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List of abbreviations 

 

ACR     American College of Radiology 

AR     Autocorrelation 

ASNR     American Society of Neuroradiology 

Blipped CAIPI   Blipped-controlled aliasing in Parallel Imaging 

BOLD     Blood oxygen level-dependent 

CBF     Cerebral blood flow 

CMRO2    Cerebral metabolic rate of oxygen 

CompCor    Component Based Noise Correction 

CORSICA                                   Correction of Structured noise using independent 

component analysis 

CSF     Cerebrospinal fluid 

EBA     Extrastriate Body Area 

EPI     Echo planar imaging 

FA     Flip angle 

FDR     False discovery rate 

FFA     Fusiform face area 

FID     Free induction decay 

FIX     FMRIB’s ICA-based X-noiseifier 

FL     Full scan length 

fMRI     Functional Magnetic Resonance Imaging 

FOV     Field of view 

FWE     Family-wise error 

FWHM    Full width at half maximum 

GLM     General Linear Model 

Hb     Deoxygenated haemoglobin 

HbO2     Oxygenated haemoglobin 

HR     Heart rate 

HRF     Haemodynamic response function 

ICA     Independent component analysis 

LMPF     Left medial prefrontal cortex 

MRI     Magnetic Resonance Imaging 

MB     Multiband 
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NMR     Nuclear Magnetic Resonance 

PCA     Principal component analysis 

PCC     Posterior cingulate cortex 

PPA     Parahippocampal place area 

RETROICOR Retrospective correction of physiological     motion 

effects 

RF     Radio frequency 

RMPF     Right medial prefrontal cortex 

RS-fMRI Resting-state functional Magnetic Resonance 

Imaging    

ROI     Region of Interest 

RV     Respiration variation 

SE     Spin echo 

SIR     Simultaneous image refocusing 

SMS     Simultaneous multislice imaging 

SNR     Signal to noise ratio 

SPM     Statistical Parametric Mapping 

TE     Echo time 

T-fMRI Task-based functional Magnetic Resonance 

Imaging 

TR     Repetition time 
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1. Introduction 

This section presents a brief summary of the problem addressed in this work. It starts by 

describing the motivation and the fundamental concepts of Magnetic Resonance 

Imaging (MRI), functional magnetic resonance imaging (fMRI) with a focus on 

conventional task-based fMRI (t-fMRI) at presurgical planning and a relatively new 

method, simultaneous multislice imaging (SMS). In the second part of my thesis the 

effects of physiological artefacts (breathing and pulse) and physiological-based artefacts 

reduction techniques in fMRI are described.  

 

1.1. Motivation 

Functional MRI measurements became widely used tools over the last decade both in 

clinical practice and basic research (Kesavadas and Thomas 2008; Peck et al. 2009; 

Pillai 2010; Vikingstad et al. 2000; Wengenroth et al. 2011). Task based fMRI and 

resting-state fMRI are suitable to map cognitive functions, epileptic foci (Limotai and 

Mirsattari 2012) and to reveal functional characteristics of various nervous system 

disorders (e.g. Parkinson’s disease (Kahan et al. 2014) and mild cognitive 

impairment(Farràs-Permanyer, Guàrdia-Olmos, and Peró-Cebollero 2015)). t-fMRI is 

also frequently used as a non-invasive preoperative mapping technique as it can be used 

to localize the eloquent primary motor, sensory, memory and language areas. It is 

helpful to minimize the risk of developing severe neurological deficits after surgical 

interventions [9] [10]. Nevertheless, there are several drawbacks regarding the 

application of fMRI in a clinical setting, e.g. a high demand of sustained patient 

cooperation during the t-fMRI examinations or long scanning time. The American 

College of Radiology (ACR) and the American Society of Neuroradiology (ASNR) 

suggest at least 120 echo planar imaging (EPI) volumes to reach high statistical values 

and avoid false-positive results (American Society of Functional Neuroradiology 2007). 

Two-dimensional simultaneous multi-slice echo planar imaging is a special MRI 

sequence – which also available in the clinical practice – for accelerating the acquisition. 

SMS uses multiband excitation pulses to collect multiple slice data simultaneously and 

provide increases in temporal resolution. So, e.g. multiband factor of two means that it 

acquires two slices simultaneously, so it doubles the number of slices to be acquired in 

the same repetition time (TR). Using this technique more time points are recorded, and it 

is well suited for improving the sensitivity of task-based and resting-state fMRI imaging. 
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A number of artefacts can appear during SMS reconstruction e.g. ghosting artefacts or 

inter-slice leakage. Sophisticated reconstruction algorithms, e.g.  blipped-controlled 

aliasing (blipped-CAIPI) (Kawin Setsompop et al. 2012) can mitigate the problems of 

slice dephasing. The faster data acquisition of SMS sequences can be used to acquire 

more volumes, thus increasing the statistical power, while also improving resting-state 

fMRI based networks analysis [13] [14].        

Nevertheless, there are several other types of MRI artefacts, e.g. thermal noise, 

susceptibility artefacts and physiological noise, which can significantly decrease the 

sensitivity and specificity of fMRI (Frank, Buxton, and Wong 2001; Wu, Lewin, and 

Duerk 1997; R. M. Birn et al. 1999).  

It is well known, that the physiological noise could seriously impair the performance of 

analytical tools used for fMRI analysis, nevertheless only a few researcher use dedicated 

(model-based or data-driven) physiological correction tools (PhLEM (Verstynen and 

Deshpande 2011), PhysIO (Kasper et al. 2017), etc.). Nonetheless the most common 

physiological artefact reduction technique is the “conventional/standard” high pass filter. 

These easy to use toolboxes may help to improve the sensitivity and specificity of t-

fMRI and rs-fMRI. 

 

1.2. Magnetic resonance imaging: basic principles 

Magnetic Resonance Imaging is an imaging technique based on the physical 

phenomenon of the Nuclear Magnetic Resonance (NMR) effect. MRI – thanks to its 

excellent spatial resolution – is widely used to investigate the structure and function of 

the human body. Compared with other imaging modalities it has several advantages, e.g. 

it does not involve exposure to ionizing radiation, there are multiple contrast 

mechanisms are available, even without contrast agent. These advantages make MRI the 

most versatile imaging technique both for in clinical applications and basic research. In 

addition, there are several adjustable parameters (resolution, slice thickness, receiver 

bandwidth, slice orientation, etc.) providing further means to optimize any given 

examination.  

Edward Purcell and Felix Bloch were the first to use the NMR effect at spectroscopy in 

1946 and they showed that certain nuclei, e.g. hydrogen, possess an intrinsic magnetic 

moment when placed in an external magnetic field. The quantum mechanical description 

of a subatomic particle such as a proton implies that it has a quantized angular 
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momentum, called spin. Associated with the spin there is a magnetic moment. Bloch 

equations describe the dynamics of the magnetic moments under the influence of an 

external magnetic field (Bloch, Hansen, and Packard 1946). Only the unpaired protons 

and neutrons have contributions to the total angular momentum of the nucleus. In 

consequence magnetic resonance can only be achieved in atoms with unpaired nucleons 

(e.g. 1H, 13C or 23Na).      

Spins align themselves to an external magnetic field B0 in the lower energy state (Grover 

et al. 2015). In protons and other molecules with ½ spin, another possible position is 

alignment in the opposite direction, albeit this is less frequent and causes energy 

consumption (Fig. 1.).  

 

 

Fig 1. Spins alignment in parallel and anti-parallel direction in external magnetic field, (B0) 

 

 

The ratio between the occupation numbers of the two energy states is given by the 

following equation:  

ΔE = γ * ħ * B0 = ħ * μ, 

where 𝜈 is the frequency of an electromagnetic field and μ is the Planck’s constant. The 

spins can be treated as a macroscopic magnetization M0. Hydrogen nuclei will provide a 

macroscopic magnetization when exposed to an external magnetic field, aligned in the 

direction of the main static field, usually referred to as the z-direction. The hydrogen 

protons are precessing with a dedicated frequency depending on the external magnetic 

field.  
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This precession frequency can be written with: 

f = B0 * γ, 

where B0 is the magnetic field strength [Tesla] and γ is the gyromagnetic ratio (γ = 42.85 

MHz/T). This precessional frequency is also known as the Larmor frequency. The 

application of radio frequency (RF) excitation with a dedicated flip angle (α), tips the 

available magnetization toward a transversal plane. The resulting magnetization can be 

described by its remaining longitudinal component Mz along the direction of main 

magnetic field and a transverse component Mxy (Fig. 2.).  

 

Fig 2. Spin magnetization after RF excitation (b) (Markl and Leupold 2012). 

 

In absence of this RF pulse the hydrogen protons gradually relax back, while the phase 

coherence is being lost, then the transverse magnetism disappears. Individual protons 

relax at different rates, depending on what type of tissue the atoms are within. The 

precession of the protons causes an induction of current in the receiver coils of the MRI 

scanner. The RF pulses are repeated at a special interval, which is called time to repeat 

(TR). 
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1.3. Basic MRI pulse sequences 

1.3.1. Free induction decay 

Free Induction Decay (FID) is the simplest pulse sequence: with an excitation pulse 

(900), the equilibrium M0 magnetization is displaced after the excitation, where the 

initial transversal magnetization is precessing with Larmor frequency. The measured 

signal (S) is proportional to the time derivative of the transverse magnetization and it 

generates a decaying harmonic signal. The decay of free induction signal is describable 

by T2
* by: 

1

𝑇2∗
=  

1

𝑇2′
+  

1

𝑇2
 , 

where T2’ and T2 refer to different relaxation processes. T2 decay is the time constant 

that describes the decay of the transverse component of net magnetization due to 

accumulated phase differences caused by spin-spin interactions. T2’ is caused by local 

inhomogeneities in the external magnetic field, as a results spins at different locations 

precess at different frequencies. The dephasing – due to the different frequencies – is 

described by an exponential function and it causes signal loss. 

 

 

1.3.2. Gradient echo sequence 

One of the basic MRI sequences is the gradient echo (GRE), which uses a single RF 

pulse with readout gradient reversal such that the net gradient area under the curve is 

zero at echo time. Any gradient causes dephasing of protons. It can be easily reversed by 

reversing the gradient for the same length of time. The peak signal in the middle of the 

signal forms an echo. The readout gradient initially speeds the T2* dephasing, and it is 

reversed with the gradient reversal. Note, that in GRE signal loss is more rapid and thus 

much shorter TEs are typically used. Nevertheless, this shorter TE allows much shorter 
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TR, which increases T1-weighting and it allows to repeat the pulse sequence more 

quickly (‘MRI Physics: MRI Pulse Sequences - XRayPhysics’ n.d.). GRE is much 

faster, than the conventional spin echo sequence, since we do not have to wait for the 

rephasing after a RF pulse (Markl and Leupold 2012). 

Field inhomogeneity and/or susceptibility are not focused with the gradient echo at echo 

time and these will influence the signal and contrast. This can be an advantage if we 

want to emphasize the susceptibility (e.g. iron deposition).  

Fig. 3. depict a schematic representation of conventional gradient echo sequence. 

 

Fig. 3. Schematic depiction of the conventional gradient echo (GE) pulse sequence (‘MRI 

Physics: MRI Pulse Sequences - XRayPhysics’ n.d.). Top line shows the excitation 

radiofrequency pulses. Slice-phase and readout lines represent the gradients, which are applied 

in different directions (x, y and z axes). The lower part shows the MR signal. 

 

1.3.3. Gradient echo EPI sequence 

Nowadays, generally most fMRI is performed with Echo Planar Imaging sequence (J. E. 

