
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

9-23-2022 10:00 AM

Extracting Microservice Dependencies Using Log Analysis Extracting Microservice Dependencies Using Log Analysis

Andres O. Rodriguez Ishida, The University of Western Ontario

Supervisor: Konstantinos Kontogiannis, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Andres O. Rodriguez Ishida 2022

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Rodriguez Ishida, Andres O., "Extracting Microservice Dependencies Using Log Analysis" (2022).
Electronic Thesis and Dissertation Repository. 8886.
https://ir.lib.uwo.ca/etd/8886

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F8886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F8886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/8886?utm_source=ir.lib.uwo.ca%2Fetd%2F8886&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

Microservice architecture is an architectural style that supports the design and implemen-

tation of very scalable systems by distributing complex functionality to highly granular com-

ponents. These highly granular components are referred to as microservices and can be dy-

namically deployed on Docker containers. These microservice architecture systems are very

extensible since new microservices can be added or replaced as the system evolves. In such

highly granular architectures, a major challenge that arises is how to quickly identify whether

any changes in the system’s structure violate any policies or design constraints. Examples

of policies and design constraints include whether a microservice can call or pass data to an-

other microservice, and whether data handled by one microservice can be stored in a specific

database. In order to perform such type of analysis a model that denotes call and data depen-

dencies between microservices must be constructed. In this thesis, we present a technique that

is based on log analysis and probabilistic reasoning to harvest, model, and associate logged

events, in order to compile a labeled, typed, directed multigraph that represents call and data

exchanges between microservices in a given deployment. We refer to this graph as the Mi-

croservice Dependency Graph, or MDG. The nodes of the graph denote microservices, service

busses, publish-subscribe frameworks, and databases, while the edges denote data exchanges

as well as send and receive requests. The graph contains a different edge for each type of

interaction (i.e. data transfer, invocation, or response).

We approach the problem of compiling a Microservice Dependency Graph in five ma-

jor steps. The first step focuses on creating a metamodel for representing logged events and

designing a metamodel for representing the MDG schema. The second step focuses on iden-

tifying associations and similarities between logged events. These associations create groups

of events which may relate in the context of a transaction. The third step focuses on defining

domain-specific log analysis logic based on a set of facts and weighted rules which encode

complex relationships between events. These facts and rules constitute a knowledge base. The

fourth step focuses on the application of a probabilistic reasoning engine to identify related

events in the candidate groups of associated events, and impose an ordering relation between

these events. Finally, the fifth step focuses on the compilation of the Microservice Dependency

Graph. The prototype system has been applied on an open source microservice architecture

i

system that simulates the operations of a garage shop.

The identification of dependencies between microservices is a pivotal first step towards

the implementation of various future frameworks. First, the MDG can be used to develop

compliance analysis frameworks for microservice architectures. Second, the MDG can be used

to develop what-if analysis utilities whereby software engineers can identify, prior to release,

any unwanted interactions between the MSA components when changes in the code or new

features are introduced during development. Third, the MDG can be used to identify failure

risks. A possible avenue of research here would be to train a model to identify interaction

patterns that are known to lead to failures. In this respect, when a new feature or a code

change is introduced, the new MDG interactions can be fed to the trained model and identify

the failure risk proneness if this feature were to be released. This is an important utility for

achieving continuous integration and continuous deployment (CI/CD).

Keywords: Microservices, log analysis, component dependencies, reasoning, formal con-

cept analysis

ii

Summary for Lay Audience

Microservice architecture is an architectural style that supports the design and implementation

of very scalable systems by distributing complex functionality to highly granular components.

These microservice architecture systems are very extensible since new microservices can be

added or replaced as the system evolves. In such highly granular architectures, a major chal-

lenge that arises is how to quickly identify whether any changes in the system’s structure vio-

lates any policies or design constraints. In order to perform such type of analysis a model that

denotes call and data dependencies between microservices must be constructed. In this thesis,

we present a technique that is based on log analysis and probabilistic reasoning to harvest,

model, and associate logged events for compiling a labeled, typed, directed multigraph that

represents call and data exchanges between microservices in a given deployment. We refer

to this graph as Microservices Dependency Graph or MDG. The nodes of the graph denote

microservices, service busses, publish-subscribe frameworks, and databases, while the edges

denote data exchanges as well as send and receive requests. The identification of dependen-

cies between microservices is a pivotal first step towards the implementation of various future

frameworks such as compliance analysis frameworks, what-if analysis utilities so that software

engineers can identify what the interactions between the MSA components would be if a new

feature is added to the system, and frameworks to train a machine learning model to identify

microservice dependency patterns that are known to lead to failures or pose a failure risk.

iii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor Dr. Kostas

Kontogiannis, Professor, Department of Computer Science, Western University, London On-

tario, for your invaluable guidance, constant support and endless generosity throughout the

completion of this thesis. Looking back to my fourth year of undergrad, when I spoke to you

for the first time about potentially pursuing a masters, I would have never imagined that I would

have gained such an incredible and inspiring mentor. Not just a mentor but most importantly a

roll model in my career that knows that the human element is just as important as knowledge.

Your kindness is a testament to who you are as a person and I look up to you and forward to

our next journey.

I would also like to thank Christ Brealey of IBM Toronto Lab for their invaluable comments

and technical discussions. I would also like to thank Prof. Miriam Capretz, Prof. Hanan

Lutfiyya, and Prof. Mostafa Milani for serving as examiners for this thesis.

To my family, my deepest gratitude to my grandma and my sister. Thank you for the

immense love and support you always show me. To my parents, your sacrifice and dedication

is the reason I am right here thank you for always putting my needs and goals over your own.

I’ll strive to always be the person you taught me to be and I hope I can repay your efforts by

living the life you worked so hard to give me and that allowed me to dream.

Para mi familia. A mi abuela y hermana mi más profundo agradecimiento, tan profundo

como el amor que siempre me demuestran y el apoyo incondicional que me han dado. A mis

padres, todo lo que soy y sere en el futuro es gracias al sacrificio y dedicación que le entregaron

a sus hijos. Gracias por siempre poner mi vida y mis metas por encima de las suyas y aunque

se que su amor es desinteresado espero tener el honor de devolverles aunque sea una fracción

de sus esfuerzos viviendo la vida que soñaron para mi.

