) 

a0(k+ 1) a 1(k+ 1) ... aqCk+ 1) 

Furthermore, by applying the time-indexing notation to Eq. (2 - 17), we obtain the old error 

vector: 

e(k) = d(k) -A(k)x(k) (2 - 21) 

where 

e(k) = [e(O) e(l) ... e(k)] T, (2 - 22) 

d(k) = [d(O) d(l) ... d(k)] T, (2 - 23) 

(2 - 24) 

The updated error after the new data is incorporated will be 

e(k + 1) = d(k + 1) - A(k + 1 )x(k + 1) (2 - 25) 

where 

(2 - 26) 

d(k+ 1) = [d(O) d(l) ... d(k) d(k+ l~T' (2 - 27) 

(2 - 28) 

28 



Note that x(k+ 1) minimizes eT(k+ l)e(k+ 1), whereas x(k) minimizes eT(k)e(k). 

Using this time-indexing notation, we will derive the recursive time-update algorithms, 

which we will discuss in Chapter 5. 

2.4.3 Order-Update Framework 

In the order-update framework, we will consider the order-increase-update and the 

order-decrease-update. The order-increase-update is the recalculation of the optimal linear 

parameters when a new neuron is added to the RBF network and the order-decrease-update 

is the recalculation of the optimal linear parameters when an existing neuron is deleted from 

the RBF network. 

2.4.3.1 Order-Increase-Update 

Suppose we want to add a neuron (Gaussian node) to layer 1 of the RBF network. 

Then, the hidden layer output of the RBF network becomes 

aiU) = J(IIPU)- cill), for j = O ... k, and i = O ... q + 1. (2 - 29) 

This also means that the new Gaussian node forms an extra column appended to Eq. (2 -

12). In terms of notations, will add a subscript q to a vector or matrix to denote the order-

indexing. Hence, the hidden layer matrix at order q is denoted by Aq, 

a0(0) a 1 (0) ... aqCO) 

A = a 0(1) a 1(1) ... aqCl) 
q (2 - 30) 

and the hidden layer matrix at order q + 1 is denoted by A q + 1 , 

29 



a 0(0) a 1 (0) .. . aqCO) aq + 1 (0) 

= a 0(1) a 1(1) ... aqCl) aq+ 1(1) (2 - 31) 

If we apply the order-indexing notation to the error vector of Eq. (2 - 17), we obtain: 

(2 - 32) 

where 

(2 - 33) 

(2 - 34) 

(2 - 35) 

Since the order-update cannot affect the desired response d, there is no subscript q 

attached. Meanwhile, the updated error vector will satisfy the following 

(2 - 36) 

where 

(2 - 37) 

d = [d(O)d(l) ... d(k~T' (2 - 38) 

[- - - JT X = q + I XQ X] ... Xq Xq + I · (2 - 39) 
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-
Note that each element xi in the parameter vector xq + 1 is updated, and it will not have the 

same value as xi in the parameter vector xq. Also, because of the added Gaussian node, a 

-
new parameter xq + 1 is created in the parameter vector xq + 1 • Note that each element eU) 

in eq + 1 is the newly computed error, so it is different from eq. Using this order-indexing 

notation, we will derive the order-increase-update algorithms, which we will discuss in 

Chapter 6. 

2.4.3.2 Order-Decrease-Update 

Suppose we want to remove an existing neuron (assume that it is the yth neuron 

where v is between O and q) from layer 1 of the RBF network. Then, the hidden layer 

output of the RBF network becomes 

aiU) = f(IIPU) - cili), for j = O ... k, and i = 0 ... v- 1, v + l. .. q. (2 - 40) 

This also means that the new Gaussian node has the v column removed. Because we have 

one less neuron, the order decreases by 1 to q - 1 . Hence, the hidden layer matrix at order 

q- 1 is denoted by Aq- 1 , 

a0(0) a 1 (0) 

A = ao(l) a1(l) 
q-1 

av_ 1(0) av+i(O) ... aqCO) 

av - I (1) av+ I (1 ) . . . a qC 1) (2 - 41) 

If we apply the order-indexing notation to the error vector of Eq. (2 - 17), we obtain: 

e = d-A x q-1 q-1 q-1 (2 - 42) 
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where 

(2 - 43) 

d = [d(O) d(l) . . . d(k~T' (2 - 44) 

[- - - JT X = . q - I XQ XI ... Xq - I (2 - 45) 

-
Note that each element Xi in the parameter vector xq- 1 is updated, and it will not have the 

same value as xi in the parameter vector xq. Also, because an existing Gaussian node is 

removed, there will be one less parameter in xq- 1 • Using this order-indexing notation 

method, we will derive the order-decrease-update algorithms, which we will discuss in 

Chapter 8 and Chapter 9. 

2.4.4 Time and Order Update Framework 

By combining the time-indexing and order-indexing notations described in section 

2.4.2 and section 2.4.3, we can arbitrarily indicate the location of a vector or matrix 

according to time and according to order. For example, the hidden layer matrix at order 

index q and time index k is denoted by A qC k) , 
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a0(0) a 1 (0) .. . 

A (k) = ao(l) a1(1) .. . 
q (2 - 46) 

We will express the last row vector and the last column vector of AqCk) using the notation 

shown in Eq. (2 - 47), and Eq. (2 - 48). 

(2 - 47) 

(2 - 48) 

We can make up the matrix A qC k) using the row vector of Eq. (2 - 4 7) or the column vector 

of Eq. (2 - 48): 

(2 - 49) 

Again, if we apply the time and order-indexing notations to Eq. (2 - 17), we obtain: 

eqCk) = d(k) -AqCk)xqCk) (2 - 50) 

where 

(2 - 51) 

d(k) = [d(O) d(l) ... d(k)] T, (2 - 52) 
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(2 - 53) 

After an order-increase-update and a time-update, the new hidden layer matrix is: 

a0(0) a 1 (0) aqCO) aq+l(O) 

a 0(1) a1 (1) aqC 1) aq+1Cl) 

Aq+iCk+l) = (2 - 54) 

a0(k) a 1 (k) aqCk) aq+l(k) 

a0 ( k + 1 ) a 1 ( k + 1 ) . .. a qC k + 1 ) a q + 1 ( k + 1 ) 

Meanwhile, the updated error vector will satisfy the following 

(2 - 55) 

where 

(2 - 56) 

d(k+ 1) = [d(O) d(l) ... d(k) d(k+ l~T' (2 - 57) 

(2 - 58) 

Note that the parameter vector xq + 1 (k + 1) is updated, and it will not be the same as the 

parameter vector xqCk). Also, because of the added Gaussian node, a new parameter 

xq + 1 (k + 1) is created in the parameter vector xq + 1 (k + 1). Similarly, eq + 1 (k + 1) is the 

newly computed error, so it is different than eqCk) . 
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2.5 Special RBF Network for Subset Selection 

pl ( 0 ), ... , pl ( k )¥:::---7"--r---::::"'4 

P2 ( 0 ), ... , P2 ( k )~:::-"~~-7'-::_::::::::~ 

Figure 2 - 12 Special RBF Network for Subset Selection 

In this section, we will define the special RBF network architecture that we will be 

using in Chapter 7. As shown in Figure 2 - 12, the architecture of this network consists of 

a RBF network and a subnet of Gaussian nodes with no output layer. We will assume that 

all the nonlinear parameters are fixed in both networks. The main idea here is to create a 

set of Gaussian nodes that are not used in the computation of the network output but can be 

made available if they are needed to improve the approximation ability of the network. 

Chapter 6 will explain how we choose which unused node to add to the computation of the 

network output. 

The RBF network mathematical equation is described in Eq. (2 - 46) and Eq. (2 -

50). Meanwhile, the RBF network subnet without the output layer is described as 
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q:)j) = J(IIPU) - ciil), for j = 0 ... k and for i = 1. .. q. (2 - 59) 

We use an under bar to indicate the nodes associated with the subnet and a subscript to 

indicate the number of nodes in the subnet. If we write out every element, a .U) , of the 
-l 

subnet this forms the following matrix: 

~/0) ~2(0) .. . 

~qCk) = 
~/1) ~2(1) .. . 

a (k) 
-q 

To denote the last row vector of ~qCk), we introduce a left subscript. That is: 

Meanwhile, the last column vector of ~qCk) is denoted as 

a (k) = [a (0) a (1) ... a (k)lT. 
-q -q -q -q J 

(2 - 60) 

(2 - 61) 

(2 - 62) 

~q(k) represents the unselected nodes and AqCk) represents the selected nodes. Note that 

~qCk) and AqCk) may have different numbers of columns. 
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2.6 Summary 

Having presented the relevant neural network background and notation, we have 

built the framework for later chapters. For now, we will restrict our research to two-layer 

single-input/single-output RBF networks for function approximation. Although the work 

done in this research is based on the RBF network, it can be applied to all nonlinear models/ 

approximators that have a linear-in-parameters structure, such as the fuzzy basis function 

network, functional-linked network, Volterra series model and more. 

37 



Chapter 

3 
Problem Statement 

3.1 Introduction 
3.2 Objective 
3.3 Illustrative Example 
3.4 The Research Outline 

39 
39 
42 
45 

RBF neural networks have always suffered from the curse of dimensionality; the 

number of RBF nodes increases exponentially with the number of inputs. This prob-

Lem is especially acute when RBF networks are used in on-line control techniques 

such as stable adaptive control. Hence, this research explores on-line learning tech-

niques that will construct small RBF networks. Many methods have been proposed to 

solve this problem, but most of these attempts are for off-line use. In fact, very few 

methods have been found that can efficiently construct small RBF network on-line. 

In this research, we design and implement on-line learning methods based upon the 

off-line least squares and orthogonal least squares learning methods. This chapter 

defines the problem addressed by this research. 

38 



3.1 Introduction 

This research focuses on real-time adaptive control and identification of nonlinear 

systems using a class of radial basis function (RBF) networks. In real-time applications, 

such as stable adaptive control, a large number of RBF nodes are needed to guarantee a 

minimum network reconstruction error. This limits the use of this technique to systems with 

low input dimension. The RBF network suffers from the curse of dimensionality; the 

number of nodes needed increases exponentially with the number of inputs. We would like 

to construct small RBF networks in real-time, while guaranteeing the minimum network 

reconstruction error. To achieve these capabilities, we develop real-time algorithms based 

on the off-line least squares and orthogonal least squares methods. 

3.2 Objective 

The control and identification of a nonlinear system can often be viewed as a 

nonlinear function approximation problem. If this nonlinear function is continuous and 

differentiable over a compact subset of its domain, then according to universal 

approximation theorems (Park & Sandberg 1991, Poggio & Girosi 1990a, 1990b), there 

exists a linear combination of radial basis functions that can uniformly approximate this 

nonlinear function to any degree of accuracy, provided that enough basis functions are 

available. The RBF network can be mathematically represented as: 

q 

y(p) = I, xiaJp, ci) (3 - 1) 

i = 0 
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where a; is the RBF node, ci is the center, p = [p 1, p 2, ••• , Pr] is a set of input signals, 

and X; is the output weight. 

However, because radial basis functions are local receptive fields, the number of 

basis functions employed can be very large. The resulting expansions will thus be capable 

of only approximating the nonlinear function y(p) on a particular subset of the input space. 

Worst of all, the number of RBF nodes exponentially increases with the number of inputs. 

This phenomenon is referred to as the curse of dimensionality. (Hay kin 1994) 

The curse of dimensionality problem becomes particularly acute in stable adaptive 

control using the RBF network (Sanner 1993, Sanner & Soltine 1992, 1995, Tzirkel & 

Fallside 1992). In this technique, the RBF network (used inside the relevant region) is 

combined with a sliding mode controller (used outside of the relevant region) to achieve 

globally stable adaptive control. To guarantee the stability of the controller, the RBF 

network has to be constructed in such a way that it yields a minimum network 

reconstruction error. According to Sanner (1993), this criteria is guaranteed by constructing 

the RBF centers on an equally spaced mesh grid covering a relevant region. To achieve 

small reconstruction error, hundreds of RBF nodes may be needed to cover a relevant range 

in each dimension, and therefore several thousand RBF nodes may be needed to cover the 

relevant region of the input space. Consequently, this limits the control technique to low 

dimensional systems. 

To alleviate this problem, several stable adaptive control techniques (Fabri & 

Kadirkamanathan 1996, Liu & Kadirkamanathan 1996) were introduced by employing a 
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growing RBF network combined with the sliding mode controller. These techniques also 

assume that the centers are equally spaced and cover a relevant region. However, it only 

activates the RBF nodes when the nonlinear system inputs are near their RBF centers. 

Hence, the RBF network grows larger and larger as the nonlinear system visits various 

regions of the state space. Accordingly, this technique may save many RBF nodes 

depending on whether or not the nonlinear system visits the corresponding centers. 

However, in the worst scenario, no saving of RBF nodes will occur when the nonlinear 

system visits all of the input space. 

Again, these techniques are clearly unsatisfactory, as they do not reduce the growth 

of the RBF nodes, i.e. no saving of RBF nodes will occur when the nonlinear system visits 

all of the state space. Therefore, they suffer from curse of dimensionality as well. 

For practical purposes, it is desired to construct small RBF networks on-line. Small 

RBF networks often provide better performance, because they generalize better. A search 

of existing literature has revealed very few ad-hoc techniques (Karayiannis & Mi, 1997) 

that can select small RBF networks, while operating in real-time and simultaneously 

guaranteeing a minimum reconstruction error. On the other hand, there exist many off-line 

(batch) techniques that can select small RBF networks and guarantee a minimum 

reconstruction error. Off-line techniques usually collect a finite set of input-output data and 

perform complex calculations to determine the number of nodes required. In general, these 

techniques can be classified into three categories: 

1. network pruning techniques - such as the optimal brain damage method (Cun et al. 

1990), and the optimal brain surgeon method (Hassibi & Stork 1992). 
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2. network growing techniques - such as the orthogonal least squares method (Chen et 

al. 1991), and the cascade correlation learning architectures (Fahlman & Lebiere 

1990). 

3. network parameter determination - such as the Bayesian regularization method 

(MacKay 1992, 1994). 

The orthogonal least squares (OLS) method is a simple and efficient method. This 

method guarantees a level of network reconstruction error and produces a small RBF 

network. This procedure first assumes that each input data is a potential RBF center. A set 

of RBF hidden layer outputs is obtained by feeding the input data into the hidden layer 

using all of the potential RBF centers. Then, one by one, the potential RBF center that 

produces the largest reduction in network error is added to the network. This selection 

process continues until an adequate network reconstruction error has been reached. We will 

demonstrate this concept through the following example. 

3.3 Illustrative Example 

Assume that we have the following sine wave function 

yfp) = sin(p) 0 $. p $. 21t sampling interval = 1t/8. (3 - 2) 

A set of potential RBF hidden layer outputs are created using the potential RBF centers 

selected from the input data and cr = 1. As shown in Figure 3 - 1, 17 RBF nodes (right 

figure) are available to approximate the sine wave function ( + mark in left figure). These 
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nodes are arranged from left to right as { a 1, a 2, .•• , a 17 } , with centers at 

{O, 1t/8, ... , 21t}. 

Targets 

" + 

3 
p 

Figure 3 - 1 Desired Target and the RBF Hidden Layer Outputs 

Intuitively, if we were to select the RBF nodes visually, we would select two RBF 

nodes, one at the peak and the other at the valley (corresponding to RBF a 5 and a 13 nodes) 

of the sine wave. The outputs of these two nodes would seem to best match the curvature 

of the sine wave. 

The OLS method finds the optimal nodes one by one in several steps. It begins with 

no nodes. At each step, a node that produces the largest reduction in the network error is 

selected from the RBF hidden layer outputs and is added into the network. These steps are 

repeated until a target network reconstruction error is reached. This procedure is best 

explained by a graphical example as shown in Figure 3 - 2. 

Figure 3 - 2(a) shows the first step of this algorithm. It adds node a 5 into the 

network, since this node provides the largest reduction in network error. However, one node 

is not enough to capture the whole sine wave. Hence, in a second step, (Figure 3 - 2(b)) 

43 



another node a 13 is selected to aid the reconstruction of the sine wave. Together, both nodes 

approximate the complete sine wave, as shown in Figure 3 - 2(c). (By adding more nodes, 

we can further improve the approximation.) 

Sel&ct 1st node Select 2nd node 

(a) (b) 
0 .-4 + 0.-4 + 

- 0.2 

-0.6 

- 0.8 

3 3 
k k 

The RBFoutptA 

08 (c) 

O.at + 

0.2 

3 
k 

Figure 3 - 2 Orthogonal Least Squares Center Selection 
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3.4 The Research Outline 

The OLS learning algorithm is a simple and efficient algorithm for selecting a small 

size RBF network. However, one drawback with this method is that the training is done in 

batch mode only. (Batch means that the entire training set must be available. A recursive 

algorithm can update the parameter estimates as each new data point is received.) 

This research has found a way to produrt~ on-line LS and OLS learning methods. 

This goal is achieved by considering three majo.=- is~ue~: time-update, order-update, and 

subset selection. The time-update is the process of updating the RBF weights when a new 

time point data is received. Two time-update algorithms, the recursive leasr squares (RLS) 

algorithm and the QR recursive least squares (QR-RLS) algorithm, are discussed in 

Chapter 5 to address this issue. 

The order-update is the recalculation of the optimal RBF weights ,vhen a new RBF 

node is added (order-increase-update) or deleted (order-decrease-update). Chapter 6 

addresses this issue by deriving the recursive order-increase-update procedures for least 

squares and orthogonal least squares methods to recalculate the. optimal weights. 

Meanwhile, the subset selection occurs !Jefore the order-update. It is a proC,,ess of selecting 

the optimal node for the RBF network and deciding whether an order-update is necessary 

at a particular tirne point. This issue is also disccssed in Chapter 6. 

If we take all three processes t0gether, we arrive at c: time- and order- update 

framework, which can be used to ~elect useful RBF nodes sub-optimally and recursively. 

Because the framework can be applied t;) the RLS method and the QR-RLS method, two 
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algorithms are developed. We call these algorithms Recursive Least Squares with 

Automatic Weight Selection (RLS-AWS) and QR Recursive Least Square with Automatic 

Weight Selection (QR-RLS-AWS). 

In Chapter 8 and 9, we devote our efforts to improve the RLS-AWS and the QR

RLS-AWS algorithms. These improvements include alleviating the storage requirement, 

improving the algorithm's subset selection solution by developing the recursive Efroymson 

method, and reducing the computation efforts. Subsequently, we make these algorithms 

practical for real-time usage. 

With these two algorithms, we hope to alleviate the problem of the curse of 

dimensionality by producing moderate RBF network sizes. 
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In chapter 2, we pointed out that the RBF network with fixed centers and fixed stan-

dard deviation could be viewed as a linear model. In this chapter, we will discuss the 

necessary tools for solving this "linear" RBF network: the least squares method and 

the orthogonal least squares method. 
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4.1 Introduction 

This chapter is organized as follows. In section 4.1, we introduce the linear model. 

In section 4.2, we formulate the linear model solution as a linear least squares problem. 

Then, we characterize the least squares solution as a solution to the normal equations. The 

Orthogonality Theorem and Uniqueness Theorem are summarized as the backbone proofs 

for this least squares method. In section 4.3, we view the least squares problem 

geometrically. The concept of matrix projection through the subspace projection is 

introduced and a geometrical interpretation of the matrix projection is discussed. In section 

4.4, we highlight the numerical problems, which occur when we use the normal equations 

to solve the least squares problem. A better least squares method based on an orthogonal 

transformation is introduced. We discuss several orthogonalization tools, but detailed 

attention is given to the Givens rotation. The Givens rotation will serve as the central 

process for the Givens QR algorithm; hence, it is discussed in detail in section 4.5. Readers 

are encouraged to pay extra attention to the Givens rotation operations as they are central 

to the QR recursive least squares algorithm in chapter 6, 7, 8 and 9. 

4.2 Linear Model 

Linear models exist in all scientific disciplines. The linear model might seem to be 

highly restricted, but many industrial processes can be described very accurately by these 

types of models. In fact, it is one of the most widely used models in industrial applications, 
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such as in control, signal processing, etc. In linear models, one assumes that the desired 

vector d E 9\m is related to the unknown parameter vector x E 9\n by a linear relation 

Ax= d, (4 - 1) 

where A E 9\m x n is a known data matrix. This equation has an exact solution when we can 

match the desired vector d exactly with a linear combination of the columns of A. For 

example, if m = 3, n = 1, 

(4 - 2) 

then x = 2 produces an exact solution. However, in many instances, d cannot be 

expressed in the form of Ax. For example, if m = 3, n = 1, 

(4 - 3) 

no value of x can ever produce d exactly. This leads us to an extension of the linear model, 

Ax+ e = d (4 - 4) 

where e is the error vector. The solution of Eq. (4 - 4) is to find a parameter x such that 

Ax is as close as possible to d; in other words, find the "best" fit (albeit not perfect) 

between Ax and d. 
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4.3 Solving the Linear Model 

4.3.1 The Linear Least Squares Problem 

How do we measure the distance between Ax and d ? There are many possible 

ways. One choice is motivated by statistical considerations and leads to a simple solution. 

It is the Euclidean vector norm (the two-norm). This leads to the minimization problem 

(4 - 5) 

where 11 • 11 2 denotes the Euclidean vector norm. If d - Ax = e, then 

Of course, there are other norms we can use, such as the Holder vector p-norms 

II • IIP, which are defined by 

1 $.p$.oo. (4 - 6) 

For our research, however, we will only focus on the two-norm. In fact, the two-norm 

minimization problem is the linear least squares problem. In the following section, we will 

characterize the set of all solutions to the least squares problem. 
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4.3.2 Characterization of Least Squares Solution 

The solution of the least squares problem has been widely discussed in many books. 

We will not attempt to cover this material in great detail, but will give a brief review on 

some of the characteristics of the least squares solution. For more detail, see (Bjorck 1996, 

Golub & VanLoan 1996, and Haykin 1996). 

There are two unique least squares properties; the orthogonality condition and the 

uniqueness condition. We summarize these two properties in the following two theorems. 

Theorem 4 - 1 Orthogonality Condition 

Let us denote the set of all solutions to the least squares problem Eq. (4 - 5) by 

S = {x E Rnl lid -Axlb = min}. (4 - 7) 

It can be shown that x E S if and only if the following orthogonality condition holds: 

(4 - 8) 

Proof (See Bjorck 1996 pp.5). 

Theorem 4 - 1 is known as the principle of orthogonality (Haykin 1996). If we 

expand Eq. (4 - 8), we obtain 

(4 - 9) 

which is called the normal equation. This implies that the solution of Eq. (4- 5) must satisfy 

the normal equation. Assuming for now that the inverse matrix (AT A)-1 exists, we may 

solve the linear least squares problem as 

(4 - 10) 
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It is important to know when this solution is unique. This is covered by the following 

Uniqueness Theorem. 

Theorem 4 - 2 Uniqueness 

If A E 9\ m x n has full rank n , then there exists a unique least squares solution x 

and a residual e = d -Ax, which is given by 

x = (ATAt1ATd, and 

Proof (See Bjorck 1996 pp.7). 

(4 - 11) 

Theorem 4 - 2 shows that we may expect a unique solution to the least squares 

problem only when the data matrix A has linearly independent columns. In this case, the 

inverse matrix (AT A)-1 is non-singular (therefore invertible) and the least squares solution 

1s umque. 

On the other hand, if rank(A) < n , then an infinite number of solutions can be 

found for minimizing the sum of squared errors. We defer discussion of this issue to the 

later part of the chapter. In the meantime, we assume that data matrix A is of full column 

rank, so that the least squares estimate x has the unique value defined by Eq. (4 - 10). 

4.4 Orthogonal Projection 

Notice in Eq. (4 - 11) that the residual e contains a term A(AT A)- 1 AT. This term 

is called the projector. To understand the concept of projection and its relationship with the 

least squares solution, we must first understand the concept of projection onto a subspace. 
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4.4.1 Subspace Projection 

Let S be a subspace of 9tm and s E S be an element in S. Then, the orthogonal 

complement of S, denoted by S .l , is defined as the set of all m-dimensional vectors that are 

orthogonal to vectors in S. i.e. if a is an element in S .l, then 

S .l = { a E 9t m I a Ts = 0 for all s E 9t m} . (4 - 12) 

Note that S .l is also a subspace of 9tm . Together, S and S .l comprise all of 9tm, and have 

no vectors in common except for the zero vector: 

(4 - 13) 

An important relationship between the S and S .l is that any m-vector d can be represented 

as 

(4 - 14) 

Let S be a subspace of 9t m , then P s, a unique m x m matrix, is an orthogonal 

projector onto the subspace S if it satisfies the following properties (Bjorck 1996): 

1. Every vector in the subspace S can be written as a linear combination of the 

columns of Ps, i.e., the vector d5 lies in S if and only if d5 = Psd for some m-

vector d . 

2. Pf = Ps (Symmetric Property). 

3. Pi = Ps (Idempotent Property). 
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It is important to note that these properties also apply to the orthogonal complement 

- -
projector I - P s. If we apply the projector P s to any m-vector d, it will produce d s - the 

portion of d that lies in S. 

(4 - 15) 

-
Similarly, if we apply the orthogonal complement projector I - P s to any m-vector 

d , it will produces d s .1 - the portion of d that lies in SJ_ . 