Chen and Glover 2015), which can collect data for a two dimensional image in 

approximately 80-120 ms at typical resolution (3x3x3 mm3 voxel size). EPI represented 

a crucial step forward in the application of MRI due to its increased speed. This increase 
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in speed was brought about utilising the frequency encoding gradients to form echoes by 

reversing their direction rapidly and using phase encoding blips to jump line by line in a 

k-space (Poustchi-Amin et al. 2001). The pulse diagram of an EPI sequence can be seen 

in Fig. 4., where Gs, Gp and Gf refer to the imaging gradients in the x, y and z directions. 

The k-space filling pattern dictated by the order, direction and magnitude of gradients is 

depicted in Fig 4. b. In an EPI sequence after an excitation pulse, the samples of the 

whole 2D k-space are acquired using a series of bipolar gradients. It leads to the 

sampling pattern, seen in Fig 6 b. This sampling strategy contrasts with conventional 

sequences, in which only one k-space line is acquired after an excitation pulse, and this 

sampling is much slower than in zig-zag pattern. Note, the gradient-echo EPI sequences 

lack the 1800 refocusing pulse(s), echoes are created by bipolar gradients in the 

frequency encoding direction. The signal is measured created under the envelope of T2* 

relaxation. The conventional, gradient-echo EPI sequences are sensitive to susceptibility 

differences. This helps to detect the oxygenated differences, which provide the basis for 

functional MRI measurements. The major limitations of the conventional EPI sequence 

are geometrical distortions for the regions of large susceptibility gradients (such as facial 

region), limited spatial resolution and the very low bandwidth.  

 

               

Fig. 4. Schematic depiction if the conventional 2D EPI pulse sequence (‘ReviseMRI.Com : Echo 

Planar Imaging’ n.d.). RF means the radiofrequency excitation, Gs, Gp and Gf represent the 

applied gradients. The last row depicts the sampling of MR signal, where TEeff is the effective 

echo time, which correspond to the acquisition of the middle ky line. B. Sampling pattern (zig-

zag effect) of the k-space. 
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1.3.4. Simultaneous multislice imaging 

Simultaneous multislice (SMS) or multiband (MB) imaging, unlike other approaches 

(e.g. parallel acquisition techniques) accelerates the acquisition along the slice direction 

using parallel image reconstruction.  

Parallel imaging is a robust method for accelerating the acquisition of MRI. It works by 

acquiring a reduced amount of k-space data with an array of receiver coils. The number 

of sampled k-space lines is reduced by a factor of n, where n represents the number of 

missing phase encoding steps. Thereby it can significantly shorten the acquisition time. 

There are some limitations of parallel imaging e.g. reduced signal-to-noise ratio (SNR) 

and reconstruction artefacts [27] [28]. Aliased images also appear because of the 

undersampled data acquisition.  

There are several parallel imaging algorithms that can reconstruct artefact free images:  

Simultaneous acquisition of spatial harmonics (SMASH), which works in the Fourier 

domain uses the sensitivity profiles as basis sets to generate spatial harmonics and 

finally reconstruct the images (Sodickson and Manning 1997). Generalized 

autocalibrating partially parallel acquisition (GRAPPA) eliminates the aliased artefacts 

for a separate coil sensitivity calibration. In GRAPPA only a small number of k-lines are 

acquired (Griswold et al. 2002).  

Sensitivity encoding (SENSE) is another parallel reconstruction method, which works in 

the image-domain. The data is first Fourier transformed, then the images are “unwarped” 

(eliminate the aliased image artefacts). SENSE uses the spatial information from the coil 

sensitivity profiles (Pruessmann et al. 1999). Controlled aliasing in parallel imaging 

results in higher acceleration (CAIPIRINHA) is one of the newest algorithms, which 

modifies the appearance of aliasing artefacts during the acquisition. It may result in an 

improved parallel imaging reconstruction method, multiple slices of arbitrary thickness 

and distance are excited simultaneously using alternative radiofrequency pulses (Breuer 

et al. 2005). 

Parallel imaging is usually associated with a drop in SNR. In SENSE the SNR can be 

written with the following equation:  

 

𝑆𝑁𝑅 =  
𝑆𝑁𝑅

𝑔∗ √𝑅
, 

 

where R is the acceleration factor, g is the coil geometry factor (Deshmane et al. 2012).  
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The above mentioned geometry factor or “g-factor” arises from the properties and 

geometry of the receiver coil array. It could be greater than or equal to one. If the coil 

sensitivities from two receiver coils are highly accelerated, the aliased pixels will in 

general be harder to separate which reduces the signal-to-noise ratio. The g-factor-

related SNR loss from pixel to pixel and generally appears largest in the centre of the 

reconstructed images, where many pixels overlap, and the coil sensitivities are most 

similar (Deshmane et al. 2012; Glockner et al. 2005).        

A significant advantage of SMS that is does not cause sensitivity reduction. SMS leads 

to a reduction in acquisition time by a factor of N, with no impact distortion on SNR. It 

became a major imaging technique during the last few years. The main benefit is an 

acceleration in data acquisition that is equal to the number of simultaneously excited 

slice. Markus Barth’s review (Barth et al. 2016) give excellent and useful information 

about all in-slice acceleration techniques and represents several reconstruction methods. 

MB imaging can increase the temporal resolution in proportion to the acceleration 

factor, which is directly given by the number of simultaneously excited slices [34] [35]. 

Fig. 5. depicts a schematic representation of the SMS sequence diagram. 

 

 

 

Fig. 5. SMS EPI sequence diagram. Simultaneous excitation with a multiband pulse of 3 slice 

plans. The signals of the slices are superimposed in the echo train and separated with different 

RF coils (Feinberg and Setsompop 2013).  
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Signal to noise ratio (SNR) decrease is much less prone to change with the acceleration 

factor in this case (Kawin Setsompop et al. 2012): the degradation is only related to a 

“g-geometry factor” and T1 relaxation effects. EPI SMS sequences are prone to N/2 

Nyquist ghosting artefacts, where N is equal to the number of simultaneously excited 

slices. The challenge for SMS is that ghosting could not be fully corrected before 

unaliasing the slices, because the degree of N/2 ghosting varies by slice due to the 

spatial dependence of the eddy currents. Nowadays, there are several solutions, which 

can handle the above- mentioned problem (K. Setsompop et al. 2012; Chapman et al. 

1987; Polimeni et al. 2016). Imperfect SMS reconstruction results in residual aliasing 

artefacts. As a result of SMS imaging, residual aliasing often arises from different slices 

and causes artefacts and thus is sometimes attributed as “slice leakage” (Barth et al. 

2016). This artefact plays significant role especially in fMRI with EPI sequence. These 

residual artefacts are remarkable in the accelerated scans and they may cause false 

positive results.   

One of the most important advantages of SMS imaging is the ability to reduce scanning 

durations in clinical applications like abdominal (Loenneker, Hennel, and Hennig 1996), 

cardiac examinations (Tong, Hocke, and Frederick 2014) or perfusion imaging [41] [42]. 

SMS EPI sequences are also successfully used in fMRI measurements – statistical power 

can increase with more measured time points. This can be done with two reconstruction 

methods, blipped-CAIPI or SMS with simultaneous image refocusing (SIR) (Feinberg et 

al. 2010; Loenneker, Hennel, and Hennig 1996; Feinberg, Reese, and Wedeen 2002; L. 

Chen et al. 2015). SMS-CAIPIRINHA experiments with EPI were first demonstrated by 

Nunes et al. (Nunes et al. 2006). The slice shift was produced by a train of unipolar 

gradient blips on the slice axis. This imposed the desired phase between k-space lines, 

but the limitation was a phase accumulation along the EPI readout that effectively 

dephased the spins across the slice. This was solved by Setsompop et al (Kawin 

Setsompop et al. 2012) with a significant modification – compared with other 

reconstruction methods – that uses blipped rewinder gradients which keep the phase 

accumulation in a dedicated range (Fig. 6). This method is widely accepted at fMRI and 

for diffusion weighted images.  
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Fig. 6. SMS EPI with blipped-CAIPI reconstruction. Additional blipped gradient pulses (bottom 

line) added with periodic gradient moment nulling with larger amplitude phase-rewind pulses to 

repeatedly null the gradient moment in the echo-train (Feinberg, Reese, and Wedeen 2002).  

 

The increase in temporal resolution allows for more advanced statistical analysis 

strategies, for example independent component analysis (ICA) (Smith et al. 2012), 

moreover physiological artefacts can be reduced more efficiently (Griffanti et al. 2014). 

It should be noted, that the use of very high MB factors induces higher temporal noise. 

Temporal noise correlations between un-aliased voxels can cause bias in resting-state 

fMRI.  

Several studies show that the adverse effects of SMS imaging are offset by the increased 

amount of data points and generally higher statistical values (t-scores). Todd et al. (Todd 

et al. 2017) justified the SMS sequence of superior sensitivity in event related fMRI 

experiments: three acceleration factors and two reconstruction methods were compared 

with equal scanning time length. Using block designs, they concluded that increasing the 

acceleration up to MB factor 6 sensitivity was also increasing without any drop-in 

specificity. These results – the benefit of SMS acquisition –  were confirmed by several 

other authors [48] [49]. However, considering the complexity of the acquisition and 

design factors, SMS technique is affecting the robustness of fMRI results (Barth et al. 

2016). It is difficult to predict whether SMS-based sampling acceleration would change 

the required scanning time substantially to achieve a certain statistical power. 

 

1.4. Functional magnetic resonance imaging – basic principles 

Functional magnetic resonance imaging is widely used in cognitive neuroscience and 

presurgical planning to look for changes in neural activity that correlate with cognitive 
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processes. It is generally assumed that the fMRI signal is roughly proportional to a 

measure of the local neural activity (Logothetis et al. 2001). The relationship between 

the signal and the underlying neural activity depends on the fMRI acquisition technique, 

the stimulation protocol, etc. Functional brain mapping attempts to detect neural activity 

by creating contrast between active and passive (rest) conditions. All methods rely on 

the fact that cerebral blood flow (CBF) is increased during neural activity and it is 

closely connected to the neural activity [50] [51].  

Since the early 1990s the Blood-oxygenation level-dependent (BOLD) signal is the 

dominant source of contrast in fMRI studies (Ogawa et al. 1990), where the difference 

between the physical properties of oxygenated and deoxygenated haemoglobin is used to 

create a contrast. There are two main types of fMRI: task-based and resting-state 

functional MRI. Task-based has also become a useful adjunct for pre-surgical planning 

(Petrella et al. 2006). Nevertheless, it can be associated with a high failure rate in 

populations that cannot comply with task paradigms. In addition, different task may be 

necessary to map all relevant brain functions. These limitations may be remedied or 

eliminated with resting-state functional MRI (rs-fMRI). This approach uses the low-

frequency (<0.1 Hz) BOLD fluctuations to identify areas that are interacting at rest (Lee, 

Smyser, and Shimony 2013). Spontaneous fluctuations in metabolic activity are 

anatomically correlated within distinct functional networks (‘Functional Connectivity in 

the Motor Cortex of Resting Human Brain Using Echo‐planar Mri - Biswal - 1995 - 

Magnetic Resonance in Medicine - Wiley Online Library’ n.d.). However, it does not 

completely replace the t-fMRI.   

 

1.4.1. Brain metabolism and BOLD contrast 

In order to understand the contrast mechanism in functional Magnetic Resonance 

Imaging it is necessary to be familiar with brain metabolism.  

When a region of the brain is activated e.g. by a motor task (e.g. finger tapping), the 

neural process result a locally increased energy requirement and increased cerebral 

metabolic rate of oxygen (CMRO2) (Buxton and Frank 1997). This increased oxygen 

consumption, increases the cerebral blood flow by causing a vasomotor reaction 

affecting arterial sphincters, then these vessels are dilated. As a result the amount of 

deoxygenated haemoglobin (Hb) decreases, and the amount of oxygenated haemoglobin 

(HbO2) increases in the intra- and extravascular spaces locally [51] [57] (Fig. 7).   
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Fig. 7. Schematic representation of brain tissue containing capillary in rest phase and after 

neural activity. The increased blood flow causes increase in the amount of oxygenated 

haemoglobin (HbO2, red circles), and decrease in the amount of deoxygenated haemoglobin 

(Hb, blue circles). 

