
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-18-2022 11:00 AM 

Optimized and Automated Machine Learning Techniques Towards Optimized and Automated Machine Learning Techniques Towards 

IoT Data Analytics and Cybersecurity IoT Data Analytics and Cybersecurity 

Li Yang, The University of Western Ontario 

Supervisor: Shami, Abdallah, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Electrical and Computer Engineering 

© Li Yang 2022 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Other Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Yang, Li, "Optimized and Automated Machine Learning Techniques Towards IoT Data Analytics and 
Cybersecurity" (2022). Electronic Thesis and Dissertation Repository. 8734. 
https://ir.lib.uwo.ca/etd/8734 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F8734&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=ir.lib.uwo.ca%2Fetd%2F8734&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/8734?utm_source=ir.lib.uwo.ca%2Fetd%2F8734&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract

The Internet-of-Things (IoT) systems have emerged as a prevalent technology in our daily lives.

With the wide spread of sensors and smart devices in recent years, the data generation volume

and speed of IoT systems have increased dramatically. In most IoT systems, massive volumes

of data must be processed, transformed, and analyzed on a frequent basis to enable various IoT

services and functionalities. Machine Learning (ML) approaches have shown their capacity for

IoT data analytics. However, applying ML models to IoT data analytics tasks still faces many

difficulties and challenges. The first challenge is to process large amounts of dynamic IoT data

to make accurate and informed decisions. The second challenge is to automate and optimize

the data analytics process. The third challenge is to protect IoT devices and systems against

various cyber threats and attacks. To address the IoT data analytics challenges, this thesis

proposes various ML-based frameworks and data analytics approaches in several applications.

Specifically, the first part of the thesis provides a comprehensive review of applying Au-

tomated Machine Learning (AutoML) techniques to IoT data analytics tasks. It discusses all

procedures of the general ML pipeline. The second part of the thesis proposes several su-

pervised ML-based novel Intrusion Detection Systems (IDSs) to improve the security of the

Internet of Vehicles (IoV) systems and connected vehicles. Optimization techniques are used

to obtain optimized ML models with high attack detection accuracy. The third part of the thesis

developed unsupervised ML algorithms to identify network anomalies and malicious network

entities (e.g., attacker IPs, compromised machines, and polluted files/content) to protect Con-

tent Delivery Networks (CDNs) from service targeting attacks, including distributed denial of

service and cache pollution attacks. The proposed framework is evaluated on real-world CDN

access log data to illustrate its effectiveness. The fourth part of the thesis proposes adaptive

online learning algorithms for addressing concept drift issues (i.e., data distribution changes)

and effectively handling dynamic IoT data streams in order to provide reliable IoT services.

The development of drift adaptive learning methods can effectively adapt to data distribution

changes and avoid data analytics model performance degradation.

Keywords: Machine Learning, AutoML, Data Analytics, Internet of Things, Content De-

livery Networks, Network Security, Intrusion Detection System, Concept Drift, Data Stream

Analysis, Hyper-parameter Optimization, Ensemble Learning, Transfer Learning.
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Lay Summary

The Internet-of-Things (IoT) systems have emerged as a prevalent technology in our daily

lives. With the wide spread of sensors and smart devices in recent years, the data generation

volume and speed of IoT systems have increased dramatically. In most IoT systems, massive

volumes of data must be processed, transformed, and analyzed on a frequent basis to enable

various IoT services and functionalities. Machine learning (ML) is a subfield of Artificial

Intelligence (AI), enabling machines to learn useful information and patterns from data without

explicitly being programmed. ML algorithms have been developed as a promising technique

that enables the rapid and accurate processing of massive volumes of data produced by IoT

systems to identify patterns required by IoT services.

This thesis focuses on the use of ML algorithms in IoT data analytics and cyber-security

applications. To improve ML models’ learning performance and reduce human efforts in data

analytics tasks, Automated Machine Learning (AutoML) and optimization techniques are stud-

ied and developed in this thesis to automatically obtain optimized ML models with the best per-

formance. This thesis can be divided into four distinct parts. Specifically, the first part of the

thesis provides a comprehensive review of applying AutoML techniques to IoT data analytics

tasks. The second part of the thesis proposes several ML-based novel intrusion detection tech-

niques to identify various types of common network attacks in vehicle networks and protect

connected vehicles. The third part of the thesis develops ML algorithms to identify network

anomalies (i.e., cyber-attacks) and malicious network entities (e.g., attacker IPs and compro-

mised machines) in massive real-world network log data to protect Content Delivery Networks

(CDNs), an essential network for Internet traffic communications, against cyber-attacks. The

fourth part of the thesis proposes adaptive online learning algorithms for addressing concept

drift issues in dynamic IoT data streams. Concept drift indicates unpredictable events, like the

COVID-19 pandemic, which cause data distribution changes and data analytics performance

degradation. The proposed methods can effectively handle ever-changing data stream patterns

to provide reliable IoT services.
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Chapter 1

Introduction

1.1 Overview and Motivation

By leveraging rapidly evolving communications technologies, the Internet of Things (IoT) per-

mits the exchange of meaningful information and knowledge across IoT devices and systems

to create value for humans [1]. IoT is defined as a network of connected devices and end sys-

tems that interact to collect, exchange, and analyze critical data [2]. Typical IoT applications

include smart grids, intelligent vehicles, smart homes, smart agriculture, smart healthcare, and

so on [2].

The growth and integration of IoT technology into our daily lives have exploded in recent

years. According to a Cisco report, there will be more than 30 billion connected devices by

the year 2023, growing from 18.4 billion devices in 2018 [3]. Additionally, more than 2.5

quintillion bytes of data are generated from IoT devices daily, and every person produces ap-

proximately 1.7 megabytes (MB) of data every second [4] [5]. The enormous increase in the

scale of IoT devices and data poses severe challenges to the performance of IoT systems, posing

challenges to IoT systems in terms of providing reliable services and making trustworthy deci-

sions [1]. This is because IoT services and functionalities often require fast and accurate data

analytics. Effective and efficient data analytics enables IoT systems to make fast decisions,

gain rapid insights, discover hidden patterns, and interact with users and other systems [7].

Thus, it is critical to analyze and extract meaningful information from the data collected and

generated in IoT systems to make informed decisions and meet users’ needs.
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On the other hand, due to the rapid development of IoT technology and the expanding con-

nectivity of diverse communication networks and devices, modern networks and IoT systems

are exposed to numerous system vulnerabilities, cyber-attacks, and malicious threats [8]. Ac-

cording to the Unit 42 IoT report, 98% of IoT traffic is unencrypted, and 57% of IoT devices are

vulnerable to severe cyber-attacks [8]. The number and types of cyber-attacks are also increas-

ing dramatically. For example, the number of Distributed-Denial-of-Service (DDoS) attacks is

estimated to be 15.4 million worldwide by the year 2023 [3]. In complex and advanced IoT

and modern networks, traditional security mechanisms, like firewalls and authentication mech-

anisms, are often insufficient to protect against malicious attacks, due to certain limitations like

their ineffectiveness in identifying new/zero-day attacks [9].

Therefore, data analytics and cyber-security are two critical challenges in IoT systems.

Effective data analytics and security enhancement techniques should be developed to enable

IoT systems to provide reliable services to human beings.

Machine Learning (ML) and Data Mining (DM) techniques have been widely used in many

IoT data analytics and cyber-security applications. ML can be defined as a group of methods

that uses mathematical formulas to automatically explore, investigate, and extract data patterns.

Extracting and gaining useful information enables ML models to make informed decisions and

predictions. Once trained, an ML model can forecast new input data based on previous data

patterns. Modern industry has been investing an increasing amount of money in developing

and deploying ML models. According to a Forrester report, the global ML market will increase

from $327.5 billion in 2021 to $554.3 billion in 2024 [10].

Due to their powerful data processing capabilities, ML algorithms have become critical

contributors to IoT data analytics, enabling the rapid and accurate processing of massive vol-

umes of data produced by IoT systems to identify patterns required by IoT services [2] [11].

Additionally, ML algorithms have become promising solutions for intrusion detection and sys-

tem security enhancement. This is because ML algorithms can analyze the behaviors and

status of IoT devices and network traffic to identify malicious activities and cyber-attacks by

analyzing IoT sensor and traffic data. Intrusion Detection Systems (IDSs) developed using ML

algorithms can be incorporated into IoT systems and modern networks to effectively identify

malicious attacks that can breach firewalls and authentication mechanisms [12].



3

However, IoT data analytics and IDS development using ML algorithms still face many

challenges. The data learning performance of current ML models still has much room for im-

provement. Even a minor error rate in IoT data analytics may cause severe consequences. For

example, in smart healthcare systems, a single diagnostic error may result in delayed illness or

even death. Additionally, deploying ML algorithms often requires intensive domain knowledge

and human efforts [13].

On the other hand, due to the low-power and low-cost requirements of IoT devices, time and

resource limits are the critical problems with IoT data analytics. Moreover, since certain IoT

data generated in dynamic IoT environments is dynamic streaming data that changes over time,

concept drift issues often occur in IoT data analytics [14]. Concept drift indicates the changes

in data patterns over time due to dynamic IoT environments and unpredictable events, causing

ML model performance degradation. For network security applications, although many pre-

vious studies have had some success constructing IDSs, effective intrusion detection is still a

challenging problem due to the massive amount of network data, a large number of available

network features, and the variety of cyber-attack patterns [9].

Therefore, many data analysts and ML researchers have been conducting research on Au-

tomated Machine Learning (AutoML) technology, which aims to complete data analytics tasks

using ML algorithms with minimal human intervention. AutoML techniques are state-of-the-

art solutions to automate IoT data analytics processes and reduce human efforts [13]. Au-

toML is also the process of automatically training and obtaining optimized ML models that

can achieve optimal performance on specific datasets/tasks using optimization techniques.

AutoML enables people to save valuable resources, including time, financial, and human re-

sources, by automatically making accurate decisions.

Combined Algorithm Selection and Hyperparameter tuning (CASH) is the essential proce-

dure of general AutoML solutions and data analytics pipelines because the suitable ML algo-

rithms and their hyperparameter configurations have a substantial impact on the data learning

performance [15]. The CASH procedure can be further divided into the automated model se-

lection and Hyper-Parameter Optimization (HPO). Other components in AutoML pipelines,

like data pre-processing and feature engineering, also significantly affect the outcomes of data

analytics, but their automation still faces many challenges and usually requires human inter-
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vention. On the other hand, since certain IoT data generated in dynamic IoT environments is

dynamic streaming data that changes over time, concept drift issues often occur in IoT data ana-

lytics [14]. Effective AutoML solutions for IoT dynamic data analytics should also incorporate

automated model updating and concept drift-adaptive learning techniques.

To leverage human expertise and knowledge, Human-In-The-Loop (HITL) is introduced to

develop ML models by combining machine intelligence with human intelligence [16]. HITL

indicates the process that human experts supervise the ML process and help reduce prediction

errors. Thus, Human experts can still participate in ML pipelines to make creative decisions,

while AutoML techniques can help with tedious, repetitive, and laborious data analytics tasks

with higher precision and less human effort [15] [16]. In the application of AutoML in IoT data

analytics, certain procedures in AutoML pipelines, like data sampling and feature extraction,

can be interfered with by HITL to deal with the high volumes of IoT data and make creative

decisions. Human experts can also design promising ML model architecture or help determine

the ML model candidates for further selection. After selecting or designing the appropriate

ML model, the HPO and automated model updating procedures are the primary ML steps that

can benefit from AutoML technology and are the focus of this thesis.

To summarize, this thesis focuses on the automation and optimization of ML algorithms

for applications in IoT data analytics and cyber-security. The automation of ML models can

largely reduce human efforts, while the optimization of ML models can obtain optimized ML

models that can achieve improved performance on data analytics tasks.

1.2 Thesis Objectives

This thesis can be divided into four distinct parts. It focuses on the use and development of

machine learning and optimization techniques for data analytics within the IoT system and

cyber-security application fields. Accordingly, the first part comprehensively reviews applying

AutoML and optimization techniques to IoT data analytics. The second part focuses on the de-

velopment of intrusion detection systems for the Internet of Vehicles. The third part considers

the anomaly detection and security enhancement in CDNs. Lastly, the fourth part focuses on

the development of online learning algorithms for addressing concept drift issues in dynamic
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IoT data streams.

The first part of the thesis presents a comprehensive review of the application of AutoML

and optimization techniques to IoT data analytics problems. Chapter 2 explores the IoT data

analytics frameworks, common ML algorithms, optimization methods, online learning meth-

ods, and open challenges in the relevant field. Moreover, it conducts a case study of applying

optimization and AutoML methods to data analytics tasks.

The second part of the thesis proposes several Intrusion Detection Systems (IDSs) using

ML algorithms for the Internet of Vehicles (IoV), as a representative IoT application. Specif-

ically, Chapters 3 and 4 propose different ML models and ensemble learning strategies to de-

velop IDSs for intrusion detection in IoV systems. Chapters 5 and 6 propose advanced ML

models and optimization methods to develop robust IDSs that can detect various types of ex-

isting and zero-day attacks effectively and efficiently.

The third part of the thesis focuses on network anomaly detection in Content Delivery Net-

works (CDNs). Chapter 7 proposes unsupervised ML algorithms to identify abnormal events

and network entities in CDNs and demonstrates the experimental results on real-world unla-

beled network datasets provided by a major CDN operator.

Finally, the fourth part of the thesis proposes the use of online learning and concept drift

adaptation methods for dynamic IoT stream analytics. As such, Chapters 8 and 9 propose novel

concept drift adaptation methods using optimization and ensemble ML strategies. Chapter

10 proposes a complete pipeline for automated online network data stream analytics. This

framework considers the automation of every standard step of online data stream analytics.

1.3 Thesis Outline and Contributions

In summary, the objective of this thesis is to solve IoT data analytics and cyber-security prob-

lems by studying, exploring, and developing the following three critical components involved

in the AutoML pipeline: model designing/selection, hyperparameter optimization, and auto-

mated model updating. The thesis is composed of eleven chapters. An overview of the chapters

and their connections are depicted in Fig. 1.1. The content and contributions of each chapter

are summarized as follows.
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Figure 1.1: An overview of the chapters in this thesis.

Chapter 1 gives a brief introduction to IoT systems, cyber-security, and AutoML technol-

ogy. Additionally, the challenges in IoT data analytics and AutoML applications are discussed.

Moreover, the thesis outline and contributions are provided and discussed. The content and

contributions of the remaining ten chapters are summarized as follows.

Chapter 2 provides a comprehensive review of applying ML and optimization techniques to

IoT and general data analytics applications. It introduces all the procedures of general AutoML
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pipelines, including data pre-processing, feature engineering, ML model learning, hyperpa-

rameter optimization, and automated model updating/concept drift adaptation. Additionally,

it discusses and summarizes the advantages and limitations of the common methods for each

AutoML procedure. Finally, it provides two comprehensive case studies to evaluate and com-

pare the discussed methods. This review chapter will help industrial users, data analysts, and

researchers to better develop and automate ML models in various data analytics applications.

The contributions of this chapter are summarized as follows:

1. Define the overall framework and tasks for IoT data analytics.

2. Review common ML algorithms and their important hyper-parameters.

3. Review existing optimization methods for Hyper-Parameter Optimization (HPO), sum-

marizes their pros and cons, and recommends the most appropriate method for specific

situations.

4. Provide a comprehensive review of automated model updating, a novel AutoML proce-

dure, by discussing concept drift detection and adaptation methods.

5. Review existing techniques for other important procedures of general AutoML pipelines,

including data pre-processing, feature engineering, and performance metric selection.

6. Conduct comprehensive case studies by applying AutoML and HPO to practical IoT data

analytics tasks.

7. Introduce many existing tools and libraries designed for AutoML and IoT data analytics.

8. Discuss the open challenges and research directions in the field of IoT data analytics and

AutoML.

Chapter 3 proposes a tree-based intelligent IDS to protect Autonomous Vehicles (AVs)

and Connected Vehicles (CVs) by identifying malicious cyber-attacks in network traffic data.

Specifically, the proposed IDS trains four ML models, Decision Tree (DT), Random Forest

(RF), Extra Trees (ET), and Extreme Gradient Boosting (XGBoost), as base learners, and then

uses stacking, an ensemble learning strategy, to construct a robust ensemble learner by inte-

grating the four base learners. The results from the implementation of the proposed IDS on

benchmark network traffic datasets indicate that the system has the ability to identify various

cyber-attacks in IoV systems. The contributions of this chapter are summarized as follows:
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This chapter makes the following contributions:

1. Survey the vulnerabilities and potential attacks in both intra-vehicle and external vehicle

networks.

2. Propose an intelligent IDS for both IoV and general networks by using the tree structure

ML and ensemble learning methods.

3. Present a comprehensive framework to prepare network traffic data for the purpose of

IDS development.

4. Propose an averaging feature selection method using tree structure ML models to im-

prove the efficiency of the proposed IDS and to perform an analysis of network attributes

and attacks for network monitoring uses.

Chapter 4 proposes a novel IDS framework named Leader Class and Confidence Decision

Ensemble (LCCDE) to protect IoV systems against various types of existing cyber-attacks. It

is constructed by determining the best-performing ML model among three advanced ML algo-

rithms (XGBoost, LightGBM, and CatBoost) for every class or type of attack. The class leader

models with their prediction confidence values are then utilized to make accurate decisions

regarding the detection of various types of cyber-attacks. Experiments on two public IoV secu-

rity datasets (Car-Hacking [17] and CICIDS2017 [18] datasets) demonstrate the effectiveness

of the proposed LCCDE for intrusion detection on both intra-vehicle and external networks.

The contributions of this chapter are summarized as follows:

1. Propose a novel ensemble framework, named LCCDE, for effective intrusion detection in

IoVs using class leader and confidence decision strategies, as well as gradient-boosting

ML algorithms.

2. Evaluate the proposed framework using two public IoV security datasets, the Car-Hacking

and CICIDS2017 datasets, representing IVN and external network data, respectively.

3. Compare the performance of the proposed model with other state-of-the-art methods.

Chapter 5 improves the IDS frameworks for IoV systems by introducing two advanced

techniques: transfer learning and Hyper-Parameter Optimization (HPO). Specifically, it uses

the transfer learning strategy by transferring four state-of-the-art Convolutional Neural Net-

work (CNN) models, named VGG16, VGG19, Xception, Inception, and InceptionResnet, to
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the IoV intrusion detection tasks by converting network traffic data to images. Thus, a novel

data transformation method is also proposed. Moreover, it uses Particle Swarm Optimization

(PSO), a powerful HPO method, to automatically tune the hyperparameters of CNN models

to obtain optimized CNN models. Lastly, the base CNN models are integrated using two en-

semble strategies, confidence averaging and concatenation, to further improve the intrusion

detection performance. The contributions of this chapter are summarized as follows:

1. Propose a novel framework for effective cyber-attack detection in both intra-vehicle and

external networks through CNN, transfer learning, ensemble learning, and HPO tech-

niques.

2. Propose a data transformation method that can effectively transform vehicle network

traffic data into images to more easily distinguish various cyber-attack patterns.

3. Evaluate the proposed method on two benchmark cyber-security datasets that represent

intra-vehicle and external network data, and compare the model’s performance with other

state-of-the-art methods.

Chapter 6 discusses the vulnerabilities of intra-vehicle and external networks, and proposes

a multi-tiered hybrid IDS that incorporates a signature-based IDS and an anomaly-based IDS

to detect both known and unknown attacks on vehicular networks. The signature-based IDS

is developed by extending the tree-based IDS framework proposed in Chapter 3 with the use

of two HPO methods, Bayesian Optimization with Gaussian Process (BO-GP) and Bayesian

Optimization with Tree Parzen Estimator (BO-TPE), to obtain optimized ML models. The

anomaly-based IDS is developed by exploring a Cluster Labeling (CL) k-means method and

biased classifiers. Experimental results illustrate that the proposed system can detect various

types of known and zero-day attacks with high accuracy on the intra-vehicle network external

vehicular network data. The contributions of this chapter are summarized as follows:

1. Propose a novel multi-tiered hybrid IDS that can accurately detect the various surveyed

types of cyber-attacks launched on both intra-vehicle and external vehicular networks;

2. Propose a novel feature engineering model based on Information Gain (IG), Fast Correlation-

Based Filter (FCBF), and Kernel Principal Component Analysis (KPCA) algorithms;
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3. Propose a novel anomaly-based IDS based on CL-k-means and biased classifiers to detect

zero-day attacks;

4. Discuss the use of Bayesian optimization techniques to automatically tune the parameters

of each tier in the proposed IDS for model optimization;

5. Evaluate the performance and overall efficiency of the proposed model on two state-of-

the-art datasets, CAN-intrusion-dataset and CICIDS2017, and discuss its feasibility in

real-world IoV devices.

Chapter 7 proposes a multi-perspective unsupervised learning framework for anomaly de-

tection in unlabeled Content Delivery Network (CDN) data. CDNs improve the connectivity

and efficiency of global communications, but their caching mechanisms may be breached by

cyber-attackers. Among the security mechanisms, effective anomaly detection forms an impor-

tant part of CDN security enhancement. In the proposed framework, a multi-perspective fea-

ture engineering approach, an optimized unsupervised anomaly detection model that utilizes an

isolation forest and a Gaussian mixture model, and a multi-perspective validation method, are

developed to detect abnormal behaviors in CDNs mainly from the client Internet Protocol (IP)

and node perspectives, therefore to identify the Denial of Service (DoS) and Cache Pollution

Attack (CPA) patterns. Experimental results are presented based on the analytics of eight days

of real-world CDN log data provided by a major CDN operator. Through experiments, the

abnormal contents, compromised nodes, malicious IPs, as well as their corresponding attack

types, are identified effectively by the proposed framework and validated by multiple cyberse-

curity experts. This shows the effectiveness of the proposed method when applied to real-world

CDN data. The contributions of this chapter are summarized as follows:

1. Summarize the potential patterns and characteristics of DoS and CPA attacks to assist

with anomaly detection in CDNs;

2. Propose a comprehensive network feature engineering model that generates features

from multiple perspectives, including content, client IP, service provider, and account-

offering perspectives;

3. Propose an optimized unsupervised anomaly detection model utilizing iForest, GMM,

and Bayesian optimization (BO), to detect cyber-attacks and affected network entities
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effectively;

4. Propose a multi-perspective result validation technique that can effectively reduce the

false alarm rate and improve the detection rate of unsupervised CDN anomaly detection

models.

Chapter 8 proposes an adaptive IoT streaming data analytics framework for anomaly de-

tection use cases based on optimized LightGBM and concept drift adaptation. In recent years,

various IoT services and functionalities have been provided by IoT systems based on the an-

alytics of IoT streaming data. However, IoT data analytics faces concept drift challenges due

to the dynamic nature of IoT systems and the ever-changing patterns of IoT data streams. A

novel drift adaptation method named Optimized Adaptive and Sliding Windowing (OASW) is

proposed to adapt to the pattern changes of online IoT data streams. Experiments on two public

datasets, IoTID20 [19] and NSL-KDD [20] datasets, show the high accuracy and efficiency of

our proposed adaptive LightGBM model compared against other state-of-the-art approaches.

The proposed adaptive LightGBM model can perform continuous learning and drift adapta-

tion on IoT data streams without human intervention. The contributions of this chapter are

summarized as follows:

1. Discuss the challenges and potential solutions for IoT streaming data analytics.

2. Propose a novel drift adaptation method named OASW to address the concept drift is-

sue. Its performance was evaluated through comparison with other state-of-the-art ap-

proaches.

3. Propose an optimized adaptive framework for IoT anomaly detection use cases with

offline and online learning functionalities based on LightGBM, PSO, and OASW.

Chapter 9 provides a Performance Weighted Probability Averaging Ensemble (PWPAE)

framework for drift adaptive IoT anomaly detection through IoT data stream analytics. The

proposed framework is an ensemble learning framework that uses the combinations of two

popular drift detection methods, ADaptive WINdowing (ADWIN) and Drift Detection Method

(DDM), and two state-of-the-art drift adaptation methods, Adaptive Random Forest (ARF) and

Streaming Random Patches (SRP), to construct base learners. The base learners are weighted

according to their real-time performance and integrated to construct a robust anomaly detec-
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tion ensemble model with improved drift adaptation performance. Experiments on two public

datasets show the effectiveness of our proposed PWPAE method compared against state-of-

the-art methods. The contributions of this chapter are summarized as follows:

1. Investigate concept drift adaptation methods.

2. Propose a novel drift adaptation method named PWPAE to address the performance lim-

itations of current concept drift methods.

3. Evaluate the proposed PWPAE framework on two public IoT cyber-security datasets,

IoTID20 [19] and CICIDS2017 [18], for IoT anomaly detection use cases.

Chapter 10 proposes a multi-stage online learning framework, named Multi-Stage Auto-

mated Network Analytics (MSANA), for automated data stream analytics and concept drift

adaptation for IoT systems. It consists of four stages: dynamic data pre-processing, drift-based

dynamic feature selection, base model learning and selection, and online ensemble model de-

velopment. As a representative application of IIoT data analytics, the proposed framework is

evaluated on two benchmark IoT anomaly detection datasets, IoTID20 [19] and CICIDS2017

datasets [18], to solve IIoT security problems. The proposed system can be utilized as a net-

work analytics automation application for IIoT in industry 5.0. The contributions of this chap-

ter are summarized as follows:

1. Propose MSANA, a novel and comprehensive framework for automated data stream an-

alytics in IIoT systems, which includes typical data analytics procedures.

2. Propose the Window-based Performance Weighted Probability Averaging Ensemble (W-

PWPAE) method, a novel ensemble drift adaptation strategy for online learning on dy-

namic data streams.

3. Propose a novel dynamic feature selection method for data stream analytics with concept

drift issues.

4. Evaluate the proposed framework on two public IoT security datasets as a case study,

and compares it with various state-of-the-art online learning approaches.

Finally, Chapter 11 concludes all the contributions presented in the previous chapters. The

future research directions are also discussed in Chapter 11.
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Chapter 2

Background on IoT Data Analytics and

Automated Machine Learning

2.1 Introduction

In this chapter, we discuss how AutoML techniques can be applied to IoT data analytics prob-

lems to address the existing challenges. To apply ML models to IoT data analytics tasks, there

are several major difficulties and challenges [3] [4]:

1. It is usually time-consuming and requires expert knowledge to manually tune ML models

to fit each specific task.

2. Many IoT data streams have concept drift issues, causing ML model performance degra-

dation.

3. The community lacks public and comprehensive benchmarks or practical examples in

the AutoML field for IoT data analytics.

To overcome the above difficulties/challenges, the primary achievements and contributions

of this chapter are as follows:

1. Review common ML algorithms and their important hyper-parameters.

Parts of the content in this chapter has been published in Neurocomputing [1] and Engineering Applications
of Artificial Intelligence [2].
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2. Review existing optimization methods for Hyper-Parameter Optimization (HPO), sum-

marizes their pros and cons, and recommends the most appropriate method for specific

situations.

3. Provide a comprehensive review of automated model updating, a novel AutoML proce-

dure, by discussing concept drift detection and adaptation methods.

4. Conduct two comprehensive case studies by applying AutoML and HPO to practical IoT

data analytics tasks; the code is made open access.

Moreover, this chapter makes the following secondary contributions:

1. Define the overall framework and tasks for IoT data analytics.

2. Review existing techniques for other important procedures of general AutoML pipelines,

including data pre-processing, feature engineering, and performance metric selection.

3. Introduce many existing tools and libraries designed for AutoML and IoT data analytics.

4. Discuss the open challenges and research directions in the field of IoT data analytics and

AutoML.

This chapter is organized as follows: Section 2.2 presents the properties of IoT data, as well

as the layers and tasks of IoT data analytics. Section 2.3 provides an overview of the AutoML

and HPO technology. Section 2.4 reviews the common ML algorithms and their important

hyperparameters. Section 2.5 covers the various state-of-the-art optimization approaches that

have been proposed for HPO and AutoML tasks. Sections 2.6 & 2.7 discuss the automated

data pre-processing and feature engineering procedures, respectively. Section 2.8 discusses

the automated model updating process by introducing concept drift detection and adaptation

methods. Section 2.9 describes the selection of appropriate performance metrics and validation

methods for ML tasks. Section 2.10 introduces the tools and libraries for AutoML and time-

series analytics. Sections 2.11 & 2.22 present two case studies of applying AutoML and HPO

to data analytics problems and discuss the experimental results. Section 2.13 discusses the

challenges and research directions of AutoML and IoT data analytics. Section 2.14 concludes

the chapter.

Code for this chapter is available at: https://github.com/LiYangHart/Hyperparameter-Optimization-of-
Machine-Learning-Algorithms
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2.2 IoT Data Analytics

2.2.1 IoT Data Characteristics

Although IoT data is similar to data from many other fields, there are several factors affecting

the efficacy of IoT data analytics, such as dynamic IoT environments and time series charac-

teristics. Overall, IoT data has the following characteristics [7]:

1. High volume: With the development of large-scale IoT systems, a massive amount of

data is continuously generated from a large number of IoT devices. As described in

Chapter 1, more than 2.5 quintillion bytes of data are generated from IoT devices daily

[8] [9]. Both real-time and historical IoT data must be saved and processed to analyze

previous patterns and future trends, resulting in a large volume of IoT data requiring

analytics.

2. High velocity: IoT data is often generated at high speed by a large number of IoT de-

vices. To achieve real-time analytics, the processing speed of IoT data should be higher

than the generation speed of the data. Thus, efficient data analytics techniques should be

developed to process the IoT data with high generation speed.

3. High variability: Due to the dynamic nature of IoT environments, IoT data is often

dynamic data with varying distributions over time. For example, when specific events

occur, such as the occurrence of Coronavirus Disease 2019 (COVID-19), the generated

IoT data would significantly change.

4. Time-series/Temporal correlation: As IoT devices collect data over time, the IoT data

is often created with timestamps or time-related information. Due to environmental fac-

tors, IoT data is often time-series data with strong temporal correlations. Thus, time-

series analysis is often beneficial for IoT data analytics.

In IoT systems, the majority of data is created in the form of time-series data that has

temporal correlations (i.e., the sample collected at time t is related to the data samples collected

at previous times [t − 1 to t − n]) [11]. A time-series dataset is a collection of measurements or

observations collected in chronological order. In time-series data, time is a dependent variable

of the target variable. Time-series prediction is the process of predicting future trends using
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past observations. Global temperature prediction, energy consumption prediction, and IoT

device failure detection are typical examples of IoT time-series data analytics tasks.

On the other hand, real-world IoT data is often non-stationary time-series data with vary-

ing mean, variance, or autocorrelation [11]. Due to the dynamic nature of IoT settings and

environments, IoT streaming data is subject to a range of data distribution adjustments. For

instance, the physical events observed by IoT sensors may evolve over time, rendering sensing

components outdated or necessitating periodic updates. As such, changes in the distribution of

IoT data over time, referred to as concept drift, are often inevitable [10].

Concept drift may hamper the decision-making capabilities of IoT data analytics mod-

els, which might have a negative impact on IoT systems [10]. For example, the misleading

decision-making process performed by an IoT anomaly detection model with concept drift is-

sues may significantly impair detection accuracy, leaving the IoT system vulnerable to a range

of hostile cyber-attacks. When a concept or distribution in IoT data changes, it should be prop-

erly handled. Thus, proper analytics approaches should be used to address concept drift issues

in dynamic or online IoT data analytics tasks.

2.2.2 IoT Data Analytics Layers

Typical IoT systems consist of three major layers: data collection, transmission, and analytics

layers, as shown in Fig. 2.1 [7]. The data collection layer is comprised of IoT end devices that

are used to detect, collect, and store sensor data. IoT devices can form sub-systems, like smart

homes and Intelligent Transportation Systems (ITSs). IoT end devices and sub-systems are

the basic and core components of IoT systems, which directly interact with their physical IoT

environments through sensors and actuators. The transmission layer is enabled by gateways to

transmit data between IoT end devices and edge/cloud servers. Common transmission strate-

gies include cellular networks, Wireless Fidelity (WiFi), Bluetooth, Zigbee, and so on [10].

The analytics layer is responsible for processing and analyzing data from IoT devices, which

can be completed in both cloud and edge servers.

Edge and cloud computing are modern computing and storage paradigms for intelligent

IoT data analytics [6]. Firstly, IoT data can be processed locally on IoT end devices or edge
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Figure 2.1: An overview of IoT data analytics architecture.

servers through edge computing. Edge computing enables fundamental IoT data analytics

inside the local network of the data source to avoid long-distance transmissions and return real-

time processing responses. However, to reduce IoT system costs, IoT end devices are usually

constructed with limited computational power and resources. Hence, IoT end devices or edge

servers can only perform basic and initial data processing due to their limited resources. It is

usually difficult for these resource-constrained IoT devices to perform computational-intensive

data analytics tasks.

On the other hand, cloud servers can be used to handle large-scale IoT data and perform

complex data analytics tasks. Cloud computing is a paradigm in which data is stored, gathered,

managed, and processed on remotely placed computing servers connected over the Internet [5].

Cloud computing support many services, including Software as a Service (SaaS), Infrastructure

as a Service (IaaS), and Platform as a Service (PaaS). As IoT systems can generate a massive

amount of data, cloud servers are required for the storage and analytics of large and complex

IoT data. One major limitation of cloud computing is the high overhead of processing huge

amounts of data, since transmitting IoT data streams between cloud and edge devices would

require additional costs, bandwidth, and power. Thus, it is usually difficult to achieve real-time
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analytics by only using cloud servers.

Thus, collaborative computing, including both edge and cloud computing, is often used in

modern IoT systems for large IoT data analytics tasks [12]. AutoML methods can be operated

at both central servers and local edge servers for IoT data analytics applications to improve

learning performance and reduce human effort. In IoT systems, any device with computational,

communication, and storage capabilities can be used as edge computing devices, such as smart

gateways and lightweight base stations. AutoML methods can be implemented in these edge

computing devices to perform fundamental and preliminary analytics on the local sensor data.

Many preliminary data analytics procedures, such as data pre-processing, feature engineering,

storage, and initial analytics, can be conducted at edge devices, which reduces the burden of

communication and resource consumption on the cloud servers.

Although many IoT edge devices enable local processing of IoT data, only basic function-

alities are feasible in local processing due to the limited computing capability of many IoT end

devices [5]. Therefore, large IoT data is often transmitted to the cloud server for comprehensive

analytics. AutoML methods can be implemented in the central machines with strong compu-

tational power on the cloud. After receiving the pre-processed data transferred from the edge

devices, the central machines on the cloud servers will comprehensively process and analyze

the data using AutoML techniques and return the analytics results to IoT end devices. Cloud

servers can process data faster and more accurately than edge devices due to their powerful

computational capabilities, but they can incur additional latency owing to the data transmis-

sion process [12]. Thus, it is required to strike a balance between the data analytics time and

transmission time.

To summarize, cloud computing is suitable for complicated, large-scale, and delay-tolerant

data analytics tasks due to its high computational power, while edge computing is suitable for

low-latency and real-time data analytics tasks owing to its ability to process data locally. For

example, in IoT anomaly detection applications, if multiple edge devices or nodes are under

different types of attacks, each edge server can collect and analyze local IoT traffic data using

AutoML methods to detect the type of attack that it suffered as a fundamental attack detection,

while the cloud server can collect the attack data transmitted from multiple edge servers using

AutoML methods to detect various types of attacks as a comprehensive attack detection. The
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local and fundamental attack detection results can protect each local device from the types of

attacks it has suffered, while the comprehensive attack detection results from the cloud server

can prevent each local device from both the old and new types of attacks. Deploying AutoML

techniques using collaborative computing can provide IoT devices and users with rapid and

reliable services.

2.2.3 IoT Data Analytics Tasks

IoT data analytics tasks can be classified into classification, regression, clustering, and anomaly

detection tasks [13]:

1. Classification: Given a collection of labeled time-series data, the objective of a classi-

fication task is to train a classifier capable of assigning correct labels to new time-series

data samples. Training on labeled samples enables a classifier to identify distinctive

characteristics that can be used to distinguish different classes.

2. Regression: Regression tasks aim to determine the relationship between a series of input

features and a continuous target variable. For IoT time-series data analytics, regression

tasks are often prediction tasks that aim to predict future trends and measurements using

historical data samples with temporal dependencies.

3. Clustering: Clustering is the process of dividing data samples into a number of groups

according to their natural characteristics and patterns. The purpose of clustering is to

group similar data samples into the same group and separate the different data samples

into different groups.

4. Anomaly detection: In IoT time-series analytics, anomaly detection is the process of

detecting abnormal sequences in a time series to analyze abnormal events. The conven-

tional anomaly detection process is to model normal patterns and then identify sequences

that deviate from them.

Moreover, IoT data analytics algorithms can also be classified as batch learning and online

learning algorithms, depending on the type of IoT data to be processed [10].

1. Batch learning: Batch learning methods analyze static IoT data in batches and often

need access to the entire dataset prior to model training. Traditional ML algorithms can
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effectively solve batch learning tasks [14]. Although batch learning models often achieve

high performance due to their ability to learn diverse data patterns, it is often difficult

to update these models once created. Therefore, batch learning faces two significant

challenges: model degradation and data unavailability.

2. Online learning: Online learning techniques are able to train models using continuously

incoming online IoT data streams in dynamic IoT environments [15]. By learning a

single data sample at a time, online learning models can reduce memory requirements

for data storage and learn new data patterns. Additionally, online learning models can

often achieve real-time processing and address concept drift issues. Thus, when applied

to dynamic data streams or when inadequate data is available, online learning is often

more effective than batch learning.

2.3 AutoML Overview

Although there are many existing ML algorithms that are commonly used in IoT data analyt-

ics applications to analyze IoT data and make decisions, a randomly-selected ML model with

default architecture or hyperparameter configuration usually cannot achieve the optimal ana-

lytics results and make accurate decisions. Thus, experienced data scientists are required in

many procedures of ML pipelines, including preparing appropriate and clean data, selecting

the most suitable ML algorithm, tuning hyperparameters, and determining whether the model

needs to be updated. Data scientists often conduct experiments using a variety of ML algo-

rithms and hyperparameter values in order to determine the most efficient combination. These

procedures are labor-intensive, time-demanding, and require specialized expertise in ML and

data analysis [16]. The process of automating this ML design and tuning process is referred to

as AutoML. Thus, AutoML refers to the fully automated process of applying machine learning

to real-world and practical applications. AutoML can be used by both beginners and experts

to apply ML models efficiently. It has the potential to significantly improve the performance

and effectiveness of ML models by shortening work cycles, enhancing model performance,

and even possibly eliminating the necessity for data scientists. Hence, AutoML is a promising

solution to data scientist shortage and high labor costs. In this Section, the basic concept and
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common optimization techniques of AutoML technology are discussed.

There are three significant benefits of using AutoML:

1. It increases efficiency and reduces computational costs by automating repetitive ML pro-

cesses.

2. It assists in avoiding mistakes caused by human labor.

3. It lowers the threshold of implementing ML models by requiring less ML expertise and

experience.

Moreover, manually selecting, designing, and tuning ML algorithms for IoT data analytics

is usually more time-consuming than AutoML [17]. The objective of AutoML is to enable

the automation of the tedious and time-consuming ML model selecting, designing, and tuning

procedures by machines instead of humans. Thus, using AutoML techniques will not increase

the IoT data analytics time compared with using traditional ML models, as they automate and

simplify the selecting, designing, and tuning procedures of traditional data analytics models.

An overview of the AutoML pipeline for IoT time-series data analytics is illustrated in Fig.

2.2. It consists of four stages: automated data pre-processing, automated feature engineering,

automated model learning, and automated model updating [16]. Automated model learning can

be further divided into automated model selection and Hyper-Parameter Optimization (HPO).

AutoML begins with data pre-processing, which aims to transform the original data into a san-

itized version. It is a time-consuming and important procedure that has a significant effect on

learning performance. The next step is feature engineering, which includes feature extraction

and selection. This stage preserves important patterns of datasets while enhancing learning

generalization. The following step is model selection, which uses an optimization technique to

identify the optimal ML algorithm that produces the most accurate predictions. The process of

tuning hyperparameters, referred to as hyper-parameter optimization, aims to further enhance

the model learning performance. AutoML systems often need to use a range of optimization

algorithms to carry out these phases in the pipeline. Sections 2.4 - 2.9 will explain every step

of the AutoML pipeline in depth.

To apply ML algorithms to real-world problems, the primary challenge is selecting and

configuring ML. In a prediction task, the accuracy of different models with different configu-
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Figure 2.2: The overview of AutoML pipeline for IoT time-series data.
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rations might vary significantly [18]. Therefore, it is critical to determine the most appropriate

ML model with the optimal hyperparameter configuration.

Hyperparameters are the parameters of ML algorithms that determine the architecture of

ML models and must be specified prior to model learning [4]. Hyperparameters can be classi-

fied into three types based on their domains: continuous hyperparameters (e.g., the learning rate

of neural networks), discrete hyperparameters (e.g., the number of clusters in k-means), and

categorical hyperparameters (e.g., the kernel type in support vector machines). Additionally,

certain hyperparameter configurations have conditionality. For example, the two important

hyperparameters in DBSCAN, the scan radius and the minimum included points, have strong

correlations to determine the data density together [4]. Conditional hyperparameters must be

tuned together in order to identify the optimal configuration.

In ML model learning, selecting appropriate ML algorithms and hyperparameter values can

be seen as a search problem. All the potential ML models and their hyperparameter combi-

nations define a search space, and a single model with a hyperparameter configuration can be

seen as a point in the search space. Detecting the optimal point in the search space is a global

optimization problem.

Therefore, using optimization techniques to automatically detect the best ML algorithm

with the optimal hyperparameter configuration is defined as a Combined Algorithm Selection

and Hyperparameter (CASH) optimization problem [19]. CASH is a core component of current

AutoML systems. CASH systems are divided into two stages: model selection and HPO. At

the first stage, suitable ML models are selected with their default hyperparameters. At the

second stage, model-specific hyperparameters are tuned to obtain the optimal final model [18].

In general, the CASH problem is defined as finding the ML algorithm and hyperparameter

configuration that minimizes the loss function. It can be described as follows [19]:

A⋆, λ⋆ ∈ argmin
A( j)∈A,λ∈Λ( j)

1
K

K∑
i=1

L
(
A( j)
λ ,D

(i)
train,D

(i)
valid

)
(2.1)

where A⋆ ∈ A is the algorithm to be chosen, λ is the hyperparameters of the algorithms to

be tuned, Dtrain and Dvalid denote the training and validation sets, K denotes k-fold cross-

validation.
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To summarize, CASH is the process of applying optimization methods to select ML mod-

els and tune their hyperparameters in order to achieve optimal or near-optimal performance

based on defined metrics within a certain time budget [20]. In this thesis, the focus is the HPO

procedure for ML model optimization, while model selection and design procedures still re-

quire human expertise. The existing optimization techniques for CASH and HPO problems are

discussed in Section 2.5.

2.4 Machine Learning Algorithm Overview

In general, ML models can be classified as supervised and unsupervised learning algorithms,

based on whether they are built to model labeled or unlabeled datasets [21]. Supervised learn-

ing algorithms are a set of machine learning algorithms that map input features to a target by

training on labeled data, and mainly include linear models, k-nearest neighbors (KNN), sup-

port vector machines (SVM), naı̈ve Bayes (NB), decision-tree-based models, and deep learning

(DL) algorithms [22]. Unsupervised learning algorithms are used to find patterns from unla-

beled data and can be divided into clustering and dimensionality reduction algorithms based

on their aims. Clustering methods mainly include k-means, density-based spatial clustering

of applications with noise (DBSCAN), and expectation-maximization (EM); while principal

component analysis (PCA) is the most representative dimensionality reduction algorithm [23].

Moreover, there are several ensemble learning methods that combine different singular models

to further improve model performance, like voting, bagging, and AdaBoost. To optimize ML

models, firstly, we need to find out what the key hyper-parameters are that people need to tune

to fit the ML models into specific problems or datasets. Thus, in this chapter, the important

hyper-parameters of common ML models are studied based on their names in Python libraries,

including scikit-learn (sklearn) [24], XGBoost [25], and Keras [26].

2.4.1 Supervised Learning Algorithms

In supervised learning, both the input x and the output y are available, and the goal is to obtain

an optimal predictive model function f ∗ to minimize the cost function L( f (x), y) that models

the error between the estimated output and ground-truth labels. The predictive model function
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f varies based on its model structure. With limited model architectures determined by different

hyper-parameter configurations, the domain of the ML model function f is restricted to a set

of functions F. Thus, the optimal predictive model f ∗ can be obtained by [27]:

f ∗ = arg min
f∈F

1
n

n∑
i=1

L ( f (xi) , yi) (2.2)

where n is the number of training data points, xi is the feature vector of the i-th instance, yi is

the corresponding actual output, and L is the cost function value of each sample.

Many different loss functions exist in supervised learning algorithms, including the square

of Euclidean distance, cross-entropy, information gain, etc. [27]. On the other hand, differ-

ent ML algorithms generate different predictive model architectures based on different hyper-

parameter configurations, which will be discussed in detail in this subsection.

Linear Models

In general, supervised learning models can be classified as regression and classification tech-

niques when used to predict continuous or discrete target variables, respectively. Linear regres-

sion [28] is a typical regression model that predicts a target y by the following equation:

ŷ(w, x) = w0 + w1x1 + . . . + wpxp, (2.3)

where the target variable y is expected to be a linear combination of p input features x =(
x1, · · · xp

)
, and ŷ is the predicted value. The weight vector w =

(
w1, · · ·wp

)
is designated as

an attribute ’coef ’, and w0 is defined as another attribute ’intercept ’ in the linear model of

sklearn. Usually, no hyper-parameter needs to be tuned in linear regression. A linear model’s

performance mainly depends on how well the problem or data follows a linear distribution.

To improve the original linear regression models, ridge regression was proposed in [29].

Ridge regression imposes a penalty on the coefficients, and aims to minimize the objective

function [30]:

α∥w∥22 +
p∑

i=1

(yi − wi · xi)2 , (2.4)

where ∥w∥2 is the L2-norm of the coefficient vector, and α is the regularization strength. A
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larger value of α indicates a larger amount of shrinkage; thus, the coefficients are also more

robust to collinearity.

Lasso regression [31] is another linear model used to estimate sparse coefficients, consisting

of a linear model with an L1 priori added regularization term. It aims to minimize the objective

function [30]:

α∥w∥1 +
p∑

i=1

(yi − wi · xi)2 , (2.5)

where α is the regularization strength and ∥w∥1 is the L1-norm of the coefficient vector. There-

fore, the regularization strength α is an crucial hyper-parameter of both ridge and lasso regres-

sion models.

Logistic regression (LR) [32] is a linear model used for classification problems. In LR, its

cost function may be different, depending on the regularization method chosen for the penal-

ization. There are three main types of regularization methods in LR: L1-norm, L2-norm, and

elastic-net regularization [33].

Therefore, the first hyper-parameter that needs to be tuned in LR is to the regularization

method used in the penalization, ’l1’, ’l2’, ’elasticnet’ or ’none’, which is called ’penalty’ in

sklearn. The coefficient, ’C’, is another essential hyper-parameter that determines the regu-

larization strength of the model. In addition, the ’solver’ type, representing the optimization

algorithm type, can be set to ’newton-cg’, ’lbfgs’, ’liblinear’, ’sag’, or ’saga’ in LR. The ’solver’

type has correlations with ’penalty’ and ’C’, so they are conditional hyper-parameters.

KNN

K-nearest neighbor (KNN) is a simple ML algorithm that is used to classify data points by

calculating the distances between different data points [34]. In KNN, the predicted class of

each test sample is set to the class to which most of its k-nearest neighbors in the training set

belong.

Assuming the training set T = {(x1, y1), (x2, y2), · · · , (xn, yn)}, xi is the feature vector of an

instance, and yi ∈ {c1, c2, · · · , cm} is the class of the instance, i = (1, 2, · · · n), for a test instance
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x, its class y can be denoted by [34]:

y = arg max
c j

∑
xi∈Nk(x)

I
(
yi = c j

)
, i = 1, 2, · · · , n; j = 1, 2, · · · ,m, (2.6)

where I(x) is an indicator function, I = 1 when yi = c j, otherwise I = 0; Nk(x) is the field

involving the k-nearest neighbors of x.

In KNN, the number of considered nearest neighbors, k, is the most crucial hyper-parameter

[35]. If k is too small, the model will be under-fitting; if k is too large, the model will be

over-fitting and require high computational time. In addition, the weighted function used in the

prediction can also be chosen from ’uniform’ (points are weighted equally) or ’distance’ (points

are weighted by the inverse of their distance), depending on specific problems. The distance

metric and the power parameter of the Minkowski metric can also be tuned as it can result in

minor improvement. Lastly, the ’algorithm’ used to compute the nearest neighbors can also

be chosen from a ball tree, a k-dimensional (KD) tree, or a brute force search. Typically, the

model can determine the most appropriate algorithm itself by setting the ’algorithm’ to ’auto’

in sklearn [24].

SVM

A support vector machines (SVM) [36] is a supervised learning algorithm that can be used

for both classification and regression problems. SVM algorithms are based on the concept of

mapping data points from low-dimensional into high-dimensional space to make them linearly

separable; a hyperplane is then generated as the classification boundary to partition data points

[37]. Assuming there are n data points, the objective function of SVM is [38]:

arg min
w

1
n

n∑
i=1

max {0, 1 − yi f (xi)} +CwT w

 , (2.7)

where w is a normalization vector; C is the penalty parameter of the error term, which is an

important hyper-parameter of all SVM models.

The kernel function f (x), which is used to measure the similarity between two data points

xi and x j, can be chosen from multiple types of kernels in SVM models. Therefore, the kernel
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type would be a vital hyper-parameter to be tuned. Common kernel types in SVM include

linear kernels, radial basis function (RBF), polynomial kernels, and sigmoid kernels.

The different kernel functions can be denoted as follows [39]:

1. Linear kernel:

f (x) = xT
i x j; (2.8)

2. Polynomial kernel:

f (x) =
(
γxT

i x j + r
)d

; (2.9)

3. RBF kernel:

f (x) = exp
(
−γ ∥x − x′∥2

)
; (2.10)

4. Sigmoid kernel:

f (x) =
(
tanh
(
γxT

i x j + r
))

; (2.11)

As shown in the kernel function equations, a few other different hyper-parameters need to

be tuned after a kernel type is chosen. The coefficient γ, denoted by ’gamma’ in sklearn, is the

conditional hyper-parameter of the ’kernel type’ hyper-parameter when it is set to polynomial,

RBF, or sigmoid; r, specified by ’coef0’ in sklearn, is the conditional hyper-parameter of poly-

nomial and sigmoid kernels. Moreover, the polynomial kernel has an additional conditional

hyper-parameter d representing the ’degree’ of the polynomial kernel function. In support

vector regression (SVR) models, there is another hyper-parameter, ’epsilon’, indicating the

distance error to of its loss function [24].

Naı̈ve Bayes

Naı̈ve Bayes (NB) [40] algorithms are supervised learning algorithms based on Bayes’ theo-

rem. Assuming there are n dependent features x1, · · · xn and a target variable y, the objective

function of naı̈ve Bayes can be denoted by:

ŷ = arg max
y

P(y)
n∏

i=1

P (xi|y) , (2.12)
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where P(y) is the probability of a value y, and P (xi|y) is the posterior probabilities of xi given

the values of y. Regarding the different assumptions of the distribution of P (xi|y), there are

different types of naı̈ve Bayes classifiers. The four main types of NB models are: Bernoulli

NB, Gaussian NB, multinomial NB, and complement NB [41].

For Gaussian NB [42], the likelihood of features is assumed to follow a Gaussian distribu-

tion:

P (xi|y) =
1√

2πσ2
y

exp

−
(
xi − µy

)2
2σ2

y

 . (2.13)

The maximum likelihood method is used to calculate the mean value, µy, and the vari-

ance, σ2
y . Normally, there is not any hyper-parameter that needs to be tuned for Gaussian NB.

The performance of a Gaussian NB model mainly depends on how well the dataset follows

Gaussian distributions.

Multinomial NB [43] is designed for multinomially-distributed data based on the naı̈ve

Bayes algorithm. Assuming there are n features, and θyi is the distribution of each value of

the target variable y, which equals the conditional probability P (xi|y) when a feature value i is

involved in a data point belonging to the class y. Based on the concept of relative frequency

counting, θy can be estimated by a smoothed version of θyi [24]:

θ̂yi =
Nyi + α

Ny + αn
, (2.14)

where Nyi is the number of times when feature i is in a data point belonging to class y, and Ny

is the sum of all Nyi (i = 0, 1, 2, · · · , n). The smoothing priors α ≥ 0 are used for features that

are not in the learning samples. When α = 1, it is called Laplace smoothing; when α < 1, it is

called Lidstone smoothing.

Complement NB [44] is an improved version of the standard multinomial NB algorithm and

is suitable for processing imbalanced data, while Bernoulli NB [45] requires samples to have

binary-valued feature vectors so that the data can follow multivariate Bernoulli distributions.

They both have the additive (Laplace/Lidstone) smoothing parameter, α, as the main hyper-

parameter that needs tuning. To conclude, for naı̈ve Bayes algorithms, developers often do

not need to tune hyper-parameters or only need to tune the smoothing parameter α, which is a
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continuous hyper-parameter.

Tree-based Models

Decision tree (DT) [46] is a common classification method that uses a tree-structure to model

decisions and possible consequences by summarizing a set of classification rules from the data.

A DT has three main components: a root node representing the entire data; multiple decision

nodes indicating decision tests and sub-node splits over each feature; and several leaf nodes

representing the result classes [47]. DT algorithms recursively split the training set with better

feature values to achieve good decisions on each subset. Pruning, which means removing some

of the sub-nodes of decision nodes, is used in DT to avoid over-fitting. Since a deeper tree has

more sub-trees to make more accurate decisions, the maximum tree depth, ’max depth’, is an

essential hyper-parameter that controls the complexity of DT algorithms [48].

There are many other important HPs to be tuned to build effective DT models [49]. Firstly,

the quality of splits can be measured by setting a measuring function, denoted by ’criterion’

in sklearn. Gini impurity and information gain are the two main types of measuring func-

tions. The split selection method, ’splitter’, can also be set to ’best’ to choose the best split,

or ’random’ to select a random split. The number of considered features to generate the best

split, ’max features’, can also be tuned as a feature selection process. Moreover, there are sev-

eral discrete hyper-parameters related to the splitting process: the minimum number of data

points to split a decision node or to obtain a leaf node, denoted by ’min samples split’ and

’min samples leaf’, respectively; the ’max leaf nodes’, indicating the maximum number of

leaf nodes, and the ’min weight fraction leaf’ that means the minimum weighted fraction of

the total weights, can also be tuned to improve model performance [24] [49].

Based on the concept of DT models, many decision-tree-based ensemble algorithms have

been proposed to improve model performance by combining multiple decision trees, including

random forest (RF), extra trees (ET), and extreme gradient boosting (XGBoost) models. RF

[50] is an ensemble learning method that uses the bagging method to combine multiple decision

trees. In RF, basic DTs are built on many randomly-generated subsets, and the class with the

majority voting will be selected to be the final classification result [51]. ET [52] is another tree-

based ensemble learning method that is similar to RF, but it uses all samples to build DTs and
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randomly selects the feature sets. In addition, RF optimizes splits on DTs while ET randomly

makes the splits. XGBoost [25] is a popular tree-based ensemble model designed for speed and

performance improvement, which uses the boosting and gradient descent methods to combine

basic DTs. In XGBoost, the next input sample of a new DT will be related to the results of

previous DTs. XGBoost aims to minimize the following objective function [48]:

Ob j = −
1
2

t∑
j=1

G2
j

H j + λ
+ γt, (2.15)

where t is the number of leaves in a decision tree, G and H are the sums of the first and second

order gradient statistics of the cost function, γ and λ are the penalty coefficients.

Light Gradient Boosting Machine (LightGBM) [10] is a high-performance tree-based model

that is constructed from an ensemble of DTs. In comparison to other ML techniques, the pri-

mary strength of LightGBM is its ability to deal with large-scale and high-dimensional data.

It is achieved via the use of two strategies: gradient-based one-side sampling (GOSS) and ex-

clusive feature bundling (EFB). GOSS is a downsampling technique that maintains only data

samples with high gradients during model training to save time and memory. By combining

mutually exclusive characteristics, the EFB approach significantly reduces training time with-

out compromising crucial information. By including GOSS and EFB, LightGBM’s time and

space complexity has been significantly lowered from O(NF) to O(N′F′), where N and N′

denote the original and the reduced number of instances, respectively; and F and F′ denote the

original and bundled number of features, respectively [10].

Since tree-based ensemble models are built with decision trees as base learners, they have

the same hyper-parameters as DT models, as described in this subsection. Apart from these

hyper-parameters, RF, ET, XGBoost, and LightGBM all have another crucial hyper-parameter

to be tuned, which is the number of decision trees to be combined, denoted by ’n estimators’ in

sklearn. XGBoost has several additional hyper-parameters, including [53]: ’min child weight’

which means the minimum sum of weights in a child node; ’subsample’ and ’colsample bytree’

used to control the subsampling ratio of instances and features, respectively; and four contin-

uous hyper-parameters — ’gamma’, ’alpha’, ’lambda’, and ’learning rate’ — indicating the

minimum loss reduction for a split, L1, and L2 regularization term on weights, and the learning
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rate, respectively.

Ensemble Learning Algorithms

Apart from tree-based ensemble models, there are several other generic ensemble learning

methods that combine multiple singular ML models to achieve better model performance than

any singular algorithms alone. Three common ensemble learning models — voting, bagging,

and AdaBoost — are introduced in this subsection [54].

Voting [54] is a basic ensemble learning algorithm that uses the majority voting rule to

combine singular estimators and generate a comprehensive estimator with improved accuracy.

In sklearn, the voting method can be set to be ’hard’ or ’soft’, indicating whether to use majority

voting or averaged predicted probabilities to determine the classification result. The list of

selected single ML estimators and their weights can also be tuned in certain cases. For instance,

a higher weight can be assigned to a better-performing singular ML model in a voting model.

Bootstrap aggregating [54], also named bagging, trains multiple base estimators on differ-

ent randomly-extracted subsets to construct a final predictor [55]. When using bagging meth-

ods, the first consideration should be the type and number of base estimators in the ensemble,

denoted by ’base estimator’ and ’n estimators’, respectively. Then, the ’max samples’ and

’max features’, indicating the sample size and feature size to generate different subsets, can

also be tuned.

AdaBoost [54], short for adaptive boosting, is an ensemble learning method that trains

multiple base learners consecutively (weak learners), and later learners emphasize the mis-

classified samples of previous learners; ultimately, a final strong learner is obtained. Dur-

ing this process, incorrectly-classified instances are retrained with other new instances, and

their weights are adjusted so that the subsequent classifiers focus more on difficult cases,

thereby gradually building a stronger classifier. In AdaBoost, the type of base estimator,

’base estimator’, can be set to a decision tree or other methods. In addition, the maximum

number of estimators at which boosting is terminated, ’n estimators’, and the learning rate that

shrinks the contribution of each classifier, should also be tuned to achieve a trade-off between

these two hyper-parameters.
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Deep Learning Models

Deep learning (DL) algorithms are widely applied to various areas — like computer vision,

natural language processing, and machine translation — since they have had great success

solving many types of problems. DL models are based on the theory of artificial neural net-

works (ANNs). Common types of DL architectures include deep neural networks (DNNs),

Multi-Layer Perceptron (MLP), deep belief networks (DBNs), convolutional neural networks

(CNNs), recurrent neural networks (RNNs), AutoEncoders (AEs) and many more [56]. All

these DL models have similar hyper-parameters since they have similar underlying neural net-

work architecture. Compared with other ML models, DL models benefit more from HPO since

they often have many hyper-parameters that require tuning.

The first set of hyper-parameters is related to the construction of a DL model; hence, named

model design hyper-parameters. Since all neural network models have an input layer and an

output layer, the complexity of a deep learning model mainly depends on the number of hid-

den layers and the number of neurons in each layer, which are two main hyper-parameters to

build DL models [57]. These two hyper-parameters are set and tuned according to the com-

plexity of the datasets or the problems. DL models need to have enough capacity to model

objective functions (or prediction tasks) while avoiding over-fitting. At the next stage, certain

function types need to be set or tuned. The first function type to configure is the loss func-

tion type, which is chosen mainly based on the problem type (e.g., binary cross-entropy for

binary classification problems, multi-class cross-entropy for multi-classification problems, and

RMSE for regression problems). Another important hyper-parameter is the activation func-

tion type used to model non-linear functions, which be set to ’softmax’, ’rectified linear unit

(ReLU)’, ’sigmoid’, ’tanh’, or ’softsign’. Lastly, the optimizer type can be set to Stochastic

Gradient Descent (SGD), adaptive moment estimation (Adam), root mean square propagation

(RMSprop), etc. [58].

On the other hand, some other hyper-parameters are related to the optimization and training

process of DL models; hence, categorized as optimizer hyper-parameters. The learning rate is

one of the most important hyper-parameters in DL models [59]. It determines the step size at

each iteration, which enables the objective function to converge. A large learning rate speeds
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up the learning process, but the gradient may oscillate around a local minimum value or even

cannot converge. On the other hand, a small learning rate converges smoothly, but will largely

increase model training time by requiring more training epochs. An appropriate learning rate

should enable the objective function to converge to a global minimum in a reasonable amount

of time. Another common hyper-parameter is the drop-out rate. Drop-out is a standard regu-

larization method for DL models proposed to reduce over-fitting. In drop-out, a proportion of

neurons are randomly removed, and the percentage of neurons to be removed should be tuned.

Mini-batch size and the number of epochs are the other two DL hyper-parameters that

represent the number of processed samples before updating the model, and the number of

complete passes through the entire training set, respectively [60]. Mini-batch size is affected

by the resource requirements of the training process and the number of iterations. The number

of epochs depends on the size of the training set and should be tuned by slowly increasing its

value until validation accuracy starts to decrease, which indicates over-fitting. On the other

hand, DL models often converge within a few epochs, and the following epochs may lead

to unnecessary additional execution time and over-fitting, which can be avoided by the early

stopping method. Early stopping is a form of regularization whereby model training stops

in advance when validation accuracy does not increase after a certain number of consecutive

epochs. The number of waiting epochs, called early stop patience, can also be tuned to reduce

model training time.

Apart from traditional DL models, transfer learning (TL) is a technology that obtains a

pre-trained model on the data in a related domain and transfers it to other target tasks [61].

To transfer a DL model from one problem to another problem, a certain number of top layers

are frozen, and only the remaining layers are retrained to fit the new problem. Therefore, the

number of frozen layers is a vital hyper-parameter to tune if TL is used.

2.4.2 Unsupervised Learning Algorithms

Unsupervised learning algorithms are a set of ML algorithms used to identify unknown patterns

in unlabeled datasets. Clustering and dimensionality-reduction algorithms are the two main

types of unsupervised learning methods. Clustering methods include k-means, DBSCAN, EM,
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etc.; while PCA is a representative dimensionality reduction algorithm [23].

Clustering Algorithms

In most clustering algorithms — including k-means and EM — the number of clusters is the

most important hyper-parameter to tune [62].

The k-means algorithm [63] uses k prototypes, indicating the centroids of clusters, to cluster

data. In k-means algorithms, the number of clusters, ’n clusters’, must be specified, and is

determined by minimizing the sum of squared errors [63]:

nk∑
i=0

min
u j∈Ck

(
xi − u j

)2
, (2.16)

where (x1, · · · , xn) is the data matrix; u j, also called the centroid of the cluster Ck, is the mean

of the samples in the cluster; and nk is the number of sample points in the cluster Ck.

To tune k-means, ’n clusters’ is the most crucial hyper-parameter. Besides this, the method

for centroid initialization, ’init’, could be set to ’k-means++’, ’random’ or a human-defined

array, which slightly affects model performance. In addition, ’n init’, denoting the number

of times that the k-means algorithm will be executed with different centroid seeds, and the

’max iter’, the maximum number of iterations in a single execution of k-means, also have

slight impacts on model performance [24].

The expectation-maximization (EM) algorithm [64] is an iterative algorithm used to detect

the maximum likelihood estimation of parameters. Gaussian Mixture model is a clustering

method that uses a mixture of Gaussian distributions to model data by implementing the EM

method. Similar to k-means, its major hyper-parameter to be tuned is ’n components’, indi-

cating the number of clusters or Gaussian distributions. Additionally, different methods can be

chosen to constrain the covariance of the estimated classes in Gaussian mixture models, includ-

ing ’full covariance’, ’tied’, ’diagonal’ or ’spherical’ [65]. Other hyper-parameters could also

be tuned, including ’max iter’ and ’tol’, representing the number of EM iterations to perform

and the convergence threshold, respectively [24].

