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Abstract 

Left ventricular diastolic dysfunction, the main feature of heart failure with preserved 

ejection fraction (HFpEF), is thought to be primarily caused by comorbidities 

affecting the endothelial function of the coronary microvasculature. Circulating 

extracellular vesicles, released by the endothelium have been postulated to reflect 

endothelial damage. Therefore, we reviewed the role of extracellular vesicles, in 

particularly endothelium microparticles, in these comorbidities, including obesity and 

hypertension, to identify if they may be potential markers of the endothelial 

dysfunction underlying left ventricular diastolic dysfunction and HFpEF.  
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Endothelial microparticles 

Communication in multicellular organisms is essential for appropriate signal 

transductions and efficient organ functioning. Although much attention has been 

given to paracrine and endocrine chemical signals and direct cellular interaction, the 

spotlight has moved onto showing that cells can communicate via small, membrane-

enclosed vesicles, termed “extracellular vesicles”. Eukaryotic extracellular vesicles 

consist of several populations of vesicles, including exosomes, microvesicles, 

apoptotic vesicles and oncosomes. Recently, we highlighted the differences between 

these vesicle populations in a position paper on the diagnosis and therapy of the 

ischaemic heart.(1) Now, we zoom in on one of these vesicle populations; membrane-

derived microvesicles, only 100-1000nm in size and also known and widely described 

in literature as microparticles, in which their content, is reflective of the cell source. 

Microparticles, shed from endothelial cells, following activation or apoptosis, are 

aptly termed endothelial microparticles (EMPs). These are anuclear fragments of 

cellular membrane, comprising proteins, microRNAs, and enzymes specific to the cell 

from which they originate. The historical notion, originating from Wolf (2) over 40 

years ago, that microparticles were only inert debris has been replaced with a new 

understanding of their possible role as a marker of underlying pathology and vascular 

injury. EMPs are elevated in a variety of cardiovascular-related diseases which 

involve impaired endothelial function such as coronary artery disease(3–5), carotid 

artery disease (6), type 2 diabetes (7,8) and preeclampsia.(9) EMPs have therefore 

subsequently adopted the role of a surrogate marker of endothelial 

dysfunction.(10,11) In addition, they have also been found to directly be involved 

with the progression of endothelial dysfunction with Boulanger et al. showing that 

microparticles from patients with myocardial infarction, but not from healthy 
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controls, induced endothelial dysfunction by impairing the endothelial nitric oxide 

transduction pathway.(12) 

Here, the behaviour of EMPs in heart failure comorbidities in both men and women 

will be discussed, followed by the possible role they may play in HF, specifically the 

sub-type heart failure with preserved ejection fraction (HFpEF). The extracellular 

vesicle field is urgently looking for more uniform definitions of vesicle 

characteristics, including specific markers and isolation protocols. This is also true for 

EMPs, which we define in this overview as vesicles of 100-1000nm in size and 

expressing one or more endothelial specific markers, such as CD144, or as otherwise 

specified.  

 

The function of the endothelium in men and women 

The endothelium is made up of a single layer of cells acting as a barrier between the 

blood and vascular wall. It plays an important role in cardiovascular homeostasis by 

regulating vasomotor tone, vascular permeability, and cardiac function.(13) 

Impairment of the endothelium i.e endothelial dysfunction is a complex physiological 

event preceded by the activation of endothelial cells by cytokines under inflammatory 

conditions inducing a pro-inflammatory state.(14) Oxidative stress plays an important 

role in mediating the production and secretion of cytokines, therefore linking reactive 

oxygen species with inflammation and endothelial activation and dysfunction. As 

nitric oxide is central to the maintenance of vascular homeostasis in endothelial cells, 

reduction in nitric oxide bioavailability, due to reduced production or increased 

degradation of nitric oxide, leads to endothelial dysfunction. EMPs directly induce 

endothelial activation, inflammation and dysfunction and may contribute/or be 

involved with the increased cardiovascular risk present in a number of inflammatory 
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diseases which may be influenced by sex. Given that the endothelium behaves 

differently according to sex (15–17) one would expect the number and behaviour of 

circulating EMPs to also differ by sex.  