 

So, there are two main consequences of increased neural activity and both can be 

detected with MRI: increased CBF and changes in blood oxygenation level. This change 

in the ratio of oxygenated and deoxygenated Hb concentration is the basis of fMRI and 

it is called Blood Oxygenation Level-Dependent signal or BOLD contrast. 

Deoxygenated haemoglobin is paramagnetic, while oxyhaemoglobin is weakly 

diamagnetic. Both diamagnetic and paramagnetic substances respond to externally 

applied magnetic field and distort its homogeneity. Paramagnetic materials increase-, 

and diamagnetic substances decrease the local magnetic field (Gary H. Glover 2011).  

fMRI is based on the aforementioned BOLD contrast, that was first demonstrated in rats 

(Ogawa et al. 1990) and later in humans [26] [27]. The most widely used fMRI 

technique relies on T2*-weighted imaging. The T2* time constant becomes shorter in 

areas with low oxygenated Hb concentration and longer in areas with high oxygenated 

Hb concentration. The decreased deoxyhaemoglobin concentration causes more 

homogenous magnetic field leading to slower T2* relaxation, which can be detected as 

increased signal intensity on T2*-weighted images (Fig. 8). 
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Fig. 8. T2* relaxation curves for the activated and resting phases. During brain activity (T2* 

task) the signal decays slower, therefore the signal intensity will be higher (Stask) compared with 

the rest condition (T2* control) and signal intensity at rest phase (Scontrol). The difference ΔS is 

measured during fMRI. 

 

One must note, that the BOLD signal change on T2*-weighted images does not exactly 

follow the neural activity, it is delayed in time. The BOLD response to a stimulus is 

modelled with the so-called haemodynamic response function (HRF) (Fig. 9). It may 

vary across different brain regions and across subjects (Handwerker, Ollinger, and 

D’Esposito 2004; Rangaprakash et al. 2017). Unfortunately, several factors (e.g. 

caffeine, drugs or medicines) affect the HRF (Diukova et al. 2012). 

 

 

Fig. 9. BOLD response with modelled haemodynamic response function (HRF). A small BOLD 

signal reduction occurs immediately after the onset of neural activity, then a positive BOLD 

answer is detected until the end of the activity.   
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1.4.2. Physical basis of BOLD contrast 

I described the magnetic properties of oxygenated- and deoxygenated haemoglobin in 

the previous chapter. Of course, brain tissues have also diamagnetic properties (due to 

the dominant water content). Deoxyhaemoglobin distorts the external magnetic field 

present in the brain and it causes more spin-spin relaxation in the surrounding tissues. 

T2* relaxation time in and near the vessels depends on the amount of 

deoxyhaemoglobin. The lower level of deoxyhaemoglobin causes slower dephasing 

associated with a higher T2*. Gradient echo sequences are sensitive to the T2* effects 

and show higher signal where blood contains more oxygenated haemoglobin.  

The effects of dephasing scales with the square of magnetic field strength, therefore 

higher magnetic fields are more appropriate for functional MRI. Note, that these 

imaging sequences must be T2*-weighted. The amount of T2*-weighting is determined 

by the echo time. 

Optimal TE value has a significant role to find the maximal signal change both for grey 

matter and large veins (Triantafyllou, Wald, and Hoge 2011).  

 

1.5. Standard data processing of task-based functional MRI 

The principal aim of t-fMRI data analysis is to determine cortical brain regions, where 

signal changes occur as a consequence of stimulation. There are three main stages of 

data analysis: preprocessing, statistical analysis and displaying the resulting activation 

maps (James et al. 2014). Multiple analysis software is available (e.g. SPM, FSL, 

BrainVoyager, AFNI, etc.), all of which are capable of standard preprocessing.   

 

Slice-time correction 

fMRI uses two-dimensional echo-planar imaging to collect independent slices covering 

the brain volume. Images are acquired sequentially at different time points during one 

repetition time (~2000-3000 ms). Slice scanning order also influences the delay between 

two consecutive slices and may add up to significant temporal shift over a whole brain 

volume. To compensate this effect, slice-time correction (temporal interpolation) is 

applied to the functional data. 
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Realignment – correction of head motion 

Head motion could be a significant confound that can reduce the efficiency of fMRI. 

The aim of motion correction is to reduce movement artefacts in the fMRI time series. 

Most of the realignment algorithms use a reference volume and registration is usually 

done with a least square approach using 6 parameters rigid-body transformation, where 

the six parameters are estimated iteratively. Following an optimization procedure, the 

estimated motion parameters can be used for spatial resampling of the original, 

uncorrected data to match the reference.  

 

Coregistration 

It is a spatial preprocessing step that aligns functional and anatomical images in the 

intrasubject space. Coregistration is based on rigid-body model, albeit the cost function 

is mutual information. Note, that for optimal results images need to be approximately in 

the same orientation.  

 

Segmentation 

Segmentation is also an intrasubject step. It creates tissue probability maps for grey-, 

white matter and cerebrospinal fluid using a high resolution T1-weighted anatomical 

image. 

 

Normalization 

The main advantage of this preprocessing step – in order to make individual brain 

comparisons possible – to report fMRI activations within a standard anatomical space. It 

is especially important to organize/move brain images into the same image space if one 

is working on group data. During normalization images are registered to a standard 

space, by means of minimization of the sum of squared differences between the template 

image and source image (patient’s brain). SPM normalization uses a 12-parameter affine 

transformation, e.g. to the MNI template, created from a coregistered average of 152 

brain images. Of course, other templates are also available (e.g. Talairach and 

Tournoux).  

 

Spatial smoothing 

Functional images can be smoothed prior to the statistical analysis, to correct inter-

subject spatial variability between individuals and to improve the data’s compliance 
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with statistical assumptions. It is generally done with convolving the data with a 3D 

Gaussian kernel (Worsley and Friston 1995). The kernel size needs to be at least twice 

the voxel size for smoothing functional images (Polzehl, Voss, and Tabelow 2010). 

During smoothing, each voxel’s intensity is changing, i.e. it will be the weighted 

average that incorporates the intensity values of the adjacent voxels (James et al. 2014). 

 

Statistical analysis 

The basic idea behind the GLM is the following: observed data (y) is equal to a 

weighted combination of several factors (x) plus an error term (ε). The equation is: 

Y = X * β + ε, 

where Y is a BOLD signal, X represents several components, which describes the 

observed data by means of conditions in the form of a design matrix, β represents the 

contribution of each component of the design matrix to the value of Y, and ε is the 

difference between the observed data (Y) and the predicted data (X*β). 

To visualize task-related neural activity and the activated brain areas statistical tests (t-

test, F-test, ANOVA, etc.) are used. SPM follows a mass univariate approach, so each 

voxel is analysed separately, therefore correction for multiple comparisons is required. 

Bonferroni, family-wise error (FWE) rate or false discovery rate (FDR) can be applied 

to decrease the type I. error, i.e. the number of false positive voxels.   

 

1.6. Physiological artefacts at fMRI 

Physiological noise is one of the major confounds in fMRI. It modifies the BOLD 

signal, resulting in extra variance of the data. It can seriously influence statistical 

sensitivity, resulting in false negative results (Hutton et al. 2011). Of course, false 

positive results may also arise when physiological noise is correlated with task timing. 

Resting-state fMRI results may also suffer from physiological noise, potentially leading 

to inaccurate functional connectivity maps (Rasmus M. Birn 2012).  

The two types physiological noise relevant in fMRI analysis are those induced by the 

cardiac and respiratory cycles. Cardiac pulsation modulates cerebral blood flow, cerebral 

blood volume and also modifies the arterial pulsatility (Krüger and Glover 2001). 

Higher heart rate may also increase the amplitude of the arterial pulse wave and can lead 
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to vessel dilatation, also leading to pulsatile flow of the cerebrospinal fluid. Heart-rate 

variability changes local T2* values (Chang, Cunningham, and Glover 2009). 

Respiration may induce modulation of the B0 magnetic field (Raj, Anderson, and Gore 

2001) and many also cause signal fluctuations: changes in respiratory volume over time 

modifies the concentration of blood CO2 (Rasmus M. Birn et al. 2006), and the 

exhalation and inhalation induce magnetic field changes, leading to sub-voxel shifts 

(Windischberger et al. 2002).  

The above effects cause deformation of brain tissues, indeed small displacements may 

appear in and around blood vessels and cerebrospinal fluid (CSF) regions (Dagli, 

Ingeholm, and Haxby 1999) (Lajos R. Kozák et al. 2013). MRI geometric distortions 

may arise from apparent movements, like the variations in air volume due to the thorax-

movement induce changes in the B0 magnetic field, which lead to signal shift in the 

phase-encoding direction (Raj, Anderson, and Gore 2001).  

During the last decade several studies showed the relevance of physiological noise and 

the impact of physiological noise correction in fMRI. Most of the published studies 

applied noise correction to resting-state fMRI. E.g. Rasmus M. Birn et al (Rasmus M. 

Birn et al. 2014) compared the non-corrected rs-fMRI results with six different 

correction techniques and concluded that physiological corrections generally reduced the 

intrasubject variability while also reducing intersubject variability, thus improving test-

retest reliability of estimating individual differences in functional connectivity. They 

also mentioned that removal of the physiological noise – arising either from cardiac 

pulsation or respiration – likely increase the validity of connectivity analysis.  

 

1.7. Physiological noise correction techniques 

Physiological noise correction is in general, not part of default pre-processing in task-

based and resting-state fMRI data analysis. There are two main types of correction 

methods: data-driven (or exploratory) which rely on noise-like properties of the fMRI 

data and model-based, which are based on independent external measures of 

physiological signals. Fig. 10 depicts the types of physiological noise correction 

techniques. 
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Fig. 10. Types of physiological correction techniques at fMRI 

   

Temporal filtering is one of the most used physiological “correction method”, albeit it is 

not as straightforward as it seems to be. Usually, in fMRI, the TR is long, which leads to 

under-sampling and thus potential aliasing of physiological signals (Zahneisen et al. 

2014).  

Principal component analysis (PCA), independent component analysis and canonical 

correlation analysis (CCA) are data-driven methods. An ICA decomposition can be used 

to detect and label several independent components as noise and reduce the negative 

effects of artefacts by removing these components. There are various possible ways to 

perform physiological noise correction: a.) using the maps’ spatial information to 

remove specific voxels; b.) using time series data to identify and remove certain points 

in time (it assumes an excellent temporal resolution – unfortunately it is challenging in 

fMRI – due to the low temporal resolution, TR= 2 or 3 sec); c.) regressing out 

independent components labelled as noise from the original data (combining spatial 

maps with associated time series and separate the noise time series). The above-

mentioned noise regression – that can be implemented in the classical general linear 

model (GLM analysis (Beckmann 2012)) – is the most promising approach, as it makes 

no assumptions about the signal of interest. ICA-based cleaning is useful in resting-state 

fMRI, where there is no a priori information about the signal. Thomas et al. (Thomas, 

Harshman, and Menon 2002) proposed a method which is based on temporal 

information without task related information. Perlbarg et al. used manually defined ROIs 

to define noise in fMRI data (Perlbarg et al. 2007). The time-series was then regressed 

out from the original data – it is the basis of the CORSICA (Correction of structured 

noise using independent component analysis) toolbox. The main advantage of 
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CORSICA is that it uses both spatial and temporal information and focuses on the 

identification of physiological noises (cardiac and respiratory fluctuations).  