iv

Contents

Abstract i

Summary for Lay Audience iii

Acknowledgements iv

List of Figures x

List of Tables xii

List of Appendices xiii

1 Introduction 1

1.1 Preamble . 1

1.2 Conceptual Outline of the Approach . 3

1.3 Thesis Contributions . 4

1.4 Thesis Organization . 5

2 Background and Related Work 6

2.1 Microservices . 6

2.1.1 Introduction . 6

2.1.2 Advantages . 6

Replaceability and Strong Modularization 6

Continuous Delivery . 7

Scalability . 8

2.1.3 Challenges . 8

2.2 Shift-Left . 9

v

2.2.1 Introduction . 9

2.2.2 Technical Debt . 10

2.2.3 Benefits . 10

2.2.4 Application . 10

Test-Driven Development . 10

Behaviour-Driven Development . 11

DevSecOp . 11

2.3 Compliance . 11

2.3.1 Compliance and Continuous Compliance 11

2.3.2 FedRAMP . 12

2.3.3 GDPR . 13

2.4 Formal Concept Analysis . 14

2.4.1 Reverse Engineering . 14

2.4.2 Re-Engineering . 16

2.5 Markov Logic Networks . 17

2.5.1 General Representation . 17

2.5.2 Risk Management . 18

2.6 Microservice Dependency Graph Analysis . 19

2.6.1 Service/Invocation chain logs . 19

2.6.2 Graph Algorithms on Dependency Graphs 21

2.6.3 Source Code Analysis . 22

2.6.4 Dynamic Service Graph Generation 23

2.6.5 Version-Based Microservice Analysis 23

2.7 Research Gap . 24

3 Process Outline and Architecture 25

3.1 General Outline . 25

3.2 Data Extraction . 28

3.3 Log Schema Reconciliation . 29

3.3.1 Schema Reconciliation . 30

vi

Filtering Microservice Events . 30

Filtering SQL Database Events . 31

Pairing SQL Database Events with Microservice Names 32

Pairing SQL Database Events with Microservice Events 33

3.3.2 Conceptual Event Association . 34

Attribute Synonym Synchronization 34

Event Association - Conceptual Method 36

Automating the Attribute Synonym Process 37

3.4 System-Wide Event Matching . 39

3.5 Microservice Dependency Graph Extraction 39

3.5.1 Event Collection . 39

3.5.2 Path Extraction and Graph Formation 40

4 Event Association and Schema Reconciliation 42

4.1 Filtering Data . 42

4.1.1 Filtering Microservice Events . 42

4.1.2 Filtering SQL Database Events . 44

4.2 Pairing SQL Database Events with Microservice Names 44

4.3 Pairing SQL Database Events with Microservice Events 45

4.4 Event Association . 50

4.4.1 Attribute Synonym Synchronization 51

4.4.2 Event Association - Conceptual Method 55

4.4.3 Automating the Attribute Synonym Identification Process 57

FCA Table Creation . 57

FCA Lattice Rule Extraction . 59

4.5 Summary . 64

5 System-Wide Event Matching 67

5.1 Final Matching of System-wide Events . 67

5.1.1 Fact Base . 67

Fact Extraction . 68

vii

Fact Examples . 71

5.1.2 Rule Base . 73

Rule Extraction . 75

5.1.3 Reasoning . 78

Markov Logic and Markov Logic Networks 78

Training and Inference . 80

Inference Result Analysis . 81

5.2 Summary . 88

6 Microservice Dependency Graph Extraction 90

6.1 MDG Domain Model . 90

Class Description . 90

Relationship Description . 91

6.2 Event Collection Formation . 92

6.3 Path Extraction - Sequences of Events . 94

6.4 Microservice Dependency Graph Creation . 99

6.4.1 Microservice Dependency Graph Applications 100

MDG Traversal . 100

RMI Guard Implementation . 102

Development Aid . 104

6.5 Summary . 104

7 Experiments and Discussion 106

7.1 Infrastructure Set up . 106

7.1.1 The Systems Microservice . 106

Web App . 106

Customer Management API . 107

Vehicle Management API . 107

Workshop Management API . 107

Message Broker . 108

Auditlog Service . 108

viii

Workshop Management Event Handler 108

Notification . 108

Invoice . 108

Time . 109

Mail . 109

SQL . 109

7.1.2 Systems Event Types . 109

Customer Registered Event . 109

Vehicle Registered Event . 110

Workshop Planning Created Event . 110

Maintenance Job Planned Event . 110

Maintenance Job Finished Event . 110

Day Has Passed Event . 110

7.2 Sample Run and Output . 111

7.2.1 Data Collection . 111

7.2.2 Rule Training . 111

7.2.3 Fact Association . 112

7.2.4 Microservice Dependency Graph Output 113

7.3 Threats to Validity . 113

8 Conclusion and Future Work 116

8.1 Conclusion . 116

8.2 Future Work . 117

Bibliography 119

Curriculum Vitae 126

ix

List of Figures

2.1 A comparison between traditional Waterfall Model and Shift-Left approach [4] 9

2.2 FedRAMP Authorization Process [2] . 13

3.1 The block diagram of the approach . 26

3.2 The sequence of process steps . 27

3.3 A sample of the centralized logs . 28

3.4 A breakdown of four ’noisy’ message broker events 28

3.5 An example of a microservice event log containing database command infor-

mation . 29

3.6 A sample of a SQL database event log . 30

3.7 An example event structure . 31

3.8 An example set of associated events, highlighting matching values 32

3.9 An example FCA table [38] . 33

3.10 An example FCA lattice [38] . 34

3.11 A subset of the Pitstop systems FCA lattice 35

4.1 Database event (highlighted) within the partial event data for one HTTP Re-

quest partition . 45

4.2 An example log of a message broker’s containing SQL data 46

4.3 An example of two events with attributes highlighting the SQL parameter data

pattern matching . 48

4.4 An example of a raw SQL log file . 49

4.5 An SQL event stored in a dictionary structure 50

4.6 An example illustrating inconsistent labeling formats between logs 52

4.7 A dictionary data structure containing all attribute synonyms 54

x

4.8 The extracted FCA lattice for the log data set 64

5.1 An example Markov Logic Network [48], [10] 79

5.2 An example Markov Logic Network [48], [10] 79

5.3 Log Breakdown for the event pair InvoiceEvent-5 (Top) and NotificationEvent-

8 (Bottom) . 83

5.4 Log Breakdown for the event pair InvoiceEvent-5 (Top) and RabbitEvent-8

(Bottom) . 86

5.5 Log Breakdown for the event pair InvoiceEvent-5 (Top) and InvoiceEvent-6

(Bottom) . 87

6.1 MDG Domain Model . 91

6.2 Message Broker exchange initialization examples 98

6.3 Sequence Diagram illustrating an RMI Guard implementation 103

7.1 The solution architecture of the MSA system ’PitStop’ 107

7.2 The MDG for the PitStop Application . 114

xi

List of Tables

4.1 Associated attributes on event logs . 65

xii

List of Appendices

xiii

Chapter 1

Introduction

1.1 Preamble

Over the past decade we have seen significant breakthroughs in the way very large enterprise

systems are architected. The first major breakthrough, dealt with the introduction of virtual-

ization. In this architectural paradigm, a virtual model of a computer referred to as virtual

machine could host a number of applications. These virtual machines along with their hosted

applications could be replicated and deployed dynamically and on a as needed basis in order to

handle varying computational loads and user demand. The virtual machines could run on top

of a specialized platform, the hypervisor, which in its turn can be hosted on an actual computer

which could handle the load of the hypervisor with its two or more (usually more) virtual ma-

chines. However, the next breakthrough came when the concept of microservice architectural

style was introduced. Microservice architecture is based on two foundational concepts. The

first concept is that functionality can be delivered by granular components called microservices.

These microservices can interact with each other using standardized inter-process communica-

tion protocols such as sockers, RMI, XML-RPC, or service oriented messaging such as SOAP

(Web Services) or http (restful services). These interactions can be coordinated so that complex

business logic can be enacted and delivered to the stakeholders. The second concept is that all

these microservices can be deployed and hosted in specialized components called containers.

In their turn, containers can be deployed and replicated on top of hypervisors in one or more

physical servers, and interact with each other also using standard inter-process communica-

1

2 Chapter 1. Introduction

tion protocols. This microservice architecture pattern provides a major improvement over the

virtual machines architecture as it does not require a whole virtual computer (along with its

Operating System and utilities) to be deployed to host an application, but rather highly granu-

lar components which can be individually deployed on-demand on containers, which can also

be deployed on-demand to meet performance and QoS requirements as load and usage patterns

change.

Most large-scale systems share a number of common characteristics that pose unique chal-

lenges. First, they entail complex logic and interactions between many different and diverse

components. Second, they are implemented as distributed components which engage in con-

current transactions. Third, they handle high volumes of data, traffic, and users. Fourth, they

must constantly evolve so they are kept operational.

As it becomes apparent, large-scale systems can benefit the most by the microservice ar-

chitecture style. First, components can be deployed in different containers residing in different

physical servers and locations thus achieving invocation and location transparency. Second,

components can communicate in many different ways to implement complex business logic.

Third, components can be provisioned on-demand in order to meet performance requirements

as the load and traffic changes. It can therefore be argued that microservice architecture pro-

vides a very efficient design patter for many large-scale systems.

However, all these benefits come at a cost. The dynamic provision of containers and mi-

croservices creates highly complex interactions, which if not designed or monitored properly

may easily lead to violations of policies, constraints or other functional and non-functional

requirements. Examples of these violations include the provision of containers and microser-

vices in foreign jurisdictions violating thus federal laws (e.g. privacy laws), the transfer of

sensitive data to databases in which other non-secure systems may also have access to, and the

invocation of microservices in contexts which violate access control security requirements.

In order to identify and mitigate these problems, a detailed model of the as-is (not the as-

designed) infrastructure must be built first. This as-is system model denotes how components

interact and can be created by analyzing either the source code of the system of the logs emitted

by each component. In this thesis, we propose a technique that extracts the as-is system model

using only logged data. The proposed approach is based on four main steps. In the first step,

1.2. Conceptual Outline of the Approach 3

the structure (i.e. schema) of each logger is analyzed so that synonym attributes (if any) can be

identified. In the second step, schemas are reconciled by applying Formal Concept Analysis

[27]. In the third step, a collection of rules is designed, so that based on domain knowledge,

log entries can be associated. In this step, entries in different logs form collections (or se-

quences) of related to a transaction, events. For this step, we propose the use of Markov Logic

to define the rules, and Markov Logic Networks [48] for deducing whether two events match

that is, they are related in the context of a transaction. In the fourth step, the collections of

associated events are analyzed and individual paths are extracted. From the extracted paths a

typed, labelled, directed, multigraph is created. We refer to this graph as the Microservice De-

pendency Graph (MDG). The nodes of this graph are microservices, middleware components,

or database servers, and the edges denote data exchanges from one entity (i.e. microservice,

middleware or data base server) to another. The compilation of the Microservice Dependency

Graph is the first towards developing systems for enforcing run-time compliance, or perform-

ing off-line auditing, or evaluating what-if change scenarios during development, supporting

thus continuous integration and continuous deployment (CI/CD).

1.2 Conceptual Outline of the Approach

The microservice dependency extraction framework presented in this thesis has five major

conceptual components.

The first conceptual component relates to modeling and focuses on the design and imple-

mentation of two meta models. The first meta-model denotes logs schemas and is intended to

represent events at a higher level of abstraction than just text entries in log files. The second

meta-model denotes two types of dependencies between components in microservice archi-

tectures, namely call dependencies and data exchange dependencies. As discussed above, in

the context of this thesis we consider three type of components service components (i.e mi-

croservices), middleware components (e.g. service busses, pub/sub servers), and database

components.