 

The sex-specific role of EMPs in endothelial dysfunction  

There are conflicting results regarding the difference in levels of circulating EMPs 

between healthy men and women. Circulating microparticles of endothelial origin 

have been shown to be higher in young, healthy women as compared to aged-matched 

healthy men.(18,19) Toth et al. showed that this difference in circulating EMPs was 

most pronounced during the luteal phase of the menstrual cycle, suggesting an 

important hormonal influence on circulating levels.(19) In one study no difference 

between circulating levels of EMPs was found between middle-aged healthy men and 

women, although there were sex differences in the miRNA expression of the 

EMPs.(20) Differential expression of miRNAs has previously been shown to be 

involved with endothelial dysfunction and an increased risk of cardiovascular disease 

(CVD).(21) Therefore the sex differences in miRNA expression may actually reflect 

sex differences observed in CVD pathophysiology. These results add to the 

knowledge regarding the influence of sex hormones on the function of the 

endothelium (22). Thus, age and sex hormonal changes are likely to play a sex-

differentiated role in the release and behaviour of circulating EMPs. The differential 

expression of EMPs may also represent different roles of EMPs such as them being 

markers of damage and also markers of repair.  

It is well known that CVD manifests later on in a woman’s life than it does in a man’s 

life.(23) Men outnumber women with a higher prevalence of CVD across all ages 

until the age of 85 years after which women outnumber men and continue to do 
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so.(24) This age-related phenomenon is considered to be related to the change in sex-

hormonal status with oestrogen acting as a protective force until after the menopause 

sequentially increasing the risk of CVD in women. These changes in endogenous 

circulating concentrations of sex hormones may modulate the risk for CVD via the 

vascular endothelium.(23,25) Oestrogen mediates the activation of endothelial nitric 

oxide synthase, which produces nitric oxide for vasorelaxation, and also has an 

antioxidant effect explaining the sex differences in EMPs we see in younger women 

compared to younger men but not between older men and older women.(26) In 

addition to an increased risk of CVD, following the menopause, susceptibility to the 

metabolic syndrome increases in women.(27)  

 

Metabolic syndrome and endothelial dysfunction 

Metabolic syndrome is characterised by the presence of three out of five clinical 

parameters including: increased waist circumference, low high density lipid-

cholesterol, raised triglyceride levels, raised fasting blood glucose levels, and raised 

systemic blood pressure (either systolic or diastolic). Metabolic syndrome, of which 

obesity clearly is a key contributor, increases the risk of CVD particularly in 

women.(28) All components of the metabolic syndrome have adverse effects upon the 

endothelium and several studies have shown that endothelial function is impaired in 

metabolic syndrome contributing to ischaemic heart disease and myocardial 

dysfunction.(29–33) Increased serum EMPs have also been observed in women with 

polycystic ovarian syndrome, a condition known to be associated with the metabolic 

syndrome and a raised body mass index.(34) Obesity is characterised by a chronic 

low grade systemic inflammation (35) with macrophages invading the excess adipose 

tissue resulting in the release of inflammatory cytokines. This subsequently triggers a 
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systemic inflammatory response. Endothelial dysfunction also plays a role in the 

pathogenesis of type 2 diabetes (T2D).(8,36) An improvement in glycaemic control is 

reciprocated by an improvement in endothelial function.(37) 

Amabile et al. demonstrated that EMPs were associated with several cardiometabolic 

disease risk factors including higher triglyceride levels and the metabolic syndrome 

(38) in a cohort free from CVD. However, this study did not show an association 

between frank T2D and circulating EMPs. Results regarding specific EMP 

populations in T2D have been conflicting. One small study found circulating CD144+ 

to be present in T2D patients (39) and Koga et al. showed significantly elevated levels 

in T2D with coronary artery disease compared with non-diabetic control patients.(7) 

However, Sabatier et al. found that the total microparticle population was higher in 

type 1 diabetes mellitus and T2D compared to controls but microparticles of 

endothelial origin were only higher in type 1 diabetes mellitus patients compared to 

controls and not T2D.(40) Thus it may be that the risk factors associated with T2D 

result in the increase in EMPs seen in these studies or in the case of the study by Koga 

et al., active coronary artery disease and not the diabetes itself. It has been suggested 

that the diabetic microenvironment may also influence the composition and activity of 

microparticles (41) with an increase in size of EMPs (42), which may account for the 

differences seen. Increased EMPs have also been found in obesity with studies 

showing an increase in EMPs in obese women as compared to lean women of a 

similar age.(29,43)  

 

Hypertension and endothelial dysfunction 

Hypertension is one of the most important contributors to the development of HFpEF. 