The common requirement – and the main drawback – of these techniques is that the user 

have to manually or qualitatively select or label “noise” components. Thankfully there 

are some toolboxes, where “noise” selection is done automatically, e.g. CompCor 

(Component based noise correction (Behzadi et al. 2007)), FIX (FMRIB’s ICA-based X-

noisifier (Salimi-Khorshidi et al. 2014)) or GIFT (‘GIFT Software’ n.d.). FIX extracts 

more than 180 features from each independent component and classifies them with 

dedicated classifiers namely k-nearest neighbour, support vector machine and decision 

tree. The GIFT toolbox extracts approximately 200 features, it uses spatial, temporal and 

power spectra information to separate the “noise” components from the “real” signal. 

Note that both FIX and GIFT concentrate not only on the physiological components – 

they also classify other artefacts, e.g. those which come from motion, etc. The aim of 

ICA-based artefact removal is to retain as much important signal as possible while 

removing the noisy data. Many applications of rs-fMRI, care more about keeping good 

signal than removing bad, particularly if the effects of residual artefacts can be 

ameliorated elsewhere, e.g., through the use of partial correlations in network modelling, 

where a move from full to partial correlation will address issues of shared confounds 

(Griffanti et al. 2017).   

 

Model-based physiological correction techniques are based on modelling the different 

voxel-wise fluctuations recorded from peripheral electrocardiogram (ECG), 

photoplethysmography unit (PPU) and/or breathing belt. The first retrospective method 

was RETROKCOR developed by Hu et al. (‘Retrospective Estimation and Correction of 

Physiological Fluctuation in Functional MRI - Hu - 1995 - Magnetic Resonance in 

Medicine - Wiley Online Library’ n.d.); It fits a low-order Fourier series to the k-space 

time series data, and it is limited to those spatial frequencies for which the SNR is 

adequate to ensure a good fit of the Fourier series to the data. Glover et al. devised the 

RETROICOR (G. H. Glover, Li, and Ress 2000) approach which modelled the 

respiration and pulse phases with Fourier expansion in the image domain, it is the main 

difference compared to RETROKCOR. The noise from cardiac and respiratory 

fluctuations was found to be reduced with a greater extent using RETROICOR.  

RETROICOR was later extended to model respiratory and cardiac response functions 

[71] [87], by applying a linear system to model respiration variation (RV) and hear rate 
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(HR) fluctuations. RV and HR impulse response functions are applied and deconvolved 

on a voxel-wise basis. The RVHR model explains a significantly greater fraction of 

signal variance. Removing HR and RV components from BOLD signal induce 

significant changes in resting-state network functional connectivities (Chang, 

Cunningham, and Glover 2009). Chang et al. (Chang, Cunningham, and Glover 2009) 

showed that RV added more variance into the BOLD signal in grey matter, while the HR 

component had significant effects in regions disjoint from those showing significant 

effects for RV, indicating differential contributions of HR and RV effects over space.  

Nevertheless, there are several other models e.g non-linear Bayesian state space BOLD 

model (Särkkä et al. 2012), etc. but they are outside the scope of this thesis.  

PhysIO toolbox (Kasper et al. 2017) is a well-documented open source software which 

contains the most of model-based methods, with its inputs being the peripheral 

recordings and its outputs being regressors representing the physiological noise 

components.  
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2. Objectives 

 

1. The relevance of simultaneous multi-slice (SMS) EPI sequence at task-based 

functional MRI 

Compare results obtained with a conventional EPI sequence at 0.5Hz sampling rate 

to those obtained with a simultaneous multi-slice sequence at 1 Hz sampling rate 

Investigate the efficiency of a four-times accelerated simultaneous multi-slice (SMS) 

sequence. Compare the conventional EPI and SMS sequences using region of interest 

analysis in three pre-defined brain areas (Extrastriate Body Are- EBA; Fusiform Face 

Area-FFA; Parahippocampal Place Area-PPA). Determine the optimal scan length with 

SMS sequences, where the same- or better statistical results (t-values) are obtainable.  

 

Compare results obtained with a conventional EPI sequence at 0.5Hz sampling rate 

to those obtained with a simultaneous multi-slice sequence at 2.5 Hz sampling rate 

Investigate the efficiency of six times accelerated simultaneous multi-slice sequence. 

Compare the conventional EPI and SMS sequences with region of interest analysis at 

three pre-defined brain areas (Extrastriate Body Are- EBA; Fusiform Face Area-FFA; 

Parahippocampal Place Area-PPA). Determine the optimal scan length with SMS 

sequences, where the same- or better statistical results (t-values) are obtainable. 

 

 

2. Role of physiological noise correction in pre-surgical functional MRI 

Effects of physiological noise (breathing and pulse) on whole brain fMRI activation 

maps.  

Compare the standard (non-corrected) and physiological artefact corrected whole brain 

fMRI activation maps to reveal the effects of physiological noise on fMRI mapping.    

 

Effects of physiological noise at the eloquent brain areas in pre-surgical fMRI 

Determine the role of physiological noise at the eloquent brain areas, by means of region 

of interest (ROI) analyses to identify differences between the non-corrected and 

physiological corrected maps.  
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3. Materials and Methods 

3.1. Comparison of simultaneous multislice imaging and 

conventional EPI sequence 

3.1.1. Subjects 

21 healthy volunteers participated in this study. All participants were right-handed, 

without any known history of psychiatric or neurological disorders, or head injury. 

Every subject had normal vision and gave informed written consent in accordance with 

protocols approved by Health Registration and Training Centre (ENKK 

006641/2016/OTIG). 

 

3.1.2. Image acquisition 

Data were acquired on a Siemens Magnetom Prisma 3T MRI scanner (Siemens 

Healthcare, Erlangen, Germany) at the Brain Imaging Centre, Research Centre for 

Natural Sciences, Hungarian Academy of Sciences. We used the standard Siemens 64-

channel head-neck receiver coil. The protocol contained a T1-weighted 3D MPRAGE 

anatomical image (repetition time (TR)/echo time (TE)/ flip angle (FA) = 

2300ms/3ms/90; field of view (FOV) = 256 mm; matrix size: 3x3x3.75 mm)). We used 

an independent functional localizer scan (TR/TE/FA: 2000ms/30ms/800; matrix size: 

3x3x3 mm). Functional measurements were done with three different parameter sets in a 

balanced (across subjects) pseudo-random order: one with conventional EPI sequence 

using 2-fold in-plane GRAPPA acceleration (TR/TE/FA: 2000ms/30ms/790; matrix size: 

3x3x3 mm) and another two measurements with the blipped-CAIPI Simultaneous 

Multislice technique (Kawin Setsompop et al. 2012) using the lack-block kernel for 

decreased interslice leakage [24]. We used two different acceleration factors to increase 

temporal resolution (Table 1. summarizes the most important scanning parameters). The 

total acquisition times were the same in every run of the EPI measurement.  
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Table 1. Scanning parameters 

 Conventional 

EPI 

SMS EPI 

(Acc. fact. 4) 

SMS EPI 

(Acc. fact. 6) 

TR [msec] 2000 1000 410 

TE [msec] 30 30 30 

FA [degree] 79 64 45 

Total scan 

volumes 

acquired 

336 672 1638 

 

3.1.3. fMRI stimuli and experimental design  

During the fMRI scanning session, grayscale images of human faces, houses, and 

headless bodies were presented. All images were equated for luminance and contrast and 

covered with a circular mask. We displayed all stimuli centrally, subtending 3.8 × 3.8°, 

on a uniform grey background via an MRI-compatible LCD screen (32’ NNL LCD 

Monitor, NordicNeuroLab, Bergen, Norway; refresh rate: 60 Hz) placed at 142 cm from 

the observer. Head motion was minimized using foam padding. Stimulus presentation 

was controlled by MATLAB R2015a (The MathWorks Inc., Natick, MA, USA) using 

PTB-3 (Brainard 1997). 

 

The three fMRI measurements were 11 min long with different EPI sequences 

(Conventional EPI – MB1, SMS EPI (acceleration factor 4) – MB4, and SMS EPI 

(acceleration factor 6) – MB6). We randomized the order of the runs with different MB 

factors and counterbalanced across subjects. In each run, we used 30 seconds long 

periods, where faces (F), houses (H), and bodies (B) were presented in a randomized 

order. In each block 6 stimulus per category per block were presented. In a rest period 

(25 s long) only a fixation dot was presented. The first and last block was rest block and 

it was 30 second long. In each ~1.5 min long block, every stimulus was presented for 1 s 

and stimuli were separated from each other with intertrial interval (ITI) of- 2, 5, or 7 s. 

The order of the presentation of stimulus type (F, H, B) and ITI length was 

pseudorandomized for all blocks within a run and the same stimuli and design were used 
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for all runs and subjects. The instruction to the subjects was to view the fixation dot and 

pay attention to the stimuli. 

We ran an independent localizer scan – without acceleration – in order to identify the 

relevant brain areas and select the ROIs for later analysis. During the localizer scan, 

which was 8.5 min (TR = 2 sec) long, a block-design paradigm was applied with 12 

seconds long blocks of faces, houses and headless bodies interleaved with baseline 

blocks containing only a fixation dot (Hermann et al. 2017). Stimuli were presented for 

500 ms with 0.5 Hz frequency. The localizer run consisted of 6 blocks of each stimulus 

type (F, H and B) and 19 baseline blocks, making a total number of 37 blocks, lasting 

8.5 min. In order to check whether subjects paid attention to the presentation, we ran a 

memory task after the scanning sessions: faces, houses and bodies were presented, and 

subjects had to decide which of them appeared during scanning. Category-selective 

regions were defined based on statistical contrast maps (with p<0.001 threshold 

uncorrected) and anatomical landmarks.    

 

3.1.4. fMRI data analysis 

Standard preprocessing and analysis of the data were performed using the SPM12 

toolbox (Wellcome Trust Centre for Neuroimaging, University College London, UK) 

and custom MATLAB codes. First, fMRI images were realigned to the first volume 

within a session for motion correction. Then anatomical images were co-registered to 

the mean functional T2* images. Thereafter segmentation and normalization to the 

MNI-152 space was performed with the SPM segmentation toolbox. Grey matter masks 

were used to restrict statistical analysis of the functional data. A 128 sec high-pass filter 

was used in order to remove low-frequency signal drifts. We spatially smoothed the 

functional data with a Gaussian kernel of 6 mm full width at half maximum. Stimulus 

onsets were modelled, convolved with canonical HRF and analysed with GLM. The 

design matrix also contained the movement-related regressors calculated by the motion 

correction procedure to account for movement-related variance. We calculated 

voxelwise contrasts (t-scores) to determine differences in the evoked BOLD signals 

between different stimulus conditions (e.g. face vs. houses) for the definition of the 

relevant ROIs using the independent functional localizer scans. Finally, within the 

functionally defined regions similar contrast statistics were assessed using the data 

acquired with different MB factors during the main experiments: mean t-scores – 
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reflecting the stimuli contrast statistics – within a 6 mm radius sphere centred at the peak 

voxel of the defined ROIs were averaged across hemispheres and used in the 

comparisons.  