DBSCAN [66] is a density-based clustering method that determines the clusters by divid-

ing data into clusters with sufficiently high density. Unlike other clustering models, the number
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of clusters does not need to be configured before training. Instead, DBSCAN has two signif-

icant conditional hyper-parameters — the scan radius represented by ’eps’, and the minimum

number of considered neighbor points represented by ’min samples’ — which define the clus-

ter density together [67]. DBSCAN works by starting with an unvisited point and detecting

all its neighbor points within a pre-defined distance ’eps’. If the number of neighbor points

reaches the value of ’min samples’, this unvisited point and all its neighbors are defined as

a cluster. The procedures are executed recursively until all data points have been visited. A

higher ’min samples’ or a lower ’eps’ indicates a higher density to form a cluster.

Dimensionality Reduction Algorithms

The increasing amount of collected data provides ample information, but also increases prob-

lem complexity. In real-world applications, many features are irrelevant or redundant to predict

target variables. Dimensionality reduction algorithms often serve as feature engineering meth-

ods to extract important features and eliminate insignificant or redundant features. Principal

component analysis (PCA) is the most representative dimensionality reduction algorithm. In

PCA, the number of features to be extracted, represented by ’n components’ in sklearn, is the

main hyper-parameter to be tuned.

Principal component analysis (PCA) [68] is a widely used linear dimensionality reduction

method. PCA is based on the concept of mapping the original n-dimensional features into k-

dimension features as the new orthogonal features, also called the principal components. PCA

works by calculating the covariance matrix of the data matrix to obtain the eigenvectors of

the covariance matrix. The matrix comprises the eigenvectors of k features with the largest

eigenvalues (i.e., the largest variance). Consequently, the data matrix can be transformed into

a new space with reduced dimensionality. Singular value decomposition (SVD) [69] is a pop-

ular method used to obtain the eigenvalues and eigenvectors of the covariance matrix of PCA.

Therefore, in addition to ’n components’, the SVD solver type is another hyper-parameter of

PCA to be tuned, which can be assigned to ’auto’, ’full’, ’arpack’ or ’randomized’ [24].
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2.5 Optimization Methods

The key process of machine learning is to solve optimization problems. To build a ML model,

its weight parameters are initialized and optimized by an optimization method until the objec-

tive function approaches a minimum value or the accuracy approaches a maximum value [70].

Similarly, hyper-parameter optimization methods aim to optimize the architecture of a ML

model by detecting the optimal hyper-parameter configurations. In this section, the concepts

of optimization and the common HPO techniques are discussed.

2.5.1 Hyper-parameter Optimization Problem Statement

During the design process of ML models, effectively searching the hyper-parameters’ space

using optimization techniques can identify the optimal hyper-parameters for the models. The

hyper-parameter optimization process consists of four main components: an estimator (a re-

gressor or a classifier) with its objective function, a search space (configuration space), a search

or optimization method used to find hyper-parameter combinations, and an evaluation function

to compare the performance of different hyper-parameter configurations.

The domain of a hyper-parameter can be continuous (e.g., learning rate), discrete (e.g.,

number of clusters), binary (e.g., whether to use early stopping or not), or categorical (e.g.,

type of optimizer). Therefore, hyper-parameters are classified as continuous, discrete, and

categorical hyper-parameters. For continuous and discrete hyper-parameters, their domains

are usually bounded in practical applications [71] [72]. On the other hand, the hyper-parameter

configuration space sometimes contains conditionality. A hyper-parameter may need to be

used or tuned depending on the value of another hyper-parameter, called a conditional hyper-

parameter [73]. For instance, in SVM, the degree of the polynomial kernel function only needs

to be tuned when the kernel type is chosen to be polynomial.

In simple cases, all hyper-parameters can take unrestricted real values, and the feasible set

X of hyper-parameters can be a real-valued n-dimensional vector space. However, in most

cases, the hyper-parameters of a ML model often take on values from different domains and

have different constraints, so their optimization problems are often complex constrained op-

timization problems [74]. For instance, the number of considered features in a decision tree



40

should be in the range of 0 to the number of features, and the number of clusters in k-means

should not be larger than the size of data points. Additionally, categorical features can often

only take several certain values, like the limited choices of the activation function and the opti-

mizer of a neural network. Therefore, the feasible domain of X often has a complex structure,

which increases the problems’ complexity [74].

In general, for a hyper-parameter optimization problem, the aim is to obtain [75]:

x∗ = arg min
x∈X

f (x), (2.17)

where f (x) is the objective function to be minimized, such as the error rate or the root mean

squared error (RMSE); x∗ is the hyper-parameter configuration that produces the optimum

value of f (x); and a hyper-parameter x can take any value in the search space X.

The aim of HPO is to achieve optimal or near-optimal model performance by tuning hyper-

parameters within the given budgets [76]. The mathematical expression of the function f

varies, depending on the objective function of the chosen ML algorithm and the performance

metric function. Model performance can be evaluated by various metrics, like accuracy, RMSE,

F1-score, and false alarm rate. On the other hand, in practice, time budgets are an essential

constraint for optimizing HPO models and must be considered. It often requires a massive

amount of time to optimize the objective function of a ML model with a reasonable number of

hyper-parameter configurations. Every time a hyper-parameter value is tested, the entire ML

model needs to be retrained, and the validation set needs to be processed to generate a score

that reflects the model performance.

The main process of HPO is as follows [73]:

1. Select the objective function and the performance metrics;

2. Select the hyper-parameters that require tuning, summarize their types, and determine

the appropriate optimization technique;

3. Train the ML model using the default hyper-parameter configuration or common values

as the baseline model;

4. Start the optimization process with a large search space as the hyper-parameter feasible

domain determined by manual testing and/or domain knowledge;
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5. Narrow the search space based on the regions of currently-tested well-performing hyper-

parameter values, or explore new search spaces if necessary.

6. Return the best-performing hyper-parameter configuration as the final solution.

2.5.2 Model-free Algorithms

Babysitting

Babysitting, also called ’Trial and Error’ or grad student descent (GSD), is a basic hyper-

parameter tuning method [17]. This method is implemented by 100% manual tuning and

widely used by students and researchers. The workflow is simple: after building a ML model,

a student tests many possible hyper-parameter values based on experience, guessing, or the

analysis of previously-evaluated results; the process is repeated until this student runs out of

time (often reaching a deadline) or is satisfied with the results. As such, this approach requires

a sufficient amount of prior knowledge and experience to identify optimal hyper-parameter

values with limited time.

Manual tuning is infeasible for many problems due to several factors, like a large number of

hyper-parameters, complex models, time-consuming model evaluations, and non-linear hyper-

parameter interactions [77]. These factors inspired increased research into techniques for the

automatic optimization of hyper-parameters [78].

Grid Search

Grid search (GS) is one of the most commonly-used methods to explore hyper-parameter con-

figuration space [79]. GS can be considered an exhaustive search or a brute-force method that

evaluates all the hyper-parameter combinations given to the grid of configurations [80]. GS

works by evaluating the Cartesian product of a user-specified finite set of values [81].

GS cannot exploit the well-performing regions further by itself. Therefore, to identify the

global optimums, the following procedure needs to be performed manually [82]:

1. Start with a large search space and step size.

2. Narrow the search space and step size based on the previous results of well-performing

hyper-parameter configurations.
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3. Repeat step 2 multiple times until an optimum is reached.

GS can be easily implemented and parallelized. However, the main drawback of GS is its

inefficiency for high-dimensionality hyper-parameter configuration space, since the number of

evaluations increases exponentially as the number of hyper-parameters grows. This exponential

growth is referred to as the curse of dimensionality [84]. For GS, assuming that there are k

parameters, and each of them has n distinct values, its computational complexity increases

exponentially at a rate of O(nk) [75]. Thus, only when the hyper-parameter configuration space

is small can GS be an effective HPO method.

Random Search

To overcome certain limitations of GS, random search (RS) was proposed in [83]. RS is similar

to GS; but, instead of testing all values in the search space, RS randomly selects a pre-defined

number of samples between the upper and lower bounds as candidate hyper-parameter values,

and then trains these candidates until the defined budget is exhausted. The theoretical basis of

RS is that if the configuration space is large enough, then the global optimums, or at least their

approximations, can be detected. With a limited budget, RS is able to explore a larger search

space than GS [83].

The main advantage of RS is that it is easily parallelized and resource-allocated since each

evaluation is independent. Unlike GS, RS samples a fixed number of parameter combinations

from the specified distribution, which improves system efficiency by reducing the probability of

wasting much time on a small poor-performing region. Since the number of total evaluations in

RS is set to a fixed value n before the optimization process starts, the computational complexity

of RS is O(n) [85]. In addition, RS can detect the global optimum or the near-global optimum

when given enough budgets [81].

Although RS is more efficient than GS for large search spaces, there are still a large number

of unnecessary function evaluations since it does not exploit the previously well-performing

regions [82].

To conclude, the main limitation of both RS and GS is that every evaluation in their itera-

tions is independent of previous evaluations; thus, they waste massive time evaluating poorly-

performing areas of the search space. This issue can be solved by other optimization methods,
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like Bayesian optimization that uses previous evaluation records to determine the next evalua-

tion [86].

2.5.3 Gradient-based Optimization

Gradient descent [87] is a traditional optimization technique that calculates the gradient of

variables to identify the promising direction and moves towards the optimum. After randomly

selecting a data point, the technique moves towards the opposite direction of the largest gradient

to locate the next data point. Therefore, a local optimum can be reached after convergence. The

local optimum is also the global optimum for convex functions. Gradient-based algorithms

have a time complexity of O(nk) for optimizing k hyper-parameters [88].

For specific machine learning algorithms, the gradient of certain hyper-parameters can be

calculated, and then the gradient descent can be used to optimize these hyper-parameters. Al-

though gradient-based algorithms have a faster convergence speed to reach local optimum than

certain other methods like GS, they have several limitations. Firstly, they can only be used

to optimize continuous hyper-parameters because other types of hyper-parameters, like cate-

gorical hyper-parameters, do not have gradient directions. Secondly, they are only efficient for

convex functions because the local instead of a global optimum may be reached for non-convex

functions [82]. Therefore, the gradient-based algorithms can only be used in some cases where

it is possible to obtain the gradient of hyper-parameters; e.g., optimizing the learning rate in

neural networks (NN) [89]. Still, it is not guaranteed for ML algorithms to identify global

optimums using gradient-based optimization techniques.

2.5.4 Bayesian Optimization

Bayesian optimization (BO) [90] is an iterative algorithm that is popularly used for HPO prob-

lems. Unlike GS and RS, BO determines the future evaluation points based on the previously-

obtained results. To determine the next hyper-parameter configuration, BO uses two key com-

ponents: a surrogate model and an acquisition function [50]. The surrogate model aims to fit

all the currently-observed points into the objective function. After obtaining the predictive dis-

tribution of the probabilistic surrogate model, the acquisition function determines the usage of
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different points by balancing the trade-off between exploration and exploitation. Exploration is

to sample the instances in the areas that have not been sampled, while exploitation is to sample

in the currently promising regions where the global optimum is most likely to occur, based on

the posterior distribution. BO models balance the exploration and the exploitation processes

to detect the current most likely optimal regions and avoid missing better configurations in the

unexplored areas [91].

The basic procedures of BO are as follows [90]:

1. Build a probabilistic surrogate model of the objective function.

2. Detect the optimal hyper-parameter values on the surrogate model.

3. Apply these hyper-parameter values to the real objective function to evaluate them.

4. Update the surrogate model with new results.

5. Repeat steps 2 - 4 until the maximum number of iterations is reached.

Thus, BO works by updating the surrogate model after each evaluation on the objective

function. BO is more efficient than GS and RS since it can detect the optimal hyper-parameter

combinations by analyzing the previously-tested values, and running a surrogate model is often

much cheaper than running the entire objective function.

However, since Bayesian optimization models are executed based on the previously-tested

values, they belong to sequential methods that are difficult to parallelize; but they can usually

detect near-optimal hyper-parameter combinations within a few iterations [92].

Common surrogate models for BO include Gaussian process (GP) [93], and the tree Parzen

estimator (TPE) [71]. Therefore, there are three main types of BO algorithms based on their

surrogate models: BO-GP, BO-TPE.

BO-GP

Gaussian process (GP) is a standard surrogate model for objective function modeling in BO

[90]. Assuming that the function f with a mean µ and a covariance σ2 is a realization of a GP,

the predictions follow a normal distribution [94]:

p(y|x,D) = N
(
y|µ̂, σ̂2

)
, (2.18)
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where D is the configuration space of hyper-parameters, and y = f (x) is the evaluation result of

each hyper-parameter value x. After obtaining a set of predictions, the points to be evaluated

next are then selected from the confidence intervals generated by the BO-GP model. Each

newly-tested data point is added to the sample records, and the BO-GP model is re-built with

the new information. This procedure is repeated until termination.

Applying a BO-GP to a size n dataset has a time complexity of O(n3) and space complexity

of O(n2) [95]. One main limitation of BO-GP is that the cubic complexity to the number of

instances limits the capacity for parallelization [76]. Additionally, it is mainly used to optimize

continuous variables.

BO-TPE

Tree-structured Parzen estimator (TPE) [71] is another common surrogate model for BO. In-

stead of defining a predictive distribution used in BO-GP, BO-TPE creates two density func-

tions, l(x) and g(x), to act as the generative models for all domain variables [76]. To apply

TPE, the observation results are divided into good results and poor results by a pre-defined

percentile y∗, and the two sets of results are modeled by simple Parzen windows [71]:

p(x|y,D) =

 l(x), i f y < y∗

g(x), i f y > y∗
. (2.19)

After that, the expected improvement in the acquisition function is reflected by the ratio

between the two density functions, which is used to determine the new configurations for

evaluation. The Parzen estimators are organized in a tree structure, so the specified con-

ditional dependencies are retained. Therefore, TPE naturally supports specified conditional

hyper-parameters [94]. The time complexity of BO-TPE is O(nlogn), which is lower than the

complexity of BO-GP [76].

BO methods are effective for many HPO problems, even if the objective function f is

stochastic, non-convex, or non-continuous. However, the main drawback of BO models is that,

if they fail to achieve the balance between exploration and exploitation, they might only reach

a local instead of a global optimum. RS does not have this limitation since it does not focus on
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any specific area. Additionally, it is difficult to parallelize BO models since their intermediate

results are dependent on each other [92].

2.5.5 Multi-fidelity Optimization Algorithms

One major issue with HPO is the long execution time, which increases with a larger hyper-

parameter configuration space and larger datasets. The execution time may be several hours,

several days, or even more [96]. Multi-fidelity optimization techniques are common approaches

to solve the constraint of limited time and resources. To save time, people can use a subset of

the original dataset or a subset of the features [97]. Multi-fidelity involves low-fidelity and

high-fidelity evaluations and combines them for practical applications [98]. In low-fidelity

evaluations, a relatively small subset is evaluated at a low cost but with poor generalization

performance. In high-fidelity evaluations, a relatively large subset is evaluated with better

generalization performance but at a higher cost than low-fidelity evaluations. In multi-fidelity

optimization algorithms, poorly-performing configurations are discarded after each round of

hyper-parameter evaluation on generated subsets, and only well-performing hyper-parameter

configurations will be evaluated on the entire training set.

Bandit-based algorithms categorized to multi-fidelity optimization algorithms have shown

success dealing with deep learning optimization problems [76]. Two common bandit-based

techniques are successive halving [99] and Hyperband [100].

Successive Halving

Theoretically speaking, exhaustive methods are able to identify the optimal hyper-parameter

combination by evaluating all the given combinations. However, many factors, including lim-

ited time and resources, should be considered in practical applications. These factors are called

budgets (B). To overcome the limitations of GS and RS and to improve efficiency, successive

halving algorithms were proposed in [99].

The main process of using successive halving algorithms for HPO is as follows. Firstly, it

is presumed that there are n sets of hyper-parameter combinations, and that they are evaluated

with uniformly-allocated budgets (b = B/n). Then, according to the evaluation results for each
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iteration, half of the poorly-performing hyper-parameter configurations are eliminated, and the

better-performing half is passed to the next iteration with double budgets (bi+1 = 2 ∗ bi). The

above process is repeated until the final optimal hyper-parameter combination is detected.

Successive halving is more efficient than RS, but is affected by the trade-off between the

number of hyper-parameter configurations and the budgets allocated to each configuration [81].

Thus, the main concern of successive halving is how to allocate the budget and how to de-

termine whether to test fewer configurations with a higher budget for each or to test more

configurations with a lower budget for each [82].

Hyperband

Hyperband [100] is then proposed to solve the dilemma of successive halving algorithms by

dynamically choosing a reasonable number of configurations. It aims to achieve a trade-off

between the number of hyper-parameter configurations (n) and their allocated budgets by di-

viding the total budgets (B) into n pieces and allocating these pieces to each configuration

(b = B/n). Successive halving serves as a subroutine on each set of random configurations to

eliminate the poorly-performing hyper-parameter configurations and improve efficiency. The

main steps of Hyperband algorithms are shown in Algorithm 1 [82].

Algorithm 1: Hyperband
Input: bmax, bmin

1: smax = log
(

bmax
bmin

)
2: for s ∈ {bmax, bmin − 1, . . . , 0} do
3: n = DetermineBudget(s)
4: γ = S ampleCon f igurations(n)
5: S uccessiveHalving(γ)
6: end for
7: return The best configuration so far.

Firstly, the budget constraints bmin and bmax are determined by the total number of data

points, the minimum number of instances required to train a sensible model, and the available

budgets. After that, the number of configurations n and the budget size allocated to each con-

figuration are calculated based on bmin and bmax in steps 2-3 of Algorithm 1. The configurations

are sampled based on n and b, and then passed to the successive halving model demonstrated
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in steps 4-5. The successive halving algorithm discards the identified poorly-performing con-

figurations and passes the well-performing configurations on to the next iteration. This pro-

cess is repeated until the final optimal hyper-parameter configuration is identified. By involv-

ing the successive halving searching method, Hyperband has a computational complexity of

O(nlogn) [100].

2.5.6 Metaheuristic Algorithms

Metaheuristic algorithms [101] are a set of algorithms mainly inspired by biological theories

and widely used for optimization problems. Unlike many traditional optimization methods,

metaheuristics have the capacity to solve non-convex, non-continuous, and non-smooth opti-

mization problems.

Population-based optimization algorithms (POAs) are a major type of metaheuristic algo-

rithm, including genetic algorithms (GAs), evolutionary algorithms, evolutionary strategies,

and particle swarm optimization (PSO). POAs start by creating and updating a population as

each generation; each individual in every generation is then evaluated until the global opti-

mum is identified [86]. The main differences between different POAs are the methods used

to generate and select populations [3]. POAs can be easily parallelized since a population of

N individuals can be evaluated on at most N threads or machines in parallel [81]. Genetic

algorithms and particle swarm optimization are the two main POAs that are popularly-used for

HPO problems.

Genetic Algorithm

Genetic algorithm (GA) [102] is one of the common metaheuristic algorithms based on the

evolutionary theory that individuals with the best survival capability and adaptability to the

environment are more likely to survive and pass on their capabilities to future generations. The

next generation will also inherit their parents’ characteristics and may involve better and worse

individuals. Better individuals will be more likely to survive and have more capable offspring,

while the worse individuals will gradually disappear. After several generations, the individual

with the best adaptability will be identified as the global optimum [103].
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To apply GA to HPO problems, each chromosome or individual represents a hyper-parameter,

and its decimal value is the actual input value of the hyper-parameter in each evaluation. Every

chromosome has several genes, which are binary digits; and then crossover and mutation op-

erations are performed on the genes of this chromosome. The population involves all possible

values within the initialized chromosome/parameter ranges, while the fitness function charac-

terizes the evaluation metrics of the parameters [103].

Since the randomly-initialized parameter values often do not include the optimal parame-

ter values, several operations, including selection, crossover, and mutation operations, must be

performed on the well-performing chromosomes to identify the optimums [102]. Chromosome

selection is implemented by selecting those chromosomes with good fitness function values.

To keep the population size unchanged, the chromosomes with good fitness function values are

passed to the next generation with higher probability, where they generate new chromosomes

with the parents’ best characteristics. Chromosome selection ensures that good characteris-

tics of each generation can be passed to later generations. Crossover is used to generate new

chromosomes by exchanging a proportion of genes in different chromosomes. Mutation oper-

ations are also used to generate new chromosomes by randomly altering one or more genes of

a chromosome. Crossover and mutation operations enable later generations to have different

characteristics and reduce the chance of missing good characteristics [76].

The main procedures of GA are as follows [101]:

1. Randomly initialize the population, chromosomes, and genes, which represent the entire

search space, hyper-parameters, and hyper-parameter values, respectively.

2. Evaluate the performance of each individual in the current generation by calculating the

fitness function, which indicates the objective function of a ML model.

3. Perform selection, crossover, and mutation operations on the chromosomes to produce a

new generation involving the next hyper-parameter configurations to be evaluated.

4. Repeat steps 2 & 3 until the termination condition is met.

5. Terminate and output the optimal hyper-parameter configuration.

Among the above steps, the population initialization step is an important step of GA and

PSO since it provides an initial guess of the optimal values. Although the initialized values will
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be iteratively improved in the optimization process, a suitable population initialization method

can significantly improve the convergence speed and performance of POAs. A good initial

population of hyper-parameters should involve individuals that are close to global optimums

by covering the promising regions and should not be localized to an unpromising region of the

search space [104].

To generate hyper-parameter configuration candidates for the initial population, random

initialization that simply creates the initial population with random values in the given search

space is often used in GA [105]. Thus, GA is easily implemented and does not necessitate good

initializations, because its selection, crossover, and mutation operations lower the possibility

of missing the global optimum.

Hence, it is useful when the data analyst does not have much experience determining a

potential appropriate initial search space for the hyper-parameters. The main limitation of GA

is that the algorithm itself introduces additional hyper-parameters to be configured, including

the fitness function type, population size, crossover rate, and mutation rate. Moreover, GA is a

sequential execution algorithm, making it difficult to parallelize. The time complexity of GA is

O(n2) [106]. As a result, sometimes, GA may be inefficient due to its low convergence speed.

Particle Swarm Optimization

Particle swarm optimization (PSO) [107] is another set of evolutionary algorithms that are

commonly used for optimization problems. PSO algorithms are inspired by biological popula-

tions that exhibit both individual and social behaviors [3]. PSO works by enabling a group of

particles (swarm) to traverse the search space in a semi-random manner [77]. PSO algorithms

identify the optimal solution through cooperation and information sharing among individual

particles in a group.

In PSO, there are a group of n particles in a swarm S [82]:

S = (S 1, S 2, · · · , S n) , (2.20)
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and each particle S i is represented by a vector:

S i =<
−→xi ,
−→vi ,
−→pi >, (2.21)

where −→xi is the current position, −→vi is the current velocity, and −→pi is the known best position of

the particle so far.

After initializing the position and velocity of each particle,very particle evaluates the cur-

rent position and records the position with its performance score. In the next iteration, the

velocity −→vi of each particle is changed based on the previous position −→pi and the current global

optimal position −→p :

−→vi := −→vi + U (0, φ1) (−→pi −
−→xi) + U (0, φ2) (−→p − −→xi), (2.22)

where U(0, φ) is the continuous uniform distributions based on the acceleration constants φ1

and φ2.

After that, the particles move based on their new velocity vectors:

−→xi := −→xi +
−→vi . (2.23)

The above procedures are repeated until convergence or termination constraints are reached.

Compared with GA, it is easier to implement PSO, since PSO does not have certain addi-

tional operations like crossover and mutation. In GA, all chromosomes share information with

each other, so the entire population moves uniformly toward the optimal region; while in PSO,

only information on the individual best particle and the global best particle is transmitted to

others, which is a one-way flow of information sharing, and the entire search process follows

the direction of the current optimal solution [82]. The computational complexity of PSO algo-

rithm is O(nlogn) [108]. In most cases, the convergence speed of PSO is faster than of GA. In

addition, particles in PSO operate independently and only need to share information with each

other after each iteration, so this process is easily parallelized to improve model efficiency [77].

The main limitation of PSO is that it requires proper population initialization; otherwise, it

might only reach a local instead of a global optimum, especially for discrete hyper-parameters
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[109]. Proper population initialization requires developers’ prior experience or using popula-

tion initialization techniques. Many population initialization techniques have been proposed

to improve the performance of evolutionary algorithms, like the opposition-based optimiza-

tion algorithm [105] and the space transformation search method [110]. Involving additional

population initialization techniques will require more execution time and resources.

Table 2.1: The comparison of common HPO algorithms (n is the number of hyper-parameter
values and k is the number of hyper-parameters)

HPO
Method

Strengths Limitations Time Com-
plexity

GS · Simple.
· Time-consuming,
· Only efficient with categorical
HPs.

O(nk)

RS
· More efficient than GS.
· Enable parallelization.

· Not consider previous results.
· Not efficient with conditional
HPs.

O(n)

Gradient-
based
models

· Fast convergence speed for
continuous HPs.

· Only support continuous HPs.
· May only detect local opti-
mums.

O(nk)

BO-GP · Fast convergence speed for
continuous HPs.

· Poor capacity for paralleliza-
tion.
· Not efficient with conditional
HPs.

O(n3)

BO-TPE
· Efficient with all types of HPs.
· Keep conditional dependen-
cies.

· Poor capacity for paralleliza-
tion.

O(nlogn)

Hyperband · Enable parallelization.

· Not efficient with conditional
HPs.
· Require subsets with small
budgets to be representative.

O(nlogn)

GA
· Efficient with all types of HPs.
· Not require good initializa-
tion.

· Poor capacity for paralleliza-
tion.

O(n2)

PSO
· Efficient with all types of HPs.
· Enable parallelization.

· Require proper initialization. O(nlogn)

2.5.7 Apply HPO Algorithms to ML Models

The strengths and limitations of the hyper-parameter optimization algorithms involved in this

chapter are summarized in Table 2.1. Since there are many different HPO methods for dif-

ferent use cases, it is crucial to select the appropriate optimization techniques for different ML

models. ML algorithms can be classified by the characteristics of their hyper-parameter config-
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urations. Appropriate optimization algorithms can be chosen to optimize the hyper-parameters

based on these characteristics.

One Discrete Hyper-parameter

Commonly for some ML algorithms, like certain neighbor-based, clustering, and dimensional-

ity reduction algorithms, only one discrete hyper-parameter needs to be tuned. For KNN, the

major hyper-parameter is k, the number of considered neighbors. The most essential hyper-

parameter of k-means and EM is the number of clusters. Similarly, for dimensionality reduc-

tion algorithms, such as PCA, their basic hyper-parameter is ’n components’, the number of

features to be extracted.

In these situations, Bayesian optimization is the best choice, and the three surrogates could

be tested to find the best one. Hyperband is another good choice, which may have a fast

execution speed due to its capacity for parallelization. In some cases, people may want to fine-

tune the ML model by considering other less important hyper-parameters, like the distance

metric of KNN and the SVD solver type of PCA; so BO-TPE, GA, or PSO could be chosen for

these situations.

One Continuous Hyper-parameter

Some linear models, including ridge and lasso algorithms, and some naı̈ve Bayes algorithms,

involving multinomial NB, Bernoulli NB, and complement NB, generally only have one vi-

tal continuous hyper-parameter to be tuned. In ridge and lasso algorithms, the continuous

hyper-parameter is ’alpha’, the regularization strength. In the three NB algorithms men-

tioned above, the critical hyper-parameter is also named ’alpha’, but it represents the addi-

tive (Laplace/Lidstone) smoothing parameter. In terms of these ML algorithms, BO-GP is the

best choice, since it is good at optimizing a small number of continuous hyper-parameters.

Gradient-based algorithms can also be used, but might only detect local optimums, so they are

less effective than BO-GP.
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A Few Conditional Hyper-parameters

It is noticeable that many ML algorithms have conditional hyper-parameters, like SVM, LR,

and DBSCAN. LR has three correlated hyper-parameters, ’penalty’, ’C’, and the solver type.

Similarly, DBSCAN has ’eps’ and ’min samples’ that must be tuned in conjunction. SVM is

more complex, since after setting a different kernel type, there is a separate set of conditional

hyper-parameters that need to be tuned next. Hence, some HPO methods that cannot effectively

optimize conditional hyper-parameters, including GS, RS, BO-GP, and Hyperband, are not

suitable for ML models with conditional hyper-parameters. For these ML methods, BO-TPE

is the best choice if we have pre-defined relationships among the hyper-parameters. GA and

PSO can be used, as well.

A Large Hyper-parameter Configuration Space with Multiple Types of Hyper-parameters

Tree-based algorithms, including DT, RF, ET, and XGBoost, as well as DL algorithms, like

DNN, CNN, RNN, are the most complex types of ML algorithms to bed tuned, since they have

many hyper-parameters with various, different types. For these ML models, PSO is the best

choice since it enables parallel executions to improve efficiency, particularly for DL models

that often require massive training time. Some other techniques, like GA and BO-TPE can

also be used, but they may cost more time than PSO, since it is difficult to parallelize these

techniques.

Categorical Hyper-parameters

This category of hyper-parameters is mainly for ensemble learning algorithms, since their ma-

jor hyper-parameter is a categorical hyper-parameter. For bagging and AdaBoost, the cat-

egorical hyper-parameter is ’base estimator’, which is set to be a singular ML model. For

voting, it is ’estimators’, indicating a list of ML singular models to be combined. The voting

method has another categorical hyper-parameter, ’voting’, which is used to choose whether

to use a hard or soft voting method. If we only consider these categorical hyper-parameters,

GS would be sufficient to detect their suitable base machine learners. On the other hand, in

many cases, other hyper-parameters need to be considered, like ’n estimators’, ’max samples’,



55

and ’max features’ in bagging, as well as ’n estimators’ and ’learning rate’ in AdaBoost; con-

sequently, BO algorithms would be a better choice to optimize these continuous or discrete

hyper-parameters.

In conclusion, when tuning a ML model to achieve high model performance and low com-

putational costs, the most suitable HPO algorithm should be selected based on the properties

of its hyper-parameters. A comprehensive summary of applying hyper-parameter optimization

techniques to ML models is shown in Table 2.2.

2.6 Data Pre-Processing

2.6.1 Overview

Data pre-processing aims to improve the quality of data for ML model development. Com-

mon data quality issues include outliers, missing values, and class imbalance [18]. Data pre-

processing procedures guarantee that ML models can learn meaningful patterns from the qual-

ity data, but they are time-consuming and tedious. Therefore, Automated Data Pre-processing

(AutoDP) is a critical component of AutoML [18].

Data pre-processing tasks can be divided into the following four categories [111]:

1. Transformation: The process of transforming categorical features into continuous fea-

tures using encoding techniques, or transforming continuous features into categorical

features using discretization techniques.

2. Imputation: The process of handling missing values using imputation methods.

3. Balancing: The process of balancing a dataset’s class distribution through over-sampling

or under-sampling methods.

4. Normalization: The process of converting continuous characteristics to a comparable or

same range of values.

2.6.2 Data Transformation

Data transformation indicates the transformation between numerical features and categorical

features. Firstly, in real-world applications, many data values are generated as words or strings
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Table 2.2: A comprehensive overview of common ML models, their hyper-parameters, suitable
optimization techniques, and available Python libraries

ML Algorithm Main HPs Optional HPs HPO methods Libraries
Linear regression - - - -

Ridge & lasso alpha - BO-GP Skpot

Logistic regression
penalty,

c,
solver

- BO-TPE Hyperopt

KNN n neighbors
weights,

p,
algorithm

BOs,
Hyperband

Skpot,
Hyperopt,
Hyperband

SVM
C,

kernel,
epsilon (for SVR)

gamma,
coef0,
degree

BO-TPE Hyperopt

NB alpha - BO-GP Skpot

DT

criterion,
max depth,

min samples split,
min samples leaf,

max features

splitter,
min weight fraction leaf,

max leaf nodes

GA,
PSO,

BO-TPE

TPOT,
Optunity

RF & ET

n estimators
max depth,
criterion,

min samples split,
min samples leaf,

max features

splitter,
min weight fraction leaf,

max leaf nodes

GA,
PSO,

BO-TPE

TPOT,
Optunity

XGBoost

n estimators,
max depth,

learning rate,
subsample,

colsample bytree

min child weight,
gamma,
alpha,

lambda

GA,
PSO,

BO-TPE

TPOT,
Optunity

LightGBM

n estimators,
max depth,

learning rate,
num leaves

min data in leaf,
boosting type,
feature fraction

GA,
PSO,

BO-TPE

TPOT,
Optunity

Voting
estimators,

voting weights GS sklearn

Bagging
base estimator,

n estimators
max samples,
max features

GS,
BOs

sklearn,
Skpot,

Hyperopt

AdaBoost
base estimator,
n estimators,
learning rate

- BO-TPE Hyperopt

Deep learning

number of hidden layers,
‘units’ per layer,

optimizer,
Activation,

learning rate,
dropout rate,

epochs,
batch size,

early stop patience

number of frozen layers
(if transfer learning

is used)
PSO Optunity

K-means n clusters
init,

n init,
max iter

BOs,
Hyperband

Skpot,
Hyperopt,
Hyperband

DBSCAN
eps,

min samples - BO-TPE Hyperopt

Gaussian mixture n components
covariance type,

max iter BO-GP Skpot

PCA n components svd solver
BOs,

Hyperband

Skpot,
Hyperopt,
Hyperband
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to make them human-readable. Data encoding is the process of converting string features to

numerical features that machine learning models can understand and process [18]. Common

encoding techniques include label encoding, one-hot encoding, and target encoding. For better

interpretation in ML models, label coding and one-hot encoding assign incremental values or a

new column to each string value of categorical features, respectively. However, the transformed

values only represent a unique label instead of containing meaning information [112]. Target

encoding is to replace categorical values with the mean or median of the target variable. Target

encoding can generate meaningful values, like the fraction of the samples in different classes,

to replace string values [18].

Many AutoML tools have data transformation functionalities. For example, Auto-Sklearn

[113] uses one-hot encoding, and H2O.AI [114] uses target encoding to encode data [18].

On the other hand, data discretization is the process of converting numerical features to

categorical features by setting multiple intervals [115]. Data discretization can better handle

outliers and simplify the calculations.

2.6.3 Data Imputation

Real-world datasets often have missing values as a result of data inaccessibility or collecting

difficulties. Null values, whitespace, NaNs, and incorrect data types are all examples of missing

values. Most ML models are incapable of directly handling missing values or are adversely

affected by them in the learning process [18].

While dropping the related features or observations with missing values is the easiest solu-

tion, it may result in the loss of significant information. As a result, missing values are often

resolved using imputation techniques. The purpose of data imputation is to replace missing

information with reasonable values. Several basic imputation methods replace missing values

with the same value. For numerical features, basic imputation methods replace all missing

values in this column with zero, the mean, or the median value of each column [18]. For cate-

gorical features, the basic method is called mode imputation, which involves replacing missing

values with the most common category in each feature.

However, since the sequential values in IoT time-series data often have strong correlations,
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basic imputation methods, such as zero, mean, and median imputation methods, are often in-

effective in dealing with missing values of IoT time-series data [116]. Thus, many advanced

imputation methods for time-series data have been proposed, such as backward/forward filling

and the moving window [117]. Backward and forward filling methods replace each missing

value with its most recent or next observation, respectively. As a result, they enable missing

values to be distributed according to time series distributions. However, imputed values may

be misleading for sudden changes in observations. The moving window is another time-series

imputation method that replaces each missing value with the average of its previous n observa-

tions, indicating a moving window with size n. The primary difficulty with the moving window

is determining the window size n.

Model-based imputation techniques, like linear regression, KNN, and XGBoost imputa-

tion, can estimate the missing values as the target variable by learning other feature values [18].

XGboost imputation method is used in several AutoML tools, such as Auto-WEKA [19] and

TPOT [118]. Additionally, Datawig [119], a DL-based method, is developed for data impu-

tation. Model-based imputation techniques often outperform model-free methods as imputed

values estimated by ML models are often closer to actual values. However, implementing

machine learning models often takes much longer than other methods. Moreover, DL-based

methods also require high computational power and a relatively large-sized dataset for accurate

imputation. The pros and cons of common imputation methods are summarized in Table 2.3.

The main procedures for automating the imputation process are as follows:

1. Calculate the total number of missing values and their percentage in a given dataset to

evaluate whether data imputation is necessary;

2. Select a suitable imputation method to handle missing data according to the requirements

of specific tasks. If execution speed is the top priority, model-free imputation methods

are the most efficient choices. If the model performance is more important than the

execution speed, model-based imputation methods can provide more accurate imputed

data. On the other hand, if the given dataset is a time-series dataset, time-series impu-

tation methods (e.g., forward/backward filling and moving window methods) are better

choices.

3. Optimize the parameters of imputation methods if it is necessary (e.g., the window size in



59

Table 2.3: The comparison of common imputation methods.
Type Imputation

Method
Pros Cons

Model-free
methods

Dropping · Easy to implement · May lose important informa-
tion

Basic imputa-
tion methods
(zero, mode,
mean, median
imputation)

· Easy to implement
· Work well with small datasets

· May generate misleading val-
ues
· Not consider feature correla-
tions

Forward/ back-
ward filling

· Work well with time-series
datasets

· Not effective for consecutive
nulls and sudden changes

Moving window · Work well on time-series
datasets

· Not effective for a large num-
ber of nulls
· Need to determine the window
size

Model-
based
methods

Model-based
imputation
(linear regres-
sion, KNN,
XGBoost, etc.)

· Perform better than basic
methods

· Time-consuming on large
datasets
· Need to tune hyperparameters

Datawig (DL
imputation)

· Perform better than basic
methods

· Require high computational
power
· Not work well with small
datasets

the moving window method and the hyperparameters of ML algorithms in model-based

imputation).

2.6.4 Data Balancing

With the growth of IoT data streams, it is becoming more difficult to maintain uniform distri-

butions of all classes for classification problems, resulting in class imbalance. Class imbalance

indicates that the distributions of classes in a dataset are highly imbalanced, causing ML model

degradation. Severe class imbalance occurs when certain classes have an extremely small

number of instances. Many ML algorithms, including SVM, DT-based algorithms, and neu-

ral network models, are very sensitive to class imbalance [14]. Learning imbalanced datasets

often causes unjustified bias in majority classes, which has an adverse effect on the prediction

accuracy of minority classes [18]. Class imbalance problems can be solved by resampling
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techniques, including over-sampling and under-sampling [120].

Under-Sampling Methods

Under-sampling methods solve class imbalance by reducing the number of samples in the

majority classes. Random Under-Sampling (RUS) is a basic under-sampling method for data

balancing by randomly discarding samples from the majority classes [121]. By reducing the

size of the data, under-sampling techniques can increase model learning efficiency. However,

by removing a fraction of data samples, critical information contained in the majority classes

may be lost [121].

Over-Sampling Methods

Since under-sampling algorithms may ignore certain critical instances in the majority class,

resulting in model performance degradation [122], over-sampling methods are often utilized to

resolve class imbalance. Random Over Sampling (ROS) and Synthetic Minority Oversampling

TEchnique (SMOTE) [123] are the two common over-sampling methods used to create new

instances in the minority classes. Unlike ROS, which simply replicates the instances, SMOTE

analyzes the original instances and synthesizes new instances using the principle of KNN. For

each instance X in the minority class, assuming its k nearest neighbors are X1, X2, · · · , Xk, and

Xi is a randomly selected sample from the k nearest neighbors, the new synthetic instance is

denoted by [124],

Xn = X + rand(0, 1) ∗ (Xi − X) , i = 1, 2, · · · , k, (2.24)

where rand(0, 1) denotes a random number in the range of 0 to 1.

As SMOTE can solve the majority of class imbalance problems, it can be used as the default

method on imbalanced datasets [125].

2.6.5 Data Normalization

ML models often treat features with larger values as more important. If the scales of features

are significantly different, data normalization should be used to prevent creating biased models.

This is especially important for ML algorithms that use distance calculations, such as k-means,
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KNN, PCA, and SVM. Z-score and min-max normalization are two of the most often used

normalization approaches in ML model learning.

In Z-score normalization, the normalized value of each data point, xn, is denoted by [126],

xn =
x − µ
σ
, (2.25)

where x is the original value, µ and σ are the mean and standard deviation of the data points.

In min-max normalization, the normalized value of each data point, xn, is denoted by [126],

xn =
x − min

max − min
, (2.26)

where x is the original feature value, min and max are the minimum and maximum values of

each original feature.

Min-max normalization ensures that all features have the same scale of 0-1, but it does

not handle outliers well. In contrast, Z-score normalization can handle outliers, although the

feature ranges may be slightly different. Thus, these two techniques can be automatically

chosen depending on the occurrence and the percentage of outliers.

2.7 Feature Engineering

2.7.1 Overview

Although research into the automated model selection and HPO has made significant progress,

Feature Engineering (FE), as a vital component of the ML pipeline, has been ignored in many

AutoML applications. Using original feature values to train ML models often cannot obtain

the best prediction results. In this case, new features need to be created, and misleading fea-

tures should be removed to fit specific tasks [18]. The objective of feature engineering is to

provide data with optimal input features for ML models. The upper limit of ML applications

is determined by FE [4].

Manual feature engineering is tedious and time-consuming, and often requires domain

knowledge. Automated Feature Engineering (AutoFE) enables the automation of feature engi-
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Figure 2.3: An automated feature engineering framework.

neering by automatically generating and selecting relevant features using a generic framework

applicable to different problems. AutoFE is more efficient and reproducible than manual fea-

ture engineering, enabling faster development of more accurate learning models.

FE methods can be classified into three categories: feature generation, feature selection,

and feature extraction. Feature generation is the process of creating new features through

the combination or transformation of original features to expand the feature spaces. Feature

selection is used to reduce feature redundancy by selecting relevant and significant features.

Similar to feature generation, feature extraction can create new features, but its primary purpose

is to reduce the dimensionality of original features through mapping functions. AutoFE is

essentially a dynamic combination of these three components.

Most state-of-the-art AutoFE approaches, like AutoFeat, use the generate-and-select strat-

egy. In this strategy, an exhaustive feature pool is generated and then valuable features are

selected from it [127]. Certain procedures, like feature selection and extraction, may require

the use of optimization techniques to identify appropriate parameters that can return the opti-

mal model. As shown in Fig. 2.3, the main procedures for the AutoFE framework with the

generate-and-select strategy are as follows:

1. Generate a variety of candidate features using common operations;

2. Select important features using feature selection methods;



63

3. Determine the optimal number of features using optimization techniques;

4. Further extract features and reduce the data dimensionality if it is still high or the learning

performance still needs to be further improved.

2.7.2 Feature Generation

Feature generation is the process of generating new features by transforming or combining

existing features to improve the generalizability and robustness of a ML model [4]. In real-

world IoT systems, data is often scattered over many devices and files and must be combined

into a single database with rows for observations and columns for features [18]. Although the

feature generation step often requires domain knowledge from experts, certain features can still

be created automatically to extract useful information.

Common feature generation operations can be classified as follows [82]:

1. Unary operations: Numerical feature discretization or normalization, time expansion,

or mathematical operations like a logarithm.

2. Binary operations: The combination of two features using feature correlations or math-

ematical operations (e.g., addition, subtraction, multiplication, division, etc.).

3. High-order operations: The calculation of multiple records for one feature, like the

maximum, minimum, average, or median values.

It is challenging to manually produce all meaningful and useful features. The process of

generating valuable features usually requires human expertise. For automated feature genera-

tion, the general process is to automatically generate a large number of features using various

operations and use feature selection techniques to select the relevant and useful features. Al-

though generating numerous features is often time-consuming, automated feature generation

can largely reduce human efforts and overhead by getting rid of the dependence on human ex-

pertise. Decision tree-based and GA-based methods described in [128] can be used to simplify

the feature generation process by defining and exploring the feature space.
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2.7.3 Feature Selection

While feature generation may create a large number of features, some of them may be ir-

relevant or redundant. For specific tasks, certain features have a great impact on the target

variable prediction, while other features may have a minimal or negative effect on the predic-

tion [18]. Therefore, Feature Selection (FS) should be implemented to identify the most appro-

priate features for use in constructing a more efficient and accurate learning model [14]. FS is

a time-consuming and challenging procedure in ML pipelines, especially for high-dimensional

datasets.

Automated feature selection is the process of automatically selecting a subset of the original

feature set to improve ML model performance and training speed by removing irrelevant and

redundant features [82]. To achieve AutoFS, the FS problem can be framed as an optimization

problem [129]. For a small number of input features, all combinations of the features can be

evaluated to detect the best performing feature set. On the other hand, for a large number

of features, optimization techniques can be utilized to explore the feature search space and

identify the optimal feature set.

Existing FS methods can be divided into three categories: filter methods, wrapper methods,

and embedded methods.

Filter methods assign a score to each feature by calculating its importance, and then select

a subset of features based on a given threshold (e.g., the number of selected features or the

accumulated importance). Each feature’s score can be estimated using a variety of measures,

including Information Gain (IG), the chi-square test, Pearson correlation coefficient, variance,

etc. For example, the Fast Correlation Based Filter (FCBF) is a popular filter method that

measures the correlation of features and selects features by calculating the Symmetrical Un-

certainty (SU) [125].

Wrapper methods make predictions based on a selected subset of features, and then evaluate

the feature set according to prediction accuracy. Recursive Feature Elimination (RFE) is a

wrapper method that recursively evaluates subsets of features to remove irrelevant features

until a desired number of features are selected [130].

Embedded methods indicate the FS process included in the learning process of ML mod-
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els, like Lasso regularization, DT-based algorithms, and DL models. Thus, using those ML

algorithms with embedded FS functionality often does not need additional FS procedures.

These three types of FS methods have different advantages and limitations. The major

advantage of filter methods is that they can be completed prior to model training, which re-

sults in a relatively fast execution time [130]. However, since filter approaches derive their

features only via statistical measurements, they may not be optimal for all ML models. Em-

bedded methods can select the relevant features for a specific ML model in its construction

process [130]. Thus, it can often achieve the optimal performance on this specific ML model.

However, the selected features are often only beneficial for the same type of model. Addi-

tionally, applying embedded methods to select features for another ML model is often time-

consuming. Therefore, using an embedded method in the ML model where it is embedded is

often the most appropriate choice. Wrapper techniques can be used for various ML models

to select the most relevant features [130]. However, wrapper methods are often more time-

intensive than filter and embedded methods, as they need to continually train a ML algorithm

on different subsets of features until the termination conditions are met.

In conclusion, when choosing feature selection approaches, a trade-off between the time

complexity and learning performance must be made. Different FS approaches should be se-

lected in different situations or tasks. Filter methods are often utilized in tasks with strict time

constraints, while wrapper techniques often work better for tasks that demand great perfor-

mance. Embedded methods are often used in certain ML algorithms that already have these

embedded FS functionalities.

2.7.4 Feature Extraction

Feature extraction is the process of reducing dimensionality using mapping functions. Unlike

feature generation, which preserves the original features, feature extraction alters the origi-

nal features to extract more informative features that can replace the original features [14].

Through feature extraction, a more concise representation of the original dataset can be ob-

tained. Additionally, model learning efficiency may be increased by dimensionality reduc-

tion [128]. Common feature extraction methods include PCA and AE [4]. Feature extraction
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is not a required procedure in the general feature engineering process. It is often utilized only

when the feature set produced after feature generation and selection is still high dimensional or

under-performing, since feature extraction can further reduce dimensionality and misleading

feature components.

2.8 Automated Model Updating by Handling Concept Drift

2.8.1 Model Drift in IoT Systems

Because of the dynamic IoT environments, IoT online data analysis often encounters concept

drift issues when data distributions shift over time. Concept drift often impairs the performance

of IoT data analytics models, posing significant threats to IoT services. To deal with concept

drift, a successful data analytics model must reliably identify and respond to detected drifts in

order to retain high prediction accuracy.

Concept drift refers to the conceptual and unpredictable changes in data streams [131].

The presence of concept drift has brought significant challenges to the development of ML

models. As the majority of ML models are built with the premise that the data is collected in a

static environment, they lack the adaptability to learn streaming data with concept drift [132].

Thus, in an ever-changing environment with concept drift issues, ML models’ performance

may gradually degrade. When concept drift occurs, it is necessary to upgrade the current ML

model in order to preserve or enhance model performance [133]. This process is also referred

to as automated model updating. To ensure high performance in a non-stationary environment,

an IoT data analytics model should be updated automatically when concept drift occurs.

2.8.2 Concept Drift Definition

In non-stationary and dynamically changing environments, the distribution of input data often

changes over time, causing concept drift. Given an instance (X, y) with the input features X

and the target variable y, concept drift that occurs between the time points t0 and t1 can be

denoted by [134]:

∃X : Pt0(X, y) , Pt1(X, y) (2.27)
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Figure 2.4: Concept drift types.

where Pt0 represents the joint distribution between X and y at time t0.

The joint probability Pt(X, y) can be calculated by [131]:

Pt(X, y) = Pt(X) × Pt(y | X) (2.28)

where Pt(X) denotes the marginal probability and Pt(y | X) represents the posterior probability.

Although changes in different probabilities can result in concept drift, only the distribution

changes that affect the performance of learning models should be dealt with for data learning

purposes [134]. Thus, the changes in the posterior probability, Pt(y | X), are referred to as real

concept drift because they cause model decision boundary changes and model performance

degradation; other types of drift, like changes in Pt(X), are referred to as virtual concept drift

and are not taken into account in the learning system adaptation procedures [131].

As illustrated in Fig. 2.4, there are three major types of data distribution changes that can

cause concept drift: sudden, gradual, and recurring drift.

1. Sudden drift is the term used to describe the rapid and irreversible changes that occur in

a short period of time.

2. Gradual drift occurs when a new data distribution gradually replaces an older one over

time.

3. Recurring drift is a temporary change in the distribution of data. The distribution will

return to its previous state within a certain period of time.

Due to the occurrence of concept drift, the learning system must detect drift in time and

update itself by adapting to the detected drift; hence, accurate predictions can be made on the

continuously arriving data streams. Therefore, in addition to the training and prediction pro-
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cedures in traditional ML models, there are two additional procedures for analyzing streaming

data with concept drift: drift detection (detect the occurrence and the time of drift) and drift

adaptation (handle the detected drift) [131]. In this Section, the state-of-the-art drift detection

and adaptation methods are described. Additionally, the strengths and limitations of the drift

detection and adaptation methods discussed in this chapter are summarized in Table 2.4.

2.8.3 Drift Detection

To design a model capable of dealing with concept drift, it should be able to effectively de-

tect drift nodes and address the drift rapidly. Thus, drift detection is critical functionality for

adaptive ML models capable of resolving concept drift problems.

Drift detection methods are generally classified into two main categories: distribution-

based methods and performance-based methods. Distribution-based methods identify concept

drift by detecting the changes in data distributions. Statistical variables, such as the mean, vari-

ance, and class imbalance, can be used to quantify data distribution changes. In model-based

methods, concept drift is measured based on the changes in the metrics used to assess model

performance. For example, accuracy degradation and error rate increase are common indica-

tors of concept drift. The severity of concept drift can be measured by the degree of model

performance degradation.

Distribution-based methods

Distribution-based drift detection techniques are developed by measuring and comparing the

data distributions of old and new data in time windows. Significant data distribution changes

often cause concept drift and trigger model updates [131]. There are several approaches to

measure the data distributions of different time windows, like mean, variance, information

entropy, Kullback-Leibler (KL) divergence, etc.

ADaptive WINdowing (ADWIN) [135] is a distribution-based approach for detecting con-

cept drift using variable-size sliding windows and characteristic values (e.g., mean, variance).

If no noticeable drift or distribution change is identified when the streaming data enters the

model, the window size is dynamically enlarged, whereas the window size is reduced when
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Table 2.4: The comparison of concept drift methods for automated model updating.
Task Category Methods Strengths Limitations

Drift
Detection

Distribution
-based
Methods

ADWIN
· Work well with gradual
drifts.
· Good interpretability.

· A single ADWIN is limited to
one-dimensional data.
· Characteristic values used by
ADWIN are not always effec-
tive.

IE, KL
Diver-
gence

· Good interpretability.
· Can work with unlabeled
data.

· High computational cost.
· May detect virtual drifts.
· Require pre-defined time pe-
riods.

Performance
-based
Methods

DDM
· Work well with sudden drifts.
· Can ensure all detected drifts
are real drifts.

· Slow reaction time.
· Ineffective for gradual drifts.
· Need to tune the drift and
warning thresholds.

EDDM · Work better with gradual
drifts than DDM.

· Sensitive to noise.
· Need to tune the drift and
warning thresholds.

Drift
Adaptation

Model
Retraining

Full Re-
training

· Easy to understand and im-
plement.
· Can retain all existing con-
cepts.

· Time-consuming due to un-
necessary retrainings.
· May become extremely slow
as data increases.

Partial
Retrain-
ing

· Easy to understand and im-
plement.
· Can remove outdated sam-
ples.
· Faster than full retraining.

· May lose historical patterns.
· Unnecessary retrainings.

Instance
Weight-
ing

· Can retain all the existing
concepts.
· Can better adapt to drifts than
full and partical retrainings.

· Time-consuming due to un-
necessary retrainings.
· Need to choose an updateable
learner capable of weighted
learning.

Incremental
Learning

HT,
VFDT,
CVFDT

· Can be continuously updated.
· Fast training speed due to
partial updating.

· Incapable of directly address-
ing concept drift.
· Limited ML algorithms sup-
port incremental learning.

AONN · Strong adaptability to drifts.
· Ineffective for sudden drifts.
· Time-consuming.

Ensemble
Learning

SEA,
AWE,
ACE

· Can retain historical con-
cepts.
· Strong adaptability to drifts.
· Good generalizability.

· Need to determine a proper
chunk size.
· Time consuming.
· Outdated concepts may be
misleading.

ARF,
SRP, LB,
PWPAE

· Strong adaptability to drifts.
· Good generalizability.

· Time-consuming.
· Require high memory space.
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concept drift is identified [133]. The main procedures of ADWIN are as follows:

1. For a sliding window W, the characteristic values (e.g., mean, variance) between its two

sub-windows, W1 and W2, is computed and compared. W1 and W2 represent earlier and

more recent data, respectively.

2. A concept drift alarm will be triggered if the characteristic values of W1 and W2 diverge

significantly enough (i.e., the difference exceeds a specific threshold).

3. Once a drift has been detected, the sliding window size is adjusted to the newer sub-

window, W2, while the older subwindow, W1, is dropped.

ADWIN is well-suited for data streams with gradual drift because the sliding window can

be enlarged to a large size window for detecting long-term changes. On the other hand, a

single ADWIN model can only handle one-dimensional data. As a result, multiple ADWIN

base models with discrete windows for each dimension are required for multi-dimensional

data [11]. Furthermore, the mean value is not always a suitable method to define changes.

Distribution-based approaches can be used to detect concept drift using other metrics. The

Information Entropy (IE) [136] is a widely-used distance metric to quantify how much infor-

mation is included in a data distribution. The entropy of a data distribution X can be calculated

by:

H(X) = −
∑
x∈X

p(x) log p(x) (2.29)

Assuming the two probability distributions are p and q, the IE-based method calculates

their distance based on the difference between their entropy values:

DIE(p∥q) = |H(p) − H(q)| (2.30)

KL divergence [137] is another common distant metric to compute the distance between

two distributions.

For the two probability distributions p and q, KL divergence estimates the distance by:

DKL(p∥q) =
∑
x∈X

p(x) log
p(x)
q(x)

(2.31)
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In IE or KL divergence-based methods, concept drift occurs when DIE(p∥q) or DKL(p∥q) is

greater than a threshold α.

Distribution-based methods are often used in systems with limited memory, like IoT de-

vices, since they need only the most recent samples to be stored. Additionally, distribution-

based approaches can provide a high level of interpretability by illustrating how the data distri-

bution varies over time. They can also generally specify the exact time and place of the drift,

which is beneficial for drift adaptation. However, distribution-based approaches often incur

higher computational costs than performance-based approaches and often require the use of

predefined historical and new time periods.

Performance-based methods

Model performance-based methods track changes in learners’ prediction error rates to identify

concept drift [138]. If the data distribution is stationary and without drift, the error rate of a

learner should gradually decrease or remain constant as more data samples are learned. Con-

versely, if a learner’s error rate rises dramatically as more data is processed, this often reveals

the occurrence of concept drift.

Drift Detection Method (DDM) is a popular performance-based method that measures

model error rate and standard deviation changes using two pre-defined thresholds, the warning

threshold and the drift threshold [139]. With an estimating error rate at time t is pt, the standard

deviation at time t can be calculated based on the Binomial distribution:

S t =
√

pt (1 − pt) /t (2.32)

The error rate and standard deviation can be used to determine whether the warning level

or drift level have been exceeded: if pt + st ≥ pmin + 2 ∗ smin → Warning Level

if pt + st ≥ pmin + 3 ∗ smin → Drift Level
(2.33)

where pmin and smin are the current error rate’s minimum and standard deviation’s minimum,

respectively. If the warning threshold is exceeded, newly arrived samples will be archived for
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potential drift adaption. If the drift level is exceeded, the learning model will be updated with

the newly collected data.

DDM often performs well on data streams with sudden drift, but its reaction time is often

too slow for detecting gradual drift [140].

Early Drift Detection Method (EDDM) is an improved version of DDM that uses the same

warning and drift mechanism as DDM to identify concept drift [141]. Unlike DDM, EDDM

detects drift by calculating the change rate of the learner’s error rate, rather than the error

rate itself. Although EDDM often outperforms DDM, it is still inferior to distribution-based

approaches on the gradual drift. Additionally, since it is sensitive to noise, it may misclassify

noise as drift, resulting in false alarms.

Both DDM and EDDM have three primary hyperparameters that have a direct impact on

the accuracy of drift detection: 1) the warning threshold; 2) the drift threshold; 3) the minimum

number of incoming samples before detecting the first drift [142].

2.8.4 Drift Adaptation

After detecting concept drift, it is necessary to update or reconstruct the existing models to

handle the drift using proper drift adaptation methods. Drift adaptation techniques can be clas-

sified into three categories: 1) Model retraining; 2) Incremental learning methods; 3) Ensemble

learning methods.

Model Retraining

Model retraining is a simple and straightforward method for reacting to concept drift [131].

Owing to the fact that pre-trained or offline models cannot always precisely predict the future

incoming streaming data due to concept drift, they can be retrained on the newly arrived data

streams to maintain high performance. A conventional online learning strategy for analyzing

data streams without concept drift detection is to update the learner regularly to fit the most

recent data. However, using this method can result in unnecessary model retrainings or drift

adaptation delays. Therefore, an appropriate drift detection method should be used together

with learning models to determine when to retrain the learning model for timely and necessary
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updates.

Model retraining strategies include full retraining, partial retraining, and instant weighting.

Full retraining is the process of retraining the learning model on the entire dataset involving all

available samples. Full retraining is easy to implement but often time-consuming.

Partial retraining is developed by retraining the model on only certain parts of data to im-

prove model updating efficiency. Using window-based strategies that retain the model only on

the recent data can reduce the training time but may result in the loss of historical data pat-

terns. Thus, it is critical to choose a proper window size. ADWIN [135] is a well-performing

drift detection method for model retraining since it uses a dynamic window to fit new data.

Optimized Adaptive and Sliding Windowing (OASW) [10] is another partial retraining model

for IoT data stream analytics. It uses adaptive and sliding windows to detect concept drift and

collect samples of a new concept. Thus, the learning model can be partially retrained on only

the new concept samples to save training time.

Instead of directly retraining the learning model on new data, the instance weighting method

is another popular model retraining technique [132] [143]. It adjusts the weights of data sam-

ples according to their timestamp or retention time. Recent samples will be assigned a higher

weight, while old data samples will be assigned a reduced weight or even deleted from the

training set. This method is based on the assumption that as time passes, outdated data samples

become less relevant, and new data samples become more critical. As a result, an existing

learning model can adjust to concept drift by retraining on weighted samples. For weighted

model retraining, an updateable learner capable of weighted learning should be used.

Incremental Learning methods

In data stream analytics, new data samples are continuously being added to the learning system.

Rather than learning offline on static data, an effective model needs to be continuously updated

to adapt to the changing data distributions. Therefore, incremental learning has become a

widely-used strategy in data stream analytics research. Incremental learning is the process

of learning data samples sequentially and updating the learning model with each instance is

processed [144].

When new samples arrive, incremental learning approaches often partially update the learn-
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ing model to fit the new samples [145]. Due to the progressive learning ability of incremental

learning approaches, they do not need a sufficient amount of data prior to the training pro-

cess. However, only a small number of ML algorithms enable partial updates, including MLP,

multinomial NB, etc. Thus, several new incremental learning methods for concept drift adapta-

tion, such as Hoeffding Trees (HT) [146] based methods and Adaptive Online Neural Network

(AONN) [147], were proposed. HT algorithms based on Hoeffding’s inequality are one of the

most common incremental learning methods for data stream analytics. By using the Hoeffding

bound to calculate the number of samples required to determine the split node, the nodes in

HTs can be partially updated as new samples arrive [138]. There are several variants of HTs,

including the Very Fast Decision Tree (VFDT), Concept-adapting Very Fast Decision Tree

(CVFDT), Extremely Fast Decision Tree (EFDT), etc. [134].

VFDT is a technique for creating classification decision trees in a data stream mining en-

vironment by using Hoffding inequality [148]. It is constructed by continuously replacing leaf

nodes with branch nodes to preserve an essential statistic at each decision node, and the split-

ting test is performed when the statistic of the node reaches a certain threshold. VFDT is an

efficient method since it only has to process the data stream once. Additionally, it can often

achieve high performance comparable to typical ML techniques. The primary drawback is that

it is incapable of effectively addressing the concept drift issue.

CVFDT extends VFDT to rapidly tackle the concept drift issue associated with data streams

[146]. CVFDT’s basic principle is to replace the historical subtree with a new subtree that has a

lower error rate. It uses a sliding window to choose test data samples and updates the resulting

decision tree as data flows into and out of the time frame.

EFDT [149], also known as the Hoeffding Anytime Tree (HATT), is a modified version of

the HT that divides nodes as soon as the confidence level is reached, rather than identifying

the optimal split in the HT. This splitting method enables the EFDT to adjust more precisely to

concept drifts than the HT, although its performance still has much room for improvement.

AONN is another incremental learning method based on neural network models [147]. In

AONN, a model update is triggered when the model’s error increases. The AONN network

is updated by either increasing the number of neurons in the output layers or by changing the

weights of neurons using a batch of online data samples. Incremental methods can often adapt
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to new data patterns by continually learning from newly received data samples. However, they

are not specifically designed to address concept drift, as the old concepts and model compo-

nents are still retained. Thus, they are ineffective in addressing certain types of drifts, like

sudden drifts, which often need a completely new learner.

Ensemble Learning methods

Ensemble learning techniques have been developed to generate powerful learners for data

stream analytics in order to achieve greater concept drift adaptation. Ensemble learning is

a ML technique that combines multiple base learners to tackle the same problem [145]. In

ensemble learning, base learners can be constructed using different algorithms, different hy-

perparameter configurations, or different subsets. As ensemble learning models aggregate the

outputs of multiple base learners, they often have better generalizability than single models.

For concept drift adaptation, reusing existing models in an ensemble is much more efficient

than training new models on data streams with recurring concept drift [131]. Ensemble meth-

ods for data stream analytics can be further classified as block-based ensembles and online

ensembles [150].

Block-based ensembles divide the data streams into discrete blocks with defined sizes and

train a base learner on each block. When a new block is added, the existing base learners are

evaluated and upgraded. Many block-based ensemble learning methods have been designed for

concept drift adaptation, including Streaming Ensemble Algorithm (SEA), Accuracy Weighted

Ensemble (AWE), Adaptive Classifier Ensemble (ACE), Learn++.NSE, Dynamic Weighted

Majority (DWM), Diversity and Transfer-based Ensemble Learning (DTEL), etc.

SEA [151] is an ensemble learning model that adapts to concept changes by changing

its structure. It constructs an ensemble of N base learners, each trained on a batch of data

samples. The final result is computed using the majority voting technique, which combines the

prediction outcomes of base learners with the same weight. SEA limits the maximum number

of base learners by the use of a threshold. Once the threshold is reached, the newly trained base

learner will replace the worst-performing base learner according to the error rate and diversity.

Experimental studies show that SEA is effective when the ensemble has no more than 25 base

learners [140].
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AWE [152] is another ensemble learning approach that trains a base learner on each data

chunk and combines the base learners, but it improves the technique of base learner replace-

ment. Each incoming data chunk will be used to train a new base learner and evaluate the other

existing base learners. The top n best-performing base learners will be chosen to create a new

ensemble model. Thus, the outdated base learners will be removed from the ensemble, leaving

only those capable of effectively predicting the data with the new concept. The AWE method

outperforms other methods when dealing with streaming data that contains recurring concept

drift, and its performance on large streaming data will continue to improve [140]. However,

AWE’s chunk-size selection remains a concern. Additionally, a noisy new data block may

result in a biased ensemble [153].