(4 - 16) 

4.4.2 Matrix Projection and Geometrical Interpretation 

The notion of subspace projection is closely tied to the matrix projection. As in 

subspace projection, we can decompose a m-vector d into a sum of two quantities. In 

matrix projection, these two quantities fall into the range space of A and the null space of 

(4 - 17) 

where dR E range(A) and dN E null(AT) . The matrix projector, PA, is a projector onto 

the range of A with properties similar to the subspace projector Ps . (Bjorck 1996) 

- -
1. PAd = dR and (1-PA)d = dN. 

2. i>J = PA (Symmetric Property). 

54 



3. Pl = PA (Idempotent Property). 

Using Eq. (4 - 17) and Property (1), we can decompose am-vector d into 

- -
d = PAd+(I-PA)d. (4 - 18) 

PA projects the d vector onto the column space of the matrix A E 9\m x n where 

( 4 - 19) 

and 

T T -
1-A(A A)A = I-PA (4 - 20) 

is the orthogonal complement projector (or simply orthogonal projector). When applying 

- A 

the matrix projector PA to the desired data vector d , we get an estimated data vector d . 

Likewise, if we apply the orthogonal projector, I - PA , to the desired vector d, we obtain 

A 

the error vector e = d - d . This projection operator can be illustrated by the following 

diagram. 

A 

d A 

d 

e 

Figure 4 - 1 Geometrical Interpretation of the Orthogonal Projection 
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As shown, the objective is to minimize the length of the error vector e, so that the 

~ 

desired response, d , is as close as possible to the estimated data vector d . 

4.5 Orthogonal Transformation 

4.5.1 Motivation 

Although the normal equation is the fastest way to solve the least squares problem, 

it suffers from a lack of accuracy. This problem is illustrated by the following example. 

Consider 

A=[: :l, 
0 10-~ 

then the associated sum of squared matrix is 

ATA=[2 2 l. 
2 2 + 10-1~ 

Now, if we have an infinite precision computer, we will obtain an exact AT A 

solution. However, if we use double precision arithmetic, 2 + 10-16 will be rounded to 2, 

and we will obtain A' A = ~ ~, which is not invertible. Since A is the original data 

matrix, this ill-conditioning problem cannot be avoided by choosing another 
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parameterization. The accuracy of the computed normal equation solution may then depend 

on the square of the condition number of A. 

4.5.2 Orthogonal Least Squares Method 

Due to this numerical difficulty, modern least squares methods have been developed 

based on orthogonal transformations. These are called the orthogonal least squares 

methods. The main idea of the orthogonal transformation is to work directly with the 

original data matrix A by decomposing A E 9\m x n into an upper triangular matrix 

R o,m x n . h l . QT o,m x m 
E .n usmg an ort ogona matnx E .;,\ . 

(4 - 21) 

Using this definition, the least squares minimization problem can be rewritten as 

(4 - 22) 

Since QT is an orthogonal matrix, its application to the error residual preserves the 

Euclidean length (does not alter the two-norm) and cannot exacerbate the condition of A . 

Because we are no longer solving equations, we avoid the numerical inaccuracy associated 

with forming the AT A matrix. 

To solve the least squares problem using the orthogonal transformations, we need 

to find the orthogonal matrix. We find the orthogonal matrix by applying a sequence of 

special transformations to A or by Gram-Schmidt orthogonalization methods. Because 

Gram-Schmidt orthogonalization methods are not very useful in recursive least squares, we 
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will not discuss them here. The orthogonal transformations used in finding the orthogonal 

matrix can be the Householder reflections or the Givens rotations. Both transformations can 

be easily applied to recursive least squares. The Householder reflections introduce zeros on 

a grand scale (they annihilate all but the first component of a vector) while Givens rotations 

introduce zeros element by element (they annihilate one element in a vector one at a time). 

We will only discuss the Givens rotations, since it will be used in Chapter 5 when we 

introduce square root filtering. 

4.6 Givens Rotations 

The Givens rotations (Givens 1958) are also known as plane rotations or Jacobi 

rotations (Jacobi 1846). It is referred to as Jacobi rotations in honor of Jacobi 1846, who 

proposed a method for reducing a symmetric matrix to diagonal form. It is referred to as 

Givens rotations in honor of Givens 1958, who proposed a method for reducing a general 

matrix to triangular form. Also, it is referred to "plane rotation" because multiplication by 

this matrix will give a plane rotation. 

Let G(i, k) denotes a Givens rotation in the (i, k) plane, where k > i. The G(i, k) 

matrix is the same as the M x M identity matrix, except for the four strategic elements 

located on the rows i, k and columns i, k. At these locations, c = cos ( 8) and s = sin ( 8) 

as in the following: 
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1 0 0 0 

0 C s 0 

G(i, k) = ( 4 - 23) 
0 -s C ... 0 k 

0 0 0 1 

k 

The above Givens rotation matrix is clearly orthogonal, as GT G = I . To illustrate the 

nature of this Givens rotation, consider 

(4 - 24) 

(4 - 25) 

Premultiplying the vector x by G(i, k{ yields 

y = G(i,k{x 

Y1 
T 

XI 1 0 0 0 

Yi 0 C s 0 X· I (4 - 26) 
= 

Yk 0 ... -s ... C 0 xk 

YM 0 0 0 1 XM 

From the above, we can derive the following set of equations 
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Yk = sxi + cxk (4 - 27) 

Yj = xj j ct i, and j ct k 

From these equations, it is clear that we can force Yk to zero by setting 

C = 
X· -Xk 

--1 -,ands = 
Jxl +x'f Jxl +x'f 

(4 - 28) 

Note that it is not necessary to compute 8. Thus, the Givens rotation is the transformation 

of choice when we need to zero a specified entry in a vector. In practice, we do have to 

guard against overflow, and the following version of the Givens rotation (Golub & Van 

Loan 1996) is often used. 

Givens Rotation Algorithm 

Given scalars a and b, this function computes c = cos(8) ands = sin(8) so that 

[:sf[:] = [~] 

function [c, s] = givens(a, b) 

if b = 0 

C = 1 ;s = 0 

else 

if lbl > lal 
't = - a/ b;s = 1/ ~;c = st 

else 

't = -bl a;c = 1/ ~;s = ct 

end 

end 
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To apply the Givens rotation to a full matrix A, it is critical to exploit the simple structure 

of a Givens rotation matrix when it involves a matrix multiplication. Suppose A E 9\m x n, 

then the update G(i, k{ A effects just two rows of A, 

A([i, k], :) = G(i, k{ A([i, k], :) . (4 - 30) 

4.6.1 Givens QR Methods 

With the Givens rotation capable of zeroing a specific entry in a matrix, we can 

apply a sequence of Givens rotations to reduce A to an upper triangular matrix. The 

following 4 by 3 case illustrates the general idea: 

X X X ( 1.4) X X X (1.3) ( 1,2) 

~ ~ ~ 

X X X X X X 0 X X 

X X X 0 X X 0 X X 

X X X X X X X X X 

0 X X (2.4) 0 X X (2.3) 0 X X 
(3.4) 

~ ~ ~R 
0 X X 0 X X 0 0 X 

0 X X 0 0 X 0 0 X 

the affected elements 

Figure 4 - 2 Givens QR Annihilation on a 4x3 Matrix 

The annihilation begins at the top left matrix and ends at the bottom right matrix. 

The highlighted elements in the matrix are the elements that are affected by each 

annihilation. On each sequence, the annihilation shows the (i,k) element that has been 

zeroed. If G/i, k) denotes the j -th Givens rotation in the reduction, then Q T A = R is 
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upper triangular, where QT is represented by the sequence of Givens rotations G/i, k) 

applied to the A matrix: 

(4 - 31) 

Givens QR Algorithm 

Given A E 9\m x n with m ~ n, the following Givens QR algorithm overwrites A 

with QT A = R, where R is upper triangular and Q is orthogonal. 

for j= 1:n 

for i = m:-1 :j + 1 

[c, s] = givens(AU,j), A(i,j)) 

end 

end 

A(U, i],j:n) = [c s]T A(U, i],j:n) 
-SC 

(4 - 32) 

Accordingly, this algorithm requires 3n2(m - n/3) flops (Golub & Van Loan 1996). 

4.7 Summary 

This chapter has covered the fundamental least squares techniques. It also discussed 

the important concept of subspace/matrix projections. Several important tools such as the 

Givens rotations and QR Givens algorithm were discussed. These tools will be used to 

facilitate algorithm development in later chapters. With this introduction to the Givens 

rotation and the Givens QR algorithm, we are ready to explore the time update algorithms 

in the next chapter. 
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Our main mission in this chapter is to develop the basic theory behind the time update 

algorithms, specifically the Recursive Least Squares (RLS) algorithm and the QR Re-

cursive Least Squares (QR-RLS) algorithm. These algorithms serve as important 

tools for the Recursive Least Squares with Automatic Weight Selection ( RLS-A WS) al-

gorithm and the QR Recursive Least Squares with Automatic Weight Selection (QR-

RLS-AWS) algorithm, which will be developed in Chapter 7 - 9. 
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5.1 Introduction 

We begin the development of the RLS algorithm by reviewing some basic relations 

that pertain to the method of least squares. By exploiting a relation in matrix algebra known 

as the matrix inversion lemma, we develop the RLS algorithm. Later, we point out that the 

RLS algorithm suffers from numerical instability, and we introduce a more stable method 

called the QR-RLS algorithm. We derive the QR-RLS algorithm based on the RLS 

algorithm and the matrix factorization lemma. Then, we also discuss how the QR-RLS 

algorithm operates using the orthogonal matrix. Each of these algorithms is discussed in 

detail and a summary is given at the end of the chapter. 

In the following, we extend the batch least squares method of Chapter 4 to the 

recursive least squares algorithm. To ease the derivation, we introduce the time notation k 

to denote the difference between the past data and the current data. Specifically, the time 

index k - 1 denotes the last time step and the time index k denotes the current time step. 

Let us assume that, in the last time step, we found the least squares solution to the 

linear model given by Eq. (5 - 1). The least squares solution for this linear model is given 

in Eq. (5 - 2), 

A(k - 1 )x(k - 1) = d(k - 1), 

x(k - 1) = (AT(k- l)A(k-1))- 1AT(k - l)d(k - l) . 

(5 - 1) 

(5 - 2) 

Note that A(k- 1) and d(k - 1) are the data matrix and desired response vector given by: 
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A(k-1) = ,d(k-1) = 
d(O) 
d(l) 

d(k- 1) 

Meanwhile, x(k- 1) is a parameter vector at time index k- 1 . 

(5 - 3) 

Now, at the current time step k, a new data vector aT(k) and a new desired response 

d(k) become available, and we wish to add this new information into the linear model as 

in Eq. (5 - 1). This new information is incorporated by adding a T(k) as a new row of the 

data matrix A ( k - 1 ) and adding d ( k) into the desired vector d ( k - 1) : 

A(k) = [A(k- 1~, and d(k) = [d(k-1)1 _ 
aT(k) J d(k) J (5 - 4) 

Together, they form a new linear model at the current time step k, 

A(k)x(k) = d(k). (5 - 5) 

Naturally, we could compute the whole least squares solution again, but this would 

be time consuming. We usually avoid performing such an operation by finding a way to 

recursively update the least squares solution. This is especially important when the new 

data are arriving sequentially and the least squares solution must be computed in real time. 

The recursive solution can be obtained by using a basic result in matrix algebra known as 

the matrix inversion lemma. 
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5.2 Matrix Inversion Lemma 

Before we derive the recursive least squares algorithm, we introduce the matrix 

inversion lemma. Let A and (D + C7 A-1 B) be two square and invertible matrices, then 

according to the matrix inversion lemma, we may express the inverse of the A+ BD-1 CT 

matrix as follows: 

(5 - 6) 

In the special case where Band C are vectors (denoted by b and c respectively) and Dis 

a scalar, d, Eq. (5 - 6) simplifies to 

(5 - 7) 

Note that (d + c7 A-1 b )-1 is a scalar and the inversion is just a simple division. Frequently, 

Eq. (5 - 6) is called the Woodbury formula (Woodbury 1950) and Eq. (5 - 7) is called the 

Sherman-Morrison formula (Sherman & Morrison 1949). In engineering, these formulae 

are often referred to as the matrix inversion lemma. For a history, literature surveys, proofs 

and applications of the matrix inversion lemma, see Hager ( 1989). 
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5.3 Recursive Least Squares Algorithm 

In this section, we apply the matrix inversion lemma to the batch least squares 

algorithm and obtain a recursive algorithm. We start by finding the least squares solution 

of this new linear model 

[A(k- 1)1 x(k) = [d(k - 1 ~ 
aT(k) J d(k) J (5 - 8) 

where the new data, aT(k), and the new desired response, d(k), are added into the model. 

To solve for this new linear model, we form a new minimization problem 

minlle(k)lli = minlld(k) - A(k)x(k)ll 2 . 
X X 

(5 - 9) 

Since the least squares solution of this new linear model also satisfies Eq. (5 - 2), we could 

easily expand the above equation into 

[Ar(k-1) a(k~ [A(k- l~x(k) = [Ar(k-1) a(k)] [d(k-1)1 
aT(k) J d(k) J (5 - 10) 

(AT(k- l)A(k-1) + a(k)aT(k))x(k) = AT(k- l)d(k-1) + a(k)d(k) 

As mentioned previously, we can take the inverse of Eq. (5 - 10) and recalculate the 

whole solution, but it is impractical and time consuming. A better way of obtaining the 

solution is to apply the matrix inversion lemma, specifically the Sherman-Morrison 

Formula. When we apply the Sherman-Morrison Formula to the above equation, we obtain 

(AT(k- 1 )A(k- 1) + a(k)aT(k) f 1 = 

(AT(k - l)A(k - 1))- 1 - (AT(k - l)A(k - l))-1a(k) x .... (5 - 11) 

(1 +aT(k)(AT(k - l)A(k - 1))- 1a(k))- 1aT(k)(AT(k - l)A(k - 1))- 1 
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Let 

H(k) = (AT(k-l)A(k-l)+a(k)aT(k)f1 (5 - 12) 

be the inverse correlation matrix at the current time step and 

H(k-1) = (AT(k- l)A(k-1))-1, (5 - 13) 

be the inverse correlation matrix at the previous time step, then Eq. (5 - 11) becomes 

H(k) = H(k- 1) _ H(k- 1 )a(k~aT(k)H(k- 1) 
1 + aT(k)H(k- 1 )a(k) 

(5 - 14) 

We need to find the inverse of 1 + a T(k)H(k- 1 )a(k), but this term is just a scalar, and the 

inverse is a simple division. Let us denote the scalar term l((k) as 

K:(k) = 1 + aT(k)H(k- 1 )a(k), (5 - 15) 

then because H(k - 1) is non-negative definite (See Ogata 1987 Appendix for definition 

of non-negative definite), aT(k)H(k- 1 )a(k) ~ 0 and 

I(( k) ~ 1 and O ~ r 1 ( k) ~ 1 . (5 - 16) 

Let 

k(k) = H(k- 1 )a(k) = r1(k)H(k- 1 )a(k) 
1 +aT(k)H(k- l)a(k) 

(5 - 17) 

be the gain vector (for reasons that will become apparent later in the section), then Eq. (5 -

14) can be written as 

H(k) = H(k-1)-k(k)aT(k)H(k - 1). (5 - 18) 
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In addition, if we multiply both sides of Eq. (5 - 17) by 1 + aT(k)H(k- 1 )a(k) and expand 

it out, the gain vector can be written in terms of the inverse correlation matrix at the current 

time step and the new data vector. 

k(k) + k(k)ar(k)H(k- 1 )a(k) = H(k- 1 )a(k) 

k(k) = ( H(k-1)-k(k)ar(k)H(k-l) )a(k) 

H(k) 

k(k) = H(k)a(k) 

5.3.1 Time-Update for the Parameter 

(5 - 19) 

Now we are ready to develop a recursive equation for updating the least squares 

estimates for the parameter vector x(k) . Using Eq. (5 - 18), we can express the parameter 

vector update in Eq. (5 - 10) as 

x(k) = [H(k-1)-k(k)ar(k)H(k-l)](Ar(k-l)d(k-l)+a(k)d(k)). (5-20) 

Expanding Eq. (5 - 20), we get 

x(k) = H(k - l)Ar(k - l)d(k - 1)-k(k)ar(k)H(k- l)Ar(k - l)d(k - 1) + 

H(k- 1 )a(k)d(k)-k(k)aT(k)H(k- 1 )a(k)d(k) 
(5 - 21) 

From Eq. (5 - 2), H(k - 1 )AT(k- 1 )d(k- 1) is the least squares solution for the parameter 

vector x(k - 1). Therefore, substituting and rearranging the remaining terms, we reduce 

Eq. (5 - 21) to 

x(k) = x(k - 1)- k(k)aT(k)x (k - 1) + [H(k - 1)- k(k)aT(k)H(k - l)]a(k)d(k) .(5 - 22) 
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Notice that we can substitute Eq. (5 - 18) into Eq. (5 - 22) and we can further reduce Eq. (5 

- 22) to 

x(k) = x(k- 1 )-k(k)a T(k)x(k- 1) + H(k)a(k)d(k). (5 - 23) 

Finally, using the fact that H(k)a(k) equals the gain vector k(k), as in Eq. (5 - 19), we 

obtain the desired recursive equation for updating the parameter vector x(k): 

x(k) = x(k- 1 )-k(k)aT(k)x(k- 1) + k(k)d(k) 

= x(k-l)+k(k)(d(k)-aT(k)x(k-1)) 

= x(k-1) + k(k)~(k) 

where ~(k) is called the a priori estimation error defined by 

~(k) = d(k) - aT(k)x(k- 1) . 

(5 - 24) 

(5 - 25) 

The term ~(k) is called the a priori estimation error because it uses the past parameters 

x(k- 1) to make up the inner product a T(k)x(k- 1), which represents an estimate of the 

new desired response d(k). Take note that the a priori estimation error is different from the 

a posteriori estimation error 

e(k) = d(k) - aT(k)x(k). (5 - 26) 

70 



5.3.2 Time-Update for the Sum of Squares Errors 

The relationship between the a priori estimation error ~(k) and a posteriori 

estimation error e(k) becomes apparent when we formulate a recursive formula for the 

sum of squared errors eT(k)e(k). This recursive formula will be shown to be 

eT(k)e(k) = eT(k- 1 )e(k- 1) + ~(k)e(k). 

Proof. We first note that 

e(k) = d(k) - A(k)x(k), 

and the sum of squared errors is 

eT(k)e(k) = d T(k)d(k) - d T(k )A(k)x(k) 

- xT(k)AT(k)d(k) + xT(k)AT(k)A(k)x(k) 

(5 - 27) 

(5 - 28) 

(5 - 29) 

Note that if we substitute x(k) = (AT(k)A(k)) - 1 A T(k)d(k) into the last term of Eq. (5 -

29), then we get 

(5 - 30) 

Now, let us call the term A T(k)d(k) the cross correlation vector 

v(k) = AT(k)d(k). (5-31) 

Then Eq. (5 - 30) can be expressed as 

(5 - 32) 

Since d(k) = [d(k- l)l and A(k) = [A(k-1)1 , Eq. (5 - 31) can be written as a 
d(k ) J aT(k) J 

recursive equation 
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v(k) = v(k- 1) + a(k)d(k). 

Also, the sum of squared of the desired responses becomes 

dT(k)d(k) = dT(k- 1 )d(k- 1) + dT(k)d(k). 

Combining Eq. (5 - 34), Eq. (5 - 33), and Eq. (5 - 29), we obtain 

eT(k)e(k) = dT(k- 1 )d(k - 1) - vT(k- 1 )x(k- 1) 

+ dT(k)(d(k) - a T(k)x(k- 1)) - vT(k)k(k)<;(k) 

Now, if we rewrite Eq. ( 5 - 32) in terms of the previous time step k - 1 

eT(k - l)e(k-1) = dT(k- l)d(k-1)-vT(k- l)x(k-1), 

and substitute Eq. ( 5 - 25 ), then we have 

eT(k)e(k) = eT(k- 1 )e(k- 1) + dT(k)<;(k) - vT(k)k(k)<;(k). 

Using Eq. (5 - 31) and Eq. (5 - 19), we can express the last term of Eq. (5 - 37) as 

vT(k)k(k) = dT(k)A(k)H(k)a(k) 

= [H(k)AT(k)d(k){ a(k)· 

= xT(k)a(k) 

(5 - 33) 

(5 - 34) 

(5 - 35) 

(5 - 36) 

(5 - 37) 

(5 - 38) 

Finally, substituting Eq. (5 - 38) into Eq. (5 - 37), and noting that 

e(k) = d(k) - aT(k)x(k) from Eq. (5 - 26), we get the final equation as in Eq. (5 - 27) 

eT(k)e(k) = eT(k- l)e(k-l)+e(k)<;(k). (5 - 39) 

Take note that 

72 



which means 

e(k) = d(k) - aT(k)x(k- 1) - aT(k)k(k);(k) 

= ;(k)(l - aT(k)k(k)) 

= ;(k)(l - r 1(k)aT(k)H(k- l)a(k)) 

= ;(k)(K(k) - aT(k)H(k- 1 )a(k)) 
K(k) 

= ;(k) r 1 (k) 

eT(k)e(k) = eT(k - 1 )e(k - 1) + ; 2(k) r 1 (k) . 

(5 - 40) 

(5 - 41) 

These recursive sum of squared errors formulations in Eq. (5 - 39) and Eq. (5 - 41) have 

two important implications. First, the product between the a priori estimation error ;(k) 

and the a posteriori estimation error e(k) make up the new estimation error, which 

contributes to the new sum of squared errors. Second, due to the fact that O ::;; r 1 ( k) ::;; 1 

and ; 2(k) is a non-negative scalar, the sum of squared errors eT(k)e(k) accumulates error 

as time increases. Note that due to numerical round-off error, ; 2(k)r 1(k) can never be 

zero. This also implies that as k--? oo, eT(k)e(k) will grow without bound and the 

algorithm becomes unstable! Numerous studies have shown that the RLS algorithm can 

become divergent due to the accumulation of numerical errors (Slock & Kailath 1991, Yang 

1994, Ardalan & Alexander 1987). 

To ensure stability of the RLS algorithm, the exponential windowing method has 

been widely incorporated into the RLS algorithm. However, if we can ensure that the sum 

of squared errors stay within a certain bound eT(k)e(k)::;; t, numerical error will not be an 

issue. We will address this in greater detail in the next chapter. 
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5.3.3 Implementation Considerations 

The following sequence of equations constitutes the RLS algorithm: Eq. (5 - 17), 

Eq. (5 - 24), Eq. (5 - 25), and Eq. (5 - 18). To complete the RLS algorithm, we need to find 

a way to initialize it. We cannot simply set H(O) = 0, because that would imply we have 

an infinite correlation matrix. One simple way of initialization, according to Haykin ( 1996), 

is to modify the correlation matrix expression slightly. We can express the inverse 

correlation matrix as 

H(k) = [A r(k)A(k) + cn1-1 (5 - 42) 

where I is an identity matrix and <> is a small positive constant. Using this expression, 

when k = 0, we have 

H(O) = B-1 I. (5 - 43) 

Now we can initialize the parameters at time step k = 0 as 

x(O) = 0 . (5 - 44) 

This initialization procedure incorporating Eqs. (5 - 43) and (5 - 44) is referred to 

as a soft constrained initialization in statistical analysis (Hubing & Alexander 1990). The 

positive constant <> is the only parameter required for initialization. Through practical 

experiments, a typical value for <> should be small compared to 0.01 oj , where oj is the 

variance of the input data A(k). Note that the exact value of<> is insignificant for large data 

samples. It is also interesting to note that using this initialization procedure, we are no 

longer computing the solution that minimizes the sum of squared errors as in Eq. (5 - 9). 
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Instead, we are computing the solution that minimizes the sum of squared errors plus the 

sum of squared parameters, pre-multiplied by the positive constant 8 (Sayed & Kailath, 

1994): 

(5 - 45) 

One of the problems encountered in applying the RLS algorithm is numerical 

instability, which can arise due to its serious sensitivity to round-off errors. Due to this fact, 

in the next section, we will develop the RLS algorithm based on the QR decomposition. 

This algorithm is derived from the square-root Kalman filter, which does not suffer from 

numerical instability. 
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5.4 QR Recursive Least Squares Method 

5.4.1 Introduction 

Prior to the 1994 paper by Sayed and Kailath, the QR-RLS algorithm was derived 

by using the pre-windowed version of the data matrix, which was then triangularized by 

applying the QR decomposition (Golub & VanLoan 1989). The paper by Sayed and Kailath 

reveals for the first time how this QR decomposition of a pre-windowed data matrix can be 

deduced directly from their square-root Kalman filter counterparts. This technique resulted 

in three versions of the square-root Kalman filter algorithm for RLS estimation: the QR

RLS algorithm, the extended QR-RLS algorithm and the inverse QR-RLS algorithm. The 

motivation for using the QR decomposition in adaptive filtering is to exploit its good 

numerical properties. Since we will be using the QR-RLS algorithm to derive the Recursive 

OLS-AWS algorithm in Chapter 7, in this chapter we will discuss the QR-RLS algorithm 

in detail. Readers who are interested in the extended QR-RLS algorithm and the inverse 

QR-RLS algorithm can refer to Sayed and Kailath (1994) or Haykin (1996) for details. 