 

3.1.5. ROI selection for data analysis 

Category-selective regions were defined based on statistical maps (with p<0.001 

threshold uncorrected) and anatomical images – using the independent functional 

localizer scans. The fusiform face area (FFA (Kanwisher, McDermott, and Chun 1997)) 

in the mid-fusiform gyrus was identified as an area responding more strongly to faces 

than houses. The parahippocampal place area (PPA (Epstein and Kanwisher 1998)) in 

the parahippocampal gyrus was determined as the area showing significantly stronger 

activation to houses than faces, while the extrastriate body area (EBA (Downing 2001)) 

localized in the lateral occipital cortex was determined as the area responding more 

intensely to human bodies relative to houses. It was possible to define right FFA in 19, 

and left FFA in 21 subjects (average MNI coordinates ± SD: right FFA: 41.22 ± 4.23; -

46 ± 6.45; -18.33 ± 4.13. left FFA: -40.44 ± 2.87; -50.77 ± 6.79; -20 ± 3.14), while right 

PPA was found in 20 and left PPA was found in 19 subjects (right PPA: 26.22 ± 3.2; -

46.33 ± 4.76; -9.33 ± 2.37. left PPA: -26.33 ± 2.93; -47.44 ± 3.74; -8.11 ± 2.69). Right 

EBA could be defined in 21 and left EBA in 20 participants (right EBA: 49.55 ± 3.18; -

71.33 ± 4.39; 4.55 ± 4.98. left EBA: -48.22 ± 3.2; -73.88 ± 6.63; 5.44 ± 5.39). Fig. 11. 

shows example activation maps of the three relevant ROIs (FFA, PPA and EBA). 

Unfortunately, some ROIs, especially FFA in the visual cortex were functionally 

undefinable in some subjects despite using the appropriate fMRI contrast (e.g. face>non-

face object stimuli for the FFA localization). One possible reason is the lower signal-to-

noise characteristics (susceptibility effects) and/or lower functional specificity of these 

regions (Rossion et al. 2015). Naturally, participants with missing ROIs were excluded 

from any given analysis. 
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Fig.11. Typical fMRI activations of EBA (blue arrows), FFA (red arrows) and PPA (green 

arrows). 

 

We also selected brain regions where we did not expect activations – these were not 

relevant in the stimulation paradigm. The reason was to compare the false positive rate 

(the fMRI specificity) of the statistics among the different acquisition rates (MB 

factors). Two ROIs were selected, in association with the default mode network 

(Meszlényi et al. 2017): posterior cingulate cortex (PCC, MNI coordinates: -3, -36, 39); 

left and right medial prefrontal cortices (lMPF and rMPF MNI coordinates: -3, 44, -2; 2, 

57, 24). These sites are excellent for testing the specificity (Sahib et al. 2016) given that 

they can generate confounding neural background activity, increasing the probability of 

false positive statistics.  

 

3.1.6. Comparison of the statistical power of different combinations of 

scan length and sampling rates 

We truncated the acquired data at 4 different time points to get activity time-courses 

with 4 different lengths. The durations of the resulting time-courses were 124, 254, 384 

and 515 seconds long, containing the initial 30 seconds rest period and 1, 2, 3 or 4 

stimulus blocks respectively. We used the following consistent notations: 1/5FL, 2/5FL, 

3/5FL and 4/5FL representing the approximate duration ratio relative to the non-

truncated full scan length (FL).  

We also truncated data acquired with MB4 and MB6, then compared the shortened scans 

with the full-length 11 mins standard (TR=2sec) scans to establish the efficiency of the 

acceleration technique and reveal the accidental differences. 

ROI analysis were performed both in the relevant and irrelevant regions. We examined 

how the increased sampling rate affected the activation statistics – we compared the full 
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scan length non-accelerated sequence to truncated and full scan length MB 

measurements. We found significant increase/decrease in t-values in ROI analysis, 

where we probed the null-hypothesis whether statistical values (t-scores) based on 

shortened MB4 and MB6 data chunks are equal to those obtained on full-length MB1 

scans, against the alternative that they are significantly different. 

 

3.2.  Physiological artefact correction for pre-surgical language fMRI 

3.2.1. Subjects 

14 patients with primary brain tumour participated in this study. Six female and eight 

male patients’ (mean ± std age = 48.85 ± 9.11) data were analysed retrospectively after 

the fMRI examination. We mapped the primary language and motor areas. Tables 2. and 

3. contain all relevant information regarding the patients. Every subject had normal 

vision and gave informed written consent.  

3.2.2. Image acquisition 

All data were acquired on a Siemens Magnetom Verio 3T scanner (Siemens Healthcare, 

Erlangen, Germany) at the National Institute of Clinical Neurosciences, Department of 

Neuroradiology. We used the standard Siemens 12-channels head receiver coil. The 

protocol included a T1-weighted 3D MPRAGE anatomical series (TR/TE/FA: 

2300ms/2ms/90), FOV = 256x256 mm, slice thickness was 3mm, the slice order was 

interleaved.  2D EPI sequences were used to perform functional measurements with 

GRAPPA parallel imaging, with the following parameters: TR/TE/FA: 

3000ms/30ms/900.  

Physiological parameters (breathing and pulse) were recorded with the built-in MRI 

compatible devices. 

 

3.2.3. fMRI stimuli 

We used 4 different language fMRI tasks (picture naming, synonym task, auditory 

decision and speech comprehension) in order to map the eloquent brain areas. Every 

paradigm contained 6 active and 6 passive blocks, every block was 24 seconds long. 

Here, we give a short description about the paradigms (see Fig. 12. for a schematic 
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representation) (L.R. Kozák et al. 2011; Lajos Rudolf Kozák et al. 2009; Hegyi et al. 

2009).  

Picture naming: active condition (24s): covert naming of images presented in every 3s 

and decision whether the image shows a living entity or an object; passive condition 

(24s): Fourier-scrambled versions of images are shown, the patient is instructed to rest, 

but mark the direction of arrows overlaid on the images. 

Synonym: active condition (24s): synonym decision making on word pairs presented at 

every 3s; passive condition (24s): similarity decision making on 5-letter consonant string 

pairs presented every 3s. 

Speech comprehension: active condition (24s): listening to pre-recorded speech; passive 

condition (24s): listening to pre-recorded reverse speech.  

Auditory decision: active condition (24s): auditory word vs. false-word decision based 

on presented every 3s; passive condition (24s): tone similarity decision on stimulus pairs 

presented every 3s.  

 

Fig. 12. Schematic representation of the applied fMRI language paradigms 

 

Visual stimuli were displayed centrally, subtending 3.8 × 3.8°, on a uniform grey 

background via an MRI-compatible LCD screen (32’ NNL LCD Monitor, 

NordicNeuroLab, Bergen, Norway; refresh rate: 60 Hz) placed at 142 cm from the 

observer. Head motion was minimized using foam padding. Stimulus presentation was 

controlled by nordicAktiva (NordicNeuroLab, Bergen, Norway) software.  
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3.2.4. fMRI data analysis 

Standard preprocessing and analysis of the data were performed using the SPM12 

toolbox (Wellcome Trust Centre for Neuroimaging, University College London, UK) 

and custom MATLAB (The Mathworks) codes. The fMRI volumes were realigned to 

the first volume within a session for motion correction. Then high-resolution anatomical 

images were co-registered to the mean functional T2* images. A high-pass filter (128 

sec) was applied to remove low-frequency signal drifts, then spatial smoothing with a 

3D Gaussian kernel of 6 mm full width at half maximum was applied. Stimulus blocks 

were modelled, convolved with canonical HRF and analysed within a general linear 

model framework. The design matrix also contained the movement-related regressors 

calculated by the motion correction procedure to account for movement-related 

variance. Voxelwise contrasts (t-scores) were calculated to assess differences in the 

evoked BOLD signals between different stimulus conditions (active vs. passive). We 

applied voxel-based threshold (p < 0.001), without multiple comparison correction. 

MRIcroGL (‘Home | MRIcroGL | University of South Carolina’ n.d.) was used to 

visualize our results. 

In order to decrease the physiological artefacts we used the convolution based 

RETROICOR/RVHR, which identifies and eliminates breathing and pulse related 

artefacts (Chang, Cunningham, and Glover 2009; Chang and Glover 2009).  

Task-based fMRI were analysed both with and without RETROICOR/RVHR. The 

Jaccard coefficient was used to quantitatively compare the activation maps obtain with 

and without physiological artefact correction: 

 

 

J(A,B) = 
|𝐴 ∪ 𝐵|

|𝐴 ∩𝐵|
, 

where A = standard activation map (without physiological correction), B = 

physiologically corrected activation map. fMRI activation maps were thresholded at 

p<0.001. If the two activation maps were same or almost the same, the Jaccard 

coefficient would be around 1, else it would converge to 0. We also determined the 

number of activated voxels (p < 0.001) in both activation maps and two sample t-test 
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was applied to reveal the significant differences. We also counted the number of non-

significant voxels and determined the differences with t-test.  

 

3.2.5. ROI selection for detailed analysis 

We performed Region of Interest analysis by placing ROIs in the relevant eloquent brain 

areas (Broca-, Wernicke- and primary sensory-motor areas). Peak voxels were selected, 

and 20 mm sphere ROIs were used to extract means and standard deviations of t-values. 

ROI extraction was performed both on non-corrected and physiological corrected maps. 

Paired t-test was applied to determine the significant differences between ROIs. 

Levene’s test (Begg 1988) was used to reveal the homogeneity of the ROIs’ variance.  

We also analysed the fMRI activations’ extensions in the eloquent brain areas (number 

of voxels in an eloquent brain area activated at the significance level of puncorrected < 

0.001). We used two-sample t-test to determine the differences between the ROIs’ 

extensions.  
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4. Results 

4.1. Comparison of simultaneous multislice imaging and conventional EPI 

sequence  

4.1.1. Results of the ROI analysis: task-relevant regions 

In order to reveal the significant differences between SMS EPI and conventional EPI 

sequences and to compare the FL measurements with truncated sequences, we assessed 

mean t-scores for each subject, ROI, MB factor, and truncation length. Group averages 

were calculated, and the mean t-scores are depicted with bar charts in Fig. 13, Fig. 14 

and Fig. 15. We found significant (p < 0.0014) differences in the PPA ROI analysis, 

when compared 4/5FL and FL measurements in the case of MB4 with MB1 FL values 

(Fig. 15.a.). We also found significant differences (p < 0.0056) in EBA ROI analysis, 

when compared to 4/5FL and FL measurements with MB1 t-values (Fig. 13.a.).  

We found non-significant differences (p > 0.09) – in EBA ROI analysis – between the 

full scan length MB1 and the extremely truncated MB4 sequences (1/5FL, 2/5FL), see 

Fig. 15.a. Note, that a substantial decrease in t-scores (p < 0.001) are detected when 

compared the full scan length MB1 measurement with MB4 sequence, when only 20% 

(1/5FL) of the full scan time was used (Fig. 13.a. first two bar charts).  

We did not recognize any significant differences at any truncated scan length in the FFA 

(p > 0.18) when the acceleration factor was 4.  

The multiband sequence with acceleration factor of 6 definitely overperformed the full 

scan length MB1 measurements in all ROIs when we used at least 60% (3/5FL) of the 

total scan length (p < 0.001). 

In the FFA (Fig 14.) and EBA (Fig. 13) regions multiband measurements with 

acceleration factor of 6 even at 2/5FL reached significantly higher t-scores compare to 

FL, non-accelerated measurement (p < 0.008 for FFA and EBA).  
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Fig.13. EBA sensitivity profile: across subject average of the t-scores. Mean ± standard 

deviations of the t-scores are depicted. Full-length scan time with standard (MB1) 

measurements (dark blue charts) are compared with the 20%, 40%, 60%, 80% and 100% of the 

total scan time with acceleration factors 4 (MB4) and 6 (MB6). 
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Fig.14. FFA sensitivity profile: across subject average of the t-scores. Mean ± standard 

deviations of the t-scores are depicted. Full-length scan time with standard (MB1) 

measurements (dark blue charts) are compared with the 20%, 40%, 60%, 80% and 100% of the 

total scan time with acceleration factors 4 (MB4) and 6 (MB6). 
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Fig.15. PPA sensitivity profile: across subject average of the t-scores. Mean ± standard 

deviations of the t-scores are depicted. Full-length scan time with standard (MB1) 

measurements (dark blue charts) are compared with the 20%, 40%, 60%, 80% and 100% of the 

total scan time with acceleration factors 4 (MB4) and 6 (MB6). 