ACE [154] is a variant of AWE that is designed to deal with gradual drift. It continuously

monitors the error rate change of each base learner in response to new input data, and removes

the base models with degrading performance. ACE is effective at handling gradual drift, but

struggles with sudden and recurring concept drifts.

DWM [155] is another ensemble model that trains multiple base learners but weights them

differently based on their prediction performance. When a base learner makes an inaccurate

prediction, its weight is slightly reduced. Additionally, if the ensemble model makes an incor-

rect prediction, a new base learner will be trained and given the highest weight among the base

learners. The primary advantage of DWM is that it is capable of preserving historical models

built on existing concepts. However, it may be resource-intensive, particularly when dealing

with huge volumes of streaming data [153].

Learn++.NSE [156] is an ensemble learning model that consists of multiple incrementally

trained neural network models. Each base learner is trained on a single batch of incoming data.

The Learn++.NSE model dynamically weights base neural network models depending on their

error rates on the most recent batch of data. Additionally, the incorrectly predicted instances

will be assigned a higher weight, allowing learners to concentrate on the challenging instances.

When the ensemble model’s prediction error rate exceeds a predefined threshold, a new base

learner is trained and added to the ensemble [153]. Learn++.NSE can handle sudden, gradual,

and recurring drifts, because the base learners can be deactivated and reactivated by adjusting

their weights [131].
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DTEL [144] is an ensemble learning model that trains and stores each historical model from

the initial models and then uses a transfer learning strategy to transfer the initial or historical

models to new incoming data. To maintain model diversity in DTEL, it is crucial to train base

models on a number of diverse data distributions or concepts. DTEL works effectively in the

presence of recurring drift because historical models can be preserved and directly transferred

to a new drift. On the other hand, owing to the utilization of transfer learning, DTEL often has

a high learning efficiency and a quick response time to drift.

Paired Learner (PL) technique [157] is an effective drift adapter that pairs a steady online

learner with a reactive one to deal with concept drift. A stable learner makes predictions based

on its entire experience, while an active learner makes predictions based on its most recent

experience. Thus, the proper learner can be chosen for different scenarios. Comparative studies

have revealed that the PL approach outperformed a wide variety of other ensemble methods or

achieved equivalent performance at a much lower computational cost.

Online ensembles can enhance learning performance by integrating multiple incremental

learning models, such as HTs. Gomes et al. [158] introduced the Adaptive Random Forest

(ARF) technique, which makes use of HTs as base learners and ADWIN as the default drift

detector for each tree. The drift detection process substitutes new trees that fit the new concept

for underperforming base trees. ARF often outperforms a wide variety of other techniques,

since the random forest method is also a well-performing ML technique. Additionally, ARF

makes optimal use of resampling and is adaptable to a wide range of drift types.

Gomes et al. [159] have presented a unique adaptive ensemble approach for streaming data

analytics called Streaming Random Patches (SRP). SRP makes predictions using a combina-

tion of random subspace and online bagging techniques. SRP is similar to ARF in principle but

employs a global subspace randomization mechanism rather than ARF’s local subspace ran-

domization. Global subspace randomization is a more flexible method of boosting the diversity

of base learners. While SRP’s prediction accuracy is often slightly higher than that of ARF,

its execution time is frequently longer. The number of base learners and the embedded drift

detector (e.g., ADWIN, DDM, EDDM, etc.) are the two significant hyperparameters of SRP

and ARF models.

Leverage Bagging (LB) [160] is another popular online ensemble that uses bootstrap sam-
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ples to construct base learners. It employs the Poisson distribution to increase the diversity of

input data and maximize bagging performance. While LB is simple to build, it often performs

worse than SRP and ARF.

Performance Weighted Probability Averaging Ensemble (PWPAE) [138] is a novel on-

line ensemble framework for concept drift adaptation. It uses the weighted prediction proba-

bilities to integrate four base online learners: ARF-ADWIN, ARF-DDM, SRP-ADWIN, and

SRP-DDM. PWPAE outperforms other compared drift adaptation methods as it uses dynamic

weights to take advantage of other online learning models. However, the computational com-

plexity of PWPAE is also higher than other methods.

Although ensemble learning models often perform well when dealing with gradual and

recurring drifts, they are incapable of coping with abrupt drifts owing to the ensemble learner’s

limited impact on a new base learner. In comparison to a single learner, however, using an

ensemble learning model often increases computing complexity and costs. Thus, ensemble

models that use the local learning strategy to train each base learner on a small local subset are

more efficient in streaming data analytics [145].

2.9 Selection of Evaluation Metrics and Validation Methods

2.9.1 Evaluation Metrics Selection

To evaluate the learning model on a given IoT dataset, appropriate metrics should be selected

in the AutoML pipeline, as they have a significant impact on model selection and HPO proce-

dures.

The performance metrics are mainly chosen according to the types of problems (e.g., accu-

racy, precision, recall, and F1-score for classification problems; Mean Squared Error (MSE),

Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) for regression prob-

lems) [125] [161] [162].
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Classification Metrics

Accuracy is the most basic metric, defined as the proportion of correctly categorized test in-

stances to the total number of test instances [163]. It is applicable to the majority of clas-

sification problems but is less useful when dealing with imbalanced datasets. Accuracy can

be calculated by using True Positives (TPs), True Negatives (TNs), False Positives (FPs), and

False Negatives (FNs):

Acc =
T P + T N

T P + T N + FP + FN
(2.34)

Precision is the metric used to quantify the correctness of classification. Precision indi-

cates the ratio of correct positive classifications to expected positive classifications. The larger

the proportion, the more accurate the model, indicating that it is more capable of correctly

identifying the positive class.

Precision =
T P

T P + FP
(2.35)

Recall is a measure of the percentage of accurately recognized positive instances to the total

number of positive instances.

Recall =
T P

T P + FN
(2.36)

The F1 score is calculated as the harmonic mean of the Recall and Precision scores, there-

fore balancing their respective strengths.

F1 =
2 × T P

2 × T P + FP + FN
(2.37)

The Receiver Operating Characteristic curve (ROC curve) plots the true positive rate against

the false positive rate. AUC-ROC stands for Area Under Receiver Operating Characteristics,

and a larger area indicates a more accurate model.

If class imbalance occurs, the F1-score or AUC-ROC should be used instead of accuracy to

determine the optimal solution. Otherwise, a biased model may be returned.
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Regression Metrics

In contrast to classification models, which produce discrete output variables, regression models

aim to predict continuous output variables [162]. As a result, relevant measures for evaluating

regression models are appropriately established.

MSE is a straightforward measure that computes the difference between the actual and

anticipated values (error), squares it, and then delivers the mean of all errors. MSE is very sen-

sitive to outliers and will display a very large error rate even if a few outliers exist in otherwise

well-fitted model predictions. Assuming y is the real value and ŷ is the estimated value, the

MSE for a dataset of size n can be denoted by:

MS E =
1
n

n∑
i=1

(yi − ŷi)2 (2.38)

RMSE is the root of MSE. The advantage of RMSE is that it assists in reducing the magni-

tude of the mistakes to more interpretable numbers.

RMS E =

√√
1
n

n∑
i=1

(yi − ŷi)2 (2.39)

MAE is the average of the absolute error numbers (actuals – expectations).

MAE =
1
n

n∑
i=1

|yi − ŷi| (2.40)

MAE is the preferred method when outlier values need to be ignored, since it considerably

reduces the penalty associated with outliers by deleting the square terms.

Unsupervised Learning Metrics

The Silhouette Coefficient quantifies how close or distant each point in one cluster is to each

point in the other clusters [63]. Higher Silhouette values (closer to +1) indicate a strong sepa-

ration of sample points from two different clusters. While a value of 0 indicates that the points

are close to the decision boundary, values closer to −1 indicate that the points were incorrectly

assigned to the cluster.
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Execution Time & Memory

Due to the fact that IoT systems often face strict time and memory limits, the execution time

and memory usage of the AutoML model should also be considered [148]. The execution time

comprises the time spent training and updating the model, as well as the time spent testing

each instance. This can be used to determine if the learning model meets the requirements for

real-time processing. Memory consumption can be used to determine if the size of the learning

model and the memory used by it are smaller than the system memory on the IoT device, which

is often used for edge computing; otherwise, the model must be implemented on a cloud server

to ensure enough computational power and resources.

2.9.2 Validation Method Selection

Hold-out Evaluation

Hold-out evaluation is a frequently used evaluation method for ML algorithms [134]. In hold-

out evaluation, a hold-out subset is separated from the original dataset before the model training

process. After training a model, its generalizability on the previously unseen dataset will be

validated using the hold-out subset. For streaming data with concept drift, a hold-out evaluation

will assess a learner at time t by generating a hold-out subset that has the same concept at t.

The current learning model is evaluated on the test sets at regular time intervals. Thus, for

dynamic IoT data stream analytics, hold-out evaluation is only able to evaluate the learner’s

performance on synthetic data with predefined drift times [131].

Cross-Validation

Cross-validation is an effective and popular evaluation method [164]. It uses a resampling

strategy to evaluate ML models and assess how a model performs on different partitions of a

given dataset. The k-fold cross-validation method is conducted by dividing the original dataset

into k equal subsets for k different experiments; in each experiment, each of the subsets is

selected as the validation set, while the other (k − 1) subsets are used as the training set. The

average performance of the learning model in k experiments is calculated as the final prediction

performance. Unlike hold-out validation, which only assesses ML models on a subset of data
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and may produce biassed models that only perform well on a subset of data, using cross-

validation can evaluate ML models on all subsets of data to avoid over-fitting. Cross-validation

in IoT time-series data enables the evaluation of a learner on different time periods, assisting

in the development of a complete and robust online learning model.

The order of the data is critical for time-series-related problems. For time-related datasets,

random split or k-fold split of data into train and validation may not yield good results. For

the time-series dataset, the split of data into train and validation sets is according to the time,

also referred to as the forwarding chaining method or rolling cross-validation. For a particular

iteration, the future instances of train data can be treated as validation data.

Prequential Evaluation

Prequential evaluation, also named test-and-train validation, is one of the most appropriate

methods to evaluate model learning performance on data streams generated in dynamic envi-

ronments [163] [165]. In prequential evaluation, each incoming instance is firstly predicted

by the learning model to update the metrics, and then learned by the model for model updat-

ing [131]. The prequential error E can be calculated by the sum of a loss function:

E =
n∑

t=1

f (yt, ŷt) (2.41)

where n is the total number of incoming samples, yt and ŷt are the true and predicted values of

the tth sample, the loss function f can be selected from the metrics introduced in Section 2.9.1,

based on the problem type.

The prequential error is dynamically updated as new data samples arrive. Thus, using

prequential evaluation can monitor the real-time performance of a learning model using metrics

that change dynamically with each new data sample. Prequential evaluation can often be used

to evaluate real-time model performance and take the most advantage of streaming data.
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2.10 Tools and Libraries

2.10.1 AutoML & HPO Tools

Auto-Weka [19] is recognized as the first framework for AutoML. It is built on top of Weka,

a well-known Java library package that contains a large number of ML methods. Bayesian

optimization methods are the core strategies of Auto-Weka for both model selection and HPO

procedures.

Auto-Sklearn [113] is a Python package for AutoML and CASH that is developed on top

of Scikit-Learn. Auto-Sklearn introduced the concept of meta-learning for the model selection

and HPO procedures. BO and ensemble approaches are employed in Auto-Sklearn to optimize

the output models’ performance. Both meta-learning and ensemble approaches can enhance

the performance of model optimization.

Hyperopt-Sklearn [166] is AutoML framework built on the Scikit-learn library. Hyperopt-

Sklearn utilizes Hyperopt to establish the search space for possible Scikit-Learn core compo-

nents, such as the HPO and preprocessing approaches. Hyperopt supports a variety of optimiza-

tion techniques for CASH, including random search and Bayesian optimization, for exploring

search spaces including different types of variables.

Auto-Keras [167] is an open-source AutoML library. It is developed on top of Keras, a

well-known DL library. Auto-Keras implements HPO methods to design optimal DL models.

TPOT [118] is a tree-based optimization framework for AutoML applications built on top

of Scikit-Learn. It uses genetic algorithms to explore potential configurations by feature engi-

neering and CASH procedures, thus finding the best solution.

H2O [114] is a AutoML platform that supports both Python and R languages. H2O is

capable of automating a wide variety of complex ML tasks, including feature engineering,

model selection, model tuning, model visualization, and model validation.

Amazon SageMaker [168] is a AutoML tool built on Amazon Web Services (AWS). It

involves automated model tuning as a major module. In Amazon SageMaker, RS and BO

methods are used to optimize ML models. It enables large-scale parallel optimization of com-

plicated models and datasets.

Scikit-optimize (Skopt) [169] is a HPO library that is built on top of the scikit-learn [24]
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library. It implements several sequential model-based optimization models, including RS and

BO-GP. The methods exhibit good performance with small search space and proper initializa-

tion.

Hyperopt [166] is a HPO framework that involves RS and BO-TPE as the optimization

algorithms. Unlike some of the other libraries that only support a single model, Hyperopt is

able to use multiple models to model hierarchical hyper-parameters. In addition, Hyperopt

is parallelizable since it uses MongoDb as the central database to store the hyper-parameter

combinations.

Optunity [84] is a popular HPO framework that provides several optimization techniques,

including GS, RS, PSO, and BO-TPE. In Optunity, categorical hyper-parameters are converted

to discrete hyper-parameters by indexing, and discrete hyper-parameters are processed as con-

tinuous hyper-parameters by rounding them; as such, it supports all types of hyper-parameters.

Hyperband [100] is a Python package for tuning hyper-parameters by Hyperband, a bandit-

based approach. Similar to ’GridSearchCV’ and ’RandomizedSearchCV’ in scikit-learn, there

is a class named ’HyperbandSearchCV’ in Hyperband that can be combined with sklearn and

used for HPO problems. In ’HyperbandSearchCV’ method, cross-validation is used for evalu-

ation.

TPOT [118] is a Python tool for auto-ML that uses genetic programming to optimize ML

pipelines. TPOT is built on top of sklearn, so it is easy to implement TPOT on ML models.

’TPOTClassifier’ is its principal function, and several additional hyper-parameters of GA must

be set to fit specific problems.

2.10.2 Online Learning and Concept Drift Adaptation Tools

Several tools and frameworks are available for analyzing streaming data and resolving concept

drift issues.

Massive Online Analysis (MOA) [170] is an open-source tool for streaming data analy-

sis. It is developed in Java and is based on the Waikato Environment for Knowledge Analysis

(WEKA) platform. MOA is capable of detecting and adapting to concept drift using a num-

ber of strategies, including DDM, EDDM, and Hoeffding tree. Additionally, MOA contains
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various classes for creating streaming data, such as those for the Agrawal, Hyperplane, and

Waveform datasets.

Scikit-multiflow (Skmultiflow) [171] is a Python package for streaming data learning and

concept drift adaptation. It provides many state-of-the-art streaming data learning algorithms,

data generators, concept drift detection methods, and algorithms. The included drift detection

methods are ADWIN, DDM, EDDM, and Page Hinkley. Streaming data learners for con-

cept drift adaptation include KNN+ADWIN, Hoeffding adaptive tree, ARF, Oze bagging, etc.

Stream data generators include Agrawal, Hyperplane, Led, Mixed, Random Tree, Waveform,

etc. Skmultiflow supports both prequential and hold-out evaluations of models and all regularly

used machine learning measures, such as accuracy, Kappa, and MSE.

River [172] is a Python library for data stream analytics and addressing concept drift

through online ML models. All accessible learning models in River can be updated with a

single incoming instance, allowing these methods to learn from data streams. It also includes a

variety of streaming datasets, such as AirlinePassengers, Bananas, Bikes, ChickWeights, Cred-

itCard, and Elec2. Additionally, it incorporates several well-known ML algorithms that support

incremental learning, such as KNN, NB, and MLP.

Scikit-learn (Sklearn) [24] is a popular ML library written in Python. Although Sklearn

is primarily used for batch learning problems, it also provides several incremental learning

methods for online learning and streaming data analytics, including multinomial NB, stochastic

gradient descent (SGD), MLP, incremental PCA, etc.

2.11 Case Study 1: HPO Method Comparison

To put theory into practice, several experiments have been conducted based on the theory in

previous sections. This section provides the experiments of applying seven different HPO

techniques to three common and representative ML algorithms on two benchmark datasets. In

the first part of this section, the experimental setup and the main process of HPO are discussed.

In the second part, the results of utilizing different HPO methods are compared and analyzed.
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The sample code of the experiments has been published online at GitHub to illustrate the

process of applying hyper-parameter optimization to ML models.

2.11.1 Experimental Setup

The experiments are conducted based on the following procedures.

Firstly, two standard benchmarking datasets provided by the sklearn library [24], namely,

the Modified National Institute of Standards and Technology dataset (MNIST) and the Boston

housing dataset, are selected as the benchmark datasets for HPO method evaluation on data an-

alytics problems. MNIST is a hand-written digit recognition dataset used as a multi-classification

problem, while the Boston housing dataset contains information about the price of houses in

various places in the city of Boston and can be used as a regression dataset to predict the

housing prices.

At the next stage, the ML models with their objective function need to be configured. In

Section 2.5.7, all common ML models are divided into five categories based on their hyper-

parameter types. Among those ML categories, ”one discrete hyper-parameter”, ”a few condi-

tional hyper-parameters”, and ”a large hyper-parameter configuration space with multiple types

of hyper-parameters” are the three most common cases. Thus, three ML algorithms, KNN,

SVM, and RF, are selected as the target models to be optimized, since their hyper-parameter

types represent the three most common HPO cases: KNN has one important hyper-parameter,

the number of considered nearest neighbors for each sample; SVM has a few conditional hyper-

parameters, like the kernel type and the penalty parameter C; RF has multiple hyper-parameters

of different types, as discussed in Section 2.4.1. Moreover, KNN, SVM, and RF can all be ap-

plied to solve both classification and regression problems.

In the next step, the performance metrics and evaluation methods are configured. For each

experiment on the selected two datasets, 3-fold cross validation is implemented to evaluate

the involved HPO methods. The two most commonly-used performance metrics are used in

our experiments. For classification models, accuracy is used as the classifier performance

metric, which is the proportion of correctly classified data; while for regression models, the

Code is available at: https://github.com/LiYangHart/Hyperparameter-Optimization-of-Machine-Learning-
Algorithms
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Table 2.5: Configuration space for the hyper-parameters of tested ML models
ML Model Hyper-parameter Type Search Space

RF Classifier

n estimators Discrete [10,100]
max depth Discrete [5,50]
min samples split Discrete [2,11]
min samples leaf Discrete [1,11]
criterion Categorical [’gini’, ’entropy’]
max features Discrete [1,64]

SVM Classifier C Continuous [0.1,50]
kernel Categorical [’linear’, ’poly’, ’rbf’, ’sigmoid’]

KNN Classifier n neighbors Discrete [1,20]

RF Regressor

n estimators Discrete [10,100]
max depth Discrete [5,50]
min samples split Discrete [2,11]
min samples leaf Discrete [1,11]
criterion Categorical [’mse’, ’mae’]
max features Discrete [1,13]

SVM Regressor
C Continuous [0.1,50]
kernel Categorical [’linear’, ’poly’, ’rbf’, ’sigmoid’]
epsilon Continuous [0.001,1]

KNN Regressor n neighbors Discrete [1,20]

mean squared error (MSE) is used as the regressor performance metric, which measures the

average squared difference between the predicted values and the actual values. Additionally,

the computational time (CT) , the total time needed to complete a HPO process with 3-fold

cross-validation, is also used as the model efficiency metric [48]. In each experiment, the

optimized ML model architecture that has the highest accuracy or the lowest MSE and the

optimal hyper-parameter configuration will be returned.

After that, to fairly compare different optimization algorithms and frameworks, certain

constraints should be satisfied. Firstly, we compare different HPO methods using the same

hyper-parameter configuration space. For KNN, the only hyper-parameter to be optimized,

’n neighbors’, is set to be in the same range of 1 to 20 for each optimization method evaluation.

The hyper-parameters of SVM and RF models for classification and regression problems are

also set to be in the same configuration space for each type of problem. The specifics of the

configuration space for ML models are shown in Table 2.5. The selected hyper-parameters and

their search space are determined based on the concepts in Section 2.4, domain knowledge, and

manual testings [79]. The hyper-parameter types of each ML algorithm are also summarized

in Table 2.5.
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On the other hand, to fairly compare the performance metrics of optimization techniques,

the maximum number of iterations for all HPO methods is set to 50 for RF and SVM model op-

timizations, and 10 for KNN model optimization based on manual testings and domain knowl-

edge. Moreover, to avoid the impacts of randomness, all experiments are repeated ten times

with different random seeds, and results are averaged for regression problems or given the

majority vote for classification problems.

In Section 2.5, more than ten HPO methods are introduced. In our experiments, seven

representative HPO approaches are selected for performance comparison, including GS, RS,

BO-GP, BO-TPE, Hyperband, GA, and PSO.

All experiments were conducted using Python 3.5 on a machine with 6 Core i7-8700 pro-

cessor and 16 gigabytes (GB) of memory. The involved ML and HPO algorithms are evalu-

ated using multiple open-source Python libraries and frameworks introduced in Section 2.10,

including Sklearn [24], Skopt [169], Hyperopt [166], Optunity [84], Hyperband [100], and

TPOT [118].

2.11.2 Performance Comparison

The experiments of applying seven different HPO methods to ML models are summarized

in Tables 2.6 to 2.11. Tables 2.6 to 2.8 provide the performance of each optimization algo-

rithm when applied to RF, SVM, and KNN classifiers evaluated on the MNIST dataset after a

complete optimization process; while Tables 2.9 to 2.11 demonstrate the performance of each

HPO method when applied to RF, SVM, and KNN regressors evaluated on the Boston-housing

dataset. In the first step, each ML model with its default hyper-parameter configuration is

trained and evaluated as the baseline model. After that, each HPO algorithm is implemented

on the ML models to evaluate and compare their accuracies for classification problems, or

MSEs for regression problems, as well as their computational time (CT).

From Tables 2.6 to 2.11, we can see that using the default HP configurations do not yield

the best model performance in our experiments, which emphasizes the importance of utilizing

HPO methods. GS and RS can be seen as baseline models for HPO problems. From the results

in Tables 2.6 to 2.11, it is shown that the computational time of GS is often much higher than
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Table 2.6: Performance evaluation of applying HPO methods to the RF classifier on the MNIST
dataset

Optimization
Algorithm

Accuracy
(%)

CT (s)

Default HPs 90.65 0.09
GS 93.32 48.62
RS 93.38 16.73
BO-GP 93.38 20.60
BO-TPE 93.88 12.58
Hyperband 93.38 8.89
GA 93.83 19.19
PSO 93.73 12.43

Table 2.7: Performance evaluation of applying HPO methods to the SVM classifier on the
MNIST dataset

Optimization
Algorithm

Accuracy
(%)

CT (s)

Default HPs 97.05 0.29
GS 97.44 32.90
RS 97.35 12.48
BO-GP 97.50 17.56
BO-TPE 97.44 3.02
Hyperband 97.44 11.37
GA 97.44 16.89
PSO 97.44 8.33

Table 2.8: Performance evaluation of applying HPO methods to the KNN classifier on the
MNIST dataset

Optimization
Algorithm

Accuracy
(%)

CT (s)

Default HPs 96.27 0.24
GS 96.22 7.86
RS 96.33 6.44
BO-GP 96.83 1.12
BO-TPE 96.83 2.33
Hyperband 96.22 4.54
GA 96.83 2.34
PSO 96.83 1.73

other optimization methods. With the same search space size, RS is faster than GS, but both

of them cannot guarantee to detect the near-optimal hyper-parameter configurations of ML

models, especially for RF and SVM models which have a larger search space than KNN.

The performance of BO and multi-fidelity models is much better than GS and RS. The



90

Table 2.9: Performance evaluation of applying HPO methods to the RF regressor on the
Boston-housing dataset

Optimization
Algorithm

MSE CT (s)

Default HPs 31.26 0.08
GS 29.02 4.64
RS 27.92 3.42
BO-GP 26.79 17.94
BO-TPE 25.42 1.53
Hyperband 26.14 2.56
GA 26.95 4.73
PSO 25.69 3.20

Table 2.10: Performance evaluation of applying HPO methods to the SVM regressor on the
Boston-housing dataset

Optimization
Algorithm

MSE CT (s)

Default HPs 77.43 0.02
GS 67.07 1.33
RS 61.40 0.48
BO-GP 61.27 5.87
BO-TPE 59.40 0.33
Hyperband 73.44 0.32
GA 60.17 1.12
PSO 58.72 0.53

Table 2.11: Performance evaluation of applying HPO methods to the KNN regressor on the
Boston-housing dataset

Optimization
Algorithm

MSE CT (s)

Default HPs 81.48 0.004
GS 81.53 0.12
RS 80.77 0.11
BO-GP 80.77 0.49
BO-TPE 80.83 0.08
Hyperband 80.87 0.10
GA 80.77 0.33
PSO 80.74 0.19

computation time of BO-GP is often higher than other HPO methods due to its cubic time

complexity, but it can obtain better performance metrics for ML models with small-size con-

tinuous hyper-parameter space, like KNN. Conversely, hyperband is often not able to obtain

the highest accuracy or the lowest MSE among the optimization methods, but their computa-
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tional time is low because it works on the small-sized subsets. The performance of BO-TPE

is often better than others, since they can detect the optimal or near-optimal hyper-parameter

configurations within a short computational time.

For metaheuristics methods, GA and PSO, their accuracies are often higher than other HPO

methods for classification problems, and their MSEs are often lower than other optimization

techniques. However, their computational time is often higher than BO-TPE and multi-fidelity

models, especially for GA, which does not support parallel executions.

To summarize, it is simple to implement GS and RS, but they often cannot detect the op-

timal hyper-parameter configurations or cost much computational time. BO-GP and GA also

cost more computational time than many other HPO methods, but BO-GP works well on small

configuration space, while GA is effective for large configuration space. Hyperband’s compu-

tational time is low, but it cannot guarantee to detect the global optimums. For ML models

with large configuration space, BO-TPE and PSO often work well.

2.12 Case Study 2: Complete AutoML Pipeline

With the introduction of IoT data analytics and AutoML techniques, a case study is presented

in this section to illustrate the capabilities and advantages of adopting AutoML techniques.

A comprehensive AutoML pipeline is used in this case study to solve IoT anomaly detection

problems.

This section provides the experimental results of applying the complete AutoML pipeline

to an IoT anomaly detection use case using real-world IoT datasets. The first subsection intro-

duces the use case. In the second part of this section, the experimental setup of the AutoML

pipeline is described. In the last part, the results of offline IoT data analytics using traditional

ML algorithms and dynamic IoT data analytics utilizing online adaptive algorithms are pre-

sented and analyzed.

2.12.1 Use Case

With the introduction of IoT data analytics and AutoML techniques, a case study is presented in

this section to illustrate the capabilities and advantages of AutoML. A comprehensive AutoML
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pipeline is used in this case study to solve IoT anomaly detection problems.

This section provides the experimental results of applying the complete AutoML pipeline to

an IoT anomaly detection use case using real-world IoT datasets. The first subsection discusses

the use case. In the second part of this section, the experimental setup of the AutoML pipeline

is described. In the last part, the results of offline IoT data analytics using traditional ML

algorithms and dynamic IoT data analytics utilizing online adaptive algorithms are presented

and analyzed.

2.12.2 Use Case

With the rapid development of IoT systems, numerous cyber-threats have extended from the

Internet to people’s everyday devices. Current IoT systems are vulnerable to most existing

cyber-threats, due to the limited IoT device capability, gigantic scale, and vulnerable envi-

ronments [173]. Due to the paucity of IoT security mechanisms capable of dealing with IoT

threats, it is critical for IoT system protection to develop advanced approaches for detecting

and identifying abnormal IoT devices and events. Thus, IoT anomaly detection has become an

important use case in recent IoT systems for detecting compromised IoT devices and malicious

IoT attacks [174].

For the purpose of enhancing IoT security, supervised ML algorithms can be used as ef-

fective mechanisms to distinguish malicious attack traffic from normal traffic. As discussed in

Section 2.2.3, IoT anomaly detection problems can be classified into batch learning problems

and online learning problems based on whether their environment is static or dynamic. In static

IoT environments, traditional ML algorithms can be used to construct a conventional AutoML

pipeline for static IoT data analytics. In dynamic IoT environments, online learning techniques

can be used to construct a drift-adaptive AutoML pipeline for IoT streaming data analytics.

Two public IoT anomaly detection datasets are used in this work to evaluate the proposed

AutoML pipeline. The first dataset is the IoTID20 dataset proposed in [175]. This dataset

was created by using normal and attack virtual machines as network platforms, simulating IoT

services with the node-red tool, and extracting features with the ISCXFlow meter program.

A typical smart home environment was established for generating this dataset using five IoT
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devices or services: a smart fridge, a smart thermostat, motion-activated lights, a weather

station, and a remotely-activated garage door. Thus, the traffic data samples of normal and

abnormal IoT devices are collected in Pcap files.

The second dataset utilized in this chapter is the CICIDS2017 dataset [176]. It is generated

by the Canadian Institute of Cybersecurity (CIC) and has the most updated network threats.

The CICIDS2017 dataset is close to real-world network data since it has a large amount of

network traffic data, a variety of network features (80), various types of attacks (14), and highly

imbalanced classes.

The proposed AutoML pipeline is evaluated using a reduced IoTID20 dataset with 62,578

entries and a reduced NSL-KDD dataset with 28,307 records for the purpose of this work.

2.12.3 Experimental Setup

The studies use a comprehensive AutoML pipeline to solve the IoT anomaly detection prob-

lem, including the AutoDP, AutoFE, automated model selection, and HPO procedures. The

specifications of each procedure in the AutoML pipeline are presented in Table 2.12.

AutoDP involves automated encoding, imputation, normalization, and balancing proce-

dures. The automated encoding procedure identifies and converts string features to numerical

features to make the data more understandable for ML models. The automated imputation

procedure includes detecting missing values and imputing missing values using the mean im-

putation method introduced in Section 2.6.3. The automated normalization process automati-

cally chooses an appropriate normalization method from Z-score and min-max normalization

methods based on their performance in anomaly detection.

As the CICIDS2017 and IoTID20 datasets are both highly-imbalanced datasets, with an

abnormal/normal ratio of 19%/81% and 6%/94%, respectively, an automated data balancing

technique is also implemented in the proposed AutoML pipeline to balance the datasets. The

system will evaluate whether the incoming dataset is imbalanced (the abnormal/normal ratio

is smaller than a threshold (e.g., 50%)); and if it is, the SMOTE technique introduced in Sec-

tion 2.6.4 will be automatically implemented to synthesize new samples for the minority class

to balance the data. The quality of the datasets is significantly enhanced after the AutoDP
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Table 2.12: The specifications of the proposed AutoML pipeline.
Category Procedure Method Aim/Operation

AutoDP

Encoding Label Encod-
ing

Identify and transform string features into
numerical features to make the data more
readable by ML models

Imputation Mean Imputa-
tion

Detect and impute missing values to im-
prove data quality

Normalization Z-Score or
Min-Max Nor-
malization

Normalize the range of features to a similar
scale to improve data quality

Balancing SMOTE Generate minority class samples to solve
class-imbalance and improve data quality

AutoFE Feature Selection IG Remove irrelevant features to improve
model efficiency

Pearson Corre-
lation

Remove redundant features to improve
model efficiency and accuracy

Automated
Model
Learning

Model Selection

NB
Select the best-performing model among
five common ML models by evaluating
their learning performance

MLP
KNN
RF
LightGBM

Hyperparameter
Optimization

BO-TPE Tune the hyperparameters of the learning
models to obtain the optimized models

Automated
Model
Updating

Adaptive
Model
Selection

HT Select the best-performing model among
four online adaptive models to adapt to
dynamic data streams with concept drift
issues

EFDT
ARF
SRP

procedures.

As both datasets used in the experiments have a large number of features totaling more

than 80, the AutoFE technique in the proposed AutoML pipeline focuses primarily on feature

selection in order to obtain a sanitized and optimal feature subset. In the first step of AutoFE,

an IG-based method is used to remove irrelevant or unimportant features by measuring the

importance of each feature. In the second step, a Pearson correlation-based method is used

to remove redundant and noising features by calculating the correlation between different fea-

tures. By removing unnecessary and redundant information using AutoFE, the learning model

becomes more efficient and accurate at detecting anomalies.

Automated model selection is an essential procedure in the development of AutoML pipelines.

For batch learning in static IoT environments, the learning model will be chosen from five con-

ventional ML algorithms (NB, MLP, KNN, RF, and LightGBM); while for online learning in

dynamic IoT environments, the learning model will be chosen from four drift-adaptive online
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Table 2.13: The HPO configuration of well-performing learning models.
Model Hyperparameter

Name
Configuration
Space

Optimal Value
on CICIDS2017

Optimal Value
on IoTID20

LightGBM

n estimators [50,500] 360 440
max depth [5,50] 36 38
learning rate (0, 1) 0.957 0.456
num leaves [100,2000] 1100 1200
min child samples [10,50] 50 25

RF

n estimators [50,500] 460 220
max depth [5,50] 26 14
min samples split [2,11] 8 2
min samples leaf [1,11] 1 4
criterion [’gini’, ’en-

tropy’]
’entropy’ ’entropy’

ARF n models [3, 20] 18 15
drift detector [‘ADWIN’,

‘DDM’]
‘DDM’ ‘DDM’

SRP n models [3, 20] 14 10
drift detector [‘ADWIN’,

‘DDM’]
‘DDM’ ‘DDM’

learning algorithms (HT, EFDT, ARF, and SRP), as it needs to be updated automatically based

on data distribution changes (concept drift). After evaluating the performance of each learning

model based on accuracy and F1-scores, the best-performing and the second best-performing

models using default hyperparameters will be selected for further evaluations using HPO. By

selecting not only the best-performing model but also the second-best-performing model, the

probability of missing the real optimal model can be decreased.

After selecting the top-two learning models, their hyperparameters are tuned by the HPO

technique to obtain the two optimized models and then select the final optimal model. As

shown in Tables 2.13 - 2.17, the two best-performing batch learning algorithms on both datasets

are RF and LightGBM, while the two best-performing online learning methods are ARF and

SRP. Thus, the hyperparameters of these four algorithms are optimized. Table 2.13 illustrates

the search space and the detect optimal values for the hyperparameters of these learning algo-

rithms. Continuous hyperparameters are assigned a search range, while categorical hyperpa-

rameters are assigned all possible values/choices. BO-TPE is used to optimize learning models

because it works well with a variety of different hyperparameters and has a low time complexity

of O(nlogn) [76].

The evaluation method for the learning models is determined by the tasks and environ-
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ments. For offline learning in static environments, 5-fold cross-validation is used in the ex-

periments since it can help develop a generic and robust learning model. For online learning

in dynamic environments, prequential evaluation introduced in Section 2.9.2 is used in the ex-

periments to evaluate the long-term learning performance of the drift-adaptive models on IoT

time-series data.

Lastly, since the used datasets are highly imbalanced, the F1-score is chosen as the primary

performance metric for evaluating the proposed AutoML pipeline. This is because F1-score

considers both precision and recall metrics to give a fair view of anomaly detection results and

minimize bias [125]. To ensure comprehensiveness of the evaluation results, the performance

of each learning method is presented using four different metrics (accuracy, precision, recall,

and F1-score), as shown in Tables 2.14 - 2.17. Additionally, the learning time of each model,

including model training and testing, is also presented in Tables 2.14 - 2.17 to allow for a

comparison of model efficiency.

The experiments were conducted on a machine with an i7-8700 processor and 16 GB of

memory, representing an IoT server machine that supports large IoT data analytics. The tech-

niques and methods utilized in the studies are implemented using the Python packages: Auto-

Sklearn [113], Hyperopt [166], Skmultiflow [154], and River [155].

2.12.4 Experimental Results and Analysis

In this work, two series of experiments were conducted to validate the effectiveness of the Au-

toML framework. The first series of experiments were conducted to assess an offline AutoML

pipeline in static IoT environments, while the second series of experiments were conducted

to evaluate an online AutoML pipeline in dynamic IoT environments. The primary difference

between the offline and online AutoML pipelines is the learning models used in the framework

(traditional ML models versus adaptive online models).

To assess the AutoML framework’s performance, we evaluated the accuracy, precision,

recall, F1-score, and model learning time when using AutoML versus when not using AutoML

in both offline and online learning tests. The experimental results for offline learning on the

CICIDS2017 and IoTID20 datasets are shown in Tables 2.14 and 2.15, while the experimental
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Table 2.14: The experimental results of offline learning on the CICIDS2017 dataset using 5-
fold cross-validation.

AutoML
Proce-
dures

Learning
Algorithm

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 (%) Model
Learning
Time (s)

No

NB 72.545 37.837 62.253 47.896 0.2
MLP 88.536 94.277 43.701 58.830 63.5
KNN 97.238 92.081 93.782 92.923 9.1
RF 99.703 99.577 98.830 99.248 17.2
LightGBM 99.816 99.543 99.506 99.525 1.4

AutoDP &
AutoFE

NB 73.316 39.690 73.080 51.435 0.1
MLP 85.968 92.069 26.563 44.831 55.2
KNN 97.058 92.024 92.831 92.423 9.1
RF 99.735 99.632 99.012 99.294 13.3
LightGBM 99.844 99.616 99.579 99.598 0.9

All RF 99.760 99.578 99.141 99.368 62.3
LightGBM 99.866 99.670 99.634 99.653 1.0

results for online learning on the CICIDS2017 and IoTID20 datasets are presented in Tables

2.16 and 2.17.

Specifically, in each Table, three different sets of results are shown to demonstrate the per-

formance of the proposed AutoML pipeline. The first set of results compares the performance

of original ML algorithms with default hyperparameter configurations (without AutoML) as

baseline models for comparison purposes. The second set of results shows the performance

of ML algorithms after implementing the proposed AutoDP & AutoFE procedures to illustrate

the impact of data quality improvement by using AutoML. The third set of results presents the

performance of a complete AutoML pipeline, which comprises AutoDP, AutoFE, automated

model selection of the top-2 ML algorithms, and HPO. The proposed AutoML pipeline starts

by implementing AutoDP and AutoFE, and then automatically selects the two best-performing

learning models based on their F1-scores shown in the second set of results as the automated

model selection procedure. After that, the hyperparameters of the two selected models are

optimized to obtain a final optimal model with the best F1-score, as shown in the third set

of results. The well-performing configurations in each set experiment are highlighted with

boldface in Tables 2.14 - 2.17.

Table 2.14 summarizes the experimental results from the first series of experiments on of-

fline learning using the CICIDS2017 dataset. For original ML models without using AutoML,
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Table 2.15: The experimental results of offline learning on the IoTID20 dataset using 5-fold
cross-validation.

AutoML
Proce-
dures

Learning
Algorithm

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 (%) Model
Learning
Time (s)

No

NB 89.603 95.886 92.882 94.359 0.5
MLP 99.202 96.800 98.319 97.742 125.7
KNN 97.445 98.258 99.027 98.641 43.3
RF 99.920 99.913 100.0 99.953 25.5
LightGBM 99.984 99.985 99.998 99.991 2.5

AutoDP &
AutoFE

NB 93.628 93.629 99.998 96.709 0.2
MLP 95.009 95.099 98.943 97.781 113.6
KNN 97.865 98.534 99.196 98.864 44.3
RF 99.976 99.973 100.0 99.989 16.3
LightGBM 99.986 99.986 99.998 99.992 1.2

All RF 99.984 99.980 100.0 99.991 29.5
LightGBM 99.992 99.993 99.998 99.996 2.3

five ML models (NB, MLP, KNN, RF, and LightGBM) demonstrate largely different perfor-

mances. The F1-scores of NB and MLP models are at a low level (47.896% and 58.830%),

because they are simple models and under-fitting on the complex CICIDS2017 dataset, as

discussed in Table 2.1. RF and LightGBM models achieve high F1-scores of 99.248% and

99.525% due to their strong capacity to process complex and imbalanced datasets. After im-

plementing the proposed AutoDP and AutoFE procedures, the RF and LightGBM models are

still the two best-performing models. Their F1-scores are more than 6% higher than those

of the other three compared ML models. Compared with the ML models without AutoDP

and AutoFE, the F1-scores of the RF and LightGBM models have improved from 99.248%

to 99.294% and from 99.525% to 99.598%, respectively. This is because the data quality has

been improved by using SMOTE to balance the dataset and using FS methods to remove noisy

features. Additionally, the learning time for RF and LightGBM has been reduced from 17.2s

to 13.3s and from 1.4s to 0.9s, respectively. This is because the number of features of the CI-

CIDS2017 dataset has been reduced from 80 to 19 after implementing the AutoFE technique.

Furthermore, after implementing the HPO procedure to optimize the RF and LightGBM mod-

els to complete the entire AutoML pipeline, the performance of the learning models has been

further improved, and the optimal LightGBM model with the highest F1-score of 99.653% is

returned as the final model.
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Table 2.16: The experimental results of online learning on the CICIDS2017 dataset using
prequential evaluation.

AutoML
Proce-
dures

Learning
Algorithm

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 (%) Model
Learning
Time (s)

No

Offline
LightGBM

88.033 90.538 36.794 50.510 7.4

HT [146] 88.676 95.266 43.451 59.681 17.1
EFDT
[149]

95.132 86.438 88.674 87.541 17.4

ARF [158] 96.228 92.784 87.228 89.920 30.8
SRP [159] 95.772 92.204 85.292 88.614 231.7

AutoDP &
AutoFE

Offline
LightGBM

85.023 76.967 18.323 29.599 6.2

HT 88.496 76.749 57.894 66.001 7.7
EFDT 94.181 84.880 84.966 84.923 7.9
ARF 94.912 89.045 83.948 86.421 26.6
SRP 94.547 90.314 80.342 85.037 101.8

All ARF 98.593 96.259 96.455 96.357 29.3
SRP 98.990 97.801 96.944 97.371 139.4

Similarly, as shown in Table 2.15, the RF and LightGBM models outperform the other

three compared ML models on the IoTID20 dataset due to their ability to analyze complex

and imbalanced IoT anomaly detection data. Their F1-scores have slightly improved from

99.953% to 99.989% and 99.991% to 99.992% after implementing AutoDP and AutoFE, as

the SMOTE method has been implemented to balance the dataset and the FS methods have

been implemented to remove irrelevant and noisy features. As the number of features has been

reduced from 83 to 31, the learning time has also been reduced for each ML model. After

conducting the HPO procedures on the two best-performing models, RF and LightGBM, the

optimized LightGBM model achieves the highest F1-score of 99.996% on the IoTID20 dataset

and is selected as the final optimal model.

To summarize, implementing the AutoML pipeline can obtain a better offline learning

model with 0.128% and 0.005% F1-score improvement as well as 28.6% and 8.0% reduc-

tion in learning time, when compared to the best performing learning model obtained without

AutoML on the CICIDS2017 and IoTID20 datasets, respectively.

In the second series of experiments for online learning, the results on the CICIDS2017 and

IoTID20 datasets are shown in Tables 2.16 and 2.17, respectively. To justify the necessity of

online adaptive learning, the best-performing static ML model in the offline learning experi-
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Table 2.17: The experimental results of online learning on the IoTID20 dataset using prequen-
tial evaluation.

AutoML
Proce-
dures

Learning
Algorithm

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 (%) Model
Learning
Time (s)

No

Offline
LightGBM

98.500 98.793 99.618 99.204 11.6

HT [146] 98.220 98.981 99.120 99.051 37.2
EFDT
[149]

99.478 99.571 99.873 99.722 37.3

ARF [158] 98.195 98.434 99.659 99.043 65.3
SRP [159] 99.208 99.367 99.790 99.578 492.1

AutoDP &
AutoFE

Offline
LightGBM

99.037 99.005 99.983 99.492 9.4

HT 98.922 99.092 99.763 99.426 12.1
EFDT 99.280 99.359 99.877 99.617 12.2
ARF 99.501 99.541 99.928 99.734 51.1
SRP 99.494 99.539 99.922 99.730 159.2

All ARF 99.664 99.658 99.985 99.821 58.5
SRP 99.705 99.726 99.960 99.843 199.7

ments, offline LightGBM, is also evaluated for comparison purposes. As shown in Table 2.16,

the offline LightGBM model shows the worst F1-scores of 50.510% among the five evaluated

models (offline LightGBM, HT, EFDT, ARF, and SRP) on the CICIDS2017 dataset. This is be-

cause many new or zero-day attacks were launched in the creation process of the CICIDS2017

dataset, causing several concept drift points. As offline LightGBM cannot adapt to concept

drift and can only detect existing types of attacks, its performance has been gradually degrad-

ing over time. On the other hand, the four online learning methods (HT, EFDT, ARF, and SRP),

especially ARF and SRP, can adapt to concept drift and maintain high performance. Among the

four online learning algorithms, ARF and SRP are the two best-performing learning models,

with F1-scores of 86.421% and 85.037% after implementing the AutoDP and AutoFE proce-

dures. This is because they are strong online ensemble models with high drift adaptability, as

discussed in Section 2.8.4. The two incremental learning methods, HT and EFDT, are not as

robust as ensemble models due to their relatively low model complexity.

Compared with the learning models without using AutoDP and AutoFE, although F1-

scores of the learning models with AutoDP and AutoFE are slightly lower, their model learning

time has largely reduced from 30.8s to 26.6s and from 231.7s to 101.8s, respectively. The F1-

scores are slightly lower because the number of features of the CICIDS2017 dataset has been
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largely reduced from 80 to 19 after implementing the AutoFE method, which eliminates many

less important features. As online learning usually starts with a small number of samples, the

features have a more significant impact on online learning performance than offline learning.

Although removing less important features may ignore certain data patterns and slightly re-

duce the learning performance, it can largely reduce the model learning time as the complexity

and size of the dataset have been significantly reduced. To achieve real-time online learning

in IoT data analytics, it is crucial to take learning speed into account. Moreover, after imple-

menting the HPO procedure to complete the entire AutoML pipeline, the F1-scores of the ARF

and SRP models have significantly improved to 96.357% and 97.371%, respectively. Thus,

the proposed AutoML pipeline can return the optimal SRP model with the highest F1-score

of 97.371%. This justifies that the overall AutoML procedures can still improve both model

learning effectiveness and efficiency.

For the IoTID20 dataset, as shown in Table 2.17, the ARF and SRP models have also

achieved higher F1-scores than the other two learning models after executing the AutoDP and

AutoFE procedures, of 99.734% and 99.730%, respectively, although the best performing orig-

inal learning model without AutoML is EFDT (99.722%). This shows that different online

learning models will perform differently in specific IoT data analytics tasks. Additionally, the

offline LightGBM still achieves a relatively low F1-score of 99.204% on the IoTID20 dataset,

which is much lower than the F1-scores of most online learning methods.

After implementing AutoDP and AutoFE, the F1-scores of ARF and SRP have increased

by 0.691% and 0.152%, while their model learning time has reduced by 21.8% and 67.7%,

respectively. This is because the dataset remains balanced during the learning process after

implementing the SMOTE method, and the feature size has been largely reduced from 83 to

31 after implementing the IG and Pearson-based FS methods. Finally, after implementing

the HPO procedure, the optimal SRP model with the highest F1-score of 99.843% can be

returned. Therefore, implementing the AutoML pipeline can obtain a better online learning

model with 8.757% and 0.265% F1-score improvement as well as 39.8% and 59.4% learning

time reduction than the same learning model obtained without AutoML on the CICIDS2017

and IoTID20 datasets, respectively.

In conclusion, the proposed AutoML pipeline enables us to obtain an optimal learning
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model with high effectiveness and efficiency for IoT anomaly detection tasks in both offline and

online environments using the IoTID20 and CICIDS2017 datasets. Furthermore, the experi-

mental results in Tables 2.14 and 2.17 have justified the following assumptions and theoretical

analysis in previous sections:

1. Different ML methods have different performances in specific tasks, as demonstrated by

the performance of the five offline ML models and four online learning models in the

experimental results. This supports the necessity of selecting appropriate models.

2. Hyperparameter tuning and optimization have a direct impact on the model performance,

as shown in the third set of results in each of Tables 2.14 - 2.17. The performance

of learning models has been improved significantly by implementing the HPO method

(“All” versus “AutoDP & AutoFE”). This supports the necessity of hyperparameter op-

timization or automated model tuning.

3. Data pre-processing and feature engineering methods affect learning performance. The

performance of most learning models has been improved significantly by implementing

AutoDP and AutoFE (“AutoDP & AutoFE” versus “No”). This supports the necessity of

AutoDP and AutoFE.

4. Concept drift issues will cause model performance degradation, but automated model

updating and concept drift adaptation methods can address model performance degra-

dation. As shown in Tables 2.16 and 2.17, the best-performing offline models (offline

LightGBM) still perform the worst when compared to other online adaptive learning

models due to the occurrence of concept drift. This supports the necessity of automated

model updating and concept drift adaptation.

2.13 Open Challenges and Research Directions

To effectively apply AutoML methods to IoT streaming data analytics problems, many chal-

lenges need to be addressed. In this Section, we discuss the open challenges and research

directions in this domain. These challenges are classified into three major categories: IoT data

analytics challenges, AutoML application challenges, and concept drift challenges, as summa-

rized in Table 2.18.
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Table 2.18: The challenges and research directions of applying AutoML to IoT data analytics
Category Challenge Brief Description
IoT Data
Analytics

Challenges

IoT Data Quality Data quality has a direct effect on data analytics
performance. However, IoT data is often collected
from different data sources, it is often challenging
to ensure data quality.

IoT Data Privacy The collection process of IoT data streams often
faces privacy issues, as they are often from differ-
ent IoT devices/systems. Federated Learning (FL)
techniques can be used to protect data privacy.

IoT Data Analytics
Speed

IoT data analytics models often require fast pro-
cessing speed to achieve real-time processing in
IoT systems.

AutoML
Challenges

Automated Model
Updating

The automated model updating process is often
ignored in many AutoML systems. This step is
important in real-world IoT data analytics appli-
cations, as IoT data is often dynamic streaming
data.

Data Pre-Processing
and Feature Engi-
neering

Most AutoML systems only focus on automated
model selection and HPO procedures. Thus, data
pre-processing and feature engineering need more
attention, as they also have a significant effect on
model performance.

Large Scale AutoML It is challenging to apply AutoML models on
large-scale data, such as ImageNet, as the learn-
ing models often need to be trained many times to
identify the optimal solution.

Explainability AutoML solutions are often black boxes, so their
explainability needs more research.

Transfer Learning in
AutoML

High complexity is a common issue in AutoML
systems. Transfer learning techniques can be used
to save model learning time.

Benchmarking and
Comparability

A benchmark should be agreed upon by the com-
munity for a fair comparison of different AutoML
techniques.

Concept Drift
Challenges

Unsupervised Learn-
ing

More research should be conducted on unsuper-
vised or semi-supervised drift detection and adap-
tation, as most existing methods are developed for
supervised learning.

Drift Analysis A comprehensive analysis should be conducted on
the detected drifts, such as the timing and severity
of each drift.

ML Model Integra-
tion

Appropriate drift methods should be selected and
integrated with specific ML algorithms to develop
effective automated drift adaptation functionality.

Accurate Drift De-
tection

Drift detection methods should be capable of ac-
curately detecting different types of drift (e.g.,
abrupt and gradual drift.)
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2.13.1 IoT Data Analytics Challenges

Although data analytics contributes significantly to IoT applications, it is still in its early stages

[177]. Numerous challenges must be addressed before IoT data can be properly used in IoT

applications [178], such as the quality, privacy, and analytics speed of IoT data.

IoT Data Quality

Firstly, the quality of data has a direct effect on the performance of data analytics models. Thus,

it is critical to have high-quality data [178]. However, as IoT data is often collected from dif-

ferent data sources and is highly variable, maintaining data quality is usually challenging. The

high generation speed and volume of IoT data are also significant problems [177]. Effective

data integration has also become a challenge for creating high-quality datasets from different

IoT devices.

IoT Data Analytics Speed

Due to the massive amount of data generated by IoT devices, time constraints are a primary

challenge of IoT data analytics. Many IoT applications have real-time requirements, such as

autonomous vehicles and e-health systems [179]. In these applications, real-time feedback on

environmental changes is required. However, many factors, like transmission delays and model

learning time, have increased the reaction time of IoT systems. Therefore, it is essential for

data analytics methods to achieve real-time analytics on large amounts of IoT data generated

at high speeds [178]. Real-time analytics allows IoT devices to make real-time decisions and

provide services. As described in Section 2.2.2, edge computing and collaborative computing

techniques are promising solutions to achieve real-time analytics, but better architecture should

be designed to balance data analytics efficiency and accuracy.

On the other hand, to avoid unfeasible IoT data analytics due to time or memory con-

straints, distributed ML is a promising solution that allocates the learning process over multiple

workstations [180]. Unlike traditional data processing systems that collect data from multiple

sources for central processing, in distributed ML, every IoT end device or edge server can store

and process its own data in itself or only share data with trusted devices to avoid the leakage of
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private and sensitive data. Distributed ML can also improve data analytics speed by enabling

parallel execution and reducing data transmission time. This is because the computational time

of analyzing a large central database is much higher than dividing it into multiple sub-tasks

that analyze data in parallel [180]. Thus, both data security and processing efficiency can be

improved by using distributed ML techniques.

IoT Data Security and Privacy

With the advent of data analytics techniques for IoT data, data security has emerged as a critical

concern [177]. As a comprehensive IoT dataset is often generated from different data sources,

certain personal or sensitive business data may be derived during the data collection process

[178]. Thus, it is crucial for IoT systems to solve data privacy issues.

Cybersecurity mechanisms, like data encryption and device authentication, can improve the

privacy of IoT data. However, these techniques introduce additional overhead to IoT systems.

On the other hand, distributed ML and Federated Learning (FL) techniques can be a potential

solution for IoT data privacy [181]. By distributed ML approaches, the data is stored only

in local IoT devices to make data unavailable to unauthorized devices, thus maintaining data

security and privacy. FL techniques can train ML models without direct access to local data

by exchanging model parameter values between edge and central servers [182]. Thus, by the

employment of FL approaches, the privacy of IoT data can be protected without compromising

learning performance.

2.13.2 AutoML Challenges

AutoML has made considerable strides in the previous decade in automating model construc-

tion and development, especially for supervised learning tasks. However, to be widely applied

to real-world IoT applications, AutoML still faces many challenges [183].

Automated Model Updating

Despite the development of AutoML, most AutoML solutions are offline models designed for

static datasets. However, many real-world applications, like IoT systems, face concept drift
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issues throughout the data analytics process, and most existing AutoML solutions only up-

date models using new data samples [10]. Therefore, this chapter considers automated model

updates by addressing concept drift issues in the AutoML pipeline, which is a novel contribu-

tion to AutoML applications. Considering automated model updates can help construct robust

AutoML models that maintain effectiveness over time.

Data Pre-Processing and Feature Engineering

Although there are many existing AutoML solutions, the majority of them focus on auto-

mated model selection and HPO. Researchers have paid little attention to automated data pre-

processing and feature engineering [183]. However, data pre-processing and feature engineer-

ing are critical components of the AutoML pipeline and have a direct influence on system

performance. It is often challenging to generalize and automate the feature engineering pro-

cess because it is very task- and dataset-dependent [82]. Appropriate feature engineering often

requires specialized domain knowledge or a significant amount of effort. Therefore, automated

feature engineering is a critical but challenging subject that needs further research.

Large Scale AutoML

Applying AutoML to large-scale data is still an unsolved issue. Due to the fact that AutoML

pipelines often need a significant number of model trainings to identify the optimum final

learner, the majority of AutoML solutions are developed on small datasets, with just a few

capable of large-scale data learning. For instance, research on AutoML solutions for the Ima-

geNet problem is currently rather limited, owing to the dataset’s massive size [81].

Explainability

In general, AutoML solutions are black boxes that attempt to explore the space of possible

models and discover the optimal solution. Despite AutoML’s advances, the community has not

explored the prospect of transparent AutoML systems. AutoML models should have mech-

anisms for explaining and understanding them, since this would considerably improve Au-

toML’s accessibility.
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Transfer Learning in AutoML

Due to the high complexity of existing AutoML solutions in terms of time and space, trans-

fer learning methods can be utilized to increase AutoML’s efficiency. This is because transfer

learning enables the reduction of unnecessary model retrainings via the usage of existing mod-

els. While meta-learning processes are a subtype of transfer learning, transfer learning can also

refer to the transfer of knowledge about the optimization process (e.g., transferring information

on the dynamics of the optimization process from task to task) [184].

Benchmarking and Comparability

As various AutoML systems have distinct benefits and drawbacks in different IoT applications,

the community should agree on a set of common benchmarks that allow a fair comparison of

different techniques [81]. Similarly, code sharing and processes that facilitate the replication

of AutoML discoveries may have a substantial impact on the field’s maturity.

2.14 Conclusion

Machine Learning (ML) and Deep Learning (DL) algorithms have achieved great success

in data analytics tasks for IoT applications, such as intelligent transportation systems, smart

homes, e-health, and IoT security. However, developing effective ML models for specific IoT

tasks requires a high level of human expertise, which limits their applicability. Thus, Auto-

mated ML (AutoML) has become a promising solution for constructing ML models without

or with minimal human intervention. In this chapter, we have comprehensively discussed the

procedures of the standard AutoML pipeline, including automated data pre-processing, auto-

mated feature engineering, automated model selection, Hyper-Parameter Optimization (HPO),

and automated model updating with concept drift adaptation. Moreover, we have explored the

IoT data analytics tasks , as well as the ML and DL models that are often employed in IoT

data analytics. Existing tools and libraries for implementing AutoML and IoT data analyt-

ics are also presented in this chapter. Additionally, a case study of IoT anomaly detection is

conducted in this work to demonstrate the procedures of AutoML applications. Experimental
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results have shown the benefits of using AutoML frameworks in IoT data analytics problems.

Finally, we discuss the open challenges and research directions related to the existing AutoML

and IoT data analytics tasks.
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[111] J. Giovanelli, B. Bilalli, and A. Abelló, “Effective data pre-processing for AutoML,”
CEUR Workshop Proc., vol. 2840, pp. 1–10, 2021.

[112] E. Jackson and R. Agrawal, “Performance Evaluation of Different Feature Encoding
Schemes on Cybersecurity Logs,” in 2019 SoutheastCon, 2019, pp. 1–9.



117

[113] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter,
“Auto-sklearn: Efficient and Robust Automated Machine Learning,” in Automated Ma-
chine Learning: Methods, Systems, Challenges, F. Hutter, L. Kotthoff, and J. Vanschoren,
Eds. Cham: Springer International Publishing, 2019, pp. 113–134.

[114] A. Candel, V. Parmar, E. LeDell, and A. Arora, “Deep learning with H2O,” H2O. ai Inc,
pp. 1–21, 2016.

[115] C.-F. Tsai and Y.-C. Chen, “The optimal combination of feature selection and data dis-
cretization: An empirical study,” Inf. Sci. (Ny)., vol. 505, pp. 282–293, 2019.

[116] Y. Ma, J. Jin, Q. Huang, and F. Dan, “Data Preprocessing of Agricultural IoT Based
on Time Series Analysis,” in Intelligent Computing Theories and Application, 2018, pp.
219–230.

[117] E. Law, “Impyute Documentation,” 2017.

[118] R. S. Olson and J. H. Moore, “TPOT: A Tree-Based Pipeline Optimization Tool for
Automating Machine Learning,” in Automated Machine Learning: Methods, Systems,
Challenges, F. Hutter, L. Kotthoff, and J. Vanschoren, Eds. Cham: Springer International
Publishing, pp. 151–160, 2019.

[119] F. Bießmann et al., “DataWig: Missing value imputation for tables,” J. Mach. Learn.
Res., vol. 20, pp. 1–6, 2019.

[120] Z. Chen et al., “Machine learning based mobile malware detection using highly imbal-
anced network traffic,” Inf. Sci. (Ny)., vol. 433–434, pp. 346–364, 2018.

[121] P. Kaur and A. Gosain, “Comparing the Behavior of Oversampling and Undersampling
Approach of Class Imbalance Learning by Combining Class Imbalance Problem with
Noise,” in ICT Based Innovations, 2018, pp. 23–30.

[122] Q. Kang, X. S. Chen, S. S. Li, and M. C. Zhou, “A Noise-Filtered Under-Sampling
Scheme for Imbalanced Classification,” IEEE Trans. Cybern., vol. 47, no. 12, pp.
4263–4274, 2017.

[123] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic
minority over-sampling technique,” J. Artif. Intell. Res., vol. 16, no. February 2017, pp.
321–357, 2002.

[124] X. Tan et al., “Wireless sensor networks intrusion detection based on SMOTE and the
random forest algorithm,” Sensors (Switzerland), vol. 19, no. 1, 2019.

[125] L. Yang, A. Moubayed, and A. Shami, “MTH-IDS: A Multi-Tiered Hybrid Intrusion
Detection System for Internet of Vehicles,” IEEE Internet Things J., 2021.

[126] A. Pandey and A. Jain, “Comparative Analysis of KNN Algorithm using Various Nor-
malization Techniques,” Int. J. Comput. Netw. Inf. Secur., vol. 9, no. 11, pp. 36–42, 2017.



118

[127] H. Eldeeb, S. Amashukeli, and R. El Shawi, “An Empirical Analysis of Integrating
Feature Extraction to Automated Machine Learning Pipeline,” in Pattern Recognition.
ICPR International Workshops and Challenges, 2021, pp. 336–344.

[128] P. Sondhi, “Feature construction methods: a survey,” Sifaka. Cs. Uiuc. Edu, vol. 69, pp.
70–71, 2010.

[129] T. Thaher, M. Mafarja, H. Turabieh, P. A. Castillo, H. Faris, and I. Aljarah, “Teach-
ing Learning-Based Optimization With Evolutionary Binarization Schemes for Tackling
Feature Selection Problems,” IEEE Access, vol. 9, pp. 41082–41103, 2021.
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Chapter 3

Tree-based Intelligent Intrusion Detection

System in Internet of Vehicles

3.1 Introduction

With more vehicles, devices, and infrastructures involved, the conventional vehicular ad hoc

networks (VANETs) are gradually evolving into the Internet of Vehicles (IoV) [2]. In intelligent

transportation systems (ITSs), VANETs enable wireless communications between vehicles and

devices, then transform the vehicles and devices into wireless routers or mobile nodes [3]. Au-

tonomous vehicles (AV) technology is a fast-paced technology which provides an ideal solution

to reduce traffic collisions and related costs. Vehicle-to-everything (V2X) [3] technology is at

the core of AV, consisting of Vehicle-to-Vehicle (V2V), Vehicle-to-Pedestrian (V2P), Vehicle-

to-Infrastructure (V2I), and Vehicle-to-Network (V2N) technologies to enable local and wide

area cellular network communications between vehicles, pedestrians, and infrastructures.

V2X technology, with the means of wireless communications, aims to involve more Internet

of things (IoT) devices. However, some of these devices lack security mechanisms such as

firewalls and gateways [4]. AVs are prone to network threats with severe consequences because

attacking or maliciously controlling the vehicles on the road poses serious threat to human

lives. The potential networking threats include the following attacks. A common type of

attack is Denial of services (DoS) attacks launched by sending a large number of irrelevant

A version of this chapter has been published in IEEE GlobeCom 2019 [1].
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messages or requests to occupy the node and take control of the resources of the vehicle [5].

The attackers perform spoofing attacks such as GPS spoofing to masquerade as legitimate

users and provide the nodes with fake GPS information [5]. Sniffing attacks such as port scan

attacks is another type of attack, which is launched to obtain confidential or sensitive data of

the vehicles systems and users [6]. In addition, brute-force attacks are launched by attackers

to crack passwords in the vehicle networks or systems [6]. To intrude into the web interface of

vehicles or servers, web attacks including SQL injection attacks and cross-site scripting (XSS)

can also be implemented by the attackers [6].

Apart from external communication threats, AVs are also prone to intra-vehicle communi-

cation attacks. Controller Area Network (CAN) [7] is a bus communication protocol which en-

ables in-vehicle communications between all Electronic Control Units (ECUs). It provides an

efficient error detection mechanism for stable transmission and can reduce wiring cost, weight,

and complexity [7]. However, all the ECUs communicate with each other through the CAN

bus, which makes the ECUs vulnerable to various attacks if the CAN bus is compromised.