76 



5.4.2 Preliminary Setup for QR-RLS Algorithm 

To derive the QR-RLS algorithm, we first need to set up the necessary recursive 

equations. For reasons that will become apparent later, we are looking for these particular 

recursive equations 

H(k) = H(k-1) + F(k-1), 

H(k)x(k) = H(k- l)x(k-1) +f(k-1), 

x(k)H(k) = x(k- 1 )H(k- 1) + fT(k- 1), and 

xT(k)H(k)x(k) = xT(k- 1 )H(k- 1 )x(k- 1) + f(k- 1), 

(5 - 46) 

(5 - 47) 

(5 - 48) 

(5 - 49) 

where F(k- 1), f(k- 1), fT(k- 1) and f(k- 1) are terms that can be found in the RLS 

algorithm. 

To facilitate the development of these recursive equations, Eq. (5 - 10) is repeated 

in the following: 

(AT(k- l)A(k-1) + a(k)aT(k))x(k) = AT(k- l)d(k-1) + a(k)d(k). (5 - 50) 

Note that Eq. (5 - 50) is the least squares solution for the new linear model which can be 

written as 

AT(k)A(k)x(k) = AT(k)d(k). (5-51) 

Since H(k) = AT(k)A(k) and H(k-1) = AT(k- l)A(k-1), we can obtain our first 

recursive equation by comparing equations (5 - 50) and (5 - 51) 

IH(k) = H(k- 1) + a(k)aT(k) I- (5 - 52) 
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To obtain the second recursive equation, we first note that we can express Eq. (5 -

50) as 

H(k)x(k) = AT(k- 1 )d(k- 1) + a(k)d(k), (5 - 53) 

and Eq. (5 - 2) as 

H(k- l)x(k-1) = A(k- l)d(k-1). (5 - 54) 

Substituting Eq. (5 - 54) into Eq. (5 - 53), we obtain the second recursive equation 

jH(k)x(k) = H(k- l)x(k-1) +a(k)d(k)I- (5 - 55) 

It is obvious that the third recursive equation is the transpose of the second recursive 

equation. Therefore, it can be expressed as 

(5 - 56) 

We are now ready to form the last recursive equation. First, we left multiply Eq. (5 

- 55) by xT(k), 

xT(k)H(k)x(k) = xT(k)H(k- 1 )x(k- 1) + xT(k)a(k)d(k). (5 - 57) 

If we define 

rl(k) = 1 
1 + a T(k)H(k- 1 )a(k)' 

(5 - 58) 

then we can express Eq. (5 - 24) as 

x(k) = x(k - 1) + r 1 (k)H(k- 1 )a(k)~(k) . (5 - 59) 

Note that H(k - 1) is symmetric, which implies H T(k - 1) = H(k- 1). Therefore, we 

can express the transpose of x(k) as 
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(5 - 60) 

Left multiply both sides by a(k) to obtain 

(5 - 61) 

where ~T(k) = dT(k) - xT(k- 1 )a(k). If we add dT(k) to both sides of the Eq. (5 - 61), 

we get 

x T(k)a(k) = dT(k) - (dT(k) - xT(k - 1 )a(k)) + r 1 (k )a T(k)H(k - 1 )a(k )~T(k) 

= dT(k) - r 1 (k )( ~T(k) K(k) - a T(k )H(k - 1 )a(k) ~T(k)) 

= dT(k) - r 1 (k)~T(k)( 1 + aT(k)H(k- 1 )a(k) - aT(k)H(k- 1 )a(k)) 

= dT(k) - r 1 (k )~T (k) 

Substitute Eq. (5 - 60) into the middle term of Eq. (5 - 57), we obtain 

xT(k)H(k)x(k) = xT(k- 1 )H(k- 1 )x(k- 1) + 

r 1 (k)a T(k)H(k- 1 )~T(k)H(k- 1 )x(k- 1) + xT(k)a(k)d(k). 

(5 - 62) 

(5 - 63) 

Now, if we substitute Eq. (5 - 62) into Eq. (5 - 63) and manipulate the equation as follows, 

xT(k)H(k)x(k) = xT(k- l)H(k- l)x(k-1) + r 1(k)aT(k)x(k- l)~T(k) + 

+ (dT(k)- r 1(k)~T(k))d(k) 

xT(k)H(k)x(k) = xT(k - 1 )H(k- 1 )x(k - 1) + dT(k)d(k) + 

+ rl (k)~T(k)( aT(k)x(k - 1) - d(k) ) 

-~(k) 

we obtain the final recursive equation 

(5 - 64) 

I xT(k)H(k)x(k) + r 1(k)~T(k)~(k) = xT(k - l)H(k - l)x(k - 1) +dT(k)d(k) 1.(5 - 65) 

Before proceeding to the derivation of the QR-RLS algorithm, we first state a 

matrix factorization result that plays an important role in the derivation. 
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Lemma 5 -1 Matrix Factorization Lemma 

Given the data matrix A(k) E 9\m x n and an upper triangular matrix R(k) E 9\n x n 

with n ::s; m , the matrix factorization lemma states that 

A(k)T A(k) = RT(k)R(k) (5 - 66) 

if and only if there exist an orthogonal matrix Q(k) E 9\m x n such that 

A(k) = Q(k)R(k). (5 - 67) 

Proof. This proof is shown in (Stewart 1973, Golub & Van Loan 1996, Sayed & Kailath 

1994, Haykin 1996). Nevertheless, we will repeat it here. Assume that the condition Eq. (5 

- 67) holds, then by multiplying the AT(k) times both sides, and substituting Eq. (5 - 67) 

into the right hand side, we get 

AT(k)A(k) = RT(k)QT(k)Q(k)R(k). (5 - 68) 

Since QT(k)Q(k) = I, we obtain Eq. (5 - 66). 

The converse implication is proof by invoking the singular value decomposition 

(SVD) theorem. According to the SVD theorem (Golub & Van Loan 1996), 

(5 - 69) 

where U A ( k) and VA ( k) are n-by-n and m-by-m unitary matrices, respectively and ~ A ( k) 

is an n-by-m matrix defined by the singular values of the matrix A(k). Similarly, R(k) can 

be factored as 

(5 - 70) 

Eq. (5 - 66) implies that we have 
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and 

Now, let 

Q(k) = UA(k)Ub(k) 

and substitute Eq. ( 5 - 71) and Eq. ( 5 - 72) into Eq. ( 5 - 69 ). This produces 

A(k) = U 8 (k)1:8 (k)VJ(k). 

Now multiply Eq. (5 - 73) times Eq. (5 - 70) and we get 

Q(k)R(k) = UA(k)1:8 (k)Vb(k) = A(k). 
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5.4.3 Forming the QR-RLS Algorithm 

So far, we have formed the necessary recursive equations and stated the matrix 

factorization lemma for the QR-RLS algorithm, but we have not talked about why we need 

these four particular equations Eq. (5 - 46) through Eq. (5 - 49). These four equations can 

be lumped together to form a natural positive definite squared matrix equality. Then, using 

the matrix factorization lemma, we can form a factored matrix equality. This factored 

matrix equality contains all the necessary parameters such as the correlation matrix H(k) 

and the parameter vector x(k), which are needed for the parameter updates. 

Keeping in mind this general idea regarding what we are going to do next, we can 

now rewrite the four recursive equations as 

RT(k)R(k) = RT(k- l)R(k-l)+a(k)aT(k) , (5 - 76) 

RT(k)R(k)x(k) = R T(k- 1 )R(k- 1 )x(k- 1) + a(k)d(k), (5 - 77) 

(5 - 78) 

xT(k)RT(k)R(k)x(k) + ,c-T12(k)~T(k)r 112(k)~(k) = 
xT(k- 1 )RT(k- 1 )R(k- 1 )x(k- 1) + dT(k)d(k) 

(5 - 79) 

Because of the symmetry of the above equations, we may group these recursive equations 

into one matrix, which forms the following matrix equality: 

[ 
RT(k - I )R(k - I) + a(k)aT(k) 1 RT(k - I )R(k - I )x(k - I) + a(k)d(k) l _ 

xT(k- I )RT(k- I )R(k- I)+ dT(k)aT(k) ; xT(k - I )RT(k- I )R(k- I )x(k- I)+ dT(k)d(k)J -

[ 
R T(k)R(k) 1 R T(k)R(k)x(k) l 

xT(k)RT(k)R(k): xT(k)RT(k)R(k)x(k) + rT12(k)<;T(k)r112(k)<;(k~ 

Now we may express the matrix equality in Eq. (5 - 80) in factored form as 
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A[(k) 

Rf{k) 

[
R(k-1) R(k- l)x(k-1)1 

ar(k) d(k) J = 
(5-81) 

where R 1 (k) is an upper triangular matrix. The above matrix equality fits Eq. (5 - 66); 

therefore, from the matrix factorization lemma, there exists an orthogonal matrix Q 1 (k) 

that relates the block elements above as 

(5 - 82) 

[R(k-1) g(k-1)1 = Qi(k)[R(k) g(k) l, 
ar(k) d(k) J or r 112(k);(k~ 

(5 - 83) 

or 

Qf(k)[R(k-1) g(k-1~ = [R(k) g(k) l 
ar(k) d(k) J or r 112(k);(k~ 

(5 - 84) 

where g(k) = R(k)x(k) and g(k-1) = R(k- l)x(k-1). 

The block elements shown in Eq. (5 - 84) form the backbone of the QR-RLS 

algorithm. The main idea of this equation is to put all the recursive equations in the form of 

pre-array A 1 (k) and post-array R 1 (k) matrices. 
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The pre-array matrix A 1 (k) (shown on the left hand side of Eq. (5 - 84)) consists 

of R ( k - 1) , the past gain vector g ( k - 1) , the current input data a T ( k) and the 

current desired response d(k). The pre-array matrix is not a triangular matrix, due 

to the non-zero elements in the current input data. 

The post-array matrix R 1 (k) (shown on the right hand side of Eq. (5 - 84)) is a 

upper triangular matrix. This post-array matrix is the result of the orthogonal matrix 

operating on the pre-array matrix. 

When the current input data aT(k) is presented to the algorithm, its elements are 

placed just underneath R(k - 1) in the pre-array. Because the only non-triangular elements 

in the pre-array are the input data, the orthogonal matrix only needs to operate on the input 

data. The orthogonal matrix operates by annihilating the input data one by one until all 

elements become zero entries in the lower left of the matrix. As soon as the all the input 

elements annihilated, a triangular matrix is obtained. This triangular matrix is called the 

post-array matrix and it consists of current R(k), the current gain vector g(k) and the term 

r 112(k)~(k). Once the post-array is found, the computed R(k) and g(k) are substituted 

back to the pre-array to initiate the next iteration. 

Having computed the updated block values R(k) and g(k), we may solve the least 

squares parameter vector x(k) using the formula 

x(k) = R-1 (k)g(k). (5 - 85) 
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Since, R(k) is a triangular matrix, x(k) 1s easily solved using the method of back 

substitution. 

5.4.4 Orthogonal Matrix Operation 

So far, we have not focused on the detailed operation of the orthogonal matrix. We 

only know that we need to choose the orthogonal matrix so that it will produce a triangular 

block of zeros in the lower left of the post-array. An orthogonal matrix that fits this 

requirement is the Givens rotation. Through successive applications of a sequence of 

Givens rotations, we can develop a systematic annihilation process to zero-out non-zero 

elements in the lower triangle of the pre-array as prescribed in Eq. (5 - 83) or Eq. (5 - 84). 

Please refer to Chapter 4.5 for a detailed discussion of how the Givens rotation operates. 

Since the pre-array has a unique structure, where R(k- 1) is already a triangular matrix 

and aT(k) contains the only non-zero elements in the lower left triangle, we only need to 

annihilate the elements in aT(k) to achieve the triangular structure of the post-array. We 

illustrate this idea in the following: 
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X X X X 

[R(k-1) g(k-1)] 0 X X X 
~ ~ = 

aT(k) d(k) 0 0 X X 

X X X X 

X X X X X X X X 

0 - ~ 
0 X X X [R(k) g(k) J = 

0 0 X X 0 0 - OT r 112 (k)<;(k) 

0 - 0 0 -- the affected elements 

Figure 5 - 1 Givens rotations applied to the pre-array in the QR-RLS algorithm 

As shown in Figure 5 - 1, we annihilate the current input data a T ( k) from left to 

right. The Givens QR algorithm described in Chapter 4.5 is used, except that we skip all 

zero elements contained in R(k- 1). This reduces the total amount of computation by an 

order of magnitude. The floating point computation is O(n2 ) compare to O(n 3 ) ifwe were 

to annihilate the entire lower triangle. 

Once the post-array matrix is found, the next iteration is initiated by substituting the 

elements R(k) and g(k) back into the pre-array, together with the next input data 

a T ( k + 1) and next desired responses d ( k + 1) as shown in Figure 5 - 2. (Note that the 

detailed Givens rotations operations are omitted) 

[ R(k) g(k) l _ _ [R(k+ 1) g(k+ 1) l 
aT(k+l)d(k+l~ - ... ~ - OT r 112(k+l)<;(k+l)j 

Figure 5 - 2 QR-RLS algorithm for the next iteration 
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5.4.5 Implementation Considerations 

To initialize the QR-RLS algorithm, we may set R(O) = 0 and g(O) = 0. This is 

the exact initialization of the QR-RLS algorithm, which covers the time period O ~ k ~ M. 

Note that the soft initialization used by the RLS is not necessary, because the QR-RLS 

algorithm does not incur any problem when the initial values are set to zeros. With this 

initialization process, the QR-RLS can operate in real-time by substituting the elements 

(R(k) and g(k)) found in the post-array back into the pre-array with a new input vector 

aT(k) and a new desired response d(k). In general, the QR-RLS algorithm is considered 

a better numerical procedure than the RLS algorithm because of the following properties: 

1. It works directly with the incoming data vector rather than working with the 

correlation matrix of the input data as in the standard RLS algorithm (Gentleman & 

Kung 1981, Haykin 1991). 

2. It uses the numerically well-behaved Givens rotation, which preserves the two

norms of the least squares solution. 

3. It propagates R(k) rather than H(k) or H(k). Since the condition number of R(k) 

equals the condition number of A(k), it results in a significant reduction in the 

dynamic range of the data handled by the QR-RLS. 

With this numerically stable QR-RLS for the time-update algorithm, we will later discuss 

how we can couple this time-update algorithm and the order-update algorithm presented in 

Chapter 6 to form the QR-RLS-AWS algorithm. 
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5.5 Results Summary 

Recursive Least Squares Algorithm 

Initialize the algorithm by setting H(O) = <5-I I, and x(O) = 0 

Fork = 1, 2, ..... , 

read a(k) and d(k) 

k(k) = H(k =-1 )a(k) 
1 + aT(k)H(k- 1 )a(k) 

;(k) = d(k) - aT(k)x(k- 1) 

x(k) = x(k - 1) + k(k);(k) 

H(k) = H(k-1)-k(k)aT(k)H(k-1) 

QR-Recursive Least Squares Algorithm 

Initialize the algorithm by setting R(O) = 0, and g(O) = 0 

Fork = 1, 2, ..... , 

read a(k) and d(k) 

Q[(k)[R(k-1) g(k-1~ = 
aT(k) d(k) J [R(k) g(k) J 

OT r112(k);(k) 

Givens rotations are used to annihilate the a T ( k) 

x(k) = R-1 (k)g(k) 
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In this chapter, we first develop the recursive order-update algorithms for the linear 

model using the least squares method and the orthogonal least squares method. Then, 

we introduce the concept of subset selection. Among these subset selection methods, 

we discuss the forward selection in detail. Later, we discuss how we can use the re-

cursive order-update algorithms in the forward selection method. These combined al-

gorithms, together with time-update algorithms ( discussed in chapter 5 ), will be used 

in the next chapter to create the RLS-AWS and QR-RLS-AWS algorithms. 
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6.1 Introduction 

In Chapter 5, we discussed procedures for updating the parameters of a linear model 

as each new data point is received. These procedures, called time-update algorithms, 

assume that the order (size) of the linear model remains the same. In this chapter, we will 

derive and analyze recursive procedures for updating the parameters of a linear model when 

the order of the model is increased (a new basis function is added). These order-update 

algorithms assume that no new data are received. In Chapter 7, we will combine the time

update algorithms and the order-update algorithms to form the complete RLS-AWS and the 

QR-RLS-AWS algorithms. 

In addition to the order-update algorithms, this chapter will also discuss subset 

selection methods. Before an order-update is made, we need to select the appropriate data 

vector ( or basis function center in the case of RBF networks) to use for the additional order. 

The process of selecting the data vector is called subset selection. 

The order-update algorithm is originally derived from a standard least squares 

perspective. However, due to numerical round-off error, an improved version of this 

algorithm is developed based on the QR decomposition. 

We will begin with a brief overview of subset selection methods. Then, we will 

focus on the forward selection method and will discuss it in detail. Later, we point out that 

the order-update algorithm can be used as the update mechanism for the forward selection 

method. Together, the recursive order-update algorithm and the forward subset selection 
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form a complete order-update algorithm, which can be used together with the time-update 

algorithm of Chapter 5 to form a complete adaptive training procedure. 

To ease the derivations, in the rest of this chapter we introduce the subscript 

notation q, which denotes the current order. 

6.2 Order-Update Algorithms 

In this section, we will derive recursive order-update algorithms for the linear 

model using the batch least squares method. These methods allow us to efficiently 

recalculate the new least squares solution when a new data vector is added into the model. 

Suppose we have a linear model 

where the data matrix Aq and the parameter vector xq are given by: 

Aq = [a1 a2 ••. aJ 
xq = [x1 Xz ... xJ T 

The batch least squares solution of this linear model is 

(6 - 1) 

(6 - 2) 

(6 - 3) 

Note that since the order of the model (the dimension of xq) does not affect the desired 

response, d, there is no subscript q attached. 

Now, suppose a new input data vector aq + 1 becomes available (a new basis 

function is added), and we would like to add it into the linear model Eq. (6 - 1). This new 
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input data vector is incorporated by adding aq + 1 into the columns of the data matrix Aq , 

and the size of the old parameter xq has to increase by one to accommodate the added data 

vector: 

-

Aq + 1 = [ Aq aq + J 
r 

xq + 1 = [iq xq + J 
(6 - 4) 

Note that Xq represents the updated least squares solution of the new linear model that is 

updated from the old parameter xq. Eq. (6 - 4) forms a new linear model 

(6 - 5) 

and the least squares solution of this new model is 

(6 - 6) 

We could compute xq + 1 using Eq. (6 - 6), but this would be time consuming. An 

alternative is to recursively compute xq + 1 based on the previously computed parameter 

vector xq. This recursive solution can be obtained by using a basic result in block matrix 

algebra known as the block matrix inversion lemma. 

6.2.1 Block Matrix Inversion Lemma 

Before we derive the recursive order-update algorithms, we introduce the block 

matrix inversion lemma. This lemma plays an important role in the derivation of the 

recursive order-update algorithm. Let H E 9t(n + m) x (n + m) be a square matrix such that 
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where A E 9tnxn, BE 9tnxm, CE 9tmxn and DE 9tmxm, then 

H-1 = [A-1 + A-1B(D- CA-IB)-ICA-1 

-(D- CA-IB)-ICA-1 

-A-1B(D- CA-IB)-1 

(D- CA-1B)-1 

(6 - 7) 

] (6 - 8) 

provided that IAI :;t: 0 and IDI :;t: 0 (Ogata 1987). In the special case where B and C are 

vectors (denoted as b and cT respectively) and Dis a scalar, d, Eq. (6 - 8) simplifies to 

H-1 = [A-1 +A-1b(d-cTA-lb)-lcTA-I 

-(d- cTA-1 b)-1cTA-I 

-A-1 b(d- cTA-1 b)-1 

(d-cTA-1b)- 1 
] (6 - 9) 

where (d - cT A-1 b )-1 is a scalar and the inversion is just a division. Readers can refer to 

Duncan ( 1944) or Hager ( 1989) for a proof of this block matrix inversion lemma. 

6.2.2 Recursive Order-Update Algorithm for LS Method 

In the following, we apply the block matrix inversion lemma to the batch least 

squares algorithm, and obtain a recursive order-update algorithm. We first note that the new 

linear model in Eq. (6 - 5) can be written as 

(6 - 10) 

and the least squares solution to this new linear model is the solution of 
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(6 - 11) 

As mentioned previously, we can take the inverse of the left block matrix in Eq. (6 

- 11) and recalculate the whole solution as shown below, 

(6 - 12) 

but it is impractical and time consuming. A better way of obtaining the solution is to apply 

the block matrix inversion lemma and find a recursive updating formula for Eq. (6 - 12). 

6.2.2.1 Order-Update for the Parameter 

By applying the block matrix inversion lemma we can express the inverse of the 

block matrix in Eq. (6 - 12) as 

(6 - 13) 

r(ATA )-I+ (ATA )-I AT a p-23 T A rATA )-1·-(ATA )-I AT a p-2J q q q q q q + I q q + I q' q q I q q q q + l q 
--------------------------------~---------------p-2a T A (ATA )- 1 t p-2 

q q+l q q q ' q 

where 

(6 - 14) 

Now, we can apply the inversion result of Eq. (6 - 13) to Eq. (6 - 12), 

94 



After some algebra simplification, we obtain 

Since the optimal parameter and the error vector at order index q are xq = (AJAq)-1 AJd 

and eq = d-AqCAJAq)- 1 AJd, we can further reduce the solution to 

(6 - 17) 

can also be calculated as 

(6 - 18) 

Eq. (6 - 17) is the recursive order-update for the new linear model. It utilizes the old 

parameter vector, xq, the old error vector, eq, the old data matrix, Aq, and the new data 

vector aq + 1 , which are readily available. The significance of this equation is that it is does 

not require a new matrix inversion (we assume that (AJAq)- 1 already exists). A detailed 

discussion of the algorithm implementation will be presented in Section 6.2.2.3. 
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6.2.2.2 Recursive Order-Update for the Sum of Squared Errors 

In the following, we derive a recursive formula for the sum of squared errors. First, 

we multiply Aq + 1 times both sides of the Eq. (6 - 17), and we get 

When we subtract both sides of Eq. (6 - 19) from the desired response d, and note that 

d-Aqxq = eq andd-Aq+Ixq+I = eq+I aretheerrorvectorsatorderindexqandq+l 

respectively, we obtain 

(6 - 20) 

S. T . 1 mce, aq + 1 eq 1s a sea ar, 

(6 - 21) 

the transpose of the error vector e J + 1 can be written as 

(6 - 22) 

The sum of squared errors e J + 1 e q + 1 is 

eJ+leq+I = eJeq-eJ(aq+ 1 -AqCAJAq)-1AJaq+I)P;/al+Ieq 

- (aJ + 1 - aJ + 1 AqCAJAq)- 1 AJ)eqCp;/al + 1 eq) + (6 - 23) 

(aJ+ 1 -aJ+ 1AqCAJAq)- 1AJ)(aq+ 1 -AqCAJAq)-1AJaq+ 1)(p;/al+ 1eq)2• 

Since 

(6 - 24) 

(6 - 25) 
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we can rewrite Eq. (6 - 23) as 

T _ T T(I A (ATA )-IAT) -2 T 
eq+leq+I - eqeq-eq - q q q q aq+IPq aq+Ieq 

- ar + I (I-A/AIAq)-1 AI)eqCp;/aI + I eq) + 

aI+ 1 (I-A/AIAq)-1 AI)(I-A/AIAq)-1 AI)aq+ 1 (p;/aI+ 1 eq)2 

can easily show that the projection of the error is the error itself 

(I -A/AIAq)-1 AI)eq = (I -A/AIAq)- 1 AI)(I -A/AIAq)- 1 AI)d 

= (I-A/AIAq)-1 AI)d 

= e q 

Hence, we can further reduce Eq. (6 - 26) to 

In fact, because ar + I e q = e I aq + I is a scalar, we can write 

Also, since ar + I (I -A/AIAq)- 1 AI)aq + I = pJ, the whole equation reduces to 

then we can write 
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(6 - 26) 

(6 - 27) 

(6 - 28) 

(6 - 29) 

(6 - 30) 

(6 - 31) 



The term 

(6 - 32) 

is called the error reduction term since it measures the error reduction caused by the added 

data vector. 

This recursive sum of squared errors formulation in Eq. (6 - 30) has three important 

implications. First, due to the fact that (a;+ 1 e q)2 and p ;/ are non-negative scalars, the 

error reduction term err q is a non-negative scalar. 

(6 - 33) 

Second, the new sum of squared errors will always be less than or equal to the old sum of 

squared errors 

(6 - 34) 

Lastly, the error reduction term can never be greater than the old sum of squared errors. 