The second conceptual component relates to knowledge representation, and more specifi-

cally with i) sets of highly associated attributes between event schemas as these are identified

4 Chapter 1. Introduction

by the use of Formal Concept Analysis; ii) a collection of first order logic predicates that de-

note properties of the events (e.g. attribute/value pairs) and relations between events (e.g. time

proximity association between two events) and; iii) a collection of extraction algorithms that

analyze the log models to generate a collection of ground facts that conform to the set of the

aforementioned predicates. These predicates form a fact base.

The third conceptual component deals with domain-specific log analysis logic and is based

on a set of weighted rules which encode complex relationships between events. These rules

form the rule base of the system.

The fourth conceptual component deals with reasoning and the identification of highly

associated event traces, that collectively denote call and data transfer dependencies between

various components (i.e. microservices, middleware components, and databases).

The fifth conceptual component deals with the analysis of event traces and the compilation

of a Microservice Dependency Graph (MDG), which is a labelled, typed, directed multigraph.

The analysis process is discussed in detail in Section 3.

1.3 Thesis Contributions

The thesis focuses on the areas of system modeling and domain-based log analysis. More

specifically, the thesis makes the following contributions.

• A technique to extract attribute-level associations between events in different system

logs.

• A technique for denoting event-level dependencies using domain specific logic repre-

sented as a collection of weighed rules.

• A framework which utilizes probabilistic reasoning to extract sequences of related events

across logs and across components forming thus complete transaction traces.

• A novel meta-model for denoting call and data dependencies between components in

microservice architectures.

1.4. Thesis Organization 5

• The design and implementation of a tractable algorithm for analyzing transaction traces

in order to populate the aforementioned dependencies metamodel forming thus a com-

plete Microservices Dependency Graph (MDG).

1.4 Thesis Organization

The thesis is organized as follows. In Chapter 2 we present related work found in the literature.

In Chapter 3 we outline the process of the proposed system, while in Chapter 4 we discuss

conceptual event association and log reconciliation using Formal Concept Analysis. In Chapter

5 we present the reasoning framework including the modeling of facts and rules. In Chapter 6

we present the process of assembling the Microservice Dependency Graph, while in Chapter

7 we present findings by using the proposed systems. Finally, in Chapter 8 we conclude the

paper and provide pointers for future research.

Chapter 2

Background and Related Work

2.1 Microservices

2.1.1 Introduction

Microservices architecture (MSA) is based on a share-nothing philosophy that structures a

system as a set of loosely-coupled small isolated autonomous units. [28].

The purpose of MSA is to modularize by dividing large complex software system into

smaller parts that can be deployed independent of each other. The independently deployed

microservices are abel to communicate through the network, for example with REST.

The MSA can be defined by three features [62]. First, each service (unit) should only be

designed for one task and accomplish this task effectively. Second, services should be able to

work together. Third, a universal interface should be used. The MSA philosophy focuses on

setting the service boundaries based on the business boundaries, thus making it clear where

code resides in the system for any given functionality [45].

2.1.2 Advantages

Replaceability and Strong Modularization

In MSA separate teams develop software in modules and are only responsible for understand-

ing the subsection of modules that correspond to their partition. In contrast to the traditional

6

2.1. Microservices 7

monolithic architecture where developers are required to understand an entire software package

[62].

The strong modularization also helps with the maintenance of the software. As the system’s

life cycle progresses and inevitable changes are required, developers are no longer required

to comprehend the entire system instead they need only to understand the small subset of

modules that correspond to their changes [62]. In large complex systems, the larger a system

is the more costly a replacement can be. The risk of failure when replacing important business

processes can have immense negative effects. This is where MSA provides a solution, since

each microservice are small units that are independently deployed from each other the process

of replacing a single microservice is not as costly [62].

In the case where new microservices are added to MSA, they are able to freely use any

technology without any constraints. Since each microservice is deployed independently of

other microservices, there are no restrictions or constraints in regards to the technologies used

to implement each service [62].

Additionally microservices reduce the risks associated with replacement in the scenario

where a microservice temporary fails. In which case the remaining microservices maintain

their operability and are not effected by the failure or replacement of the faulty microservice

[62].

Handling legacy applications is also simplified with MSA. Since a legacy application would

only require an interface in order to communicate with the MSA, thus the challenge of code

level integration for legacy systems is avoided [62].

Continuous Delivery

MSA provides exceptional aid to the continuous delivery approach. Considering the fact

that microservices are small independent units, their deployment into the continuous delivery

pipeline is efficient. This is due to the fact that the small microservice can be quickly tested,

which results in rapid feedback which leads to faster deployment into production. Additionally

given the smaller size of microservices, the risk of any deployment issues decreases. Since,

even if the microservice fails, the effect on already deployed microservices are minimal. MSA

8 Chapter 2. Background and RelatedWork

is also beneficial for techniques such as Blue/Green deployment [62].

Scalability

Scalability is the property of a system’s ability to handle increasing growth through the use

of additional resources [7]. There are two types of traditional scaling, vertical and horizontal

scaling [6]. Horizontal scaling is the more popular method, which involves the replication

of microservices into other machines but comes at the downside of additional overhead being

produced. Vertical scaling focuses on providing microservices additional resources in order

to maximize the utilization. However this method comes with the limitation the resources

available to a machine and the expensiveness of upgrading these resources [32].

2.1.3 Challenges

In the survey paper from Ghofrani and Lübke [28] three main concerns were documented. The

first concern is with the development and debugging of MSA systems. Some examples include

debugging a microservice that relies on other services, too many repositories to maintain or net-

working between dockers. The second concern was with skill and knowledge. Some examples

include, finding developers and engineers that are knowledgeable with MSA and transition-

ing from traditional monoliths. The third concern was with correct separation of domains and

finding the appropriate service cuts.

In the case of traditional monolithic architecture, scaling has to be done as a whole. In

contrast to MSA, where smaller services can be scaled as needed without the requirement that

all other microservices also be scaled. This results in a more cost efficient distribution [45].

Considering that microservices interactions occur through APIs that are exposed to the

network, this creates the additional threat of potential attacks. In contrast to the traditional

monolithic, where the systems interactions are all internal [19].

The strong modularity of the MSA results in complex network activity. This can result in

increased difficulty for monitoring, security, and auditing of the entire system [19].

Another challenge with MSA is with the approach to the systems modularization. Deter-

mining the right size microserivce and the right design boundary are a few challenges that if

2.2. Shift-Left 9

Figure 2.1: A comparison between traditional Waterfall Model and Shift-Left approach [4]

not addressed properly can lead to increased network communication [29]. Additionally the

previously mentioned individual teams responsible for individual microservices can both be

a benefit and a detriment. By focusing on the smaller picture teams may lose site of the big

picture, for example are their local decisions coherent with the system’s overall architecture

and business goal [29].

2.2 Shift-Left

2.2.1 Introduction

The Shift-Left concept centers around the practice of performing more tests during the earlier

stages of the software development life-cycle (see Figure 2.1). In contrast to the traditional

waterfall model, in which testing is done towards the end of the development life cycle. In the

Shift-Left approach, waiting until the system is produced in order to begin testing is no longer

necessary. Instead all sorts of testing is executed earlier in the development life-cycle. Testing

such as unit testing and integration testing are all completed at the beginning of the life-cycle

and no longer towards the end.

10 Chapter 2. Background and RelatedWork

2.2.2 Technical Debt

Technical debt is a concept introduced by Cunningham [13] in which he describes it as ”ship-

ping first time code is like going into debt. A low technical debt speeds development so long

as it is paid back promptly with a rewrite”. Brown et al. [8] defined technical debt as the ”gap

between the current state of a software system and some hypothesized ‘ideal’ state in which

the system is optimally successful in a particular environment”.

Attributes of technical debt includes monetary cost, bankruptcy, interest and principal,

leverage, repayment and withdrawal [58]. Monetary cost are a result of technical debt, in

which real financial consequences occur due to the inefficient utilization of developer’s time.

Bankruptcy refers to when the accumulated technical debt is overwhelming which results in

termination of current progress and restarting is required. Interest and principal refers to the

financial concept of interest payments, in which the time spent on faulty programming results

in having to be paid back with interest via the time spent correcting those mistakes. Leverages

refers to the trade-off between strategically sacrificing quality in exchange for shorter time-to-

market. Repayment and withdrawal refers to the financial concept of credit cards. In which the

credit rating of a team is determined by their ability to pay off technical debt.

2.2.3 Benefits

The main benefits of Shift-Left is the decrease in potential technical debt. The Shift-Left ap-

proach helps identify any potential issues early on in the life-cycle while changes to the design

are not expensive. Additionally this allows for any potential issues to be resolved without the

pressure of immediate deadlines.

2.2.4 Application

Test-Driven Development

Some of the benefits of TDD are the closing of the gap (shifting to the left) between design

development and implementation feedback. Another focus of TDD is the culture of having

2.3. Compliance 11

developers write code that is automatically testable, which can result in the improvement of

quality assurance. Additionally, in TDD there is continuous execution of automated test cases

such that the identification of any error prone implementations can be captured efficiently. The

focus of TDD is to shift from testing after implementation to testing before implementation

[42].