In CAN bus communications, attackers can inject malicious messages to monitor the network

traffic or launch other hostile attacks and the nodes will inevitably deal with the messages

without validating their origins. The message injection attacks on CAN bus can be classified

by their aims. Similar to external networks, DoS and spoofing attacks can also be launched on

the CAN bus to occupy the resources or provide malicious information such as gear and RPM

(revolutions per minute) information. In addition, fuzzy attacks are another common type of

attack launched on CAN bus by injecting arbitrary messages to cause the vehicles to show

unintended states or malfunction [8].

All the above vulnerabilities and threats call for a robust protection system that can repel

possible attacks that pose threats to intra-vehicle and external communications in AV systems.

Intrusion detection systems (IDSs) are an effective security mechanism to identify the abnormal

information and attacks through the network traffic data during the communication between

vehicles and other devices. Intrusion detection is often considered as a classification problem;

machine learning (ML) methods have been widely used to develop IDSs [9]. An intelligent

IDS is proposed in this chapter for network attack detection that can be applied to not only

Controller Area Network (CAN) bus of AVs but also on general IoVs. The proposed IDS
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utilizes tree-based ML algorithms including decision tree (DT), random forest (RF), extra trees

(ET), and Extreme Gradient Boosting (XGBoost). A qualified IDS needs to not only achieve

a high detection rate, but also have a low computational cost. Therefore, an ensemble learning

model, namely stacking, is used to improve accuracy and the feature selection methods are also

implemented to reduce computational time. The performance of the proposed IDS is evaluated

using multiple standard open-source data sets with results showing high accuracy in detecting

intrusions.

This chapter makes the following contributions:

1. Surveys the vulnerabilities and potential attacks in CAN and AV networks.

2. Proposes an intelligent IDS for both AV and general networks by using the tree structure

ML and ensemble learning methods.

3. Presents a comprehensive framework to prepare network traffic data for the purpose of

IDS development.

4. Proposes an averaging feature selection method using tree structure ML models to im-

prove the efficiency of the proposed IDS and to perform an analysis of network attributes

and attacks for network monitoring uses.

This chapter is organized as follows: Section 3.2 presents the system overview of the pro-

posed IDS and its architecture. Section 3.3 discusses the proposed IDS framework in detail.

Section 3.4 provides the results, performance comparison and feature analysis. Finally, Section

3.5 concludes the chapter.

3.2 System Design

3.2.1 Problem Statement

Due to the fact that the AV systems are vulnerable to many types of network threats through dif-

ferent communication mediums, a comprehensive IDS system is proposed to be implemented

Code for the major modules is available at: https://github.com/Western-OC2-Lab/Intrusion-Detection-
System-Using-Machine-Learning
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Figure 3.1: The proposed IDS-protected AV architecture

for both intra-vehicle and external communication networks. This is done to better protect not

only the vehicle components but also all the IoT devices involved in the entire IoV.

The proposed IDS should be able to detect various common intrusions launched on CAN

bus and external networks. The main attacks to be considered in this work include DoS attacks

on both the intra-vehicle and external communication networks, fuzzy attacks and spoofing at-

tacks on the CAN-bus, sniffing, brute force and web attacks launched on the external networks.

The IDS should have a high detection rate to effectively identify most of the attacks and low

computational time to improve efficiency.

3.2.2 IDS System Overview and Architecture

To provide protection for both the intra-vehicle and external communications, the proposed

IDS is implemented in multiple locations within the AV system. To detect threats on the CAN

bus and secure it, the IDS can be placed on the top of the CAN bus to process every transmitted

message and ensure the nodes are not compromised [10]. Alternatively, the proposed IDS

can be placed inside the gateway to secure the external communication networks [11]. The

topology of IDS implementation on vehicle systems is shown in Fig. 3.1.

On the CAN bus, all the nodes are linked, and when a node receives a message mainly

consisting of an ID and data field sent by another device connected to the CAN bus, the message

is passed through the IDS to check when the signal line of the CAN bus changes from CANH

to CANL. Similarly, when a message is transmitted from external network to intranet, it is

passed through the IDS inside the gateway and checked.
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Figure 3.2: The proposed IDS framework

To design the IDS, an overview of the tree-based ML classification framework for intrusion

detection is provided in Fig. 3.2. The process of the proposed model is as follows. Firstly,

sufficient network traffic data is collected. Secondly, if the classes of the data set are imbal-

anced, oversampling is implemented to reduce its impact. At the next stage, feature selection

based on averaging feature importance is done to reduce computational cost. After that, four

base-models are built to be the input of the stacking ensemble model. At the end, the final

model is built to classify the data.
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3.3 Proposed IDS Framework

3.3.1 Data Pre-Processing

The first step to develop an IDS is to collect sufficient amount of network traffic data under

both the normal state and the abnormal state caused by different types of attacks. The data can

be collected by the packet sniffers, but they should have suitable network attributes, or named

network features, for the purpose of IDS development.

Firstly, to design an IDS for CAN bus intrusion, since the main CAN bus threats are mes-

sage injection attacks, the data of CAN messages/frames should be collected and the main

features correlated to attacks are CAN IDs and the data field of frames [8].

Regarding the external networks, since they belong to general networks and are prone to

various regular network threats, the data with more network attributes should be collected to

develop an effective IDS that can detect various types of cyber-attacks. Most of the regular

network attributes such as packet length, data transfer rate, throughput, inter-arrival time, flags

of TCP and their counts, segment size, and active/idle time should be considered [6]. However,

the computational complexity of the proposed IDS may increase dramatically due to the high

data dimensionality. Thus, further feature analysis should be done for the external network

data.

The collected network data would be pre-processed after a few steps to be better suited for

IDS development purpose. Firstly, the data can be encoded with one-hot-vector because it has

a certain threshold to help separate normal data and anomalies [7]. On the other hand, ML

training is often more efficient with normalized data [4]. Thus, each feature with numerical

values is set to the range of 0.0 to 1.0, and each value after normalization xn is indicated as:

xn =
x − min

max − min
, (3.1)

where x is the original value, max and min are the maximum and minimum values of each

feature.

In addition, network data are often class imbalanced because in real life, networks maintain

the normal state most of the time and the attack-label instances are often not enough. To
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overcome the issue of class-imbalanced data which often results in a low anomaly detection

rate, random oversampling and Synthetic Minority Oversampling Technique (SMOTE) [12]

can be used to generate more data in the minority classes that do not have enough data. The

basic strategy of random oversampling is to simply make multiple copies of the samples to

increase samples in the minority classes. However, the random oversampling method can

easily result in over-fitting because the information learned would be very specific instead of

generic. On the other hand, the SMOTE algorithm analyzes the minority classes and generates

new samples based on them by using the idea of K nearest neighbors. Therefore, SMOTE can

generate high-quality samples and is used for the minority classes in the proposed system.

3.3.2 The Proposed ML Approaches

In the proposed system, to detect various cyber-attacks, developing the IDS can be considered

as a multi-classification problem, and machine learning algorithms are widely used to solve

such classification problems [13] [14]. The selected ML algorithms are based on tree structure,

including decision tree, random forest, extra trees, and XGBoost.

Decision tree (DT) [15] is a common classification method based on divide and conquer

strategy. A DT comprises decision nodes and leaf nodes, and they represent a decision test

over one of the features, and the result class, respectively. Random forest (RF) [16] is an

ensemble learning classifier based on the majority voting rule that the class with the highest

votes by decision trees is selected to be the classification result. Similarly, extra trees (ET) [17]

is another ensemble model based on a collection of randomized decision trees generated by

processing different subsets of data set. In contrast, XGBoost [18] is a ensemble learning

algorithm designed for speed and performance improvement by using the gradient descent

method to combine many decision trees.

Apart from the proposed algorithms, other models such as K-nearest neighbor (KNN) and

support vector machine (SVM) [19] are also common for classification problems. For the

purpose of model selection, the computational complexity of common supervised ML algo-

rithms is calculated. Assuming the number of training instances is N, the number of features

is P, and the number of trees is T , we have the following approximations. The complexity
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of DT is O(N2P) while the complexity of RF is O(N2
√

PT ). In addition, ET and XGBoost

have a similar complexity of O(NPT ). On the other hand, KNN’s complexity is O(NP) and

the SVM algorithm’s complexity is O(N2P) [13] [20]. However, unlike KNN and SVM, the

proposed four tree-based models, DT, RF, ET, and XGBoost, enable multi-threading to save

training time. Assuming the maximum number of participating threads of a computer is M,

the time complexity of DT, RF, ET, and XGBoost reduces to O( N2P
M ), O( N2

√
PT

M ), O( NPT
M ), and

O( NPT
M ), respectively. Therefore, although the original time complexity of the considered al-

gorithms are similar, the four tree structure algorithms have lower computational time due to

multi-threading, which is an important reason for choosing these four algorithms.

The other reasons for choosing these algorithms are as follows: 1) Most of the tree structure

ML models are using ensemble learning so they often show better performance than other

single models such as KNN. 2) They have the ability to handle non-linear and high dimensional

data that the proposed network data belongs to. 3) The feature importance calculations are

done during the building process of those models, which is beneficial when performing feature

selection.

It is noteworthy that there are some hyper-parameters of the proposed algorithms that need

be tuned to achieve better performance. For the DT algorithm, the split measure function

is set to be Gini impurity, and the classification and regression trees (CART) model is then

built, which shows better performance than using information gain theory to build an ID3 tree.

Assuming that S denotes the set of all sub-trees, CART selects the tree in S that minimizes [15]:

C(S ) = L̂n(S ) + α|S |, (3.2)

where |S | is the cardinality of the tree, α is a constant and L̂n(S ) is the empirical risk using the

tree S . Since the deeper tree has more sub-trees, tree depth D is an important parameter of the

CART algorithm.

For RF and ET, since their results are based on the majority voting of many decision trees,

the number of decision trees T is another important parameter affecting the performance. T

could also be tuned in XGBoost which is also based on the ensemble of numerous trees. Specif-

ically, XGBoost minimizes the following regularized objective function [18]:



131

Ob j = −
1
2

t∑
j=1

G2
j

H j + λ
+ γt, (3.3)

where G and H represent the sums of the first and second order gradient statistics of the loss

function, t is the number of leaves in a decision tree, λ and γ are the penalty coefficients.

Since the gradient statistics are based on the sum of the predicted scores of the T trees, and the

number of leaves increases with the increase of the tree depth D, T and D have direct impacts

on the objective function value of XGBoost.

If the parameters T and D are too small, it leads to under-fitting and if they are too large, it

causes over-fitting and additional computational costs.

The grid search method [21] is utilized to find the optimal values. To be precise, the training

of the models starts from a small number of trees and a short depth. Then, these two values are

slowly increased with accuracy evaluated until over-fitting, which is indicated by the dropping

of accuracy. Finally, the tree depth D is tuned to 8 and the number of trees T is set to 200.

Similarly, the minimum sample split and minimum sample leaf are both tuned from 1 to 10,

and finally set to 8 and 3, respectively. Note that the parameter tuning process can be further

improved by using other optimization techniques.

3.3.3 Ensemble Learning and Feature Selection

For the purpose of further accuracy improvement, an ensemble learning technique, stacking,

is implemented. Stacking [22] is a common ensemble method consisting of two layers where

the first layer contains a few trained base predictors, and their output serves as the input of

a meta-learner in the second layer to build a strong classifier. The four trained tree structure

algorithms serve as the base models in the first layer of the stacking ensemble method, and

the singular algorithm with highest accuracy among the four base models is selected to be the

meta-classifier in the second layer.

To improve the confidence of the selected features, an ensemble feature selection (FS)

technique is utilized by calculating the average of feature importance lists generated by the

four selected tree-based ML models. They are chosen for feature selection because tree-based
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algorithms calculate the importance of each feature based on each single tree, and then average

the output of the trees to make the result more reliable. Additionally, different traditional

feature selection methods such as information gain, entropy, and Gini coefficient are utilized

in the system by setting different parameters in tree-based methods to generate the convincing

feature importance. The sum of the total feature importance is 1.0. To select features, the

features are ranked with their importance and each feature is added into the feature list from

high importance to low importance till the sum of importance reaches 0.9. The other features

with the sum of importance less than 0.1 will be discarded to reduce the computational costs.

3.3.4 Validation Metrics

Each considered data set is split into five subsets and 5-fold cross-validation is implemented

to evaluate the proposed models. Accuracy (Acc), detection rate (DR)/recall, false alarm rate

(FAR), and F1 score are the main metrics used to evaluate the proposed method, with their

formulas proposed in [23]. The accuracy is the proportion of correctly classified data. How-

ever, the data sets may exhibit class imbalance, resulting in a high accuracy of normal data

classification but a low attack detection rate. Thus, the detection rate, the ratio between the de-

tected attack data and the total abnormal data, is also calculated for evaluation. A qualified IDS

should have a high DR to ensure most of the attacks can be detected and a low FAR to confirm

the system does not misreport data for higher DR [16]. In addition, the F1 score considers both

the precision and recall by calculating their harmonic average, which can be used to evaluate

the overall performance of the methods. Also, the execution time, mainly the model training

time, is used to provide insights into the computational performance.

3.4 Performance Evaluation

3.4.1 Datasets Description

To evaluate the proposed IDS, this work considers two different datasets for the purpose of its

implementation in both intra-vehicle and external networks. The first data set is called ”Car-

Hacking Dataset” or ”CAN-intrusion dataset” which was proposed in 2018 for the purpose of
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Table 3.1: Data Type and Size of The CAN-Intrusion Dataset
Class label Number of instances Class label Number of instances

Normal 14,037,293 RPM spoofing 654,897
DoS 587,521 Gear spoofing 597,252

Fuzzy 491,847 - -

Table 3.2: Data Type and Size of The CICIDS2017 Dataset
Class label Number of instances Class label Number of instances
BENIGN 2,273,097 Web-Attack 2,180

DoS 380,699 Botnet 1,966
Port-Scan 158,930 Infiltration 36

Brute-Force 13,835 - -

IDS development on CAN bus [7]. On the other hand, to build a comprehensive IDS that can

also be effective in external communication networks, a standard IDS data set containing the

most updated attack scenarios, named ”CICIDS2017” [6], is considered in this work. To pre-

pare better datasets for the IDS development, minor tasks including data combination, missing

value removal and new label assignments were done for both datasets based on the methods

proposed in [24]. The specifics of the improved datasets are shown in Tables 3.1 and 3.2.

3.4.2 Performance Analysis

The proposed system was implemented using Python 3.5 and the experiments were carried out

on a machine with 6 Core i7-8700 processor and 16 GB of memory.

The results of testing different algorithms on CAN-intrusion data set and CICIDS2017 data

Table 3.3: Performance Evaluation of IDS on CAN-intrusion Dataset
Method Acc (%) DR (%) FAR (%) F1 Score Execution Time (S)
KNN [9] 97.4 96.3 5.3 0.934 911.6
SVM [9] 96.5 95.7 4.8 0.933 13765.6

DT 99.99 99.99 0.006 0.999 328
RF 99.99 99.99 0.0003 0.999 506.8
ET 99.99 99.99 0.0005 0.999 216.3

XGBoost 99.98 99.98 0.012 0.999 3499.1
Stacking 100 100 0.0 1.0 1237.1
FS RF 99.99 99.99 0.0013 0.999 99.6

FS Stacking 99.99 99.99 0.0006 0.999 325.6
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Table 3.4: Performance Evaluation of IDS on CICIDS2017 Dataset
Method Acc (%) DR (%) FAR (%) F1 Score Execution Time (S)
KNN [6] 96.6 96.4 5.6 0.966 9243.6

SVM [25] 98.01 97.58 1.48 0.978 49953.1
DT 99.72 99.3 0.029 0.998 126.7
RF 98.37 98.29 0.039 0.983 2421.6
ET 93.43 93.35 0.001 0.934 2349.6

XGBoost 99.78 99.76 0.069 0.997 1637.2
Stacking 99.86 99.8 0.012 0.998 4519.3

FS XGBoost 99.7 99.55 0.077 0.996 995.9
FS Stacking 99.82 99.75 0.011 0.997 2774.8

set are shown in Tables 3.3 and 3.4, respectively. According to Table 3.3, when testing on the

CAN-intrusion data set, the tree-based algorithms including DT, RF, ET, and XGBoost used

in the proposed system are 2.5% more accurate than KNN and 3.4% more accurate than SVM

used in [9]. In addition, multi-threading is enabled in DT, RF, ET, and XGBoost, resulting in

a lower execution time compared with KNN and SVM. Since XGBoost has the lowest accu-

racy and longest execution time among the four tree-based ML models, only the other three

algorithms, DT, RF, and ET were selected into the stacking ensemble model, and the single

model with best performance, RF, was selected to be the meta-classifier in the second layer.

After using stacking to combine the three tree-based models, the accuracy, detection rate and

F1 score reaches 100%, which means that all the trained attacks can be detected.

Similarly in CICIDS2017 data set, as shown in Table 3.4, most of the used tree-based

algorithms shows 1.8-3.2% higher accuracy, detection rate and F1 score than KNN [6] and

SVM [25] except for ET. Hence, only DT, RF, and XGBoost were chosen in the proposed

stacking method, and XGBoost was selected to be the meta-classifier of the stacking model. Al-

though the execution time of stacking is longer than any singular tree-based models, it reaches

the highest accuracy among the models (99.86%).

After training the data sets with all the features to obtain the highest performance, the fea-

ture selection method proposed in Section 3.3.3 was implemented to reduce execution time.

From Tables 3.3 and 3.4, it can be seen that RF and XGBoost are the singular models with

best accuracy on CAN-intrusion data set and CICIDS2017 data set, respectively. As single

base models have lower execution time than the ensemble model, these two singular models
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were also tested after feature selection. For CAN-intrusion data set, the top-4 important fea-

tures, ‘CAN ID’, ’DATA[5]’, ’DATA[3]’, ’DATA[1]’ were selected for the tests. The results

of RF and stacking on CAN-intrusion data set after feature selection, named ”FS RF” and ”FS

Stacking”, can be seen from Table 3.3. It shows that the RF and stacking models saved 80.3%

and 73.7% of the execution time after feature selection, respectively, while still maintaining a

high accuracy (99.99%). For CICIDS2017 data set, 36 out of 78 features were selected and the

accuracy of XGBoost and stacking models only decreased by 0.08% and 0.04% while saving

39.2% and 38.6% of the execution time, respectively, as shown in Table 3.4. Therefore, the

tree-based averaging feature selection method enables the IDS to save execution time while

maintaining high accuracy.

3.4.3 Feature Analysis

Table 3.5: Top-3 Feature Importance by Each Attack
Label Feature Weight

Bwd Packet Length Std 0.1723
DoS Average Packet Size 0.1211

Destination Port 0.0785
Total Length of Fwd Packets 0.3020

Port-Scan Average Packet Size 0.1045
PSH Flag Count 0.1019
Destination Port 0.3728

Brute-Force Fwd Packet Length Min 0.1022
Packet Length Variance 0.0859
Init Win bytes backward 0.2643

Web-Attack Average Packet Size 0.1650
Destination Port 0.0616
Destination Port 0.2364

Botnet Bwd Packet Length Mean 0.1240
Avg Bwd Segment Size 0.1104
Total Length of Fwd Packets 0.2298

Infiltration Subflow Fwd Bytes 0.1345
Destination Port 0.1149

In order to analyze the features, the proposed feature selection method was tested on the

subsets of each attack. The list of top-3 important features and their corresponding weights

of each attack is shown in Table 3.5. As Table 3.5 shows, the destination port can reflect
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a DoS, brute force, web attack, and botnet attack. The size of packets is another important

feature. For example, the average packet size indicates a DoS attack, port scan attack, and

web attack. The packet length in the forward direction is related to port scan, brute-force,

and infiltration attacks, while the packet length in the backward direction reflects a DoS, web

attack, and botnet. In addition, the variance of the length of the packets in both forward and

backward directions reflects the brute force attack, and the count of pushing flags indicates

port scan attack. After getting the feature importance list of each attack, the IDSs with other

aims like designing a dedicated system for detecting a single type of attack can be developed

by selecting the important features based on the list. On the other hand, the important features

can be selected as key attributes to be monitored by network supervisors. If those attributes

change abnormally, the attacks can be detected quickly.

3.5 Conclusion

As autonomous vehicles and connected vehicles are vulnerable to various cyber-attacks, IDS

is one of the efficient solutions to detect the launched network attacks and secure the vehicle

networks. In this chapter, we presented an IDS based on tree-based machine learning algo-

rithms to detect threats both on CAN bus and external networks. The SMOTE oversampling

method and tree-based averaging feature selection approaches were also introduced to reduce

the impact of class imbalance and computational cost. To evaluate the proposed IDS, it was

tested on two data sets for both intra-vehicle and external networks. The results on both data

sets show that the proposed system has 2-3% higher accuracy, detection rate, F1 score and

lower false alarm rate than the methods proposed in the literature. Moreover, unlike other pro-

posed methods, our work combines all the subsets of the data sets and develops an IDS that

can detect various attacks instead of only single type of attack on each run. The accuracy of

CAN intrusion and CICIDS2017 data set reaches 100% and 99. 86%, while the computational

time was reduced by 73.7% to 325.6s and by 38.6% to 2774.8s, respectively. In future work,

the results of the proposed IDS on CICIDS2017 data set can be further improved by using

optimization techniques such as particle swarm optimization and Baysian optimization to tune

the hyper-parameters of the proposed algorithms.



137

Bibliography

[1] L. Yang, A. Moubayed, I. Hamieh, and A. Shami, “Tree-based Intelligent Intrusion De-
tection System in Internet of Vehicles,” proc. 2019 IEEE Glob. Commun. Conf., pp. 1–6,
Hawaii, USA, 2019.

[2] A. Awang, K. Husain, N. Kamel and S. Aı̈ssa, ”Routing in Vehicular Ad-hoc Networks:
A Survey on Single- and Cross-Layer Design Techniques, and Perspectives,” in IEEE
Access, vol. 5, pp. 9497-9517, 2017.

[3] F. Yang, S. Wang, J. Li, Z. Liu, and Q. Sun, ”An overview of Internet of Vehicles,” China
Commun., vol. 11, no. 10, pp. 1-15, 2014.

[4] K. M. Ali Alheeti and K. Mc Donald-Maier, ”Intelligent intrusion detection in external
communication systems for autonomous vehicles,” Syst. Sci. Control Eng., vol. 6, no. 1,
pp. 48-56, 2018.

[5] H. P. Dai Nguyen and R. Zoltán, ”The Current Security Challenges of Vehicle Commu-
nication in the Future Transportation System,” SISY 2018 - IEEE 16th Int. Symp. Intell.
Syst. Informatics, Proc, Subotica, pp. 161-166, 2018.

[6] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, ”Toward Generating a New In-
trusion Detection Dataset and Intrusion Traffic Characterization,” no. Cic, pp. 108-116,
2018.

[7] E. Seo, H. M. Song, and H. K. Kim, ”GIDS: GAN based Intrusion Detection System for
In-Vehicle Network,” 2018 16th Annu. Conf. Privacy, Secur. Trust, pp. 1-6, 2018.

[8] H. Lee, S. H. Jeong, and H. K. Kim, ”OTIDS: A novel intrusion detection system for
in-vehicle network by using remote frame,” Proc. 15th Annu. Conf. Privacy, Secur. Trust.
PST 2017, pp. 57-66, 2017.

[9] A. Alshammari, M. A. Zohdy, D. Debnath, and G. Corser, ”Classification Approach for
Intrusion Detection in Vehicle Systems,” Wirel. Eng. Technol., vol. 09, no. 04, pp. 79-94,
2018.

[10] B. Groza and P. Murvay, ”Efficient Intrusion Detection With Bloom Filtering in Controller
Area Networks,” IEEE Trans. Inf. Forensics Security, vol. 14, no. 4, pp. 1037-1051, 2019.



138

[11] U. E. Larson, D. K. Nilsson and E. Jonsson, ”An approach to specification-based attack
detection for in-vehicle networks,” IEEE Intell. Veh. Symp. Proc, Eindhoven, pp. 220-225,
2008.

[12] N.V. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer, ”SMOTE: Synthetic Minor-
ity Over-Sampling Technique,” J. Artificial Intelligence Research, vol. 16, pp. 321-357,
2002.

[13] A. Moubayed, M. Injadat, A. Shami and H. Lutfiyya, ”DNS Typo-Squatting Domain
Detection: A Data Analytics & Machine Learning Based Approach,” 2018 IEEE Glob.
Commun. Conf., Abu Dhabi, United Arab Emirates, pp. 1-7, Dec. 2018.

[14] D. M. Manias, M. Jammal, H. Hawilo, A. Shami, et. al., ”Machine Learning for
Performance-Aware Virtual Network Function Placement,” 2019 IEEE Glob. Commun.
Conf., Waikolao, HI, USA, Dec. 2019.

[15] Y. Ping, ”Hybrid fuzzy SVM model using CART and MARS for credit scoring,” 2009
Int. Conf. Intell. Human-Machine Syst. Cybern. IHMSC 2009, vol. 2, pp. 392-395, 2009.

[16] M. Injadat, F. Salo, A. B. Nassif, A. Essex, and A. Shami, ”Bayesian Optimization with
Machine Learning Algorithms Towards Anomaly Detection,” 2018 IEEE Glob. Commun.
Conf., pp. 1-6, 2018.

[17] K. Arjunan and C. N. Modi, ”An enhanced intrusion detection framework for securing
network layer of cloud computing,” ISEA Asia Secur. Priv. Conf. 2017, ISEASP 2017, pp.
1-10, 2017.

[18] D. Zhang, L. Qian, B. Mao, C. Huang, B. Huang, and Y. Si, ”A Data-Driven Design for
Fault Detection of Wind Turbines Using Random Forests and XGboost,” in IEEE Access,
vol. 6, pp. 21020-21031, 2018.

[19] L. Yang, R. Muresan, A. Al-Dweik and L. J. Hadjileontiadis, ”Image-Based Visibility
Estimation Algorithm for Intelligent Transportation Systems,” in IEEE Access, vol. 6, pp.
76728-76740, 2018.

[20] MJ. Kearns, ”The computational complexity of machine learning,” MIT press, 1990.

[21] A. Pattawaro and C. Polprasert, ”Anomaly-Based Network Intrusion Detection System
through Feature Selection and Hybrid Machine Learning Technique,” 2018 16th Int. Conf.
ICT&KE, Bangkok, pp. 1-6, 2018.

[22] M. Mohammed, H. Mwambi, B. Omolo, and M. K. Elbashir, ”Using stacking ensemble
for microarray-based cancer classification,” Int. Conf. Comput. Control. Electr. Electron.
Eng. ICCCEEE 2018, pp. 1-8, 2018.

[23] F. Salo, M. Injadat, A. B. Nassif, A. Shami, and A. Essex, ”Data mining techniques in
intrusion detection systems: A systematic literature review,” in IEEE Access, vol. 6, pp.
56046-56058, 2018.



139

[24] R. Panigrahi and S. Borah, ”A detailed analysis of CICIDS2017 dataset for designing
Intrusion Detection Systems,” Int. J. Eng. Technol., vol. 7, no. 3.24, pp. 479-482, 2018.

[25] S. U. Jan, S. Ahmed, V. Shakhov, and I. Koo, ”Toward a Lightweight Intrusion Detection
System for the Internet of Things,” in IEEE Access, vol. 7, pp. 42450-42471, 2019.



140

Chapter 4

LCCDE: A Decision-Based Ensemble

Framework for Intrusion Detection in The

Internet of Vehicles

4.1 Introduction

With the fast development of the Internet of Things (IoT) and the Internet of Vehicles (IoV)

technologies, network-controlled automobiles, such as Autonomous Vehicles (AVs) and Con-

nected Vehicles (CVs), have begun replacing conventional vehicles [2]. IoV systems typically

consist of intra-vehicle networks (IVNs) and external networks. In IVNs, the Controller Area

Network (CAN) bus is the core infrastructure enabling communication between Electronic

Control Units (ECUs) to implement various functionalities [3]. External vehicular networks,

on the other hand, utilizes Vehicle-To-Everything (V2X) technology to enable the connection

between smart cars and other IoV entities, such as roadside units, infrastructures, and smart

devices [4].

Due to the expanded network attack surfaces of IoV systems, the growing connectivity of

vehicular networks has resulted in numerous security threats [5]. In addition, there are not

authentication or encryption mechanisms involved in the processing of CAN packets owing to

A version of this chapter has been accepted in IEEE GlobeCom 2022 [1].
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Figure 4.1: The IDS-protected vehicle architecture.

their short length [6]. In the absence of basic security mechanisms, cybercriminals are able to

insert malicious messages into IVNs and execute a variety of attacks, such as Denial of Service

(DoS), fuzzy, and spoofing attacks [5]. On the other hand, the emergence of connectivity

between connected cars and external networks has made these vehicles vulnerable to a number

of conventional cyber-attacks. Figure 4.1 depicts the IoV attack scenarios, including IVN

and external network attacks. Intrusion Detection Systems (IDSs) have been developed as

promising solutions for detecting intrusions and defending Internet of Vehicles (IoV) systems

and smart automobiles from cyberattacks [7].

The potential deployment of IDSs in IoV systems is also shown in Fig. 4.1. To protect

IVNs, IDSs can be placed on top of the CAN-bus to identify malicious CAN messages [6].

IDSs can also be incorporated into the gateways to detect malicious packets coming from

external networks [2].

Due to the advancement of Machine Learning (ML) methods, ML-driven IDSs in IoV

applications have recently drawn the interest of researchers and automotive manufacturers [8].

Through network traffic data analytics, ML approaches are commonly employed to construct

classifier-based IDSs that can differentiate between benign network events and various cyber-

attacks [9].

To apply ML models to IDS systems, it is common to observe that the prediction perfor-
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mance of different ML models varies significantly for different types of cyber-attack detection.

Thus, a novel ensemble approach named Leader Class and Confidence Decision Ensemble

(LCCDE) is proposed in this chapter to obtain optimal performance on all types of attack

detection by integrating three advanced gradient-boosting ML algorithms, including Extreme

Gradient Boosting (XGBoost) [10], Light Gradient Boosting Machine (LightGBM) [11], and

Categorical Boosting (CatBoost) [12]. LCCDE aims to achieve optimal model performance

by identifying the best-performing base ML model with the highest prediction confidence for

each class.

This chapter mainly makes the following contributions:

1. It proposes a novel ensemble framework, named LCCDE, for effective intrusion detec-

tion in IoVs using class leader and confidence decision strategies, as well as gradient-

boosting ML algorithms.

2. It evaluates the proposed framework using two public IoV security datasets, Car-Hacking

[13] and CICIDS2017 [14] datasets, representing IVN and external network data, respec-

tively.

3. It compares the performance of the proposed model with other state-of-the-art methods.

The remainder of the chapter is organized as follows. Section 4.2 introduces the related

work about IoV intrusion detection using ML and ensemble models. Section 4.3 presents the

proposed LCCDE framework in detail. Section 4.4 presents and discusses the experimental

results. Finally, Section 4.5 concludes the chapter.

4.2 Related Work

The recent surge in the number of intelligent cars has led to an increase in the development

of ML models as effective solutions for IoV intrusion detection and security enhancement

[15]. Song et al. [16] proposed a deep convolutional neural network model framework for

intrusion detection in in-vehicle networks. It shows high performance on the Car-Hacking

dataset. Zhao et al. [17] proposed an IDS framework for IoT systems based on lightweight

code is available at: https://github.com/Western-OC2-Lab/Intrusion-Detection-System-Using-Machine-
Learning
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deep neural network models. It also uses Principal Component Analysis (PCA) to reduce

feature dimensionality and computational cost.

Several existing works have focused on IDS development using ensemble techniques. Yang

et al. [18] proposed a stacking ensemble framework for network intrusion detection in IoV sys-

tems using tree-based ML models. The stacking ensemble model shows high accuracy on the

CAN-Intrusion and CICIDS2017 datasets. Elmasry et al. [19] proposed an ensemble model for

network intrusion detection using three deep learning models: Deep Neural Networks (DNN),

Long Short-Term Memory (LSTM), and Deep Belief Networks (DBN). Chen et al. [20] pro-

posed a novel ensemble IDS framework, named All Predict Wisest Decides (APWD), to detect

intrusions and make decisions based on the wisest model for each class. However, it only

achieves an accuracy of 79.7% on the NSL-KDD dataset.

Although many of the related works achieve high performance in intrusion detection tasks

of IoV systems, there is still much room for performance improvement. Existing IDS frame-

works can be improved with the use of more advanced ML algorithms and ensemble strategies.

To the best of our knowledge, our proposed LCCDE framework is the first technique that lever-

ages both leader class and prediction confidence strategies to construct ensemble IDSs. The

use of three advanced gradient-boosting algorithms also improves the effectiveness of intrusion

detection.

4.3 Proposed Framework

4.3.1 System Overview

The purpose of this work is to develop an ensemble IDS framework that can effectively detect

various types of attacks on both IVN and external vehicular networks. Figure 4.2 demonstrates

the overall framework of the proposed system, consisting of two phases: model training and

model prediction. At the model training stage, three advanced ML algorithms, XGBoost [10],

LightGBM [11], and CatBoost [12], are trained on the IoV traffic dataset to obtain the leader

models for all classes/types of attacks. At the model prediction stage, the class leader models

and their prediction confidences are used to accurately detect attacks. The algorithm details are
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Figure 4.2: The framework of the proposed LCCDE model.

provided in this section.

4.3.2 Base Machine Learning Models

A decision tree (DT) is a basic ML algorithm that uses a tree structure to make decisions based

on the divide and conquer technique [18]. In DTs, the decision nodes represent the decision

tests, while the leaves indicate the result classes. Gradient Boosting Decision Tree (GBDT) is

an iterative DT algorithm that constructs multiple DTs and aggregates their prediction outputs.

To improve the performance of basic GBDTs, three advanced gradient-boosting algorithms,

XGBoost [10], LightGBM [11], and CatBoost [12], have been developed and widely used in

many applications. These three gradient-boosting algorithms are used in the proposed system

to build the LCCDE ensemble framework.
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XGBoost is a popular gradient-boosting DT algorithm designed for the speed and perfor-

mance improvement of GBDTs [10]. XGBoost uses a regularization term and a Second-Order

Taylor Approximation for the summation of the squared errors to minimize the loss func-

tion and reduce over-fitting. XGBoost has a low computational complexity of O(Kd∥x∥ log n),

where K is the number of trees, d is the maximum tree depth, ∥x∥ is the number and non-

missing samples, and n is the data size [10]. Additionally, XGBoost support parallel execution

to save model learning time.

LightGBM is a fast and robust ensemble ML model constructed by multiple DTs [11].

LightGBM’s key advantage over other ML methods is its capacity to efficiently handle large-

scale and high-dimensional data. Gradient-based One-Side Sampling (GOSS) and Exclusive

Feature Bundling (EFB) are the two core strategies of LightGBM [11]. GOSS is a down-

sampling method that only preserves data samples with large gradients and randomly discards

small gradient samples to accelerate model training and reduce memory consumption. EFB is

a feature engineering method that regroups mutually exclusive features into bundles as single

features to minimize feature size and improve model training efficiency. By employing GOSS

and EFB, the data size can be reduced significantly without the loss of critical information.

The time and space complexity of LightGBM has also been reduced to O(N′F′), where N′ is

the reduced number of samples after using GOSS, F′ is the bundled number of features after

employing EFB [21].

CatBoost is another advanced gradient-boosting algorithm designed to process categorical

features more effectively [12]. CatBoost, in comparison to existing gradient-boosting models,

includes three significant model enhancement components: symmetric trees, ordered boosting,

and native feature support. In symmetric trees, leaves are split under the same condition as

in prior trees, and the pair of feature splits with the lowest loss is applied to all nodes. Using

symmetric trees can improve model prediction speed and reduce over-fitting. Ordered boost-

ing is a permutation-driven technique that prevents overfitting on small datasets by training

a model on a subset while calculating residuals on another subset. CatBoost’s native feature

support indicates that it can directly process all types of features, such as numerical, textual,

and categorical features, without the need for extra pre-processing. CatBoost is an ensemble

model with low computational complexity of O(S N), where S is the number of permutations
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of the subsets and N is the number of base DT models [12].

The primary reasons for selecting XGBoost, LightGBM, and CatBoost as base learners are

as follows [10] - [12]:

1. These three ML models are all robust ensemble models that have had great success in a

variety of data analytics applications [22].

2. These three ML models can automatically generate feature importance scores and select

features during their training process, which saves time and resources by avoiding the

need for extra feature engineering.

3. These three ML models are fast models with relatively low computational complexity.

Additionally, they all support parallelization and Graphics Processing Unit (GPU) exe-

cution, which can further improve model learning speed.

4. These three ML models include randomness in their model construction process, en-

abling people to develop a robust ensemble model with high diversity and generalizabil-

ity.

4.3.3 LCCDE: Proposed Ensemble Algorithm

The performance of different ML models often varies on different types of attack detection

tasks. For example, when applying multiple ML models on the same network traffic dataset,

a ML model perform the best for detecting the first type of attack (e.g., DoS attacks), while

another ML model may outperform other models for detecting the second type of attack (e.g.,

sniffing attacks). Therefore, this work aims to propose an ensemble framework that can achieve

optimal model performance for the detection of every type of attack. Ensemble learning is

a technique that combines multiple base ML models to improve learning performance and

generalizability [4]. The proposed ensemble model is constructed using XGBoost, LightGBM,

and CatBoost, three advanced gradient-boosting ML methods introduced in Section 4.3.2.

Figure 4.2 demonstrates the process of the proposed LCCDE framework in two phases:

model training and model prediction. The detailed procedures of the training and prediction

phases are also described in Algorithms 2 & 3, respectively. At the training stage, the LCCDE

framework aims to obtain leader models for all classes via the following steps:
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Algorithm 2: Leader Class and Confidence Decision Ensemble (LCCDE) - Model Training
Input:

Dtrain: the training set,
M = {M1,M2,M3}: the base ML model list, including M1 = LightGBM, M2 = XGBoost,

M3 = CatBoost,
c = 1, 2, . . . , n: the class list for n different classes.

Output:
M = {M1,M2,M3}: the trained base model list,
LM = {LM1, LM2, . . . , LMn}: the leader model list for all classes.

1 M1 ← Training(M1,Dtrain); // Train the LightGBM model
2 M2 ← Training(M2,Dtrain); // Train the XGBoost model
3 M3 ← Training(M3,Dtrain); // Train the CatBoost model
4 for c = 1, 2, . . . , n do // For each class (normal or a type of attack), find the leader model
5 Mlistc ← BestPer f orming(M1,M2,M3, c); // Find the best-performing model for each class

(e.g., has the highest F1-score)
6 if Len(Mlistc) == 1 then // If only one model has the highest F1
7 LMc ← Mlistc[0]; // Save this model as the leader model for the class c
8 else // If multiple ML models have the same highest F1-score
9 LMc ← MostE f f icient(Mlistc); // Save the fastest or most efficient model as the leader

model for the class c
10 end
11 LM ← LM ∪ {LMc}; // Collect the leader model for each class
12 end

1. Train three base learners. The three base ML models (XGBoost, LightGBM, and Cat-

Boost) are trained on the training set to obtain base learners.

2. Evaluate base learners. The performance of the three ML models for each class (normal

or a type of attack) is evaluated using cross-validation and F1-scores. F1-scores are cho-

sen because it is a comprehensive performance metric and works well with imbalanced

datasets.

3. Determine the leader model for each class. For each class, the best-performing ML

model with the highest F1-score is selected as the leader model for each class. If multi-

ple top-performing ML models have identical highest F1-scores, the most efficient ML

model with the highest speed is chosen as the final leader model.

After the training process, the trained leader models for all classes are utilized for model

prediction. At the model prediction stage, the LCCDE framework predicts each test sample

based on the following steps:

1. Make initial predictions. The three trained base ML models obtained from the training
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Algorithm 3: Leader Class and Confidence Decision Ensemble (LCCDE) - Model Prediction
Input:

Dtest: the test set,
M = {M1,M2,M3}: the trained base ML model list, including M1 = LightGBM, M2 = XGBoost, M3

= CatBoost,
c = 1, 2, . . . , n: the class list for n different classes.

Output:
Ltest: the prediction classes for all test samples in Dtest.

1 for each data sample xi ∈ Dtest do // For each test sample
2 Li1, pi1 ← Prediction (M1, xi); // Use the trained LightGBM model to predict the sample, and save

the predicted class & confidence
3 Li2, pi2 ← Prediction (M2, xi); // Use XGBoost to predict
4 Li3, pi3 ← Prediction (M3, xi); // Use CatBoost to predict
5 if Li1 == Li2 == Li3 then // If the predicted classes of all the three models are the same
6 Li ← Li1; // Use this predicted class as the final predicted class
7 else if Li1! = Li2! = Li3 then // If the predicted classes of all the three models are different
8 for j = 1, 2, 3 do // For each prediction model
9 if M j == LMLi, j then // Check if the predicted class’s original ML model is the same as its

leader model
10 L listi ← L listi ∪ {Li, j}; // Save the predicted class
11 p listi ← p listi ∪ {pi, j}; // Save the confidence
12 end
13 end
14 if Len(L listi) == 1 then // If only one pair of the original model and the leader model for each

predicted class is the same
15 L j ← L listi[0]; // Use the predicted class of the leader model as the final prediction class
16 else // If no pair or multiple pairs of the original prediction model and the leader model for

each predicted class are the same
17 if Len(L listi) == 0 then
18 p listi ← {pi1, pi2, pi3}; // Avoid empty probability list
19 end
20 p maxi ← max(p listi); // Find the highest confidence
21 if p maxi == pi1 then // Use the predicted class with the highest confidence as the final

prediction class
22 Li ← Li1;
23 else if p maxi == pi2 then
24 Li ← Li2;
25 else
26 Li ← Li3;
27 end
28 end
29 else // If two predicted classes are the same and the other one is different
30 n← mode(Li1, Li2, Li3); // Find the predicted class with the majority vote
31 Li ← Prediction(Mn, xi); // Use the predicted class of the leader model as the final prediction

class
32 end
33 Ltest ← Ltest ∪ {Li}; // Save the predicted classes for all tested samples;
34 end

process are used to make initial predictions. Their predicted classes and the correspond-

ing prediction confidences are retained for further analysis. Confidence is a probability
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value used to quantify how confident the model is about its predictions.

2. Check if the three predicted classes are the same. If they are the same, the predicted class

agreed by all three base learners is used as the final predicted class.

3. Check if the three predicted classes are different. If they are all different, the corre-

sponding leader model for each predicted class is compared to the base learner that has

predicted this class. If only one pair of the leader and base models match, their predicted

class is used as the final predicted class; otherwise, the predicted class with the highest

prediction confidence is used as the final predicted class.

4. Check if two predicted classes are the same and the other one is different. If so, the

corresponding leader model of the same two predicted classes is used to make the final

prediction.

In brief, LCCDE detects attacks based on the following three principles:

1. It uses the trained ML models to generate initially predicted classes.

2. It uses the leader models for each class to make the final predictions.

3. If there are multiple leader models for different classes, it selects the leader model with

the highest prediction confidence to make final decisions.

The computational complexity of LCCDE is O(NCK), where N is the data size, C is the

number of classes, K is the complexity of base models. Thus, its complexity mainly depends

on the complexity of all base ML models. In the proposed framework, three fast gradient-

boosting ML algorithms are used to achieve low overall complexity. These three algorithms

can be replaced by other ML algorithms using the same generic LCCDE strategy according

to specific tasks. LCCDE is designed to address the difficult samples that cannot be correctly

predicted by individual ML models. By using LCCDE, the final ensemble model can achieve

optimal performance for detecting every type of attack.
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4.4 Performance Evaluation

4.4.1 Experimental Setup

To develop the proposed IDS, the models were implemented using Scikit-learn, Xgboost [10],

Lightgbm [11], and Catboost [12] libraries in Python. The experiments were conducted on a

Dell Precision 3630 computer with an i7-8700 processor and 16 GB of memory, representing

an IoV server machine.

The proposed LCCDE framework is evaluated on two public benchmark IoV network se-

curity datasets, Car-Hacking [13] and CICIDS2017 [14] datasets, representing the IVN and

external network data, respectively. The Car-Hacking dataset [13] is created by transmitting

CAN messages into a real vehicle’s CAN bus. It has nine features (i.e., CAN ID and the eight

bits of the CAN message data field) and four types of attacks (i.e., DoS, fuzzy, gear spoofing,

and Revolutions Per Minute (RPM) spoofing attacks). The CICIDS2017 dataset [14] is a state-

of-the-art general cyber-security dataset including the most updated types of attacks (i.e., DoS,

sniffing, brute-force, web-attacks, botnets, and infiltration attacks).

To evaluate the proposed LCCDE model, five-fold cross-validation is used in the training

process to select leader class models, and 80%/20% hold-out validation is then used in the test-

ing process to evaluate the model on the unseen test set. As network traffic data is often highly

imbalanced and contains only a small proportion of attack samples, four performance mea-

sures, including accuracy, precision, recall, and F1-scores, are utilized to evaluate the model

performance [4]. The execution time, including the model training and test time, is used to

evaluate the efficiency of the model.

4.4.2 Experimental Results and Discussion

The experimental results of evaluating the three base ML models (LightGBM, XGBoost, Cat-

Boost) and the proposed LCCDE model on the Car-Hacking and CICIDS2017 datasets are

shown in Tables 4.1 - 4.4. Tables 4.1 and 4.2 illustrate the performance of the four models

for detecting every type of attack in the two datasets based on their F1-scores. It is noticeable

that the F1-scores of different base ML models vary for different types of attack detection.
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Table 4.1: Model Performance Comparison for Each Class in The Car-Hacking Dataset

Method

Car-Hacking Dataset
F1 (%) of
Class 1:
Normal

F1 (%) of
Class 2: DoS

F1 (%) of
Class 3: Fuzzy

F1 (%) of
Class 4: Gear

Spoofing

F1 (%) of
Class 5: RPM

Spoofing
LightGBM [11] 99.9998 100.0 99.995 100.0 100.0
XGBoost [10] 99.9996 100.0 99.990 100.0 100.0
CatBoost [12] 99.9996 100.0 99.990 100.0 100.0

Proposed
LCCDE 99.9998 100.0 99.995 100.0 100.0

Table 4.2: Model Performance Comparison for Each Class in The CICIDS2017 Dataset

Method

CICIDS2017 Dataset

F1 (%) of
Class 1:
Normal

F1 (%) of
Class 2:

DoS

F1 (%) of
Class 3:
Sniffing

F1 (%) of
Class 4:
Brute-
Force

F1 (%) of
Class 5:

Web
Attack

F1 (%) of
Class 6:
Botnets

F1 (%) of
Class 7:
Infiltra-

tion
LightGBM [11] 99.863 100.0 99.889 99.222 99.354 100.0 85.714
XGBoost [10] 99.863 100.0 99.889 99.351 99.137 100.0 85.714
CatBoost [12] 99.794 99.754 99.557 99.094 99.354 100.0 85.714

Proposed
LCCDE 99.876 100.0 99.889 99.351 99.354 100.0 85.714

Table 4.3: Performance Evaluation of Models on Car-hacking Dataset
Method Accuracy (%) Precision (%) Recall (%) F1 (%) Execution Time (s)

KNN [23] 97.4 96.3 98.2 93.4 195.6
SVM [23] 96.5 95.7 98.3 93.3 1345.3

LSTM-AE [24] 99.0 99.0 99.9 99.0 -
DCNN [16] 99.93 99.84 99.84 99.91 -

LightGBM [11] 99.9997 99.9997 99.9997 99.9997 10.7
XGBoost [10] 99.9994 99.9994 99.9994 99.9994 45.3
CatBoost [12] 99.9994 99.9994 99.9994 99.9994 88.6

Proposed
LCCDE

99.9997 99.9997 99.9997 99.9997 185.1

Table 4.4: Performance Evaluation of Models on CICIDS2017
Method Accuracy (%) Precision (%) Recall (%) F1 (%) Execution Time (s)

KNN [14] 96.3 96.2 93.7 96.3 1558.3
RF [14] 98.82 98.8 99.955 98.8 135.1

DBN [19] 98.95 95.82 95.81 95.81 -
Stacking [18] 99.80 99.75 99.89 99.70 278.6

LightGBM [11] 99.794 99.795 99.794 99.792 14.3
XGBoost [10] 99.794 99.795 99.794 99.792 44.7
CatBoost [12] 99.683 99.684 99.683 99.680 73.7

Proposed
LCCDE

99.813 99.814 99.913 99.811 168.9
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For example, on the CICIDS2017 dataset, LightGBM achieves the highest F1-score among

the three base learners for detecting normal samples, DoS, sniffing, webattacks, botnets, and

infiltration attacks, while XGBoost outperforms LightGBM for the brute-force attack detec-

tion. As shown in Table 4.1 and 4.2, the proposed LCCDE ensemble model can achieve the

highest F1-score for every class. Thus, as shown in Tables 4.3 and 4.4, the overall F1-scores

of the proposed model are also the highest among the four utilized ML models on the two

datasets. The proposed LCCDE model achieves a near-perfect F1-score on the Car-Hacking

dataset (99.9997%), and improved its F1-score from 99.792% to 99.811% on the CICIDS2017

dataset. This demonstrates the benefits of identifying the best-performing base models for each

class to construct the LCCDE ensemble model.

Tables 4.3 and 4.4 also compare the performance of the proposed technique with existing

state-of-the-art methods [14] [16] [18] [19] [23] [24] on the two datasets. The proposed LC-

CDE model outperforms other methods by at least 0.09% and 0.11% F1-score improvements

on the Car-Hacking and CICIDS2017 datasets, respectively. As an ensemble approach, the pro-

posed LCCDE model has a longer execution time than the other three base gradient-boosting

models, but it is still faster than many other ML algorithms, such as K-Nearest Neighbors

(KNN) and Support Vector Machine (SVM). This is because the proposed ensemble model is

built using low complexity ML models with parallel execution and GPU support. To summa-

rize, the proposed model can achieve the highest F1-scores among the compared methods with

relatively low execution time on the two benchmark datasets.

4.5 Conclusion

For the purpose of enhancing IoV security, Machine Learning (ML) algorithms have been used

as promising solutions to detect various types of cyber-attacks. However, ML models often

perform differently for different types of attack detection. To achieve optimal performance

on all types of attack detection in IoV networks, a novel ensemble method, namely Leader

Class and Confidence Decision Ensemble (LCCDE), is proposed in this chapter. It identifies

the best-performing ML models for each type of attack detection as the leader class models

to construct a robust ensemble model. Additionally, the prediction confidence information is



153

utilized to help determine the final prediction classes. Three advanced gradient-boosting ML

algorithms, XGBoost, LightGBM, and CatBoost, are utilized to construct the proposed LC-

CDE ensemble model due to their high effectiveness and efficiency. Through the experiments,

the proposed IDS framework achieves high F1-scores of 99.9997% and 99.811% on the Car-

Hacking and CICIDS2017 datasets, representing intra-vehicle and external vehicular network

data, respectively. Moreover, the proposed model’s F1-scores are higher than other compared

ML methods for detecting every type of attack. This illustrates the benefits of the proposed

leader class-based strategy.
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Chapter 5

A Transfer Learning and Optimized CNN

Based Intrusion Detection System for

Internet of Vehicles

5.1 Introduction

With the rapid development of the Internet of Things (IoT) and the Internet of Vehicles (IoV)

technologies, modern vehicles have been evolving to network-controlled vehicles, including

Autonomous Vehicles (AVs) and Connected Vehicles (CVs) [2]. Typical IoV systems in-

volve intra-vehicle networks (IVNs) and external networks. In IVNs, Controller Area Net-

work (CAN) bus is the central system that enables communications between Electronic Control

Units (ECUs) to perform actions and adopt functionalities. On the other hand, external vehic-

ular networks allow the connection between smart vehicles and other entities in IoV, including

road-side units, infrastructures, and road users [3].

However, the improving connectivity and accessibility of vehicular networks has increased

the cyber-attack surfaces of modern vehicles [4]. Additionally, due to the limited length of

CAN packets, there is no authentication or encryption strategies involved in the processing

of these packets [2]. The lack of fundamental security measures enables cyber-attackers to

A version of this chapter has been published in IEEE ICC 2022 [1].
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inject malicious messages to IVNs and launch different types of attacks, like Denial of Service

(DoS), fuzzy, and spoofing attacks. On the other hand, the emerging cellular connections

between connected vehicles and external networks have made these vehicles vulnerable to

various conventional cyber-attacks [5]. Therefore, it is crucial to develop Intrusion Detection

Systems (IDSs) to protect IoV systems and smart vehicles by identifying cyber-attacks [6].

Recently, due to the progression of Machine Learning (ML) and Deep Learning (DL) tech-

niques, their applications in cyber-security and vehicle systems have attracted the attention of

researchers and automotive manufacturers [7] [8]. ML and DL techniques are widely used to

develop classifier-based IDSs that can distinguish between normal network traffic and differ-

ent cyber-attacks through traffic data analytics [9]. In this chapter, an intelligent IDS model

based on optimized Convolutional Neural Networks (CNNs), transfer learning, and ensemble

learning techniques is proposed to protect IoV systems. Five advanced CNN models, including

VGG16, VGG19, Xception, Inception, and InceptionResnet [10], are used to train base learn-

ers on vehicle network traffic data. The hyper-parameters of the CNN models are tuned using

Particle Swarm Optimization (PSO), a hyper-parameter optimization (HPO) method, to obtain

optimized learning models [11]. The base CNN models are then integrated using two ensemble

strategies, confidence averaging and concatenation, to further improve the intrusion detection

performance. The effectiveness and efficiency of the proposed IDS framework are evaluated

using two public vehicle network datasets: the Car-Hacking dataset [12] and the CICIDS2017

dataset [13].

This chapter mainly makes the following contributions:

1. It proposes a novel framework for effective cyber-attack detection in both intra-vehicle

and external networks through CNN, transfer learning, ensemble learning, and HPO

techniques.

2. It proposes a data transformation method that can effectively transform vehicle network

traffic data into images to more easily distinguish various cyber-attack patterns.

3. It evaluates the proposed method on two benchmark cyber-security datasets that repre-

sent intra-vehicle and external network data, and compares the model’s performance with

Code is available at: https://github.com/Western-OC2-Lab/Intrusion-Detection-System-Using-CNN-and-
Transfer-Learning
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other state-of-the-art methods.

To the best of our knowledge, no previous work proposed such an optimized IDS model

that integrates CNN, transfer learning, ensemble learning, and HPO techniques to effectively

detect various types of attacks on both intra-vehicle and external networks.

The rest of the chapter is organized as follows. Section 5.2 introduces the related work that

uses ML and DL algorithms for vehicle network intrusion detection. Section 5.3 presents the

proposed framework, including data transformation, CNN, transfer learning, ensemble learn-

ing, and HPO techniques. Section 5.4 presents and discusses the experimental results. Finally,

Section 5.5 summarizes the chapter.

5.2 Related Work

ML and DL models have been widely used in IoV intrusion detection tasks. Rosay et al. [5]

proposed a DL-based IDS for connected vehicles using Multi-Layer Perceptron (MLP). The

MLP model was evaluated on an automotive microprocessor using the CICIDS2017 dataset.

Yang et al. [3] [4] proposed a tree-based stacking algorithm for network traffic analysis in

IoV environments. The proposed stacking method shows high performance on the IoV and

CICIDS2017 datasets.

Several existing works focused on CNN-based IDS development for vehicular networks.

Mehedi et al. [2] proposed the P-LeNet method for in-vehicle network intrusion detection

based on deep transfer learning. The P-LeNet model achieved a high F1-score of 97.83% on

the Car-Hacking dataset. Hossain et al. [6] proposed a one-dimensional CNN (1D-CNN) based

IDS for intra-vehicle intrusion detection, as 1D-CNN models work well in many time-series

data analytics problems. Song et al. [8] proposed a deep CNN (DCNN) based IDS model using

reduced InceptionResnet to detect attacks in IVNs. The DCNN model shows high accuracy on

the Car-Hacking dataset.

Although the above methods achieve high accuracy in IoV cyber-attack detection tasks,

there is still much room for performance improvement. The proposed solution aims to con-

struct an optimal IDS framework using state-of-the-art CNN models optimized using HPO and

ensemble learning strategies. Additionally, transfer learning techniques are used to improve
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Figure 5.1: The IDS-protected vehicle architecture.

the model training efficiency.

5.3 Proposed Framework

5.3.1 System Overview

The purpose of this work is to develop an IDS that can detect various types of attacks in intra-

vehicle and external vehicular networks to protect them both. The typical attack scenario and

the architecture of an IDS-protected vehicle are shown in Fig. 5.1. Cyber-attackers can launch

internal attacks on IVNs through the On-Board Diagnostics II (OBD II) interface and launch

external attacks to external vehicular networks through wireless interfaces by sending mali-

cious traffic packets. Thus, the proposed IDS should be deployed in both IVNs and external

networks. In IVNs, the proposed IDS can be deployed on top of the CAN-bus to detect abnor-

mal CAN messages and generate alarms [4]. In external networks, the proposed IDS can be

incorporated into the gateways to identify and block all malicious packets that aim to breach

the vehicles [3].
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Figure 5.2: The proposed optimized CNN-based IDS framework.

In this chapter, a novel optimized CNN and transfer learning-based IDS is proposed to

detect various types of attacks in IoV systems. Figure 5.2 demonstrates the overview of the

proposed IDS framework. Firstly, the intra-vehicle and external network data are collected in
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time-based chunks and then transformed into images using the quantile transform method. At

the next stage, the generated image set is trained by five state-of-the-art CNN models (VGG16,

VGG19, Xception, Inception, and InceptionResnet) to construct base learners. The CNN mod-

els are optimized by PSO, a HPO method that can automatically tune the hyper-parameters.

After that, the top-3 best performing CNN models are selected as the three base CNN mod-

els to construct the ensemble learning models. Lastly, two ensemble strategies, confidence

averaging and concatenation, are used to construct ensemble models for final detection.

5.3.2 Data Description and Transformation

To develop the proposed IDS for both IVNs and external vehicular networks, two datasets are

used in this work. The first dataset is the Car-Hacking dataset [12] that represents intra-vehicle

data, as it is generated by transmitting CAN packets into the CAN-bus of a real vehicle. The

CAN identifier (ID) and 8-bit data field of CAN packets (DATA[0]-DATA[7]) are the main

features of the dataset. The Car-Hacking dataset involves four main types of attacks: DoS,

fuzzy, gear spoofing, and Revolutions Per Minute (RPM) spoofing attacks. The second dataset

used is the CICIDS2017 dataset [13] that represents external network data, as it is a state-of-

the-art network security dataset that includes the most updated attack patterns. According to the

dataset analysis in [4] [14], the attack patterns in the CICIDS2017 dataset can be summarized

into five main types of attacks: DoS attacks, port-scan attacks, brute-force attacks, web-attacks,

and botnets.

After acquiring the data, it should be pre-processed to generate a proper input for the pro-

posed IDS. As CNN models work better on image sets and vehicular network traffic datasets

are usually tabular data, the original network data should be transformed into image forms [15].

The data transformation process starts with data normalization. Since the pixel values of

images range from 0 to 255, the network data should also be normalized into the scale of 0-

255. Among the normalization techniques, min-max and quantile normalization are the two

commonly used methods that can convert data values to the same range. As min-max normal-

ization does not handle outliers well and may cause most data samples to have extremely small

values, quantile normalization is used in the proposed framework [16]. The quantile normal-
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ization method transforms the feature distribution to a normal distribution and re-calculates all

the features values based on the normal distribution. Therefore, the majority of variable values

are close to the median values, which is effective in handling outliers [16].

After data normalization, the data samples are converted into chunks based on the times-

tamps and feature sizes of network traffic datasets. For the Car-Hacking dataset, as it has 9

important features (CAN ID and DATA[0]-DATA[7]), each chunk of 27 consecutive samples

with 9 features (27 × 9 = 243 feature values in total) are transformed into an image of shape

9 × 9 × 3 [15]. Thus, each transformed image is a square color image with three channels

(red, green, and blue). Similarly, the CICIDS2017 dataset with 20 important features gener-

ated from [3] is transformed to 20× 20× 3 color images, so each chunk of this dataset consists

of 20×3 = 60 consecutive data samples. As the images are generated based on the timestamps

of the data samples, the time-series correlations of the original network data can be retained.

In the next step, the transformed images are labeled based on the attack patterns in the

data chunks. If all the samples in a chunk/image are normal samples, this image is labeled

“Normal”. On the other hand, if a chunk/image contains attack samples, this image is labeled

as the most frequent attack type in this chunk. For example, if a DoS attack occurs in a chunk

with the highest proportion, the corresponding image will be labeled “DoS attack”.

After the above data pre-processing procedures, the final transformed image set is generated

as the input of CNN models. The representative samples for each type of attack in the Car-

Hacking dataset and the CICIDS2017 dataset are shown in Fig. 5.3 and Fig. 5.4. For the

Car-Hacking dataset, it can be seen from Fig. 5.3 that there are large differences in the feature

patterns between the normal samples and different types of attacks. The feature patterns of

fuzzy attack images are more random than normal images, while DoS attack samples are high-

frequency empty messages, causing pure black patterns. Gear and RPM spoofing attacks are

launched by injecting messages with certain CAN IDs and packets to masquerade as legitimate

users, so their images also have fixed feature patterns [12]. Similarly, the attack patterns of

CICIDS2017 can be obviously distinguished according to the feature patterns shown in Fig.

5.4.
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Figure 5.3: The representative sample images of each class in the Car-Hacking dataset.

Figure 5.4: The representative sample images of each class in the CICIDS2017 dataset.

5.3.3 CNN and Transfer Learning

CNN is a common DL model that is widely used in image classification and recognition prob-

lems [8]. The images can be directly inputted into CNN models without additional feature

extraction and data reconstruction processes. A typical CNN comprises three types of lay-

ers: convolutional layers, pooling layers, and fully-connected layers [8]. In convolutional lay-

ers, the feature patterns of images can be automatically extracted by convolution operations.

In pooling layers, the data complexity can be reduced without losing important information

through local correlations to avoid over-fitting. Fully-connected layers serve as a conduit to

connect all features and generate the output.

For DL models, Transfer Learning (TL) is the process of transferring the weights of a

Deep Neural Network (DNN) model trained on one dataset to another dataset [17]. The TL
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technique has been successfully applied to many image processing tasks. This is because

the feature patterns learned by the bottom layers of CNN models are usually general patterns

that are applicable to many different tasks, and only the features learned by the top layers are

specific features for a particular dataset [17]. Therefore, the bottom layers of CNN models can

be directly transferred to different tasks. To improve the effectiveness of TL, fine-tuning can

be used in the TL process of DL models. In fine-tuning, most of the layers of the pre-trained

model are frozen (i.e., their weights are retained), while a few of the top layers are unfrozen

to re-train the model on a new dataset. Fine-tuning enables the learning model to update the

higher-order features in the pre-trained model to better fit the target task or dataset [17].

In the proposed framework, we have selected VGG16, VGG19, Xception, Inception, and

InceptionResnet as the base CNN models due to their success in most image classification prob-

lems [10]. These CNN models are pre-trained on the ImageNet dataset and have demonstrated

great performance on general image classification tasks. The ImageNet dataset is a benchmark

image processing dataset that has more than one million images of 1,000 classes [10].

The VGG16 models with 16 layers (VGG16) and with 19 layers (VGG19) proposed in [18]

have achieved a reduced error rate of 7.3% on the ImageNet Challenge. The VGG16 architec-

ture comprises five blocks of convolutional layers and three fully connected layers, while the

VGG19 architecture has three more convolutional layers. The Inception network introduced

in [19] uses convolutional feature extractors that combine different contexts to obtain different

types of feature patterns, which reduces the computational cost through dimensionality reduc-

tion. Xception [20] is an extension of the Inception network that uses depthwise separable

convolutions to replace the standard network convolutions. The memory requirement of Xcep-

tion is slightly smaller than Inception. InceptionResnet is another extension of Inception that

incorporates the residual connections from Resnet into the Inception network [10]. Inception-

Resnet outperforms Inception models on image classification challenges, but it requires twice

the computational operations and memory than Inception.

After using transfer learning and fine-tuning to train five state-of-the-art CNN models on

the vehicle network datasets, the top-3 best performing CNN models are selected as the base

learners to construct the ensemble models that are introduced in the next subsection.
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5.3.4 Proposed Ensemble Learning Models

Ensemble learning is a technique that integrates multiple base learning models to construct an

ensemble model with improved performance. Ensemble learning is widely used in data ana-

lytics problems because an ensemble of multiple learners usually performs better than single

learners [3].