(6 - 35) 

These implications imply that order-update will decrease the sum of squared errors 

provided that the added data vector a;+ 1 is selected properly. We will discuss how we can 

choose this added data vector in section 6.3. In the next section, we will discuss how to 

implement this recursive order-update algorithm. 
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6.2.2.3 Implementation Considerations 

To facilitate the implementation of the algorithm, intermediate calculations such as 

the added data parameter w q and the orthogonal complement projection of the added data 

aq + 1 are performed: 

(6 - 36) 

(6 - 37) 

With these definitions, we can now write the inverse correlation matrix update as 

- [H + p-2w wT -w p-2J Hq + 1 = q q q q q q 

-p-2wT p-2 
q q q 

(6 - 38) 

and optimal parameter update as 

(6 - 39) 

where 

(6 - 40) 

Hence, we can recursively update these equations in the following sequences: Eq. (6 - 36), 

Eq. (6 - 37), Eq. (6 - 40), Eq. (6 - 38) and Eq. (6 - 39). The sum of squared errors and the 

next iteration error vector can be calculated using Eq. (6 - 31) and Eq. (6 - 18), respectively. 
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Example 6 -1 

T T 
Let A 1 = [ 1 2 o] and d = [s 5 1] be the data vector and the desired 

response. Then, the inverse correlation matrix, the parameter vector and the error vector 

Now, we would like to add a new vector a2 = [o 1 -1] Tinto A1 andfonn a new 

data matrix A 2 = [ A 1 a2] . Using the recursive order-update algorithm, we can calculate 

a2-A1w1 = H i-f pf= 
6 = 5 and update the 

error reduction term err2 
10 = 3 . Then, we can update the inverse correlation matrix 

H2 H}2 ~~, the parameter vector x2 = H~~] and the updated error vector 

D 

To calculate the inverse correlation matrix, we have to successively apply Eq. (6 -

38). If each successive expansion accumulates a small amount of rounding error, the 

inverse correlation matrix may lose its positive definiteness after many iterations and 

become unstable. Fletcher ( 1969) has suggested occasionally re-starting the recurrence, 

and Ben-Israel & Greville (1965) have suggested an iterative method to improve the 

numerical accuracy of the inverse correlation matrix. However, both suggestions may result 
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m more computation. Due to this fact, we have developed a recursive order-update 

algorithm based on the QR decomposition. This new algorithm is described in the 

following section. 

6.2.3 Recursive QR Order-Update Algorithm 

6.2.3.1 QR Recursive Order-Update for Q, R, and Parameter 

By using the QR decomposition described in section 4.4.2, we can decompose the 

original data matrix Aq E ':Jim x n into 

(6 - 41) 

where Qq E ':Jim x n is an orthogonal matrix and Rq E ':)in x n is an upper triangular matrix. 

Applying this QR decomposition to Eq. (6 - 11), we obtain 

(6 - 42) 

Note that since Qq is an orthogonal matrix, QlQq = I, we can factor the left hand side 

matrix into 

[Rq r~T[Rq r~x + 1 = [RlQidj 
0 p O p q aT 1d 

q+ 

(6 - 43) 

whererq = Q;aq+J , andpq = Jal+,aq+I -r;rq.(Inhere, Pq isthesquarerootofEq. 

(6 - 14). We can show this fact by applying the QR decomposition to Eq. (6 - 14).) Eq. (6 -

43) also implies that 
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_ [Rq rql 
Rq+I - 0 pJ. (6 - 44) 

By applying the inverse twice to Eq. (6 - 43), we find the new parameter as 

x + 1 = [Rq r~-I [Rq r~-T[R~Q~dJ. 
q O p O p aT 1d q+ 

(6 - 45) 

Using the block matrix inversion lemma, we can simplify the inverse matrices to 

0 
] 

-T = Rq+ 1 , and (6 - 46) 

(6 - 47) 

where Rq = Rq1 , and Rq + 1 = Rq~ 1 • Substituting Eq. (6 - 46) and Eq. (6 - 47) into Eq. 

(6 - 45), we can simplify the parameter update equation to 

(6 - 48) 

where 

(6 - 49) 

(6 - 50) 

(6-51) 

102 



Both Eq. (6 - 48) and Eq. (6 - 17) yield the same result except that Eq. (6 - 48) is 

computed using the QR decomposition, which does not suffer from the numerical 

inaccuracy of the previous algorithm. 

In the following, we show that the orthogonal matrix Qq + 1 can be updated 

recursively: Let Aq + 1 = Qq + 1 Rq + 1 , then 

(6 - 52) 

If we right multiply Eq. (6 - 52) by Rq~ 1 , we obtain 

(6 - 53) 

We note that Rq + 1 = Rq~ 1 and we can substitute Eq. (6 - 47) into Eq. (6 - 53), 

(6 - 54) 

which simplifies to 

(6 - 55) 

Meanwhile, using a similar derivation to the one used in section 6.2.2.2, we obtain 

a recursive sum of squared errors formula, as in Eq. (6 - 30). The only difference is in the 

calculation of p q, which uses the orthogonal matrix in Eq. (6 - 50). 
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6.2.3.2 Implementation Considerations 

Eq. (6 - 30), Eq. (6 - 47), Eq. (6 - 55), and Eq. (6 - 48) are calculated one by one to 

update the order. The following example illustrates the calculation. 

Example 6 - 2 

T T 
We repeat Example 6 - 1 with A 1 = [ 1 2 o] , d = [5 5 1] , x 1 = 3, and 

e 1 = [2 -1 1] T_ Then, we can find Q 1 = }s [1 2 o] T' and R.1 = }s. Again, we would 

like to add a2 = [ o 1 -1] T into the model to form a new data vector A2 = [ A 1 a2] . 

Now, we find r 1 
2 

= Q f a 2 = ,/5 , and p I = Jar a2 - r fr I = A which we can 

use in calculating the error reduction term err1 and the new inverse R2: 

Then, we use the R1 to update the parameter vector 
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Finally, we calculate the new error vector e2 and update the orthogonal matrix Q2 for the 

next iteration:e2 = } [4 -2 -2] T' and Q2 = 

1-2 
J6 

2 _1 

J6 
0--1 

J6 

D 

Since the algorithm uses the QR decomposition to calculate the inverse, it is 

numerically more accurate than the algorithm in section 6.2.2. The only drawback in this 

algorithm is that it requires extra storage for the orthogonal matrix Qq. 

6.3 Subset Selection 

6.3.1 Background 

In section 6.2, we developed an efficient algorithm for increasing the order of the 

model by adding a data vector aq + 1 . In this section, we will concentrate on how to choose 

which data vector to add. If the wrong data vector is chosen, it will only reduce the squared 

error by a small amount. The correct data vector will result in the largest reduction in the 

squared error. 

To find good data vectors, we turn our attention to a statistical method known as 

subset selection (Weisberg 1980, Cohen 1983, Miller 1990). The objective of subset 

selection, as its name implies, is to select a small subset of input data vectors from a larger 

set. Ideally, subset selection ensures that we select an optimal set of data vectors for the 
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linear model. Simultaneously, it excludes many data vectors that do not affect the desired 

response. The following figure demonstrates this idea. 

al 

82 

a 3 - - 

a 4 

85 

+ 

Figure 6 - 1 Ideal Subset Selection 

Suppose we have input data vectors a 1 ••• a5 and we know that a2 and a3 are not 

contributing significantly to the model. Hence, it is best to exclude these two data vectors 

from the model. By excluding the less significant data vectors, the model will not only 

compute faster, but also requires fewer parameters. It is generally best to use the simplest 

model that explains the data. 

In the following, we will summanze several commonly used subset selection 

methods, which have been documented in several journals and books. It should be noted 

there are many more subset selection algorithms (Dixon et al. 1988, Miller 1984, 1990, 

SAS 1985) than are discussed in this chapter, but we choose to limit our presentation here. 

Exhaustive Search Method: 

The exhaustive search method evaluates the sum of squared errors for all 

combinations of data vectors and selects the subset with the minimum error. When the 

number of data vectors is large, this algorithm becomes too expensive. Some authors feel 

that it is not useful to look at all possible models, since some models would not be 

meaningful (Draper & Smith 1981 ). Therefore, several algorithms have been developed 
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which find the best subset without computing all possible models (Fumival & Wilson 1974, 

Hocking 1976). However, like the exhaustive search method, there are many possible 

combinations that have to be sifted through when the number of data vectors is large (Hoerl 

et al. 1986). In general, exhaustive search algorithms are considered too computational 

intensive for large data sets. 

Backward Elimination Method: 

The backward elimination method starts with a model that includes all possible 

input data vectors. Then, it eliminates one input data vector at a time from the model. At 

each elimination step, the eliminated input data vector is selected in such a way that it 

results in the smallest increase in the sum of squared errors of the model. This elimination 

process continues until a stopping rule is satisfied. 

Forward Selection Method 

The forward selection method begins with no data vector in the model. Then, it 

moves data vectors into the model one at a time from a set of input data vectors. At each 

step, forward selection finds one data vector from all possible input data vectors and moves 

it into the model. The criterion for the selected data vector is that it will produce the largest 

reduction in the sum of squared errors when moved into the model. Forward selection 

continues until a stopping rule is satisfied. 

Stepwise (Efroymson's) Method: 

In forward selection, a data vector selected at an early stage may become 

unimportant in a later stage. Similarly, in backward elimination, a data vector deleted at an 

early stage may become important in a later stage. Hence, an idea to combine these two 
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methods is proposed by Efroymson ( 1960). After each data vector is added into the model, 

a test is made to see if any of the data vectors in the model can be deleted without 

appreciably increasing the sum of squared errors. 

6.3.2 Comparison of Subset Selection Methods 

Several extensive studies of these subset selection methods are conducted in (Miller 

1990, Biondini et al. 1977, Derksen 1992). In these studies, the exhaustive search method 

and the backward elimination method are the worst performers in terms of computational 

time. Forward selection gives the fastest results, but not necessarily the optimal subset. The 

stepwise method gives the most accurate results, but requires more computation than 

forward selection. In fact, Berk ( 1978) has empirically shown that the average difference 

between the sum of squared errors of the stepwise and extensive search methods rarely 

exceeded 7 percent. Although the stepwise method yields better results than forward 

selection, for simplicity and computational reasons, we will only consider the forward 

selection method here. 

6.3.3 Forward Selection and Order-Update 

In the following, we will first discuss the forward selection method in detail and 

then explain its relationship to the recursive order-update method of section 6.2. The 

forward selection method assumes that there exists a large input data set 

~ = [~ 1 ~ 2 ... ~n], where all the data vectors in the set are potential candidates for the 
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model. To begin, it finds the first data vector, a. , that produces the largest reduction in the 
-1 

sum of squared errors 

J = e Te = ( d - a .x) T ( d - a .x) , 
-I -I 

where the least squares solution is given as 

According to Miller (1990), Eq. (6 - 56) can be rewritten as 

(a! d)2 = dTd __ -_1 __ 
T . 

a . a . 
-I -I 

(6 - 56) 

(6 - 57) 

(6 - 58) 

It is clear from Eq. (6 - 58) that the first data vector selected has to maximize the error 

reduction term 

[
(a! d)2] 

err = max -iT 
a . a . 
-1 -I 

i = 1. .. n. (6 - 59) 

Suppose ~ 1 produces the largest error reduction, then ~ 1 will be removed from ~ 

and added into the model A . To find the next data vector, select another data vector, a ., 
-} 

from ~ . Since the error vector e = d - ~ 1 x is orthogonal to ~ 1 , forward selection searches 

the space of ~j that are orthogonal ~ 1 to find the amount of additional error reduction. 

Specifically, it forms 

(6 - 60) 
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and substitutes it into Eq. (6 - 59) to find the data vector which maximizes the error 

reduction term. This calculation is repeated for each data vector in ~ , and the one that 

maximizes the error reduction is added into the model. This process is repeated until the 

total error reduction reaches a preselected value. 

Note that we have referred to, Eq. (6 - 59) from the forward selection method and 

Eq. (6 - 30) from the order-update algorithm by the same name: error reduction. We can 

verify that these terms are equivalent by substituting Eq. (6 - 60) into Eq. (6 - 59) using 

a. = a + 1 and a 1 = Aq. Hence, the order-update algorithms discussed in section 6.2 can 
-} q -

be used as the update mechanism for the forward selection method. 

Currently, there are several variations for computing the error reduction term in Eq. 

(6 - 59): the Gauss-Jordan pivoting method (Miller 1990), and Modified/Classical Gram-

Schmidt methods - also called the Orthogonal Least Squares (OLS) methods (Chen 1991). 

However, none of these methods have provided a convenient way of incorporating the 

time-update algorithms, which is why we have developed the order-update algorithms 

described in this chapter. By coupling the recursive order-update algorithms with the 

forward selection method, we have created two new methods which can update the forward 

selection using the parameters from the time-update algorithms. In the next chapter, we will 

show how we can combine forward selection method with RLS and QR-RLS methods. 
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7 .1 Introduction 

In this chapter, we introduce two new algorithms called Recursive Least Squares 

with Automatic Weight Selection (RLS-AWS) algorithm and QR Recursive Least Squares 

with Automatic Weight Selection (QR-RLS-AWS) algorithm. Both algorithms are based 

upon the time-update algorithms in Chapter 5 and the order-update algorithms in Chapter 6. 

To explain how these new algorithms work, we will begin with a short discussion 

of the subset selection model. Then, the recursive time- and order- update framework are 

discussed. The actual implementation of the two new algorithms will be provided along 

with some preliminary results of these new algorithms. 

For notation, we will combine the time-update notation described in Chapter 5 and 

order-update notation described in Chapter 6. The subscript q represents the order index, 

while the bracket (k) represents the time index. For example, AqCk) represents the input 

data matrix at order q and time k. Detailed notation will be discussed in the following. 
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7 .2 The Subset Selection Model 

• 
Figure 7 - 1 The Subset Selection Model 

Figure 7 - 1 depicts the architecture of the subset selection model. As shown, the 

linear model is formed by using one part of the input data. Specifically, the output of the 

model is 

q 

y(k) = L ai(k)xi. (7 - 1) 

i = 0 

If we accumulate the time data from O ... k , we can express the model as matrix and vectors 

y(O) a0 ( 0) a 1 ( 0) .. . a qC O) XI (k) 

y(l) a0 (1 ) a 1 (1) .. . a qC 1) xi(k) 

= (7 - 2) 

(k) a0(k) a 1 (k) ... aqCk) xqCk) 
"---v---' "---v---' 

YqCk) AqCk) xqCk) 
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Note that the data arrives sequentially in time, and at each time point a new row is added to 

the selected input data matrix AqCk). For example, at time point k, the following row is 

added to the input data matrix: 

(7 - 3) 

In addition, the columns of AqCk) represent the various orders of the model. For example, 

when the order is increased to q, the following column is added to the selected input data 

matrix: 

(7 - 4) 

Meanwhile, let us assume that there are a set of q potential nodes for the RBF 

network that have not been selected. The data for these potential nodes are contained in the 

potential input data matrix: 

qi (0) q2(0) .. 

= q)(l) q2(1) .. 

a (k) 
-q 

(7 - 5) 

Each of the potential input data vectors are stored as a column. A superscript is used to 

denote the index of the potential data vector. For example, 

(7 - 6) 

114 



denotes the q-th column of A (k). This A (k) matrix contains a set of potential data - _q _q 

vectors ranging from 1 .. . q. [Note that there is no bias contained in these potential input 

data vectors, so the index begins with 1.) 

(7 - 7) 

As with the selected input data matrix A qC k) , the k -th time data in ~ q< k) corresponds to 

the last row of the potential input data matrix. A left subscript denotes the row of the matrix 

(7 - 8) 

Keep in mind that the main idea here is to have the algorithms select the best input 

data vector from a set of potential data vectors [~ 1 (k) ~2(k) ... ~/k)J and add it into the 

model to improve the RBF network performance. Simultaneously, the algorithm will utilize 

only the new time point and old computed parameters to update the model. In the following, 

we will look at the general idea of how we implement the time- and order- update together. 
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7.3 Recursive Time- and Order- Update 

Subset Selection Algorithm 
r-----------, 

Figure 7 - 2 The Time- and Order- Update Algorithm Flow Chart 

Figure 7 - 2 shows a general framework for the time- and order- update algorithm. 

This framework feeds a new time point into a time-update algorithm, then into the subset 

selection and order-update algorithms. The whole process is repeated at each time point. In 

the following, we will explain the operations contained in each block. 

New Data Point 

As each new data point is presented to the network, this produces a new row of the 

selected input data vector qa(k), a new row of the potential input data vector a(k), and a 
q-

new desired response d(k). These new data are presented to a time-update algorithm. 
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Time-Update Algorithm 

Two time-update algorithms, the RLS algorithm and the QR-RLS algorithm 

discussed in Chapter 5, can be used to accommodate the time adjustment. In the RLS 

algorithm, the necessary parameters are the inverse correlation matrix Hq(k), the weights 

and bias xqCk), and the sum of squared errors SSEqCk). In the QR-RLS algorithm, the 

parameters are the R-factor RqCk), the gain vector gqCk), and the sum of squared errors 

SSEqCk). [Note that some intermediate steps to obtain these parameters are not shown 

here. Details are provided in section 7.3.1 and section 7.3.2.) After the time-update, the 

time-updated parameters are presented to the subset selection and order-update algorithms. 

Subset Selection and Order-Update Algorithms 

The role of the subset selection and order-update algorithms are to ensure the time-

update algorithm provides adequate network performance. The subset selection algorithm 

first computes the error reduction terms for every potential input data vector, and 

determines if an order-update is necessary. 

Subset Selection: 

Recall from Chapter 6 that the error reduction term measures the error reduction 

caused by the added data vector (potential RBF node). Because we have a set of potential 

input data vectors, we need to repeat this calculation for every one of them a.(k) 
-l 

l = 1. .. q. 
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Consider the error reduction equation, Eq. (6 - 32). With slight modification, we can 

rewrite it to compute the error reduction for every potential data vector ~/k) 1 = 1 .. . q 

using the time- and order- indexing method: 

errCil(k) = p(i)-2(k)(a .\k)e (k)/ 1 = 1. .. q_ q q -I q (7 - 9) 

where 

eqCk) = d(k)-AqCk)(Al(k)AqCk))- 1 Al(k)d(k), and (7 - 10) 

(7 - 11) 

It is not hard to see that some of the terms in Eq. (7 - 10) and Eq. (7 - 11) are actually 

the time updated parameters which have already been calculated by the time-update 

algorithm. Using these facts, we can simply substitute the time updated parameters into the 

error reduction terms. Specifically, the error reduction terms can be computed as: 

Error Reduction Calculation if RLS Algorithm is Used 

(7 - 12) 

where 

(7 - 13) 

Error Reduction Calculation if QR-RLS Algorithm is Used 

(7 - 14) 

where 

(7 - 15) 
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The above method saves significant computation, as we do not perform the matrix 

inversion. However, because A ( k) , A ( k) and d ( k) appear in the calculation, we do have 
q -q 

to store the data matrix, potential data matrix and the desired response vector. 

A (k) = [AqCk- 1)1 , A (k) = [~q_Ck- 1 )l, d(k) = [d(k- 1)1 
q qa(k) J _q q~(k) J d(k) J (7 - 16) 

The time updated parameters, together with the data matrices described in Eq. (7 - 16), are 

used in calculating the error reduction terms. Once computed, the best error reduction term 

is picked (The best error reduction produces the largest number). 

errqCk) = max[errii)(k)] (7 - 17) 

Update Order: 

To decide whether an order-update is needed, the sum of squared errors is calculated 

using the time updated sum of squared errors SSEqCk). 

SSEq + 1 (k) = SSEqCk) - errqCk) (7 - 18) 

The resulting sum of squared errors SSEq + 1 (k) is compared to a pre-selected threshold 

value y. If SSEq + 1 (k) ~ y, then the network performance is inadequate, and we proceed 

to perform an order-update. Otherwise, no update is necessary. 

Order-Update Algorithm: 

If an order-update is necessary, we first need to identify which potential data vector 

-
produces the largest error reduction. Assuming that i is the index that produces the largest 
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-
error reduction term, i = index[max[errii)(k)]], then we need to move ~{k) from 

A (k) to A (k) as a~(k) becomes part of the linear model. If the RLS algorithm is used, _q q -1 

the order-update will update the inverse correlation matrix Hq + 1 (k) using Eq. (6 - 38), the 

weights xq + 1 (k) using Eq. (6 - 39), and the sum of squared errors SSEq + 1 (k) using Eq. 

(7 - 18). If the QR-RLS algorithm is used, the order-update will update the R-factor 

Rq + 1 (k), the gain vector gq + 1 (k), and the sum of squared errors SSEq + 1 (k) using Eq. 

(7 - 18). Note that in Chapter 6, we rely on the orthogonal matrix QqCk) to obtain an 

accurate recursive QR order-update algorithm. We have not come up with update equations 

for Rq + 1 (k) and gq + 1 (k). In the following, we will derive these update equations from 

Chapter 6. 

To find an update for Rq + 1 (k), we use the fact that Qr(k) = R;/(k)Ar(k) from 

Eq. (6 - 41), and from Eq. (6 - 44) we can write 

R;/(k)Ar(k)~i(k~ 

P/k) J 
(7 - 19) 

Meanwhile, the gain vector gqCk) can be derived from the weight update equation. 

Recall from Eq. (6 - 47), the weight update equation is 

(7 - 20) 
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If we multiply Rq + 1 (k) in Eq. (7 - 19) times the weight update equation above, we obtain 

[
R (k) R-T(k)AT(k)a (kJ[[x (kj [-Rq- 1(k)QqT(k)a;(k)pq-2(k)a/(k)eqCkJ] (? 21 ) R (k)x (k) = q q q _, q + - - _ 

q+l q+l 
0 PqCk) 0 p;j2Ck)~/Ck)eqCk) 

Make use of the fact that Q~(k) = R/(k)A~(k) from Eq. (6-41), gqCk) = RqCk)xqCk) 

and gq + 1 (k) = Rq + 1 (k)xq + 1 (k), then we obtain the gain vector update equation 

(7 - 22) 

Once the necessary parameters are updated, the parameters are presented back to the time-

update algorithm, as shown in Figure 7 - 2. Another cycle will start as soon as another data 

point is received. 

Theoretically, (Golub & Van Loan 1996) updating the orthogonal matrix QqCk) 

yields numerical results that are more accurate. However, it requires storing the orthogonal 

matrix QqCk). This matrix QqCk) is of the size of the data matrix AqCk) and it can be very 

large because it is time dependent. On-line implementation by storing the QqCk) matrix is 

possible but impractical. Meanwhile, updating RqCk) and gqCk) will be less numerically 

accurate (theoretically) but it does not require storage of the QqCk) matrix. Chen et al. 

(1991) have pointed out that the OLS algorithm can avoid numerical ill-conditioning, such 

as the near linear dependency caused by some RBF nodes being too close together. In light 

of this fact, we would expect the algorithm to work properly if the condition of the data 

121 



matrix A (k) is not too severe. However, it is important to know under what condition q 

these algorithms will work properly. Hence, we will also conduct an empirical numerical 

study in Chapter 10. 

In the next two sections, we will discuss the implementation of two time- and order-

update algorithms. 

7.3.1 Recursive Least Squares with Automatic Weight 

Selection (RLS-AWS) 

In this section, we will discuss the implementation of recursive least squares with 

automatic weight selection (RLS-AWS). This algorithm combines the recursive least 

squares (RLS) algorithm in Chapter 5 and the order-update algorithm described in Eq. (7 -

12) and Eq. (7 - 13). This algorithm can begin with a bias as the only node and recursively 

add more nodes as time goes on; or begin with no parameter, in which case the order-update 

is used to select the first parameters. We can initialize the inverse correlation matrix to 

U:0(0) = o-1 I where o is a small positive constant. Below is the implementation of the 

RLS-AWS algorithm. 

RLS-AWS Algorithm 

Initialization: q = 0, Ho(O) = 0- 1 I , and Xo(O) = 0 

Fork = 1, 2, ..... 

Read New Data: {qa(k), d(k), q~(k)} 
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Time-Update: RLS Algorithm: 

Store data matrix, potential data matrix and desired response 

A (k) = [AqCk-1)1, A (k) = [~qCk- l)l, d(k) = [d(k- l~ 
q qa(k) J _q q~(k) J d(k) J 

Parameters xqCk), Hq(k), SSEqCk), AqCk), ~qCk), and d(k) are passed to the 

order-update algorithm. 

Order-Update Algorithm: 

Compute Error Reduction Term 

For 1 :::; i:::; q compute 
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p<i)\k) = a.T(k)a.(k)- uUl(k)z(i)(k) q -l -l q q 

Update Order? 

Pick errqCk) = max[errii)(k)] for 1 $ i $ q 

SSEq + 1 (k) = SSEqCk) - errqCk) 

If SSEq + 1 (k) ~ y, update parameters. Otherwise, no update necessary 

Update Parameters 

Keep SSEq + 1 (k). Let i = index[max[errii)(k) ]], then move ~;(k) from 

~qCk) to Aq(k) which produces Aq+ 1(k) and ~q_ 1(k). Then update 
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7.3.2 QR Recursive Least Squares with Automatic 

Weight Selection (QR-RLS-AWS) 

The QR Recursive Least Squares with Automatic Weight Selection (QR-RLS-

AWS) algorithm combines the QR recursive least squares (QR-RLS) algorithm in Chapter 

5 and the order-update algorithm as described in Eq. (7 - 19) and Eq. (7 - 22). Similar to the 

RLS algorithm, this algorithm can begin with a bias as the only parameter or can begin with 

no parameter ( order-update is used to select parameter), and recursively adds more 

parameters as time goes on. The initialization procedure is the same as the QR-RLS 

algorithm, where we initialize R0(0) = 0 . Below is the implementation of the QR-RLS-

AWS algorithm. 

QR-RLS-AWS Algorithm 

Initialization: q = 0, R/0) = 0, and gqCO) = 0 

Fork = 1, 2, ..... 