Behaviour-Driven Development

Behaviour-Driven Development was developed by Dan North [14] with the focus on behaviour

being defined with fine-grained specifications such that they can be automated [56]. Addition-

ally the behaviour of the system is formatted in a ”Given-When-Then” structure using natural

language sentences [14]. A benefit of BDD is the improvement in the communication between

various project stakeholders. Another benefit is, since the software specifications are expressed

in domain-specific terms, end users can easily understand them [5]. The Shift-Left philosophy

is captured in BDD in the models Shift-Left of functional testing.

DevSecOp

DevSecOp is the unification of the development and operations team with the security team

[51]. The focus of DevSecOp is to address security before the development stage, such that

infrastructure security is addressed from the start. As well, DevSecOps focuses on automating

security gates throughout the DevOps workflow while maintaining minial disruptions to oper-

ations. The benefit of DevSecOps is the added communication from the security teams, allows

for sharing feedback and insight on known threats to developers. In this process the Shift-Left

philosophy is interpreted as Shift-Left Security.

2.3 Compliance

2.3.1 Compliance and Continuous Compliance

Compliance in software development refers to how well a system obeys the established guide-

lines, policies, or specification. The industry standard for compliance certification is achieved

12 Chapter 2. Background and RelatedWork

through manual auditing of the system, however this method is error-prone, partial, and ex-

pensive [22]. Additionally security engineering techniques are normally conducted in a linear

model, which is disadvantageous to the increasing development methods that are applying agile

philosophies [43].

Continuous compliance is centered around the continuous verification of a systems regu-

latory compliance standards [22]. Aspects of continuous compliance can be seen in R-Scrum

[23], in which compliance assurance is conducted at the end of each sprint. Filepp et al. [21]

proposed a framework for continuous compliance in which they provide an automated solution

for managing security compliance. Another approach to continuous compliance is by Moyon et

al. [44], in which they focused on integrating the security standard requirements into the agile

process model. Their proposed process model consists of three stages, Modeling, Validation,

and Merging. Modeling focuses on representing security standards using the graphical mod-

eling language known as Business Process Model and Notation (BPMN). Validation focuses

on developers and engineers review the BPMN and Scaled Agile Framework models. Merging

focuses on merging both models [44].

2.3.2 FedRAMP

The Federal Risk and Authorization Management Program (FedRAMP) is a program estab-

lished by the United States federal government. FedRAMP provides a standardized approach

for security assessment, authorization, and continuous monitoring for cloud technologies [2].

Some of the benefits include, reduced duplicative efforts, cost inefficiencies and inconsisten-

cies. Additionally FedRAMP allows for the establishment of a public-private partnership that

promotes innovation and advancement of secure information technologies [2]. FedRAMP pro-

vides two different processes for the authorization of a Cloud Service Offering, as shown in

Figure 2.2.

The FedRAMP continuous monitoring program is based on NIST SP 800-137 [18]. The

continuous monitoring process defined by NIST, includes the following practices: Define, Es-

tablish, Implement, Analyze and Report, Respond, Review and Update. Define, is the property

of a continuous monitoring strategy that provides clear visibility into the awareness of vul-

2.3. Compliance 13

Figure 2.2: FedRAMP Authorization Process [2]

nerabilities and assets with the usage of the latest threat information. Establish, refers to the

establishing of metrics, status monitoring and control assessments that reflect security status,

information infrastructure change detection, and operations environment. Implement, refers to

the implementation of a continuous monitoring program that can be automated for collection,

analysis and reporting. Analyze, refers to the reporting of the analyzed data paired with rec-

ommendations. Respond, refers to the decision making resulting from the report assessments.

Review and Update, refers to the assessment and revision of the continuous monitoring strategy

[2].

2.3.3 GDPR

The General Data Protection Regulation is a regulation that focuses on data protection and

privacy in the European Union and European Economic Area or any organization that collects

or processes information from EU citizens [34].

GDPR consists of seven main data processing principles [20].

• ”Lawfulness, fairness and transparency — Processing must be lawful, fair, and trans-

parent to the data subject.”

• ”Purpose limitation — You must process data for the legitimate purposes specified ex-

plicitly to the data subject when you collected it”

• ”Data minimization — You should collect and process only as much data as absolutely

necessary for the purposes specified.”

14 Chapter 2. Background and RelatedWork

• ”Accuracy — You must keep personal data accurate and up to date.”

• ”Storage limitation — You may only store personally identifying data for as long as

necessary for the specified purpose.”

• ”Integrity and confidentiality — Processing must be done in such a way as to ensure

appropriate security, integrity, and confidentiality (e.g. by using encryption).”

• ”Accountability — The data controller is responsible for being able to demonstrate

GDPR compliance with all of these principles.”

2.4 Formal Concept Analysis

2.4.1 Reverse Engineering

Kumar and Kumar [31] applied Formal Concept Analysis to object oriented systems with the

goal of identifying dependencies within the system. The proposed framework provides an

efficient method for identifying the internal hierarchy structure between components during

the reverse engineering process. The purpose of this framework is to reduce the cost of the

maintenance process. The proposed framework consists of the following five steps, source

code import, build FCA elements and properties, concept generation, generating high level

views, and interpretation and analysis. In the first step, source code import, all the source code

files and packages of the system are retrieved. In the second step, Build FCA Elements and

Properties, the source code is parsed and converted into FCA objects and attributes. The type of

dependency determines which objects and attributes are required from the incidence table. The

third step, concept generation, is when the formal concepts are created. The algorithm used

for generating the formal concepts is the Bottom up algorithm. The fourth step is generating

high level views, in this step the formal concepts are visualized and the depicted connections

between components aid the analyzer in comprehending the systems internal structure. In the

final step, interpretation and analysis, the analyzer processes the internal structure from the

previous step and determines if and where any refactoring is needed.

Cole et al. [12] proposed a framework called Conceptual Analysis of Software Structure

2.4. Formal Concept Analysis 15

(CASS) with the goal of aiding in the understanding of complex software systems. The gen-

eralisation and specialisation in the hierarchical structure of FCA allow for visualization that

ranges from very general to very specific levels of abstraction. CASS takes a knowledge frame-

work consisting of software artifacts, relationships between artifacts, rules for generating new

relationships and applies formal concept analysis to gain insights about a software’s structure.

Exploration of the system’s structure is achieved through graph based queries, that correspond

to a specific portion of the code which are used to generate concept lattices. The resulting

exploration techniques afforded by the concept lattices are call graphs, unfolding a package,

package names, and combing aspects. The call graph is generated using the static call graph

from source code and dynamic call graph from the actions during the systems runtime. This

technique helps aid in the comprehension of the code’s modularity and the dependencies be-

tween packages. The next technique, unfolding a package, depicts how a portion of the call

graph can be further analyzed by unraveling a portion of the lattice. The third technique, pack-

age name, explores the systems structure based of the lattice created using package’s names.

The last technique, combining aspects, takes the static call graph and combines it with the

package name lattice. This results in the outer layer depicting the package and class hierar-

chical structure, while the inner layer displays the sub-packages and how they are organized

according to their path-names.

Tourwe and Mens [59] seek to advance the study of turning existing software systems into

aspect-oriented systems. The proposed framework focuses on aspect mining through the anal-

ysis of a system using formal concept analysis to discover aspectual views. The contributions

are two fold, the first is a specific configuration of the FCA algorithm for aspect mining. The

second is the discovery of certain aspectual views derived from the specific configuration of

the FCA algorithm. The aspect mining process consists of four steps. The first is generating

elements and properties from the source code. The second is applying the FCA algorithm to

the data obtained in the first step. The third step is filtering out unimportant concepts based

on pre-defined heuristics. The fourth step is taking the resulting concepts and classifying them

based on a given criteria. Lastly, the final concepts are visually presented to developers. The

proposed framework is capable of retrieving a multitude of aspectual views, including pro-

16 Chapter 2. Background and RelatedWork

gramming idioms, design patterns and code duplication. The programming idioms that are

able to be identified include the access methods and polymorphism. The design patterns that

are identified are the visitor and abstract factory.

2.4.2 Re-Engineering

Kazato et al. [30] proposed a semi-automatic framework for extracting correspondence be-

tween features and program elements in a multi-layer system. This framework seeks to aid in

the challenge of feature/concept location given the ability for a feature to composed through-

out multiple layers. The FCA based feature location technique (FLT) consists of four steps,

Preparing Scenarios, Extracting Execution Traces of Each Layer, Applying FCA, and Locat-

ing Feature Using Formal Concept. In the Preparing Scenarios step, analysts are tasked with

creating two different scenarios for each feature. With one of the scenarios executing the given

feature, while the other scenario does not. In the next step, Extracting Execution Traces of

Each Layer, through dynamic analysis execution traces of each layer executing each scenario

are examined. In the next step, Applying FCA, the formal contexts are obtained from the set

of scenarios, the set of features, and their binary relation. Then the sets of formal concepts are

retrieved from the FCA output, with each concept including a subset of scenario in its extent

and subset of features in its intent. In the final step, Locating Feature using Formal Concept,

analysts are now able to pinpoint a specific feature using the set of concepts. Analyst are then

able to comprehend which program elements correspond to each feature. From there analyst

can determine which surrounding concepts are relevant to their desired feature and investigate

their dependencies prior to any changes made to the given feature.