Confidence averaging is an ensemble learning approach that combines the classification

probability values of base learners to find the class with the highest confidence value [21]. In

DL models, softmax layers can output a posterior probability list that contains the classification

confidence of each class. The confidence averaging method calculates the average classification

probability of base learners for each class, and then returns the class label with the highest

average confidence value as the final classification result. The confidence value of each class

is calculated using the softmax function [21]:

Softmax(z)i =
ezi∑C
j=1 ez j

(5.1)

Where z is the input vector, C is the number of classes in the dataset, ezi and ez j are the standard

exponential functions for the input and output vectors, respectively.

The predicted class label obtained by the confidence averaging method can be denoted by:

ŷ = argmax
i∈{1,··· ,c}

∑k
j=1 p j

(
y = i | B j, x

)
k

(5.2)

Where B j is the jth base learner, k is the number of selected base CNN learners, and k = 3

in the proposed IDS; p j(y = i | B j, x) indicates the prediction confidence of a class value i in a

data sample x using B j.

Unlike the conventional voting method that only considers the class labels, confidence av-

eraging enables the ensemble model to detect uncertain classification results and correct the

misclassified samples through the use of classification confidence. The computational com-

plexity of an entire ensemble model depends on the complexity of base learners, while the time

complexity for the confidence averaging method itself is only O(NKC), where N is the number

of instances, K is the number of base CNN models, and C is the number of classes [22]. As
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K and C are usually small, the execution speed of the confidence averaging method is usually

high.

Concatenation [23] is another ensemble strategy for DL models. A concatenated CNN aims

to extract the highest order features generated from the top dense layer of base CNN models

and use concatenate operations to integrate all the features into a new concatenated layer that

contains all the features. The concatenated layer is followed by a drop-out layer to reduce

redundant features and a softmax layer to construct a new CNN model. The advantage of con-

catenation is that it can combine the highest order features to construct a comprehensive new

model. However, as the new model needs to be re-trained on the entire dataset, it introduces

additional model training time. The computational complexity of the concatenation method is

O(NF), where N is the number of data samples, and F is the total number of features extracted

from the dense layers of the base CNN models.

5.3.5 Hyper-Parameter Optimization (HPO)

To better fit the base models to the selected datasets and further improve the models’ perfor-

mance, the hyper-parameters of CNN models need to be tuned and optimized

Similar to other DL models, CNN models have a large number of hyper-parameters that

need tuning. These hyper-parameters can be classified as model-design hyper-parameters

and model-training hyper-parameters [11]. Model-design hyper-parameters are the hyper-

parameters that should be set in the model design process. In the proposed TL framework,

the model-design hyper-parameters include the number or percentage of frozen layers, the

learning rate, and the drop-out rate. On the other hand, model-training hyper-parameters are

used to balance the training speed and model performance, involving the batch size, the num-

ber of epochs, and early stop patience. The above hyper-parameters have a direct impact on

the structure, effectiveness, and efficiency of CNN models.

HPO is an automated process of tuning hyper-parameters of ML or DL models using opti-

mization techniques [11]. Among the optimization techniques used for HPO problems, PSO is

a widely-used metaheuristic optimization method that identifies optimal hyper-parameter val-

ues via the information sharing and cooperation among the particles in a swarm [11]. At the
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initial stage of PSO, each individual in the group is initialized with a position −→xi and velocity
−→vi . After each iteration, the velocity of each particle are updated based on its own current best

position −→pi and the current global optimal position −→p shared by other individuals:

−→vi := −→vi + U (0, φ1) (−→pi −
−→xi) + U (0, φ2) (−→p − −→xi), (5.3)

where U(0, φ) is the continuous uniform distribution calculated by the acceleration constants

φ1 and φ2.

Finally, the particles can gradually move towards the promising regions to identify the

global optimum. PSO is chosen in the proposed framework due to its support to different types

of hyper-parameters and its low time complexity of O(NlogN) [11].

5.4 Performance Evaluation

5.4.1 Experimental Setup

The experiments were conducted using Scikit-learn and Keras libraries in Python. In the ex-

periments, the proposed DL models were trained on a Dell Precision 3630 machine with an

i7-8700 processor and 16 GB of memory and tested on a Raspberry Pi 3 machine with a

BCM2837B0 64-bit CPU and 1 GB of memory, representing an IoV central server machine

and a vehicle-level local machine, respectively.

The proposed framework is evaluated on two benchmark vehicle network security datasets,

Car-Hacking [12] and CICIDS2017 [13] datasets, as described in Section 5.3.2. Five-fold

cross-validation is used to evaluate the proposed model, which can avoid over-fitting and bi-

ased results. On the other hand, as network traffic data is usually highly imbalanced data that

only has a small percentage of attack samples, four different metrics, including accuracy, pre-

cision, recall, and F1-scores, are used for performance evaluation. Furthermore, to evaluate the

efficiency of the proposed method, model training time on the server-level machine and model

testing time on the vehicle-level machine are also monitored and compared.



168

Table 5.1: Hyper-parameter Configuration of CNN models
Hyper-Parameter Model Search Range Optimal Value
Number of epochs

General (All
CNN models)

[5, 50] 20
Batch size [32, 128] 128

Early stop patience [2, 5] 3
Learning rate (0.001, 0.1) 0.003
Drop-out rate (0.2, 0.8) 0.5

Number of frozen
layers

Xception [60,125] 121
Vgg16 [8, 16] 15
Vgg19 [10, 19] 19

Inception [80, 159] 148
InceptionResnet [300, 572] 522

Table 5.2: Performance Evaluation of Models on Car-hacking Dataset
Method Accuracy

(%)
Precision

(%)
Recall
(%)

F1 (%) Training
Time (s)

Test Time Per
Packet (ms)

P-LeNet [2] 98.10 98.14 98.04 97.83 - -
1D-CNN [6] 99.96 99.94 99.63 99.80 - -
DCNN [8] 99.93 99.84 99.84 99.91 - -

VGG16-PSO 99.97 99.97 99.97 99.97 384.9 0.2
VGG19-PSO 100.0 100.0 100.0 100.0 417.9 0.2

Xception-PSO 100.0 100.0 100.0 100.0 529.2 0.3
Inception-PSO 100.0 100.0 100.0 100.0 733.6 0.6

InceptionResnet
-PSO

100.0 100.0 100.0 100.0 970.4 1.3

Concatenation
(Proposed)

100.0 100.0 100.0 100.0 2490.5 3.2

Confidence
Averaging
(Proposed)

100.0 100.0 100.0 100.0 1680.7 2.7

5.4.2 Experimental Results and Discussion

To construct optimal models, the major hyper-parameters of all the base CNN models in the

proposed framework were optimized using PSO. As CNN models with default hyper-parameter

values can already achieve near 100% accuracy on the Car-Hacking dataset, the HPO process

was only implemented for the CICIDS2017 dataset. Table 5.1 illustrates the initial search range

and the optimal values of the hyper-parameters. After HPO, the optimized CNN models were

used as base learners to construct the proposed ensemble models.

The results of evaluating the optimized CNN models and the proposed ensemble models

on the Car-Hacking and CICIDS2017 datasets are shown in Tables 5.2 & 5.3, respectively. As

shown in Table 5.2, all optimized base CNN models except VGG16 achieve 100% accuracy
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Table 5.3: Performance Evaluation of Models on CICIDS2017 Dataset
Method Accuracy

(%)
Precision

(%)
Recall
(%)

F1 (%) Training
Time (s)

Test Time Per
Packet (ms)

KNN [13] 96.3 96.2 93.7 96.3 15243.6 0.2
RF [13] 98.82 98.8 99.955 98.8 1848.3 0.3
MLP [5] 99.46 99.52 99.40 99.46 - 1.1

VGG16-PSO 99.724 99.625 99.724 99.674 436.5 0.1
VGG19-PSO 99.849 99.850 99.849 99.850 688.1 0.1

Xception-PSO 99.699 99.700 99.699 99.697 655.5 0.2
Inception-PSO 99.750 99.725 99.750 99.729 782.8 0.3

InceptionResnet
-PSO

99.849 99.850 99.849 99.850 1187.2 0.7

Concatenation
(Proposed)

99.899 99.900 99.899 99.898 3598.7 1.8

Confidence
Averaging
(Proposed)

99.925 99.925 99.924 99.925 2658.1 1.5

and F1-scores. This is mainly because the normal and attack patterns in the Car-Hacking

dataset can be obviously distinguished through the transformed images shown in Fig. 3. The

two ensemble techniques, concatenation and confidence averaging methods, can also achieve

100% F1-scores, while the total training time of confidence averaging is much lower than

concatenation (1680.7 s versus 2490.5 s). Therefore, the confidence averaging method is more

efficient. Moreover, the performance of the proposed models is compared with other state-of-

the-art methods [2] [6] [8]. As shown in Table 5.2, most of the compared approaches achieve

high accuracy due to the simplicity of the Car-Hacking dataset. Among the models shown in

Table 5.2, the proposed ensemble methods show the best performance by achieving at least

0.09% F1-score improvements.

For the CICIDS2017 dataset, the optimized base CNN models achieve high F1-scores of

99.674% to 99.850% after implementing data transformation and PSO, as shown in Table 5.3.

The proposed confidence averaging ensemble model also achieves the highest F1-score of

99.925%, which is slightly higher than the F1-score of the concatenation model (99.899%).

The two ensemble models also outperform other recent methods in the literature [5] [13]. Ad-

ditionally, the total training time of the confidence averaging is also much lower than the con-

catenation approach.

The higher performance of the proposed models when compared with other state-of-the-art

IDSs supports the reasons for using CNN, TL, and HPO techniques. Furthermore, the average
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test/prediction time of the proposed ensemble models for each packet on the Raspberry Pi

machine is at a low level, from 1.5 ms to 3.2 ms, as shown in Tables 5.2 & 5.3. As the real-

time requirement of vehicle anomaly detection systems is usually 10 ms for the analysis of

each packet [24], the low prediction time of the proposed models indicates the feasibility of

applying the proposed IDS to real-time IoV systems.

5.5 Conclusion

As modern vehicles are increasingly connected, the cyber-threats to IoV systems are also in-

creasing significantly. To protect connected vehicles from being breached by cyber-attacks,

this work proposed a transfer learning and ensemble learning-based IDS framework that uses

optimized CNN models to identify various types of attacks in IoV systems. Additionally,

a chunk-based data transformation method is proposed to transform vehicle network traffic

data to image data used as the input of CNN models. The proposed IDS is evaluated on the

Car-Hacking and CICIDS2017 dataset, representing intra-vehicle and external network data,

respectively. The experimental results show that the proposed IDS framework can effectively

identify various types of attacks with higher F1-scores of 100% and 99.925% than other com-

pared state-of-the-art methods on the two benchmark datasets. Moreover, the model testing

results on a vehicle-level machine show the feasibility of the proposed IDS in real-time vehicle

networks. In future work, this framework will be extended to develop an online adaptive model

that can achieve online learning and address concept drift in time-series vehicle network data.
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Chapter 6

MTH-IDS: A Multi-Tiered Hybrid

Intrusion Detection System for Internet of

Vehicles

6.1 Introduction

With the increasing research and rapid development of the Internet of Vehicles (IoV) tech-

nology, connected vehicles (CVs) and autonomous vehicles (AVs) are becoming increasingly

popular in the modern world [2]. IoV serves as a primary vehicular communication frame-

work that enables reliable communications between vehicles and other IoV entities, such as

infrastructures, pedestrians, and smart devices. [2].

IoV consists mainly of intra-vehicle networks (IVNs) and external vehicular networks [2].

IVNs involve an increasing number of electronic control units (ECUs) to adopt various func-

tionalities [3]. All ECUs in a vehicle are connected by a controller area network (CAN) bus

to transmit messages and perform actions [4]. On the other hand, external networks connect

modern vehicles to the outer environment by vehicle-to-everything (V2X) technologies. V2X

technology allows modern vehicles to communicate with other vehicles, roadside infrastruc-

tures, and road users [5] [6].

A version of this chapter has been published in IEEE Internet of Things Journal [1].
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However, with the increasing level of connectivity and complexity of modern vehicles,

their security risks have become a significant concern. Cyber threats may decrease the stability

and robustness of IoV, as well as cause vehicle unavailability or traffic accidents. A real-life

example can be found in [7]: two attackers compromised and fooled a jeep car into performing

dangerous actions, including turning the steering wheel and activating the parking brake at

highway speeds, causing severe accidents. In IVNs, CANs are mainly vulnerable to message

injection attacks due to their broadcast communication strategy and the lack of authentication

[5]. In external networks of IoV, vehicle systems are exposed to various common cyber-attacks,

like denial-of-service (DoS), sniffing, and global positioning system (GPS) spoofing attacks

[8]. This is because, in large external vehicular networks comprising various types of networks

and entities, every node is a potential entry point for cyber-attacks.

Many traditional security mechanisms, like certain authentication and cryptographic tech-

niques, are unsuitable for intra-vehicle networks because they are not supported in CANs or

may violate timing constraints of CAN communications [9]. Thus, intrusion detection systems

(IDSs) have become an essential component in modern IoV to identify malicious threats on

vehicular networks [10]. IDSs are often incorporated into external networks as an essential

component of the defense system to identify malicious attacks that can breach firewalls and

authentication mechanisms. Although many previous works have made some success develop-

ing IDSs, intrusion detection is still a challenging problem due to the high volume of network

traffic data, numerous available network features, and various cyber-attack patterns [8].

Machine learning (ML) and data mining algorithms have been recognized as effective mod-

els to design IDSs [11]. In this chapter, a multi-tiered hybrid intrusion detection system (MTH-

IDS) is proposed to efficiently identify known and zero-day cyber-attacks on both intra-vehicle

and external networks using multiple ML algorithms. This work is an extension of Chapter 3.

The proposed MTH-IDS framework consists of two traditional ML stages (data pre-processing

and feature engineering) and four tiers of learning models:

1. Four tree-based supervised learners — decision tree (DT), random forest (RF), extra

trees (ET), and extreme gradient boosting (XGBoost) — used as multi-class classifiers

for known attack detection;

2. A stacking ensemble model and a Bayesian optimization with tree Parzen estimator (BO-
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TPE) method for supervised learner optimization;

3. A cluster labeling (CL) k-means used as an unsupervised learner for zero-day attack

detection;

4. Two biased classifiers and a Bayesian optimization with Gaussian process (BO-GP)

method for unsupervised learner optimization.

Therefore, tiers 1 and 3 of the MTH-IDS are designed for basic known and unknown attack

detection functionalities, respectively, while tiers 2 and 4 are designed to optimize the base

learners in tiers 1 and 3 for model performance enhancement. A comprehensive and robust

IDS with both known and unknown attack detection functionalities can be obtained after the

model learning and optimization procedures. Additionally, the quality of the used datasets

can be improved by data pre-processing and feature engineering procedures to achieve more

accurate attack detection.

The performance of the proposed MTH-IDS is evaluated on two public network datasets,

the CAN-intrusion-dataset [10] and the CICIDS2017 dataset [12], representing the intra-vehicle

and external network traffic data, respectively. The model’s feasibility, effectiveness, and ef-

ficiency are evaluated using various metrics, including accuracy, detection rates, false alarm

rates, F1-scores, and model execution time.

To our knowledge, no previous work proposed such a hybrid IDS that optimizes learning

models to accurately detect existing and zero-day attack patterns on both intra-vehicle and

external vehicular networks.

The main contributions of this chapter are as follows:

1. It proposes a novel multi-tiered hybrid IDS that can accurately detect the various sur-

veyed types of cyber-attacks launched on both intra-vehicle and external vehicular net-

works;

2. It proposes a novel feature engineering model based on information gain (IG), fast correlation-

based filter (FCBF), and kernel principal component analysis (KPCA) algorithms;

3. It proposes a novel anomaly-based IDS based on CL-k-means and biased classifiers to

detect zero-day attacks;

4. It discusses the use of Bayesian optimization techniques to automatically tune the pa-
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rameters of each tier in the proposed IDS for model optimization;

5. It evaluates the performance and overall efficiency of the proposed model on two state-

of-the-art datasets, CAN-intrusion-dataset and CICIDS2017, and discusses its feasibility

in real-world IoV devices.

The remainder of this chapter is organized as follows: Section 6.2 discusses the related

work. Section 6.3 presents the vulnerabilities of intra-vehicle and external vehicular networks,

as well as the attack scenarios and IDS deployment. In Section 6.4, all the tiers and algo-

rithms in the proposed MTH-IDS are discussed in detail. Section 6.5 presents and discusses

the experimental results. Section 6.6 concludes the chapter.

6.2 Related Work

6.2.1 CAN Intrusion Detection

The research on IDS development for IoV and connected vehicles has been considered critical

in recent years. Many research works have a focus on detecting attacks on CAN-based intra-

vehicle networks. Alshammari et al. [13] proposed an intrusion classification model to identify

CAN intrusions on in-vehicle networks utilizing support vector machine (SVM) and k-nearest

neighbors (KNN) algorithms. Barletta et al. [14] proposed a distance-based IDS for CAN in-

trusion detection using a X–Y fused Kohonen network with the k-means algorithm (XYF-K).

The proposed method shows high accuracy on the CAN-intrusion dataset, but its main limita-

tion is the high computational complexity. Olufowobi et al. [15] proposed a specification-based

real-time IDS named SAIDuCANT to detect the in-vehicle network attacks. The effectiveness

of SAIDuCANT is evaluated on a synthetic dataset and the CAN-intrusion dataset. Olufowobi

et al. [16] proposed an anomaly-based IDS for CAN attack detection using the adaptive cu-

mulative sum (CUSUM) algorithm. This technique can effectively detect intrusions with low

delay based on statistical changes. Lee et al. [17] proposed an Offset Ratio and Time Interval

based IDS (OTIDS) to detect CAN attacks in in-vehicle networks. They also created a CAN

dataset by simulating DoS, fuzzy, and impersonation attacks for IDS evaluation.

Deep learning (DL) methods are also widely used for intra-vehicle network IDS devel-
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opment. Lokman et al. [18] proposed an unsupervised DL-based anomaly detection model

named stacked sparse autoencoders (SSAEs) to discover anomalies in CAN-bus data for intra-

vehicle network security enhancement. Song et al. [19] proposed a deep convolutional neural

network (DCNN) method named Reduced Inception-ResNet to detect intra-vehicle attacks and

achieve high detection performance on the CAN-intrusion dataset. Ashraf et al. [20] proposed

a DL-based IDS for IoV using a long-short term memory (LSTM) autoencoder algorithm. The

effectiveness of the proposed model is evaluated on the CAN-intrusion-dataset and UNSW-

NB15 dataset, representing in-vehicle network and external network datasets, respectively. DL

methods can often achieve high accuracy, but they are computationally expensive due to high

model complexity.

6.2.2 External Network Intrusion Detection

Intrusion detection in IoV or external vehicular networks has also attracted significant atten-

tion. Alheeti et al. [21] proposed an intelligent IDS using back-propagation neural networks to

detect DoS attacks in external vehicular networks using the Kyoto 2006+ dataset, but did not

consider other attack types. Rosay et al. [22] proposed a multi-layer perceptron (MLP) based

network IDS for cyber-attack detection in IoT and connected vehicles. The proposed model

has been implemented on an automotive microprocessor, and its performance is evaluated on

the two variants of the CICIDS2017 dataset. Aswal et al. [23] analyzed the applicability of six

classical ML algorithms for Bot attack detection on IoV. They used the Bot attack files in the

CICIDS2017 dataset to represent the Botnets in vehicular networks, but they did not consider

other attacks. Aloqaily et al. [24] proposed a network IDS for IoV and connected vehicles

using deep belief network (DBN) and decision tree (DT) algorithms. This method shows high

accuracy on the NSL-KDD dataset. Gao et al. [25] proposed a distributed network IDS for

distributed DoS (DDoS) attack detection in vehicular networks and V2X systems. Two general

network benchmark datasets, the NSL-KDD and UNSW-NB15 datasets, are used to present

the vehicular network datasets and evaluate the IDS. Schmidt et al. [26] proposed a spline-

based IDS for vehicular networks using the knot flow classification (KFC) method and used

the NSL-KDD dataset to represent vehicle networks for model evaluation.
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Several other research works also pay attention to the IDS development of general networks

and use benchmark datasets for method evaluation. Min et al. [27] proposed a semi-supervised

learning model, named SU-IDS, by combining the auto-encoder algorithm with k-means to

detect cyber-attacks using the NSL-KDD and CICIDS2017 datasets. Yao et al. [28] pro-

posed a DL model named spatial-temporal deep learning on communication graphs (STDeep-

Graph) by combining the convolutional neural network (CNN) and long short-term memory

(LSTM) methods. The performance of STDeepGraph is evaluated on the UNSW-NB15 and

CICIDS2017 datasets. Injadat et al. [29] proposed a novel multi-stage optimized ML-based

IDS for network attack detection and evaluated the model’s performance on the CICIDS2017

and UNSW-NB15 datasets. The ML models used in this chapter are optimized by hyper-

parameter optimization (HPO) methods.

6.2.3 Literature Comparison

Although various studies about vehicular network IDS development have been published, most

of them are only designed for known attack detection on either intra-vehicle ( [13]- [19]) or

external networks ( [21]- [27]). Additionally, several papers [21] [23] [25] only consider a

specific type of attack, like Botnets or DoS attacks. However, in real-world applications, both

intra-vehicle and external networks are vulnerable to various types of attacks with both existing

and new patterns. The IDS proposed in [20] is the only research that considers both CAN bus

and external networks, and the IDS proposed in [21] is the only technique that can detect both

known and unknown attacks. Thus, there still should an IDS designed for the detection of

both known and zero-day attacks on both intra-vehicle and external vehicular networks. Our

proposed IDS aims to achieve this.

On the other hand, for the deployment of IDSs in real-world vehicle systems, vehicle-

level model testing and real-time analysis should be performed to validate the feasibility of the

IDSs. However, only five papers [15] [17] [19] [22] [24] did vehicle-level testing or real-time

analysis, so the feasibility of other techniques in real-world IoVs is not proven. Therefore,

our proposed IDS has been evaluated in a vehicle-level machine to verify whether it meets the

real-time requirements of vehicular networks.
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Table 6.1: Comparison of Recent Intrusion Detection Techniques for IoVs

Paper

In-vehicle
Network
Attack

Detection

External
Network
Attack

Detection

Multiple
Types of
Known
Attack

Detection

Zero-
Day

Attack
Detec-

tion

Vehicle-Level
Model

Testing or
Real-time
Analysis

Data Pre-
Processing

and
Sampling

Feature
Engineer-

ing

Model Op-
timization

Alshammari et
al. [13] ! ! !

Barletta et al. [14] ! !

Olufowobi et
al. [15] ! ! !

Olufowobi et
al. [16] ! !

Lee et al. [17] ! ! !

Lokman et al. [18] ! !

Song et al. [19] ! ! !

Ashraf et al. [20] ! ! ! !

Alheeti et al. [21] ! ! !

Rosay et al. [22] ! ! ! !

Aswal et al. [23] ! !

Aloqaily et al. [24] ! ! !

Gao et al. [25] !

Schmidt et al. [26] ! !

Min et al. [27] ! !

Yao et al. [28] ! !

Injadat et al. [29] ! ! ! !

Proposed
MTH-IDS ! ! ! ! ! ! ! !

An effective IDS should achieve a high detection rate and a low false alarm rate. Moreover,

to meet the real-time requirements of IoV, an IDS should have low computational complexity

and high efficiency. Thus, three important procedures, including data sampling, feature engi-

neering, and model optimization, are implemented in our proposed MTH-IDS to improve the

efficiency and accuracy of IoV attack detection. The details of how these three procedures can

improve the model’s performance are provided in Sections 6.4.2 to 6.4.4. However, only six

existing techniques [13] [20]- [23] [29] performed feature engineering and only one research

work [29] implemented model optimization. The use of efficiency and accuracy enhancement

techniques enables our proposed MTH-IDS to outperform most existing research works in

terms of detection rate, false alarm rate, and execution speed.

To summarize, the main functionalities and components of the proposed MTH-IDS are

listed in Table 6.1. Table 6.1 also clearly compares 17 existing literature with the proposed

MTH-IDS based on the important functionalities that an effective and efficient vehicular net-

work IDS should have.
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Figure 6.1: CAN packet structure.

6.3 Vehicular Networks, Vulnerabilities, and IDS Deployment

6.3.1 Vulnerabilities of Intra-vehicle Networks

Modern vehicles often contain 70-100 ECUs that are in-vehicle components used to enable var-

ious functionalities [3]. CAN [10] is a bus communication protocol that defines an international

standard for efficient and reliable intra-vehicle communications among ECUs. A CAN-bus is

built based on differential signaling and comprises a pair of channels, CAN-High and CAN-

Low, representing the two signals, 1 and 0, respectively [30]. CAN is the most common type

of IVN due to its low cost and complexity, high reliability, noise-resistance, and fault-tolerance

properties [8] [10]. However, CAN is vulnerable to various cyber threats due to its broadcast

transmission strategy, lack of authentication and encryption, and unsecured priority scheme [4].

CAN messages, or packets, are transmitted via CAN-bus. The data frame is the most

important type of CAN packet used to transmit user data [31]. Fig. 6.1 shows the structure of

a CAN packet, which consists of seven fields [5]: start of frame, arbitration field, control field,

data field, CRC (cyclic redundancy code) field, acknowledge (ACK) field, and end of frame.

Among all fields, the data field with the size of 0-8 bytes is the most important and vulnerable

one, since it contains the actual transmitted data that determines the node actions [10]. An

attacker can intrude or take control of a vehicle by injecting malicious messages into the data

field of CAN packets, resulting in compromised nodes or vehicles; so-called message injection

attacks.

Message injection attacks are the primary type of intra-vehicle attack and can be further

classified as DoS attacks, fuzzy attacks, and spoofing attacks by their objectives [10]. In DoS

attacks, a CAN is flooded with massive high-priority messages to cause latencies or unavail-

ability of other legitimate messages. Similarly, fuzzy attacks can be launched by injecting
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Table 6.2: Common Attack Types on External Vehicular Networks
Attack Type Description and IoV Scenarios

DoS [33]
Send a large number of requests to exhaust the compromised nodes’ resources,
causing vehicle unavailability or accidents.

GPS Spoofing [33]
Masquerade as authorized IoV users to provide a node with false information, like
false geographic information, therefore causing fake evidence, event delay, or prop-
erty losses.

Jamming [33]
Jam signals to prevent legitimate IoV devices from communicating with connected
vehicles.

Sniffing [33]
Capture vehicular network packets to steal confidential or sensitive information of
vehicles, users, or enterprises.

Brute-force [12]
Crack passwords in vehicle systems to take control of vehicles or machines and
perform malicious actions.

Botnets [12]
Infect multiple connected vehicles and IoV devices with Bot viruses to breach them
and launch other attacks.

Infiltration [12] Traverse the compromised vehicle systems and create a backdoor for future attacks.

Web Attack [12]
Hack IoV servers or web interfaces of connected vehicles to gain confidential in-
formation or perform malicious actions.

arbitrary messages with randomly spoofed identifiers or packets, causing compromised vehi-

cles to exhibit unintended behaviors, like sudden braking or gear shift changes. Spoofing or

impersonation attacks, such as gear spoofing and revolutions per minute (RPM) spoofing at-

tacks, are launched by injecting messages with certain CAN identifiers (IDs) to masquerade as

legitimate users and take control of the vehicles.

6.3.2 Vulnerabilities of External Vehicular Networks

In a similar fashion, V2X technology enables interactions and communications between vehi-

cles and other IoV entities, including pedestrians, infrastructures, smart devices, and network

systems [5] [32]. With the increasing connectivity of modern IoV, external vehicular networks

are becoming large networks that involve various other networks and devices. Thus, external

vehicular networks are vulnerable to various general cyber threats because each vehicle or de-

vice is a potential entry point for intrusions. Typical attacks in IoV include DoS, GPS spoofing,

jamming, sniffing, brute-force, Botnets, infiltration, and web attacks [12] [33]. The descrip-

tion and IoV scenarios of these common external vehicular network attacks are summarized in

Table 6.2.
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Figure 6.2: The proposed IDS-protected vehicle architecture.

6.3.3 Attack Scenarios and IDS Deployment

The attack scenarios and general architecture of a vehicle protected by IDS are shown in Fig.

6.2. As the physical interface for ECU communications, the on-board diagnostics II (OBD-

II) interface is often exploited by internal attacks to inject malicious CAN messages into the

vehicle systems, therefore taking control of the CAN nodes to perform malicious actions, like

sudden braking. On the other hand, the external attackers can launch the cyber-attacks listed in

Table 6.2 through various wireless interfaces, including WiFi, cellular network, and Bluetooth

[20].

To secure IoV, the proposed IDS can be placed in different locations in vehicular networks.

In intra-vehicle networks, the IDS can be deployed on top of the CAN-bus to detect malicious

messages [34]. Since every message is broadcasted to all nodes, it will also be transmitted

through the IDS when its signal changes from CAN-High to CAN-Low. The IDS will monitor

the CAN packets and identify potential intrusions. If an attack is detected, alarms will be

triggered on every node.

On the other hand, the central gateways are common network devices to incorporate IDSs,
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so the proposed IDS can be placed inside the gateway to monitor the external network traffic

[35]. Thus, abnormal network traffic can be detected when it is passed through the gateways in

external vehicular networks. The potential deployment of the proposed IDS is also shown in

Fig. 6.2.

To protect the vehicle from being breached, all packets or messages transmitted in the

protected vehicular network are captured by packet taps or sniffers (e.g., NetFlow), and then

analyzed by the proposed IDS before being forwarded to the protected vehicle [36]. For exam-

ple, if an attacker is launching a DoS attack by sending a large volume of malicious traffic to

a vehicle system, the malicious traffic will be detected by the proposed IDS by processing the

traffic data captured by the sniffer; alarms will then be generated, and the attacker’s access will

be denied, therefore protecting the vehicle from being breached [37]- [39].

6.3.4 Real-Time Requirements of Vehicle Systems

The standardized vehicular communications specify the performance requirements of vehicle

safety services based on two primary metrics: packet-delivery-ratio (PDR) and latency [40].

For IDS development, the latency metric should be considered to meet the real-time require-

ments. Latency indicates the time needed to transmit a packet from its source to its destination.

According to the United States (US) department of transportation, the highest priority vehicle

safety services, like collision and attack warnings, should have a latency of 10 to 100 ms at

the utmost [40]. On the other hand, for autonomous or cooperative driving, the V2X traffic

safety applications require a stringent latency requirement of 10 to 20 ms [39] [41]. Thus, for

a vehicle-level IDS, the time needed to process each network packet is required to be less than

10ms to meet the real-time or latency requirements.

6.4 Proposed MTH-IDS Framework

6.4.1 System Architecture

The purpose of this work is to develop an IDS that can protect both intra-vehicle and external

networks from being breached by the various common attacks presented in Sections 6.3.1 and
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Figure 6.3: The framework of the proposed MTH-IDS.

6.3.2. In this chapter, a novel multi-tiered hybrid IDS is proposed to detect both known and un-

known cyber-attacks on vehicular networks with optimal performance. Fig. 6.3 demonstrates

the architecture of the proposed system, comprising four main stages: data pre-processing,

feature engineering, a signature-based IDS, and an anomaly-based IDS.

Firstly, intra-vehicle and external network traffic datasets are collected for the purpose of

system performance evaluation on both types of vehicular networks. Data pre-processing con-

sists of a k-means-based cluster sampling method used to generate a highly-representative sub-

set, and a SMOTE method used to avoid class-imbalance. In the feature engineering process,

the datasets are processed by information-gain-based and correlation-based feature selection

methods to remove irrelevant and redundant features, and then passed to the KPCA model
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to further reduce dimensionality and noisy features. The proposed data pre-processing and

feature engineering procedures can greatly improve the quality of the network data for more

accurate model learning. The signature-based IDS is then developed to detect known attacks

by training four tree-based machine learners as the first tier of the proposed MTH-IDS: DT, RF,

ET, XGBoost. In the second tier, a stacking ensemble model and the BO-TPE method are used

to further improve the intrusion detection accuracy by combining the output of the four base

learners from the first tier and optimizing the learners. In the next stage, an anomaly-based IDS

is constructed to detect unknown attacks. In the anomaly-based IDS, the suspicious instances

are passed to a cluster-labeling (CL) k-means model as the third tier to effectively separate

attack samples from normal samples. The fourth tier of the MTH-IDS comprises the BO-GP

method and two biased classifiers used to optimize the model and reduce the classification er-

rors of the CL-k-means. Ultimately, the detection result of each test sample is returned, which

could be a known attack with its type, an unknown attack, or a normal packet. To summarize

the rationale behind the algorithms used in the proposed IDS, the brief description and perfor-

mance impact of each algorithm are presented in Table 6.3. A detailed description is provided

in Sections 6.3.2 to 6.3.4.

6.4.2 Data Pre-Processing

Data Sampling by K-means Clustering

In real life, training ML models on massive amounts of network traffic data is unrealistic and

may cost a massive amount of time, especially in the hyper-parameter tuning process that needs

to train a ML model multiple times. For model training efficiency improvement purposes, data

sampling is a common technique that can generate a subset of the original data to reduce the

training complexity of a model [42].

In the proposed system, to obtain a highly-representative subset, a k-means-based cluster

sampling method is utilized. Cluster sampling is a common data sampling method by which

the original data points are grouped into multiple clusters; then, a proportion of data is sam-

pled from each cluster to form a representative subset [42]. Unlike random sampling, which

randomly selects every data sample with an equal probability, cluster sampling can generate a
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Table 6.3: Rationale and Performance Impact of Each Component of the MTH-IDS
Stage Algorithm Rationale and Description Performance Impact

Data
pre-processing

K-means
cluster

sampling

Network traffic data is often large, while IoV devices of-
ten have limited computational power and resources. The
k-means sampling method can generate highly representa-
tive subsets for more efficient training because the removed
data is mostly redundant data.

Improve model training
efficiency.

SMOTE

Network traffic data is often imbalanced data because most
data samples are collected under normal conditions in real-
world vehicle systems. SMOTE can create high-quality sam-
ples for minority classes to avoid class-imbalance and inef-
fective classifiers.

Improve detection rate.

Z-score
Different features often have different ranges, which can bias
the model training. The Z-score method can normalize fea-
tures to a similar scale and handle outliers.

Improve model accu-
racy and training effi-
ciency.

Feature
engineering

IG
For certain tasks like intrusion detection, many collected fea-
tures can be irrelevant, causing additional training time. The
IG method can remove those unimportant features.

Improve model training
efficiency.

FCBF
Certain features are redundant because they contain very
similar information. FCBF can remove redundant features
by calculating the correlation between each pair of features.

Improve model accu-
racy and training effi-
ciency.

KPCA
The anomaly-based IDSs are sensitive to the quality of fea-
tures. KPCA can further extract the most relevant features
to reduce dimensionality and noisy information.

Improve model accu-
racy and training effi-
ciency.

The signature-
based IDS

DT, RF, ET,
and XGBoost

Tree-based ML algorithms often perform better than other
ML algorithms on complex tabular data to which IoV data
belong. Four tree-based supervised algorithms are used to
train base classifiers for known intrusion detection.

Detect various types of
known attacks.

BO-TPE
The default hyper-parameters of ML algorithms often cannot
return the best model. BO-TPE can optimize the models’
hyper-parameters to obtain the optimized base classifiers.

Improve accuracy of
known attack detection.

Stacking
Ensemble models can often achieve higher accuracy than
any single model. Stacking ensemble can combine the base
classifiers to obtain a meta-learner with better performance.

Improve accuracy of
known attack detection.

The anomaly-
based IDS

CL-k-means
For unknown attack detection, CL-k-means can generate a
sufficient number of normal and attack clusters to identify
zero-day attacks from the newly arriving data.

Detect unknown at-
tacks.

BO-GP
CL-k-means has an important hyper-parameter, the number
of clusters, k. BO-GP is an effective HPO method to opti-
mize k and obtain the optimized CL-k-means model.

Improve accuracy of
unknown attack detec-
tion.

Two biased
classifiers

CL-k-means may return many errors when detecting com-
plex unknown attacks. Two biased classifiers are trained on
the FPs and FNs of CL-k-means to reduce the errors.

Improve accuracy of
unknown attack detec-
tion.

highly-representative subset because the discarded data points are mostly redundant data.

Among all clustering algorithms, k-means is the most common one for data sampling due

to its simple implementation and low computational complexity [43]. K-means clustering al-

gorithms are used to divide the data points into k clusters based on their Euclidean, Manhattan,

or Mahalanobis distances [44] [45]. The data samples in the same group can be considered

similar samples, so sampling from each group can greatly reduce the size of data without los-
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ing important information. K-means aims to minimize the sum of squares of distances between

all the data points and the corresponding centroid of the cluster, denoted by [43]:

nk∑
i=0

min
u j∈Ck

(
xi − u j

)2
, (6.1)

where (x1, · · · ,xn) is the data matrix; u j, also called the centroid of a cluster Ck, is the mean of

all the samples in Ck; and nk is the total number of sample points in the cluster Ck. K-means

has a linear time complexity of O(nkt), where n is the data size, k is the number of clusters, and

t is the number of iterations [43].

After implementing the k-means to cluster the original data samples into k clusters, random

sampling is then applied to each cluster to select 10% of the data as the sampled subset. The

percentage of data sampling can vary, depending on the data scale and resource limitations.

Additionally, the main hyper-parameter of k-means, the number of clusters [46], k, is tuned by

Bayesian Optimization (BO) to improve the quality of the subset.

Hyper-parameter optimization (HPO) is the process of building an optimized ML model

for a specific problem or dataset using an optimization algorithm [47]. BO algorithms are

an efficient group of HPO algorithms that determine the next hyper-parameter value based on

the previous evaluation results [48]. In BO, a surrogate model is used to fit all the currently

tested data points into the objective function; an acquisition function is then used to locate the

next point. Two common surrogate models for BO are the Gaussian process (GP) and the tree

Parzen Estimator (TPE) [46].

In GP surrogate models, the predictions follow a Gaussian distribution [46]:

p(y|x,D) = N
(
y|µ̂, σ̂2

)
, (6.2)

where D is the hyper-parameter configuration space, y = f (x) is the value of the objective

function for each hyper-parameter configuration with its mean as µ and covariance as σ. The

BO method with GP (BO-GP) exhibits great performance on optimizing a small number of

continuous or discrete hyper-parameters due to its fast convergence speed, but is inefficient for

conditional hyper-parameters since it treats each hyper-parameter independently [46]. BO-GP



188

has a time complexity of O(n3) and space complexity of O(n2) [46].

Since k-means methods generally only have one discrete hyper-parameter, k, that needs to

be tuned, BO-GP serves as an effective HPO method for k-means because of its fast conver-

gence speed. The silhouette coefficient, a common distance-based metric that can effectively

evaluate clustering performance, is chosen to be the metric of the k-means model and used as

the objective function of BO-GP. It measures how similar a data point is to other data points

within the same cluster and how different the data point is from the data points in other clus-

ters [44].

Reduce Class-Imbalance by Oversampling

Class-imbalance issues often occur in network traffic data, since the percentage of normal

samples is often much larger than the percentage of attack samples in real-world network data,

resulting in biased models and low detection rate [49].

Class-imbalance problems are mainly solved by resampling methods, including random

sampling and synthetic minority oversampling techniques (SMOTE), which can create new in-

stances for the minority classes to balance the dataset [49]. Unlike random sampling, which

simply replicates the instances and may cause over-fitting, SMOTE [50] can synthesize high-

quality instances based on the concept of KNN; thus, SMOTE is chosen in the proposed IDS to

solve class-imbalance. For each instance X in the minority class, assuming Xi is a sample ran-

domly selected from the k nearest neighbors of X, a new synthetic instance Xn can be denoted

by [29]:

Xn = X + rand(0, 1) ∗ (Xi − X) , i = 1, 2, · · · , k, (6.3)

where rand(0, 1) represents a random number in the range of (0, 1). Thus, SMOTE is utilized

in the proposed IDS to create high-quality instances for minority classes.

Data Normalization

After implementing the k-means and SMOTE methods to obtain a representative and balanced

dataset, several additional data pre-processing steps are completed for the next steps. Firstly,

the network traffic datasets are encoded with a label encoder used to transform categorical
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features into numerical features to support the inputs of ML algorithms, because many ML

algorithms cannot support string features directly. After that, the network datasets are normal-

ized by the Z-score algorithm since the collected features in network traffic data often have

largely different ranges, and ML models often perform better on normalized datasets [21]. An

unnormalized dataset with largely different feature scales may result in a biased ML model that

only lays emphasis on large-scale features. Through the Z-score method, the features can be

normalized to have a mean of 0 and a standard deviation of 1. By implementing the Z-score

method, each normalized feature value, xn, is denoted by:

xn =
x − µ
σ
, (6.4)

where x is the original feature value, µ and σ are the mean and standard deviation of the feature

values, respectively.

6.4.3 Feature Engineering

A high-quality and highly representative dataset can be generated after data pre-processing.

On the other hand, obtaining an optimal feature list by appropriate feature engineering can

also improve the quality of datasets for more accurate and efficient model learning. A com-

prehensive feature engineering method that consists of IG, FCBF, and KPCA, is implemented

before ML model training to remove irrelevant, redundant, and noisy features while retaining

the important features [51].

Feature Selection by Information Gain

As a common feature selection (FS) method, the information gain (IG) method is used to select

important features. IG, the amount of information gained or the changes in entropy, can be used

to measure how much information a feature can bring to the targeted variable [52]. IG is chosen

in the proposed system since it can obtain an importance score for each feature at a fast speed

due to its low computational complexity of O(n) [52]. The importance score of each feature

enables us to select the most relevant features for the task. Assuming T is the target variable,

for each feature denoted by a random variable X, the IG value of using the feature X, is denoted
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by [52]:

IG(T |X) = H(T ) − H(T |X), (6.5)

where H(T ) is the entropy of the target variable T , and H(T |X) is the conditional entropy of T

over X.

Therefore, the feature importance of a feature X, or the correlation between X and the target

T , can be represented by the IG value of T over X, IG(T |X). A feature X is considered more

important to the target T than another feature Y if IG(T |X) > IG(T |Y) [52].

To implement the IG-based FS method, the importance of each feature is calculated based

on eq. (6.5) and normalized to have a sum of 1.0, denoting the relative importance. The features

are then ranked by their importance and are selected from top to bottom until the total impor-

tance of selected features reaches the correlation threshold, α. The remaining features, with

the total feature importance less than 1−α, are discarded. To obtain an appropriate correlation

threshold, α is optimized by BO-GP that uses the validation accuracy as the objective function

for HPO. After this process, the irrelevant features are eliminated, and a reduced number of

informative features with high importance are obtained for the next step.

Fast Correlation Based Filter (FCBF)

Although the IG-based FS method eliminates the unimportant features to reduce time com-

plexity, many redundant features still exist. Feature redundancy may increase time and space

complexity, and degrade model performance by increasing the probability of being misled by

noisy data, as well as increasing the risk of over-fitting [51]. Thus, removing redundant fea-

tures by calculating the correlations of input features is beneficial for model performance and

efficiency.

Among the correlation-based FS algorithms, the fast correlation-based filter (FCBF) [53]

algorithm is selected since it has shown great performance on high dimensional datasets by

effectively removing redundant features while retaining informative features, and has a low

time complexity of O(nlogn) [54]. In FCBF, the symmetrical uncertainty (SU) is calculated to
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measure the correlations between features by normalizing the IG values [53]:

S U(X,Y) = 2
[

IG(X|Y)
H(X) + H(Y)

]
. (6.6)

S U(X,Y) is in the range [0, 1] with the value 1 indicating a perfect correlation between the

two features X and Y , while the value 0 indicates the two features are fully independent.

The FCBF method searches the features in the feature space based on their S U values

until the entire feature space has been explored. The highly correlated features are regarded as

redundant features, and only one of them will be retained.

In the proposed FS approach, the S U value of each pair of features is calculated as their

correlations. The correlation threshold, α, is also optimized by BO-GP. When the correlation

value between two features is larger than α, the one with higher feature importance is retained

while the other is discarded. The correlation calculation and feature deletion procedures are

repeated until each pair of features in the feature list are not highly correlated (S U <= α). The

FS model that combines the IG method and the FCBF algorithm is named IG-FCBF.

Kernel Principal Component Analysis (KPCA)

Although utilizing IG-FCBF can return a better feature set than only using IG, FCBF has a

major limitation that it only calculates the correlation between pairs of features, but does not

consider correlations among three or more different features, resulting in undiscovered noisy

features [54]. On the other hand, the unsupervised learning models in the anomaly-based

IDS are more sensitive to appropriate features than supervised learning models since they rely

on the changes of feature values instead of the ground truth labels to process data [44] [51].

Hence, kernel principal component analysis (KPCA) is utilized after implementing the IG-

FCBF method for the anomaly-based IDS.

PCA [55] is a feature extraction algorithm that uses orthogonal transformations to trans-

form a set of correlated features onto a smaller subset of uncorrelated features, named prin-

cipal components. KPCA is an improved version of PCA that uses the kernel trick to learn a

non-linear function or decision boundary to reduce the dimensionality of non-linear data [56].

KPCA is selected due to its adaptability to non-linear data, as well as its capacity to reduce
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computational complexity, the risk of over-fitting, and distracting noise [51].

Additionally, the two essential hyper-parameters in KPCA, the number of extracted features

and the kernel type, are optimized by the BO-GP method using validation accuracy as the

objective function to improve the model performance. It is efficient for BO-GP to optimize

these discrete and categorical hyper-parameters. KPCA is used with IG-FCBF to construct the

IG-FCBF-KPCA method to obtain an optimal dataset with extracted features as the input of

the anomaly-based IDS.

6.4.4 The Proposed Hybrid IDS

IDSs are mainly classified as signature-based IDSs and anomaly-based IDSs. Signature-based

IDSs are designed to detect the known attack patterns by training supervised ML models on

labeled datasets. However, they often lack the capacity to detect new attack patterns that are

not previously stored in the databases [57]. On the other hand, anomaly-based IDSs can dis-

tinguish unknown attack data from normal data by unsupervised learning algorithms based on

the assumption that new attack data are more statistically similar to the known attack data than

normal data, but they often return many false alarms [58]. Thus, a hybrid IDS that consists of a

signature-based IDS and an anomaly-based IDS is proposed in this chapter to effectively detect

both known and zero-day attacks.

The Signature-based IDS

After the data pre-processing and feature engineering procedures, the obtained labeled datasets

are trained by an ensemble learning model to develop a signature-based IDS. In the proposed

signature-based IDS, four tree-based ML algorithms — decision tree (DT), random forest (RF),

extra trees (ET), and extreme gradient boosting (XGBoost) — are selected as the base learners.

DT [59] is a common ML algorithm that uses a tree-structure to fit data and make predic-

tions. DT algorithms have multiple hyper-parameters that require tuning, including the tree

depth, minimum sample split, minimum sample leaf, maximum sample nodes, and minimum

weight fraction leaf, etc. [46]. RF [60] is an ensemble learning model that uses the majority

voting rule to combine multiple decision tree classifiers, while ET [61] combines a collec-
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tion of randomized decision trees built on different subsets of a dataset. XGBoost [62] is a

gradient-boosted decision tree (GBDT) based algorithm designed for speed and performance

improvement. For RF, ET, and XGBoost, the hyper-parameters of DT are also the important

hyper-parameters for them because they are all constructed by integrating multiple DTs. Ad-

ditionally, they have an essential hyper-parameter that needs to be tuned, being the number

of base DTs to be built for each model, “n estimators”, which has a direct impact on model

performance. XGBoost has another hyper-parameter, the learning rate, which determines the

convergence speed [46].

Assuming the number of instances is n, the number of features is f , and the number of

DTs in ensemble models is t, the time complexity of DT, RF, ET, and XGBoost is O(n2 f ),

O(n2
√

f t), O(n f t), and O(n f t), respectively [8].

The algorithm choosing reasons are as follows [8] [63]:

1. RF, ET, and XGBoost are all ensemble models that combine multiple DTs and can effec-

tively work on non-linear and complex data to which network traffic data belongs; hence,

they often perform better than other ML algorithms, like naı̈ve Bayes (NB) and KNN,

which often do not perform well on complex datasets.

2. They enable parallel execution, which significantly reduces model training time and im-

proves efficiency.

3. They calculate feature importance during the model training process, which is beneficial

for feature engineering procedures.

4. The tree-based algorithms have randomness in their construction process, which enables

us to build a robust ensemble model that has better generalizability than using other ML

algorithms.

After obtaining the four tree-based ML models, they are combined using stacking, an en-

semble learning method, to improve model performance because the generalizability of a com-

bination of multiple base learners is usually better than that of a single model [64]. Stacking is

a standard ensemble learning technique that uses the output labels estimated by four base learn-

ers (DT, RF, ET, and XGBoost) as the input features to train a strong meta-learner that makes

the final prediction [64]. Using stacking can learn the information from all four base learners
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to reduce the errors of single learners and obtain a more reliable and robust meta-classifier. In

the proposed system, the best-performing one among the four base models is chosen as the

algorithm to build the meta-learner because it is most likely to achieve the best performance.

The important hyper-parameters of the four tree-based ML algorithms are optimized by

a HPO method, BO with tree-Parzen estimator (BO-TPE). BO-TPE creates two density func-

tions, l(x) and g(x), to act as the generative models for variables. With a pre-specified threshold

y∗ to separate the relatively good and poor results, the objective function of TPE is modeled by

the Parzen windows [46]:

p(x|y,D) =

 l(x), if y < y∗

g(x), if y > y∗
, (6.7)

where l(x) and g(x) indicate the probability of detecting the next hyper-parameter value in the

well-performing regions and in the poor-performing regions, respectively. BO-TPE detects the

optimal hyper-parameter values by maximizing the ratio l(x)/g(x). The Parzen estimators are

organized in a tree structure, so the specified conditional dependencies of hyper-parameters can

be retained. Additionally, BO-TPE can optimize all types of hyper-parameters effectively [46].

Therefore, BO-TPE is used to optimize the hyper-parameters of the tree-based ML models that

have many hyper-parameters.

The Anomaly-based IDS

The proposed signature-based IDS can detect multiple types of known attacks effectively. How-

ever, attackers can still carry out zero-day attacks that are not included in the known attack

patterns and can be misclassified as normal states. Therefore, the instances labeled “normal”

by the signature-based IDS will be considered suspicious instances because some of them can

be unknown attack samples. A novel anomaly-based IDS architecture is then developed to

identify zero-day attacks by processing the suspicious instances.

After feature engineering, the optimized dataset obtained from the output of the IG-FCBF-

KPCA method is used to train the anomaly-based IDS. The first tier of the proposed anomaly-

based IDS comprises the cluster labeling (CL) k-means developed by improving the k-means

model introduced in Section 6.4.2. Since there are millions of instances collected under many

different situations in network traffic datasets, a sufficient number of clusters should be used to
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distinguish between normal and attack data. The main procedures of the proposed CL-k-means

method are as follows:

1. Split the dataset into a sufficient number of clusters using k-means.

2. Label each cluster by the majority label of data samples. In each cluster, the class label

to which most of the instances belong, “normal” or “attack”, is assigned to this cluster.

3. Label each sample in the test set as “normal” or “attack” based on the label of the cluster

that this instance is classified into by k-means.

4. For each test sample i that is classified into a cluster, calculate the percentage of majority

class samples in this cluster as the confidence or clustering probability, pi.

5. Optimize the number of clusters (k) and distance metric as the major hyper-parameters

of k-means, by the BO-GP algorithm to obtain the optimal CL-k-means model. The

validation accuracy on the test set is used as the objective function for BO-GP.

K-means is selected to distinguish between attack and normal data mainly due to the real-

time requirements of vehicle-level systems. K-means is computationally faster than most other

clustering algorithms because it has a linear time complexity of O(nkt), where n is the data

size, k is the number of clusters, and t is the number of iterations [43]. The model training

time is further reduced by using mini-batch k-means, which uses randomly sampled subsets

as mini-batches in each training iteration [65]. Additionally, k-means guarantees convergence

and easily adapts to new samples.

To increase the detection rate and reduce the false alarm rate of the CL-k-means method,

the second tier of the proposed anomaly-based IDS uses two biased classifiers to reduce the

false negatives (FNs) and false positives (FPs), respectively. Biased classifiers are developed

by the following procedures:

1. Collect the FNs and FPs obtained from the training set using the proposed CL-k-means

method.

2. Select the best-performing singular supervised learning model in the signature-based

IDS (e.g., RF) as the algorithm to construct biased classifiers.

3. Train the first biased classifier, B1, on all the FNs along with the same amount of ran-

domly sampled normal data to build a model that aims to reduce FNs.
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4. Train the second biased classifier, B2, on all the FPs along with the same amount of

randomly sampled attack data to build a model that aims to reduce FPs.

After implementing the proposed CL-k-means model, each data sample whose clustering

probability (pi) is less than a threshold p∗i , is regarded as an uncertain instance. The thresh-

old p∗i is a continuous variable and has been optimized to be 0.933 by BO-GP that uses the

validation accuracy as the objective function. After obtaining the two trained classifiers, the

uncertain instances will be passed to B1 (if labeled “normal” by the CL-k-means) or B2 (if

labeled “attack” by the CL-k-means) to obtain its final classification result.

The proposed anomaly-based IDS is constructed under the assumption that new attack pat-

terns are unknown and future incoming data samples are unlabeled; hence, only the FNs and

FPs obtained during the training phase are used to build biased classifiers. This enables the

proposed IDS to detect new attack patterns without additional procedures that are difficult to

perform, like constant data labeling and model updates.

Compared to other unsupervised anomaly detection algorithms like isolation forest (iFor-

est) and one-class SVM (OC-SVM) [66], the proposed CL-k-means method with biased clas-

sifiers has the following advantages to achieving high accuracy and efficiency:

1. The proposed CL-k-means model has the capacity of using a sufficient number of clusters

to model the data samples with various attack and normal patterns. This makes the

proposed method have better generalizability and data pattern modeling capability than

other outlier detection methods, like iForest and OC-SVM, which are mostly binary

models.

2. The number of clusters in CL-k-means, k, is automatically optimized by BO-GP. This

enables the proposed model to automatically fit different datasets and tasks according to

the complexity of data patterns.

3. The main difficulty of unknown attack detection is that unsupervised learning models

often return more misclassified samples than supervised learning models. Thus, using

the biased classifiers can effectively reduce the FPs and FNs because they can learn the

patterns of misclassified data samples that are difficult to be identified by the CL-k-

means.
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4. The use of the cluster probability, pi, can greatly improve the model efficiency. This is

because the new samples that are very similar to existing attack or normal patterns (with

high confidence) can be labeled directly, and only the uncertain samples (with relatively

low probability) are passed to the biased classifiers for further identification.

5. The use of mini-batch k-means can significantly reduce the execution time of the MTH-

IDS to meet the real-time requirements of IoV.

However, certain attack patterns are very similar to normal patterns, which makes it diffi-

cult to distinguish them. Additionally, the samples collected under certain legitimate network

events, like crowd events, may still be misclassified as attack samples because the new patterns

they have are largely different from existing normal patterns. Additionally, although k-means

is more suitable for IoV IDS development than other unsupervised learning algorithms due to

its low complexity, the data distribution modeling limitation of k-means is another potential

issue to be better addressed [43]. If time and budget permits, k-means can be replaced by

other clustering algorithms with the same cluster labeling technique based on the specific data

shape and distribution to further improve the system performance. Online learning techniques

that can keep updating learning models based on the new attack patterns may also improve the

generalizability and accuracy of the IDS, which will be our future work.

6.4.5 Runtime Complexity

The training process of the proposed MTH-IDS can be done at a server machine with high

computational speed, while the testing process should be implemented in vehicle systems. De-

veloping models with low runtime complexity enables the proposed IDS to reduce the latency

of vehicle systems and meet real-time requirements. In the implementations, each test sample

will be passed through the stacking model constructed with four tree-based algorithms, the

CL-k-means method, and one of the biased classifiers. Since the runtime complexity of DT is

O(d f ) and the runtime complexity of RF, ET, XGBoost is O(d f t), where d is the maximum

depth of the trees, f is the number of features and t is the number of trees, the maximum run-

time complexity of the signature-based IDS is only O(d f t) [67]. For the proposed CL-k-means

method in the anomaly-based IDS, its runtime complexity is O( f k), where k is the number
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of clusters [68]. The biased classifier in the anomaly-based IDS is also the best-performing

tree-based algorithm, so its maximum runtime complexity is also O(d f t).

Therefore, the maximum overall runtime complexity of the proposed IDS is at a low-level,

only O(2d f t + f k), since the values of d, f , t, and k, are a few dozens at most. The model

test time will be calculated in the experiments to evaluate the feasibility of the proposed IDS

in vehicle systems.

6.4.6 Validation Metrics

To evaluate the generalizability of the proposed framework and avoid over-fitting, both cross-

validation and hold-out methods are used in the known attack detection experiments. Specif-

ically, the train-test-validation split and model evaluation procedures for each dataset are as

follows:

1. Use 70%-30% train-test split to generate a training set with 70% of data samples and a

test set with 30% of data samples. The test set will remain untouched before the final

hold-out validation.

2. Implement 10-fold cross-validation on the training set to evaluate the proposed model on

different regions of the dataset. In each iteration/fold of the 10-fold cross-validation, 90%

of the original training set is used for model training, and 10% of the original training set

is used as the validation set for model testing.

3. Test the trained model obtained from Step 2 on the untouched test set to evaluate the

model performance on a new dataset.

70%-30% train-test split and 10-fold cross-validation were chosen because they are stan-

dard and sufficient numbers to construct powerful validation methods to avoid over-fitting and

concept drift issues [69]. If the proposed method can accurately detect intrusions in both cross-

validation and hold-out validation, there are no underfitting or overfitting issues [70].

On the other hand, hold-out validation is used to evaluate the proposed system for unknown

attack detection. For each attack type as a zero-day attack, a validation set consisting of all

the instances of this attack type and the same amount of randomly sampled normal data is

generated; all the other samples are used as the training set. Therefore, the validation results
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can be used to evaluate whether the proposed system has the capacity to detect the patterns

of each type of unknown attack. This validation process is based on the assumption that new

attack data is more statistically similar to certain other known attack data than normal data [58].

Several metrics, including accuracy (Acc), detection rate (DR), false alarm rate (FAR), and

F1-score, are used to comprehensively evaluate the performance of the proposed IDS [29].

By calculating the true positives (TPs), true negatives (TNs), false positives (FPs), and false

negatives (FNs) of the proposed model, the used metrics are calculated by the following equa-

tions [29]:

Acc =
T P + T N

T P + T N + FP + FN
(6.8)

DR =
T P

T P + FN
(6.9)

FAR =
FP

T N + FP
(6.10)

F1 =
2 × T P

2 × T P + FP + FN
(6.11)

Model execution time, calculated by the average of the model training and validation time

in the 10-fold cross-validation or hold-out validation, is used to evaluate model efficiency. An

efficient IDS should be able to achieve a high F1-score and low execution time simultaneously.

6.5 Performance Evaluation

6.5.1 Experimental Setup

To develop the proposed MTH-IDS, the feature engineering and ML algorithms were imple-

mented using the Pandas [71], Scikit-learn [72], Xgboost [73] libraries in Python, while the

HPO methods were implemented by extending the Skopt [74] and Hyperopt [75] libraries.

The experiments were carried out on a Dell Precision 3630 Tower machine with an i7-8700

central processing unit (CPU) (6-Core, 3.20 GHz) and 16 Gigabytes (GB) of memory, and a

Raspberry Pi 3 machine with a BCM2837B0 64-bit CPU and 1 GB of memory, representing a

server machine for model training and a vehicle-level machine for model testing, respectively.

Code for the major modules is available at: https://github.com/Western-OC2-Lab/Intrusion-Detection-
System-Using-Machine-Learning
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The experiments are divided into three parts, one for the known intrusion detection by

evaluating the signature-based IDS component on the labeled datasets, one for unknown intru-

sion detection by evaluating the anomaly-based IDS component on the unlabeled datasets, and

one for the entire model evaluation by analyzing the CPU resource usage on a vehicle-level

machine.

6.5.2 Data Description

For the purpose of intra-vehicle network IDS development, the first used dataset is the CAN-

intrusion-dataset proposed in 2018 [10]. The dataset is generated by logging CAN traffic via

the OBD-II port of a vehicle when CAN attacks are launched. The features of this dataset

include timestamp, CAN ID, data length code (DLC), and the 8-bit data field of CAN packets

(DATA[0]-DATA[7]). Since the feature “timestamp” has a strong correlation with cyber-attack

simulation periods and can lead to biased models and results, this feature was removed from

the feature space. As the authors in [10] created the CAN-intrusion-dataset by injecting attacks

into random CAN IDs, this CAN ID feature is retained. Based on the CAN packet structure

shown in Fig. 6.1, ten features extracted from the identifier field and data field of CAN packets,

including CAN ID, DLC, and DATA[0]-DATA[7], were preliminarily selected for IDS devel-

opment. The attack types of the CAN-intrusion-dataset are shown in Table 6.4. Moreover, the

label distributions of the original dataset, the training set, and the test set are shown in Table

6.4. As the minority classes have large numbers of samples (at least 491,847 samples), SMOTE

is not required for balancing the CAN-intrusion-dataset.

For external network IDS development, there is a shortage of public IoV benchmark datasets

due to popularization, privacy, and commercialization issues [22] [76] [77]. On the other hand,

wireless local area networks (WLANs) and cellular networks are common communication

strategies for IoV and connected vehicles, so the attacks launched on conventional computer

networks can be considered similar to the intrusions carried out on external vehicular net-

works [22] [78]. Therefore, many research projects and papers [20] - [26] develop external ve-

hicular network IDSs using general network security datasets, including KDD-99, NSL-KDD,

Kyoto 2006+, UNSW-NB15, and CICIDS2017 [78]. Among these cyber-security datasets, CI-
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Table 6.4: Class Label and Size of The CAN-Intrusion-Dataset
Class Label Original Number of

Samples
Number of Training

Set Samples
Number of Test Set

Samples
Normal 14,037,293 9,826,105 4,211,188

DoS 587,521 411,265 176,256
Fuzzy 491,847 344,293 147,554

RPM Spoofing 654,897 458,428 196,469
Gear Spoofing 597,252 418,076 179,176

CIDS2017 [12] is the most representative dataset of current external networks because it is the

most state-of-the-art dataset and contains more features, instances, and cyber-attack types than

other datasets [22]. Thus, the network traffic flow data in the CICIDS2017 dataset is chosen in

the proposed MTH-IDS to represent the complex external vehicular network data. Moreover,

to better relate the CICIDS2017 dataset to IoV applications, we have associated each type of

attack in the CICIDS2017 dataset with the external vehicular network threats described in Ta-

ble 6.2 based on the detailed analysis of the CICIDS2017 dataset in [79]. The specifics of the

CICIDS2017 dataset and the corresponding external vehicular attack types are shown in Table

6.5. Since the Bot, brute-force, infiltration, and web attack classes are minority classes with

small numbers of samples (from 36 to 13,835), the SMOTE method described in Section 6.4.2

was implemented to synthesize more samples to enable the minority classes to have at least

100,000 samples. Addressing class-imbalance can avoid obtaining biased models with low

attack detection rates.

6.5.3 Performance Analysis of Known Intrusion Detection

To evaluate the proposed IDS for known intrusion detection, the ML models in the signature-

based IDS are trained and tested on the two labeled datasets that represent intra-vehicle and

external vehicular network traffic data. The results of 10-fold cross-validation of the proposed

models on the CAN-intrusion dataset [10] and the CICIDS2017 dataset [12] are shown in

Tables 6.6 and 6.7, respectively.