Oxidative stress and vascular inflammation are increasingly being shown to be 
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involved in the pathogenesis of hypertension.(44–46) The association between 

hypertension and endothelial dysfunction is well established.(47–49) The 

management of hypertension, including dietary sodium restriction and 

antihypertensive medications, has also been shown to improve the endothelial 

dysfunction initially caused by hypertension.(44) Not only is endothelial dysfunction 

a consequence of hypertension, but it is also known to precede hypertension.(50,51) 

Amabile et al. found that hypertension was associated with an increase in EMPs in 

men and women free from CVD.(38) This relationship has also been observed in 

other studies with one study showing increased EMP levels in patients with severe 

hypertension.(52)  

 

Hypertensive disorders of pregnancy and endothelial dysfunction 

3%-8% of all pregnancies are complicated by hypertensive disorders.(53) Due to an 

increase in prevalence of obesity and metabolic syndrome among women of 

childbearing age, these numbers are only rising.(53) Evidence of an association 

between hypertensive disorders of pregnancy and increased cardiovascular risk later 

in life is accumulating. Preeclampsia occurs in 1-2%  and has been shown to be 

associated with an increased risk of heart failure, with a predilection for 

HFpEF.(53,54) Preeclampsia, a multisystem hypertensive disorder of pregnancy 

characterised by endothelial dysfunction, a systemic inflammatory response and 

increased vascular resistance, occurs in 1-2% of pregnancies.(53) The results from 

one study identified 10 different overlapping biomarkers (including C-reactive protein 

and cardiac troponin I) that differentiated HFpEF and preeclampsia from their 

respective controls (non-HFpEF and women with normal pregnancies 

respectively).(55) This suggests that there are common pathophysiologies between the 
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two diseases involving a pro-inflammatory state, disturbances in myocardial 

function/structure, and unfavourable lipid metabolism.  

One study looking at EMPs found that not only are levels higher in hypertensive 

patients compared to normotensive patients but that they are also higher in women 

with PE compared to women with gestational hypertension.(9) Placentae from 

patients with preeclampsia have reduced levels of endothelial nitric oxide synthase 

and thus less nitric oxide. Syncytiotrophoblast extracellular microvesicles and 

exosomes, carry signals from the syncytiotrophoblast to the mother.(56) One study 

found a significantly higher concentration of total exosomes and placenta-derived 

exosomes in maternal plasma of preeclamptic women compared to those without 

preeclampsia.(57) Circulating plasma syncytiotrophoblast extracellular microvesicles 

from placenta also carry functional endothelial nitric oxide synthase. Preeclamptic 

women have lower endothelial nitric oxide synthase expression in syncytiotrophoblast 

extracellular microvesicles compared to women with normal pregnancies suggesting 

that functional syncytiotrophoblast extracellular microvesicles derived endothelial 

nitric oxide synthase-mediated nitric oxide production is compromised in 

preeclampsia which may contribute to the vascular dysfunction seen in 

preeclampsia.(56) 

Thus, there is accumulating evidence that placenta derived microvesicles and 

exosomes play an important role in maintaining cardiovascular health in pregnant 

women. Disturbances in placenta homeostasis seem to alter these protective 

microvesicles leading to increased vascular resistance not only in the placenta but also 

in the systemic vasculature of the mother. This increased high blood pressure seems 

to promote diastolic dysfunction and HFpEF during acute preeclampsia and also 
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increases the risk of HFpEF in the longterm in women who have previously 

experienced preeclampsia. 

 

Atrial Fibrillation and endothelial dysfunction 

Atrial fibrillation commonly coexists with heart failure, in particularly HFpEF, 

occurring in up to 1/3rd of patients with HFpEF.(58) A high body mass index is also 

associated with atrial fibrillation.(59) Endothelial dysfunction has previously been 

recognised in atrial fibrillation, with an improvement seen following restoration of 

sinus rhythm.(60,61) This impairment of endothelial dysfunction is worse in the 

presence of hypertension or T2D.(61) Although studies involving EMPs in atrial 

fibrillation are limited, increased levels of EMPs have been found in patients with 

either permanent or persistent atrial fibrillation compared to controls without any 

cardiovascular risk factors.(62) 

 

Heart failure and endothelial dysfunction  

The heart failure syndrome consists of three distinct phenotypes, categorised 

according to the ejection fraction: preserved (HFpEF, EF≥50%), mid-range (HFmrEF, 

EF: 40-49%) and reduced (HFrEF, EF: <40%).(63) Approximately 50% of heart 

failure patients suffer from HFpEF.(13) In line with our ageing society, HFpEF is 

expected to become the more dominant form of heart failure in the Western world 

(64,65), rising in prevalence at a rate of ~1% per year.(66) Interestingly, as compared 

to HF(m)rEF which commonly affects men, women are more prone to developing 

HFpEF, with women outnumbering men in a 2:1 ratio.(63,67–70) The prevalence of 

HFpEF is also higher in women in screening populations suggesting that women are 

more likely to have unrecognised HFpEF than men.(70) Left ventricular diastolic 
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dysfunction encompasses asymptomatic cardiac abnormalities that are related to left 

ventricular stiffening and to a decline in left ventricular relaxation, both whilst 