Snelting and Tip [55] proposed a framework based on formal concept analysis for the de-

tection and remediation of design problems in a class hierarchy. This framework intents to

aid in the inability to predict a system’s entropy from the stand point of how a class hierarchy

will be used by an application or the resulting hierarchy extensions from maintenance. The

framework first consists of a table depicting the relationships between types of variables and

class members throughout the usage of the class hierarchy. Then the concept lattice is retrieved

from the table by using Ganter’s algorithm [26]. The resulting lattice aids developers in their

2.5. Markov Logic Networks 17

understanding of the hierarchy of the entire system but also specific portions of the system. In

terms of re-engineering several issues are recognized, the first are the data members that appear

at the bottom of the lattice are not accessed elsewhere in the program. In contrast to variables

which are not accessed by any members which are shown at the top of the lattice. As well

any data members of a given base class which are not used by all of the subsequent classes of

the base class are shown. Additional exploration of the lattice can result in quantification of

cohesion and coupling through the usage of algebraic decomposition [35] [47].

2.5 Markov Logic Networks

2.5.1 General Representation

Domingos and Richard [52] proposed a technique that combines first-order logic and prob-

abilistic graphical models. Their technique, Markov Logic Network (MLN), consists of a

first-order knowledge base (KB) with weights attached to each formula (clauses). Unlike with

first-order knowledge bases, in which it contains a set of hard constraints on the set of possible

worlds, MLNs allow for the possibility of a world that violates one formula in the KB. If a

world violates a formula in the KB, MLN simply considers this as less probable but doesn’t

have the hard constraint of making it impossible. In MLNs there is a corresponding weight

to each formula which represents the strength or weakness of a constraint. These weighted

formulas are the template for constructing the Markov networks. The weights are learnt using

the Fortran implementation of L-BFGS [64] [9]. Inferences are done through Gibbs sampling

using ten parallel Markov chains, with each initial state using MaxWalkSat. Clauses are learnt

using the CLAUDIEN system [17]. MLNs have the ability to handle uncertainty, reduce brittle-

ness, imperfect and contradictory knowledge, all while being able to incorporate a wide range

of domain knowledge. The proposed technique is capable of collective classification, object

identification, link-based clustering, social network modeling, and link prediction.

Niu et al. [46] seek to improve on the limitations of current MLN implementations, which

result in MLN’s inability to scale beyond small data sets. The proposed framework, TUFFY,

leverages RDBMS to address the performance and scalability limitations of MLNs. The in-

18 Chapter 2. Background and RelatedWork

ference stage of MLN consist of two parts, the grounding phase and the search phase. In the

current state-of-the-art MLN inference engine, Alchemy [1], the grounding phase is a top-

down procedure. On the other hand, the proposed framework TUFFY implements a bottom-up

grounding approach in order to take advantage of the RDBMS optimizer which results in faster

execution time. To further improve on the inferencing function, TUFFY developed a novel

hybrid architecture that focuses on the usage of local search procedures in main memory. The

third contribution from TUFFY is a partitioning technique which allows the system to intro-

duce parallelism.

2.5.2 Risk Management

Zawawy et al. [63] proposed a framework to aid in the diagnostic task of root cause analy-

sis. The proposed framework is based on requirement goal models, which are used alongside

Markov Logic Networks to develop a diagnostic knowledge repository. The motivation be-

hind this framework is to develop a tool that aids human analysis in the overwhelming task of

monitoring and evaluation of complex logging data for large complex systems. The proposed

framework consists of three parts, building a knowledge base, observation generation and diag-

nosis. In the first part, the functional and non-functional system requirements are represented

as a collection of goal models. In the second part, the goal models are used to generate the

diagnostic rule knowledge base and the logging data is used to generate the ground atoms.

In the third step, an MLN is constructed based on the knowledge base. The resulting goal

model can be organized in a hierarchical structure which allows for greater comprehension and

explainability of the diagnostic process.

Stülpnagel et al. [61] proposed a framework that centers around Markov Logic Networks

to predict the expected availabilities of infrastructure services and components. The motivation

behind the framework is the inefficient task of manual threat analysis, thus the proposed semi-

automated approach. The proposed framework consist of two parts, a dependency graph and

the Markov logic networks. The dependency graph contains all major infrastructure services

and components. The data from the dependency graph is then used to generate the MLN,

alongside the learnt weights for the measured availabilities. Afterwards through inference and

2.6. Microservice Dependency Graph Analysis 19

the addition of new threats, the framework is able to predict the availabilities of the system’s

components that correspond to various threat conditions.

2.6 Microservice Dependency Graph Analysis

2.6.1 Service/Invocation chain logs

Y. Lan et al. [33] proposed a dependency model and dependency mining method based on call

chain logs. Their research focused on extracting local dependencies and discontinuous depen-

dencies. The proposed service dependency mining algorithm is composed of four steps. The

first step is obtaining chain tracking log data from multiple data sources and undergo data clas-

sification and aggregation. The second step is counting all the local service calls, including the

repeated ones. The third step is local service dependency mining using the count determined

in step two. The final step is the generation of discontinuous service dependency candidate set.

As a result, the proposed algorithm extracts the discontinuous service dependency extraction

The proposed dependency model by Y. Lan et al. [33] is based on service call chain logs

unlike our proposed dependency model in which it is based on both individual microservice

logs and SQL logs. The utility of Y. Lan et al. [33] framework is to provide assistance in the

optimization and deployment of microservices, where as the value of our proposed framework

is to provide data dependencies that allow for the identification of potential design and policy

violations.

S. Mat et al [39] proposed GMAT (Graph-based Microservice Analysis and Testing), a

tool capable of analyzing risky service invocation chains and trace the linkage between mi-

croservices for new versions of a system. Additionally the proposed GMAT is capable of

automatically generating a Service Dependency Graph (SDG) which can be used to visualize

and analyze the dependencies between microservices. Another feature of GMAT its ability to

detect service invocation chains (SIC) and apply anomaly detection onto it. SIC are obtained

by querying the SDG and filtering out redundant data, such has sub-paths. Once the SIC is

obtained cyclic dependency is detected through the application of Tarjan’s Strongly Connected

Component algorithm [57].

20 Chapter 2. Background and RelatedWork

GMAT obtains the service call information through the use of the Java Reflection mech-

anism or alternatively using the extended Swagger(OpenAPI). As a result GMAT is only ap-

plicable to systems that make use of either Java Reflection or Swagger to obtain the service

invocation call data. Comparatively, our proposed framework does not require the system to

include specific documentations or mechanism. Our proposed dependency model is created us-

ing the logs generated by the system. As a result our framework is more flexible and given the

richer data obtain through the logs, the dependency model includes richer data dependencies

between microservices.

Gaidels and Kirikova [24] focus on assessing the quality of the underlying architecture

in microservice based system. Through the use of graph algorithms, such as centrality and

community detection algorithms, they were able to aid in the detection of architectural anti-

patterns, critical components and cycling dependency within the service dependency graph.

The two classes of algorithms used for static graph analysis were centrality algorithms and

community detection algorithms. The centrality algorithms are capable of identifying the

most critical node(s), and provide additional information regarding credibility, accessibility,

and bridges between groups. Some examples of centrality algorithms used include, Degree

centrality, Harmonic centrality and Betweenness centrality. Community identification are used

to help understand complex networks by identifying coherent substructure [11]

Similarily, I. U. P. Gamage and I. Perera [25] also focused on identifying anti-patterns in

a microservice based system using graph algorithms on a service dependency graph. The pro-

posed approach is divided into four steps. The first two steps are, retrieve architectural data of

the system and create the models containing the service dependencies. The third step is to ap-

ply the graph algorithms to the system model. The fourth step is to visualize the system model

and any relevant metrics. The proposed framework focused on identifying anti-patterns using

specific graph algorithms, they are as follows: The Knot using Clustering coefficient, Nano

Service using Degree centrality, Service Chain using a custom algorithm, Bottleneck service

using Degree Centrality, and Cyclic Dependency using Strongly connected components.

The service dependency graph used by both Gaidels and Kirikova [24] and I. U. P. Gamage

and I. Perera [25] was generated using established tracing data tools. The dependency graph

2.6. Microservice Dependency Graph Analysis 21

used by previous research focuses on service invocation calls, in contrast to our dependency

graph which contains dependencies regarding the specific flow of data throughout the system.

In terms of assessing the quality of the architecture, our framework focuses on design and pol-

icy violations whereas they focus on identifying anti-patterns, critical components and cycling

dependency.

JCallGraph developed by Liu et al. [37] is a tracing and analytic tool used to represent the

invocation relationship between microservices in a microservice based system. The three main

capabilities of the proposed framework are, invocation modeling within milliseconds, min-

imal over-head without impacting applications performance, zero-intrusion and application-

agnostic. Tracing is achieved through the use of JSF, a microservice management platform, and

the addition of minimal critical tracing points in the middlewares to record the request-response

relationship between microservices. In order to maintain the low impact on the system, the

framework only samples successful invocation but records all failed invocation occurrences

since it can be used for root-cause analysis.