As shown in Table 6.6, after utilizing the proposed IG-FCBF feature selection method with

the optimized correlation threshold (α = 0.9) to select the top four significant features (“CAN

ID”, “DATA[5]”, “DATA[3]”, and “DATA[1]”), the proposed signature-based IDS can reach
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Table 6.5: Class Label, Attack Type, and Size of The CICIDS2017 Dataset

Class Label
Corresponding
Attack Type in
Table 6.2 [79]

Original
Number of

Samples

Number of Training
Set Samples After

Balancing

Number of
Test Set
Samples

BENIGN - 2,273,097 1,591,168 681,929
Bot Botnets 1,966 100,000 590

DDoS

DoS 380,699 266,489 114,210

DoS GoldenEye
DoS Hulk

DoS Slow-httptest
DoS Slowloris

Heartbleed
Port-Scan Sniffing 158,930 111,251 47,679

SSH-Patator
Brute-Force 13,835 100,000 4,150

FTP-Patator
Infiltration Infiltration 36 100,000 11

Web Attack – Brute
Force

Web Attack 2,180 100,000 654Web Attack – Sql
Injection

Web Attack – XSS

high accuracy of 99.999% on the CAN-intrusion dataset. The proposed method is compared

with recent promising approaches proposed in the literature [13]– [15], [18]– [20], as shown

in Table 6.6. As the attack and normal patterns in this dataset can be obviously distinguished,

most of the compared methods also achieve high accuracy. The authors in [19] proposed a deep

convolutional neural network (DCNN) method that can achieve a high average F1-score of

0.9991, but it requires the model training machines to have graphics processing units (GPUs),

making it difficult to be used in vehicle-level systems due to budget constraints. For six other

compared approaches proposed in the recent literature, our proposed system achieves at least

Table 6.6: Performance Evaluation of Classifiers on The CAN-Intrusion-Dataset
Method Acc (%) DR (%) FAR (%) F1 Execution

Time (S)
KNN [13] 97.4 96.3 5.3 0.934 911.6
SVM [13] 96.5 95.7 4.8 0.933 13765.6

XYF-K [14] 99.1 98.39 0.0 0.9879 -
SAIDuCANT [15] 87.21 86.66 1.76 0.92 -

SSAE [18] - 98.5 2.0 0.98 -
DCNN [19] 99.93 99.84 0.16 0.9991 -

LSTM-Autoencoder [20] 99.0 99.0 0.0 0.99 -
MTH-IDS 99.999 99.999 0.0006 0.99999 365.3
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Table 6.7: Performance Evaluation of Classifiers on The CICIDS2017 Dataset
Method Acc (%) DR (%) FAR (%) F1 Execution

Time (S)
KNN [12] 96.3 96.2 6.3 0.963 15243.6
RF [12] 98.82 98.8 0.145 0.988 1848.3

SU-IDS [27] 99.13 99.65 1.4 - -
STDeepGraph [28] 99.4 98.6 1.3 - -

DBN [80] 98.95 95.82 4.19 0.9581 -
GAN-RF [81] 99.83 98.68 7.24 0.9504 -
DeepCoin [82] 99.811 94.10 0.986 - -

Multi-SVM [83] 98.55 98.22 0.41 0.983 34896.5
PCA-RF [84] 99.6 99.6 1.0 0.996 -

MTH-IDS (Without FS & HPO) 99.861 99.753 0.110 0.99860 5238.4
MTH-IDS (Multi-Class

Model) 99.879 99.818 0.101 0.99879 1563.4

MTH-IDS (Binary Model) 99.895 99.806 0.084 0.99895 478.2

0.89% accuracy and F1-score improvement.

The experimental results on the CICIDS2017 dataset are shown in Table 6.7. By imple-

menting the proposed IG-FCBF method with the optimized correlation threshold (α = 0.9) to

select 20 features from 80 original features and using HPO methods to obtain optimized ML

models, the F1-score of the proposed IDS has improved from 99.861% to 99.879%, and the

execution time has decreased by 70.2%, as shown in Table 6.7. This justifies the proposed

FS method and the BO-TPE method can greatly improve the system efficiency and slightly

improve the model accuracy. In addition to the multi-classification results used to evaluate the

IDS’s capacity to detect various types of attacks, the IDS is also implemented to train a binary

classification model that can distinguish between normal and abnormal network traffic data

and return one of these two labels. As shown in Table 6.7, the proposed IDS reaches 99.895%

accuracy and saves 69.4% of the execution time by training the binary classification model.

Binary classifiers and multi-classifiers can be chosen according to the specific needs of users.

Although there are many existing works that evaluate their models on the CICIDS2017

dataset, most of them have different or inexplicit validation configurations. Nevertheless, the

proposed model is quantitatively compared with recent promising methods that achieve good

performance on the CICIDS2017 dataset and have a similar validation configuration, proposed

in the literature [12], [27]- [28], [80]- [84]. The approaches proposed in the literature [80]- [82]

have achieved high accuracy (98.95%-99.83%), but a relatively low detection rate (94.10%-
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98.68%) and F1-score (0.9504-0.9581) due to the imbalanced dataset. Other methods proposed

in the literature [12], [27]- [28], [83]- [84] have also achieved high accuracy or F1-scores,

but still slightly lower than our proposed model. To summarize, even though the comparison

with existing approaches is not a straightforward process, the proposed system shows better

performance by at least achieving a 0.279% higher F1-score than of the same-level validation

configuration approaches by quantitative comparison.

Therefore, the experimental results show that the proposed IDS can efficiently separate

normal and malicious network traffic data and effectively detect various types of known cyber-

attacks in vehicle systems.

6.5.4 Performance Analysis of Unknown Intrusion Detection

At this stage, all the models in the anomaly-based IDS are trained for binary classification

by labeling the instances of all attack types as “attack” and normal instances as “normal”. In

the proposed system, after being evaluated by the signature-based IDS, all data samples of

known attack types will be returned, and other normal instances will be labeled “suspicious”

and passed to the anomaly-based IDS to determine whether any unknown attacks exist.

For the CAN-intrusion-dataset that represents intra-vehicle network traffic data, each type

of CAN attack is regarded as a new attack type in each experiment. The evaluation results of

unknown CAN attack detection are shown in Table 6.8. For DoS, gear spoofing, and RPM

spoofing attack types, the proposed system can reach 100% detection rates, very low false

alarm rates (0.0%-0.449%), and very high F1-scores (more than 0.997). However, the DR and

F1 for the fuzzy attack are much lower (73.053% and 0.84389). This is because the feature

values of the fuzzy attack packets are random numerical values, and certain random values can

be very similar to normal packets, making it difficult for unsupervised learning algorithms to

distinguish them. Moreover, the performance of the proposed anomaly-based IDS is compared

to the CL-k-means model without biased classifiers. Table 6.8 shows that the F1 score of the

proposed MTH-IDS on the CAN-intrusion-dataset can be largely improved from 0.82643 to

0.96307 by implementing the two biased classifiers after the CL-k-means model. To summa-

rize, the proposed system can effectively detect most unknown attacks on intra-vehicle net-
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Table 6.8: Performance Evaluation on Each Type of Unknown Attack of The CAN-Intrusion-
Dataset

Attack Type Validation Instances DR (%) FAR (%) F1
DoS 1,289,386 100.0 0.0 1.0

Fuzzy 1,193,712 73.053 0.057 0.84389
Gear Spoofing 1,299,117 100.0 0.449 0.99736
RPM Spoofing 1,356,762 100.0 0.003 0.99998

Average (MTH-IDS) 5,138,977 93.740 0.128 0.96307
Average (CL-k-means) 5,138,977 79.233 0.261 0.82643

Table 6.9: Performance Evaluation on Each Type of Unknown Attack of The CICIDS2017
Dataset

Attack Type Validation Instances DR (%) FAR (%) F1
Bot 3,932 63.276 21.669 0.68426

DDoS 256,054 62.697 11.698 0.71902
DoS GoldenEye 20,586 83.931 20.461 0.82127

DoS Hulk 462,146 67.440 11.806 0.75248
DoS Slow-httptest 10,998 76.687 19.094 0.78339

DoS Slowloris 11,592 83.834 7.902 0.87447
FTP-Patator 15,876 51.298 12.686 0.62564
Heartbleed 22 100.0 18.182 0.91667
Infiltration 72 72.222 5.556 0.81250
Port-Scan 317,860 98.962 17.849 0.91288

SSH-Patator 11,794 95.828 23.351 0.87443
Web Attack – Brute Force 3,014 89.516 17.319 0.86558
Web Attack – Sql Injection 42 95.238 23.810 0.86957

Web Attack – XSS 1,304 3.681 14.417 0.06233
Average (MTH-IDS) 1,115,292 75.943 13.882 0.80013
Average (CL-k-means) 1,115,292 72.682 15.357 0.77305

works except fuzzy attacks.

On the other hand, training on more different types of attack samples enables us to de-

sign a more comprehensive IDS that can detect more unknown attack types effectively [85].

Therefore, several experiments were conducted on the CICIDS2017 dataset that contains data

samples of 14 different common cyber-attacks types to illustrate potential attacks launched on

external vehicular networks. In each experiment of the validation process, each type of attack

is regarded as an unknown attack, and the results are shown in Table 6.9.

From Table 6.9, it can be seen that the proposed system exhibits different performances

when applied to the experiments of different types of unknown attacks. By implementing

the proposed methods, the false alarm rates for most of the attack types are at a low level of
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Table 6.10: Performance Evaluation on The Untouched Test Set
Dataset Acc (%) DR (%) FAR (%) F1

CAN-intrusion-dataset 99.99 100.0 0.00005 0.9999
CICIDS2017 99.88 99.77 0.10 0.9988

Table 6.11: Model Evaluation on A Vehicle-Level System
System

Component
Dataset 1: Avg
Test Time (ms)

Dataset 2: Avg
Test Time (ms)

Dataset 1: Model
Space (MB)

Dataset 2: Model
Space (MB)

Z-score 0.028 0.031 - -
KPCA 0.005 0.009 0.002 0.006

Stacking 0.389 0.297 2.02 14.36
CL-k-means 0.145 0.157 0.48 0.78

Biased Classifiers 0.007 0.015 0.11 1.06
Sum 0.574 0.509 2.61 16.21

less than 20%. The detection rates for the “Heartbleed”, “Port-Scan”, “SSH-Patator”, “Web

Attack – Brute Force”, and “Web Attack – Sql Injection” attacks are high (from 89.516% to

100%), while the detection rates for other types of attacks are relatively lower (from 51.298%

to 83.931%). The F1-scores for most of the attack types are larger than 0.80. The only type

of attack that the proposed system cannot detect effectively is the “Web Attack – XSS” whose

results show a very low F1-score (0.062), because their data distribution is very similar to

normal data distributions. The average F1-score of the proposed MTH-IDS on all the attacks

is 0.80013, which is higher than the CL-k-means model without biased classifiers (0.77305).

Thus, the proposed IDS can detect most of the previously-unseen types of attacks with a

relatively high detection rate and a relatively low false alarm rate on both intra-vehicle and

external vehicular networks. Nevertheless, there is still some room for improvement since

effectively detecting zero-day attacks is still an unsolved research problem.

6.5.5 Vehicle-Level Model Evaluation and Discussion

The proposed IDS with all trained models are tested on Raspberry Pi 3, a vehicle-level machine,

to evaluate its feasibility in vehicular environments. Moreover, implementing the proposed

model on the untouched test sets can evaluate its generalizability.

The experimental results on the test sets are shown in Table 6.10. As shown in Table 6.10,

the F1-scores of the proposed IDS on the 30% test sets of the CAN-intrusion-dataset and CI-
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Figure 6.4: Confusion matrix for the test set of CAN-intrusion-dataset.

Figure 6.5: Confusion matrix for the test set of CICIDS2017 dataset.

CIDS2017 dataset are 99.99% and 99.88%, respectively. Moreover, the confusion matrices of

evaluating the proposed method on the test sets of the CAN-intrusion-dataset and CICIDS2017

dataset are shown in Fig. 6.4 and Fig. 6.5, respectively. For the CAN-intrusion-dataset, as

shown in Fig. 6.4, the proposed method can accurately detect all the DoS, RPM spoofing,

and gear spoofing attack samples, and only has two false alarms for the fuzzy attack detection.

These results are in line with other similar works from the literature that used the same dataset.

For example, the authors in [19] also achieved high accuracy of 99.93%. The main reason for
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achieving high accuracy is that the large difference between the attack and normal patterns in

the CAN-intrusion-dataset can be obviously distinguished. For the CICIDS2017 results shown

in Table 6.10 and Fig. 6.5, the attack patterns are more difficult to be distinguished than the

CAN-intrusion-dataset, but the classification error rate is still at a very low level (0.12%), ex-

cept for the infiltration attack type that has 7 misclassified samples out of 11 test samples. This

is because the number of data samples for the infiltration attack is only 36, which is insufficient

to train an effective classifier to accurately identify this attack. Nevertheless, the proposed

model can accurately detect other attacks with an overall F1-score of 99.88%. As the test

sets were untouched before the hold-out validation, the high performance indicates the strong

generalizability of the proposed framework on new datasets.

The proposed model can achieve high performance without over-fitting mainly due to the

following reasons [86]:

1. It trains on large-sized datasets, as using more data samples can improve the generaliz-

ability of the proposed method.

2. It implements a comprehensive feature engineering method to improve the generalizabil-

ity by removing irrelevant and misleading features that may cause over-fitting.

3. It uses the stacking ensemble method to combine the results of base learners. Ensem-

ble models often have better generalizability than single models because combining the

single learners can reduce the variance of estimation and prevent over-fitting.

On the other hand, to deploy the proposed IDS in real-world vehicle systems, the real-

time requirements of vehicle safety services should be met. For each packet transmitted on

vehicular networks, the alarm generation time should be less than 10ms to meet the real-time

requirements, as described in Section 6.3.4. For each packet passed to the proposed IDS, it

will be processed by Z-score normalization and four trained models: KPCA, stacking, CL-

k-means, and a biased classifier (either FN-based or FP-based). As shown in Table 6.11, the

average of the processing time for each packet in the CAN-intrusion-dataset (Dataset 1) and

the CICIDS2017 dataset (Dataset 2) is only 0.574 ms and 0.509 ms, respectively, which is

much lower than the vehicular network security latency requirement (10ms). Moreover, since

we trained the models on the small-size subsets obtained by the proposed k-means cluster
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sampling method, the total size of the trained models for the intra-vehicle network IDS and

external network IDS is only 2.61 MB and 16.21 MB, respectively, which is much less than the

memory limit of vehicle-level machines that often have more than 1 GB RAM, like Raspberry

Pi 3. Thus, the experimental results show the feasibility of applying the proposed system to

real-time vehicle systems.

6.6 Conclusion

To enhance IoV security, this work proposed a multi-tiered hybrid intrusion detection sys-

tem (MTH-IDS) model that can detect various types of known and zero-day cyber-attacks

on both intra-vehicle and external-vehicular networks for modern vehicles. The proposed

MTH-IDS consists of two traditional ML stages (data pre-processing and feature engineer-

ing) and four main tiers of learners utilizing multiple machine learning algorithms. Through

data pre-processing and feature engineering, the quality of the input data can be significantly

improved for more accurate model learning. The first tier of the proposed system consists

of four tree-based supervised learners used for known attack detection, while the second tier

comprises the BO-TPE and stacking models for supervised base learner optimization to achieve

higher accuracy. The third tier consists of a novel CL-k-means unsupervised model used for

unknown/zero-day attack detection. Lastly, BO-GP and two biased classifiers are used to con-

struct the fourth tier for unsupervised learner optimization. The four tiers of learning models

enable the proposed MTH-IDS to achieve optimal performance for both known and unknown

attack detection in vehicular networks. Through the performance evaluation of the proposed

IDS on the two public datasets that represent intra-vehicle and external vehicular network data,

the proposed system can effectively detect various types of known attacks with accuracies

of 99.99% and 99.88% on the CAN-intrusion-dataset and CICIDS2017 dataset, respectively.

Moreover, the proposed system can detect various types of unknown attacks with average F1-

scores of 0.963 and 0.800 on the CAN-intrusion-dataset and CICIDS2017 dataset, respectively.

The experimental results on a vehicle-level machine show the feasibility of the proposed system

in real-time environments. In future work, the anomaly-based IDS framework can be further

improved by doing research on other unsupervised learning and online learning methods.
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Chapter 7

Multi-Perspective Content Delivery

Networks Security Framework Using

Optimized Unsupervised Anomaly

Detection

7.1 Introduction

With the increasing popularity of caching techniques in Internet communications, it is esti-

mated that 71% of Internet traffic will be delivered through content delivery networks (CDNs)

by 2021 [3]. A CDN is a geographically distributed network of servers that work together

to provide fast communications of Internet contents, including hypertext markup language

(HTML) pages, JavaScript files, images, audios, videos, etc. [4]. CDNs are developed to im-

prove the process of content delivery through caching mechanisms and multiple edge servers

[5]. As a large-scale CDN service provider, Akamai accounts for approximately 20% of all

web traffic [6].

CDNs improve the connectivity and efficiency of global communications, but also intro-

duce vulnerabilities to the connected networks. Caching mechanisms become a major target

Parts of the content in this chapter has been published in IEEE Transactions on Network and Service Man-
agement [1] and submitted to the Digital Forensics book, World Scientific [2].
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of cyber-attacks since open proxy caches may be exploited by attackers to transmit malicious

traffic and perform various harmful activities, which causes network congestion, unavailability,

or other severe consequences [7].

Cache pollution attacks (CPAs) and denial of service (DoS) attacks are the two major types

of cyber-attacks launched on CDNs to cause service unavailability or to degrade the caching

service by reducing the cache hit rate and increasing latency [8] [9]. In high-rate networks,

even a moderate degradation of the cache hit rate, or a moderate increase of latency may result

in severe network congestion or a massive amount of additional data transmissions [7]. CPAs

are launched by polluting the cache space with a large number of unpopular or illegitimate

contents; therefore, legitimate clients will get many cache misses for popular files, making the

caching mechanism ineffective [8]. Similarly, DoS attacks are launched by sending a sudden

burst of requests to exhaust the network resources of certain targeted nodes. However, DoS

attacks are not necessarily launched by sending requests for unpopular files [9].

To protect a CDN against DoS and CPAs, an effective method is to explore and analyze

network access logs for the purpose of abnormal behavior analysis and attack pattern detec-

tion in CDNs [10]. In this chapter, we focus on anomaly detection in CDNs by analyzing 169

gigabytes (GB) of unlabeled real-world CDN access log data provided by a major CDN op-

erator. This work aims to detect DoS attacks and CPAs based on the behaviors of abnormal

network entities, including the malicious Internet Protocol (IP) addresses, abnormal contents,

and compromised nodes, through the analysis of access logs. The proposed anomaly detec-

tion framework consists of a multi-perspective feature engineering, an unsupervised machine

learning (ML) model built with optimized isolation forest (iForest) [11] and Gaussian mixture

models (GMM) [12], and a multi-perspective result validation method. The proposed work

can be considered a labeling technique on unlabeled CDN log data for anomaly detection use

cases.

On the other hand, as the data is completely unlabeled, multiple experts from Ericsson Inc.

were involved in the learning phase to help construct effective ML models, which is a standard

data learning process named human-in-the-loop (HITL). HITL is the process of creating ML

models by leveraging the power of both machine and human intelligence [13] [14]. Labeling

massive amounts of data usually need HITL to obtain accurate labels for unlabeled data in the
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unsupervised learning process, as ML models themselves are often unable to determine true

labels by themselves [14]. Therefore, the HITL process is included in the proposed framework

to ensure accurate anomaly detection on the unlabeled dataset. HITL in the proposed frame-

work mainly includes the attack pattern & feature analysis, ML result analysis, and final result

validation.

Detecting potential cyber-attacks and affected abnormal network entities can also trigger

other network defense and mitigation mechanisms, such as blacklisting malicious client IPs,

isolating compromised nodes, and removing abnormal cached contents out of the cache space

[7]. Thus, CDNs can recover from cyber-attacks or be prevented from potential attacks with

the help of effective network anomaly detection techniques.

This chapter makes the following contributions:

1. It summarizes the potential patterns and characteristics of DoS and CPA attacks to assist

with anomaly detection in CDNs;

2. It proposes a comprehensive network feature engineering model that generates features

from multiple perspectives, including content, client IP, service provider, and account-

offering perspectives;

3. It proposes an optimized unsupervised anomaly detection model utilizing iForest, GMM,

and Bayesian optimization (BO), to detect cyber-attacks and affected network entities

effectively;

4. It proposes a multi-perspective result validation technique that can effectively reduce the

false alarm rate and improve the detection rate of unsupervised CDN anomaly detection

models.

This chapter is organized as follows: Section 7.2 provides an overview of CDNs and po-

tential cyber-attacks. Section 7.3 presents the related works regarding network anomaly de-

tection. Section 7.4 discusses the proposed anomaly detection model in detail, including the

model framework, feature engineering, utilized algorithms, and validation procedures. Section

7.5 presents and discusses the experimental results. Section 7.6 discusses the open issues and

practical usage of the proposed framework. Section 7.7 concludes the chapter.
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Figure 7.1: An overview of CDN and cyber-attack scenarios.

7.2 Problem Statement

7.2.1 CDN Overview

In traditional Internet, the same contents are required to be transmitted from servers to clients

repeatedly. With the rapidly increasing demand for large-scale content distribution, content

networks, or caching networks, have been developed to improve content delivery efficiency

[15] [16]. In content networks, contents can be cached in servers to serve future requests [17].

As a common type of content network and an effective solution for large-scale content delivery,

content delivery networks (CDNs) have been widely deployed in modern networks [17]. As the

most important strategy of caching networks and CDNs, caching is the process of storing copies

of content in temporary storage locations or named caches, which can largely reduce latency,

enabling fast access to websites or applications [3] [16]. Through caching mechanisms, CDNs

can cache content in edge servers that are closer to end-users than the central server, making it

more efficient to deliver web contents [4]. An overview of CDN is shown in Fig. 7.1.

CDN works in the following procedures [4]:

1. When a CDN receives a request for a content from a client, this request is routed to the

closest edge server to the client.

2. The closest edge server will fetch the content from the central server that has this content.

3. The edge server responds to the client with the requested content.
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4. A copy of the requested content is stored in the edge server as the caching process for

future requests. The cached content will be retained in the cache space if the end-users

keep requesting the same content.

If the content requested by an end-user has been saved in the cache space of the edge

server, the content will be loaded at a fast speed, so-called a cache hit. In contrast, if the

content has not been saved in the cache space, a cache miss will occur, and the edge server

will pass the request to the central server to fetch the content and save it in the cache space

to reduce the future request processing speed. Thus, CDNs can handle the rapidly growing

volumes of network traffic and Internet content with low latency through edge servers and

caching mechanisms. Moreover, CDNs can mitigate DDoS attacks because the traffic can be

dispersed to multiple edge servers to keep responding to users’ requests, making it difficult for

cyber-attackers to paralyze the entire network [18].

On the other hand, the research works for CDN anomaly detection are very limited, be-

cause CDN operators (e.g., Akamai, Limelight) often keep CDN traffic data private due to

liability implications [19]. Most research works of anomaly detection in caching networks are

for information-centric networks (ICNs) [20]. Information-Centric Networking (ICN), alter-

natively known as Named Data Networking (NDN) or Content-Centric Networking (CCN),

is a future Internet architecture that can be regarded as an improved version of CDNs to pro-

vide large-scale content delivery with less resource footprint and system complexity [17] [21].

Caching is an essential component in both ICNs and CDNs, since they both aim to provide ef-

ficient content delivery through caching mechanisms [3] [17]. Thus, ICNs and CDNs are both

vulnerable to the cyber-attacks that aim to disrupt caching services, like DoS attacks and CPAs.

The main difference between ICNs and CDNs is that ICNs assign a unique name for each con-

tent as its identifier to replace IP addresses for content delivery, while IP address information

is required in CDNs [17] [22].

7.2.2 Service Targeting Attacks in CDN

However, the use of caching mechanisms introduces several vulnerabilities to caching net-

works, especially CDNs [16]. Several service targeting attacks can be carried out on CDNs to
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disrupt their services by exploiting the caching mechanisms of CDNs.

Firstly, if a cache misses occurs, even though the content can be an unpopular or illegitimate

file, the edge server close to the end-user will fetch this content from the central server and store

it in the cache space. However, due to the memory constraints of server machines, a cache can

only save a limited number of contents [23]. Based on this caching strategy, cyber-attackers

can send a large or moderate number of requests for unpopular contents to occupy the cache

space of certain edge servers. This attack is called a cache pollution attack (CPA) that aims to

pollute the cache space of certain edge servers [15]. CPAs are one of the most severe threats on

emerging content networks, including ICNs and CDNs, because the caching mechanisms have

made it easier for cyber-attackers to corrupt cache by requesting unpopular or invalid contents

[8] [21]. The performance and services of caching networks can be significantly degraded by

CPAs. After being attacked by CPAs, the cache of compromised nodes is filled with unpopular

contents, resulting in a high cache miss rate and latency for popular contents requested by

legitimate users [15]. Due to the latency issues caused by CPAs, CPAs are especially damaging

for the transmission of latency-sensitive contents, like live-streaming contents [24]. A CPA

scenario for CDNs is shown in Fig. 7.1.

CPAs can be classified as locality-disruption attacks (LDAs) and false-locality attacks

(FLAs) based on their behaviors [7]. LDAs are launched by sending a moderate number of

requests for a large number of low-popularity contents to occupy the cache space that should

belong to popular contents, therefore degrading the locality of cache files and cache efficiency.

On the other hand, FLAs are launched by repeatedly sending a large number of requests for a

few targeted low-popularity contents to constantly refresh these polluted contents and occupy

certain areas of the cache space, thereby degrading the cache hit rate of legitimate requests.

Secondly, since CDNs respond to every incoming request with Internet content in chrono-

logical order, cyber-attackers can send a sudden burst of requests to certain nodes to overwhelm

these edge servers, named denial of service (DoS) attacks [9]. DoS attacks are the most com-

mon attack that can stop the entire network from functioning shortly or indefinitely to prevent

legitimate clients from accessing content [9].

Unlike ICNs that are vulnerable to a special type of DoS attack, named Interest flooding

attacks (IFAs), due to its Pending Interest Table (PIT) strategy for content caching, common
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DoS attacks launched in CDNs are conventional Hypertext Transfer Protocol (HTTP) flooding

attacks [25]. These DoS attacks intend to exhaust the network and memory resources of CDN

nodes, so that the requests from legitimate users may be delayed or their requested contents

cannot be cached by these affected nodes, causing cache misses or late responses [18]. A DoS

scenario for CDNs is shown in Fig. 7.1.

As a special case of DoS attacks, distributed DoS (DDoS) attacks are carried out by utilizing

multiple compromised devices, named bots, to send a sudden burst of requests together to

certain nodes, while DoS attacks can be launched by a single machine. It is more difficult to

detect DDoS attacks than DoS attacks since they are carried out from multiple locations instead

of a single origin [5] [9].

As CPAs and DoS attacks are two common types of service targeting attacks that pose se-

vere threats to CDNs to make caching mechanisms, the core of CDNs, unavailable to legitimate

users, the major purpose of this work is to protect CDNs against these two attacks.

7.2.3 Anomaly Detection in CDN

CDNs themselves can mitigate DoS and DDoS attacks, since they use highly distributed edge

servers that can disperse the traffic to avoid the entire system breakdown [18]. However, latency

will still be increased due to the unavailability of edge nodes caused by attacks. Additionally,

if DoS attacks cannot be detected and compromised nodes cannot recover, more CDN edge

servers and clients will be affected by the attacks, and the entire system will fail eventually.

Certain conventional mechanisms, like firewalls and filtering techniques, can mitigate DoS

attacks by limiting the amount of traffic entering the CDN. However, DoS attacks and crowd

events have similar patterns, making it difficult for conventional mechanisms to filter only the

attacks [5]. Thus, there is a need to develop an anomaly detection system to distinguish them.

On the other hand, compared to DoS attacks, CPAs are more flexible, stealthy, and challenging.

CPAs can be launched by sending a moderate number of requests for certain unpopular contents

to retain them in the cache through the normal content delivery process, making it difficult for

conventional mechanisms to defend against CPAs. This emphasizes the importance of anomaly

detection system development.
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CDNs usually have firewalls and authentication mechanisms as their first layer of defense.

Anomaly detection systems can be incorporated into CDNs as the second layer of defense

to identify attacks that have breached the first layer of defense. Identifying those attacks is

crucial because they may be more malicious than the attacks that are blocked by the first layer

of defense [26]. Additionally, anomaly detection systems can adapt to the changing patterns

of cyber-attacks by analyzing the continuously-generated CDN log data that reflect the current

network states. Thus, the work aims to propose an anomaly detection system to detect service

targeting attacks (i.e., CPAs and DoS attacks) and abnormal network entities from multiple

perspectives to secure CDNs.

7.3 Related Work

7.3.1 CPA & DoS Attack Detection

Service targeting attacks, including CPAs and DoS attacks, pose a severe threat to caching

networks, such as CDNs and ICNs [7] [16]. As the leading CDN service provider, Akamai

Technologies reported in 2019 that more than 800 types of DoS attacks were found in financial

services industries [27]. These DoS attacks can exploit vulnerabilities towards the websites

and disturb the financial services, causing severe financial losses. Due to the lack of serious

scrutiny for cached contents, real-world CDNs are vulnerable to multiple caching-related at-

tacks, like CPAs, which have been recorded in the “Vulnerability Notes Database” [28]. More-

over, Nguyen et al. [23] proposed a new caching attack, Cache-Poisoned Denial-of-Service

(CPDoS), that targets CDNs and other vulnerable caching systems. CPDoS attacks combine

the ideas of CPA and DoS attacks by sending a large number of requests with malicious headers

to pollute cache space and paralyze victim websites.

Several research works have focused on CPA detection. Conti et al. [20] conducted experi-

ments to prove that CPAs are a realistic threat to caching networks and proposed a lightweight

detection technique to detect CPAs accurately. However, the experiments were conducted

on a simulated network instead of a real-world network. Xie et al. [29] proposed a novel

method named CacheShield to avoid storing the low-popularity contents (less than the popu-
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larity threshold) in servers’ caches. However, this strategy can also reject certain legitimate

contents, and is inefficient for gradually enhanced attacks. Karami et al. [30] proposed an

Adaptive Neuro-Fuzzy Inference System (ANFIS) to mitigate CPAs in ICNs. In ANFIS, every

content will be given a grade to measure its goodness, and the system will replace low-grade

contents in caches with high-grade contents based on a goodness threshold to mitigate cache

pollution. However, it has high overhead costs. On the other hand, the above CPA detection

methods are all based on threshold mechanisms, but they lack adaptability to complex and

changeable network environments.

Many recent research works have considered DoS attack prevention and detection. Rahman

et al. [9] proposed a distributed virtual honeypot method to mitigate DoS attacks in CDNs. This

method can maintain smooth content delivery in CDN edge servers, but cannot protect the

main server. Moubayed et al. [31] [32] proposed an ensemble learning classifier to effectively

detect several types of domain name system (DNS) attacks, including cache poisoning and

DoS attacks. The proposed method achieves high accuracy but does not analyze the detection

results with related features to summarize attack patterns for future anomaly detection. Kumar

et al. [33] [34] proposed a security framework based on the software-defined perimeter (SDP)

to protect modern networks from being breached by DoS attacks. Certain DoS attacks can be

effectively defended or prevented by the proposed method, but it lacks the capacity to detect

the malicious attacks that have already breached the networks.

7.3.2 Abnormal IP & Node Detection

Detecting abnormal network entities, including abnormal client IP addresses and nodes, is im-

portant for CDN protection. Several recent works have extracted network features from the

client IP point of view for anomaly detection. Lee et al. [25] proposed CDN request routing

and site allocation algorithms to distinguish between the requests from DoS attackers and le-

gitimate users in CDNs, but they did not consider other attack types. Chiba et al. [35] proposed

a novel method that can effectively extract features from the structures of IP addresses and ap-

plied the support vector machine (SVM) model to detect malicious websites. Pinto et al. [36]

presented and utilized SVM on the network traffic data to identify malicious IP addresses and
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achieved the cross-validation accuracy of 83% to 95%. Fiadino et al. [37] used the HTTP

flow data collected from a primary European Internet service provider to detect traffic anoma-

lies in CDNs. However, only detecting numerically abnormal traffic is insufficient to identify

cyber-attacks accurately.

Detecting compromised nodes is also a critical process to ensure a quick recovery and reli-

able functioning of networks. La et al. [38] proposed a misbehavior node detection algorithm

using a weighted-link method to secure a hierarchical sensor network. Berjab et al. [39] pro-

posed a novel framework based on observed spatiotemporal (ST) and multivariate-attribute

(MVA) sensor correlations to detect abnormal nodes in wireless sensor networks (WSNs).

Pandey et al. [40] proposed an innovative method that uses intrusion detection system (IDS)

agents to identify compromised nodes in WSNs according to their behavior, and the proposed

method shows efficiency in small networks. However, the above methods lack a root cause

analysis to find what caused the abnormal nodes for the purpose of future intrusion prevention.

7.3.3 Research Contributions

Many of the research works presented in this section are promising and have achieved good

outcomes. However, most of them use software like the network simulator version 3 (NS-3) to

build a simulated network for data collection, which may be biased or noisy. In our work, a

recent real-world CDN access log dataset collected from a major operator is used to show the

effectiveness of applying our proposed anomaly detection model to real-world networks.

On the other hand, most existing research works only detect anomalies from a single per-

spective, like the client IP or the service provider perspective. This is often insufficient to

validate whether the detected abnormal network behavior is due to malicious cyber-attacks or

legitimate network events. Thus, many false alarms may be returned. Caltagirone et al. [41]

proposed a pivoting intrusion analysis model named “diamond” that uses the communication

information between compromised nodes and malicious IP addresses to reveal the detail of

attackers, but it is only a theoretical model. On the other hand, our proposed method extracts

more CDN attributes/features and conducts anomaly detection from several different perspec-

tives, and then performs a multi-perspective analysis to validate anomaly detection results for
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Figure 7.2: The framework of the proposed anomaly detection approach.

the purpose of false alarm reduction.

Moreover, many recent research works treat ML models as black-box methods and do not

analyze how the detected anomalies and corresponding features can reflect a specific type of

cyber-attack. In our proposed method, the behaviors and characteristics of CPA and DoS at-

tacks from multiple perspectives are summarized and analyzed together with the ML-based

anomaly detection results to perform a root cause analysis and find which type of cyber-attack

or event causes the anomalies. Ultimately, both the abnormal network entities and their corre-

sponding cyber-attack types will be detected effectively.

7.4 Proposed Anomaly Detection Framework

7.4.1 System Overview and Deployment

The proposed method aims to characterize abnormal events and separate them from normal

network events based on the analytics of CDN access log data from different perspectives,

including content, client IP, account-offering, and node perspectives. Fig. 7.2 depicts the
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Figure 7.3: The deployment of the proposed anomaly detection system.

framework of the proposed anomaly detection model. The overall architecture of the proposed

system is divided into four parts: data pre-processing, feature engineering, anomaly detection,

and data labeling. At the first stage, the raw access log data is pre-processed and cleaned to

generate a sanitized dataset. A comprehensive feature engineering method is then implemented

to extract the datasets that can effectively reflect the behaviors of network attacks from different

perspectives. Next, the extracted datasets are trained by an optimized unsupervised anomaly

detection model based on GMM, iForest, and BO to discern between abnormal and normal

data patterns. At the last stage, a multi-perspective validation analysis is conducted to reduce

the errors in the anomaly detection results. Ultimately, abnormal network entities, including

malicious IPs, abnormal contents, and compromised nodes, as well as their corresponding

cyber-attack types, can be effectively detected to secure CDNs.

For the deployment in CDNs, the proposed anomaly detection system can be placed in both

the central server and edge servers, as shown in Fig. 7.3. In edge servers, the proposed system

can keep monitoring the network traffic to detect abnormal network entities and send alarms

to the central server as soon as an attack occurs; hence, the central server can notice other

edge servers and make corresponding countermeasures. When placed in the central server, the

proposed system can have a comprehensive view of the operation of the entire network, and

can protect the central server when certain edge servers have been exploited by attackers to
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breach the central server. Specifically, in each edge or cloud server, all the network traffic that

is not stopped by the first layer of defense (e.g., firewalls) will be captured by network taps or

sniffers, and then analyzed by the proposed anomaly detection system [42]. The large traffic

can also be stored in a database for comprehensive analysis by the proposed anomaly detection

system. If an attack is detected in an edge or cloud server, all the edge and cloud servers will

receive an alarm. As such, the network administrators in the central server and edge servers

can make corresponding countermeasures to stop current attacks and prevent future attacks.

7.4.2 Data Acquisition and Preprocessing

For the purpose of network anomaly detection, data acquisition is the first phase of any ML-

based model framework. Due to the complexity of modern network configurations, numerous

network fields are often recorded in network log data to reflect network states and character-

istics. For instance, the authors in [43] provided 248 unique network features that can be col-

lected from the network packets transmitted between clients and servers. However, considering

hundreds of network features for anomaly detection is often unrealistic due to limited budgets

and resources. Additionally, a large number of features that include many irrelevant features

may introduce noises, which have an adverse impact on the performance of ML models.

In this chapter, we focus on anomaly detection in CDN access logs. In network commu-

nications, access logs record the information of all requests for the contents that users have

requested from web servers. The information includes client IP addresses, timestamps, proto-

col, user-agent information, uniform resource locator (URL) of content, etc. [44]. Analyzing

access logs can help us recognize the states and behaviors of a network in various time periods.

Access logs are often recorded in a combined log format that contains multiple network fields

for each request, as described in [44]. The following is an example of a record in general access

logs:

127.0.0.1 - - [12/Dec/2016:04:54:20 -4000] “GET /support.html HTTP/1.1” 200 11179 -

“Mozilla/5.0(compatible;Googlebot/2.1;+http://www.g oogle.com/bot.html)” . . .

The access log data used in our chapter is a general network access log acquired from

real-world web servers. In this 169 GB access log data provided by the CDN operator, there
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are more than 0.4 billion requests/samples and 30 fields that characterize the behavior of each

request. This CDN log data contains data samples with various characteristics and probability

distributions, enabling the detection of different types of cyber-attacks.

Although 30 network fields are available in the CDN access logs, only part of them are

useful for anomaly detection, and other fields are irrelevant or for other uses. After prelim-

inary analysis on the CDN dataset and potential abnormal behaviors, 12 fields that might be

helpful for anomaly detection are selected, including IP address, timestamp, HTTP method,

status code, bytes returned, request delivery time, service type, cache hit indicator, node name,

account-offering, content-URL, and content type. These features are also the standard access

log features described in [44]. The description of the preliminarily selected network fields is

shown in Table 7.1. Other fields that do not have a direct impact on cyber-attack detection,

such as protocol, network name, referrer string, are removed from the feature set, because they

have either the same values or empty values for almost all the requests. To ensure accurate

feature selection, HITL is used for feature validation. Thus, this preliminary feature selection

process is validated by multiple cybersecurity experts and industrial partner security network

engineers. The experts are from multiple organizations, including third and disinterested par-

ties. All the experts involved in this work can guarantee their professionalism, objectivity, and

impartiality in the analysis procedures.

After obtaining the reduced raw data, several steps are completed to clean and pre-process

the data.

In the first step, apparent noise or error data, mainly the request samples with many empty

fields, are discarded. Then, certain features, like the timestamp, are formatted for easier com-

parison or calculation. Moreover, string features, like the service category (dynamic or static)

and cache hit indicator (hit or miss), are converted to binary or numerical features for easier

calculation.

Data cleaning is then followed by data normalization. Data normalization is beneficial

when features have different ranges since features with larger ranges are often considered more

important than smaller range features in ML model training, which can cause misleading re-

sults. Therefore, the datasets are normalized by the min-max normalization method to be in
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Table 7.1: Description of Selected Network Log Attributes
Feature Description

IP Client IP address
Timestamp Request start time in format: “[dd/mmm/yyyy:hh:mm:ss -zzzz]”

HTTP method HTTP request method, e.g., GET, POST, etc.
Status code HTTP status code: 2xx indicates a successful response; 3xx indicates a redirection;

4xx indicates a client error; 5xx indicates a server error
Bytes Bytes returned over the network without headers after a request

Delivery time Duration from the beginning until the end of a request and all bytes are delivered, in
milliseconds

Service type The type of service, e.g., static, live streaming, progressive download, etc.
Cache hit
indicator

Service cache hit/miss indicator, hit or miss

Node Node name, representing a service provider
Account offering The network account offering name (e.g., streaming-1, static-2, etc.), indicating a

service accessed from the IP space
Content-URL The content part of a URL, indicating unique content
Content type The type of the content in each request, e.g., image, video, audio, text, etc.

the range of 0 to 1 [26]. The normalized value of each feature value, xn, is denoted by,

xn =
x − min

max − min
, (7.1)

where x is the original feature value, min and max are the minimum and maximum values of

each original feature.

Min-max normalization is chosen in the proposed framework due to two main reasons [45]:

1. Min-max scaling can transform all the features to have the same range of [0, 1], making

it easier for ML models to process the dataset and for people to compare the results;

while many other normalization methods cannot obtain the exact same range of features;

2. Compared to other methods, like standard scaler and power transformer, the min-max

scaler is more sensitive to outliers, enabling the ML algorithms to detect anomalies more

accurately, as the purpose of this work is to identify anomalies and attacks.

The use of min-max normalization can improve the accuracy of ML models and reduce

the difficulty of result analysis. Nevertheless, the performance of using different normaliza-

tion methods is often very similar [45]. Additionally, as normalization is a small part of

ML pipelines, it does not have a significant impact on the final anomaly detection results.
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Other procedures, including feature engineering, unsupervised learning model development,

and multi-perspective validation, are more important.

7.4.3 Feature Engineering

Although there are 12 features for each request in the initial dataset, it is difficult to identify

abnormal network entities and cyber-attacks using only the original request dataset since a

single request is often insufficient to reflect network anomalies or attacks. Thus, other features

that can effectively reflect abnormal network behaviors should be extracted or generated for

the purpose of anomaly detection.

Feature engineering aims to obtain useful features from the log traces collected from CDN

deployment based on domain knowledge [5]. In this chapter, a multi-perspective feature engi-

neering method that extracts features from four main perspectives: content, client IP, service

provider (node), and account-offering, is proposed to obtain the dedicated datasets for different

purposes. The generated datasets extracted from different perspectives can be processed sepa-

rately and then analyzed together to detect abnormal network events more accurately than any

single perspective. In the proposed framework, detecting malicious client IPs and compromised

nodes is the main objective; the information collected from the content and account-offering

perspectives is the supporting information for more accurate abnormal IP and node detection.

To detect CPAs and DoS attacks, their main characteristics reflected from the four considered

perspectives are summarized below.

The content perspective is to monitor the properties of the requested and cached contents.

From the content perspective, it is beneficial to identify the abnormal contents that might be

used by attackers to launch cyber-attacks. The abnormal traffic that characterizes a CPA is a

sudden burst or a periodic sending of requests for low popularity contents. Additionally, most

CPAs are used to breach a few targeted nodes, so for each abnormal content, the number of

requests sent to each targeted node should also be large. On the other hand, if a content gets a

large number of requests from many different IPs, there might be a crowd event or a distributed

denial of service (DDoS) attack.

The service provider perspective is meant to monitor the edge servers or nodes that receive
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requests and transmit contents through CDNs. The cache hit rates and data transfer rates of

compromised nodes are often degraded due to uncached legitimate contents and network un-

availability/congestion caused by CPAs or DoS attacks. The average content popularity of each

compromised node is also reduced by CPAs since the node’s cache space will be occupied by

unpopular files. The affected nodes should be identified and isolated as soon as an intrusion

occurs so that other legitimate nodes can avoid communicating with the compromised nodes

until recovery.

The client IP perspective is meant to monitor clients that send requests for the contents

provided by servers. Considering the client IP perspective enables us to detect potential mali-

cious clients, allowing us to stop or prevent cyber-attacks by blocking the requests from these

malicious IP addresses. Detecting abnormal client IPs is crucial because these IP addresses

represent the origins of cyber-attackers. Attackers that are launching different types of attacks

exhibit different behaviors. For CPA attackers, they send high-frequency requests for low pop-

ularity contents, while DoS attackers may send a sudden burst of requests for files with any

popularity. Additionally, for the two types of CPA attackers, LDA attackers send requests for a

large number of unpopular contents, while FLA attackers only send requests for a few targeted

contents, but the number of requests sent for each content (request per content ratio) is often

large.

The account-offering (AO) perspective indicates the streaming source that provides a spe-

cific type of service, such as static, live streaming, and progressive download content distribu-

tion. An AO’s configuration also determines the behavior of its serviced client IPs. If certain

IPs behave abnormally and do not match the AO configuration patterns, they have a high prob-

ability of being anomalies. Thus, the analysis from the AO perspective can help us validate

whether the anomaly detection results are real attacks or false alarms.

The extracted features from four perspectives are summarized in Tables 7.2 - 7.5. After

attack pattern analysis in Section 7.2.2, we found that only some of the features have a direct

impact on the detection of CPAs and DoS attacks. Considering more features may cause mis-

leading results or additional computational time. Thus, the most important features that can

directly reflect the attack patterns are selected in the proposed method, based on the potential

feature patterns/characteristics of CPAs and DoS attacks summarized in Tables 7.6 and 7.7.
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Table 7.2: Description of Extracted Features from the Content Perspective
Perspective Feature Description

Content

Number of
requests

The total number of requests for per content

Popularity The popularity of per content, represented by the normalized number
of IPs that sent requests to per content

Cache hit rate The number of cache hits divided by the total number of requests for
per content

Request per IP
ratio

The ratio of the total number of requests sent for per content to the
total number of IPs which sent requests for per content

Request per node
ratio

The ratio of the total number of requests sent for per content to the
total number of nodes which received requests for per content

Table 7.3: Description of Extracted Features from the Node Perspective
Perspective Feature Description

Node

Cache hit rate The number of cache hits divided by the total number of requests re-
ceived by per node

Cache hit rate of
legitimate IPs

Average cache hit rate of IPs which only requested for popular contents
on per node

Data transfer rate
(MB/s)

The total bytes returned divided by the total delivery time for per node

Request error
rate

The percentage of requests with errors (4xx/5xx status code) received
by per node

Average request
popularity

Average content popularity of requests received by per node

Account-offering
request rate

The percentage of requests sent through per account-offering for per
node, e.g., “account1: 80%, account2: 20%”

The selected features can reflect most scenarios of a CDN that is under CPA or DoS attacks.

Considering the original features in Table 7.1, except for the HTTP method, all other raw

features in Table 7.1 have been used to create the final features in Tables 7.2 - 7.7. Specifically,

“IP”, “Node”, and “Content-URL” are used to extract datasets from the IP, node, and content

perspectives, “Timestamp” is used to calculate the average request interval of client IPs, “Status

code” is used to calculate the request error rate of nodes, “Bytes” and “Delivery time” are used

to calculate the data transfer rate, “Cache hit indicator” is used to calculate the cache hit rate of

IPs and nodes, “Account-offering”, “Service type”, and “Content type” are used to determine

the behaviors of account offerings for result validation purposes. Therefore, the fields selected

by the cybersecurity experts do not include any noise. “HTTP method” is removed because

DoS and CPAs can be launched using any HTTP method, whether they use GET, POST, or any

other HTTP methods; hence, it is irrelevant for DoS & CPA detection. Although the “HTTP
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Table 7.4: Description of Extracted Features from the Client IP Perspective
Perspective Feature Description

Client IP

Number of
requests

The total number of requests sent by per IP

Average request
interval

The average time interval between consecutive requests sent by per IP

Number of nodes The total number of unique nodes that received requests from per IP
Number of

contents
The total number of unique contents requested by per IP

Request per
content ratio

The ratio of the total number of requests sent by per IP to the total
number of contents requested by per IP

Request per node
ratio

The ratio of the total number of requests sent by per IP to the total
number of nodes which received requests from per IP

Average request
popularity

Average content popularity of requests sent by per IP

Cache hit rate The number of cache hits divided by the total number of requests sent
by per IP

Request error
rate

The percentage of requests with errors (4xx/5xx status code) sent by
per IP

Account-offering
request rate

The percentage of requests are sent through per account-offering for
per IP, e.g., “account1: 80%, account2: 20%”

Table 7.5: Description of Extracted Features from the Account-Offering Perspective
Perspective Feature Description

Number of
requests

The total number of requests through per AO

Number of nodes The total number of unique nodes that received requests sent through
per AO

Account-
offering

(AO)

Service type The type of service provided by per AO, e.g., static, live streaming,
progressive download, etc.

Content type The type of content provided by per AO, e.g., image, video, audio, text,
etc.

Cache hit rate The number of cache hits divided by the total number of requests sent
through per AO

Request
popularity

Average content popularity of requests sent through per AO

method” is irrelevant for CPA & DoS attack detection, it can still be used for other tasks, like

the detection of other types of attacks.

This feature extraction and selection process can be automated as a general feature engi-

neering method by summarizing the potential patterns of certain types of cyber-attacks and se-

lecting the features that can reflect the attack patterns, as discussed in this subsection. Through

this process, the proposed multi-perspective feature engineering method can extract and select



236

Table 7.6: Potential Patterns of CPAs
Attack
Type

Perspective Feature Abnormal
Patterns

CPA

Node

Cache hit rate Low
Cache hit rate of legitimate IPs Low

Data transfer rate (MB/s) Low
Average request popularity Low

Client IP

Number of requests Large
Average request interval Short

Number of nodes Small
Request per content ratio LDA: Low

FLA: High
Average request popularity Low

Content

Popularity Low
Request per IP ratio FLA: High

LDA: Low
Request per node ratio High

AO Request popularity Low

Table 7.7: Potential Patterns of DoS Attacks
Attack
Type

Perspective Feature Abnormal
Patterns

DoS

Node

Cache hit rate Low
Cache hit rate of legitimate IPs Low

Data transfer rate (MB/s) Low
Request error rate High

Client IP

Number of requests Large
Average request interval Short

Number of nodes Small
Cache hit rate Low

Request error rate High
AO Cache hit rate Low

the core features to reflect CPA and DoS attacks for the anomaly detection model development

presented in the next subsection.

7.4.4 Unsupervised Anomaly Detection

Compromised Node Detection

The extracted node-based dataset contains the information about 50 different nodes. To detect

abnormal or compromised nodes, isolation forest (iForest) [11], an unsupervised outlier detec-

tion algorithm that aims to separate isolated data samples (anomalies) from normal samples, is
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utilized in the proposed framework. The proposed abnormal node detection method has two

main steps:

1. Use iForest, an outlier detection algorithm, to separate numerically abnormal samples

from normal samples.

2. Analyze the behaviors of each numerically abnormal node, and label the nodes that

match the summarized patterns/characteristics of different types of attacks.

IForest is an ensemble learning algorithm constructed with multiple binary search trees,

named isolation trees (iTrees) [46]. Each iTree is constructed by splitting the samples based on

feature values. The number of splittings required to isolate a sample indicates its path length

(i.e., the number of edges from an iTree’s root node to its leaf node). The path length of

anomalies is often shorter than normal samples. This is because normal samples are often the

majority and in dense areas, making it unlikely for an iTree to isolate them from each other,

while anomalies are the opposite. A score is given to each sample based on the path length, so

that the outliers that are sparsely distributed and distant from the dense normal samples can be

detected [46].

IForest is chosen for abnormal node detection due to the following reasons [11] [46]:

1. Unlike many other ML algorithms, iForest performs well on small-scale data to which

the node-based dataset belong. This is because iForest uses the short path length of data

samples to indicate the anomalies, which can be obtained regardless of data size.

2. Unlike clustering algorithms, iForest does not require anomalies to have similar char-

acteristics to detect them since it discerns outliers from normal samples based on data

density.

3. IForest is computationally efficient because it has a linear time complexity of O(N), a

low memory requirement, and parallel execution support.

4. IForest has good interpretability since it uses a tree-structure to make decisions and split

data samples.

To develop an effective ML model for a specific task, hyper-parameter tuning should be im-

plemented to detect the hyper-parameter configuration that can return the optimal architecture

of the ML model [47]- [49]. As an important hyper-parameter of iForest, the contamination
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level determines the proportion of data samples that will be detected as outliers. To build an

optimized iForest model, the contamination level is tuned using Bayesian optimization (BO).

BO algorithms are a set of efficient hyper-parameter optimization (HPO) methods that de-

tect the optimal hyper-parameter based on the currently-evaluated results [50]. In BO, a surro-

gate model is used to fit all the currently-tested samples into the objective function; an acquisi-

tion function is then used to locate the next points by considering both the unexplored regions

and currently-promising regions in the search space [51].

Gaussian process (GP) is a common surrogate model for BO. In GP surrogate models, any

finite combination of the random variables follows a Gaussian distribution [52]:

p(y|x,D) = N
(
y|µ̂, σ̂2

)
, (7.2)

where D is the hyper-parameter configuration space, y = f (x) is the objective function value

for each hyper-parameter configuration with its mean as µ̂ and covariance as σ̂2.

The BO method using GP (BO-GP) has a time complexity of O(N3) and a space complexity

of O(N2) [52]. BO-GP is inefficient for a large hyper-parameter search space but exhibits

great performance on optimizing a small number of continuous or discrete hyper-parameters.

Thus, BO-GP is used to optimize the contamination level of the iForest model. The silhouette

coefficient [53] [54], a distance-based metric that can measure the similarity of normal samples

and the difference between numerically normal and anomalous samples, is chosen to be the

metric of the iForest model and used as the objective function to be optimized by BO-GP.

After using the optimized iForest model to detect abnormal nodes, many false positives

will be returned since many of the detected compromised nodes do not match the cyber-attack

patterns. Mainly, the cache hit rate of the compromised nodes and their serviced legitimate

client IPs should be reduced due to attacks. The data transfer rate and average popularity of

the abnormal nodes should also be low due to network congestions and the filled cache space

occupied by unpopular files, respectively. On the other hand, although certain other isolated

data points, like the nodes that received a very small number of requests or returned a very

high data transfer rate, are numerically different from most normal nodes, they are unlikely to

be under CPA or DoS attacks. Therefore, the patterns of the detected anomalous nodes are
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compared with the behaviors of potentially compromised nodes summarized in Tables 7.6 &

7.7. Ultimately, the affected nodes that match the abnormal patterns are preliminarily labeled

abnormal.

Abnormal Content & Client IP Detection

Unlike the node-based dataset that only contains 50 unique nodes, both the content-based

datasets and IP-based datasets have more than one million unique contents or unique IPs. For

large-scale data, only using a binary outlier detection method (e.g., iForest) is insufficient to

identify attack samples, because using only two categories cannot describe various normal and

abnormal patterns, and numerical anomalies may not be the true attack samples since cyber-

attacks have their own specific patterns or characteristics, as described in Section 7.4.3.

For large-sized data, clustering algorithms would be more effective in identifying abnor-

mal contents and IP addresses since they can obtain multiple numerically abnormal clusters,

enabling us to determine the true anomalies by comparing the characteristics of the abnormal

clusters with the specific attack patterns. Clustering algorithms are a set of unsupervised learn-

ing models that aim to group data points into different clusters. Data samples in the same

cluster should have similar patterns or properties, while those in different clusters should have

different patterns [55].

The proposed abnormal IP and content detection method has two main steps:

1. Use a clustering algorithm to group the client IPs or contents into a sufficient number of

clusters.

2. Analyze the characteristics of each cluster, and label the IPs or contents in this cluster as

“normal” or “abnormal” based on the summarized patterns of different types of attacks.

Gaussian mixture model (GMM) is a distribution-based clustering constructed with mul-

tiple Gaussian distribution components and a probability density function [12]. GMM mod-

els data points by utilizing Gaussian distribution models with parameters estimated by the

expectation-maximization (EM) algorithms. In GMM, each Gaussian component can be de-
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noted by a multivariate Gaussian distribution [12]:

G(x | µ,Σ) =
1

(2π)
D
2 |Σ|

1
2

e−
1
2 (x−µ)TΣ−1(x−µ) (7.3)

where x is the data points, µ is the mean or the expectation of the Gaussian distribution, Σ is

the covariance, and D is the dimensionality of the dataset.

A GMM with K Gaussian components models the data by the following probability density

function [12]:

p(x | θ) =
K∑

i=1

πiG (x | µi,Σi) (7.4)

where θ = {πi, µi,Σi} are the parameters of GMM, πi is the weight of each Gaussian com-

ponent, and
∑K

i=1 πi = 1.

The GMM parameters are obtained by the EM algorithm that repeats two main steps until

convergence: the E-step calculates the expectation of each Gaussian component, and the M-

step maximizes the calculated expectations to update the parameters of Gaussian distributions

[12]. The time complexity of training a GMM is O(NKD2) for N data instances, K Gaussian

components, and D features or dimensions [56].

The main reasons for choosing GMM for the content-based and IP-based datasets are:

1. Based on the visualization of the probability density functions, most of the extracted

features on the content and client IP sides follow Gaussian or near-Gaussian distributions.

Additionally, GMM considers feature covariance and can model more flexible cluster

shapes than many other clustering methods, like k-means, which can only return globular

cluster shapes. Therefore, GMM can fit the datasets effectively.

2. Unlike many other clustering algorithms, like k-means and hierarchical clustering, which

can only return a cluster label or identity number, GMM is able to give a confidence

value to each test sample, indicating the probability of belonging to each cluster. The

probability can be used to find uncertain samples and take further actions to reduce errors.

3. Although k-means has a training time complexity of O(NKD) [57] that is lower than

GMM, the training time of GMM is still low because the proposed feature engineering

method has effectively reduced the dimensionality of the data. On the other hand, the
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run-time complexity of a GMM is also O(NKD), so the execution time of running an

trained GMM is low.

For the GMM applied to the CDN datasets, it has a major hyper-parameter that requires

tuning, which is K, the number of clusters or Gaussian components [52]. Identifying an optimal

value of K is crucial since it determines whether a sufficient number of Gaussian components

are constructed to describe and distinguish normal and abnormal data patterns. On the other

hand, a too-large K will lead to additional model training time.

Since GMMs only have a discrete hyper-parameter, the number of Gaussian components,

that requires tuning in most cases, BO-GP serves as an effective HPO method for GMMs [52].

The silhouette coefficient is also selected as the metric of the GMM model since it measures

how similar a data sample is to other data samples within the same cluster and how different a

data sample is from the samples in other clusters.

After grouping the contents and IPs into optimized numbers of clusters using GMM and

BO-GP, the characteristics of each cluster will be analyzed based on the DoS & CPA patterns,

and the clusters that match the abnormal content and IP patterns summarized in Tables 7.6 &

7.7 are deemed to have passed the initial detection. The IPs and contents in these clusters are

preliminarily labeled “abnormal” at this stage.

7.4.5 Multi-perspective Result Validation

Using unsupervised machine learning algorithms, including GMM and iForest, enables us to

distinguish numerically abnormal content, nodes, and IPs from normal ones. However, certain

legitimate events, like misconfigurations and crowd events, may perform similar behaviors as

cyber-attacks and be misclassified as anomalies. Therefore, a multi-perspective result valida-

tion analysis is performed to eliminate the false alarms and improve the detection rate, so as to

identify the real network entities affected by CPAs and DoS attacks.

Time-series Analysis

At the first stage of result validation, time series analysis is conducted by analyzing the changes

of certain features in periods (e.g., hourly and daily changes) to find the abnormal events and
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potential attacks.

The major feature changes to be monitored in general CDN access log data for DoS & CPA

detection include follows:

1. The changes in the hourly number of requests can help us to find potential crowd events

and DoS attacks when there is a sudden burst of requests in certain time periods;

2. The changes in the hourly cache hit rate can help us to detect potential DoS attacks when

there is a sudden burst of error requests that aim to exhaust network resources;

3. The changes in the hourly request popularity can be used to identify potential CPAs

when certain IPs start to send a large number of requests for unpopular contents, or

certain nodes get many requests for unpopular contents.

The general process of time-series validation is shown in Fig. 7.4. After we find the time

periods in which certain features change abnormally, they will be compared with the informa-

tion about the known legitimate events provided by the CDN operator. If known legitimate

events did not occur in these abnormal periods, there is a high probability that cyber-attack

occurred. Thus, the active IPs, nodes, and contents in these abnormal periods will be ana-

lyzed using the proposed optimized iForest or GMM methods to detect the abnormal network

entities affected in potential cyber-attacks. In most real-world applications, legitimate event

information should be recorded for network maintenance purposes. In case of no information

about legitimate events, expert intervention can be involved in the validation process as a HITL

procedure to help determine the real attacks. Moreover, network administrators can still use

authentication mechanisms to confirm the identities of all these suspicious entities to identify

real attacks.

The cross-perspective analysis is also utilized in the time-series validation process to help

validate the real abnormal network entities. To perform the cross-perspective analysis, the

results from each perspective are used to validate the results from the other two perspectives.

To be specific, the information about the detected compromised nodes can help us to validate

the potential malicious IPs which try to attack these nodes and the potential abnormal contents

which are used to pollute these nodes. For the abnormal IPs and contents detected from their

own perspectives, these results can be used to validate which nodes are targeted by the attackers
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Figure 7.4: The flow chart of time-series analysis

who utilized these abnormal IPs and contents. Through this process, the true abnormal entities

that are affected by attacks can be identified effectively.

In conclusion, time series analysis enables us to locate the specific days or time periods
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Figure 7.5: The flow chart of account offering analysis
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of potential attacks and legitimate events (e.g., crowd events), thus validating the results by

analyzing the nodes, IPs, and contents affected during these periods.

Account-Offering Analysis

The account-offering (AO) analysis is to analyze anomaly detection results based on the AO

configurations and behaviors to distinguish true attacks from legitimate outliers. The potential

behavior of an AO can often be estimated based on its configuration. If cyber-attacks occur,

the characteristics of the affected AOs can change to abnormal, which can help us to validate

the abnormal network entities serviced by these AOs. For example, if an AO that is configured

to be the major stream of static content services gets numerous requests for non-existent live

streaming contents, DoS attacks might be launched through this AO to overwhelm certain

nodes. On the other hand, if an AO is used for the legitimate tests of old progressive download

videos, it may be misclassified as anomalies by the proposed unsupervised models because,

similar to CPAs, there will also be a large number of requests for low-popularity contents; thus,

the affected nodes, IPs, and contents can be false alarms. AO analysis requires the configuration

information of AOs to determine whether the AOs’ behaviors match their configurations. The

general process of account-offering analysis is shown in Fig. 7.5. Through this process, the

false alarms from legitimate events will be removed to improve the anomaly detection accuracy.

After implementing the optimized unsupervised anomaly detection method and performing

the multi-perspective result analysis, the abnormal contents, compromised nodes, and mali-

cious IPs with their potential attack types can be identified effectively.

7.5 Experimental Results & Discussion

7.5.1 Experiments Setup

The experiments are conducted on a machine with a 6 Core i7-8700 processor and 16 GB of

memory. The dataset used for experiments is 169 GB of 8 days web access logs collected

by a major CDN operator from December 12th to 19th, 2016, including 452,264,816 unique

requests/samples. Through the proposed multi-perspective feature engineering, we have ob-
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tained the IP-based dataset (1,268,027 unique IPs) and the node-based dataset (50 unique

nodes) for abnormal IP and node detection. Additionally, the content-based dataset (1,867,584

unique contents) and the account-offering dataset (70 unique AOs) are also generated to sup-

port anomaly detection result validation. On the other hand, the dates of crowd events are

provided by the CDN operator, including 12th, 14th, and 15th, December 2016 (days 1, 3, and

4). Additionally, the CDN operator has used many conventional security mechanisms as the

first layer of defense, including firewalls with filtering mechanisms, authentication, hashing,

and load balancers, to mitigate cyber-attacks. Our proposed anomaly detection system serves

as the second layer of defense to detect anomalies that are not stopped by the first layer of

defense.

At the first stage of the experiments, the anomaly detection model based on iForest and

GMM is implemented on the obtained content-based, client IP-based, and node-based datasets

individually to preliminarily detect abnormal contents, malicious IPs, and compromised nodes.

Once the numerically abnormal network entities are separated from normal entities by the pro-

posed optimized unsupervised learning model, a multi-perspective analysis is then performed

to validate the results as the second stage of the experiments. The validation process includes

the time-series analysis based on the known legitimate events periods, and the account-offering

analysis based on the account-offering configuration information and their practical behaviors.

As such, false alarms can be reduced, and real abnormal network entities can be identified

effectively.

7.5.2 Unsupervised Anomaly Detection Results

Compromised Node Detection Results

Based on the extracted node-based datasets, there are 50 unique nodes that have received re-

quests in the 8 days dataset. Through the optimized iForest method that returns the contamina-

tion level of 0.22, as well as the comparison between node behaviors and cyber-attack patterns,

11 nodes that have behaved abnormally at least on one day are preliminarily identified as com-

promised nodes, including the nodes Number (No.) 0, 3, 4, 5, 7, 8, 9, 25, 36, 39, and 47.

Among the detected abnormal nodes, nodes No. 0, 5, 7, and 25 had a low cache hit rate (less
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Table 7.8: Mean Values of Each Feature of Normal and Abnormal Nodes in Preliminary
Anomaly Detection Using IForest

Node Labels Cache hit
rate

Legitimate IP
cache hit rate

Data transfer
rate (MB/s)

Request error
rate

Request
popularity

Normal 0.886 0.928 0.696 0.003 0.925
Abnormal 0.286 0.299 0.374 0.052 0.961

than 0.5), while other abnormal nodes had a relatively high request error rate.

The mean value of each feature for normal and abnormal nodes is shown in Table 7.8. It

is shown that the compromised nodes have lower cache hit rates and data transfer rates while

having higher request error rates than the normal nodes, which is due to potential network

congestion and unavailability caused by the attacks. Additionally, the cache hit rates of the

legitimate IPs serviced by the abnormal nodes are much lower than the IPs serviced by the

normal nodes. A multi-perspective validation will be conducted at the next stage to evaluate

the detected abnormal nodes and reduce errors.