preserving the ejection fraction.(68,71) Left ventricular diastolic dysfunction is 

considered to be a precursor of HFpEF (72) but it may also feature in HF(m)REF and 

other cardiovascular diseases such as atrial fibrillation and stroke.(73) Unlike HFpEF, 

the prevalence of left ventricular diastolic dysfunction has been found to be similar in 

men and women.(70) HFpEF, as compared to HFrEF has a high prevalence of 

comorbidities including hypertension, T2D, obesity and atrial fibrillation.(74,75) As 

we have seen in this review, endothelial dysfunction is common to all of these 

comorbidities. It is these comorbidities that have taken center stage in the recently 

hypothesized explanation of the underlying mechanism of HFpEF. It has been 

proposed that they cause a systemic microvascular endothelial inflammatory response 

which triggers coronary endothelial and microvascular dysfunction leading to 

diastolic stiffness, concentric left ventricular modelling and interstitial but also 

myocyte fibrosis.(76) Women with HFpEF are more likely to suffer from these 

comorbidities and be older than men with HFpEF.(77) Therefore one may postulate 

that endothelium dysfunction may play a bigger role in women with HFpEF than men 

with HF, HFpEF/HFrEF and thus EMPs may play a role in HFpEF in women (Figure 

1).  

CD144+ EMPs have been previously shown to be high in patients with heart failure 

and were found to be predictive of cardiovascular events.(78) However data 

concerning EMPs and heart failure have mainly focused on HFrEF as opposed to 

HFpEF.(79) Berezin et al. studied the differences in patterns of circulating EMPs in 

HFrEF vs. HFpEF.(80) This study interestingly found that out of a number of 

different EMPs, only CD14+, from a monocytic origin were associated with HFpEF. 
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Chiang et al. found that EMPs were in fact downregulated in HFpEF suggesting it 

was indicative of impaired endothelial turnover.(81) This highlights the complexity of 

the different classes of microparticles and their origins in different disease states. The 

specificity of individual microparticle populations for specific disease states is 

unclear. It is likely that microparticles of each type are elevated in multiple 

pathologies. It has also been suggested that they may be shed from more than one cell 

origin.(80) For example, CD31+ may be shed from both endothelial cells and 

platelets. Therefore elevations in circulating microparticles may identify a more 

generalised stress/injury rather than a specific pathological state. 

Other barriers to the use of EMPs as markers of disease pathology are as EMPs are 

identified via flow cytometry using a panel of markers, endothelial cell markers vary 

between studies. Some markers detect a sub-population of EMPs, for example 

detecting EMPs from activated endothelial cells only, which may give an inaccurately 

lower value when comparing to a different marker. The process of identifying and 

quantifying EMPs is long and complex. Individual stages involved may again differ 

by study such as differences in blood collection and differences in the storage of 

blood. This clearly leads to a culmination of variety throughout the whole process. 

Indeed, some have suggested a standardised set of guidelines should be 

employed.(82,83)  

Using the methodology used previously by Amabile et al.(38), we found that EMPs 

were higher in patients with HFpEF or left ventricular diastolic dysfunction compared 

to individuals without HF and left ventricular diastolic dysfunction, although absolute 

numbers measured were low. However, this was not different between men and 

women. We did not find any associations between EMPs and echocardiography 

parameters reflecting left ventricular diastolic dysfunction in multivariable analyses. 
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We did show that EMPs were reflective of a high body mass index (beta estimate 1.10 

[95% CI 1.02-1.20]) and of atrial fibrillation (beta estimate 2.23 [95% CI 1.43-3.48]) 

(Figure 2). Our findings did not differ according to sex. 

 

To conclude, EMPs do play a role in the various comorbidities including the 

cardiometabolic comorbidities associated with HFpEF, but do not seem to carry 

predictive value above and beyond these co-morbidities in HFpEF. Results from 

studies have also pointed to a sex-specific role of the endothelium and thus the 

behaviour of EMPs. However our understanding of EMPs in HFpEF is not yet fully 

clear and more standardised methods must be operational before these microparticles 

can be considered a marker of disease pathology of endothelial damage, left 

ventricular diastolic dysfunction and HFpEF. 
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Figure Titles and Legends 

 

Figure 1. Schematic showing the impact of HFpEF associated comorbidities on the 

endothelium and the release of circulating endothelial cells influenced by sex 

 

Figure 2. Box plot showing the relationship between EMP ratio and atrial fibrillation 

Plot displaying log transformed EMP ratios (CD144/CD9) with standard error bars in patients 

with atrial fibrillation (AF) compared to patients without AF 

within the outlined gated area. Any particle left from the gated area is 

negative for CD144. 
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