The invocation graph produced by JCallGraph [37] is created using the microservice man-

agement platform JSF to trace invocation relationships through tracing points. The proposed

framework’s use of JSF results in zero code intrusions to the system, similarly to our proposed

framework since it is logged based approach. JCallGraph also produces additional informa-

tion relating to invocation dependencies, it also contains information regarding their frequency

from both the perspective of a callee and a caller in an invocation chain. In to our proposed

framework, where frequency is not depicted but rather the data flow between microservices.

2.6.2 Graph Algorithms on Dependency Graphs

GSMART (Graph-based and Scenario-driven Microservice Analysis, Reuse, and Testing) de-

veloped by Ma et al. [40] is a tool to aid in development and operation of a microservice

based system. The four main functions of GSMART are the following: Managing and visual-

izing dependency relationships between microservices, detecting cyclic dependency, selection

of regression test cases, retrieval of existing microservices. The generation of the service de-

pendency graphs is based on the collection of all service invocation links. Additionally this

22 Chapter 2. Background and RelatedWork

framework also implements a service invocation chain to further enrich the information in the

service dependency graph. Detection of cyclic dependency is categorized into either weak

or strong. Weak cyclic dependencies occur among multiple services but not among multiple

endpoints, while strong dependencies occur among multiple endpoints.

The service dependency graph created by GSMART [40], is created using the service in-

vocation links obtain from the Reflection mechanism. In contrast to our proposed framework,

there is no need for additional implementations in order to generate the dependency graph. In

terms of graph analysis GSMART is capable of detecting faults related to cyclic dependency,

while our proposed framework’s graph analysis focuses on policy and propagation violations.

2.6.3 Source Code Analysis

Pigazzini et al. [49] explore the field of research in architectural debt by providing a tool to

explore the detection of architecture anti-patterns. Specifically, their research focuses on the

identification of cyclic dependencies, hard-coded endpoints, and shared persistence. Cyclic

Dependency detection is accomplished through the use of a microservice based system’s call

graph and Arcan. The tool created generates a call graph by analyzing the source code files and

docker/Spring configuration files. Hard-Coded Endpoints are detected by scanning the source

code and using pattern matching to identify IPv4 addresses and ports. Shared Persistence

detection is achieved through the database information in the configuration files.

The framework created by Pigazzini et al. [49] uses a combination of configuration files

and source code analysis in order to assess the underlying architecture, in contrast with our

research where analysis of the system is based of only the log files. Given that the framework

provided by Pigazzini et al. [49] requires the usage of Spring framework and docker, the anti-

pattern detection cannot be applied to all systems. Comparatively to our proposed framework,

given its log based approach, it does not have any system requirements.

2.6. Microservice Dependency Graph Analysis 23

2.6.4 Dynamic Service Graph Generation

MicroHECL developed by Liu et al. [36] is a high-efficient root cause localization for avail-

ability issues in microservice based systems. The framework ranks root causes candidates

for potential anomaly propagation chains by analyzing the dynamically generated service call

graph. MicroHECL is capable of detecting three types of anomalies, performance anomaly,

reliability anomaly, and traffic anomaly. MicroHECL consists of three parts, Service call graph

construction, Anomaly propagation chain analysis, and Candidate root cause ranking. First

the service call graph is constructed during the detection of an availability issue, using the ser-

vice calls and metrics retrieved from the system. Then the anomaly propagation chain analysis

function will traverse through the service call graph and determines a set of possible services

as candidate root causes. Lastly the candidate root cause ranking function will take the set of

root causes based on the Pearson correlation coefficient [3].

The service call graph in MicroHECL [36] is created at run-time by the run-time moni-

tor, whenever an availability issue occurs. Compared to our proposed framework, in which

it does not require the system to have any additional implementations to generate the depen-

dency graph. However, both frameworks allow for an creation of updated snapshots of the

current state of the microservice system. MicroHECL detects different types of anomalies us-

ing machine learning and statistical methods. Similarly, our proposed framework makes use of

Markov Logic Networks to detect dependencies between microservices. Once the dependency

graph has been generated both frameworks implement some sort of propagation analysis. Mi-

croHECL implements an anomaly propagation chain analysis, in which it identifies potential

root cause services for the anomaly. Our proposed framework implements a policy violation

propagation analysis, in which it detects if there have been any propagation violations past the

original policy violation source.

2.6.5 Version-Based Microservice Analysis

VMAMV by S. Ma et al. [41] is a Version-based Microservice Analysis, Monitoring, and

Visualization tool developed for automatic design problem detection for microservice based

systems with multiple versions in design time. Additionally the framework also detects service

24 Chapter 2. Background and RelatedWork

anomalies at runtime. The framework is composed of several parts and they are as follows,

Microservice code analyzer, service registry register, monitoring object bridge, dependency

graph module, and monitor module. The microservice code analyzer is a service side library

that provides Java annotation functionality for the labeling of communication relationships be-

tween microservices. The service registry register contains the basic information for registering

and unregistering of services. The monitoring object bridge is the bridge between services and

monitored objects. The dependency graph module is responsible for the creation of the de-

pendency graph and the detection of any errors or potential problems within the dependency

graph. The monitor module is consists of the generation and analysis of metrics, alongside the

detection of anomalies.

2.7 Research Gap

In section 2.6, we have explored various research publications in the field of Microservice De-

pendency Graph Analysis. As discussed above, their analysis of a microservice based system

is centered around the service call dependency graph. Although this can provide critical in-

formation about the system in terms of certain anti-patterns or anomalies, it is still limited in

capabilities due to the simplicity of the service call dependency graph. In contrast to the pro-

posed framework described in this thesis, in which the focal point of the framework is a more

data rich dependency graph. The proposed dependency graph contains specific data depen-

dencies between microservices. The additional data provided in the dependency graph allows

for more extensive evaluations of the microservice based system. The additional analysis ca-

pabilities of the dependency graph provide developers and engineers with more information

regarding their system, which can result in the more efficient development and deployment of

a microservice based system. Additionally, the research approaches discussed above for the

most part either require additional implementations to the microservice based system or that

the microservice based system be built on top of specific libraries in order to accommodate

for their analysis tools. Unlike the technique proposed in this thesis, which does not have any

requirements for the microservice based system since it is based on the systems logs.

Chapter 3

Process Outline and Architecture

3.1 General Outline

In this Chapter we present the overall microservice dependency extraction process, we discuss

the rationale and importance of each step, we provide a corresponding short example for each

process step, and we discuss how these steps can be automated so that a usable framework

can be built. The process aims to yield a typed, labelled, directed multigraph, we refer to as

Microservice Dependency Graph (MDG), and is composed of four steps.

The block diagram of the approach is depicted in Figure 3.1, while the sequence of the

process steps is depicted in the activity diagram in Figure 3.2.

The first step (see Figure 3.1), deals with developing drivers that parse the event logs emit-

ted by each component logger M1, M2, Mw, and extracting the individual event entries L1, L2,

. . . Lw. The second step is to reconcile the schemas of each log file. The log schema rec-

onciliation process aims to identify attributes in the schemas S L1, S L2, . . . S Lw of loggers

M1, M2, Mw, which refer to the same concept (i.e. they relate). This can be a manual pro-

cess by knowing the schema structure of each logger, or can be automated by using schema

mapping techniques. Schema mapping is a technique that has been investigated in the context

of databases [50], [53]. In this thesis, we use a technique known as Formal Concept Analysis

(FCA) [27]. The use of FCA is discussed later in this Chapter and in detail in Chapter 4.

The second step yields a set of associations between schemas and is referred to as the log

schema reconciliation step.

25

26 Chapter 3. Process Outline and Architecture

Figure 3.1: The block diagram of the approach

The third step of the process is to use the logged events along with the schema-level asso-

ciations in order to create event-level associations. As depicted in Figure 3.1, the event level

associations are denoted as sets of sequences of events, where each sequence represents events

emanating form different loggers, have associated attributes (see second step) and refer to the

same transaction path. We refer to this step as the System-Wide Event Matching step. The event

associations can be automated by applying event association domain logic encoded in the form

of weighted rules as discussed later in this Chapter and in detail in Chapter 5. In the fourth

step of the process the event sequences are analyzed, and a Microservice Dependency Graph

(MDG) is compiled. The MDG is composed of nodes and edges. A node denotes a component

in a microservice architecture (i.e. microservice, database, service bus, pub/sub framework),

while an edge denotes a data exchange or a call (i.e. a request). Between two nodes there may

exist more than one edge denoting different interactions. The domain model of the proposed

Model Dependency Graph is described in Chapter 6 and is depicted in Figure 6.1. This fourth

step concludes the Microservice Dependency Graph creation process.