Abnormal Content Detection Results

1,867,584 unique contents have been requested in the 8 days dataset. A GMM optimized by

BO-GP is trained on the content-based dataset to detect potential abnormal contents that might

be used by attackers to launch attacks. As the major hyper-parameter of GMM, the optimal

number of Gaussian components is found to be 28, which returns the highest silhouette score

of 0.96. As shown in Table 7.9, the 169 low-popularity contents in cluster No. 28 have got

a large number of requests on a couple of target nodes. Therefore, these unpopular contents

might have been requested many times by CPA attackers to occupy the cache space, making the

legitimate and popular contents get cache misses. Therefore, the 169 contents in cluster No. 28

are preliminarily identified as potential abnormal contents. The clusters No. 1-27 are classified

as normal clusters based on the comparison with cyber-attack patterns, and the behaviors of the

clusters No. 3-27 are omitted in Table 7.9.

Malicious Client IP Detection Results

There are 1,268,027 unique IP addresses in the extracted IP-based datasets. For abnormal IP

detection, two GMMs are trained on two different feature sets separately to detect CPAs and
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Table 7.9: Average Feature Values of Content Clusters in Preliminary Anomaly Detection
Using GMM

Content
cluster No.

Avg number
of requests

Avg request per
node ratio

Avg request
per IP ratio

Avg cache hit
rate

Avg
popularity

1 1.0 1.0 1.0 0.134 0.0
2 225.7 8.2 1.2 0.857 1.0

. . . . . . . . . . . . . . . . . .
28 1021.4 601.2 580.8 0.835 0.254

Table 7.10: Average Feature Values of IP Clusters in Preliminary DoS Attack Detection Using
GMM

IP cluster
No.

Avg
number of
requests

Avg
number of

nodes

Avg request
interval (s)

Avg cache
hit rate

Avg request
error rate

Avg request
popularity

1 4.2 1.422 1.44 0.925 0.0 0.976
2 116.4 4.12 365.8 0.908 0.011 0.957

. . . . . . . . . . . . . . . . . . . . .
47 405607.1 15.6 0.673 0.868 0.124 0.998

DoS attacks, respectively.

For DoS attack detection, the major considered features are the number of requests, requests

per node ratio, and average request interval. By using BO-GP to optimize the GMM, the

optimal number of clusters is found to be 47 with the highest silhouette score (0.55). As shown

in Table 7.10, the 310 IPs in cluster No. 47 are detected as potential DoS attack IPs, since they

have sent a large number of requests to several target nodes at a very high frequency. Their

request popularity is very high (99.8%), so they are unlikely to be CPA IPs.

On the other hand, for CPA detection, the major considered features are the number of

requests, request per content ratio, and request popularity. 34 clusters are found to be able

to effectively distinguish potential CPA IPs, returning an optimized GMM with the silhouette

score of 0.47. The behavior of each cluster is compared with the FLA and LDA patterns

summarized in Section 7.4.3. As shown in Table 7.11, the 21 IPs in cluster No. 33 are detected

as the potential FLA IPs since they have sent a large number of requests to a couple of target

nodes for several unpopular contents. Similarly, the 33 IPs in cluster No. 34 are detected as

the potential LDA IPs since they have sent a large number of total requests to many unpopular

contents to occupy the cache space. Thus, 54 unique IPs are preliminarily identified as potential

CPA IPs.
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Table 7.11: Average Feature Values of IP Clusters in Preliminary CPA Detection Using GMM
IP cluster

No.
Avg

number of
requests

Avg
number of

nodes

Avg request
per content

ratio

Avg cache
hit rate

Avg request
error rate

Avg request
popularity

1 1.3 1.14 1.0 0.057 0.019 0.500
2 200.4 28.4 1.0 0.699 0.007 0.627

. . . . . . . . . . . . . . . . . . . . .
33 4426.6 1.90 769.8 0.856 0.040 0.186
34 16028.4 5.18 1.1 0.077 0.019 0.359

7.5.3 Multi-perspective Results Validation

Although ML algorithms can identify the numerically abnormal IPs and nodes, many false

alarms may occur, and some real abnormal IPs and nodes may also be ignored. Thus, multi-

perspective validation is done based on the in-depth analysis of the datasets, including time

series analysis and account-offering analysis.

Time Series Analysis

Since only the date information about the crowd events is provided by the CDN operator, the

hourly number of requests is calculated to find the specific crowd event time periods, as shown

in Fig. 7.6. According to the hourly number of requests changes, the legitimate event time

periods are found to be 00:00-05:00 on day 1, 00:00-02:00 on day 3, and 00:00-03:00 on day

4. By extracting and analyzing the IP-based dataset in these time periods, 250 IPs that have

only sent requests in the crowd events have been detected. The daily behavior of these 250

IPs is shown in Table 7.12. Although they have sent a large number of requests at a very high

frequency, since they have only sent requests in the crowd events, and other legitimate IPs in the

crowd events got more than 99% cache hit rates, these 250 IPs should belong to legitimate IPs.

After checking the 310 IPs that are preliminarily detected as DoS attack IPs by the GMM and

described in the last subsection, these 250 legitimate event IPs are removed from the abnormal

IP list and labeled normal. Thus, 250 false alarms are removed, and the number of potential

DoS attack IPs is reduced to 60 after the first stage of time-series analysis.

At the next stage, in order to find the potential cyber-attack time periods, the hourly cache

hit rate changes are calculated since the reduced cache hit rate is the most representative behav-

ior of a CDN node that is under a CPA or DoS attack. As shown in Fig. 7.7, the hourly cache hit
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Figure 7.6: The hourly number of requests change in 8 days dataset.

Table 7.12: Main Feature Values of 250 Crowd Event IPs
Day Avg number

of requests
Avg number

of nodes
Avg request
interval (s)

Avg cache hit
rate

Avg request
popularity

1 501600.6 21.5 0.021 0.997 1.0
3 459155.2 10.5 0.061 0.996 1.0
4 491830.9 26.0 0.014 0.997 1.0

Figure 7.7: The hourly cache hit rate change in 8 days dataset.

rate remains stationary during the eight days except for 13:00-15:00, day 4. An abnormal event

might occur in this time period, so this time period is labeled as an abnormal event period.
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Table 7.13: Main Feature Values For Compromised Nodes Under Potential DDoS Attacks
Node
No.

Cache hit
rate on day 4

Avg cache hit
rate on other

days

Request error
rate on day 4

Avg request
error rate on

other days

Number of
requests on

day 4
3 0.65 0.70 0.11 0.0009 13,922
4 0.64 0.74 0.02 0.0006 50,947
8 0.62 0.78 0.10 0.0008 16,054
9 0.73 0.79 0.03 0.0009 15,057

25 0.21 - 0.61 - 531,044
28 0.76 0.89 0.08 0.0014 52,690
33 0.78 0.86 0.04 0.0013 59,415
36 0.54 0.75 0.13 0.0014 10,873
39 0.70 0.75 0.04 0.0016 11,893
42 0.76 0.87 0.09 0.0023 46,475
47 0.62 0.85 0.19 0.0023 93,482

To determine the root cause of the significant cache hit rate drop, we have analyzed the

requests, nodes, and client IPs in this abnormal period. Firstly, most of the requests in this

abnormal period have got the status code 404, indicating resource-not-found errors. Thus, at-

tackers have sent many requests for non-existing contents to cause many cache misses. A large

number of 404-error requests will exhaust the network resources and cause network unavail-

ability or congestion, so a DoS attack might occur during this abnormal period.

In the next step, we have explored the compromised nodes in this abnormal period. It is

found that most of the 404-error requests have been sent to node No. 25, so it is the major target

of the attack. Additionally, 10 other nodes are found to be the secondary targets since they also

got many 404-error requests during the abnormal period, but not as many as node No. 25. As

shown in Table 7.13, node No. 25 had a very low cache hit rate (0.21) and a very high request

error rate (0.61) on day 4. The other 10 compromised nodes’ cache hit rates are also slightly

reduced on day 4, and their request error rates on day 4 are much higher than their error rates

on other days. By comparing the compromised nodes in this abnormal event period with the

abnormal nodes detected by iForest in Section 7.5.2, three more abnormal nodes missed by the

iForest but detected by the time-series validation process, nodes No. 28, 33, and 42, are added

to the detected abnormal node list. Although these three nodes’ cache hit rates are not very low

(more than 76%), they have also been affected by the potential cyber-attacks on day 4. Thus,

14 unique nodes are labeled as abnormal nodes at this stage.
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Table 7.14: Average Feature Values of IP Clusters in DDoS Attack Detection using GMM
Cluster

No.
Avg

number of
requests

Avg
number of

nodes

Avg request
interval (s)

Avg cache
hit rate

Avg request
error rate

Avg request
popularity

1 1.09 1.08 24.9 0.850 0.0 0.941
2 354.6 3.78 6.76 0.579 0.0001 0.810

. . . . . . . . . . . . . . . . . . . . .
10 3039.9 2.39 0.6 0.026 0.972 0.947

After that, the 11,834 client IPs that have sent requests in the abnormal event period are also

analyzed. An optimized GMM is utilized to cluster these 11,834 IPs into 10 clusters, which has

the highest silhouette score of 0.73. As shown in Table 7.14, among the 10 clusters, the 103

IPs in the cluster No. 10 are found to be the malicious IPs since they have sent a large number

of 404-error requests to an average of 2.39 target nodes at a high frequency. Thus, these 103

IPs are likely to have launched a distributed DoS (DDoS) attack in the abnormal period 13:00-

15:00, day 4. By comparing these 103 IPs with the 60 potential DoS attack IPs detected by

the optimized GMM and crowd event analysis, 41 IPs are the overlaps, and the total number of

DoS attack IPs is increased to 122.

Lastly, it can be seen that this DDoS attack cannot be found by only considering the number

of requests shown in Fig. 7.6. This is because this DDoS attack mainly targeted node No. 25.

Although node No. 25 received a large number of malicious requests in this DDoS attack

period, this number of requests is still small compared to the total number of requests received

by all nodes or in the crowd events. This emphasizes the reasons for monitoring the changes in

different features instead of only one feature for time-series analysis; otherwise, real anomalies

may be missed.

Account-offering (AO) Analysis

In the final stage of result validation, account-offering analysis is performed on the current

anomaly detection results to remove false alarms.

There are 70 unique AOs in the 8 days dataset. To analyze each AO, its number of re-

quests, number of nodes, cache hit rate, service type, and request popularity are calculated and

analyzed together with their configuration information provided by the CDN operator. The

information about the suspicious AOs is shown in Table 7.15. Firstly, the AOs No. 1-4 are the
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Table 7.15: The Behaviors of Suspicious Account-offerings
AO No. Number of

requests
Number of

nodes
Cache hit

rate
Service type Request

popularity
1 44,985,524 27 0.999 Static 1.0
2 78,505,897 28 0.999 Static 1.0
3 57,276,415 34 0.997 Static 1.0
4 63,844,994 25 0.997 Static 1.0
5 184,294 34 0.809 Progressive

download
0.262

6 1,487,0894 47 0.747 Live streaming 0.762
7 7,557,320 48 0.763 Live streaming 0.751
8 127,665,987 49 0.907 Static 0.985

Other
static AOs

6,501,377 5.06 0.992 Static 0.999

major AOs that provide services during crowd events since they have received a large number

of requests for high-popularity contents with more than 99% cache hit rate during the crowd

event periods. The 250 detected crowd event IPs mainly used these 4 AOs, which further

proves that they are the legitimate IPs instead of DoS attack IPs. Thus, these 250 IPs are the

false positives of the proposed unsupervised model.

For the detected abnormal IPs and nodes, the AOs No. 5-8 shown in Table 7.15 are the

four suspicious AOs since almost all the requests of the detected potential abnormal IPs and

nodes were sent through these 4 AOs. It is found in the configuration information that the node

No. 5 is the major progressive download content source, and certain unpopular contents might

have been requested by an IP many times for being progressively downloaded. The AOs No.

6 & 7 are the major live streaming content sources and have relatively high cache hit rates and

request popularity, about 75%. Thus, certain IPs that have used any of these two AOs but got a

very low cache hit rate or request popularity are likely to be abnormal. Moreover, the AO No.

8 is the major static content source. It can be seen in the last row of Table 7.15 that other static

AOs have got a more than 99% cache hit rate and request popularity, much higher than the AO

No. 8, so the AO No. 8 might be used by certain IPs to launch attacks.

Further result validation is done through the AO analysis. Firstly, among the 14 detected

abnormal nodes, the 11 compromised nodes under potential DDoS attacks listed in Table 7.13

are validated to be the real compromised nodes since their major AOs belong to the abnormal

AOs No. 6-8. For the other three detected abnormal nodes (nodes No. 0, 5, 7) shown in Table
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Table 7.16: Mean Values of Each Feature on All Days for Three Abnormal Nodes
Node
No.

Avg
cache hit

rate

Avg
legitimate IP
cache hit rate

Avg data
transfer

rate (MB/s)

Avg request
error rate

Avg
number of
requests

Avg request
popularity

0 0.49 0.0 0.69 0.0 344 0.935
5 0.06 0.08 0.13 0.0 2383.8 0.905
7 0.0002 0.0 0.0009 0.0002 531.6 0.881

Table 7.17: Mean Values of Each Feature For Normal and Detected Abnormal Nodes
Node label Cache hit

rate
Legitimate IP
cache hit rate

Data transfer
rate (MB/s)

Request
error rate

Request
popularity

Normal 0.936 0.928 0.805 0.004 0.978
Abnormal 0.405 0.416 0.506 0.049 0.936

7.16, since their AOs are legitimate AOs and they have not received many requests (less than

2,500), so they might have been breached before day 1, so any new legitimate requests were

unable to get cache hits. Additionally, nodes No. 5 & 7 were attacked by CPAs since they have

much lower request popularities than normal nodes (0.905 & 0.881 versus 0.978). Therefore,

a total of 14 compromised nodes, including 3 nodes that have already been attacked before day

1, and 11 nodes that were under attack on day 4, have been identified and illustrated in Tables

7.13 and 7.16, and their average feature values are shown in Table 7.17.

According to the configuration information provided by the CDN operator, it is known that

as a major source for progressive download videos, the AO No. 5 was used for the tests of old

videos, most of which have low popularity. Thus, AO No. 5 has some similar characteristics

to CPAs since it is also used to request for low popularity files many times, but it was used by

legitimate users to do tests. Therefore, for the detected abnormal contents and CPA IPs, those

using the AO No.5 as the major AO are found to be legitimate entities and removed from the

abnormal content and IP list. After removing the false positives (113 contents and 21 IPs), the

behaviors of the detected 56 real abnormal contents and 33 real CPA IPs are shown in Tables

7.18 and 7.19, respectively. For the two types of CPAs, 30 IPs are labeled as LDA IPs, and 3

other IPs are labeled as FLA IPs.

Lastly, through AO analysis, all the detected DoS IPs have used the AOs No. 6-8 to make

requests, and they are labeled real DoS IPs. Among these 122 DoS IPs, 103 of them are the

DDoS attack IPs that have launched a DDoS attack together on day 4, from 13:00 to 15:00.
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Table 7.18: Mean Values of Each Feature for Normal and Detected Abnormal Contents
Content

label
Avg

number of
requests

Avg request
per node

ratio

Avg request
per IP ratio

Avg cache
hit rate

Avg
popularity

Normal 95.6 7.7 1.5 0.21 0.19
Abnormal 1049.7 228.9 284.3 0.852 0.333

Table 7.19: Mean Values of Each Feature For Normal and Detected Potential CPA IPs
IP

label
Avg number
of requests

Avg number
of nodes

Avg request
per content

ratio

Avg cache
hit rate

Avg request
error rate

Avg request
popularity

Normal 161.3 2.1 1.56 0.925 0.006 0.977
LDA 9461.4 3.76 1.13 0.111 0.0006 0.316
FLA 9418.8 5.5 84.74 0.691 0.006 0.478
CPA 9458.8 3.87 6.36 0.147 0.001 0.326

Table 7.20: Mean Values of Each Feature For Normal and Detected Potential DoS Attack IPs
IP

label
Avg number
of requests

Avg number
of nodes

Avg request
interval (s)

Avg cache
hit rate

Avg request
error rate

Avg request
popularity

Normal 161.3 2.1 1177.6 0.925 0.006 0.977
DDoS 3039.9 2.39 0.6 0.026 0.972 0.947
Other
DoS

59789.5 4.63 1.97 0.708 0.264 0.983

All
DoS

14465.3 2.98 1.44 0.16 0.821 0.943

The other 19 abnormal IPs may have tried to launch a DoS attack individually during different

time periods. Their behaviors are shown in Table 7.20.

7.5.4 Results Summary

In summary, 14 compromised nodes, 56 abnormal contents, 33 CPA IPs, and 122 DoS attack

IPs were detected by the proposed anomaly detection model, as shown in Table 7.21. Among

the detected abnormal network entities, 12 nodes and 122 IPs were affected by DoS attacks,

while 2 nodes, 33 IPs, and 56 contents were affected by CPAs. Additionally, 384 false posi-

tives (FPs) and 65 false negatives (FNs) were removed through the multi-perspective validation

process. As the utilized datasets are completely unlabeled, all these anomaly detection results

have been analyzed and verified to be 100% accurate by multiple cybersecurity experts and

industrial partner security network engineers. This verification process is a necessary HITL

procedure in real-world applications, as the experts and engineers have in-depth knowledge
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Table 7.21: Summary of Detected Anomalies
Label Number of nodes Number of IPs Number of contents

Normal 36 1,267,872 1,867,528
DoS 12 122 -
CPA 2 33 56

Removed FPs 0 271 113
Removed FNs 3 62 0

of the dataset, legitimate events, and cyber-attack patterns. This process also validates the

effectiveness of the proposed framework.

Lastly, the performance of the proposed framework is compared with several data analyt-

ics and anomaly detection techniques. As discussed in Section 7.4.4, binary outlier detection

algorithms are more suitable for the node-based dataset that only has 50 samples, so two stan-

dard binary outlier detection algorithms, iForest [11] and one-class support vector machine

(OC-SVM) [58], are used for the comparison of abnormal node detection. On the other hand,

clustering algorithms are suitable for IP & content-based datasets that have more than 1 mil-

lion samples, so two common clustering algorithms, k-means [59] and GMM [12], are used

for the comparison of abnormal IP & content detection. For the performance metrics, since

the datasets are highly imbalanced, precision (Pre), Recall (Rec), and F1-score are used with

accuracy (Acc) for model evaluation. By calculating the harmonic mean of the precision and

recall, F1-score is a reliable metric to measure the classification performance on imbalanced

datasets [26].

The model performance comparison is shown in Table 7.22. The accuracy of most meth-

ods are larger than 99%, but this is mainly due to the imbalanced dataset (more than 99% of

data samples are normal data). The iForest and GMM models used for the result compari-

son are only themselves without the proposed validation procedures; hence, many FPs and

FNs occurred, which reduced the F1-scores of iForest and GMM to 88.0%, 35.8%, and 49.8%

on the node, IP, and content-based datasets, respectively. This emphasizes the importance

of implementing the proposed multi-perspective validation method. Moreover, the F1-scores

of OC-SVM and k-means algorithms are lower than the iForest and GMM models from all

three perspectives, which justifies the rationale for choosing iForest and GMM in our proposed

framework.
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Table 7.22: Performance Comparison with Regular Anomaly Detection Techniques
Method Detection perspective Acc (%) Pre (%) Rec (%) F1 (%)
Proposed All 100.0 100.0 100.0 100.0

IForest [11]
Node

94.0 100.0 78.6 88.0
OC-SVM [58] 86.0 73.3 78.6 75.9

GMM [12]
IP

99.97 25.6 60.0 35.8
K-means [59] 99.96 21.1 69.7 32.3

GMM [12]
Content

99.99 33.1 100.0 49.8
K-means [59] 99.99 25.8 100.0 41.0

As the CDN requests/traffic are continuously generated and we aim to detect abnormal net-

work entities (i.e., node, IP, content) and corresponding attacks, the node, IP, and content-based

datasets need to be continuously updated by implementing the proposed feature engineering

method on the new CDN traffic data. Then, the proposed unsupervised learning models contin-

uously detect anomalies on the updated datasets. These are the major procedures that take time.

The reason for the reaction or detection time is because the proposed system needs to process

a number of requests to update the behaviors of nodes, IPs, and contents; thus, the anomalies

can be identified. To protect CDNs against DoS and CPA, the anomalies should be detected

in time. Hence, assuming the traffic is continuously generated, we have evaluated the detec-

tion speed of the proposed system by measuring the total execution time from the time each

abnormal entity is affected by an attack to the time the proposed method detects this anomaly.

This anomaly detection time has been further divided into the feature engineering time and the

unsupervised model detection time. Moreover, as different anomalies/attacks show different

patterns and need different detection time, we have measured the average (Avg) and maximum

(Max) execution time of all abnormal nodes, IPs, and contents in seconds.

The anomaly detection time of the proposed method and the two compared methods (OC-

SVM and k-means) is shown in Table 7.23. From the node perspective, the proposed method

can detect the abnormal nodes in the average time of 9.9s and the maximum time of 29.9s,

which is slighter faster than OC-SVM. The unsupervised detection time for abnormal node

detection is low, because the small number of nodes (50) has made it faster for the proposed

method to detect the abnormal nodes than the abnormal IPs or contents. From the IP and

content perspectives, the proposed method can detect abnormal IPs and contents in the aver-

age time of 19.2s and 10.3s, and in the maximum time of 58.5s and 22.9s, respectively. The
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Table 7.23: Anomaly Detection Time Comparison

Detection
Perspective

Method
Detection Time of Each Anomaly (s)

Feature
Engineering

Unsupervised
Detection

Total

Avg Max Avg Max Avg Max

Node
Proposed

9.8 29.6
0.1 0.3 9.9 29.9

OC-SVM [58] 0.5 1.6 10.3 31.2

IP
Proposed

12.4 32.9
6.8 25.6 19.2 58.5

K-means [59] 3.1 15.3 15.5 48.2

Content
Proposed

5.8 12.5
4.5 10.4 10.3 22.9

K-means [59] 2.3 7.7 8.1 20.2

detection time of the abnormal IPs is higher than the time of the abnormal contents, because

detecting certain DoS IPs needs to analyze a large number of requests. Nevertheless, the max-

imum abnormal IP detection time is still at a low level (58.5s). This shows that the proposed

solution can detect anomalies at the early stages of attacks, which can help CDNs stop current

attacks in time and prevent future attacks. Although the anomaly detection time of k-means is

lower than the proposed method, the proposed method can achieve much higher performance

than k-means, as shown in Table 7.22. Therefore, our proposed method still performs the best

among the comparisons by considering both detection accuracy and speed.

7.6 Practical Usage and Open Issues

Given that the proposed framework is working with unlabeled data, the framework can be used

as the first level of the anomaly detection process. Unlike traditional anomaly detection pro-

cesses for unlabeled data, which requires massive manual analysis and expert knowledge, the

proposed framework can reduce much overhead using the automatically-tuned ML algorithms

and a systematic multi-perspective result validation process proposed in Section 7.4. Addition-

ally, the high performance of the proposed framework has been verified by multiple security

experts.

One open issue with this work is that it only considers two common service targeting at-

tacks, i.e., CPAs and DoS attacks. Nevertheless, the proposed framework can be extended to

new attacks based on the same procedures:

1. Collect sufficient network log data that contains the new attack samples;
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2. Analyze the new attack, summarize the attack patterns, and select appropriate features

that can reflect the new attack patterns;

3. Utilize the proposed unsupervised anomaly detection model to detect suspicious activi-

ties and compare them with the summarized characteristics of new attacks to determine

the real attacks;

4. Utilize the proposed multi-perspective result validation method to remove false alarms

and false negatives.

Through this process, any new attacks that can be reflected from CDN log data can be

effectively detected by the proposed method.

On the other hand, although the proposed framework can reduce much manual analysis and

labeling process, certain expert knowledge and legitimate event information are still required

in the proposed framework to achieve accurate anomaly detection. This is because certain

numerical anomalies identified by unsupervised ML algorithms are not true anomalies and

require further analysis to distinguish between certain legitimate abnormal events and cyber-

attacks.

Lastly, several procedures in addition to our work should be implemented for real-world

CDN applications. Since this research work can be considered a pseudo labeling process on

an unlabeled raw CDN log dataset, the labeled content, client IP, and node-based datasets can

be used to train reliable supervised classifiers. Through this procedure, human efforts will not

be required in the future anomaly detection process, and the system can automatically detect

anomalies by continuously processing the incoming data. Thus, supervised model development

is one direction for future work.

Moreover, corresponding countermeasures should be made along with attack detection to

stop or prevent cyber-attacks. The proposed multi-perspective anomaly detection framework

enables the implementation of countermeasures on both attacker and victim sides.

Firstly, on the client or attacker side, traffic filtering and blacklisting are potential response

mechanisms to prevent the detected malicious clients from sending requests to CDN servers

[60]. Detecting abnormal IPs enables network administrators to locate the origins of cyber-

attacks [61]. Additionally, the domains and specific geographic locations can be found based on

the detected malicious client IP addresses. To make countermeasures, the detected malicious
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IPs, as well as the IPs from the same domains and locations, can be added to the blacklist

to block or limit the traffic from these IPs until the identities of these suspicious clients are

verified. Hence, the current attacks can be stopped, and future attacks can be prevented by

blacklisting the detected malicious IPs [9].

Secondly, on the victim side, countermeasures can be made from both content and node

perspectives. Blacklisting can also be used for detected abnormal contents [60]. The contents

in the blacklist will be deleted from the cache space of any edge servers. Additionally, the edge

servers can reject the requests sent for these abnormal contents or never cache them. Through

this process, CPAs can be stopped because the detected abnormal contents cannot be used by

CPA attackers to pollute the cache space of CDN servers. On the other hand, the compromised

nodes can be isolated until they recover. Specifically, the compromised node information will

be notified to other nodes, so that other nodes can avoid communicating with the affected

nodes that are under attack [60]. The nodes can recover by limiting the requests sent to them

or implementing the blacklisting strategies from the client IP and content perspectives. Once

recovered, the nodes can be removed from the isolation list and continue communications.

In conclusion, as the proposed anomaly detection can continuously detect anomalies, any

new malicious or compromised network entities can be identified, and corresponding coun-

termeasures can be made to defend against cyber-attacks when they occur. Moreover, the

multi-perspective countermeasures enhance the defense capabilities of CDNs. For example, an

attacker cannot continue an attack by simply changing IP addresses, because the countermea-

sures from other perspectives, like isolating nodes and blacklisting contents, can still stop the

attack.

Since the development of supervised models and countermeasures is outside the scope of

this work, it will be our future work.

7.7 Conclusion

CDNs have become a major content distribution technology in modern networks. However,

their caching mechanism introduces additional vulnerabilities. In this chapter, we proposed

a multi-perspective anomaly detection approach based on a real-world general CDN access



261

log dataset to identify abnormal network entities and cyber-attacks. To detect DoS and cache

pollution attacks, we first summarized their patterns and then extracted features from four

main perspectives: content, client IP, account-offering, and node perspectives. After obtain-

ing the extracted datasets from multiple perspectives, the anomalies were identified using the

optimized unsupervised learning model constructed with the optimized isolation forest and

Gaussian mixture models. A comprehensive validation method, including multi-perspective

analysis, time-series analysis, and account-offering analysis, was implemented to validate the

detected abnormal network entities and the corresponding cyber-attacks. Thus, detection er-

rors can be effectively reduced. Ultimately, the abnormal contents, compromised nodes, and

malicious IPs were detected and labeled. In future work, the labeled anomaly detection results

can be used for classifier development so that an automated process can be developed to detect

new attacks and abnormal network entities effectively. Certain security mechanisms, such as

isolating and blacklisting the detected abnormal network entities, can be utilized after anomaly

detection to secure CDNs.
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Chapter 8

A Lightweight Concept Drift Detection

and Adaptation Framework for IoT Data

Streams

8.1 Introduction

As Internet and mobile device use grows rapidly, the number of Internet of Things (IoT) de-

vices and the produced IoT data continue to increase significantly. As presented in the Cisco

report, more than 30 billion IoT devices are estimated to be connected in 2021, and around

five quintillion bytes of IoT data are produced every day [2]. IoT data can be collected from

different sources and domains, like IoT sensors and smart devices, and can then be transmitted

to the central servers for analytics through various communication strategies, including WiFi,

Bluetooth, ZigBee, etc. Meaningful insights can be extracted from IoT data streams using data

analytics methods to support various IoT applications, like anomaly detection [3] [4]. Fig. 8.1

illustrates the overall architecture of IoT data analytics.

However, the analytics of tremendous volumes of ever-increasing IoT streaming data and

the use of ML models in IoT systems still face many challenges [2]. Time and resource con-

straints are the main issues with IoT data analytics because of the low-power and low-cost

A version of this chapter has been published in IEEE Internet of Things Magazine [1].
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Figure 8.1: The architecture of IoT data analytics.

requirements of IoT devices [5]. On the other hand, IoT data is usually dynamic and non-

stationary streaming data due to the ever-changing nature of IoT systems and applications. In

real-world IoT systems, the physical events monitored by IoT sensors can change over time,

and unpredictable abnormal events can occur occasionally. Additionally, IoT device compo-

nents will age and need update or replacement periodically [6]. These factors can cause in-

evitable changes in the statistical distributions of IoT data streams, known as concept drift [5].

The occurrence of concept drift can cause IoT system failure or performance degradation.

Traditional offline machine learning (ML) models cannot deal with concept drift, making it

necessary to develop online adaptive analytics models that can adapt to the predictable and

unpredictable changes in the IoT data [7].

Therefore, this chapter proposes a drift adaptive ML-based framework for IoT streaming

data analytics. The framework consists of a light gradient boosting machine (LightGBM)

for IoT data learning, a particle swarm optimization (PSO) method for model optimization,

and a proposed novel method named optimized adaptive and sliding windowing (OASW) for

concept drift adaptation. The effectiveness and efficiency of the proposed adaptive framework
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are evaluated using two public IoT cyber-security datasets: IoTID20 [8] and NSL-KDD [9], to

evaluate the proposed framework in intrusion detection use cases as an example for IoT data

stream analytics.

The main contributions of this chapter can be summarized as follows:

1. We discuss the challenges and potential solutions for IoT streaming data analytics.

2. We propose a novel drift adaptation method named OASW to address the concept drift

issue. Its performance was evaluated through comparison with other state-of-the-art ap-

proaches.

3. We propose an optimized adaptive framework for IoT anomaly detection use cases with

offline and online learning functionalities based on LightGBM, PSO, and OASW.

The remainder of this chapter is organized as follows: Section 8.2 discusses the challenges

of IoT data stream analytics. Section 8.3 describes the proposed adaptive framework and the

novel OASW algorithm. Section 8.4 presents and discusses the experimental results. Section

8.5 concludes the chapter.

8.2 IoT Data Analytics Challenges and Potential Solutions

Due to the high velocity, volume, and variability characteristics of IoT streaming data, there

are two major challenges related to IoT data analytics: 1) time & memory constraints and 2)

concept drift [6]. In this section, the challenges and potential solutions for IoT streaming data

analytics are discussed. Table 8.1 summarizes them.

8.2.1 Time and Memory Constraints

“High velocity” and “high volume” indicate the high generation speed and large scale of IoT

streaming data. This requires that IoT data streams should be processed and analyzed as soon

as they reach the learning model. However, in IoT systems, most IoT devices are low-power

and low-cost devices with limited computational resources, which limit their data analytics

speeds [5]. The memory constraints of IoT devices also limit their capabilities to process and

Code is available at: https://github.com/Western-OC2-Lab/OASW-Concept-Drift-Detection-and-Adaptation
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Table 8.1: IoT Data Analytics Challenges and Solutions
IoT Data
Characteristic Challenge Description Potential Solutions

High Velocity
and Volume

Time &
Memory

Constraints

Large volumes of IoT data
are continuously produced
at a high rate, making
it difficult to process and
store all the data due to
the time and memory con-
straints of low-cost IoT de-
vices. This requires that
the average IoT data ana-
lytics speed is higher than
the average data genera-
tion/collection time to meet
the real-time processing re-
quirements; otherwise, it
could cause IoT service un-
availability or system fail-
ure.

Online learning methods with low computational
complexity and forgetting mechanisms are poten-
tial solutions to achieve real-time processing of
IoT data streams:

1) Sliding window methods: They use a sliding
window to retain and process only the most
recent data samples and discard old samples
to save learning time and storage space.

2) Incremental learning methods: They can
process every incoming new data sample by
partially updating the learning model. The
data and model complexity can be reduced
by discarding the historical data samples and
model components to address the execution
time and memory constraints of IoT data an-
alytics.

High Variability

Concept
Drift

Detection

Due to the non-stationary
IoT data and dynamic IoT
environments, concept drift
issues often occur in IoT
data, causing analytics
model degradation. Drift
detection faces two main
challenges: many causing
factors and multiple types
of drifts in IoT systems.

Concept drift can be detected using the following
techniques:

1) Window-based methods (e.g., ADWIN):
They use fixed-sized sliding windows or
adaptive windows as data memories for dif-
ferent concepts to detect the occurrence of
concept drift.

2) Performance-based methods (e.g., DDM &
EDDM): They monitor the model perfor-
mance degradation rate to detect concept
drift.

Concept
Drift

Adaptation

After drift detection, the ob-
served drift should be ef-
fectively handled so that the
learning model can adapt to
the new data patterns.

Concept drift can be handled using the following
techniques:

1) Adaptive algorithms (e.g., SAM-KNN):
They handle concept drift by fully retraining
or altering the learning model on an updated
dataset after detecting a drift.

2) Incremental learning methods (e.g., HATT):
They partially updated the learning model
when new samples arrive or drift is detected.

3) Ensemble learning methods (e.g., ARF &
SRP): They combine multiple base learners
trained on data streams of different concepts.
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store large volumes of IoT data and high complexity learning models. Thus, it is essential to

develop low computational complexity analytics models.

Online learning methods that enable real-time analytics are able to satisfy the time and

memory constraints of IoT systems. Unlike batch learning techniques that often train a learn-

ing model on the entire training set, online learning methods can keep updating the learning

model as each new data sample arrives within a short execution time. Sliding window (SW)

and incremental learning methods are two potential solutions for IoT online learning [5]. SW

methods retain a limited number of recent data samples and discard the old data samples using

sliding windows. Thus, they have forgetting mechanisms that can reduce the storage require-

ments of IoT devices. Incremental learning is an online learning technique that uses every

incoming data sample in the model training and updating process. It can retain the historical

patterns and trends of the entire data in the learning model without storing all the data, and

adapt to the new data patterns by partially updating the learning model (e.g., replacing the

nodes of Hoeffding trees).

8.2.2 Concept Drift Detection

“High variability” implies the concept drift issue associated with the non-stationary IoT data

and the dynamic IoT environments. IoT streaming data is prone to many types of data distribu-

tion changes due to the dynamic IoT environments. For example, the physical events monitored

by IoT sensors can change over time, and the sensing components age or need updates period-

ically. The corresponding IoT data distribution changes are named concept drift [6] [7].

The occurrence of concept drift could degrade the decision-making capabilities of IoT data

analytics models, causing severe consequences in IoT systems. For example, the misleading

decision-making process of IoT anomaly detection framework could significantly degrade their

detection accuracy, making the IoT system vulnerable to various malicious cyber-attacks. To

address concept drift, effective methods should be able to detect concept drift and adapt to

the changes accordingly. Therefore, concept drift detection and adaptation are the two main

challenges related to the high variability issue of IoT streaming data [7].

The first challenge of drift detection is the multiple types of concept drift, including gradual,
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sudden, and recurring drifts. The second challenge of drift detection is the various factors that

can cause concept drift in IoT systems, including the IoT event factors (e.g., system updates,

IoT device replacement, and abnormal network events) and time-series factors (e.g., seasonality

and trends).

Window-based methods and performance-based methods are two potential solutions for

drift detection [7]. Adaptive Windowing (ADWIN) is a common window-based method that

uses adaptive sliding windows to detect concept drift based on the statistical difference between

two adjacent subwindows [7]. Windowing methods are often fast and easy to implement, but

they may lose certain useful historical information. On the other hand, Drift Detection Method

(DDM) and Early Drift Detection Method (EDDM) are two popular performance-based drift

detection methods that determine the occurrence of concept drift by monitoring the degree

of model performance degradation [7]. Performance-based methods can effectively detect the

drifts that cause model degradation, but they require the availability of ground-truth labels.

8.2.3 Concept Drift Adaptation

After drift detection, the observed drift should be effectively handled so that the learning model

can adapt to the new data patterns. The concept drift adaptation challenge can be addressed us-

ing three potential solutions: adaptive algorithms, incremental learning, and ensemble learning

methods [7].

Adaptive algorithms handle concept drift by fully retraining or altering the learning model

on an altered dataset after detecting a drift. They are often the combinations of a ML model and

a drift detection technique. For example, Losing et al. [10] proposed the self-adjusting memory

with k-nearest neighbor (SAM-KNN) algorithm that uses KNN to train a learner and a dual-

memory method to store both new and old useful data to fit current and previous concepts.

In incremental learning methods, the learning model is often partially updated when new

samples arrive or drift is detected. Manapragada et al. [11] proposed an incremental learning

method named Hoeffding Anytime Tree (HATT) that selects and splits nodes as soon as the

confidence level is reached instead of identifying the best split in Hoeffding trees. This strategy

makes HATT more efficient and accurate to adapt to concept drift.
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Figure 8.2: The framework of the proposed drift adaptive IoT data analytics model

Ensemble learning is the technique of combining multiple base learners to construct an

ensemble model with better generalization ability. Gomes et al. proposed Adaptive Random

Forest (ARF) [12] and Streaming Random Patches (SRP) [13] ensemble algorithms that both

use Hoeffding trees as the base learners and ADWIN as the drift detector. Ensemble models

can retain historical and new data patterns in different base learners to address concept drift

adaptation, but they often require high execution time.

8.3 Proposed System Framework

8.3.1 System Overview

The purpose of this work is to develop an adaptive IoT streaming data analytics framework

that can address the time & memory constraints, as well as the concept drift issues described in

Section 8.2. Fig. 8.2 demonstrates the overall architecture of the proposed adaptive LightGBM

model. It comprises two stages: offline learning to obtain an initial trained model, and online

training to detect IoT attacks in online data streams.

At the offline training stage, current IoT traffic data is collected to create a historical dataset.

The historical dataset is then used to train an initial LightGBM model. Moreover, the hyper-

parameters of the LightGBM model are tuned by PSO, a hyperparameter optimization (HPO)
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method, to construct the optimized LightGBM model.

At the online stage, the proposed system will process the data streams that are continuously

generated over time. At the beginning of this stage, the initial LightGBM model obtained from

the offline learning is used to process the data streams. If concept drift is detected in the new

data streams by the proposed OASW method, the LightGBM model will then be retrained on

the new concept data samples collected by the adaptive window of OASW to fit the current

concept of the new IoT traffic data. Thus, the proposed system can adapt to the ever-changing

new IoT traffic data patterns and maintain accurate cyber-attack detection.

8.3.2 Optimized LightGBM

LightGBM is a fast and high-performance ML model based on the ensemble of multiple de-

cision trees [14]. Unlike many other ML algorithms, LightGBM is still an efficient model on

large-sized and high-dimensional data, mainly due to its two utilized methods: gradient-based

one-side sampling (GOSS) and exclusive feature bundling (EFB). GOSS is a down-sampling

method that only retains the data samples with large gradients and removes the samples with

small gradients during model training, which greatly reduces the time and memory usage. EFB

method is used to reduce the feature size by bundling mutually exclusive features, which sig-

nificantly reduces the training speed without losing important information.

The reasons for choosing LightGBM as the base model for IoT attack detection are as

follows:

1. LightGBM is an ensemble model that has better generalizability and robustness than

many other ML algorithms when working on non-linear and high-dimensional data.

2. By introducing GOSS and EFB, the time and space complexity of LightGBM has greatly

reduced from O(NF) to O(N′B), where N and N′ are the original and the reduced number

of instances, respectively, and F and B are the original and bundled number of features,

respectively.

3. LightGBM has built-in support for categorical data processing and feature selection,

which simplifies the data pre-processing and feature engineering procedures.

4. LightGBM supports parallel execution by multi-threading, which substantially improves
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the model efficiency.

To summarize, LightGBM can achieve both high accuracy and efficiency for data analytics,

which is suitable for IoT systems with time and resource constraints.

To build an effective model with high prediction accuracy, the hyperparameters of the Light-

GBM model are tuned by PSO, a HPO technique. HPO is the process of automatically detect-

ing the optimal hyperparameter values of a ML model to improve model performance [15].

Among HPO methods, PSO is a popular population-based optimization algorithm that

detects the optimal values through communication and cooperation among individuals in a

group [15]. In PSO, each particle in the swarm will continuously update its own position and

velocity based on its current individual best position and the current global best position shared

by other particles. Thus, the particles will move towards the candidate global optimal positions

to detect the optimal solution.

The reasons for choosing PSO to tune hyperparameters are as follows [15]:

1. PSO is easy to implement and has a fast convergence speed.

2. PSO is faster than most other HPO methods, since it has a low computational complexity

of O(N log N) and supports parallel execution.

3. PSO is effective for different types of hyperparameters and large hyperparameter space,

like the hyperparameter space of LightGBM.

Five main hyperparameters, the number of leaves (num leaves), the maximum tree depth

(max depth), the minimum number of data samples in one leaf (min data in leaf ), the learn-

ing rate(learning rate), and the number of base learners (n estimators), are tuned by the PSO

method. By detecting the optimal values of these hyperparameters, an optimized LightGBM

model can be obtained for accurate IoT data analytics.

8.3.3 OASW: Proposed Drift Adaptation Algorithm

The OASW method is proposed in this chapter to detect concept drift and adapt to the ever-

changing IoT data streams for accurate analytics. OASW is designed based on the combination

of ideas in sliding and adaptive window-based methods, as well as in performance-based meth-

ods. The complete OASW method is given by Algorithm 1. It has two main functions named



276

“DriftAdaptation” and “HPO”. The “DriftAdaptation” function aims to detect concept drift in

the streaming data and update the LightGBM model with the new concept samples for drift

adaptation using the given hyperparameter values. The “HPO” function is used to tune and

optimize the hyperparameters of the “DriftAdaptation” function using PSO.

In OASW, there are two types of windows: a sliding window used to detect concept drift

and an adaptive window used to store new concept samples. The size of the sliding window is

t, and the maximum size of the adaptive window is t′max. Additionally, two thresholds, α and β,

are used to indicate the warning level and the actual drift level for concept drift detection.

The main procedures of OASW are as follows. For each incoming data sample i in the

new stream, its sliding window, Wi, contains (i − t)th to ith samples. The accuracies of Wi

and Wi−t (indicating the current and last complete windows, respectively) are calculated and

compared. If the accuracy of the sliding window drops α percent from timestamp i − t to i, the

warning level is reached, and the adaptive window starts to collect incoming data samples as

new concept samples (lines 5-11). After that, if the sliding window accuracy keeps dropping β

percent to the drift level, a drift alarm will be triggered, and the old learner will be updated by

retraining on the new concept samples collected in the adaptive window (lines 12-17).

Moreover, to obtain a robust and stable learner, the adaptive window will keep collecting

new samples until one of the following two conditions are met: 1) The new concept accuracy

drops to the warning level α when compared to the drift starting point, indicating the current

learner is incapable of processing the new concept and requires updating. 2) The size of the

adaptive window reaches t′max, which ensures that the memory and real-time requirements are

met.

Then, the learner will be updated again on the samples in the adaptive window to become a

more robust learner, and the system will change to the normal state for the next potential drift

detection (lines 25-34).

On the other hand, if in the warning state, the sliding window accuracy stops dropping, or

even increases to the normal level, it will be seen as a false alarm. The adaptive window will

then be released, and the system will change back to the normal state to monitor potential new

drift (lines 18-23).

In the OASW algorithm, four parameters, α, β, t, and t′max, are the critical hyperparameters
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Algorithm 4: Optimized Adaptive and Sliding Windowing (OASW)
Input:

S tream: a data stream,
α, β: the warning and drift thresholds,
t: the fixed size of a sliding window,
t′max: the maximum size of the adaptive window,
Classi f ier: a classifier trained on offline dataset,
S pace: hyperparameter configuration space,
MaxTime: the maximum hyperparameter search times.

Output:
HPopt: the detected optimal hyperparameter values,
MaxAcc: the average overall accuracy.

1 Function DriftAdaptation(S tream, Classi f ier, α, β, t, t′max):
2 W′ ← ∅; // Initialize the adaptive window
3 S tate← 0; // An indicator of normal, drift, and warning states
4 for all samples xi ∈ S tream do
5 Wi ← a sliding window of the last t samples of xi;
6 AccWini ← accuracy(Wi); // Current window accuracy
7 AccWini−t ← accuracy(Wi−t); // Last window accuracy
8 if (Indicator == 0)&&(AccWini < α ∗ AccWini−t) then // New window accuracy drops from the normal to warning
9 W′ ← W′ ∪ {xi} // W′ starts to collect new samples

10 S tate← 1; //Warning occurs
11 end
12 if S tate == 1 then // In a warning state
13 t′ ← S ize(W′);
14 if AccWini < β ∗ AccWini−t then // New window accuracy drops to drift level
15 S tate← 2; // Drift occurs
16 f ← i; // Obtain the first new concept window accuracy as a baseline
17 Classi f ier′ ← Retrain Classi f ier on W′; // Retrain the classifier on new concept samples
18 else if (AccWini ≥ α ∗ AccWini−t)||t′ == t′max) then // False alarm (the warning state changes back to normal or

stay constant)
19 W′ ← ∅; // Release the adaptive window
20 S tate← 0 // Change to a normal state
21 else // Still in the warning state
22 W′ ← W′ ∪ {xi} // W′ keeps collecting new samples
23 end
24 end
25 if S tate == 2 then // In a drift state
26 t′ ← S ize(W′);
27 if (AccWini < α ∗ AccWin f+t)||t′ == t′max) then //When new concept accuracy drops to the warning level or

sufficient new concept samples are collected
28 Classi f ier′ ← Retrain Classi f ier′ on W′; // Construct a robust classifier
29 W′ ← ∅; // Release the new concept window
30 S tate← 0 // Change to a normal state
31 else
32 W′ ← W′ ∪ {xi} // W′ keeps collecting new samples
33 end
34 end
35 end
36 return AvgAcc; // The average accuracy
37 Function HPO(S tream, S pace, MaxTime):
38 MaxAcc← 0;
39 for j← 1 to MaxTime do
40 α, β, t, t′max ← S electCon f iguration(S pace); // Search optimal HP values by PSO
41 Acc← Dri f tAdaptation(S tream,Classi f ier, α, β, t, t′max) ; // Evaluate the current HP configuration
42 if MaxAcc < Acc then
43 MaxAcc← Acc ;
44 HPopt ← α, β, t, t′max ; // Update accuracy and optimal hyperparameter values
45 end
46 end
47 return MaxAcc,HPopt; // The best accuracy & hyperparameters
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that have a direct impact on the performance of the OASW model. Therefore, PSO is used to

tune these four hyperparameters to obtain the optimized adaptive learner, since PSO is efficient

for both continuous and discrete hyperparameters to which the hyperparameters of OASW

belong.

To implement OASW, the “HPO” function is given the configuration space of the four

hyperparameters. PSO will then detect the optimal hyperparameter combination that returns

the highest overall accuracy (lines 37-47). The detected optimal hyperparameters will then be

given to the “DriftAdaptation” function to construct the optimized model for accurate IoT data

analytics.

OASW has a training complexity of O(NM), and a low run-time and space complexity

of O(N), where N is the number of instances, and M is the maximum hyperparameter search

times in PSO.

Compared to other concept drift handling methods, the proposed OASW method has the

following advantages:

1. Unlike many other methods that focus on either drift detection or drift adaptation, OASW

has both functionalities because it uses a sliding window for drift detection and an adap-

tive window for drift adaptation.

2. OASW has better generalization capability and adaptability than most other approaches

when applied to different datasets or tasks since it can automatically tune the hyperpa-

rameters to fit specific datasets by using PSO.

3. OASW detects concept drift and updates the learning model mainly based on model

performance degradation, which ensures that the learner is only updated when necessary.

4. OASW makes a trade-off between the model accuracy and computational complexity

by using the adaptive window to collect sufficient new concept samples while removing

previous concept samples.
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8.4 Performance Evaluation

8.4.1 Experimental Setup

The experiments were implemented in Python by extending the Scikit-multiflow [16] frame-

work on a Raspberry Pi 3 machine with a BCM2837B0 64-bit CPU and 1 GB of memory,

representing a real IoT device. Two IoT anomaly detection datasets, IoTID20 [8] and NSL-

KDD [9], are used to evaluate the proposed framework as examples for IoT classification prob-

lems. The proposed framework can be applied to other IoT classification problems using the

same procedures. Additionally, the proposed framework can also be applied to general IoT

regression problems by only changing the performance metric to a regression metric (e.g., neg-

ative mean squared error or negative mean absolute error).

IoTID20 is a novel IoT traffic dataset with unbalanced data samples (94% normal sam-

ples versus 6% abnormal samples) for abnormal IoT device detection, while NSL-KDD is a

balanced benchmark dataset for concept drift and network intrusion detection. They are both

widely used in many research projects to validate anomaly detection models in IoT environ-

ments. Using these two datasets enables the model evaluation on both balanced and unbalanced

datasets. For the purpose of this work, a reduced IoTID20 dataset that has 62,578 records and

a reduced NSL-KDD dataset that has 35,140 records are used. The IoTID20 dataset was ran-

domly sampled based on the timestamps (1 data point per 10 timestamps). For the NSL-KDD

dataset, it is known that there is a sudden drift from the training set to the test set, but there is

no drift in the training set [12]; hence, for a clear comparison between the two concepts, the

last 10% of the training set and the entire test set is used for model evaluation.

The proposed method aims to distinguish attack samples from normal samples in IoT sys-

tems, so the datasets are utilized as binary classification datasets. Hold-out and prequential

validation methods are used for model evaluation. For hold-out validation, the first 10% of the

data samples in each dataset are used as the training set for offline/initial model training, and

the last 90% are used as the test set for online learning. Prequential validation, or named test-

and-train validation, is only used in online learning, where each input instance is first used to

test the model and then used for model updating. To evaluate the performance of the proposed

framework, multiple metrics, including accuracy, precision, recall, and f1-score, are used in
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Table 8.2: Hyperparameter Configuration of LightGBM and OASW

Model Hyper-
parameter Search Range Optimal Value

(IoTID20)
Optimal Value

(NSL-KDD)

LightGBM

n estimators [50, 500] 300 300
max depth [5, 50] 40 42

learning rate (0, 1) 0.56 0.81
num leaves [100, 2000] 200 100

min data in leaf [10, 50] 35 45

OASW

α (0.95, 1) 0.999 0.978
β (0.90, 1) 0.990 0.954
t [100, 1000] 300 350

t′max [500, 5000] 1000 3100

the experiments.

For model comparison, four methods introduced in Section 8.2.3, including SAM-KNN

[10], HATT [11], ARF [12], and SRP [13], are also evaluated on the two considered datasets.

These four methods are state-of-the-art drift adaptation approaches that have proven effective

in many drift datasets and applications. All the drift adaptation methods were implemented

using the default parameter values set in Scikit-multiflow or the original papers.

8.4.2 Experimental Results and Discussion

To obtain optimized LightGBM and OASW models, their hyperparameters are automatically

tuned by PSO. The initial hyperparameter search range and detected hyperparameter values

of the LightGBM and OASW models on the two considered datasets are shown in Table 8.2.

After using PSO, the optimal hyperparameter values were assigned to the proposed models to

construct optimized models for IoT attack detection.

Figures 8.3 & 8.4 and Tables 8.3 & 8.4 show the accuracy comparison of the proposed

OASW & LightGBM model against the state-of-the-art drift adaptive methods introduced in

Section 8.2.3. It can be seen in Tables 8.3 & 8.4 that the proposed adaptive model outperforms

all other methods in terms of accuracy on the two datasets. On the IoTID20, as shown in Fig.

8.3 and Table 8.3, the proposed method can achieve the highest accuracy of 99.92% among

all implemented models by adapting a slight concept drift detected at point 13408. Without

drift adaptation, the offline LightGBM model has a slightly lower accuracy of 99.78%. The

accuracies of the other four state-of-the-art methods are also lower than the accuracy of our
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Figure 8.3: Accuracy comparison of different drift adaptation methods on the IoTID20 dataset.

Figure 8.4: Accuracy comparison of different drift adaptation methods on the NSL-KDD
dataset.

proposed method (99.01% - 99.27%).

For the NSL-KDD dataset, there is a severe drift at the beginning of the test set [12]. As

shown in Fig. 8.4 and Table 8.4, by adapting to the sudden drift detected at point 9183, the pro-

posed method can achieve the highest accuracy of 98.31%, while the offline LightGBM model’s
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Table 8.3: Performance Comparison of Drift Adaptation Methods on The IoTID20 Dataset

Method
IoTID20 Dataset

Accuracy
(%)

Precision
(%) Recall (%) F1 (%) Avg Test

Time (ms)
Memory

Usage (MB)
SAM-

KNN [10]
99.25 99.40 99.80 99.60 43.4 179.7

HATT [11] 99.01 99.21 99.74 99.47 4.8 0.8
ARF [12] 99.26 99.37 99.85 99.61 5.9 0.9
SRP [13] 99.27 99.35 99.88 99.61 67.8 3.8
Offline

LightGBM
99.78 99.82 99.95 99.88 0.6 1.9

Proposed
OASW &

LightGBM
99.92 99.93 99.98 99.96 7.8 0.4

Table 8.4: Performance Comparison of Drift Adaptation Methods on The NSL-KDD Dataset

Method
NSL-KDD Dataset

Accuracy
(%)

Precision
(%) Recall (%) F1 (%) Avg Test

Time (ms)
Memory

Usage (MB)
SAM-

KNN [10]
96.58 96.13 97.6 96.86 21.6 137.2

HATT [11] 94.11 94.26 94.86 94.56 3.5 7.3
ARF [12] 96.11 95.81 97.05 96.42 5.6 6.8
SRP [13] 96.26 96.21 96.88 96.55 35.7 15.3
Offline

LightGBM
84.25 97.75 72.51 83.26 0.3 3.7

Proposed
OASW &

LightGBM
98.31 98.57 98.30 98.43 9.1 1.8

accuracy drops significantly to only 84.25% without drift adaptation. This emphasizes the de-

velopment of drift adaptation methods. The other four compared methods, SAM-KNN, SRP,

ARF, and HATT, have much lower accuracy than the proposed method (94.11% - 96.58%).

The average online prediction time for each instance and the total memory usage are also

calculated to evaluate the proposed method for real-time online learning considering the time

and memory limitations of IoT devices, as shown in Tables 8.3 and 8.4. Among the six methods

implemented, the memory usage of the proposed method is the smallest on both datasets, be-

cause the proposed model updates itself on a relatively small subset obtained by OASW instead

of on the entire streaming data. The average prediction time of the proposed model for each

instance on the Raspberry Pi 3 machine is only 7.8 ms and 9.1 ms on the two used datasets,

much shorter than SAM-KNN and SRP. This is mainly due to the sliding window strategy

and the efficiency of LightGBM. The prediction time of ARF and HATT for each instance is
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shorter than the proposed model, but their accuracy is much lower than the proposed method.

Therefore, the proposed method still performs the best among the drift methods in terms of the

trade-off between accuracy and efficiency. Moreover, the average execution time of the pro-

posed framework for each sample on a desktop machine with an i7-8700 processor & 16 GB

of memory and a powerful Google Colaboratory Cloud machine with a Xeon processor is only

1.3 ms and 0.9 ms, respectively. The high data processing speed on powerful cloud machines

shows the feasibility of implementing the proposed framework in real-time environments.

In conclusion, the experimental results show the effectiveness and robustness of the pro-

posed adaptive LightGBM model for IoT streaming data analytics.

8.5 Conclusion

The increasing popularity of IoT systems has brought great convenience to humans, but it also

increases the difficulty to collect and process large volumes of IoT data collected from vari-

ous sensors in IoT environments. Compared to conventional static data, IoT data is often big

streaming data under non-stationary and rapidly-changing environments. Adaptive ML meth-

ods are appropriate solutions since they have the capacity to process constantly evolving IoT

data streams by adapting to potential concept drifts. In this chapter, we proposed the adap-

tive LightGBM model for IoT data analytics with high accuracy and low time and memory

usage. Through the integration of our proposed novel drift-handling algorithm (i.e., OASW),

an ensemble ML algorithm (i.e., LightGBM), and a hyperparameter method (i.e., PSO), the

proposed model has the capacity to automatically adapt to the ever-changing data streams of

dynamic IoT systems. The proposed method is evaluated and discussed by conducting exper-

iments on two public IoT anomaly detection datasets, IoTID20 and NSL-KDD. Based on the

comparison with several state-of-the-art drift adaptation methods, the proposed system is able

to detect IoT attacks and adapt to concept drift with higher accuracies of 99.92% and 98.31%

than the other methods on the IoTID20 and NSL-KDD datasets, respectively.
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Chapter 9

PWPAE: An Ensemble Framework for

Concept Drift Adaptation in IoT Data

Streams

9.1 Introduction

With the rapid development of the Internet of Things (IoT), IoT devices have provided numer-

ous new capabilities and services to people. The IoT has been applied to many areas of daily

life, including smart cities, smart homes, smart cars, intelligent transportation systems (ITS),

smart healthcare, smart agriculture, and so on [2] - [4]. It is estimated that one trillion devices

or IP addresses will be connected to IoT networks by 2022 [2].

Despite the various new functionalities provided by IoT devices, the deployment of IoT

devices has led to many security risks [5]. Current IoT systems are vulnerable to most ex-

isting cyber-threats, since many IoT device manufacturers prioritize low-cost and technical

functionalities over security mechanisms. In 2018, cyber-attacks against IoT devices increased

by 215.7% [5]. Various types of common network attacks, like distributed denial of service

(DDoS), botnets, and phishing attacks, can be launched in IoT systems [6] - [8]. These threats

affect both IoT devices and the entire internet ecosystem, since a single cyber-attack may cause

A version of this chapter has been published in IEEE GlobeCom 2021 [1].
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a large-scale IoT system failure.

IoT traffic analysis has been widely used in IoT systems to detect compromised IoT devices

and malicious cyber-attacks [5]. The behaviors of IoT devices and can be classified as normal

or abnormal by supervised machine learning (ML) algorithms based on the characteristics of

IoT traffic data [9]. However, real-world IoT traffic data is usually dynamic data streams that

are generated continuously in non-stationary IoT environments. Moreover, the changing be-

haviors of IoT attacks make it difficult to adapt to the ever-changing environments. Hence, the

underlying distribution of the IoT traffic data often changes unpredictably over time, known

as concept drift [11] [12]. Traditional static ML models are often incapable of reacting to

data distribution changes. These changes can have a direct impact on the model prediction

performance since the patterns in the trained ML models will become invalid in future pre-

dictions. Effective ML-based IoT anomaly detection systems should have the adaptability to

self-calibrate to the new concepts and cyber-attack patterns to ensure robustness [11].

In this work, a drift adaptive framework, named Performance Weighted Probability Aver-

aging Ensemble (PWPAE) framework, is proposed for effective IoT anomaly detection. This

framework can be deployed on IoT cloud servers to process the big data streams transmitted

from the IoT end devices through wireless communication strategies, as shown in Fig. 9.1.

The proposed framework is an ensemble learning framework that uses the combinations of

two popular drift detection methods, adaptive windowing (ADWIN) [13] and drift detection

method (DDM) [14], and two state-of-the-art drift adaptation methods, adaptive random forest

(ARF) [15] and streaming random patches (SRP) [16], to construct base learners. The base

learners are weighted according to their real-time performance and integrated to construct a

robust anomaly detection ensemble model with improved drift adaptation performance.

The main contributions of this chapter are as follows:

1. It investigates concept drift adaptation methods.

2. It proposes a novel drift adaptation method named PWPAE to address the performance

limitations of current concept drift methods.

3. It evaluates the proposed PWPAE framework on two public IoT cyber-security datasets,

Code is available at: https://github.com/Western-OC2-Lab/PWPAE-Concept-Drift-Detection-and-
Adaptation
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Figure 9.1: The architecture of IoT data stream analytics.

IoTID20 [6] and CICIDS2017 [17], for IoT anomaly detection use cases.

The remainder of this chapter is organized as follows: Section 9.2 provides a literature

review of state-of-the-art IoT anomaly detection and concept drift adaptation methods. Sec-

tion 9.3 describes the proposed PWPAE drift adaptation framework. Section 9.4 presents and

discusses the experimental results. Section 9.5 concludes the chapter.

9.2 Related Work

In this section, the existing works on IoT traffic analysis and concept drift adaptation are re-

viewed.

9.2.1 IoT Traffic Analysis

Several existing works focused on IoT anomaly detection using traffic data. Injadat et al. [5]

proposed an optimized ML approach that uses decision tree and Bayesian optimization with

Gaussian Process (BO-GP) algorithms to detect botnet attacks in IoT systems. The proposed

algorithm achieves 99.99% accuracy on Bot-IoT-2018 dataset. Ullah et al. [6] proposed a novel

botnet IoT dataset for IoT network anomaly detection and evaluated the performance of seven



289

basic ML models on this dataset. Among the ML algorithms, the random forest and ensemble

models achieve better performance. Yang et al. [7] proposed a tree-based stacking algorithm

for network traffic analysis on the Internet of Vehicles (IoV) environments. The proposed

stacking method achieves high detection accuracy on the IoV and CICIDS2017 datasets.

The above methods achieve high accuracy for cyber-attack detection in IoT systems. How-

ever, they are static ML models designed for offline learning and do not have the adaptability to

online changes of IoT data, making them ineffective to be deployed in real-world IoT systems.

9.2.2 Concept Drift Methods

Due to the non-stationary IoT environments, IoT streaming data analysis often faces concept

drift challenges that the data distributions change over time. The occurrence of concept drift

issues often degrades the performance of IoT anomaly detection models, causing severe se-

curity issues. Concept drifts can be classified as sudden and gradual drifts, according to the

data distribution changing speed [18]. To handle concept drift, an effective anomaly detection

model should accurately detect the drifts and quickly adapt to the detected drifts to maintain

high prediction accuracy [19].

Concept Drift Detection

Drift detection is the first procedure to handle concept drift. ADWIN and DDM are the two

most common concept drift detection techniques. ADWIN [13] is a distribution-based method

that uses an adaptive sliding window to detect concept drift based on data distribution changes.

ADWIN identifies concept drift by calculating and analyzing the average of certain statistics

over the two sub-windows of the adaptive window. The occurrence of concept drift is indicated

by a large difference between the averages of the two sub-windows. Once a drift point is

detected, all the old data samples before that drift time point are discarded [19].

ADWIN can effectively detect gradual drifts since the sliding window can be extended to a

large-sized window to identify long-term changes. However, the mean value is not always an

effective measure to characterize changes.

Drift Detection Method (DDM) is a popular model performance-based method that defines
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two thresholds, a warning level and a drift level, to monitor model’s error rate and standard

deviation changes for drift detection [14]. In DDM, the occurrence of concept drift is indicated

by a significant increase of the sum of model’s error rate and standard deviation. DDM is easy

to implement and can avoid unnecessary model updates since a learner will only be updated

when its performance degrades significantly. DDM can effectively identify sudden drift, but its

response time is often slow for gradual drifts. This is because a large number of data samples

need to be stored to reach the drift level of a long gradual drift, causing memory overflows [20].

Concept Drift Adaptation

After drift detection, an appropriate drift adaptation algorithm should be implemented to deal

with the detected drifts and maintain high learning performance. Current drift adaptation meth-

ods can be classified into two main categories: incremental learning methods and ensemble

methods.

Incremental learning is to learn samples one by one in chronological order to partially

update the learning model. The Hoeffding tree (HT) is a type of decision tree (DT) that uses

the Hoeffding bound to incrementally adapt to data streams [20]. Compared to a DT that

chooses the best split, the HT uses the Hoeffding bound to calculate the number of necessary

samples to select the split node. Thus, the HT can update its node to adapt to newly incoming

samples. However, the HT does not have mechanisms to address specific types of drift. The

Extremely Fast Decision Tree (EFDT) [22], also named Hoeffding Anytime Tree (HATT), is an

improved version of the HT that splits nodes as soon as it reaches the confidence level instead

of detecting the best split in the HT. This splitting strategy makes the EFDT adapt to concept

drifts more accurately than the HT, but its performance still needs improvement.