Read New Data: {qa(k), d(k), q~(k)} 

Time-Update: QR-RLS Algorithm 

Solve using Givens Rotation 

SSE/k) = SSE/k- 1) + r 1 (k)!;2(k) 
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Store data matrix, potential data matrix and desired response 

A (k) = [A/k-1)1, A (k) = [~/k-1)1, d(k) = [d(k- 1~ 
q qa(k) J _q q~(k) J d(k) J 

Parameters gqCk), R/k), SSEqCk), AqCk), ~qCk), and d(k) are passed to 

the order-update algorithm. 

Order-Update: 

Compute Error Reduction Term 

For 1 $ i $ q 

rii)(k) = Rt(k)uii)(k), Solve using back-substitution 

cpCi)(k) = a.T(k)d(k)- rCil(k)g (k) q -l q q 

pCi)\k) = aT(k)a.(k)- rCil(k)rCi)(k) q -l -l q q 

Update Order? 

Pick errqCk) = max[errii)(k)] for 1 $ i $ q 

If SSEq + 1 (k)?:. y, update parameters. Otherwise, no update necessary. 

Update Parameters: 

126 



Keep SSEq+ 1(k). Let i = index[max[errrl(k)]], then move ~1(k) from ~qCk) 

to AqCk) which produces Aq+ 1(k) and ~q-I(k). Also, update 

For parameter updates, implement Eq. (7 - 19) and Eq. (7 - 22) 

R (k) = [RqCk) r qCk)l 
q+I O pqCk~ 

g (k) = [ gqCk) l 
q + I Pq' (k)<J>qCk)j 

7 .4 Fixing Centers 

To implement the two algorithms in the RBF network, we need to define how we 

fix the parameters of the RBF hidden layer. Specifically, how do we select the RBF fixed 

centers and fixed standard deviation. In general, there are two techniques. 

7 .4.1 Centers Selects from Fixed Range/Grid 

This technique equally spaces the centers in the input space. If the RBF network has 

two inputs, then the centers are placed according to a grid (Fabri & Kadirkamanathan 1996, 

Sanner 1993, Sanner & Saltine 1992). By placing the centers in a grid fashion over the input 

space, the gradient descent method can be used to train this network in real-time. However, 

there are two drawbacks to this method. First, due to substantial centers placed over the 
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input spaces, the network size is very large. Therefore, this type of network suffers from the 

curse of dimensionality - the number of hidden nodes increase exponentially with respect 

to the dimension of the input spaces. Second, the gradient descent method has a slow rate 

of convergence. Algorithms with fast rate of convergence utilize second order information, 

such as the RLS and QR-RLS, are impractical due to the large number of weights. Despite 

these drawbacks, this method is good for low dimensional inputs, in control applications. 

7 .4.2 Centers Selected from Time Point 

Centers selected from time points is a technique used in the original RBF network 

(Powell 1987a). In the original paper, the RBF centers are chosen from every time data 

point, which usually produces a very large set. Lowe ( 1989) considers a subset of centers 

randomly selected from the training data sets. This approach is considered to be "sensible" 

by the author, if the training data are distributed in a representative manner. However, 

arbitrarily selected centers are clearly unsatisfactory. Chen et al. (1991) developed an 

alternative procedure based on the orthogonal least squares method. The procedure first 

assumes that a set of potential RBF centers are chosen from every time point. Then, the one 

by one in a rational way, the RBF centers are chosen until an adequate network has been 

constructed. 

7.4.3 Centers Selection for the New Algorithms 

Because the two new algorithms are an extension of the orthogonal least squares 

method, we will consider center selection from the time point data. In the following we will 
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assume that as a new time point becomes available, a potential center is placed on that time 

point. 

Hence, there are as many potential centers as the number of time points, and it is up 

to the algorithm to pick the best centers for the network. In the following we will give some 

preliminary results based on this methodology. 

7 .5 Preliminary Results 

In this section, we will use a single-input/single-output function to test the function 

approximation capabilities of our new algorithms. This function to be approximated is 

y(k) = sin(k) + cos(2k) with sampling interval = rr/20 

The standard deviation and the threshold criteria is selected as 

cr = 1 and "( = 10-3 . 

(7 - 23) 

(7 - 24) 

Meanwhile, the RBF network begins with no parameter; thus, subset selection is used to 

select the centers at time point k = 0. As mentioned previously, when the current data is 

presented, an RBF potential center based on that data point is created as well. In the 

following, all the figures have two subplots. In the top plot, + (plus marks) are all the 

potential centers, o (circle marks) are the selected centers and - (solid lines) are the RBF 

network outputs. The bottom plot shows the sum of squared errors. 
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7.5.1 Compare QR-RLS-AWS and RLS-AWS 

Our first experiment is to compare the QR-RLS-AWS algorithm and the RLS-AWS 

algorithm. Figure 7 - 3 shows the result of both algorithms. Only one figure is shown 

because both algorithms yield identical RBF network output. Even the sum of squared 

errors is the same. This comes as no surprise since both algorithms are derived from the 

least squares method. The reason why we developed the QR-RLS-AWS algorithm is 

because of its numerical accuracy. 
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Figure 7 - 3 The QR-RLS-AWS and RLS-AWS algorithms Result 
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7.5.2 Accuracy Test 

To test if the QR-RLS-AWS is numerically more accurate, we reduce the threshold 

value. In fact, a threshold value of y = 1 o-4 is enough to show the numerical instability of 

the RLS-A WS. Figure 7 - 4 shows this phenomena. As shown, erratic RBF network output 

behavior emerges after the some time passes. 

Using the same threshold value, we tested the QR-RLS-AWS algorithm. As shown 

in Figure 7 - 5, it remains stable. 
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7.5.3 Batch and Recursive Test 

Since the two new algorithms are extensions of the batch orthogonal least squares 

method (Chen et al. 1991), a test is conducted to compare them. The batch result is shown 

in Figure 7 - 6. If we compare the number of centers selected by the batch OLS method to 

the new algorithms (Figure 7 - 3), we can see that the batch OLS method selects fewer 

centers, 44 compared to 53, out of 178 possible centers. This result is not surprising if we 

consider the fact that the algorithm is recursive in nature, and the future time points are not 

available to the new algorithm. Another difficulty arises when a center selected at an early 

stage becomes unimportant in a later stage. This algorithm is not designed to take out 

insignificant centers. Hence, more centers are selected using the new algorithms. 
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Keep in mind that these preliminary results are tested on a simple 1 dimensional 

function. Further tests are needed to verify the performance capability of these algorithms. 

Also, there is still room for improvement in algorithm design and implementation. We will 

explore these improvement in the next chapters. 

133 



Chapter 

8 
RLS-AWS Algorithm 

Improvement 
8.1 Introduction 135 
8.2 Alleviate the Storage Requirement 136 

8.2.1 Time-Update Correlation Matrix 136 
8.2.2 Improvement to Forward Selection Method 139 
8.2.3 Restructuring Time-Update Correlation Matrix 141 

8.3 Order-Decrease-Update Algorithms 142 
8.3.1 Block Matrix Inversion Lemma for Matrix Downdate144 
8.3.2 Recursive Order-Decrease-Update Algorithm for LS Meth-
od 147 

8.4 Recursive Backward Elimination 154 
8.5 Recursive Efroymson Algorithm 155 

8.5.1 Batch Efroymson Algorithm 155 
8.5.2 Recursive Efroymson Algorithm 157 
8.5.3 RLS-A WS Algorithm: Efroymson Method 161 

8.6 Implementation Consideration 167 
8.6.1 Exponential Windowing 167 
8.6.2 Reduce Computational Time 169 

8. 7 Summary 170 

In this chapter, we devote our efforts to improve one of the recursive time- and order-

update algorithms proposed in chapter 7: the RLS-A WS algorithm. These improve-

ments include alleviating the storage requirement, improving the algorithm '.s subset 

selection solution, and reducing the computation. Subsequently, we make this alga-

rithm practical for real-time usage. 
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8.1 Introduction 

In this chapter, we will discuss several ways to improve the performance of the 

Recursive Least Squares with Automatic Weights Selection (RLS-AWS) algorithm. 

We first tackle the storage improvement of the algorithm by devising a way to store 

time independent terms, which are needed for the RLS-AWS calculation, instead of the 

time dependent terms such as the data matrix and the potential data matrix. These time 

independent terms form a matrix, which we call the time-update correlation matrix. With 

this modification, we improve the storage requirement of RLS-AWS algorithm to a fixed 

size. We will also explain how this modification can be applied to the RLS-AWS algorithm 

with the recursive forward selection method and the recursive Efroymson method. 

Second, we improve the algorithm's subset selection solution by developing a 

recursive Efroymson method for the RLS-AWS algorithm. In chapter 7, the RLS-AWS 

algorithm works by adding the best potential nodes into the network to ensure adequate 

network performance. In addition to adding the best potential nodes, the recursive 

Efroymson method also deletes under-performing nodes from the network to ensure a 

smaller network. In chapter 7, we explained how we can add the best potential nodes when 

the order of the model is increased (a new radial basis function node is added). In this 

chapter, we will explain how we can remove the least important nodes from the network 

when the order of the model is decreased (a new radial basis function node is removed). 

Because both procedures are order-update methods, we will call the order-update in chapter 

6 and chapter 7 as order-increase-update and order-update in this chapter as order-decrease-
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update. Later in the section, we will combine the order-decrease-update and the order

increase-update to form the recursive Efroymson method for the RLS-AWS algorithm. 

Lastly, we will discuss how we can reduce computation by utilizing the localized 

character of the RBF network. In addition, we will incorporate an exponential window to 

the new algorithms. 

8.2 Alleviate the Storage Requirement 

One of the major limitations of the RLS-A WS algorithm described in section 7 .3.1 

is the requirement to store the data matrix AqCk) and the potential data matrix ~qCk). 

Because these data matrices accumulate data at every time step, the sizes of these data 

matrices become very large rapidly over time. Hence, it is impractical to implement this 

algorithm in a real-time system if we are required to store these data matrices. 

8.2.1 Time-Update Correlation Matrix 

In this section, a modification is made to the implementation of this RLS-A WS 

algorithm. With this modification, we reduce the storage requirement to a fixed size and 

completely eliminate the dependency on time making real-time implementation possible. 

The basic idea of this modification is instead of storing the data matrix, we store 

matrices and vectors that are not time dependent but that are sufficient for the error 

reduction calculation. These matrices and vectors can be combined to form one big matrix 
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and are updated by the newly arrived time data vector qa(k), the newly arrived potential 

time data vector a(k) and the newly arrived desired response d(k). In the following, we 
q-

will show how we form this time-update correlation matrix and how we use it in the RLS-

A WS algorithm. 

The correlation of the data matrix is defined as 

(8 - 1) 

The data matrix in Eq. (8 - 1) can be rewritten as 

A (k) = [A/k- 1)1, 
q qa(k) J (8 - 2) 

where A/k- 1) is the data matrix of previous time step and qa(k) is the current time data 

vector. If we substitute Eq. (8 - 2) into Eq. (8 - 1), we obtain a recursive equation for the 

correlation matrix 

(8 - 3) 

T 
Let the previous time step correlation matrix be H/k- 1) = AqCk - 1 )A/k- 1), then 

the current time step correlation matrix is 

T 
HqCk) = H/k- 1) + qa(k)qa (k). (8 - 4) 

Eq. (8 - 4) implies that if we stored the previous time step correlation matrix H / k - 1) , we 

can obtain the updated correlation matrix using the current time data vector qa(k). The 
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important thing here to remember is that the size of the correlation matrix HqCk) is q x q 

(the storage size is fixed), and its size is not varying with time. 

Using the same technique, we can derive recursive equations for A~(k)d(k), 

T T T T . 
~q(k)~qCk), Aq(k)~q(k), ~qCk)AqCk) and ~qCk)d(k). In fact, we can bmld these 

recursive equations into one matrix as follows 

[
A~(k)AqCk) A~(k)~q(k) A~(k)d(k~ = 

~;(k)AqCk) ~;(k)~qCk) ~;(k)d(k~ 

(8 - 5) 

[
A~(k- l)AqCk-1) A~(k- l)~q(k-1) A~(k- l)d(k-1~ + (8 - 6) 

~;(k- l)A/k-1) ~;(k- l)~qCk-1) ~;(k- l)d(k-1~ 

[:;::j [qaT(k) ~T(k) d(k~ 
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[ 
HqCk-1) U~q\k- 1) vqCk- l)J + 
(q)T U - (k- 1) H (k- 1) v (k- 1) q _q -q 

(8 - 7) 

Eq. (8 - 7) is called the time-update correlation matrix. Its function is to perform a 

time-update calculation so that U~q)(k), HqCk), !!qCk), v qCk), and ~/k) are updated. 

The size of this matrix is ( q + q) x ( q + q + l) ; however, because it is symmetric, we only 

need to store the upper triangular elements of HqCk), and !!qCk) . (U~q)(k), v qCk) and 

v (k) are stored in full). Total storage reduces to (q + q)2 / 2 + 3(q + q) / 2. In addition, 
-q - -

the update in Eq. (8 - 7) requires - O((q + q)2) flops. 

8.2.2 Improvement of the Forward Selection Method 

Eq. (8 - 7) is the key to the storage savings as the updated matrix contains all the 

necessary terms to compute the error reduction equations. In the following, we repeat the 

error reduction equations from Chapter 7, and show how these terms in error reduction are 

associated with the terms in Eq. (8 - 7). 

(8 - 8) 

where 
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<J>~il 1 = ~f(k)d(k) - ~f(k)A/k) (A!(k)AqCk))-1 A!(k)d(k) 
'-----v-' '-----v-' '-----v-' and 

' 
Hq(k) 

p~il 1 \k) = ~f (k)~i(k) - ~f(k)A/k) (A!(k)AqCk))-1 A!(k)~ik) 
'-----v-' ~ '-----v-' 

h(i, i)(k) 
-q 

Hq(k) g(i)(k) 
q 

(8 - 9) 

(8 - 10) 

Specifically, v<i)(k) is the i1h element of the v (k) vector, h(i, i)(k) is the diagonal 
-q -q -q 

element associated with the ifh row and the ifh column of the H (k) matrix, and uq<i)(k) -q 

is the i1h column vector of the U~q)(k) matrix. Together with the inverse Hessian matrix 

Hq(k) update of Eq. (6 - 13), we have all the necessary terms required for the error 

reduction calculation. Keep in mind since xqCk) = Hq(k)v qCk), and xqCk) is readily 

available from the time-update (RLS) algorithm, we can use it directly in this computation. 

In term of floating point operation, the forward selection requires - 0(2qq2). 

Take note that Eq. (8 - 7) not only contains all the necessary terms for the order-

increase-update algorithm, but it also contains all the necessary terms for the order-

lu<q)(k)l 
decrease-update. Specifically, q is needed for order-increase-update 

!!qCk) 
and 

[ 
HqCk) J [v (k~ T is needed for order-decrease-update. Meanwhile, q is essential for both 

v~q) (k) ~q(k) 
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order-update methods. However, if only the order-increase-update is necessary, we will 

only need 

[
u~q)(k- 1) v qCk- 1 )~ [qa(k)~ [ T ~ = + a (k) d(k) · 
H (k-1) v (k-1) q~(k) q _ _ q -q -

(8 - 11) 

8.2.3 Restructuring Time-Update Correlation Matrix 

It is important to note that once we determine that an order-increase-update is 

necessary, we will need to move the selected potential node into the model. This change 

directly affects the time-update correlation matrix. In particular, we will need to restructure 

those terms associated with the selected potential node in the time-update correlation 

matrix. In the following, we will show how we restructure the time-update correlation 

matrix Eq. (8 - 11) when we only need an order-increase-update. 

Let the lh node be the selected potential node for the order-increase-update. 

Before the restructuring, we have 

h(I , l)(k) h(l , 2)(k) .. . h(l,q)(k) 
-q -q -q 

h ( 2• I ) ( k) h ( 2• 2 ) ( k) . . . h ( 2' q) ( k) = -q -q -q (8 - 13) 
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and 

u~1)(k) ... u~q- l)(k) 

h(l, l)(k) 
-q 

(8 - 14) 

h(q-1, l)(k) ... h(2, q- l)(k) 
-q -q 

The highlighted terms are the terms involved. After the restructuring, we will have 

uf )(k) ... u~q- I)(k) : v qCk) 
I 

h(q, l)(k) ... h(q, q- l)(k) : V (k) 
_:! _______ :! _____ i ~J __ _ 

h(I, l)(k) ... h(l,q-l)(k) : V (k) 
-q -q I _) 

(8 - 15) 

I 

h ( q - I, I ) ( k) . . . h ( 2' q - I ) ( k) : V ( k) 
-q -q ,-q- I 

Specifically, we will move the lh row and delete the lh column of the time-update 

correlation matrix ofEq. (8 - 11). 

8.3 Order-Decrease-Update Algorithms 

In this section, we will derive the order-decrease-update algorithms for the linear 

model using the batch least squares method. These methods allow efficient recalculation of 

the new least squares solution when an existing node is removed from the model. Suppose 

we have a linear model 
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AqCk)xqCk) = d(k) (8 - 16) 

where the data matrix AqCk) and the parameter vector xqCk) are given by: 

AqCk) = [a 1(k) ... aq_ 1(k) aqCk~ 

xqCk) = [x1 (k) ... xq- 1 (k) xqCk~ T 

(8 - 17) 

The batch least squares solution of this linear model is given by 

(8 - 18) 

where 

(8 - 19) 

Now, suppose we find that the existing node aqCk) is no longer useful to the linear 

model, and we would like to remove it. By removing aqCk) from the data matrix, the last 

column of AqCk) is removed. 

(8 - 20) 

Also, the size of x / k) will shrink by one. If we were to recompute the batch least 

squares solution for this changes, the optimal solution for this new parameter will be given 

by 

(8 - 21) 

where Hq-I(k) = (A;_ 1(k)Aq_ 1(k))-1. Unfortunately, the computation of xq_ 1(k) 

using Eq. (8 - 21) is very time consuming. A better alternative is to recursively compute 
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xq- 1 (k) based on the previously computed xqCk) and Hq(k). This recursive solution can 

be obtained by modifying the block matrix inversion lemma in chapter 6 for matrix 

downdate. 

8.3.1 Block Matrix Inversion Lemma for Matrix Down
dating 

Similar to the recursive order-increase-update algorithm, the block matrix 

inversion lemma plays an important role in the derivation of the recursive order-decrease-

update algorithm. In this section, we modify the block matrix inversion lemma for a matrix 

downdate. We repeat the special case of the block matrix inversion lemma here so that we 

can use it to derive a version of the block matrix inversion lemma for the matrix-downdate. 

The block matrix inversion lemma for the matrix update assumes that we know A - l and 

we have HE 9\(n + m) x (n + m) (a square matrix) such that 

H = [A bl 
cT dj 

(8 - 22) 

where A E 9\ n x n , b E 9\ n x 1 , c TE 9\ 1 x n , and d E 9\ 1 x 1 . Then, H-1 can be found as 

H- 1 = [A- 1 + A-1 b(d - cTA-lb)- lcTA- 1 

- (d - cT A- I b )-1 cT A- I 

-A-1 b(d - cT A - 1 b)-1 

(d-cTA- 1b)-1 
l (8 - 23) 

The objective of the block matrix inversion lemma for the matrix downdate (the 

opposite of the block matrix inversion lemma for matrix-update) is to obtain A-1 while 
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assuming that we have H-1 • To show this result, we first simplify Eq. (8 - 23) by letting 

l 
By rearranging Eq. (8 - 24), we get 

-A-1 bL\-1 ] . 

L\- 1 

Since the second term on the right hand side of Eq. (8 - 25) can be factored into 

[
A - ibL\-lcTA-1 

-cT A - IL\- 1 

we have 

(8 - 24) 

(8 - 25) 

(8 - 26) 

(8 - 27) 

The significance ofEq. (8 - 27) is that the factorized vectors and scalar are elements in H- 1 ; 

in other words, we can obtain A - I by using only the elements in H- 1 . Specifically, L\-1 1s 

the last diagonal element of H- 1 , [-A -I bL\-ll is the last row vector of H-1 , and 
L\-1 J 

[ J 
T 

-cT A-I L\-1 - 1 
is the last column vector of H . In term of floating point operation, this 

L\- 1 

matrix downdate requires - O(q(q + 2)). 
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In addition, this order-decrease-update procedure also applies to any order. That is 

if we have 

[ J [
A11 h1 A12j A~1 b~ A~2 

= Af1 Af2 'H = cT d cT and H-1 = c*T d* c*T 
A# A# I 2 I I 

21 22 A b A A * b * A* 21 2 22 21 2 22 

, then 

(8 - 28) 

To prove Eq. (8 - 28), let us assume that 

(8 - 29) 

and there exist a row permutation matrix Prow and a column permutation matrix P col 

such that B = ProwHPcol· Then, according to Eq. (8- 27), we have 

(8 - 30) 

P~~l = P[01, we get 
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(8 - 31) 

Left multiply equation above by P col and right multiply equation above by Prow, we get 

[
Af1 Af2 0) -b~ 

-I 
P # # P =H-P * col A21 A22 0 row col -b2 

OT OT O d* 

(8 - 32) 

Multiply out Eq. (8 - 32), we obtain Eq. (8 - 28). 

8.3.2 Recursive Order-Decrease-Update Algorithm for 
the LS Method 

In the following, we apply the result of the matrix downdate in section 8.3.1 to the 

batch least squares algorithm, and obtain a recursive order-decrease-update algorithm. We 

first note that the old inverse Hessian matrix before the downdating, taken directly from Eq. 

(6 - 13), is 

(8 - 33) 

Now, we apply the inversion result of Eq. (8 - 27) to Eq. (8 - 33), we get 
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(8 - 34) 

Here, we introduce qHq- 1 (k) as a matrix with zero elements inserted to the qth row and 

column of Hq- 1 (k). The left superscript indicates which row and column in Hq- 1 (k) get 

zero elements inserted. Due to the fact that the inverse Hessian matrix is symmetric, we can 

further simplify Eq. (8 - 34) to 

(8 - 35) 

where 

(8 - 36) 

Keep in mind that ii~q)(k) and h~q, q)(k) are the q1h column vector and the q1h diagonal 

- q-
element of Hq(k); therefore, the Hq- 1 (k) can be updated using only the elements in 

Hq(k). Similarly, we can extend this result to the removal of the i1h order of Hq(k) using 

Eq. (8 - 28) 

(8 - 37) 
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Take note that iiti\k) is the i1h column vector of Hq(k) and Ji~i, i)(k) is the i1h diagonal 

element of Hq(k). 

8.3.2.1 Recursive Order-Decrease-Update for the Parameter 

Applying the result of Eq. (8 - 37) to Eq. (8 - 21), we obtain the optimal parameter 

for the new linear model with q1h order removed 

x q _ 1 ( k) = Hq - I ( k) A f- 1 ( k) d ( k) . (8 - 38) 

Keep in mind that we will need to extract Hq - 1 ( k) from qHq - 1 ( k) to compute Eq. (8 -

38). Also, if we were to use the time-update correlation matrix for Eq. (8 - 38), we will need 

toextractvq_ 1(k) = Af_ 1(k)d(k) fromvqCk) = Af(k)d(k) becausevqCk) isprovided 

by the time-update correlation matrix. However, with the following modification, we can 

compute the new parameter using qHq- 1 (k) and v qCk) directly. 

(8 - 39) 

The result of Eq. (8 - 39) is the optimal solution of the new parameter qxq- 1 (k) but with a 

zero element inserted to the q1h row of xq- 1 (k). Again, the left superscript indicates which 

row in xq- 1 (k) gets a zero element inserted. 

Now, if we were to apply the generalized form of the matrix downdate Eq. (8 - 37), 

then we obtain 

(8 - 40) 
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8.3.2.2 Recursive Order-Decrease-Update for the Sum of Squared Er
rors 

Recall from section 6.2.2.2 that the sum of squared error of a linear model will 

always be reduced in value when an order is added. This result is verified by the derivation 

of the recursive sum of squared error formula in Eq. (6 - 30) when we consider adding a 

new node to a linear model. 

Now, assume that a new node is included in the model (that means we have q nodes 

in the model), and we would like to remove the last (q1h) node. The same recursive sum of 

squared errors formula applied in the recursive order-update can be used to find the new 

sum of squared errors. This is done by the rearranging the recursive sum of squared error 

formula in Eq. (6 - 30) 

(8 - 41) 

and we get 

SSEiqJ 1 (k) = SSE/k) + erriqJ 1 (k). (8 - 42) 

Note that we change the order index from q + 1 to q - 1 to reflect an order-decrease-

update. 

Notice that instead of having a minus sign in the recursive sum of squared errors 

formula, we have a plus sign. This implies that if we take out the q1h node, the new sum of 

squared error SSEiqJ 1 (k) will increase by the amount given by err<q)(k). The same error 

reduction term err<q)(k), used by the order-increase-update, is also a measurement of the 
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error increase for the order-decrease-update. Therefore, applying Eq. (8 - 35) to calculate 

the error reduction term will give us an idea of how much the q1h node contributes to the 

linear model. Specifically, we need to use Eq. (8 - 35) to calculate the inverse Hessian 

q- q-
matrix of Hq-l(k), then extract Hq-I(k) from Hq-I(k) and use it in the following 

error reduction calculation 

(8 - 43) 

where 

(8 - 44) 

(8 - 45) 

Together with the inverse Hessian matrix Hq- 1 (k) computed in Eq. (8 - 35), we have all 

the necessary terms required for the error reduction calculation. 