As depicted in Figure 3.1, once a Microservice Dependency Graph is created, this can be

fed to different policy handlers. A policy handler is associated with an edge of the MDG and

3.1. General Outline 27

Figure 3.2: The sequence of process steps

denotes a specific policy requirement or constraint. Each policy handler evaluates a specific

domain policy (e.g. a data transfer policy or constraint between two microservices) and pro-

duces a result which is fed to a compliance reasoning engine. Based on the results obtained

by the individual policy handler, the compliance reasoning engine can then assess the overall

compliance of the system. Even though the scope of the thesis is the extraction of the MDG, we

discuss in Chapter 6 the potential uses of MDG and the overall architecture of the invocation

of the different policy handlers.

In the following sections we outline each step, we discuss its rationale, and we present

an illustrative example. The schema reconciliation, system-wide event matching, and MDG

creation are discussed in detail in Chapters 4, 5, and 6.

28 Chapter 3. Process Outline and Architecture

Figure 3.3: A sample of the centralized logs

Figure 3.4: A breakdown of four ’noisy’ message broker events

3.2 Data Extraction

As depicted in the activity diagram in Figure 3.2, and discussed above, the first step is to

harvest the logs from the different components (i.e. microservices, service busses, pub/sub

infrastructure and data base servers). The log data collected for the open source microservice

architecture system used to test the proposed framework, Pitstop [60], is collected from Seq

[54]. Seq is a centralized logging server that the system implemented for the collection of all

the logs produced throughout the Pitstop system. This centralized logging server supports the

Pitstop’s logging framework, Serilog. Serilog is utilized for its structured logging capabilities

in complex, distributed and asynchronous systems [16]. Additionally the Serilog log formatting

required the usage of CLEF-Tool(Compact Log Event Format Tool) [15] for converting the

3.3. Log Schema Reconciliation 29

Figure 3.5: An example of a microservice event log containing database command information

newline-delimited JSON data into standard JSON format. The SQL logs were obtained from

the MS SQL Server. The process of retrieving the SQL logs required manual execution of

the auditing process for each of the databases initialized in the SQL server. These were the

steps taken for extracting the logs from the system, however the method in which the logs

are obtained does not affect the concepts of the proposed technique. For example, lower level

network traffic events can also be harvested without affecting the proposed technique.

3.3 Log Schema Reconciliation

The second step of the process is divided into two parts, Log Schema Reconciliation and Con-

ceptual Event Association.

Log Schema Reconciliation focuses on establishing relationships at the schema level, asso-

ciations between Microservice events and SQL events. This part of the step is divided into four

phases, Filtering Microservice Events, Filtering SQL Database Events, Pairing SQL Database

Events with Microservice Names, and Pairing SQL Database Events with Microservice Events.

30 Chapter 3. Process Outline and Architecture

Figure 3.6: A sample of a SQL database event log

In this section a brief overview is provided explaining each step, a thorough explanation of this

process is provided in Chapter 4.

3.3.1 Schema Reconciliation

Filtering Microservice Events

The logs from the SQL database and the Microservice Architecture System (MSA) undergo a

filtering process. As seen shown in Figure 3.3, the volume of data collected by a MSA system

can be very high. This is a result of the logging frameworks implemented in the Microservice

Architecture System collecting a large volume of information detailing the state of the system,

activities, communications between containers and much more, most of which may not be

relevant in the search for data dependencies. Thus, a filtering process is required in order to

reduce the amount of noise in the log data. An example of noisy data is shown in Figure 3.4, in

which the sample events provide little to no information regarding dependencies in the system.

3.3. Log Schema Reconciliation 31

Figure 3.7: An example event structure

Filtering is achieved through creating segments of events that correspond to HTTP requests.

Through this filtering process we are able to identify events of interest, more specifically the

Executed DbCommand as shown in Figure 3.5, which provides critical information regarding

data manipulation in the SQL databases.

Filtering SQL Database Events

In this step the database SQL logs also require a filtering processing. Similarly to the MSA

system logs, the SQL logs contain a large amount of information that is not directly related

to data dependencies. The SQL logs are filtered based on their Action ID property. More

specifically we extract events that have their Action ID value set as either INSERT, UPDATE or

DELETE. The reasoning for this criterion is these three types of events are directly correlated

with the creation, modification and deletion of data, meaning any events of these types will

provide essential information towards data dependencies throughout the system. A more in-

depth explanation for this process is provided in Section 4.1.

32 Chapter 3. Process Outline and Architecture

Figure 3.8: An example set of associated events, highlighting matching values

Pairing SQL Database Events with Microservice Names

In the second phase, the filtered event logs undergo a pairing process using additional system

logs. Pairing is required due to incompleteness and inconsistencies between logging formats

in respects to the labelling of data. The SQL logs provide useful information in terms of data

creation, modification and deletion, however they provide no insight into the progressive flow

of events that led to the SQL event occurring. These types of incompleteness is something that

must be addressed in order to develop a complete dependency graph model. The first step to-

wards data comprehension for the SQL events is to determine which microservice instantiated

the SQL event. This is partially achieved through the SQL event property Client IP, as shown in

Figure 3.6 which depicts a single INSERT SQL event. This property provides us information

regarding to the source IP that instantiated the event, however this is where the inconsisten-

cies between logging formats occur. In the previously analyzed MSA event logs, there are

zero references to microservice IP’s, as a result further information must be retrieved. This

is accomplished through querying docker for the IP addresses of each microservice and with

this additional data we are able to translate the SQL event’s Client IP into its corresponding

microservice name. Further explanation for this process is provided in Section 4.2.

3.3. Log Schema Reconciliation 33

Figure 3.9: An example FCA table [38]

Pairing SQL Database Events with Microservice Events

In the third phase, initial event reconciliation occurs between the MSA event logs and SQL

logs. From the previous phase we were able to establish the source microservice names for

the SQL logs, in this phase we focus on associating which MSA events correspond to which

SQL events. An example of an SQL log is depicted in Figure 3.6 and an example of a MSA

event log is depicted in Figure 3.7. Separately each event log only contains a subset of the

overall data that represents the complete state of the system at the instance of the events exe-

cution. This is due to the fact that the microservice event logs lack information indicating their

involvement with the SQL databases and vice versa. This can be seen in Figure 3.7 where the

data corresponding to the event creation and event contents are shown but provide no infor-

mation regarding the SQL database manipulation. In contrast to the SQL events like the one

shown in Figure 3.6, in which they contain information regarding the SQL data creation and

the data contents but provide no information regarding the source event that initiated these data

34 Chapter 3. Process Outline and Architecture

Figure 3.10: An example FCA lattice [38]

manipulations. The initial process for the association between MSA events and SQL events is

achieved through an algorithm that establishes matches and potential matches based on spec-

ified criteria. The first criterion used to determine whether a MSA event and SQL event are

a match is based on their timestamps, in order for the events to be associated they both must

occur within a responsible time frame of each other. The second criterion used, is based on

their data attributes. In order for the events to be associated, they must also contain the same

or a subset of each others data attributes. A thorough explanation for this process is provided

Section 4.3.

3.3.2 Conceptual Event Association

Attribute Synonym Synchronization

The first phase is a supplementation to overcome the short comings in the third phase of Sec-

tion 3.3.1. In the third phase of Section 3.3.1 there is portion of the SQL events that were not

able to be associated with MSA events. This corner case is not a product of nonexistent associ-

ations, rather it due to events being matches only based on their time stamps. This means that

the two events did not contain any subset of matching attributes. This however does not mean

the events are not associated with each other, instead this simply raises an issue with the event

3.3. Log Schema Reconciliation 35

Figure 3.11: A subset of the Pitstop systems FCA lattice

attributes. This corner case is a result of attributes that reference the same type of data having

different naming conventions. An example of this can be seen in Figure 3.8, in which the two

events should be associated because they contain instances of the same data. However, a closer

inspection reveals that the attribute pairs (JobId, LicenseNumber) and (Id, VehicleLicenseNum-

ber) reference the same data values but are labelled different. This inconsistency in the data

results in the algorithm from the previous step not able to match these types of attributes, even

though they should be matched. The solution for this problem is through the usage of the

Attribute Synonyms list. The Attribute Synonyms is a collection of attributes and their corre-

sponding synonyms. The collection is established through the attribute and value comparison

throughout all other established MSA events, in which any occurrances like the one previously

described are collected. The Attribute Synonym collects all the attributes across the established

MSA events and extracts any instances of identical values with inconsistent attribute labels.

Through this additional data implemented into another algorithm, we are able to establish the

remaining MSA events with their corresponding SQL events. A detailed explanation of this

process and its corresponding algorithms are further explained in Section 4.4.1.

36 Chapter 3. Process Outline and Architecture

Event Association - Conceptual Method

Previously we have sought to establish the association between MSA events and SQL events. In

this part we focus on a conceptual method for establishing associations between MSA events.

The methodology discussed here provides the initial ground work required for developing an

automated process capable of establishing the event associations. In this part event associations

are established as either properMatches or partialMatches. Event pairs are considered proper-

Matches if they occur within a predefined time-frame and if either event’s attribute values are

a subset of the other event’s attribute values. If an event pair only meet the time-frame criteria

then they are established as a partialMatch. The first phase of this part begins with matching

events based on their timestamps. In order to efficiently determine which event logs may be

associated with each other, we first apply the criteria that two events have the potential of being

associated with each other so long they occur within a responsible time frame. The responsible

time frame established is a time frame of +/- 500 milliseconds.