 

In order to demonstrate the performance of multiband sequences with respect to clinical 

practice, we show an example at a single subject level.  Single subject statistical maps 

(thresholded at the same level, t=5) are depicted in Fig. 16. for MB4 and in Fig. 17. for 

MB6 measurements. Bilateral FFA can be identified at all accelerations and scan lengths 

(MB1 full scan length, see Fig. 16.a. and truncated MB4 scans, see Fig. 16.b.-f.). 

Interestingly activated areas show almost the same extent with 1/5FL (Fig. 16. b.) and 
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2/5FL (Fig. 16. c.) for MB4 scans. We identified stronger activations for longer 

measurements and the extent of activations were also larger (Fig.16. d-f.). 

 

 

Fig. 16. Whole brain contrast maps from Volunteer 15, MB4. Bilateral fusiform face areas are 

identified based on ~11 min scanning with conventional EPI sequence (a.). The areas show up 

using multiband sequences with acceleration factor 4 and different scanning durations: 1/5FL 

(b), 2/5FL (c), 3/5FL (d) 4/5FL (e) and full scan length (f.). Each t-map is thresholded at the 

same score (t>5). 

 

We used the same single subject t-maps (Fig. 17.) to demonstrate the MB6 

measurements’ efficiency with respect to acquisition length. Fusiform face area (FFA) is 

displayed in both hemispheres. Compared with the MB4 sequences (Fig. 16.) one must 

note, that the activations are more robust than the conventional MB1 and MB4 scans. 

More robust activations are already detected after 2 minutes of scan time (1/5FL) MB6 

(Fig 17. b.).  

 

Fig. 17. Whole brain contrast maps from Volunteer 15, MB6. Bilateral fusiform face areas are 

identified based on ~11 min scanning with conventional EPI sequence (a.). The areas show up 

using multiband sequences with acceleration factor 6 and different scanning durations: 1/5FL 

(b.), 2/5FL (c.), 3/5FL (d.) 4/5FL (e.) and full scan length (f.). Every t-maps are thresholded at 

the same score (t>5). 
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4.1.2. Results of the ROI analysis: task-irrelevant regions 

We also analysed the sampling rate effects in ROIs (PCC, lMPF and rMPF) where no 

relevant stimulus related activations were expected during the fMRI sessions. 

Neither significant differences in activation levels (tmax<2.5, pmin>0.21) nor significant 

differences in t-scores (tmax<2.4, pmin>0.54) between on MB1 and higher sampling rate 

(MB4 and MB6) scans could be found.  

 

4.2. Results of physiological noise correction in pre-surgical fMRI 

4.2.1. Whole brain activation results 

Jaccard coefficients were more than 0.5 in five cases while lower Jaccard values were 

found in other patients, the mean ± standard deviation was 0.27 ± 0.16. We considered 

the number of significant (p < 0.001) and non-significant (p > 0.001) voxels. We found 

significant differences between the original and physiological corrected activation maps 

in both cases (p = 0.009 and p < 0.001). Table 2 and Table 3 contains the Jaccard 

coefficients, the number of non-significant and significant voxels, the mean heart rate, 

the maximum amplitude of respiration and the detailed results of ROI analysis in all 

patients. 

We detected moderately strong, significant positive correlation between the Jaccard 

index and heart rate (R2 = 0.31, p = 0.002). However, we did not find significant 

correlations between the Jaccard index and respiration (R2 = 0.0052, p = 0.711).  

 

4.2.2. Results of ROI analysis 

The ROIs’ mean t-values were decreased after the physiological correction in every 

patient. We found significant differences (p < 0.0015) between the non-corrected and 

corrected region of interests at 5% significance level. The ROIs’ standard deviations 

were also decreased, albeit – using Levene-test –significant differences have not been 

detected (F = 0.28). 

We analyzed the extension of eloquent brain area activations and found significant 

differences between the uncorrected and physiological corrected maps (p = 0.012). 

Physiological correction decreased the extent of activations in all patients.    
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Table 2. The patients’ sex (M: Male, F: Female), age, location of lesion, applied fMRI paradigms, variables of the non-corrected and 

physiological corrected fMRI activation maps 

Patient ID 

Applied paradigm; 

Coordinate of the 

maximum t-value  

Jaccard 

Index 

Number of 

significant 

(p<0.001) voxels – 

uncorrected map 

Number of 

significant 

(p<0.001) voxels 

– corrected map 

Number of non-

significant 

(p>0.001) voxels – 

uncorrected map 

Number of non-

significant 

(p>0.001) voxels 

– corrected map 

1.  

Picture Naming [-42; 

8; 37] 
0.22 468 187 37151 37432 

Synonym [-40; 24; 35] 0.22 1943 946 35803 36800 

         

2.  

Picture Naming [-40; 

21; 7] 
0.27 2989 1241 42676 44424 

Synonym [41; 33; 14] 0.27 191 555 45518 45154 

         

3.  
Picture Naming [37; 

18; 25] 
0.22 2781 2297 35770 40610 

         

4.  

Picture Naming [-48; 

8; 29] 
0.24 3357 903 38242 40696 

Synonym [-32; 20; 29] 0.24 2502 1060 39157 40602 

         

5. 

Auditory Decision [-

55; -47; 2] 
0.59 1139 1239 48417 48317 

Picture Naming [-37; -

55; -20]  
0.17 583 336 48725 48972 

Synonym [-55; -47; 2] 0.56 1322 1663 48113 47772 

       

4
3
 

 c
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Patient ID 

Applied paradigm; 

Coordinate of the 

maximum t-value  

Jaccard 

Index 

Number of 

significant 

(p<0.001) voxels – 

uncorrected map 

Number of 

significant 

(p<0.001) voxels 

– corrected map 

Number of non-

significant 

(p>0.001) voxels – 

uncorrected map 

Number of non-

significant 

(p>0.001) voxels 

– corrected map 

6. 

Finger tapping [-44; 

26; 67] 
0.17 415 344 39564 39635 

Picture Naming [-46; 

6; 33] 
0.36 4368 4055 35915 36228 

Synonym [-42; 24; 33] 0.12 366 423 39356 39299 

       

7. 

Finger tapping [42; -

30; 49] 
0.18 385 561 46443 46267 

Synonym [49; -33; 9] 0.28 1710 916 46334 47128 

         

8. 

Auditory Decision [-

54; 14; 2] 
0.54 1963 1822 45330 45471 

Picture Naming [-29; 

38; 5] 
0.67 6913 7175 40493 40231 

Synonym [-29; 37; 9] 0.39 3190 2220 44070 45040 

         

9. 
Finger tapping [39; -

15; 60] 
0.03 119 79 46605 46645 

        

10. 

Picture Naming [-55; 

24; 11] 
0.52 2304 1798 46577 47083 

Synonym [-37; 14; 17] 0.19 920 706 48071 48285 

 

 
 

4
4

 
 c
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Patient ID 

Applied paradigm; 

Coordinate of the 

maximum t-value  

Jaccard 

Index 

Number of 

significant 

(p<0.001) voxels – 

uncorrected map 

Number of 

significant 

(p<0.001) voxels 

– corrected map 

Number of non-

significant 

(p>0.001) voxels – 

uncorrected map 

Number of non-

significant 

(p>0.001) voxels 

– corrected map 

11. 

Finger tapping [-39; 2; 

55] 
0.17 1069 882 46292 46479 

Picture Naming [-46; 

7; 52] 
0.12 625 482 46250 46393 

Synonym [-41; 20; 41] 0.11 302 252 46808 46858 

         

12. 

Picture Naming [-29; -

6; 35] 
0.15 532 265 43652 43919 

Synonym [-50; -7; 16]  0.18 640 276 43347 43711 

         

13. 
Auditory Decision [-

35; 16; 34]  
0.25 720 650 40002 40072 

         

14.  

Synonym [-27; 41; 25]  0.11 1579 1679 44725 44625 

Picture Naming [-50; 

14; 28] 
0.31 282 718 45834 45398 

4
5
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Table 3. The patients’ sex (M: Male, F: Female), age, location of lesion, applied fMRI paradigms, variables of the non-corrected and 

physiological corrected fMRI activation maps and the detailed results of Region of interest analysis. 

Patient 

ID 

Patient’s 

age and 

sex  

Name and 

localization 

of the lesion 

Applied paradigm; 

Coordinate of the 

maximum t-value 

Mean 

heartbeat 

[beats/min] 

Maximum 

amplitude 

of 

respiration 

[arbitrary 

unit] 

ROI 

without 

correction 

(mean ± 

std)  

[t-value] 

ROI after 

correction 

(mean ± std) 

[t-value] 

Jaccard 

Index 

1. 62; F  

Left sided 

frontal 

glioma 

Picture Naming [-42; 8; 

37] 
81 198 3.14 + 0.9 3.01 + 0.85 0.22 

Synonym [-40; 24; 35] 81 123 5.52 + 2.22 3.75 + 1.3 0.22 

          

2. 45; N 

Left sided, 

small frontal 

haemangioma 

Picture Naming [-40; 21; 

7] 
81 124 2.65 + 1.19 2.51 + 0.91 0.27 

Synonym [41; 33; 14] 80 131 2.43 + 0.91 2.41 + 0.74 0.27 

          

3. 29; N 

Left sided, 

large fronto-

temporal 

lesion 

Picture Naming [37; 18; 

25] 
76 230 6.34 + 1.77 4.82 + 1.41 0.22 

          

4. 32; F 

Left sided 

temporal 

low-grade 

glioma 

Picture Naming [-48; 8; 

29] 
82 346 3.2 + 0.89 2.65 + 0.65 0.24 

Synonym [-32; 20; 29] 81 282 3.05 + 1.32 2.98 + 1.12 0.24 

 

 

 

         

4
6
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Patient 

ID 

Patient’s 

age and 

sex  

Name and 

localization 

of the lesion 

Applied paradigm; 

Coordinate of the 

maximum t-value 

Mean 

heartbeat 

[beats/min] 

Maximum 

amplitude 

of 

respiration 

[arbitrary 

unit] 

ROI 

without 

correction 

(mean ± 

std)  

[t-value] 

ROI after 

correction 

(mean ± std) 

[t-value] 

Jaccard 

Index 

5.  59; N 

Left sided 

temporo-

occipital low-

grade glioma 

Auditory decision [-55; -

47; 2] 
68 271 4.65 + 2.19 4.61 + 2.2 0.59 

Picture Naming [-37; -55; 

-20]  
69 220 3.11 + 1.63 2.85 + 1.38 0.17 

Synonym [-55; -47; 2] 72 291 3.67 + 1.89 3.36 + 1.01 0.56 

          

6.  39; N 

Left sided 

central 

glioma 

Finger tapping [-44; 26; 

67] 
80 203     0.17 

Picture Naming [-46; 6; 

33] 
86 139 5.33 + 2.23 4.25 + 1.89 0.36 

Synonym [-42; 24; 33] 81 133 3,04 + 1.29 2.53 + 1.1 0.12 

          

7.  47; F 

Right sided, 

large 

glioblastoma 

multiforme 

Finger tapping [42; -30; 

49] 
80 203 5.58 + 1.19 5.2 + 0.52 0.18 

Synonym [49; -33; 9] 81 177     0.28 

          

8.  51; F 

Left sided, 

fronto-

temporal 

glioma 

Auditory decision [-54; 

14; 2] 
77 101 5.35 + 2.45  4.97 + 2.13 0.54 

Picture Naming [-29; 38; 