We can extend the result of Eq. (8 - 45) to calculate the error reduction for any i1h 

node available in the linear model using Eq. (8 - 37) instead of Eq. (8 - 35). Also, we can 

use the time-update correlation matrix in Eq. (8 - 7) to compute the necessary terms needed 

for the error reduction. To accommodate these changes, we modify Eq. (8 - 44) and Eq. (8 

- 45) as follow: 

(8 - 46) 

T 
ai (k)AqCk) 

j-

Hq- 1 (k) Af (k)d(k) 
~.and (8 - 47) 

T = ai (k)d(k) -
'--v---' 

bCil(k) q vqCk) 
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j-

= a[(k)ai(k) - a[(k)AqCk) Hq- I(k) Af(k)aJk) 
'---------.,--' '---------.,--' '---------.,--' 

h(i, i)(k) 
q 

This modification works by using the fact that 

h(i)(k) 
q 

i- -
AqCk) Hq- 1 (k)Af (k) = Aq- 1 (k)Hq-1 (k)Af _ 1 (k). 

(8 - 48) 

(8 - 49) 

With this modification, we can apply the time-update correlation matrix to the error 

reduction calculation. Specifically, vii)(k) is the ith element of the v qCk) vector, hii, i)(k) 

is the diagonal element associated with the irh row and the ith column of the HqCk) matrix, 

j-

and hii)(k) is the ith column vector of the HqCk) matrix. Also, Hq- I(k) is used directly 

in the error reduction calculation, which avoid the trouble of extracting Hq - 1 ( k) from 

j-

Hq- 1 (k). In term of floating operations, the computation of the order-decrease-update of 

the ith node requires - 0(2q2 + 7 q). In the following, we will show an example using this 

order-decrease-update algorithm. 

Example 8 -1 

Assume that we have the following data matrix and desired response 

0.1 -0.2 0.3 0.1 

A/4) 
-0.5 0.3 0.3 , and d(4) -0.2 = = 
0.8 -0.2 0.4 -0.5 

(8 - 50) 

0.6 -0.8 0.9 1 

Then, the time-update correlation matrix is 
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[ 
1.26 -0.81 0.74 ; 0.31~ 

= -0.81 0.81 -0.771-0.78 · 

0.74 -0.77 1.15 I 0.67 
I 

(8 - 51) 

[Note that because there is no unselected node, the time-update correlation matrix does not 

contain the terms H (k), Uq(k) and v (k) .] The inverse correlation matrix is given by _q -q 

[
2.2329 2.3852 0.1602~ 

H3( 4) = 2.3852 5.9443 2.4452 · 

0.1602 2.4452 2.4037 

Now, if we wish to remove the last node, we can apply Eq. (8 - 37) with i = 3 

3- _ r0.1602~ [o.1602 2.4452 2.4037] [2.2222 2.2222 oj 
H2( 4) = H3( 4) - 2.4452 2.4037 = 2.2222 3.4568 0 · 

2.4037 0 0 0 

Using the solution in Eq. (8 - 53), we can calculate the new parameter as 

[
2.2222 2.2222 oj [ o.31 ~ 

\ie 4) = 2.2222 3.4568 0 -0.78 

0 0 0 0.67 
[
-1. 04441 [ ~ -1.0444 

= -2.0074 , xi(4) = , 
O -2.0074 

and the error reduction term as 

[ J T[ j [ ~ 0.74 2.2222 2.2222 0 0.31 
<P~3 )( 4) = 0.67 - -0.77 2.2222 3.4568 0 -0.78 = -0.1028, 

1.15 0 0 0 0.67 

[ ~ T[ j [ ~ 2.2329 2.2222 2.2222 0 2.2329 
pp)\4) = 1.15- 2.3852 2.2222 3.4568 0 2.3852 = 0.416. 

0.1602 0 0 0 0.1602 
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(8 - 53) 

(8 - 54) 

(8 - 55) 
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(3)(4) = (-0.1028)2 = 00254 
err3 0.416 . . (8 - 57) 

The result of the order-decrease-update for i = 2 and i = 1 is as follows 

2ii2(4) = 11.2;58 ~ - 0-~2091, 'x,<4) = I-0.~451, err\2>(4) = 0.8583 (8- 58) 

l-0.8209 0 1.3978 l 0.6821 J 

= [-l.~2J, err\1>(4) = 0.5041. 
-0.171~J 

8.4 Recursive Backward Elimination 

(8 - 59) 

In Example 8 - 1, the calculation of error reduction errP)(4) yields the smallest 

value when we remove the third node. This seems to suggest that removing this node from 

the model is probably a good idea since it does not contribute much to the model. Indeed, 

this idea is called the backward elimination. We have briefly discussed the batch backward 

elimination in chapter 6. As discussed, this method calculates the error reduction for all the 

nodes for a set of data, then removes the node that yields the smallest computed error 

reduction term one at a time until an error criterion is met. In term of floating point 

operation, this operation requires - 0(2q3 + 7 q2 ). 

It is true that the batch backward elimination method works well in finding a small 

subset in a linear model (Miller, 1990). Unfortunately, it is not true if we were to use this 
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backward elimination method for real-time operation. This is because recursive backward 

elimination can only increase the sum of squared errors of a linear model, as we explained 

in section 8.3.2.2. Therefore, it cannot compensate for the new changes induces by the 

newly added real-time data. 

At this point, the reader might ask why we introduce the recursive backward 

elimination method if it does not work in real-time. The reason is that backward elimination 

can work together with forward selection to form the Efroymson algorithm. 

8.5 Recursive Ef roymson Algorithm 

In the following, we will first discuss the batch Efroymson algorithm (Most of the 

batch Efroymson materials are taken from Miller ( 1990), and Efroymson ( 1960). Readers 

can consult these books and journals for detailed discussion). Then, we will use some of the 

procedures from the batch Efroymson algorithm to develop the recursive Efroymson 

algorithm. 

8.5.1 Batch Efroymson Algorithm 

As described in chapter 6, the batch Efroymson algorithm works by combining 

forward selection and backward elimination. Specifically, the batch Efroymson algorithm 

will first use the forward selection method to find the best potential node among all the 

unselected nodes. The best potential node is the node that produce the largest decrease in 
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the sum of squared errors. The sum of squared errors before, SSEq, and after, SSEq + 1 , the 

addition of this node are then used in the calculation of the following ratio 

W = SSE9 -SSEq+ 1 

e SSEq+ll(N-q-2) 
(8 - 60) 

where N is the total number of data points and q is the total number of nodes in the model. 

The calculated We is compared to the F-to-enter value Fe. If We> Fe, the node is added 

to the model. Otherwise, no node is added. 

Right after forward selection, backward elimination is applied to see if any of the 

previously selected nodes can be deleted without appreciably increasing the sum of squared 

errors. The node that incurs the least sum of squared error is picked. Then, the sum of 

squared errors before, SSEq, and after, SSEq- 1 , the deletion of that selected node are used 

in the calculation of the following ratio 

_ SSE9 _ 1 - SSE9 
Wd - SSEql (N-q-1). 

(8 - 61) 

This W d value is calculated and compare to F-to-delete value F d. If W d < F d, the node is 

removed from the model. Otherwise, no node is removed. This process is repeated until no 

further additions and deletions are possible which satisfy the criteria. 

According to Miller ( 1990), this process is guaranteed to converge as long as we set 

Fd <Fe. Also, the stopping rule is derived assuming that We and Wd have an F-

distribution under the null hypothesis; that is, the model is the true model and subject to 

error residuals being independent and normally distributed. Typically, Fe and F d values 
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are taken from an F-distribution table. A typical value for Fe is 2 and a typical value for 

Fd is 1.5. However, according to Miller (1990), these values can be manually set as long 

as F d < Fe. Specifically, large Fe and small F d will yield a smaller model with a larger 

sum of squared errors; small Fe and large F d will yield a larger model with a smaller sum 

of squared errors. We can also use other techniques such as Mallow's (1973) statistic, 

adjusted R2 statistic, or Akaike's (1969) Information Criterion (AIC) to derive different 

stopping rules. 

8.5.2 Recursive Efroymson Algorithm 

While the batch Efroymson algorithm is an off-line learning method, the recursive 

Efroymson algorithm operates in on-line fashion. That means it will have to deal with a 

time-update while simultaneously applying the Efroymson algorithm to add and/or delete 

orders from the model. 

8.5.2.1 Stopping Rule 

Using the error reduction calculations for forward selection, Eq. (8 - 8), and 

backward elimination, Eq. (8 - 46), 

erriil 1 (k) = SSEqCk) - SSEiil 1 (k) for i = 1 < i < q, and 

errii~ 1 (k) = SSEii~ 1 (k) - SSEqCk) for i = 1 < i < q, 
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the recursive Efroymson is a straight forward extension to the batch Efroymson algorithm. 

The result of Eq. (8 - 62) and Eq. (8 - 63) can be used directly in the We and Wd 

calculations 

errU) 1 (k) w = + 
e SS£ii1 1 (k) l (k- q - 2) 

(8 - 64) 

_ err4i~ 1(k) 

Wd - SSEqCk)l(k- q- 1) 
(8 - 65) 

The calculated We and W d are compared to Fe and F d. If We > Fe, the node is added to 

the model. If W d < F d, the node is removed from the model. Otherwise, no node is removed 

or added. 

Keep in mind that because we need to accommodate for the real-time operation, an 

assumption is made such that these stopping rules are applied only once for each time-

point. In other words, we will have only one deletion and/or deletion takes place in one 

time-step. This assumption assumes that the repeating process of the recursive Efroymson 

algorithm takes place as time-point increases. Note that this repeating process is vital for 

the error convergence of the algorithm. In Chapter 10, we will run numerous simulation 

tests to validate this assumption. 

8.5.2.2 Restructuring the Time-Update Correlation Matrix 

Similar to section 8.2.3, we need to restructure the time-update correlation matrix 

when we use the recursive Efroymson method for the order-increase-update and order-

decrease-update. Here, we made an assumption that if a node is removed from the model 
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(even the node that has just been added), that node is added back to the potential nodes for 

future selection. This assumption assumes that it is possible for the algorithm to reselect it 

again in the future. 

With this assumption, we revisit the restructuring of the time-update correlation 

matrix. Suppose we expanded U~q)(k), !!/k), and ~/k), as shown in Eq. (8 - 12) and 

Eq. (8 - 13), of the time-update correlation matrix 

[ 
H (k) ; u<q)(k): v (kj 

- - 'I_ - ...j - q_ - ..! _q - -

U(q)T(k)I H (k) : V (k) 
q ' -q '-q 

Hq(k) ; ui1l(k) ... u~q - '\k) 
I 

uC1i1'(k) I h(l , l)(k) ... h(l,q-l)(k) 
q I -q -q 

I 

I (8 - 66) 
U~q -l)T(k):h(q - l, 1\k) ... h(2,q- l)(k) 

I -q -q 

and we determine that it is necessary to add the qth potential node into the model. Then we 

will need to move the lh row and the lh column of the time-update correlation matrix of 

Eq. (8 - 66). The highlighted terms are the affected elements. After the restructuring, we 

obtain 

- . (8 - 67) 

I 

h(q - l , '\k) ... h<2,q - l\k) :v (k) 
- q - q ,-q - l 
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Note that the above method assumes that we will add the selected potential node to the 

q + 1 position of the data matrix. It is also possible to add the selected node to other 

positions but we will not discuss that here. 

Similarly, suppose we expand the matrix 

hil , l)(k) h~l,2>(k) ... h~l,q)(k) 

and HqCk) 
= hf' I l(k) hf' 2)(k) ... hf, q)(k) 

(8 - 69) 

(Note that iuqCk) is the row-wise expansion of U~q)(k) with the left subscript to indicate 

fh row). Now, the time-update correlation matrix can be written as 

I I (8 - 70) 
h(q, 2l(k) h(q, q)(k) 1 U T(k) 1 V (k) q . .. q lq q I q 
----------~---~--

2uq( k) .. . quq(k) I !!qCk) I ~/k) 

Suppose we want to remove the 1st node in the model. We remove it from the model and 

append the unwanted node to the last column of the potential data matrix. To accommodate 

this change, we need to restructure the time-update correlation matrix as follows: 
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hf· 2>(k) ... hf· q)(k); 20/(k) 
I 

h(q, 2)(k) h(q, q)(k) 1 U T(k) q . .. q lq q (8 - 71) 
- - - - - - - - - -1- - - -

2uqCk) ... quqCk) 1 !!qCk) 

8.5.3 RLS-AWS Algorithm: Efroymson Method 

Using the stopping rules and the time-update correlation matrix above, we are now 

ready to describe the complete RLS-AWS with Efroymson method. 

Figure 8 - 1 shows the new framework for the RLS-A WS algorithm with 

Efroymson method. This framework is similar to the general time- and order- update 

framework except that we have added the time-update correlation matrix block and we use 

a different subset selection algorithm: Efroymson method. 

As shown in Figure 8 - 1, the algorithm begins by feeding new real-time data 

{qa(k), d(k), q~(k)} to the time-update algorithm and the time-update correlation 

matrix. Then, the time-update algorithm will produce parameters xqCk), Hq(k), and 

SSEqCk) for the Efroymson algorithm. Simultaneously, the time-update correlation matrix 

will produce parameters HqCk), !!qCk), V~q)(k), v qCk), and v_/k) for the Efroymson 

algorithm. Using the parameters from both the time-update algorithm and the time-update 

correlation matrix, the Efroymson algorithm will proceed to add/delete order. In the 

following, we will explain the operations contained in the Efroymson algorithm. 
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8.5.3.1 Subset Selection with Efroymson Method 

The role of the Efroymson algorithm is to ensure the time-update algorithm 

provides adequate network performance. To ensure adequate network performance, we 

have adopted the following rule: we will first apply the deletion of nodes. If no deletion of 

nodes is necessary, then we will apply the addition of nodes. If the addition of the nodes is 

not necessary, then no order-update is necessary. 

Hence, the algorithm will first determine if an order-decrease-update is necessary. 

This is done by computing the error reduction terms for every selected node. Then, it selects 

the least error reduction term and uses it to calculate Wd in Eq. (8 - 65). This Wd value is 

compare to a preselected F-to-delete value to determine if an order-decrease-update is 

necessary. If an order-decrease-update is necessary, we will update the parameters and 

restructure the time-update correlation matrix. 

If an order-decrease-update is not necessary, then the algorithm will first determine 

if an order-increase-update is necessary. This is done by computing the error reduction 

terms for every potential node. Then, it selects the largest error reduction term and uses it 

to calculate We in Eq. (8 - 64). This We value is compared to a preselected F-to-enter value 

to determine if an order-increase-update is necessary. If an order-increase-update is 

necessary, we will update the parameters and restructure the time-update correlation 

matrix. At this stage, if order-increase-update is not necessary, then the algorithm will not 

have any order-update. The cycle repeats with a new data point. In the following, we 

summarize the whole algorithm. 

162 



I No 

Figure 8 - 1 Flow Chart for RLS-AWS with Efroymson Method 

Recursive Efroymson Algorithm 

Initialization: \ 

!!qCO) = Oq x q• v0(0) = 0, ! (0) = 0 1 x q 
- - - q -

[ Input Data: J 
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Time-Update Correlation Matrix: \ 

Parameters HqCk), !!/k), U~'l)(k), v qCk), and !/k) are passed to compute 

error reduction terms in subset selection. 

Time-Update: RLS Algorithm \ 

Parameters xqCk), Hq(k), SSEqCk) are passed to compute error reduction terms 

in subset selection. 
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Compute Error Reduction Terms \ 

For Order-Increase-Update: 

For 1::;; i::;; q compute 

P(i) 1\k) = h(i,i)(k)-uCil(k)z(i)(k) q + -q q q 

end 

For Order-Decrease-Update: 

For i = 1 ... q compute 

iiii\k) is the ifh column vector of H.q(k), and 

Ji~i, i)(k) is the ith diagonal element of Hq(k). 

end 

165 



1 Stopping Rules: \ 

For Order-Increase-Update 

errq+l(k) . 
If SSEq + 1 (k)/(k- q- 2) > Fe , order-increase-update parameters. 

For Order-Decrease-Update 

SSEq- I (k) = SSE/k) + errq- 1 (k) 

If SSEqCk)/(k-q- l) <Fd order-decrease-update parameters. 

Update Parameters: 

For Order-Increase-Update 

Keep SSEq+ 1 (k). Let i = index[errr>(k)] then update 

Hq + 1 (k) = [
Hq(k) + zqCk)Pqi 1 (k)z~(k):-z/k)Pqi 1 (k~ 

-Pqi 1 (k)z~(k) : Pqi 1 (k) J 
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For Order-Decrease-Update 

Keep SSEq- 1 (k). Let i = index[min[errii~ 1 (k)]], then 

i j-

calculate xq- 1 (k) = Hq- 1 (k)v qCk), and extract xq- 1 (k) 

i
Extract Hq - 1 ( k) from Hq - 1 ( k) 

8.6 Implementation Consideration 

In this section, we will consider applying the recursive Efroymson algorithm to the 

special RBF network described in chapter 2. Also, we will discuss a method to reduce the 

computational time and incorporate exponential windowing. 

8.6.1 Exponential Windowing 

In recursive implementation, we often use an exponential window with the least 

squares algorithm. Since the time- and order- update algorithms are derived using least 

squares, we can easily incorporate an exponential window to the new algorithms as well. 

Since many books and journal (Haykin, 1996; Sayed & Kailath 1994) have in-depth 

coverage of the derivation and usage of exponential windows in recursive least squares, we 

will use these their results to derive a version of exponential windowing for the recursive 

algorithms discussed here. 
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As discussed in Haykin ( 1996 pp.565), when an exponential window is used, the 

correlation matrix and the cross correlation vector can be rewritten as follows: 

(8 - 72) 

v qCk) = 11,v qCk- 1) + qa(k)d(k) (8 - 73) 

where A is the exponential window weighting factor. Typically, A is a constant less than 1 

but greater than 0. A typical value is 0.95. By combining these equations with the derivation 

of the time-update correlation matrix, we can obtain the time-update correlation matrix 

with exponential window 

[ 
HqCk-1) u~q)(k-1) vqCk- l)J 

= A + 
(q)T 

U - (k- 1) H (k- 1) v (k- 1) 
q _q -q 

(8 - 74) 

By incorporating the exponential window into the time-update correlation matrix, we will 

also need to use exponential windowing in the time-update algorithm (RLS algorithm). 

This is also discussed in Haykin ( 1996), and we will only provide the result here. 
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1 Time-Update: RLS Algorithm with Exponential Windowing\ 

SSEqCk) = SSEqCk- 1) + i;J(k) ~ 1 (k) 

8.6.2 Reduce Computational Time 

Because the RBF network is localized in space, the output of qa(k) and a(k) will 
q-

contain many elements near zero. These elements are near zero because their centers are far 

fro the current input. For instance, Figure 8 - 2 illustrates a system trajectory. The circles 

(filled and unfilled) represent the potential and selected nodes. We can see that near the 

point X, the majority of the nodes (open circles) have output near zero, and only a small 

number of nodes (filled circles) have non-zero output. 
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Figure 8 - 2 System Trajectory Travels over the RBF Nodes Planted in 2-D Spaces 

If we assume that nodes that are far away from the current input are not contributing 

much to the output, then we can assume those nodes are not candidates for addition or 

deletion. In other words, we will only consider potential nodes that have non-zero output 

as candidates for order-increase-update and will only consider selected nodes that have 

non-zero output as candidates for order-decrease-update. 

To implement this scheme, all we have to do is to find those qa(k) and q~(k) 

outputs that are near zero and eliminate them from consideration in the order-update. With 

this implementation, we can save a tremendous amount of computation. 

8.7 Summary 

In this chapter, we have explored several improvements to the RLS-AWS 

algorithm. These improvements have resulted in reduced storage, better subset selection 

(using recursive Efroymson) and reduced computational time for the RLS-A WS algorithm. 

We will test these improvements on several system identification problems in chapter 10. 

In the next chapter, we will look for improvements in the QR-RLS-AWS algorithm. 
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9 
QR-RLS-AWS Algorithm 
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9.2 Square Root Error Reduction Term 172 
9.3 The New QR-RLS Structure 176 
9.4 Recursive QR-Order-Update Algorithms 179 

9.4.1 Recursive QR-Order-Increase-Update 180 
9.4.2 Recursive QR-Order-Decrease-Update 182 

9.5 Recursive Subset Selection Algorithms 186 
9.5.1 Recursive QR Forward Selection Method 186 
9.5.2 Recursive QR Backward Elimination Method 188 
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9.6.2 Reduce Computational Time 195 

9.7 Summary 196 

In this chapter, we improve the QR-RLS-AWS method that we developed in chapter 7. 

This improvement has lead to a better implementation framework that utilizes the 

Givens QR algorithm. Using this technique, we have developed a QR version of the 

recursive Efroymson algorithm. Also, we propose several improvements which re-

duce the computation and include exponential windowing. 
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9.1 Introduction 

In this chapter, we will discuss a new way of implementing the QR-RLS-AWS 

algorithm. We will start by discussing an interesting property that we obtain after we have 

performed the QR time-update algorithm. Then, this key property is linked to the 

explanation of the square root error reduction term. With this discovery, we can calculate 

the QR-order-increase-update (discussed in section 9.4) and QR-order-decrease-update 

(discussed in section 9.4.2) without recomputing the whole orthogonal least squares 

solution. These order-update technique can be incorporated into the forward selection 

method and the backward elimination method. Later, by combining both subset selection 

methods, we form the recursive QR-Efroymson algorithm. 

9.2 Square Root Error Reduction Term 

Before we explain the square root error reduction term, let us recall the post-array 

matrix of the QR-RLS algorithm from chapter 5. From Figure 5 - 1, the post-array matrix 

is given by 

[
R(k) g(k) l 

OT r 11 2 (k)~(k)J 
(9 - 1) 

This post-array is the direct result of the QR-time-update on the pre-array as explained in 

chapter 5. To ease the explanation, we will concentrate on the top two terms of the matrix 

in Eq. (9 - 1) 
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[ R(k) g(k)] (9 - 2) 

where R(k) is the upper triangular squared matrix and g(k) is the gain vector (Haykin, 

1996). These R(k) and g(k) provide the batch orthogonal least squares solution to the 

following linear model 

d(k) = A(k)x(k) + e(k) 

where we consider 

A(k) = Q(k)R(k), and 

g(k) = QT(k)d(k) = R(k)x(k). 

With this solution, the sum of squared error can be rewritten as 

eT(k)e(k) = ((d(k)-A(k)x(k))T(d(k)-A(k)x(k))) 

= (d(k) -Q(k)g(k))T(d(k) - Q(k)g(k)) 

(9 - 3) 

(9 - 4) 

(9 - 5) 

= dT(k)d(k) - dT(k)Q(k) g(k) - gT(k) QT(k)d(k) + gT(k) QT(k)Q(k) g(k) (9 - 6) 
'--.,,-' '--.,,-' '--.,,-' 

g(k) I 

and we obtain 

eT(k)e(k) = dT(k)d(k) - gT(k)g(k). (9 - 7) 

Assume that we have q + 1 nodes in the model, then 

Similarly, if we assume that we have q nodes in the model, then the sum of squared error 

for the model that excludes the q + 1 node is 

(9 - 9) 

173 



Therefore, by substituting Eq. (9 - 9) into Eq. (9 - 8), we get 

eI + I (k)eq + I (k) = dT(k)d(k) - gr(k)- gl(k) ... - gJ(k) - gJ + I (k) 
(9 - 10) 

SSEq + 1 (k) SSEqCk) 

If we compare Eq. (9 - 10) to the recursive sum of squared errors formula in Eq. (6 - 30), 

we can conclude that gJ + 1 (k) is the error reduction term; in other words, gq + 1 (k) is the 

square root error reduction term. From Eq. (9 - 10), we can conclude two important 

observations. 

1. Eq. (9 - 10) is a recursive equation, and it applies to any i-th order for i between 1 

and q. 

2. The i-th error reduction term gr(k) measures how much the sum of squared error 

has been increased when the i-th node is added into the model that contained node 

1 to node i-1; or it measures how much the sum of squared error has been decreased 

when the i-th node is deleted from the model that contained node 1 to node i. 

These observations indicate that if we compute the post-array matrix for a model that 

contains i nodes, then we can easily obtain the sum of squared errors information for the 

other i - 1 models. These i - 1 models are subsets of the model that contains i nodes. For 

example, if we have a model that has four nodes (shown in Figure 9 - 1), and we have 

calculated the post-array matrix using Eq. (9 - 2), then, we can obtain the sum of squared 

errors for the other three models as shown in Figure 9 - 1. 
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83 

111 Node that has just been added 

Figure 9 - 1 Obtainable subsets given a four-node linear model 

Also, these observations suggest that the ordering of the nodes in a model affects 

the meaning of g/k). For example, if we switch the order of nodes a3 and a4 in the four-

node linear model shown in Figure 9 - 1, then g3(k) measures the increase in the sum of 

squared error when the a4 node is added into the model that contains node a 1 and a2 ; or 

it measures the decrease in the sum of squared error when the a4 node is removed from the 

model that contains node a 1 , a2 , and a4 . 

Now, given the two facts above, suppose we want to find the value of g/k) in the 

example above (the order of nodes a3 and a4 in the four-node linear model is switched), 

how can we proceed to find it without recomputing Eq. (9 - 2)? If we examine Eq. (9 - 2), 

we will see that each column of R(k) belongs to a designated node. All we need to do is 
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swap the columns corresponding to the desired nodes and re-triangulate them by applying 

the re-orthogonalization process. We will explain these techniques in detail in sections 9 .4 

and 9.5. 