To achieve better concept drift adaptation, ensemble learning methods have been proposed

to construct robust learners for data stream analytics. Ensemble methods can be further clas-

sified as block-based ensembles and online ensembles [21]. Block-based ensembles split the

data streams into fixed-size blocks and train a base learner on each block. When a new block

arrives, the base learners will be evaluated and updated. Block-based ensembles have accu-

rate reactions to gradual drifts, but often delay reacting to sudden drifts. Another difficulty of

block-based ensemble methods is to choose an appropriate block size to achieve a trade-off
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between the drift reaction speed and base learners’ learning performance [21].

Streaming Ensemble Algorithm (SEA), Accuracy Weighted Ensemble (AWE), and Accu-

racy Updated Ensemble (AUE) are three common block-based ensembles [19] [23]. Among

the block-based ensembles, AUE is usually the best performing method. In AUE, all base

learners are incrementally updated with a portion of samples from each new chunk. Moreover,

AUE assigns weights to base learners using non-linear error functions for performance en-

hancement. Experimental studies showed that the performance of AUE constructed with HTs

is better than other chunk-based ensembles, like AWE and SEA [23].

Online ensembles aim to integrate multiple incremental learning models, like HTs, to fur-

ther improve the learning performance. Gomes et al. [15] proposed the adaptive random forest

(ARF) algorithm that uses HTs as base learners and ADWIN as the drift detector for each tree.

Through the drift detection process, the poor-performing base trees are replaced by new trees

to fit the new concept. ARF often performs better than many other methods since the random

forest is also a well-performing ML algorithm. Additionally, ARF has an effective resampling

technique and the adaptability to different types of drifts. Gomes et al. [16] also proposed a

novel adaptive ensemble method named Streaming Random Patches (SRP) for streaming data

analytics. SRP combines the random subspace and online bagging method to make predictions.

SRP uses the similar technology of ARF, but it uses the global subspace randomization strat-

egy, instead of the local subspace randomization technique used by ARF. The global subspace

randomization is a more flexible method that improves the diversity of base learners. The pre-

diction accuracy of SRP is often slightly better than ARF, but the execution time is often longer.

Leverage bagging (LB) [24] is another popular online ensemble that uses bootstrap samples to

construct base learners. It uses Poisson distribution to increase the data diversity and leverage

the bagging performance. LB is easy to implement, but often performs worse than SRP and

ARF.

Although there are many existing concept drift adaptation methods, they have performance

limitations in terms of prediction accuracy and drift reaction speed. Incremental learning meth-

ods are often underperforming due to their low model complexity and limited drift adaptability,

while the drift reaction speed and block size determination are two major challenges for block-

based ensembles. Online ensembles, like ARF and SRP, often perform better than incremental
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Figure 9.2: The proposed drift adaptive IoT anomaly detection framework.

learning and block-based ensemble methods, but they introduce additional randomness in their

model construction process due to their randomization strategies, causing unstable learning

models. Thus, this chapter aims to propose a stable and robust online ensemble model with

improved drift adaptation performance.

9.3 Proposed Framework

9.3.1 System Overview

Figure 9.2 provides an overview of the proposed IoT anomaly detection framework. The

main procedures are as follows. Firstly, incoming IoT data streams are sampled to generate

a highly-representative subset using the k-means cluster sampling method. Secondly, four con-

cept drift adaptation methods (ARF-ADWIN, ARF-DDM, SRP-ADWIN, and SRP-DDM) are

constructed as the base learners for initial anomaly detection and drift adaptation. After that,

an ensemble model is constructed by integrating the prediction probabilities of the four base

learners based on the proposed PWPAE framework. Lastly, the ensemble model is deployed
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and can effectively detect cyber-attacks and adapt to concept drifts.

9.3.2 Data Pre-Processing

As IoT data streams are usually large amounts of data that are continuously generated, using

all the data samples for learning model development is often infeasible and unnecessary. Thus,

an effective data sampling method should be implemented to select highly-representative data

samples.

In the proposed system, the k-means-based cluster sampling method is used to obtain a rep-

resentative subset [8]. The k-means sampling method can group the data samples into multiple

clusters and select a proportion of samples from each cluster, as the data samples in the same

cluster have similar characteristics. Due to the large size of IoT traffic datasets, 1% of the origi-

nal data samples are selected by the k-means cluster sampling method to evaluate the proposed

framework. The size of the generated subset can vary, depending on the IoT data generation

speed and the computational power of server machines. Compared to other sampling methods,

k-means cluster sampling can generate a high-quality and highly-representative subset because

the discarded data points are mostly redundant data.

9.3.3 Drift Adaptation Base Learner Selection

To construct a robust ensemble model, the combination of two basic drift detection methods

(ADWIN & DDM) and two state-of-the-art drift adaptation methods (ARF & SRP) described

in Section 9.2.2 are used for base learners’ construction. Thus, the four base learners are

ARF-ADWIN, ARF-DDM, SRP-ADWIN, SRP-DDM. The reasons for choosing them as base

learners are as follows [19] [23]:

1. They are all online ensemble models with strong adaptability to concept drift. All of

them are constructed with multiple HTs, an effective incremental learning base model.

Thus, each base learner already has a stronger data stream analysis capability than most

existing drift adaptation methods.

2. ARF and SRP are both state-of-the-art drift adaptation methods whose performance has

been proven to be better than other existing drift adaptation methods by experimental



294

studies in [15] [16].

3. Unlike block-based ensembles (e.g., SEA, AWE, and AUE), ARF and SRP are both

online ensembles that do not require the tuning of data chunk sizes. Choosing an inap-

propriate chunk size often results in additional execution time or drift detection delays.

4. As described in Section 9.2.2, DDM works well on sudden drift detection, while ADWIN

has a stronger ability to detect gradual drift. Using both drift detection methods enables

the proposed ensemble model to detect both drift types effectively.

5. An effective ensemble model should ensure a high diversity of base learners to increase

the chance of learning performance improvement; otherwise, a low diversity ensemble

often shows very similar performance to certain base learners. Although ARF and SRP

both use Hoeffding trees as base learners, their construction methods are largely different

(local subspace randomization versus global subspace randomization), which increases

the randomness and diversity in the model construction process. Hence, a more robust

ensemble model with a high diversity can be obtained.

9.3.4 Drift Adaptation Ensemble Framework: PWPAE

In this chapter, a novel ensemble strategy, named Performance Weighted Probability Averaging

Ensemble (PWPAE), is proposed to integrate the base learners for IoT data stream analytics.

Unlike the pre-defined or static weights used by many existing ensemble techniques, PWPAE

assigns dynamic weights to base learners according to their real-time performance. Assuming

a data stream D = {(x1, y1), . . . , (xn, yn)}, and the target variable has c different classes, y ∈

1, . . . , c, for each input data x, the target class estimated by PWPAE can be denoted by:

ŷ = argmax
i∈{1,··· ,c}

∑k
j=1 w j p j

(
y = i | L j, x

)
k

(9.1)

where L j is a base learner, k is the number of base learners, and k = 4 in the proposed frame-

work; p j(y = i|L j, x) indicates the prediction probability of a class value i on the data sample x

using the jth base learner L j; w j is the weight of each base learner L j.

After each data sample is processed, the current real-time error rate is calculated by dividing

the total number of misclassified samples by the total number of processed samples. The weight
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of each base learner, w j, is calculated using the reciprocal of its real-time error rate, which can

be represented by:

w j =
1

Errorrt + ϵ
(9.2)

where ϵ is a small constant value to avoid the denominator being equal to 0. If Errorrt → 0 for

a base learner, an extremely large weight of 1/ϵ is given to this base learner, as it can already

make predictions perfectly.

The weighting function can be considered an improved version of the weighting function

in the AUE algorithm described in Section 9.2.2. In the proposed PWPAE model, the real-time

error rates, instead of the mean square error rates of data blocks used in AUE, are used to cal-

culate the weights of base learners for more accurate drift adaptation. Using the real-time error

rate on all processed samples enables the ensemble model to consider the overall performance

of each base learner on a specific task. The time complexity of the ensemble model mainly

depends on the complexity of based learners, while the time complexity of PWPAE itself is

only O(nck), where n is the number of samples, c is the number of class values in the target

variable, k is the number of base learners, as c and k are usually small numbers.

Compared to other ensemble methods, the proposed PWPAE technique has the following

advantages:

1. The reciprocal-based weighting function chosen in the proposed PWPAE is an improved

version of the weighting function in AUE, which has been proven to outperform other

existing ensemble methods in the experimental studies in [23], as this weight function

can amplify the weights of well-performing base learners, while also considering other

base learners.

2. Compared to the static weights used in many existing ensemble methods, the dynamic

weights calculated by the real-time error rates can be used to adjust the importance of

base learners based on their real-time performance, which ensures that the current well-

performing base learners are given higher weights.

3. Compared to the hard majority voting of class labels used in many existing ensembles,

the prediction probability ensemble used in the proposed PWPAE is more flexible and

robust, as it takes each learner’s uncertainty into account to avoid arbitrary decisions.
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Through the proposed PWPAE strategy that integrates the four base learners (ARF-DDM,

ARF-ADWIN, SRP-DDM, and SRP-ADWIN), a strong and robust ensemble model can be

obtained for effective drift detection and adaptation in IoT data streams analysis.

Furthermore, as ARF and SRP are the state-of-the-art well-performing drift adaptation

method, they are used to construct the base learners in the proposed framework. In the fu-

ture, if new and better-performing drift adaptation methods are proposed, ARF and SRP can be

replaced by the new methods to construct a better-performing ensemble model using the same

PWPAE strategy.

9.4 Performance Evaluation

9.4.1 Experimental Setup

The proposed framework was implemented using Python 3.6 by extending the Scikit-Multiflow

[25] framework on a machine with an i7-8700 processor and 16 GB of memory, representing

an IoT central server machine for big data analytics purposes.

Two datasets are used to evaluate the proposed framework. The first dataset is the IoTID20

dataset [6] created by using the normal and attacker IoT devices for IoT network traffic data

generation. The 83 different network features were derived from flow-based and packet features

for cyber-attack detection, such as flow duration, the total forward and backward packets, active

and idle time, etc. The second dataset is the CICIDS2017 dataset [17] that involves the most

updated cyber-attack scenarios. As different types of attacks were launched in different time

periods in the data creating process, the attack patterns in the dataset change over time, causing

multiple concept drifts in the CICIDS2017 dataset.

After using the k-means clustering sampling method, a representative IoTID20 subset that

has 6,252 records and a representative CICIDS2017 subset that has 28,303 records are used

for model evaluation. They are both highly-imbalanced datasets with a normal/abnormal ratio

of 94%/6% and 80%/20%, respectively. This enables the model evaluation on unbalanced

datasets.

As the major purpose of anomaly detection systems is to distinguish cyber-attacks from
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Table 9.1: Performance Comparison of Drift Adaptation Methods on The IoTID20 Dataset

Method IoTID20 Dataset
Accuracy (%) Precision (%) Recall (%) F1 (%) Avg Test Time (ms)

HT [20] 95.45 95.91 99.42 97.63 0.3
EFDT [22] 97.19 97.53 99.55 98.53 0.3

LB [24] 97.46 97.97 99.36 98.66 4.3
ARF-ADWIN [15] 97.85 98.59 99.13 98.86 0.9

ARF-DDM [15] 98.99 99.05 99.89 99.47 0.6
SRP-ADWIN [16] 98.93 99.05 99.83 99.44 3.4

SRP-DDM [16] 98.79 98.86 99.87 99.36 3.1
Proposed PWPAE 99.16 99.16 99.96 99.56 8.3

Table 9.2: Performance Comparison of Drift Adaptation Methods on The CICIDS2017 Dataset

Method CICIDS2017 Dataset
Accuracy (%) Precision (%) Recall (%) F1 (%) Avg Test Time (ms)

HT [20] 91.61 73.03 81.11 76.86 0.2
EFDT [22] 95.71 87.54 87.5 87.52 0.2

LB [24] 98.01 94.67 93.67 94.17 3.0
ARF-ADWIN [15] 98.68 96.76 95.54 96.15 0.8

ARF-DDM [15] 98.77 96.61 96.23 96.42 0.5
SRP-ADWIN [16] 98.82 97.15 95.96 96.55 2.8

SRP-DDM [16] 98.70 96.06 96.39 96.23 2.2
Proposed PWPAE 99.20 98.24 97.10 97.67 6.4

normal states, the used datasets are treated as binary datasets with two labels, “normal” or

“abnormal”. Hold-out and prequential validations are used to evaluate the proposed framework.

For hold-out evaluation, the first 10% of the data is used for initial model training, and the last

90% of the data is used for online testing. In prequential validation, also called test-and-train

validation, each input sample in the online test set is first used to test the learning model and

then used for model training/updating. As the two used datasets are both unbalanced datasets,

five metrics, including accuracy, precision, recall, and f1-score, and execution time, are used

to evaluate the anomaly detection performance of the proposed framework.

9.4.2 Experimental Results and Discussion

Tables 9.1 & 9.2 and Figs. 9.3 & 9.4 show the performance comparison of the proposed

PWPAE framework with other state-of-the-art drift adaptive approaches introduced in Section

9.2.2, including ARF [15], SRP [16], HT [20], EFDT [22], and LB [24]. As shown in Tables 9.1

& 9.2, the proposed PWPAE method outperforms all other compared models in terms of accu-
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Figure 9.3: Accuracy comparison of different drift adaptation methods on the IoTID20 dataset.

Figure 9.4: Accuracy comparison of different drift adaptation methods on the CICIDS2017
dataset.

racy, precision, recall, and F1-score on the two datasets. As shown in Fig. 9.3, on the IoTID20

dataset, two small drifts occurred at the early stage of the experiment, and all the implemented

methods can quickly adapt to the drifts, although their adaptabilities are different. As shown

in Table 9.1 Among all the methods, the proposed PWPAE framework achieves the highest ac-
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curacy of 99.16%, while the accuracies of the four base learners (ARF-ADWIN, ARF-DDM,

SRP-ADWIN, and SRP-DDM) are slightly lower than PWPAE (97.85% -98.99%). The other

three drift adaptation methods, HT, EFDT, and LB, have lower accuracies and F1-scores.

For the CICIDS2017 dataset, as shown in Fig. 9.4, there are six concept drifts that occurred

in the experiments, including both sudden drifts (drifts 1, 3, 5) and gradual drifts (drifts 2, 4,

6). Similar to the results on the IoTID20 dataset, the proposed PWPAE and four base learners

(ARF-ADWIN, ARF-DDM, SRP-ADWIN, and SRP-DDM) can quickly adapt to the drifts and

maintain high accuracies, and PWPAE achieves the highest accuracy of 99.20%, as shown in

Table 9.2. On the other hand, HT, EFDT, and LB have much lower accuracies of 91.61% to

98.01%. The higher performance of four base learners when compared with other state-of-the-

art drift adaptation methods also supports the reasons for selecting them as base learners.

For the average online prediction time for each instance shown in Tables 9.1 and 9.2, al-

though the proposed PWPAE method requires higher time (8.3 ms and 6.4 ms on the IoTID20

and CICIDS2017 datasets, respectively) than certain other compared methods, the average

execution time is still at a low level (less than 10 ms). On the other hand, despite the high

generation speed of IoT data streams, the use of k-means cluster sampling enables the pro-

posed PWPAE method to maintain high accuracy on a sampled subset, so as to increase the

model learning speed and achieve real-time data analytics. Additionally, the current PWPAE

method can achieve the best accuracy and F1-score among the compared state-of-the-art drift

adaptation methods for IoT anomaly detection.

9.5 Conclusion

The rapidly developing IoT systems have brought great convenience to human beings, but also

increase the risk of being targeted by malicious cyber-attackers. To address this challenge,

IoT anomaly detection systems have been developed to protect IoT systems from cyber-attacks

based on the analytics of IoT data streams. However, IoT data is often dynamic data under non-

stationary and rapidly-changing environments, causing concept drift issues. In this chapter, we

propose a drift adaptive IoT anomaly detection framework, named PWPAE, based on the en-

semble of state-of-the-art drift adaptation methods. According to the performance evaluation
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on the IoTID20 and CICIDS2017 datasets that represent the IoT traffic data streams, the pro-

posed framework can effectively detect IoT attacks with concept drift adaptation by achieving

high accuracies of 99.16% and 99.20% on the two datasets, much higher than other state-of-

the-art approaches. In future work, the proposed framework can be extended by integrating

other drift adaptation methods with better performance, diversity, and speed.
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Chapter 10

A Multi-Stage Automated Online Network

Data Stream Analytics Framework for

IIoT Systems

10.1 Introduction

The development of Industry 4.0 has fundamentally improved the design and manufacturing

technologies. Industry 4.0 enables smart manufacturing via the application of various technolo-

gies, such as the Internet of Things (IoT), Artificial Intelligence (AI), big data analytics, cloud

computing, and edge computing, robotics, and cybersecurity [2]. Industry 4.0 also achieves

technological advancements that increase the level of automation in manufacturing facilities

and warehouses [3]. Although Industry 4.0 has reduced production costs, it has omitted the

human costs. Industry 5.0 is then proposed to address this problem by increasing human en-

gagement.

Industry 5.0 is a human-centered design solution for the next evolutionary state, in which

collaborative robots (cobots) and machines work collaboratively with human resources to en-

able customizable autonomous production through business social networks [2]. This allows

humans and machines to work and cooperate together. In Industry 5.0, humans can devote

A version of this chapter has been submitted to IEEE Transactions on Industrial Informatics [1].



304

their creativity to responsible activities, while computers take over repetitive and monotonous

duties, hence improving production quality and efficiency. Additionally, Industry 5.0 intends

to increase the agility, efficiency, and scalability of production facilities and industries. It

will enhance human-machine interaction via improved interfaces and automation systems pro-

grammed by human inventiveness, resulting in a multiple-fold increase in productivity [3].

Network automation technologies are essential components in Industry 4.0 and 5.0, as well

as 5G networks. Network automation refers to the process of automating the design, imple-

mentation, operation, and optimization of networks and related services. Network automation

solutions are designed to repeatably and reliably complete tasks at different stages of the net-

work lifecycle [4]. Network automation can increase operational efficiency, reduce system

errors, increase network service availability, and improve customer experience.

Network data analytics is a critical component of network automation systems. Automated

data analytics driven by AI and Machine Learning (ML) algorithms provide insight into the

present and future network activities. ML-driven network data analytics models can infer the

purposes of network behaviors, conduct predictive analysis, and make decisions or recommen-

dations. Thus, ML approaches provide promising solutions for network automation and 5G

networks. For example, the 3rd Generation Partnership Project (3GPP) organization has pro-

posed a new network function, named Network Data Analytics Function (NWDAF). NWDAF

generates analytics results using ML and data analytics algorithms, and then distributes them

to other network functions (NFs) [5].

Industry 4.0 and Industry 5.0 both rely heavily on IoT systems. IoT is a network of ma-

chines, devices, sensors, and other technologies that connect to or interact with one another

over the Internet. The Industrial Internet of Things (IIoT) is a subcategory of IoT that refers

to the deployment of IoT technology in industrial applications, such as manufacturing, trans-

portation, healthcare, agriculture, etc. [3]. In manufacturing environments, IIoT incorporates a

variety of technologies, such as AI, ML, big data analytics, sensor data collection, and automa-

tion, to improve productivity and minimize reliance on human labor. The IIoT’s basic premise

is that intelligent machines are often more effective and efficient than humans in properly cap-

turing and analyzing data [6].

The primary differences between IoT and IIoT systems include the amount of generated
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data, the scalability, and the data management approaches [6]. Due to the data generation

speed of IIoT devices, IIoT data are usually more continuous, sensitive, and precise than in

other IoT systems. A potential delay in IIoT systems, like nuclear power plants, may have se-

vere consequences. Thus, data analytics models used in IIoT systems should be advanced on-

line learning and ML approaches capable of processing constantly-generated IoT data streams

efficiently [6].

On the other hand, IIoT data is usually non-stationary data streams generated in ever-

changing IIoT systems due to their dynamic nature [7]. Thus, in real-world applications, IIoT

data analytics often suffers from concept drift issues when IIoT data distributions change over

time. The occurrence of concept drift poses considerable challenges in developing ML mod-

els, since their learning performance may progressively degrade owing to data distribution

changes [8]. Thus, advanced online adaptive learning models should be developed to detect

and react to concept drift that occurs in IIoT data streams. As its main purpose is to main-

tain model performance by updating the learning model, the drift adaptation procedure is also

referred to as automated model updates in the network data analytics automation process.

In this work, a novel Multi-Stage Automated Network Analytics (MSANA) framework

is proposed for IIoT data stream analytics. It consists of four stages: dynamic data pre-

processing, drift-based dynamic feature selection, base model learning and selection, and on-

line ensemble model development. This work is an extension of Chapter 9. As a representative

application of IIoT data analytics, the proposed framework is evaluated on two benchmark IoT

anomaly detection datasets, IoTID20 [9] and CICIDS2017 datasets [10], to solve IIoT security

problems.

The chapter makes the following contributions:

1. It proposes MSANA, a novel and comprehensive framework for automated data stream

analytics in IIoT systems, which includes typical data analytics procedures.

2. It proposes the Window-based Performance Weighted Probability Averaging Ensemble

(W-PWPAE) method, a novel ensemble drift adaptation strategy for online learning on

dynamic data streams.

3. It proposes a novel dynamic feature selection method for data stream analytics with

concept drift issues.
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4. It evaluates the proposed framework on two public IoT security datasets as a case study,

and compares it with various state-of-the-art online learning approaches.

To the best of our knowledge, no previous study has proposed such a complete pipeline for

automated data stream analytics in dynamic IIoT systems.

The remainder of the chapter is organized as follows. Section 10.2 presents the related

work about concept drift detection and adaptation. Section 10.3 describes the proposed multi-

stage framework for automated data stream analytics. The experimental results are presented

and discussed in Section 10.4. Finally, Section 10.5 summarizes the chapter.

10.2 Related Work

Due to the dynamic nature of IIoT systems, network data analytics tasks often encounter con-

cept drift issues when data distributions change over time, causing model learning performance

degradation. As traditional static ML algorithms is incapable of addressing concept drift issues

in data streams, data stream analytics models must be capable of detecting the occurrence of

concept drift and then updating themselves to adapt to the detected concept drift. This section

introduces and discusses existing methods for concept drift detection and adaptation.

10.2.1 Concept Drift Detection

There are two broad types of concept drift: sudden and gradual drifts [11]. A sudden drift is

a rapid change in the data distribution over a short period of time, while a gradual drift occurs

when a new data distribution gradually replaces a historical concept. Different drift detection

methods have been designed to detect different types of drift.

Distribution-based methods and performance-based methods are two common types of drift

detection methods [11]. Distribution-based methods detect concept drift by comparing the

distributions of historical and new data over time windows, while performance-based methods

identify concept drift by monitoring the degree of model performance degradation.

ADaptive WINdowing (ADWIN) [12] is a popular distribution-based approach that uti-

lizes an adaptable sliding window to detect concept drift. ADWIN identifies data distribution
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changes by computing and comparing the characteristic values of the old and new distributions,

such as the mean and variance values [13]. A significant change in the characteristic values

over time indicates that a drift has occurred.

Through the use of an adaptable sliding window, ADWIN works well with gradual drifts

and long-term changes. Additionally, ADWIN uses the characteristic values of data streams

instead of their true labels to detect drift, which enables its usage in unlabeled datasets. How-

ever, changes in the statistics of data windows are sometimes virtual concept drift, resulting in

unnecessary model updates.

Drift Detection Method (DDM) [14] and Early Drift Detection Method (EDDM) [15] are

two widely-used performance-based methods that monitor the error rate of learning models

to detect drift. DDM tracks model performance changes based on the model’s error rate and

standard deviation [14]. A drift threshold and a warning threshold can be derived using the error

rate and standard deviation to identify the occurrence of concept drift. The warning threshold

is used to trigger the collection of potential new concept samples, while the drift threshold is

used to trigger model updates. DDM can detect all real drifts that degrade model performance,

and is effective in detecting sudden drift. DDM, on the other hand, is often slow to react to

gradual drifts until the error rate rises significantly.

EDDM [15] is an extension of DDM that detects concept drift using the same drift and

warning levels as DDM. EDDM monitors the change rate of the model’s error rate to detect

drift, instead of the error rate itself used by DDM. Thus, EDDM is able to increase the detection

accuracy of gradual drifts while maintaining superior performance for sudden drifts. However,

EDDM is still inferior to distribution-based methods for gradual drift detection.

10.2.2 Concept Drift Adaptation

After identifying a concept drift, learning models should be able to adapt to it to enhance model

performance. Existing drift-adaptive learning techniques fall into two primary categories: in-

cremental learning and ensemble learning.

Unlike traditional ML algorithms, which are trained on batches of data, incremental learn-

ing is the process of learning each incoming data sample in chronological order and partially
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updating the learner. Hoeffding Trees (HTs) is a basic incremental learning method designed

based on Decision Trees (DTs) [11]. HTs employ the Hoeffding inequality to determine the

minimum number of data samples necessary for each split node, thus updating nodes to adapt

to new samples. While HT is simple to create, it lacks concept drift detection capabilities.

The Extremely Fast Decision Tree (EFDT) [16] is a state-of-the-art incremental learning

approach based on HTs. It selects and deploys each node split as soon as it reaches the confi-

dence value, indicating a useful split. The split will be replaced if a more advantageous split

is discovered. Through this strategy, EFDT is able to adapt to concept drift more precisely

and efficiently than HTs. However, the performance of EFDT is still often inferior to that of

ensemble approaches.

Online Passive-Aggressive (OPA) [17] is another incremental learning algorithm for data

stream analytics. The principle of OPA is to passively react to correct classifications and ag-

gressively respond to any misclassifications. In online learning tasks, OPA often outperforms

many other ML approaches, such as Gaussian naı̈ve Bayes and online perception.

K-Nearest Neighbors with ADWIN drift detector (KNN-ADWIN) [18] is an improved ver-

sion of the traditional KNN model for online learning problems. The primary difference be-

tween KNN-ADWIN and the traditional KNN is that KNN-ADWIN is capable of detecting and

adapting to concept drift. It uses an ADWIN drift detector and a dynamic window to determine

which samples to retain for model updating. KNN-ADWIN outperforms many ML algorithms

in terms of data stream analytics via the use of concept drift detectors.

Self-Adjusting Memory with KNN (SAM-KNN) [18] is another KNN-based online learn-

ing method. SAM-KNN detects concept drift via the use of two memory modules: Short-Term

Memory (STM) and Long-Term Memory (LTM). STM is used for the current concept, while

LTM can memorize historical concepts. Through the use of STM and LTM, SAM-KNN can fit

new concepts while keeping the necessary old concepts.

Incremental learning methods usually have a fast learning speed due to partial model up-

dating, but their drift adaptability is often limited. To improve the effectiveness of concept drift

adaptation, numerous ensemble learning strategies based on the integration of multiple base

models have been developed.

Leverage bagging (LB) [19] is an ensemble technique that constructs and combines mul-
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tiple base learners (e.g., HTs) using bootstrap samples. It takes advantage of the Poisson dis-

tribution to conduct data resampling for data diversity improvement. While LB is simple to

construct, its learning speed is often slow due to its ensemble strategy. Additionally, LB is

sensitive to noisy data samples.

Adaptive Random Forest (ARF) [20] is an advanced ensemble online learning method that

trains multiple HTs as base models and employs a drift detector (e.g., ADWIN) for each HT

to address concept drift. ARF uses the local subspace randomization strategy to construct

trees, which randomly generates feature subsets to construct each leaf for node splits. ARF

is a strong online learner by inducing diversity through resampling techniques and reacting to

drift through drift detectors. Thus, it often outperforms a variety of online learning strategies.

Additionally, its sampling approach increases the model learning efficiency.

Streaming Random Patches (SRP) [21] is another online bagging ensemble method for

data stream analytics. It is a variant of ARF that uses a similar strategy for detecting and

adapting to concept drift. Unlike ARF, which utilizes local subspace randomization, SRP uses

global subspace randomization to generate random feature subsets for model learning. Global

subspace randomization improves the learning performance of SRP but increases the model

complexity and learning time.

Ensemble online learning models are effective drift-adaptive learning methods for IIoT

data stream analytics, as they integrate the output of multiple base learners for performance

improvement. On the other hand, constructing multiple base models introduces additional

execution time.

Thus, despite the existence of many promising drift-adaptive learning methods, there is still

much room for improvement. The purpose of this study is to propose an ensemble framework

capable of balancing model performance and learning speed. Additionally, existing approaches

focus only on model learning but ignore other necessary data analytics procedures, such as data

pre-processing and feature engineering. Thus, this chapter proposes a comprehensive data ana-

lytics framework that includes other typical data analytics procedures. Moreover, we explored

the automation of various data analytics procedures for the aim of network automation.
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10.3 Proposed Framework

10.3.1 System Overview

The overview of the proposed Multi-Stage Automated Network Analytics (MSANA) frame-

work for automated data analytics in IIoT systems is shown in Fig. 10.1. It consists of four pri-

mary stages: dynamic data pre-processing, drift-based dynamic feature selection, base model

learning and selection, and online ensemble model development. At the first stage, to improve

data quality, the incoming IIoT data streams are pre-processed using data balancing and nor-

malization methods. Secondly, feature selection methods are utilized to select the most relevant

features of data streams, and the features will be re-selected when a concept drift is detected.

After that, the base online learners are trained using the cleaned data streams. The two leader

models and the top two best-performing follower models are then selected during the dynamic

model selection procedure. If concept drift occurs, the dynamic model selection module will

re-select the base models according to new data distributions, and then update these learning

models on the new concept samples in a time window. The ensemble strategy, W-PWPAE, is

then used to integrate the output of the selected base learners based on their prediction probabil-

ities and real-time error rates. Lastly, the ensemble learner’s prediction results will be returned

to make decisions.

10.3.2 Dynamic Data Pre-Processing

Data pre-processing is mostly used to enhance the quality of data streams in order to increase

model learning performance. In IIoT data streams, class imbalance and feature range difference

are two potential data quality issues, which can be solved by data balancing and normalization

methods, respectively. On the other hand, in dynamic IIoT systems, the class distributions

and feature ranges are all dynamic variables that may change significantly over time. Thus,

in contrast to the static process in traditional ML pipelines, data pre-processing in online data

stream analytics should be dynamic procedures that must be updated on a continual basis.
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Figure 10.1: The framework of the proposed MSANA system.

Data Balancing

Due to the dynamic nature of IIoT data streams, it is often difficult to maintain balanced distri-

butions of all classes for classification problems, resulting in class imbalance issues. Training
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on imbalanced datasets may result in biased models with degraded performance. Resampling

methods, including under-sampling and over-sampling methods, can be utilized to resolve class

imbalance issues [22]. The Dynamic Random Under-Sampling (DRUS) approach randomly

discards data samples from majority classes to balance data. On the other hand, the Dynamic

Random Over-Sampling (DROS) method balances data by continuously generating more sam-

ples for minority classes to increase their proportion. The dynamic implementation of DRUS

and DROS enables real-time updating of data distributions in response to class changes in

dynamic data streams, thereby ensuring that the current data follows a balanced distribution.

As the DRUS method can reduce the size of data streams, it often improves the efficiency of

model learning. However, reducing the majority class samples may result in the loss of crucial

information contained in these classes. Conversely, although using DROS may reduce model

learning speed due to the increased data size, it often outperforms DRUS due to its ability to

balance data without sacrificing any critical information. Thus, DRUS is more suitable for

IIoT systems that prioritize efficiency, while DROS is more appropriate for IIoT systems that

prioritize performance. As IIoT anomaly detection datasets are often highly imbalanced data

with a tiny percentage of anomalies, the proposed system uses DROS to avoid discarding a

significant proportion of majority class samples and omitting important information.

Data Normalization

ML and data analytics methods, especially those using distance-based computations (e.g.,

KNN and k-means), often prioritize features with higher values. If the feature scales of a

dataset are largely different, biased models may be created. Hence, data scaling or normaliza-

tion methods that can normalize the features in a dataset to a comparable scale are beneficial to

the learning performance. Z-score and min-max normalization are two commonly-used scaling

techniques for data analytics problems.

The Z-score normalization method scales the feature value of each data sample x to a

normalized value xn [23]:

xn =
x − µ̃
σ̃

(10.1)

where µ̃ and σ̃ the real-time mean and standard deviation of all processed data samples. Unlike
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traditional normalization methods, µ̃ and σ̃ are dynamic variables that are recalculated in real-

time as new data samples arrive. When concept drift occurs, or the data distribution changes,

its real-time mean and standard deviation may also change significantly.

In min-max normalization, the feature value of each data sample x is scaled to [23]:

xn =
x − m̃in

m̃ax − m̃in
(10.2)

Similar to Z-score normalization, m̃in and m̃ax are the real-time minimum and maximum

values of all processed data samples. Each time a new data sample is processed, m̃in and

m̃ax are updated based on the new sample’s value. Thus, normalized values for the processed

samples can also be updated in response to data distribution changes. Min-max scaler can

normalize all features to the same scale of 0-1.

Min-max normalization is better suitable for anomaly detection issues due to its ability to

retain outliers (e.g., extremely large or small values) in datasets. On the other hand, Z-score

normalization is robust to outliers, so it often performs well for other non-outlier-related data

analytics problems. Thus, the normalization method can be determined according to specific

problems. As the proposed system aims to solve IIoT anomaly detection problems as a use

case, min-max normalization is selected for the proposed framework.

10.3.3 Drift-based Dynamic Feature Selection

As the original features are usually not the optimal features to train an effective ML model, the

primary objective of feature selection is to return the updated data with optimal input features

for learning performance improvement. Feature selection can also improve the model learning

efficiency by discarding irrelevant and noisy features. The proposed Drift-based Dynamic Fea-

ture Selection (DD-FS) method used in this work consists of two feature selection techniques:

variance threshold and select-k-best. Variance threshold is a feature selection method that aims

to eliminate all low-variance features. The variance σ2 of each feature can be denoted by [24]:

σ2 =

∑n
i=1 (xi − x̄)2

n
(10.3)
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where n is the number of processed samples, x is an input feature, and x̄ denotes the mean

value of x. Using the variance threshold approach can remove the features whose variance is

lower than a given threshold. A low variance indicates that the corresponding feature is often

uninformative as it has the same values across the majority of data samples. By removing low-

variance features, the learning efficiency of models can be increased. The variance threshold

method can also be used for unsupervised learning models, as it can select features without any

ground-truth labels.

Select-k-best is a popular feature selection method in which the correlations between each

input feature and the target variable are calculated as feature importance scores, and then the

features with the k highest importance scores are selected [25]. The feature importance scores

can be computed using the Pearson correlation coefficient, a commonly-used metric to measure

the correlations between two variables. It can be denoted by [25]:

Corrxy =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n
i=1 (xi − x̄)2 (yi − ȳ)2

(10.4)

where x is an input feature, y is the target variable, x̄ and ȳ are the mean values of an input

feature and the target variable, respectively.

The Pearson correlation coefficient has a range of -1.0 to 1.0, with -1.0 indicating a perfect

negative relationship, 1.0 indicating a perfect positive relationship, and 0 indicating that the

two variables are fully uncorrelated. Thus, it can be used to quantify the strength of a relation-

ship between each feature and the target variable, making it easy to assess and compare the

importance of different features.

Algorithm 5 illustrates the primary procedures of DD-FS. At the first stage, the initial

training set S train is learned by the variance threshold and select-k-best methods to generate the

initial optimal feature set F′. The initial F′ is then utilized to update the feature list of each

incoming data sample xi from the online test set S test. Two drift detectors, ADWIN and EDDM,

are used together for drift-based dynamic feature re-selection. If a drift is detected by the drift

detectors, the variance threshold and select-k-best feature selection methods will re-learn the

recent data samples in a time window s as the new concept samples to generate an updated

optimal feature set F′. To minimize unnecessary feature re-selections, the feature set will be
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Algorithm 5: Drift-based Dynamic Feature Selection (DD-FS)
Input:

F: the original feature set.
Output:

F′: the updated feature set.
1 MF1, F′ ← VarianceThreshold Learning(S train, F);
2 MF2, F′ ← SelectKBest Learning(S train, F′); // Apply FS methods on the training set
3 S ′train ← S train.Update(F′); // Update the feature list
4 Dri f t = 0; // Drift indicator
5 M ←Model LearningBatch(M, S ′train); // Initial learner
6 for each data instance xi ∈ S test do
7 x′i ← MF1.Transform(xi, F′);
8 x′i ← MF1.Transform(x′i , F

′);
9 ypredi ←Model Prediction(M, x′i ); // Predict each new sample

10 Dri f t1 ←ADWIN.Update(ypredi , ytruei );
11 Dri f t2 ←EDDM.Update(ypredi , ytruei );
12 if (Dri f t1 == 1)&&(Dri f t2 == 1) then // If both detectors have detected drifts
13 S new ← S test[i − s, i]; // Recent window samples
14 MF1, F′ ← VarianceThreshold Learning(S new, F′);
15 MF2, F′ ← SelectKBest Learning(S new, F′);
16 S ′new ← S new.Update(F′); // Re-select features
17 M ←Model LearningBatch(M, S ′new); // Update the learner on new features
18 else
19 M ←Model LearningOne(M, x′i );
20 end
21 end
22 return F′; // Return the updated feature set

updated when both drift detectors have identified the occurrence of concept drift. During the

entire online data stream analytics process, this drift-based feature re-selection procedure is

automatically repeated each time a concept drift is detected. The drift adaptation functionality

of DD-FS is based on the assumption that when concept drift occurs and data distribution

changes, the best suitable feature set will change as well.

10.3.4 Model Learning

The proposed model learning framework consists of two stages: base model learning & selec-

tion and online model ensemble. The base model learned in the first stage will be selected to

construct an ensemble model in the second stage.



316

Base Model Learning and Dynamic Selection

For base model learning, the lightweight online learning methods introduced in Section 10.2.2

are used to learn the data streams. At the initial stage, the learning methods will process a

small-size training set to generate initial base learners. The learners will then learn and predict

each incoming sample from the online test set and update themselves if concept drift occurs.

Appropriate base learners should be selected in the proposed dynamic model selection pro-

cess. Model selection is the process of selecting appropriate base models to construct a robust

ensemble model. As the proposed framework is designed for real-time IIoT systems, it should

strike a balance between learning performance and efficiency. Thus, relatively lightweight

models are selected as the base models in the proposed framework. Two leader models and

two follower models are selected in the proposed system.

Firstly, ARF with two different drift detectors, ARF-ADWIN [20] and ARF-EDDM [20],

are selected as the two leader base models, since ARF has been proven to be both efficient

and effective for a variety of data stream analytics problems [26]. Additionally, the two drift

detectors, ADWIN and EDDM, have a strong capacity of dealing with gradual and sudden

drifts, respectively; hence, using them with ARF enables the proposed ensemble model to adapt

effectively to both gradual and sudden drifts. Moreover, due to the high effectiveness of ARF,

using two ARF models with different drift detectors as leader models enables the proposed

ensemble model to retain high accuracy even when the follower models do not perform as well

as the leader models.

Next, the two follower models are chosen from the other four lightweight and state-of-

the-art online learning methods introduced in Section 10.2.2: EFDT [16], KNN-ADWIN [18],

SAM-KNN [18], and OPA [17], as shown in Fig. 10.1. Although these four models are not as

effective as ARF, they are all well-performing and fast adaptive online learning models that can

address concept drift efficiently. The other three models introduced in Section 10.2.2, LB [19],

SRP [21], and PWPAE [26], are not selected in the proposed ensemble framework due to their

high computational complexity. They are used as comparison models in the experiments.

If concept drift occurs, the follower models will be re-selected from the four candidate

models based on their real-time performance in the sliding window of data. This process is
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called dynamic model selection. The selected top two performing follower models on the data

of the new concept are then combined with the ARF-ADWIN and ARF-EDDM leader models

to construct a new ensemble model. Additionally, after detecting a concept drift using ADWIN

and EDDM, all the four base models will learn the most recent sliding window of data to

construct the updated base models that can adapt to the new concept. This dynamic model

selection and learning process is beneficial to concept drift adaptation because it enables more

effective model updates when the data distribution changes.

Online Ensemble Model Development

After obtaining the base learning models, their prediction outputs are then integrated to con-

struct an ensemble model with improved performance using a novel ensemble strategy, named

Window-based Weighted Probability Averaging Ensemble (W-PWPAE). It is extended from

the ensemble method PWPAE proposed in Chapter 9 [26].

W-PWPAE integrates base models by assigning dynamic weights to the prediction proba-

bilities of the base models, and then averaging the weighted probabilities. The class with the

highest mean probability value, indicating the most confident result, is then selected as the final

prediction result. Assuming a data stream D = {(x1, y1), . . . , (xn, yn)}, and there are c different

classes for the target variable, y ∈ 1, . . . , c, the predicted target class for each input data x can

be denoted by:

ŷ = argmax
i∈{1,··· ,c}

∑b
j=1 w j p j

(
y j = i | L j, x j

)
b

(10.5)

where L j represents the jth base model, p j(y j = i|L j, x j) indicates the prediction probability

of a class value i on the data sample x using the jth base learner L j; b is the number of base

models, where b = 4 for the proposed ensemble model, and w j represents the weight of each

base model L j.

The weight w j of each base model L j is computed based on the reciprocal of the model’s

real-time error rate in the latest window s:

w j =
1

Errors, j + ϵ
(10.6)
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where ϵ is a small constant used to avoid a denominator of 0. Thus, higher weights will be

assigned to the base models with lower error rates and better performance.

The window error rate for each base model L j can be calculated by:

Errors, j =
1
s

s∑
k=1

δ
(
L j (xk) , yk

)
(10.7)

where s is the sliding window size, and δ
(
L j (xk) , yk

)
is the loss function calculated based on

the predicted value L j(xk) and the ground-truth value yk.

The window size s is determined according to the detected drift information:

 s = Dri f tArr[−1], if Dri f tArr is not empty;

s = α ∗ N, if Dri f tArr is empty.
(10.8)

where Dri f tArr is an array used to record the index of all drift points, α is a ratio, and N

represents the total number of processed samples. If any concept drift is detected, the window

will include all the data samples with index from the last drift point Dri f tArr[−1] to the current

data point, indicating the new concept data. Otherwise, the window size is determined by

a proportion of processed data samples, α ∗ N. For example, if α is set to 0.1, the window

contains the most recent 10% of the processed data samples. The computational complexity

of the W-PWPAE ensemble model is primarily determined by the complexity of the selected

based models, whereas the W-PWPAE method itself has a low computational complexity of

O(sck), where the window size s, the number of distinct classes c, and the number of base

learners k, all usually have small values.

In comparison to other existing drift-adaptive online learning methods, the proposed W-

PWPAE approach has the following advantages:

1. Unlike many other existing ensemble learning methods that use the hard majority voting

strategy, the proposed framework uses the confidence probability of each base classifier

for each class, a more robust and flexible strategy. It considers each base classifier’s

uncertainty for each data sample to prevent arbitrary decisions.

2. Using the window and performance-based dynamic weighting strategy enables the pro-
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posed framework to focus on the model performance on the new concept data, leading

to a more effective concept drift adaptation.

3. The selection of lightweight base learning models enables the construction of an efficient

ensemble model, as the primary drawback of many existing ensemble models is their

high complexity.

10.4 Performance Evaluation

10.4.1 Experimental Setup

The proposed system was implemented in Python 3.7 by extending the River [24] library on a

computer equipped with an i7-8700 CPU and 16 GB of memory, representing an IIoT cloud

server machine for large data stream analytics.

The proposed approach is evaluated on two public IIoT security datasets: IoTID20 [9] and

CICIDS2017 [10]. IoTID20 is a relatively new IoT dataset that was created by generating

IoT network traffic data from both legitimate and malicious IoT devices, including 83 different

network features. CICIDS2017 is a public network security dataset that was contributed by

the Canadian Institute of Cybersecurity and contained state-of-the-art cyberattack scenarios.

Due to the fact that the CICIDS2017 dataset was created by launching a variety of different

attack types in different time periods, the attack patterns in the dataset have changed over

time, resulting in six concept drifts, as shown in Figure 10.2. For the purpose of this work, A

representative IoTID20 subset with 6,252 data and a sampled CICIDS2017 subset with 28,303

records are utilized for the model evaluation.

The IIoT data analytics use case solved by the proposed system is anomaly detection, which

can be regarded as a binary classification problem by labeling each data sample as a normal

sample or an attack sample. The proposed framework is evaluated using the combination of

hold-out and prequential validations. For hold-out validation, the first 10% of data is utilized

for training the initial base models, and the remaining 90% is used for online testing of dynamic

data streams. Prequential validation, also known as test-and-train validation, is utilized to

evaluate the proposed model for online learning. In prequential validation, each input sample
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Figure 10.2: Accuracy comparison of state-of-the-art drift adaptation methods on the CI-
CIDS2017 dataset.

in the online test set is firstly test by the learners to monitor their real-time performance, and

then learned by the learning model for potential model updates [7].

To provide a comprehensive analysis of the experimental results, five performance metrics,

including accuracy, precision, recall, f1-score, and average test time per packet, are used to

assess the proposed framework’s learning performance.

10.4.2 Experimental Results and Discussion

Figures 10.2 & 10.3 and Tables 10.1 & 10.2 illustrate the performance comparison of the

proposed MSANA method against other state-of-the-art online adaptive learning methods pre-

sented in Section 10.2.2, including ARF-ADWIN [20], ARF-EDDM [20], SRP [21], EFDT

[16], KNN-ADWIN [18], SAM-KNN [18], OPA [17], LB [19], and PWPAE [26].

As shown in Fig. 10.2 and Table 10.1, on the CICIDS2017 dataset, the two leader models,

ARF-ADWIN and ARF-EDDM, achieve the greatest accuracy of 98.88% and 98.99% among

all the base learners. This demonstrates why they were chosen as leader learners. Among the

four follower models (EFDT, KNN-ADWIN, SAM-KNN, and OPA), SAM-KNN and KNN-

ADWIN are the top two performing models on the CICIDS2017 dataset, so they are selected
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Figure 10.3: Accuracy comparison of state-of-the-art drift adaptation methods on the IoTID20
dataset.

Table 10.1: Performance Comparison of State-of-The-Art Drift Adaptive Online Learning
Methods on The CICIDS2017 Dataset

Method CICIDS2017 Dataset
Accuracy (%) Precision (%) Recall (%) F1 (%) Avg Test Time (ms)

ARF-ADWIN [20] 98.88 97.27 95.96 96.61 1.1
ARF-EDDM [20] 98.99 97.72 96.17 96.94 1.0

SRP [21] 98.37 95.34 94.82 95.08 3.7
EFDT [16] 97.06 91.31 90.94 91.13 0.5

KNN-ADWIN [18] 98.78 95.52 97.27 96.36 0.7
SAM-KNN [18] 98.61 94.88 96.86 95.86 1.1

OPA [17] 98.37 95.06 95.11 95.08 0.3
LBLB [19] 98.73 96.28 96.07 96.18 4.3

PWPAE [26] 99.23 98.42 96.93 97.66 7.4
Proposed MSANA 99.39 98.69 97.61 98.15 3.5

as the two final follower models to construct the initial ensemble model. After using the two

leader models and two follower models to build an ensemble learner, the proposed MSANA

achieves the highest accuracy of 99.39% and F1-score of 98.15% among all the evaluated

online learning models. Additionally, the average test time of MSANA is only 3.5 ms per

packet, which is less than for other ensemble techniques (SRP, LB, and PWPAE).

The evaluation results for the online learning models on the IoTID dataset are shown in Fig.

10.3 and Table 10.2. Similarly, the two leader models, ARF-ADWIN and ARF-EDDM, achieve
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Table 10.2: Performance Comparison of State-of-The-Art Drift Adaptive Online Learning
Methods on The IoTID20 Dataset

Method IoTID20 Dataset
Accuracy (%) Precision (%) Recall (%) F1 (%) Avg Test Time (ms)

ARF-ADWIN [20] 98.76 98.97 99.72 99.34 1.1
ARF-EDDM [20] 98.42 98.57 99.77 99.17 0.9

SRP [21] 98.47 99.10 99.28 99.19 3.7
EFDT [16] 97.19 97.53 99.55 98.53 0.4

KNN-ADWIN [18] 93.67 95.30 98.13 96.69 0.5
SAM-KNN [18] 93.51 94.93 98.38 96.62 1.4

OPA [17] 91.79 95.99 95.27 95.63 0.2
LBLB [19] 97.80 98.05 99.64 98.94 4.6

PWPAE [26] 99.13 99.08 100.0 99.54 9.0
Proposed MSANA 98.86 98.84 99.96 99.40 2.8

high F1-scores of 99.34% and 99.17%. For the follower models, EFDT and KNN-ADWIN

are selected to build the initial ensemble model due to their better performance when com-

pared with SAM-KNN and OPA. The proposed MSANA method achieves the second-highest

accuracy of 98.86% and the second-highest F1-score of 99.40%. Although the proposed

MSANA method has a slightly lower accuracy than the existing PWPAE method (98.86%

versus 99.13%), it has a much shorter average test time than PWPAE (2.8 ms versus 9.0 ms).

This is because, in comparison to the PWPAE method, the proposed MSANA method uses

a window strategy and selects lightweight base learners with greater computational speeds to

build the ensemble model. Thus, the proposed MSANA method is still the best model in terms

of balancing model performance and efficiency among the evaluated models.

10.5 Conclusion

Network automation technologies have drawn much attention for the development of IIoT ap-

plications in Industry 4.0 and 5.0. AI and ML algorithms are critical techniques for the au-

tomation of network data analytics, which is a key component of IIoT network automation.

However, owing to the dynamic nature of IIoT environments, IIoT data is usually large data

streams that are continuously generated and changed. As a consequence, concept drift issues

often occur as a result of IIoT data distribution changes, causing learning model deterioration.

In this chapter, we proposed a comprehensive automated data analytics framework that is ca-
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pable of processing continuously evolving IIoT data streams while dynamically adapting to

concept drifts. The proposed framework consists of dynamic data pre-processing, drift-based

dynamic feature selection, dynamic model selection, and online model ensemble using a novel

W-PWPAE approach. According to the model performance evaluations on two benchmark

IIoT streaming datasets, IoTID20 and CICIDS2017, the proposed framework is capable of

effectively processing dynamic IIoT streams with higher accuracy of 98.86% and 99.39%, re-

spectively, than other state-of-the-art methods. The proposed framework may be extended in

the future by introducing more advanced data learning techniques to further improve learning

performance and speed.
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Chapter 11

Conclusion and Future Work

11.1 Conclusion

With the evolving communication and computing technologies, the Internet of Things (IoT)

systems have been widely used in a variety of applications, including smart city, smart home,

smart healthcare, intelligent transportation systems, etc. The rapidly growing number of IoT

devices and correspondingly generated data enables a growing number of IoT functionalities

and services, but also brings serious challenges to IoT systems. One challenge is making pre-

cise and informed decisions from vast amounts of continuously generated IoT data. A second

challenge is automating the data analytics process and improving its performance. Protecting

IoT systems and devices from various cyber threats and attacks is the third difficulty.

This thesis aims to solve the technical difficulties associated with IoT data analytics in

an effort to improve overall system performance and security. Machine Learning (ML) ap-

proaches have shown their capacity for IoT data analytics. The first part of this thesis compre-

hensively reviews the existing ML and optimization methods for the application of Automated

ML (AutoML) technology. The second part of the thesis focuses on the cyber-security is-

sues by proposing four intelligent Intrusion Detection Systems (IDSs) using ML algorithms

for the Internet of Vehicles (IoV), as a representative IoT application. The third part of the

thesis proposes a comprehensive unsupervised anomaly detection framework for Content De-

livery Networks (CDNs), as the primary Internet traffic delivery network. The fourth part of

the thesis addresses the dynamic IoT data stream analytics problems by proposing three con-
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cept drift adaptive online learning methods. All the proposed methods have been evaluated on

benchmark or real-world network datasets and compared with other state-of-the-art methods to

illustrate their performance improvement.

The remaining subsections of this chapter provide a summary of the contributions made by

each chapter in this thesis. Future research directions are discussed in this chapter as well.

11.2 Summary of Contributions

The summary of each chapter is described as follows.

A comprehensive study of applying AutoML and HPO methods to IoT data analytics has

been conducted in Chapter 2. ML and DL algorithms have achieved great success in vari-

ous data analytics tasks. However, developing effective ML models for specific tasks requires

a high level of human expertise, which limits their applicability. Thus, AutoML and HPO

methods have been developed to automate and optimize ML models to achieve better learning

performance. The advantages and limitations of the state-of-the-art methods for each AutoML

procedure are summarized to identify the optimal solutions for applying ML algorithms to spe-

cific IoT data analytics tasks. Additionally, a case study of IoT anomaly detection is conducted

in Chapter 2 to demonstrate the procedures of AutoML applications. Experimental results have

shown the benefits of using AutoML frameworks in IoT data analytics problems.

In Chapter 3, an intelligent intrusion detection system (IDS) is proposed to protect the In-

ternet of Vehicles (IoV) against cyber-attacks based on tree-structure machine learning models,

including Decision Tree (DT), Random Forest (RF), Extra Trees (ET), and Extreme Gradient

Boosting (XGBoost). The stacking ensemble strategy is also used to combine the results of the

four tree-based algorithms for detection performance improvement. To evaluate the proposed

IDS, it was tested on two datasets for both intra-vehicle and external networks. The results

on both data sets show that the proposed system has 2-3% higher accuracy, detection rate, F1

score, and lower false alarm rate than other existing methods in the recent literature.

In Chapter 4, a novel ensemble method, namely Leader Class and Confidence Decision

Ensemble (LCCDE), is proposed to detect various types of cyber-attacks in IoV systems. As

ML models often perform differently for different types of attack detection, the proposed LC-
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CDE method identifies the best-performing ML models for each type of attack detection as

the leader class models to construct a robust ensemble model. Additionally, the prediction

confidence information is utilized to help determine the final prediction classes. Three ad-

vanced gradient-boosting ML algorithms, XGBoost, LightGBM, and CatBoost, are utilized to

construct the proposed LCCDE ensemble model due to their high effectiveness and efficiency.

Through the experiments, the proposed IDS framework achieves high F1-scores of 99.9997%

and 99.811% on the Car-Hacking and CICIDS2017 datasets, representing intra-vehicle and

external vehicular network data, respectively. Moreover, the proposed model’s F1-scores are

higher than other compared ML methods for detecting every type of attack. This illustrates the

benefits of the proposed leader class-based strategy.

In Chapter 5, a transfer learning and ensemble learning-based IDS framework that uses

optimized Convolutional Neural Network (CNN) models is proposed to identify various types

of attacks in IoV systems. Additionally, a chunk-based data transformation method is proposed

to transform vehicle network traffic data into image data used as the input of CNN models.

The proposed IDS is evaluated on the Car-Hacking and CICIDS2017 dataset, representing

intra-vehicle and external network data, respectively. The experimental results show that the

proposed IDS framework can effectively identify various types of attacks with higher F1-scores

of 100% and 99.925% than other compared state-of-the-art methods on the two benchmark

datasets. Moreover, the model testing results on a vehicle-level machine show the feasibility

of the proposed IDS in real-time vehicle networks.

In Chapter 6, a multi-tiered hybrid intrusion detection system (MTH-IDS) model that can

detect various types of known and zero-day cyber-attacks on both intra-vehicle and external-

vehicular networks is proposed to enhance IoV security. The proposed MTH-IDS consists of

two traditional ML stages (data pre-processing and feature engineering) and four main tiers of

learners utilizing multiple machine learning algorithms. Through data pre-processing and fea-

ture engineering, the quality of the input data can be significantly improved for more accurate

model learning. The first tier of the proposed system consists of four tree-based supervised

learners used for known attack detection, while the second tier comprises the BO-TPE and

stacking models for supervised base learner optimization to achieve higher accuracy. The

third tier consists of a novel CL-k-means unsupervised model used for unknown/zero-day at-
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tack detection. Lastly, BO-GP and two biased classifiers are used to construct the fourth tier

for unsupervised learner optimization. The four tiers of learning models enable the proposed

MTH-IDS to achieve optimal performance for both known and unknown attack detection in ve-

hicular networks. Through the performance evaluation of the proposed IDS on the two public

datasets that represent intra-vehicle and external vehicular network data, the proposed system

can effectively detect various types of known attacks with accuracies of 99.99% and 99.88%

on the CAN-intrusion-dataset and CICIDS2017 dataset, respectively. Moreover, the proposed

system can detect various types of unknown attacks with average F1-scores of 0.963 and 0.800

on the CAN-intrusion-dataset and CICIDS2017 dataset, respectively. The experimental re-

sults on a vehicle-level machine also show the feasibility of the proposed system in real-time

environments.

In Chapter 7, a multi-perspective anomaly detection approach based on a real-world general

CDN access log dataset is proposed to identify abnormal network entities and cyber-attacks. To

detect DoS and cache pollution attacks, their patterns are firstly summarized to extract features

from four main perspectives: content, client IP, account-offering, and node perspectives. After

obtaining the extracted datasets from multiple perspectives, the anomalies were identified using

the optimized unsupervised learning model constructed with the optimized isolation forest and

Gaussian mixture models. A comprehensive validation method, including multi-perspective

analysis, time-series analysis, and account-offering analysis, was implemented to validate the

detected abnormal network entities and the corresponding cyber-attacks. Thus, detection er-

rors can be effectively reduced. Ultimately, the abnormal contents, compromised nodes, and

malicious IPs were detected and labeled.

In Chapter 8, an adaptive LightGBM model for IoT data analytics with high accuracy and

low time and memory usage is proposed to address concept drift issues in dynamic IoT data

analytics. Compared to conventional static data, IoT data is often big streaming data under non-

stationary and rapidly-changing environments. Adaptive ML methods are appropriate solutions

since they have the capacity to process constantly evolving IoT data streams by adapting to po-

tential concept drifts. Through the integration of our proposed novel drift-handling algorithm

(i.e., OASW), an ensemble ML algorithm (i.e., LightGBM), and a hyperparameter method

(i.e., PSO), the proposed model has the capacity to automatically adapt to the ever-changing
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data streams of dynamic IoT systems. The proposed method is evaluated and discussed by con-

ducting experiments on two public IoT anomaly detection datasets, IoTID20 and NSL-KDD.

Based on the comparison with several state-of-the-art drift adaptation methods, the proposed

system is able to detect IoT attacks and adapt to concept drift with higher accuracies of 99.92%

and 98.31% than the other methods on the IoTID20 and NSL-KDD datasets, respectively.

In Chapter 9, a drift adaptive IoT anomaly detection framework, named PWPAE, is pro-

posed based on the ensemble of state-of-the-art drift adaptation methods. It is an advanced

ensemble framework that extends the learning model proposed in Chapter 8. According to

the performance evaluation on the IoTID20 and CICIDS2017 datasets that represent the IoT

traffic data streams, the proposed framework can effectively detect IoT attacks with concept

drift adaptation by achieving high accuracies of 99.16% and 99.20% on the two datasets, much

higher than other state-of-the-art approaches.

In Chapter 10, a comprehensive automated data analytics framework that is capable of pro-

cessing continuously evolving IoT data streams while dynamically adapting to concept drifts

is proposed for the automation of IoT data analytics. The proposed framework consists of

dynamic data pre-processing, drift-based dynamic feature selection, dynamic model selection,

and online model ensemble using a novel W-PWPAE approach. According to the model per-

formance evaluations on two benchmark IIoT streaming datasets, IoTID20 and CICIDS2017,

the proposed framework is capable of effectively processing dynamic IIoT streams with higher

accuracy of 98.86% and 99.39%, respectively, than other state-of-the-art methods.

Lastly, the proposed methods and frameworks in this thesis could be generalized to many

other application fields. Specifically,

1. The AutoML and optimization methods proposed in Chapter 2 of this thesis can be gen-

eralized to any data analytics applications that use ML algorithms to analyze data and

aim to achieve optimal learning performance.

2. The ML models proposed in Chapters 3 - 6 of this thesis can be generalized to any IDS

or classification applications.

3. The unsupervised frameworks and strategies proposed in Chapter 7 of this thesis can be

generalized to any unlabeled anomaly detection applications.

4. The drift-adaptive online learning methods proposed in Chapters 8 - 10 of this thesis
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can be generalized to any dynamic data streams that have concept drift issues or require

model updating.

11.3 Future Research Directions

This thesis studies and explores the application of ML and optimization methods in IoT data

analytics and cyber-security tasks. Despite the novel approaches and frameworks proposed

in this thesis that can tackle many data analytics challenges, there are still numerous future

research directions worth investigating. In order to develop more efficient and effective data

analytics methods, the following subsections discuss some of these potential future research

directions in the areas of AutoML, cyber-security, and IoT data analytics.

11.3.1 Research Directions Towards The Use of AutoML Technology

The AutoML technology introduced in Chapter 2 can be extended in many different direc-

tions. One potential research direction is exploring the automated selection and design of ML

models. Due to the fact that selecting and designing appropriate ML models still require hu-

man expertise, most methods proposed in this thesis are designed manually. In future work,

human expertise and machines can collaborate to make this procedure more effectively, as a

Human-In-The-Loop (HITL) procedure. For example, human experts can provide a set of po-

tential candidate ML models or architectures based on their experience and human intelligence,

and then machines can utilize optimization methods introduced in Chapter 2.5 to identify the

most suitable ML models for specific data analytics tasks. Additionally, Neural Architecture

Search (NAS) is a novel technology that aims to automatically design deep learning models

layer by layer, and it is another research direction worth exploring. Similarly, automated data

pre-processing and feature engineering still require further research, because they have a sig-

nificant effect on model performance and usually require human intervention to improve data

quality without losing important information or patterns.

Additionally, as various AutoML methods have distinct benefits and drawbacks, a set of

common benchmarks that allow a fair comparison of different techniques can be developed. It

would be easier for people to choose appropriate AutoML methods for practical applications if
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a fair platform or benchmark exists for AutoML applications.

Lastly, the efficiency of AutoML methods is worth exploring, as optimizing ML models

usually requires large amounts of time. Distributed ML and transfer learning techniques are

potential research areas that can improve the efficiency of AutoML methods.

11.3.2 Research Directions Towards Cyber-Security and IDS Develop-

ment

The work presented in Chapters 3 - 7 can be extended in various directions. One potential

research direction is developing unsupervised IDS systems that can detect unknown or zero-

day attack patterns. Although supervised ML algorithms have had great success in developing

signature-based IDSs for existing/known attack detection, real-world network data is usually

unlabeled and cyber-attackers are always exploring new vulnerabilities to launch new attacks;

thus, only developing signature-based IDS is usually insufficient to detect various types of

zero-day/new attacks. In Chapter 6, an anomaly-based IDS that is capable of detecting zero-

day attacks is proposed, but there is still much room for improvement in terms of detection

accuracy.

To detect zero-day attacks, there are several research directions worth exploring. Firstly,

different existing and advanced unsupervised anomaly detection algorithms can be investi-

gated, such as Autoencoder and Extreme Gradient Boosting Outlier Detection (XGBOD), as

they have the potential to improve the performance of existing IDSs for unknown/zero-day

attack detection. Secondly, online learning and adaptive methods are potential solutions for

zero-day attack detection, because they can learn new attack patterns over time to detect any

new attacks and maintain high detection accuracy.

On the other hand, lightweight IDSs with high detection efficiency can be developed to en-

able fast response speed and real-time analytics. This is particularly important for deep learning

models, as they are usually computationally expensive and require machines with GPUs. In

Chapter 5, transfer learning techniques are utilized to reduce model training time and improve

efficiency. However, as the IDSs proposed in this thesis prioritize learning performance over ef-

ficiency by adopting complex techniques, like ensemble learning and optimization techniques,
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their efficiency should be explored for better feasibility in real-world networks and systems.

11.3.3 Research Directions Towards IoT Data Stream Analytics and Con-

cept Drift Adaptation

The work presented in Chapters 8 - 10 can be extended in multiple directions. The first research

direction is exploring unsupervised online learning methods that can directly detect concept

drift using data distribution information, as most existing methods are designed with data labels

available and the methods proposed in this thesis are also supervised online learning models.

Distribution-based concept drift detection methods, such as ADWIN, IE, and KL divergence,

can be investigated to detect and adapt to data distribution changes without immediate labels, as

they can use distance metrics to compute the distance between the distributions of data chunks

in different time periods.

Another research direction is developing better ensemble drift adaptation methods with im-

proved performance, diversity, and speed. The performance and accuracy of ensemble online

learning methods are usually higher than that of single drift adaptation methods, but they usu-

ally consume more time and resources, such as the PWPAE methods proposed in Chapter 9.

Lightweight methods, like the adaptive LightGBM model introduced in Chapter 8, are worth

exploring for ensemble model construction. Thus, to achieve real-time online data analytics,

effective online learning methods that can strike a balance between model accuracy and learn-

ing efficiency are worth exploring.
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