5] 
75 131 5.95 + 2.98  5.76 + 1.91 0.67 

Synonym [-29; 37; 9] 77 125 3 + 2.52 2.55 + 1.78 0.39 

4
7
 

 c
 

DOI:10.14753/SE.2021.2424



48 
 

Patient 

ID 

Patient’s 

age and 

sex  

Name and 

localization 

of the lesion 

Applied paradigm; 

Coordinate of the 

maximum t-value 

Mean 

heartbeat 

[beats/min] 

Maximum 

amplitude 

of 

respiration 

[arbitrary 

unit] 

ROI 

without 

correction 

(mean ± 

std)  

[t-value] 

ROI after 

correction 

(mean ± std) 

[t-value] 

Jaccard 

Index 

9.  45; F 

Right sided, 

fronto-

temporal 

low-grade 

glioma 

Finger tapping [39; -15; 

60] 
98 212 4.11 + 0.91 3.9 + 0.55 0.03 

          

10.  50; F 

Left sided, 

central 

glioma 

Picture Naming [-55; 24; 

11] 
81 607 3.11 + 0.94 3.01 + 0.66 0.52 

Synonym [-37; 14; 17] 80 498 3.65 + 1.21 3.01 + 0.96 0.19 

          

11.  47; F 

Left sided, 

central 

glioma 

Finger tapping [-39; 2; 

55] 
80 203 3.14 + 0.62 2.69 + 1.11 0.17 

Picture Naming [-46; 7; 

52] 
81 298 2.34 + 1.16 1.84 + 0.72 0.12 

Synonym [-41; 20; 41] 81 223 2.51 + 1.04 3.17 + 0.99 0.11 

          

12.  52; N 

Left sided, 

large, fronto-

temporal 

glioma 

Picture Naming [-29; -6; 

35] 
85 139 2.93 + 1.18 2.87 + 1.15 0.15 

Synonym [-50; -7; 16]  87 227 5.66 + 1.09 5.65 + 1 0.18 

  

4
8
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Patient 

ID 

Patient’s 

age and 

sex  

Name and 

localization 

of the lesion 

Applied paradigm; 

Coordinate of the 

maximum t-value 

Mean 

heartbeat 

[beats/min] 

Maximum 

amplitude 

of 

respiration 

[arbitrary 

unit] 

ROI 

without 

correction 

(mean ± 

std)  

[t-value] 

ROI after 

correction 

(mean ± std) 

[t-value] 

Jaccard 

Index 

13.  40; F 

Left sided, 

large 

temporo-

parietal low-

grade glioma 

Auditory decision [-35; 

16; 34]  
84 220 4.87 + 1.01 4.54 + 0.88 0.25 

          

14.  44; N 

Left sided, 

fronto-

temporal 

glioma 

Synonym [-27; 41; 25]  86 229 2.1 + 0.89 2.1 + 0.88 0.11 

Picture Naming [-50; 14; 

28]  
86 139 2.32 + 0.59  2.11 + 0.77  0.31 

4
9
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We demonstrate the role of physiological noise correction in a pre-surgical setting 

in two cases. 

In the first case (Fig 18.; Patient ID: 8; Picture Naming paradigm) a left sided, 

fronto-temporal glioma was detected with large extension into Broca’s area. fMRI 

examination was performed for mapping the language areas, fMRI activation have 

larger extent (near the tumour) in the uncorrected map (red) compared with the 

physiological corrected activation map (blue). Only small changes were detected 

(white arrow) in the extent of the activations. Jaccard index was 0.67. With ROI 

analysis the mean and standard deviation of the t-values in the selected ROI was 

5.95 ± 2.98 without and 5.76 ± 1.91 with correction (Table 2. contains the detailed 

results). 

 

 
Fig 18. Left sided glioma was detected in Broca’s area. The original, non-corrected (red) 

and the physiological corrected (blue) activation maps (t-values) show minimal 

differences according to the eloquent area (white arrow). Activations inside the tumour 

(yellow arrows) are disappeared after the physiological correction. L: left side, R: right 

side. 
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In the second case, a left sided glioma was detected near the Wernicke’s area (Fig  

19.; Patient ID: 5; Synonym paradigm). fMRI examination was performed to 

depict the language areas. A small fMRI activation was detected (white arrow) on 

the lateral side of the tumour, near the eloquent area. This activation was only 

visible on the original, non-corrected activation map, but disappeared if 

physiological correction had been performed (blue). On the same token, the extent 

of activation in Broca’s area was larger on the uncorrected fMRI maps. There 

were activations deemed non-relevant (these were not related to the eloquent 

areas) in the axial slices (yellow arrows), however these activations were only 

visible on the uncorrected maps. The ROI analysis yielded mean and SD t-values 

of 3.67 ± 1.89 without correction and 3.36 ± 1.01 after correction (See Table 2. for 

details). 

 

Fig 19. Left sided glioma was detected in Wernicke’s region. The original, non-corrected 

(red) and the physiological corrected (blue) activation maps (t-values) show differences 

on the lateral side of the tumour (white arrow). Non-relevant activations depicted only 

the original, fMRI maps. L: left side, R: right side. 
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5. Discussion 

5.1. Comparison of simultaneous multislice imaging and 

conventional EPI sequence  

Our results showed that the multiband acquisition technique helps reducing the 

overall scanning time while maintains or improves the robustness of functional 

area localization at the single subject level. This could be very helpful in clinical 

practice. Indeed, by selecting appropriate acceleration factors the increase in 

temporal resolution counteracts the degradation of SNR caused by the change in 

“g-geometry factor” and T1 relaxation effects (Kawin Setsompop et al. 2012). 

The SMS-CAIPIRINHA method with EPI was first demonstrated by Nunes et al. 

(Nunes et al. 2006). The necessary slice shifts were produced with a train of 

unipolar gradient blips on the slice axis. These blips introduced the desired phase 

difference between k-space lines effectively shifting overlapping slices in image-

space. The main limitation of this early approach was the presence of concurrent 

effective dephasing across the slices. Setsompop et al. solved this problem with 

applying blipped rewinder gradients to keep phase accumulation within a 

dedicated range, thus maintaining the relative phase-differences while decreasing 

the through-slice dephasing. This blipped CAIPIRINHA acquisition method 

indeed decreases the noise amplification in SMS EPI measurements (Lutti et al. 

2013). However, imperfect slice separation could still  result in residual aliasing 

along slices referred as “slice leakage” in the literature (Kawin Setsompop et al. 

2012). There are different strategies to circumvent this issue at the reconstruction 

level, from which we chose the leak-block kernel reconstruction approach. This 

method suppresses the prevalence of slice-leakage artefacts significantly at the 

price of mild SNR decrease. Hence, the probability of false-positive activation is 

kept low (Todd et al. 2016). More sampling points mean better temporal 

resolution with increased degrees-of-freedom. This allows the application of 

multiband sequences as an advanced strategy for independent component analysis 

at resting-state fMRI.  

In order to quantify the efficiency of multiband sequences and define the 

necessary measurement duration for fMRI localizer examinations, truncated SMS 
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scans (with MB acceleration factors 4 and 6) were compared with a conventional, 

full-scan length (~11 min longs) EPI sequence. 

The application of a rapid event related fMRI design not only enabled us to collect 

data with enough evoked responses within less than 3 minutes in our truncated 

segments, but also made data whitening (removal of a fitted AR model) less vital 

in the preprocessing pipeline as temporal autocorrelation is less likely to serve as a 

confound during a relatively high frequency stimulus presentation with proper 

temporal jittering (Sahib et al. 2016). 

To test brain areas with different magnetic susceptibility and SNR characteristics 

(Keil et al. 2013) we chose our ROIs (FFA, PPA and EBA) to be at different 

depth in the brain. While FFA has a small activated volume, it can be found close 

to areas with high magnetic susceptibility, whereas PPA, with its deep location, is 

expected to have lower SNR characteristics.   

 

5.1.1. Impact of higher temporal resolution and reduced scan time 

on t-scores 

We found in agreement with the pertinent literature (L. Chen et al. 2015; Lutti et 

al. 2013) that SMS sequences with MB acceleration factors up to 6 

(approximately 2.5Hz temporal resolution) would increase the sensitivity of the 

task-based, event related fMRI analyses, when comparing acquisitions with equal 

scanning length (we compared the MB1 measurement – with full scan length – 

with MB measurements using 4 and 6 acceleration factor).  

 

5.1.2. Comparison of sampling rate at 1Hz with reduced scanning 

time vs 0.5Hz (MB4 vs MB1) 

As a general conclusion, 40% of the full scan time (2/5FL) with acceleration 

factor of 4 (1Hz sampling rate) is enough to reach similar t-scores than with 

conventional EPI sequences (0.5Hz sampling rate (MB1)), without acceleration – 

see Figure 13-15. In the PPA ROI significantly higher statistical values are 

achieved, using at least 60% (3/5FL) of the scan time compare with the 

conventional MB1 acquisition technique with 11 min long scan (FL). The 4/5FL 
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scanning measurements with acceleration factor of 4 outperform the MB1 based 

scans in two of the localized functional areas (PPA, EBA). 

5.1.3. Comparison of sampling rate at ~2.5Hz with reduced scanning 

time vs. 0.5Hz (MB6 vs MB1) 

Shorter scan time with acceleration factor 6 reached similar or better results (t-

scores) than the MB1 full scan-length sessions (Fig 13.,14.,15. b.) in almost all 

cases (except the EBA ROI). It means that in most cases approximately 2 min 

scanning (1/5FL) at ~2.5Hz sampling rate (MB6) provides similar or better 

localization sensitivity than the 11 min FL session at 0.5Hz sampling rate. 

Moreover, an MB6 acquisition provides significantly higher t-scores in all 

functional areas already with 8 min scanning (4/5FL) time. Regarding the FFA 

ROI even 2/5FL (4 min) long measurements yielded significantly higher t-scores 

compared to FL MB1 (Fig 14. b.). 

 

5.1.4. Specificity, effect of temporal autocorrelation 

As Sahib et al. showed (Sahib et al. 2016), major improvement of temporal 

resolution also increases temporal autocorrelation – with the risk to influence 

statistical significance and by increasing the rate of false positive results during 

fMRI analysis. In order to avoid complex and equivocal estimation of the effect of 

noise we also examined sampling rate effects in other brain regions where no 

significant activation was expected for our tasks. We have chosen two ROIs (PCC 

and bilateral MPF) from the default mode network because several studies showed 

high amplitude background activity in these regions during task-based paradigms 

(Koshino et al. 2015; DeSalvo et al. 2014), that may pose as a major source for 

false positives.  

We did not find significant activations in the above mentioned DMN ROIs, so our 

results show that the investigated multiband acquisition technique did not impair 

the specificity of t-fMRI regardless the acceleration factor chosen. Indeed, we 

found neither significant activations nor significant differences between the 

statistical scores based on MB1 and higher sampling rate (MB4 and MB6) 

acquisitions at group-level in the DMN ROIs.  
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5.1.5. Demonstration of higher temporal resolution at the subject 

level 

We also wanted to investigate if multiband sequences can be used efficiently in 

the clinical practice, thus we have analysed the results of higher sampling rate 

measurements at the single subject level based on a representative sample around 

the FFA region. Our general conclusion was that peak t-scores were higher and 

spatial extent of FFA activations were larger when using 1Hz or ~2.5Hz sampling 

rate compared to 0.5 Hz. Note, that there were several subjects whose activation 

statistics did not follow a clear positive trend with higher temporal resolution in 

case of very short scanning duration (e.g. 1/5FL, 2/5L or 3/5FL yielded lower t-

scores compared to FL with MB1). Statistical maps obtained with 8 min scan 

duration (4/5FL) were either indistinguishable or showed even more robust 

activations than the ones obtained with full length scanning without acceleration 

(MB1).  