9.3 The New QR-RLS Structure 

In section 9.2, we have discovered that we can find the sum of squared errors for 

several subsets in a model. To use this technique for subset selection, we need to change 

the QR-RLS algorithm structure so that it contains both selected and potential nodes. 

Specifically, instead of computing the R(k) and g(k) for the selected nodes only, we 

compute the R(k) and g(k) for both selected and potential nodes. The reason we 

compute the R(k) and g(k) for both selected and potential nodes is so that we can think 

of it as the complete linear model and we would like to find out the sum of squared errors 

for a particular subset in this model (the model that contains only the selected nodes). These 

changes are as follows. First, we form the pre-array as shown on the left-hand-side of Eq. 

(9 - 11). 

R (k-1) S(q)(k-1) g (k-1) q q q 

oqxq ~qCk-1) ~/k-1) 

T 
q~ (k) d(k) 

R (k) s(q)(k) 
q q 

~ oqxq ~qCk-1) 

OT 
q 

T 
q~ (k) 

gqCk) 

g (k- 1) 
-q 

r 112(k)c;(k) 

(9 - 11) 

Then, we annihilate the current input data qaT(k) one by one from left to right. The Givens 

QR algorithm described in Chapter 4.5 is used, except that we skip all zero elements 

contained in RqC k - 1) and O q x q. The Givens rotation operates by annihilating the input 
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data one by one until all elements become zero entries, as shown on the right-hand-side of 

Eq. (9 - 11). As soon as the all the current input data elements qa T(k) have been annihilated, 

we obtain the post-array elements, as in Eq. (9 - 1). At this instance, we will use Eq. (5 -

41) to compute time-update increase in the sum of squared error 

(9 - 12) 

Once we have computed this term, we can continue to annihilate the current potential data 

q~T(k) until all entries become zero, as shown on the right-hand-side of Eq. (9 - 13). 

RqCk) s(q)(k) q gqCk) RqCk) S~q)(k) gqCk) 

oq x q ~qCk-1) g (k- 1) -? oqxq ~qCk) ~/k) (9 - 13) -q 

OT T r1 12(k)<;(k) OT OT X q q~ (k) q q 

The x term represents the increase in the sum of squared errors from both selected and 

potential nodes. Typically, we will ignore this value. However, it gives us a good indication 

of how much error reduction we can have if we were to use all the nodes (selected and 

potential) in our model. The right-hand-side matrix is the post-array matrix for our new 

QR-RLS algorithm. In particular, we are interested in the matrix elements excluded in the 

last row, as shown below. 
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rl rl r1; sl I sl gl I 2 q1 I Sq- I q 

r2 
I 

2 s2 0 r21 s2 I gz 2 qi I ... sq- I q 
• I • 
: I : I 

I I 

0 0 0 r41 sr . .. s4 _ I S4 : gq = _______ } _____ ~---~-L __ _ 

0 0 0 0 r 1 r 1 r1 1 g _) -q-) -q I _] 

(9 - 14) 

- - I 

I 
I 

0 0 0 0 q-1 JI 
r- rq- 1g 
-q-1 -q 1-q-I 

I 

0 0 0 0 0 rq I 

llq -q I 
I 

The R q ( k) and the !! q ( k) are the R-factors ( triangular matrices) for selected nodes and 

potential nodes. They contain q(q + 1)/2 and q(q + 1 )/2 elements, respectively. S~q)(k) 

contains the R-factor cross terms between the selected nodes and the potential nodes. It 

contains q x q elements. Meanwhile, gqCk) and ~/k) are the gain vectors (or the square 

root error reduction vectors) for the selected and potential nodes. The total number of 

elements is ( q + q) ( q + q + 3) I 2 . In terms of floating operation, we will require -

0(3n2 + 9n) flops to obtain the post-array in Eq. (9 - 13). 

In the following, we will introduce an example of the post-array matrix that contains 

four selected nodes q = 4 and five potential nodes q = 5. This example will be used to 

explain the QR-order-increase-update and QR-order-decrease-update. 
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rl I I I I I I t I 
I r2 r3 r4 St S2 S3 S4 S5 gl 

0 2 2 2 2 2 2 2 2 
r2 r3 r4 St S2 S3 S4 S5 g2 

0 0 3 3 3 3 3 3 3 
r3 r4 s1 S2 S3 S4 S5 g3 

0 0 0 4 4 4 4 4 4 

[R4(k) Si5>(k) g4(k~ 
r4 St s2 S3 S4 S5 g4 

= 0 0 0 0 rl I I I I (9 - 15) 
05 x4 !!5(k) ~/k) 

_ J ~2 ~3 ~4 ~5 SI 

2 2 2 2 0 0 0 0 0 ~2 ~3 ~4 ~5 S2 

0 0 0 0 0 0 3 3 3 
~3 ~4 ~5 S3 

0 0 0 0 0 0 0 4 4 
~4 ~5 S4 

0 0 0 0 0 0 0 o ~~ S5 

In the next section, we will use this new result to form the recursive QR-order-increase-

update and the recursive QR-order-decrease-update algorithms. 

9.4 Recursive QR-Order-Update Algorithms 

In this section, the result of the new QR-RLS algorithm, the post-array matrix given 

by Eq. (9 - 14), is computed and is readily available. By applying the results in section 9.2 

to this new QR-RLS algorithm, we obtain two recursive order-update algorithms called the 

recursive QR-order-increase-update and the recursive QR-order-decrease-update 

algorithms. The recursive QR-order-increase-update allows the addition of a potential node 

into the model and the recursive QR-order-decrease-update allows the removal of a 

selected node from the model. Both algorithms are obtained without recomputing the whole 

orthogonal least squares solution. 
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9.4.1 Recursive QR-Order-Increase-Update 

In the recursive QR-order-increase-update, the objective is to add an ith potential 

node to the model containing q nodes, without recomputing the whole orthogonal least 

squares solution. By using the result discussed in section 9.2, we can achieve this objective 

by doing the following. 

1. In Eq. (9 - 14), move the i1h column of potential nodes to the q + 1 column of the 

selected nodes. 

2. Re-triangulate the matrix obtain in (I) so that it becomes an upper triangular matrix. 

This is done by applying the Givens rotation successively. This process is also 

called re-orthogonalization. Due to the structure of the matrix obtain in (1 ), we will 

only need to apply the Givens rotation to the following matrix 

r! rl rl I rl rl g 
-I - I -2 :i - 1 -i + I -q -1 

X X X 

r? 0 r2 2 r2 r2 g 0 -I -2 :i- I -i + I -q -2 ~ 
X X X (9 - 16) 

r! 0 0 I ri ri 0 0 ... X . .. X ... :i - I g. 
-l -i + I -q -l 

Once we finish the re-orthogonalization process, the upper right-hand term contains g q + 1 • 

By squaring this term, we can find out the reduction in the sum of squared error. 

(9 - 17) 

Keep in mind that the above re-orthogonalization process calculates the error reduction and 

also generates the next iteration. If we only want to find the square root error reduction term 

180 



g q + 1 , then we only need to apply the Givens rotation to the first and last column of Eq. (9 

- 16). 

r.1 
81 -l X 

2 0 X ~i 82 ~ (9 - 18) 

r~ g. 0 X 
-l -l 

The above computation only requires 6i flops. 

Example 9 -1 

Consider a model that consists of four selected nodes q = 4 and five potential 

nodes q = 5, where the post-array matrix is given by Eq. (9 - 15 ). Suppose we want to add 

the third node of the potential nodes to the model, then the post-array matrix will be 

I 1 1 I I I I I I r1 r2 r3 r4 s3 s1 s2 s4 s5 g 1 

0 22222222 r2 r3 r4 s3 s 1 s2 s4 s5 g2 

0 0 rl rl Sj Sf sl sJ sJ g3 
000 444444 

r4 S3 SI s2 S4 S5 g4 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 0 0 0 

(9 - 19) 

Next, we will apply the Givens rotation to the highlighted post-array matrix elements in Eq. 

(9 - 19 ). By applying the Givens rotation successively, we transform Eq. (9 - 19) to an upper 
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triangular matrix. Note that the highlighted terms are the terms involved in the Givens 

rotations. 

I I I I l 
~3 ~I ~2 ~4 ~5 81 

r2 0 2 2 2 
-3 ~2 ~4 ~5 82 

r3 0 0 3 3 
-3 ~4 ~5 83 

X 

= 0 

0 

X X 

X X 

0 X 

X 

X 

X 

X 

X 

X 

(9 - 20) 

As explained in Eq. (9 - 18), we can perform Givens rotations on the first and last columns 

of Eq. (9 - 20). 

X 

X 

9.4.2 Recursive QR-Order-Decrease-Update 

(9 - 21) 

In the recursive QR-order-decrease-update, the objective is to remove the ph node 

from a model that contains q nodes, without recomputing the whole orthogonal least 

squares solution. By using the results discussed in section 9.2, we can achieve this objective 

by doing the following. 

1. In Eq. (9 - 14), move the ph column of selected nodes to the first column of the 

potential nodes. 
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2. Apply the re-orthogonalization process to the matrix obtained in (1) until it 

becomes an upper triangular matrix. Due to the structure of the matrix obtain in ( 1 ), 

we will only need to apply the Givens rotation to the following matrix 

ri I 1+ 
ri 2 1+ rj I q-

rj 
q ri 

l s1 sj 
q gj 

ri+ I 
l + 1 

ri+ I 
1+2 

rj + 1 
q-1 

rj+ I 
q 0 s1 + I sj + I 

q gj+ I 

0 ri+ 2 
1+2 

rj+ 2 
q-1 

rj+2 
q 0 s1+ 2 sj + 2 

q gj+2 

0 0 q-1 
rq-1 

q-1 
rq 0 sr-1 q-1 ... sq gq-1 (9 - 22) 

0 0 0 rq 
q 0 sr sq 

q gq 

X X X X 

~ 
0 X X X 

0 0 ... X . .. 

Once we finish the re-orthogonalization process, the lower right-hand term contains gq. By 

squaring this term, we can find out the reduction in the sum of squared error. 

SSEq- 1 (k) = SSEqCk) + gJ(k) (9 - 23) 

The above re-orthogonalization process finds the error reduction terms and also calculates 

the extra cross terms so that the algorithm can restart for the next iteration. If we only need 

to find the square root error reduction term gq, then we only need to apply the Givens 

rotation to the following subset of the matrix in Eq. (9 - 22) 
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ri 1 j+ ri 2 J+ rj I q- rj q gj 

ri + 1 
J + 1 

ri + 1 
1+2 

rj+ I 
q-1 

rj + I q gj + 1 X X X 

0 ri + 2 
]+2 

ri+2 
q-1 

rj + 2 q gj+2 --4 
0 X X (9 - 24) 

0 0 q-1 
rq-1 

q-1 rq gq- I 
0 0 ... 

0 0 0 rq q gq 

The above computation only requires 3j(j + 1) flops. 

Example 9 - 2 

Consider the model we used in Example 9-1. Suppose we want to delete the second 

node from the model, then the post-array matrix will be 

r1 r1 r1 r1 sl I I I I 
I 3 4 2 I S2 S3 S4 S5 gl 

0 

0 

0 

0 0 0 0 r1 I I I I (9 - 25) 
-1 :2 ~3 ~4 ~5 SI 

0 0 0 0 0 2 2 2 2 
:2 ~3 ~4 ~5 S2 

0 0 0 0 0 0 r3 r3 r3 g 
_3 . .4 _5 _3 

0 0 0 0 0 0 0 4 4 
~4 ~5 S4 

0 0 0 0 0 0 0 o ~l S5 

Successive Givens rotations are applied to the highlighted post-array matrix elements in 

Eq. (9 - 25 ). A step by step Givens rotation operation is shown in the following. 
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2 2 2 2 2 2 2 2 r3 r4 r2 SI S2 S3 S4 S5 g2 

r3 r3 0 3 3 3 3 3 = 3 4 SI S2 S3 S4 S5 g3 

0 r4 0 4 4 4 4 4 X 0 X X X X X 
4 SI S2 S3 S4 S5 g4 

[ ~ ~ 
(9 - 26) 

[ ~ 
X X X X X X X 

:] X X X X X X X 

0 X X X X X X 

Again, ifwe only want the error reduction term gq, then we only need to apply the Givens 

rotation to Eq. (9 - 24) as follows 

rj r] g2 

3 3 r3 r4 g3 

0 rj g4 
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9.5 Recursive Subset Selection Algorithms 

In this section, we will use the QR-order-update techniques to develop several 

recursive subset selection algorithms. Specifically, we will extend the results of the QR

order-increase-update to develop the recursive OR forward selection method; and we will 

extend the results of the QR-order-decrease-update to develop the recursive OR backward 

elimination method. Then, we will combine both methods to develop the recursive 

Efroymson algorithm. 

9.5.1 Recursive QR Forward Selection Method 

In the recursive QR forward selection method, the recursive order-increase-update 

is used to compute the square root error reduction term for all the potential nodes. Since we 

are only interested in the square root error reduction terms, Eq. (9 - 18) is used. Once we 

calculate all the square root error reduction terms, the best potential node, which yields the 

largest sum of squared error reduction, is picked. The computation required to calculate all 

of the square root error reduction terms is - 6cJ.2. Keep in mind that Eq. (9 - 18) cannot be 

used to restart the next iteration, we will need to update the post-array matrix using Eq. (9 

- 16) once we find out which potential node we need to add. Once this post-array matrix is 

updated, we can also use it to compute the parameters by solving a triangular system using 

back-substitution. The complete algorithm is given below. 
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rJ 
-j 

r! 
-i 

r!. 
-j 

Recursive QR Forward Selection Algorithm 

Initialized g = g< 1) • 
-1 -q + 1 

For i = 2 ... q, compute 

end 

r~ g 
-1 -i 

X 

0 X 

0 X 

g (k) - max[g(i) ] i = i'ndex(max[8q(i+) 1 ]) , q+l - -q+I ' 

Update Parameters 

rl rl r-1 rJ rl 
81 -1 -2 -i - 1 -i + 1 -q 

X X X 

0 r2 r! r! r2 
82 0 X X -2 -i - 1 -i + 1 -q ~ 

0 0 ri ri ri 0 0 ... X . .. ... g . 
-i - 1 -i + 1 -q -1 
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9.5.2 Recursive QR Backward Elimination Method 

As with recursive backward elimination in chapter 8, the recursive QR backward 

elimination proposed here is used in conjunction with recursive forward selection only. In 

recursive QR backward elimination, the recursive order-decrease-update is used to 

compute the square root error reduction term for all the nodes in the model. The idea is to 

examine the nodes one by one and to remove the least contributing node. The least 

contributing node produces the smallest increase in the sum of squared error. Since we are 

only interested in obtaining the square root error reduction terms, Eq. (9 - 24) is used. Once 

we calculate all the square root error reduction terms, the node that yields the smallest sum 

of squared error increase is picked. The computation required to compute all the square root 

error reduction terms is q(q + 1 )2 - O(q3). Keep in mind that Eq. (9 - 24) cannot be used 

to generate the next iteration because we did not orthogonalize the cross terms. So, we will 

need to update the post-array matrix using Eq. (9 - 22). Again, once this post-array matrix 

is updated, we can also use it to compute the parameters by solving a triangular system 

using back-substitution method. The complete algorithm is given below. 

188 



Recursive Backward Elimination Algorithm 

For j = l ... q- 1, compute 

rl I j+ rl 2 j+ rj I q- rj q gj 

rl + 1 
J + I 

rl+ 1 
1+2 

rj+ 1 
q-1 

rj + 1 
q gj + 1 X X X 

0 j+2 rj+ 2 rj +2 
gj+2 0 X X rj + 2 ... q-1 q ~ 

0 0 q-1 rq-1 gq- I 
0 0 

rq-1 q 

0 0 0 rq q gq 

g (k) = min[gU)] q -q J = index(min[gU)]) 
-q 

SSEq- I (k) = SSEqCk) + gJ(k) 

Update Parameters 

r~ 1 j+ 

rJ + 1 
j + I 

0 

0 

0 

r~ 2 j+ 

rJ + 1 
j+2 

rJ + 2 
j+2 

rj I q-

rj + 1 
q-1 

... rj + 2 
q-1 

0 0 

rj q rl 
} 

s{ 

rj + 1 
q 0 s{ + I 

rj + 2 
q 0 s{ + 2 

sj g-. q } 

sj + I 
q g] + I 

sj + 2 g-
q j+2 ~ 
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9.5.3 Recursive QR Efroymson Algorithm 

As with the recursive Efroymson algorithm discussed in chapter 8, the recursive QR 

Efroymson algorithm works by combining the recursive QR forward selection method and 

the recursive QR backward elimination method. The same stopping rule used by the 

Recursive Efroymson algorithm discussed in chapter 8 are used here. Thus, by combining 

the recursive QR forward selection and the recursive QR backward elimination, we obtain 

the recursive QR Efroymson algorithm. The complete algorithm is summarized below. 

Subset Selection: Efroymson Method 
r------------------, 

I No 

L------------------
Figure 9 - 2 Flow Chart for QR-RLS-AWS with Efroymson Method 
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Recursive QR-Efroymson Algorithm 

I 
Initialization: \ 

q = 0, RqCO) = 0, S~q)(O) = 0, !!qCO) = 0, ~/0) = 0 and gqCO) = 0 

1 Input Data: \ 

{qa(k), d(k), (q)~(k)} 

Time-Update: QR-RLS Algorithm 

Solve using Givens Rotation 

R (k-1) s(q)(k- l) g (k-1) R (k) sCq\k) gq(k) q q q q q 

oqxq !!qCk-1) ~/k-1) -t oqxq !!qCk-1) ~/k-1) 

qaT(k) q~T(k) d(k) 0~ q~T(k) r 112(k);(k) 

SSEqCk) = SSEqCk- 1) + r 1 (k);2(k) 

Continue to solve using Givens Rotation 

RqCk) scq)Ck) q gqCk) RqCk) S~q)(k) gqCk) 

oqxq !!qCk-1) g (k- 1) -t oqxq !!qCk) ~/k) -q 

OT T ,c-112(k);(k) OT OT X q q~ (k) q q 
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Compute Square Root Error Reduction Terms 

For QR-Order-Increase-Update: 

For 1 $ i $ q 

r .1 
81 -l X 

2 
~i 82 ~ 

0 X 

r! g. 
-l -l 

0 X 

end 

For QR-Order-Decrease-Update: 

For 1 $j$q 

end 

ri I 1+ 
ri+ I 
l + I 

0 

0 

0 

ri 2 1+ 

ri + 1 
1+2 

ri+ 2 
1+2 

ri 1 q- ri q gj 

ri + I 
q-1 

ri + I 
q gj+ I 

ri + 2 
q-1 

ri+2 
q gj+2 

0 0 

192 

X X 

~ 
0 X 

0 0 

X 

X 



Stopping Rules: 

For Order-Increase-Update 

2 w = g~+i(k) 
SSEq+ 1(k) = SSEqCk)-gq+ 1(k), e c·) 

SSEq\ 1 (k)l(k- q - 2) 

If We> Fe, update parameters 

For Order-Decrease-Update 

, } = index(min[gy)]) 

SSEq- I (k) = SSEqCk) + gJ(k), Wd = 

If W d < F d, update parameters 

Update Parameter: 

For Order-Increase-Update 

r! rl rl l rl rl g ~i- I ... 
-1 -1 -2 -i + I -q _) 

r; 0 r2 2 r2 r2 g 
~i- l ... 

-1 -2 -i + l -q -2 

r! 0 . . . 0 r_1! _ 1 ri 1 ... ri g. 
-1 -i + -q_ -I 

---? 
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For Order-Decrease-Update 

ri I 1+ 
ri 2 1+ rj I q-

rj 
q ri 

l s1 sj 
q gj 

ri+ I 
l + I 

ri + I 
1+2 

rj+ I 
q-1 

rj+ I 
q 0 s1 + I sj+ I 

q gj+ I 

0 ri + 2 
1+2 

rj+ 2 
q-1 

rj + 2 
q 0 s1 + 2 sj + 2 

q gj+2 

0 0 rq-1 
q-1 

q-1 
rq 0 sr-1 q-1 

sq gq-1 

0 0 0 rq q 0 sf sq 
q gq 

X X X X 

-? 
0 X X X 

0 0 .. . X . .. 

9.6 Implementation Considerations 

In this section, we apply the QR recursive Efroymson algorithm to the special RBF 

network described in chapter 2. We will first discuss how we can incorporate an exponential 

window into the recursive QR Efroymson algorithm. Then, we will discuss a technique to 

reduce the computational time. 
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9.6.1 Exponential Windowing 

Because the QR-time-update algorithm is the QR Recursive Least Squares 

algorithm discussed in chapter 5, an exponential window can be easily incorporated. 

According to Haykin (1996), an exponential window can be incorporated into the pre-array 

of the QR-RLS algorithm, Figure 5 - 1, in the following fashion 

[AR(k- 1) Ag(k- 1 ~ ~ [R(k) g(k) J 
aT(k) d(k) J OT r 112(k)~(k) 

where A is the exponential window weighting factor O :::; A :::; 1 . 

(9 - 30) 

If we apply these changes to the pre-array of the QR-time-update, we get the 

following modification for Eq. (9 - 11). 

AR/k-1) AS~q)(k-1) AgqCk-1) R (k) sCq\k) q q 

Oqxq A!!qCk-1) A~/k-1) ~ 0 q X q !!qCk - 1) 

T 
q~ (k) d(k) 

9.6.2 Reduce Computational Time 

gqCk) 

g (k- 1) 
-q 

(9 - 31) 

As explained in chapter 8, because the RBF network is localized many elements in 

qa(k) and a(k) will be near zero. Therefore, we only need to consider selected/potential 
q-

nodes that have non-zero output as candidates for order-decrease-update/order-increase-

update. To implement this scheme, all we have to do is to find those a(k) and a(k) that 
q q-
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are close to zero and eliminate them in the order-update. Thus, this implementation affects 

the FOR loop calculation in the recursive QR forward selection and recursive QR backward 

elimination. Specifically, we find the indexes of the non-zero elements by thresholding the 

a(k) and a(k) output. With this implementation, we can save a tremendous amount of 
q q-

computation. This will be illustrated in chapter 10. 

9.7 Summary 

In this chapter, we have abandoned the old QR-RLS-AWS methodology and have 

developed a completely new scheme based on the QR-RLS algorithm. This new QR-RLS-

AWS algorithm is developed based on the Givens QR techniques. We also explored several 

possible improvements to this new QR-RLS-AWS algorithm. These improvements have 

resulted in reduced storage, better subset selection (using recursive QR Efroymson) and 

reduced computation. Theoretically, this algorithm should be numerically more stable than 

the RLS-AWS algorithm developed in chapter 7. In the next chapter, we will test the 

numerical stability of this algorithm. Then, we will test the algorithm on several system 

identification problems. 
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This final chapter consists of two parts. The first part tests and compares the a/go-

rithms numerical stability by using a test setup described by Trefethen ( 1997). The 

second part of the chapter applies the best algorithm (based on numerical testing) to 

function approximation and system identification problems. We will use the tests to 

analyze the effects of the parameter settings and also to compare the algorithm to the 

batch forward selection method and the multilayer feedforward network. 
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10.1 Introduction 

One of the biggest questions regarding the algorithms proposed in this research is 

the numerical stability of the algorithms. To answer this question, we will conduct a 

numerical stability test to show the algorithms stability in section 10.2. As shown in the test, 

out of these four algorithms, the improved QR-RLS-AWS algorithm has shown excellent 

numerical stability. For this reason, we will only use the improved QR-RLS-AWS 

algorithm for further testing. We will apply the improved QR-RLS-AWS algorithm to the 

RBF network on four test problems. The first test is to identify the underlying dynamics of 

a chaotic time-series. We will use this test to compare two subset selection methods: the 

recursive forward selection method and the recursive Efroymson method. Both methods 

utilize the improved QR-RLS-AWS framework. Also, we will examine the effects of the 

Efroymson algorithm parameter settings. In the second test, we will use a 1-D function 

approximation problem and examine the effect of the smoothing factor. In the third test, we 

will compare the results of the batch forward selection method to the recursive Efroymson 

method. In the last test, we will apply the recursive Efroymson algorithm to identify a 

magnetic levitation system. We will also compare these results to a multilayer feedforward 

network. 
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10.2 Numerical Stability of the Algorithms 

In this section, we will conduct a numerical stability test of the four algorithms, the 

RLS-AWS, the QR-RLS-AWS, the improved RLS-AWS, and the improved QR-RLS-

AWS, proposed in previous chapters. To have a baseline for comparison, we use a least 

squares solving test illustrated by Trefethen (1997 pp.137). Since this test has a known 

solution, it will be easy for us to compare the numerical stability of various algorithms. 

The test illustrated by Trefethen ( 1997) is to solve a least squares solution of a 

100x15 Vandermonde matrix. The MATLAB setup is as follows: 

m 100; n = 15; 
t (0 :m-1) '/ (m-1); % Set t to a interval of [0, 1] 
A = [] ; 

for i=l:n, 
A= [A t.A(i-1)] ;% Construct Vandermonde matrix 

end 
d exp(sin(4*t)); 
d = d/2006.787453080206; % Normalization 

The idea behind this test is to least squares fit the function exp ( sin ( 4t)) on the 

interval [O, 1] by a polynomial degree of 14. The last line of code is to normalize the least 

squares solution so that the parameter x 15 = 1 . Trefethen (1997) has shown QR, SYD, 

normal equation and other computation results in his test. 

Since the numerical stability of the time-update algorithms, the RLS and the QR-

RLS algorithms, have been thoroughly analyzed in Haykin (1996), we will only test the 

numerical stability of the order-update algorithms. In all four algorithms, we assume that 
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we have time-updated the algorithms and we will perform the order-update. Specifically, 

in both RLS-AWS and QR-RLS-AWS algorithms, we will add each column of A(:, i) one 

by one to update the order. In the improved RLS-AWS algorithm, we will first update the 

time-correlation matrix Eq. (8 - 7) and then perform the order-update. In the QR-RLS-AWS 

algorithm, we will use the post-array matrix Eq. (9 - 13) to perform the order-update. 

Methods X15 Relative Error 

RLS-AWS 0.01192845328609 0.99 X lQ-l 

QR-RLS-AWS -0.32387348994992 1.32 X lQ-l 

improved RLS-AWS 0.01192845328609 0.99 X lQ-l 

improved QR-RLS-
0.99999994604243 5.40 X lQ-8 

AWS 

Normal Equation -0.70348736838334 1.70 X lQ-I 

QR Householder 0.99999937299332 6.27 X lQ-? 

SVD l .00000004860933 4.86 X lQ-8 

Table 10 - 1 Numerical Test Results 

Table 10 - 1 summaries the results. We also included three other batch techniques: 

the normal equation (NE), QR Householder (QR-H), and the Singular Value 

Decomposition (SVD) for comparison. As shown, the RLS-AWS, the QR-RLS-AWS and 

the Improved RLS-AWS all fail to compute the accurate value. Note that the RLS-AWS and 

the Improved RLS-AWS yield identical results because the Improved RLS-AWS uses the 

same computation but just computed in every update. All three algorithms yield poor 

results. This is not surprising, as all three algorithms are constructed based on the least 
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squares method. The improved QR-RLS algorithm yields the most accurate solution among 

the four algorithms. In fact, the relative error is comparable to the batch SYD algorithm and 

better than the QR Householder algorithm. 

To further test the order-update part of the Improved QR-RLS-AWS algorithm, we 

perform the order-increase-update and the order-decrease-update many times randomly to 

see if the solution degrades with each order-update. 

(X) # of times order-increase/ 
X15 Relative Error 

decrease-update is performed 

50 0.99999994604033 5.40 X 10-8 

100 0. 99999994603604 5.40 X lQ-8 

200 0. 99999994604022 5.40 X 10-8 

400 0.99999994603823 5.40 X 10-8 

Table 10 - 2 Solution of Improved QR-RLS-AWS Algorithm After X-times Order-Update 

Table 10 - 2 shows the solution of the improved QR-RLS-AWS algorithm after 50, 

100,200 and 400 randomly chosen order-increase/decrease-updates. As shown, the relative 

error is kept fairly constant even after 400 random updates. This implies that the solution 

does not degrade after each order-update. We can conclude that the improved QR-RLS-

AWS method has good numerical stability. 
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10.3 Applications 

In this section, we will apply the algorithms developed in previous section to the 

four problems related to system identification and function approximation. We will only 

use the improved QR-RLS-AWS algorithm, since it is numerically more accurate than the 

other three methods Note that if numerical accuracy is not an issue, all methods should 

yield the same result. In all tests, the RBF network begins with a bias as a node that is not 

subject to subset selection. Subset selection is used to select the node centers from the 

potential nodes beginning with time point k = 0. We will compare the result of two 

different subset selection methods: the recursive forward selection and the recursive 

Efroymson method. In the following, we will describe the test setup and the result that we 

obtained. 

10.3.1 Chaotic Time Series 

The chaotic time series generated by the logistic map is a difference equation 

described by Eq. (10 - 1). 

z(k+ 1) = 4z(k)(l -z(k)) (10 - 1) 

This is a first-order nonlinear process where the previous sample z(k) determines 

the value of the present sample z(k + 1) . This logistic map is known to be chaotic on the 

interval [O, 1]. The input-output relationship of this logistic map is plotted on the left of 

Figure 10 - 1. Before the training, the smoothing factor of the RBF network is selected as 

cr2 = 0.125 , and 51 potential RBF network nodes with centers equally spaced at 0.02 in 
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the interval [ 0, 1] . The output of these 51 potential nodes is plotted on the right hand side 

of Figure 10 - 1. 

o., 

o., 

fo.s 
" •.. 

0.3 

Logislic Map: y(k~l) • 4y(/c)(l-y(k)) 

~ u u u u u u u u 
y(k/ 

Hidden l ayer Output 

~ u u u u u u u u 
y 

Figure 10 - 1 Input-Output of Logistic Map and the Potential Nodes of the RBF Network 

10.3.1.1 Recursive Forward Selection Method and Recursive Efroymson 
Method 

In the following, we will identify the logistic map using the recursive forward 

selection method and the recursive Efroymson method. Simultaneously, we will compare 

their performance. The threshold criterion for the forward selection method is set at 

y = 10-2 . The F-to-enter and F-to-delete parameters for the Efroymson method are set at 

Fe = 2 and F d = 1.5 . For this test, an initial condition z( 0) = 0.39 is used. 

The top two plots of Figure 10 - 2 show the result of the logistic map constructed 

by the RBF network for 10, 25, and 75 samples using the recursive forward selection 

method and the recursive Efroymson method. Each sample is presented to the network only 

once and the training samples are indicated in the top two plots by the plus mark+. Both 
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techniques have managed to reconstruct the logistic map after 75 samples. (This is 

indicated by the convergence of the tracking error as shown in the bottom two plots of 

Figure 10 - 2.) However, the number of nodes used in the recursive forward selection 

method is greater than in the recursive Efroymson method (8 nodes versus 5 nodes). The 

placement of these node centers is indicated by the unfilled circles in the top two plots of 

Figure 10 - 2. The middle two plots show the number of selected nodes (bias included) 

during the training. As shown, the recursive forward selection algorithm continues to 

selecting nodes until the error criterion is reached. One difficulty with the recursive forward 

selection algorithm is that it is possible that the centers selected at an early stage of the 

training can become unimportant in a later stage. Since the recursive forward selection 

algorithm is not designed to take out insignificant nodes, more nodes are selected. 

Meanwhile, the recursive Efroymson algorithm has the ability to take out insignificant 

nodes during the course of training. This is shown in the middle left plot of Figure 10 - 2, 

where it took out one node when at k = 8 . Hence, the recursive Efroymson method is able 

to keep RBF network size smaller than the forward selection method. 
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Figure 10 - 2 Comparison of Efroymson Method and Forward Selection Method 
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10.3.1.2 Effects of the Stopping Rules 

In this section, we will examine the effects of the stopping rules for the recursive 

Efroymson algorithm using the chaotic time-series as our test problem. We have used the 

same test setup described in the previous section but will change the values of Fe and F d. 

As explained in Chapter 8, we have made an assumption that the recursive Efroymson 

algorithm is executed at each time-point to ensure fast real-time operations. Since this 

assumption is crucial for the error convergence, we will need to make sure that the error 

converges over time. Through numerous experiments, we have demonstrated that this 

method works well. This is illustrated in the convergence of the tracking error as shown in 

the bottom left plot of Figure 10 - 2. 

According to Miller (1990), the criteria F d < Fe has to be satisfied for the batch 

Efroymson algorithm to ensure the error convergence. We have shown that this is also true 

for the recursive Efroymson algorithm. As shown in top left plot of Figure 10 - 3, when 

F d >Fe (Fe = 2 and F d = 20 ), the recursive Efroymson algorithm would repeatedly 

select a node in one iteration, then deselect the node in the next iteration. Hence, the 

tracking error would not convergence (top right plot of Figure 10 - 3). 
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When the Fe is set to a higher value (e.g. Fe = 20 ), fewer nodes will be selected. 

This effect is illustrated in the middle left plot of Figure 10 - 3. As shown, only one node 

and one bias are selected. Consequently, higher tracking error is obtained, as indicated in 

the middle right plot of Figure 10 - 3. 

Meanwhile, the value of F d is used for deselecting the nodes. A small F d value 

( e.g. F d = 0) will cause less significant nodes to be removed from the RBF network. This 

is illustrated in the bottom left plot of Figure 10 - 3. As shown, not a single node has been 

removed during the on-line adaptation. Thus, this leads to small tracking error, as shown in 

the bottom right plot of Figure 10 - 3. 

Unfortunately, there is no one set of rules that we can follow to effectively 

determine the value of Fe and F d so that the recursive Efroymson algorithm can meet a 

certain network reconstruction error criteria, as in the forward selection method. This is still 

an ongoing research topic even for the batch Efroymson algorithm (Miller, 1990). 

10.3.1.3 Summary 

Due to the possibility that the nodes selected at an early stage of training can 

become unimportant in a later stage, the forward selection algorithm has to compensate by 

adding more nodes. Hence, the recursive forward selection method tends to yield a large 

RBF network. On the other hand, the recursive Efroymson algorithm has the capability of 

removing insignificant nodes; thus, it yields much smaller RBF networks. Due to this 

result, we will only use the recursive Efroymson method in the remaining tests. 
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10.3.2 1-D Function Approximation 

In this test, we will perform a 1-dimensional function approximation on a function 

described by Eq. (10- 2). 

z(p) = 0.25+e-P120 sin(0.081tp)-O.lcos(O.Ol1tp-0.5) (10 - 2) 

This function is shown in the solid line in the left plot of Figure 10 - 4. We have randomly 

selected 300 input patterns ( + mark in the left plot of Figure 10 - 4) in the range of [0,50] 

as our training data. These input samples are fed one-by-one to the algorithm. The sequence 

of random inputs is shown in the right plot of Figure 10 - 4. 

ThelunctionZ(p}z0.25+e-~sirl(0.081fP)--0.1cos(0.0111P-O.S) 

~1-;~~put~ualp~~,:,~ion j 

0 .6 

o., 

0.2 

--0.2 

--0.,-~~~---~-~~--
o 10 1s 20 2s 30 35 '° •s so 

p 

45 
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' 
200 

Figure 10 - 4 The Target Function and the Input Patterns 

300 

The F-to-enter and the F-to-delete parameters are set at Fe = 0.1 and F d = 0.07 . 

A total of 201 potential RBF network nodes with centers equally spaced at 0.25 in the 

interval [ 0, 50] are chosen. Three separate tests were conducted, and each test uses a 

different RBF smoothing factor, specifically cr2 = 0.5, 2, 10 are used. 

According to Canon & Soltine ( 1995), this function has significant variation in its 

local spatial bandwidth, and a regularly spaced RBF network with a single smoothing factor 
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would not be ideal to fit such a function. Indeed, this phenomenon is reflected in the 

recursive Efroymson algorithm when we use it to approximate the function. Note that in 

Figure 10 - 5, the unfilled circles are the selected center locations, the solid line is the RBF 

network output after 300 iterations of on-line adaptation and the dotted line is the target. At 

the bottom of each plot are the selected nodes. 

When a small smoothing factor cr2 = 0.5 is used, many nodes (39 nodes) are used 

for approximating the flat surface. (This is illustrated in Figure 10 - 5a) Meanwhile, when 

a large smoothing factor cr2 = 10 is used, the RBF network has difficulty in 

approximating the portion of the signal with large variations (This is illustrated in Figure 

10 - 5c). Hence, a smoothing factor that is not too small or too big is required to 

approximate this function. Such a choice, cr2 = 2, is illustrated in Figure 10 - 5b. 

Now, since different smoothing factors perform better on different signals, we will 

include both smoothing factors in the potential nodes. In other words, we let the algorithm 

decide which centers and smoothing factors to use. Figure 10 - 5d illustrates this idea. We 

allow potential nodes that use cr2 = 4 and cr2 = 2 to be available for the algorithm. A 

total of 401 potential nodes are available. As shown, the recursive Efroymson algorithm is 

able to select larger smoothing factor nodes for the flat surface and smaller smoothing 

factor nodes for the regions of the signal with larger variation. In fact, this methodology 

yields a smaller RBF network (13 nodes) when compared to the single smoothing factor 

cr2 = 2. 
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Figure 10 - 5 1-D Function Approximation Results for Different Smoothing Factor 

Figure 10 - 6 shows the errors at the conclusion of the previous tests. As shown, the 

error for the two smoothing factors, cr2 = 2 and cr2 = 4 (13 nodes selected), is smaller 

than for the single smoothing factor cr2 = 2 ( 16 nodes selected) and the single smoothing 

factor cr2 = 0.5 (39 nodes). 
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10.3.3 2-D Function Approximation 

45 50 

In this test, we will approximate a surface function (Chang et. al. , 1996) 

(10 - 3) 

for p 1 and p 2 range from -10 to 10. A 3-dimensional plot of this function is shown in 

Figure 10 - 7. 
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Figure 10 - 7 Surface Function 

10.3.3.1 Comparison of Batch Forward Selection Method and Recursive 
Efroymson Method 

In this test, we will compare the performance of the batch forward selection method 

versus the recursive Efroymson method. For the recursive Efroymson method, the potential 

RBF nodes are arranged in a two-dimensional grid at intervals of 1 on each axis and in the 

range of [ -10, 10] x [ -10, 10] ; a total of 441 potential nodes are used. To set up this 

comparison test, we let the input be the potential centers. We randomly permute these 

centers and apply them one by one until all 441 randomly permute centers are presented. 

Meanwhile, the inputs to the batch forward selection algorithm are the 441 randomly 

permute centers (applied at one time). 
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Keep in mind that because the recursive Efroymson method is an on-line adaptation 

method, the future patterns are not available to the algorithm. So, a fair comparison is to 

compare the network reconstruction error after all 441 input patterns has been fed into the 

network. Because the value of Fe and F d determine the size of the RBF network, one way 

to compare the results is to take the number of nodes that the recursive Efroymson 

algorithm constructed after the on-line adaptation and compare it to the same size RBF 

network that the batch forward selection method constructed. 

A 82 nodes ABF nBlwork Errors: Recursive Efroymson Melhod A 82 nodes RBF netWOl'k Errors: Batch Forwaid Seklclion Melhod 

0.15 0.15 
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~ 0 

" 
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--0.1 --0.1 

-0.15 -0.15 

150 200 250 300 350 400 150 200 250 :JOO 350 400 
Panerns Pahems 

Figure 10 - 8 Errors Comparison for a 82 Nodes RBF Network Constructed by Recursive 
Efroymson Algorithm and Batch Forward Selection Method 

Figure 10 - 8 shows the network reconstruction errors for an 82 node RBF network 

constructed by the recursive Efroymson method (left plot) and the batch forward selection 

method (right plot). As shown, the recursive Efroymson method yields a much smaller 

error. In fact, the sum of squared error is about 3.5 times lower, as shown in Table 10 - 3. 
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SSE SSE 
Fe Fd Nodes Recursive Efroym- Batch Forward Ratio 

son Method Selection Method 

2 1.5 12 134864.4249 140706.8055 1.0433 

0.1 0.08 30 4612.7726 7856.3306 1.7032 

0.07 0.05 37 374.9623 909.4148 2.4253 

0.01 0.008 42 136.2935 392.2697 2.8781 

0.005 0.004 55 19.2074 53.2040 2.7700 

0.0025 0.0021 61 4.2796 13.9645 3.2630 

0.001 0.0008 82 0.1282 0.4493 3.5047 

Table 10 - 3 Sum of Squared Errors Comparison between the Recursive Efroymson 
Method and the Batch Forward Selection Method 

Table 10 - 3 summaries several RBF networks of different sizes that have 

constructed with different Fe and Fd (1st and 2nd column) using the recursive Efroymson 

method. At the end of the on-line adaptation, the number of nodes selected and the sum of 

squared errors are recorded in the 3rd and 4th columns. To compare these results, the sums 

of squared errors of the batch forward selection method, constructed with the same number 

of nodes, are tabulated in the 5th column. In addition, the ratio of the two sum of squared 

errors (SEE) is shown in the last column. 

As shown in the table, when Fe and Fd are lowered, RBF networks with more 

nodes and lower SSE are obtained. When we compare the same size RBF network 

constructed using the batch forward selection method, the recursive Efroymson method 

yields lower SSE. As the number of nodes increases, the ratio of the SSE increases. This 
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ratio implies that as RBF network size increases, the recursive Efroymson method selects 

the same size RBF network with less network reconstruction error. 

10.3.4 Magnetic Levitation System 

In this last test, we will identify the magnetic levitated system, as described in the 

Neural Network Toolbox version 4.0 for MATLAB. A diagram of the system is shown in 

the following figure. 

Figure 10 - 9 Magnetic Levitation System 

The objective is to identify the magnet position. This magnet is suspended above an 

electromagnet whose field changes as the current flow changes. This magnet is constrained 

so that it can only move in the vertical direction. The equation of motion for this system is 

d2z(t) _ _ CX ( .)i2(t) _ f dz(t) 
dt2 - g + Msgn 1 z(t) M dt (10 - 4) 

where z(t) is the distance of the magnet above the electromagnet, i(t) is the current flow 

in the electromagnet, M is the mass of the magnet, and g is the gravitational constant. The 

parameter p is the viscous friction coefficient that is determined by the material in which 
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the magnet moves, and a is a field strength constant that is determined by the number of 

turns of wire on the electromagnet and the strength of the magnet. These parameters are set 

as follows: M = 3, g = 9.8, ~ = 12, and a= 15 . 

10.3.4.1 On-line Adaptation Results 

We will use the following NARMA model (Narendra & Parthasarathy, 1990; Ljung 

1987) to identify the magnetic levitation system: 

z(k) = f(i(k), i(k- 1 ), ... , i(k-N), z(k- 1 ), z(k- 2 ), ... , z(k- Nz)) (10 - 5) 

Since this is a discrete time model, we assume that the continuous system can be 

sampled at a specific sampling time and the input and output data are available for on-line 

adaptation. To identify the magnetic levitated system (the plant), an RBF network with two 

delayed plant inputs Ni = 1 and two delayed plant outputs Nz = 2 is used. Figure 10 - 10 

is a diagram for this online adaptation scheme (D is the unit time delayed). z (k) is used 

directly for the algorithm on-line adaptation. 

i(k) z(k) 
Plant 

~-----1 o~------' 

RBF 

Figure 10 - 10 System Identification Scheme 

The data for the on-line system identification is generated by applying a series of 

steps with random height, occurring at random intervals, to the input of the plant with 
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sampling time of 0.01 seconds. The left plot in Figure 10 - 11 shows the input sequence 

(current flow). The magnitudes of the current ranged from O < i(t) < 4, and the widths of 

the intervals spanned 0.01 < t < 2. The corresponding plant output is shown in the right of 

Figure 10 - 11. As shown, the output is stable in the range of O < z(t) < 6 . 

Plant Input A Series of Random Steps Planl Oulput 

35 ~ n ! 

2.5 

1.5 

lf 

0.5 

Figure 10 - 11 Input Sequence and Output of the Plant 

These on-line data is fed one by one to the RBF network. A total of 1225 potential 

RBF nodes are used. These potential nodes are equally spaced at intervals of 1 in a 4 

dimensional space with input range of (0, 4] x (0, 4] x (0, 6] x (0, 6] for i(k), i(k-1) , 

z(k - 1) , and z(k - 2) respectively. A single smoothing factor of cr2 = 4 is used for the 

RBF network. Also, small Fe = 0.0009 and Fd = 0.0008 are used since we would like 

to obtain an accurate model. In addition, we utilize the reduce computational time method 

as we discussed in Chapter 8. 
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On-Line Adaptation on First 80 Time Point 
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Figure 10 - 12 Result of On-Line Adaptation After 80 Time Point 

Figure 10 - 12 shows the result of the on-line adaptation at work. As shown, the 

plant received the first 80 data points (very tiny portion at the beginning of the plot), but 

the algorithm has already started to learn the underlying dynamics of the magnetic 

levitation system (only 6 nodes have been selected at this instant). Training was turned off 

after the first 80 data points, but Figure 10 - 12 shows that the accuracy is reasonably good 

on the remaining 9920 untrained data points. 
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Figure 10 - 13 Results of On-Line Adaptation After 10000 Time Point 
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Figure 10 - 14 Number of Selected Nodes and Tracking Error 

Figure 10 - 13 shows the results after 10000 data points have been fed into the 

algorithm. As shown, the errors have converged to ±0.03. Overall, a total of 168 nodes 

have been selected by the end of the training (left plot in Figure 10 - 14). The right plot in 
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Figure IO - 14 shows the tracking error convergence. We have enlarged the plot so that we 

can see the error convergence. 

One advantage of this algorithm is its ability to adapt on-line. As shown in the 

tracking error plot, the algorithm seems to have slight difficulty near 9000-th data point. We 

can see that the algorithm steadily selected more RBF nodes to adapt to these changes. 

10.3.4.2 Comparison to Multilayer Feedforward Network 

In this section, we will compare the performance of the RBF network to a multilayer 

feedforward network. Specifically, we will compare the RBF network that has been adapted 

for I 0000 iterations to a multilayer network that has been trained in batch mode. The plant 

identification of the multilayer neural network is trained using Bayesian regularization. The 

best multilayer network model is trained and used in this evaluation. 

To achieve a fair comparison, we use another 10000 random step sequence to 

validate both models. Because the error is very small, we will compare the errors. As shown 

in Figure 10 - 15, the error for the RBF network (right plot) has slightly lower error than 

the multilayer neural network (left plot). 
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Figure JO- 15 Error Comparison: The Trained RBF Network and Multilayer Network 

10.4 Summary 

In this chapter, we have evaluated the numerical stability of several algorithms that 

we have created in previous chapters. Among these algorithms, the improved QR-RLS-

AWS method is numerically stable. We have tested this algorithm on several function 

approximation and system identification problems. Through these tests, we have found that 

the QR-RLS-AWS using the recursive Efroymson method has shown good results in 

creating small and parsimonious RBF networks. 
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Chapter 

11 
Summary and Conclusions 

11.1 Research Summary 
11.2 Conclusion 

In this last chapter, we will summarize our research. 
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11.1 Research Summary 

In this research, we developed a new on-line learning framework that can 

effectively construct small and parsimonious RBF networks on-line. This framework is 

adopted by combining three schemes: the time-update, the order-update and the subset 

selection method. The time-update scheme involves the RLS algorithm and the QR-RLS 

algorithm, which are readily documented in many books and journals (Haykin 1996, Sayed 

& Kailath 1992). Meanwhile, the least squares order-update scheme is mathematically 

derived based on the block matrix inversion lemma. These derivations are tailored to order

increase-update and/or order-decrease-update the parameters in the RLS algorithm. The is 

a new result. In addition, the orthogonal least squares order-update scheme is 

mathematically derived based on the QR Givens rotations. These derivations are tailored to 

order-increase-update and/or order-decrease-update the parameters in the QR-RLS 

algorithm. This result is also new. 

Using this framework, two new algorithms, the Recursive Least Squares with 

Automatic Weight Selection (RLS-AWS) algorithm and the QR Recursive Least Squares 

with Automatic Weight Selection (QR-RLS-AWS), have been developed. Both algorithms 

are recursive in time and order. We first developed the subset selection mechanism of the 

algorithms based on the forward selection method. This technique allows useful RBF nodes 

to be added into the network sub-optimally and recursively. Later, we developed an 

improved subset selection mechanism based on the Efroymson method. This method has 
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the capability of removing insignificant RBF nodes in addition to adding useful RBF nodes. 

Both recursive subset selection methods are new. 

In addition, we also improved the algorithms' storage requirements. In the RLS

AWS algorithm, we utilized the time-update correlation matrix to reduce storage 

requirements. In QR-RLS-AWS algorithm, the storage saving is built into the algorithm as 

shown in Chapter 9. Because the RBF network is localized in space, the outputs of RBF 

nodes contain many near zero elements. Hence, we can consider potential nodes that have 

non-zero output as candidates for order-increase-update and can consider selected nodes 

that have non-zero output as candidates for order-decrease-update. With this method, we 

can save tremendous amount of computation. Lastly, an exponential windowing scheme 

can be easily incorporated into the algorithms. 

The comparison of these algorithms to the batch forward selection method and the 

multilayer network are documented in Chapter 10. 
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11.2 Conclusions 

To conclude this research, we will highlight the key results: 

• The QR-RLS-AWS algorithm is numerical more accurate than the RLS-AWS 

algorithm. However, if numerical ill conditioning is not a problem, both algorithms 

yield the same solution. 

• Both subset selection schemes, the recursive forward selection method and the 

recursive Efroymson method, have been adopted successfully. 

• The results have shown that the recursive Efroymson method can produce a smaller 

RBF network than the recursive forward selection method. 

• In simulated results, the QR-RLS-AWS algorithm with Efroymson method has 

consistently constructed better performance RBF networks than the batch forward 

selection method. 

• In addition, the simulated results also show that the constructed RBF network has 

performance comparable to the multilayer network. 

In conclusion, this research has successfully designed and implemented the 

recursive time- and order- update algorithms for on-line learning. Although the work 

described in this dissertation has focused on small RBF networks, the algorithms can be 

applied to all linear models and all nonlinear models that have a linear-in-parameters 

structure, such as the fuzzy basis function network, functional-link network, polynomial 

network, and more. 
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