Our results indicate that the application of multiband sequences can significantly 

reduce the required scan time for localization purposes while retaining (or even 

improving on) the sensitivity and specificity of the traditional fMRI scanning 

sequences. 

 

5.2. Physiological noise correction for pre-surgical fMRI 

In this study we examined the role of model-based physiological noise correction 

in presurgical, task-based functional MRI. We concentrated on the eloquent 

language areas (Broca and Wernicke).  

Most of the research groups use simple temporal filtering to eliminate 

physiological noise, as part of the standard data analysis pipeline. Nevertheless, 

several studies revealed (e.g. Tong and Frederick (‘Frontiers | Studying the Spatial 

Distribution of Physiological Effects on BOLD Signals Using Ultrafast FMRI | 
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Frontiers in Human Neuroscience’ n.d.)), that getting rid of the physiological noise 

components via this formula is almost impossible, due to the long repetition time 

leading to under-sampling and aliasing of physiological signals. Indeed, temporal 

filtering would only work with shorter repetition times (<400 ms). In consequence, 

there are several methods/toolboxes available that provide more sophisticated 

physiological noise correction in order limit the proportion of false positive 

activation.  

Many studies confirmed, that physiological noise can spoil the results of 

functional MRI analysis, especially in case of resting-state, which is based upon 

the low-frequency fluctuations of the fMRI signal. Catie Chang and Gary H. 

Glover showed the impact of model-based RETROICOR for resting-state fMRI, 

concentrating on the Default Mode Network’s correlations and anti-correlations 

(Chang and Glover 2009). They also drew our attention to the importance of 

cardiac response function in rs-fMRI (Chang, Cunningham, and Glover 2009). 

Ludovica Griffanti et al. worked with a data-driven, ICA-based correction 

technique (FIX) (Griffanti et al. 2014). They used MB accelerated acquisition and 

applied single-subject independent component analysis, followed by automatic 

component classification with FMRIB’s ICA-based X_noiseifier (FIX) to identify 

and remove the apparent artefacts. They showed the physiological noise related 

independent components follow arteries and veins (e.g. the anterior, middle and 

posterior cerebral arteries). They also highlighted that independent component 

analysis is very helpful to determine spatial and temporal characteristics of the 

physiological noise related artefacts and separate them from “real” BOLD 

fluctuation signals.  

Nevertheless only a few studies have used physiological correction for task-based 

fMRI (Hutton et al. 2011; Hillenbrand, Ivry, and Schlerf 2016; Sahib et al. 2018).  

In our study we determined the effects of cardiac and respiratory function on the 

activation maps in a presurgical, task-based functional MRI setting. We 

investigated whether we can reduce false positive activations with physiological 

noise correction. We hypothesized that more precise activation maps will be 

available with physiological noise correction, that are better suited for the 

presurgical planning.  
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5.2.1. Physiological noise correction at whole brain fMRI 

We demonstrated, that physiological artefact correction modifies the whole brain 

activation maps in presurgical, task-based functional MRI. Jaccard indexes were – 

except for 5 cases – low (<0.5) so we concluded that the uncorrected and corrected 

statistical maps were substantially different. In order to better understand the 

above-mentioned differences and to determine how the model-based 

RETORICOR/RVHR modifies the statistical maps, we also analysed the number 

of significant (p < 0.001) voxels and the number of non-significant (p > 0.001) 

voxels. Physiological correction reduced the number of significant voxels in 23 

cases, leading to a significant difference (p < 0.009) between the corrected and 

non-corrected maps on the group level. Furthermore, upon physiological noise 

correction there was a decrease of activations in irrelevant brain areas, not related 

to the actual paradigms (p < 0.001).  

 

5.2.2. Physiological noise correction at ROI analysis 

Physiological correction provided more precise functional MRI activations at the 

eloquent brain areas. We found significant differences (p < 0.05) between the 

ROIs’ mean values. After physiological correction the activations at the eloquent 

areas remained significant at p < 0.001 significant level. We also found decreased 

standard deviation values in the ROIs, but this reduction was not significant. 

However – with the decreased standard deviation – we can conclude, that more 

reliable activation maps are available after the physiological correction. 

We examined the extent of the relevant/eloquent clusters/activations and found 

significant (p = 0.012) differences between corrected and uncorrected maps, with 

corrected maps showing less extensive activations. These findings corroborate the 

relevance of physiological noise correction. 
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5.3. Simultaneous multislice imaging at task-based functional 

MRI - Conclusion 

One of the major problems in clinical – and also in some research oriented – 

functional MRI is long scanning time. In this study, we analysed the beneficial 

effects of the simultaneous multislice based acceleration technique quantitatively. 

We examined the performance of the standard fMRI analysis method in relation to 

three different sampling frequencies in three target ROIs: EBA, FFA, PPA. We 

showed that the same statistical power can be reached using SMS sequences 

(increasing temporal resolution) even with serious scan time reduction using 

appropriate MB sequences with proper acceleration.  Based on our experiments an 

11 min long classical (unaccelerated) localizer scan can be replaced safely with a 

4 min accelerated acquisition with multiband factor 6 using ~2.5Hz sampling rate. 

It could be very helpful, especially when patient cooperation is a real problem 

even within this relatively short time-frame. With accelerated scans very similar 

statistical results can be reached compared to those of a standard-length protocol – 

without acceleration.  

So far, the usage of the MB sequences in the clinical routine is still not 

widespread despite the many advantages of the accelerated acquisitions. This may 

be due to the relative novelty of the technique and the challenges posed by the 

different implementations across vendors. Note, that there are several vendors, 

who provide original, built-in SMS sequences without any manual 

installation/intervention. It is worth noting that false-positive activations could 

appear in case of one slice leaking into other simultaneously exited slices when 

using MB sequences, albeit these artefactual activations can be controlled with 

new reconstruction techniques e.g. blipped-CAIPI. 

In this study we used a special paradigm based on complex visual stimuli to 

demonstrate the efficiency of higher temporal resolution (with lower scan time) 

obtained with difference acceleration factors at higher order visual areas, namely 

EBA, FFA and PPA. Importantly SMS sequences can be used not only for 

research studies with complex cognitive paradigms and questions, but clinical 

practice can also benefit from introducing SMS based acceleration in the daily 

routine, especially cases where patient cooperation is restricted. 
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5.4. Retrospective physiological noise correction at presurgical 

task-based functional MRI - Conclusion 

In this study we demonstrated the efficiency of model-based physiological 

correction technique, which works in the image space and uses the hear-rate and 

cardiac variability to reduce the physiological based artefacts. We analysed the 

effect of physiological noises in a special case, namely presurgical task-based 

fMRI.   

RETROICOR/RVHR reduced the false-positive results and provided more 

reliable statistical maps. Although ROI analysis revealed that the calculated 

activation amplitudes decreased after physiological correction, the spatial 

specificity of the eloquent brain activations increased. These findings need further 

validation using other modalities, like invasive electrocorticography.  

The primary concern in presurgical fMRI is having false negative results. In 

principle, applying this retrospective, model-based correction technique the 

statistical activation threshold can be lowered – increasing the sensitivity of the 

analysis – without introducing excessive false positive activations.  

We can conclude, that RETROICOR/RVHR can reduce the physiological 

artefacts. Physiological correction can significantly improve fMRI activation 

maps, while reducing the false positive results. This in turn leads to more reliable 

statistical maps and helps to characterizing eloquent brain activations and 

improving the efficiency of presurgical planning.   
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6. Summary 

 

Two-dimensional simultaneous multi-slice echo planar imaging is a relatively new 

special Magnetic Resonance Imaging sequence for accelerating the acquisition. 

This faster acquisition can be used to record more volumes and it is well suited for 

improving the sensitivity of task-based and resting-state fMRI imaging.  

Physiological noise may seriously influence the fMRI analysis. The effect of 

physiological noise is well known, and several toolboxes are available to reduce 

the physiological based artefacts. These techniques may help to improve the 

sensitivity and specificity of task- and resting-state functional MRI. 

In this thesis I examined the relevance of simultaneous multi-slice (SMS) EPI 

sequence at task-based functional MRI. I compared the conventional, full scan 

length EPI measurements with SMS sequences with acceleration factor of four and 

six. In the second part of my thesis I used RETROICOR/RVHR toolbox to reveal 

the role of physiological noise correction at per-surgical functional MRI. 

SMS sequences with MB acceleration factors up to 6 (approximately 2.5Hz 

temporal resolution) would increase the sensitivity of the task-based, event related 

fMRI analysis. Based on my experiments a conventional, 11 min long 

(unaccelerated) EPI scan can be safely replaced with a 4 min accelerated 

acquisition with multiband factor 6 using ~2.5Hz sampling rate. It could be very 

helpful, especially when patient cooperation is a real problem and shorter 

acquisition is necessary. 

Physiological correction provided more precise functional MRI activations at the 

eloquent brain areas. RETROICOR/RVHR reduced the false-positive results and 

provided more reliable statistical maps. Nevertheless, ROI analysis revealed that 

the calculated activation amplitudes decreased after physiological correction. The 

spatial specificity of the eloquent brain activations increased. 

  

DOI:10.14753/SE.2021.2424



61 
 

7. Összefoglalás 

A simultaneous multi-slice (SMS) vagy más néven multiband (MB) egy echo 

planar imaging (EPI) alapú, mágneses rezonanciás (MR) szekvencia, amely 

relatíve új mérési eljárás. Alkalmazásával gyorsabb akvizícióra van lehetőség, így 

a mérési idő jelentősen csökkenthető. Ezzel párhuzamosan javítható mind a 

feladathoz kötött-, mind a nyugalmi állapotú funkcionális MRI (fMRI) vizsgálatok 

szenzitivitása. 

A fiziológiai jellegű (légzési és keringési eredetű) műtermékek jelentősen 

befolyásolhatja az fMRI adatelemzést. Az ilyen típusú műtermékek csökkentésére 

számos algoritmus/szoftver alkalmazható, így jelentős mértékben javítható a 

feladathoz kötött- és nyugalmi állapotú fMRI vizsgálatok szenzitivitása és 

specificitása.  

A tézis első felében az SMS EPI szekvenciák jelentőségét vizsgáltam feladathoz 

kötött fMRI vizsgálatoknál. Összehasonlítottam a konvencionális, teljes 

hosszúságú, gyorsítás nélküli szekvenciát a különböző gyorsítási faktorú SMS 

szekvenciákkal. A tézisem második részében arra kerestem a választ, hogy a 

fiziológiai műtermékeknek milyen jelentősége van a műtéti tervezéshez használt, 

feladathoz kötött fMRI vizsgálatoknál. Az elemzéshez RETROICOR/RVHR 

toolboxot használtam.  

Az SMS szekvenciák (hatos gyorsítási faktorral; ~2.5Hz-es időbeli felbontás) 

javították a feladathoz kötött fMRI vizsgálatok szenzitivitását. Vizsgálatom 

alapján megállapítható, hogy a hagyományos, 11 perc hosszúságú, gyorsítás 

nélküli EPI szekvencia biztonságosan kiváltható egy 4 perces, hatos gyorsítási 

faktorú SMS szekvenciával. Ez nagyon fontos lehet, olyan esetekben, amikor a 

beteggel való kooperáció nehezített.  

A fiziológiai műtermékek korrekciójával a kapott fMRI-s aktivációs mintázat 

megbízhatóbbá válik. A RETROICOR/RVHR használatával csökkenthetők a fals 

pozitív eredmények, mindazonáltal az elvégzett ROI-s elemzés alapján 

megállapítható, hogy fiziológiai korrekció után az aktivációk erőssége/amplitúdója 

csökken. Az elokvens területekre vonatkozó aktivációk térbeli specificitása viszont 

javul. 
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