In the second phase, the pairs of MSA events that meet the timestamp criteria are iterated

through and examined for the second criteria. In this phase, events are considered to be a

properMatch if the attribute value list of one event is a subset of the other event’s attribute

values. If the criterion is not met then the event pairs are established as a partialMatch. Once all

the event pairings have been examined and all the initial properMatches have been established,

then further analysis is conducted on the partialMatches.

The partialMatches are further analyzed in order to find any pairs that should be classi-

fied as properMatches but were not since they did not pass the second criterion. The second

criterion was not applied as a strict restriction, but rather as a form of filtering the data by estab-

lishing the initial properMatches. The second criterion states that one of the event’s attribute

values must be a subset of the other event’s attribute values. However, in a distributed sys-

tem with various databases instances connected to various services, a receiving microservice

may supplement the receiving data with other relevant data obtained elsewhere, in which case

it would result in a response event containing more than just the receiving data. In order to

capture this scenario, the partialMatches are analyzed using the criteria that states

”If one or both of the events in a partialMatch are not apart of an already established

3.3. Log Schema Reconciliation 37

properMatch, then the partialMatch is considered a properMatch”. This additional criteria

captures the scenario previously described.

A detailed description for the process explained above is provided in Section 4.4.2.

Automating the Attribute Synonym Process

In the previous section, a conceptual framework to identify associations between events was

established. In this section, the focus is on developing a methodology capable of achieving the

same associations through an automated method.

We consider that each event is conforming with a schema and is represented as a JSON

object with one or more attributes. An example event in JSON format is depicted in Figure 3.7.

The schema reconciliation step has two phases. In the first phase, synonyms of attribute names

are identified manually (e.g. VehicleLicenseNumber and LicenseNumber or JobID and Id are

identified as synonyms - see Fig. 3.8). This a manual process but it can be automated using

techniques proposed for schema matching such as the ones in [50] and [53]. In the second

phase, Formal Concept Analysis (FCA) [27] is applied on the event schemas. In FCA theory, a

formal concept is defined to be a pair (A, B), where A is a set of objects (called the extent) and

B is a set of attributes (the intent) such that: a) the extent A consists of all objects that share

the attributes in B, and dually; b) the intent B consists of all attributes shared by the objects in

A. This creates a lattice where the nodes denote objects with attributes. The top element of the

lattice (i.e. the most general concept) contains all objects and their common features (if any),

while the bottom element of the lattice (i.e. the most specialized concept) contains the all the

objects containing all the features. In the lattice an attribute v involves all objects at and above

the node at which the attribute appears, while an object A is required for all attributes at and

below the node at which the object appears. An example lattice is depicted in Figures 3.9 and

3.10 adapted from [38], while Table 4.1 and Figure 4.8 depict the actual objects and attributes

denoted by analyzing the schemas of the sample microservice system we have experimented

with [60].

An example of a subset of the Pitstop [60] lattice is shown in Figure 3.11. This lattice

represents four events and eight attributes, as shown below:

38 Chapter 3. Process Outline and Architecture

EVENTS

(’WRK:Register Customer’)

(’INV:Register Customer’)

(’NTF: Register Customer’)

(’RMQ:CustomerRegistered’)

ATTRIBUTES

(’CustomerId’)

(’Name’)

(’TelephoneNUmber’)

(’Address’)

(’PostalCode’)

(’City’)

(’EmailAddress’)

(’Id’)

where, WRK represents WorkshopManagementEventHandler, INV represents InvoiceService,

NTF represents NotificationService, and RMQ represents Rabbitmq.

From the structure of the lattice we can derive the relationships between events and at-

tributes. For example, the attributes ’CustomerId’ and ’Name’ are at the top of the lattice

which means all the events below contain these attributes. In contrast, the attribute ’Id’ is at the

bottom of the lattice which means none of the events above contain this attribute. Similarly,

the event RMQ:CustomerRegistered contains all the attributes in the events above itself, in this

case the events are ’NTF:Register Customer’, ’INV:Register Customer’ and WorkshopManage-

mentEventHandler. The event ’NTF:Register Customer’ is below the event WorkshopManage-

mentEventHandler, which means it contains all the attributes in WorkshopManagementEven-

tHandler. In contrast to RMQ:CustomerRegistered which is below NTF:Register Customer,

meaning the attributes in NTF:Register Customer are also in RMQ:CustomerRegistered except

RMQ:CustomerRegistered contains attributes from the path that is in parallel to NTF:Register

Customer. The parallel path is the one containing INV:Register Customer, meaning the at-

tributes in RMQ:CustomerRegistered are the same as NTF:Register Customer except it also

contains the attributes ’Address’, ’PostalCode’ and ’City’ which come are found in INV:Register

Customer. As described, the FCA lattice can provide a lot of insight into the relationship be-

3.4. System-Wide EventMatching 39

tween events.

A detailed analysis and description of this process and the algorithms used are provided in

Section 4.4.3.

3.4 System-Wide Event Matching

The automation of the event association step has two parts. In the first part, the logs are

traversed and a collection of facts are emitted. A typical fact is of the form feature(attribute,

event) indicating that event has attribute. A complete list of facts emitted in this phase of the

process are listed in Section 5.1.1. A thorough description and analysis of this step is provided

in Section 5.1.1.

In the second part, FCA results obtained previously in the second step, are used to compile

rules as the ones depicted in Figure 5.1.2 to be fed to Alchemy [1], a Markov Logic Network

inferencing engine. More specifically, the rules fed to Alchemy [1] are trained on the specific

log data set. Training the rules means that a numerical weight is assigned to each rule. A higher

weight indicates that the rule is more important. We have opted to use 50% of the log data set

for training and the other 50% for testing. The result of the inferencing is a collection of facts

indicating whether two events are matched, that is they belong to the same collection of events

for a given transaction. A detailed description of the rule compilation process is provided in

Section 5.1.2. While an in-depth description of the MLN implementation is provided in Section

5.1.3.

3.5 Microservice Dependency Graph Extraction

3.5.1 Event Collection

In this phase the previously associated event pairs are cross referenced with each other so that

a collection of events is created. This is required since a list of event pairs only provides us

with the information that two events are associated with each other, it does not provide any

insight into the totality of events related to the specific event flow throughout the system. Thus,

40 Chapter 3. Process Outline and Architecture

we must take the list of pairs of events and apply the transitive property. For example, if we

have the event pairs (EventA, EventB) and (EventB, EventC) then using the transitive property

we can establish that the three events, (EventA, EventB, EventC), are all associated with each

other in an event collection. We apply this property to all the events and generate a list of event

collections, each event collection containing a list of events that are associated with each other.

The detailed process for the event collection extraction is further explained in Section 6.2.

3.5.2 Path Extraction and Graph Formation

In the previous phase we derived a list of event collections (i.e. groups), in which each col-

lection is made of up events that are associated with each other. However, this provides no

information in regards to the logical flow of the events. More specifically, the groups do not

provide information about the ordering of the events. For example, the event group (EventA,

EventB, EventC) does contain information about which of the three events is the source event,

which one is the second and which is the third in sequence. Furthermore, we are not able to

make any deductions regarding the type of paths created by these events. For example, do all

three events occur in a linear fashion, (EventA→EventB→EventC), or are there two separate

paths such as (EventA→EventB) and (EventA→EventB→EventC). In order to determine the or-

dering we consult the associations with the SQL server, which may give us information about

causal order (i.e. an event happens before its observable effects). More specifically, as it will

be discussed later in this thesis, we consider a relationship happenedBefore in order to mode

causality. This relationship can be derived to certain extend by the logs. For example, from the

component logs we establish that EventA originates from the middleware, then the middleware

distributes the event to all other components generating new events (causality between receiv-

ing a stimuli and reacting to it), such as the events EventB and EventC which can be considered

response events to the event originating from the middleware. Using the happenedBefore rela-

tion we are able to establish to a certain extend the relative ordering, that is EventB and EventC

occurs after EventA. Using this type of analysis we iterate through all the event groups and we

derive corresponding paths. The entirety of the path extraction process is explained in detail in

Section 6.3.

3.5. Microservice Dependency Graph Extraction 41

Once we have the list of all the derived paths we can then generate the MDG multigraph.

This process is accomplished through an algorithm that iterates through each event in a path

and adds a node for each microservice and an edge between each pair of consecutive events in

the path. An in-depth explanation of this process is provided in Section 6.4.

The following Chapters discuss all of the steps described above in more detail.

Chapter 4

Event Association and Schema

Reconciliation

4.1 Filtering Data

In order to reduce the volume of the logged events to be processed and make the system more

tractable, we apply an event filtering technique so that we keep only events pertinent to com-

piling a microservice dependency graph.

4.1.1 Filtering Microservice Events

The initial part of filtering exploits the HTTP based messaging between microservices. The

analysis of HTTP requests/replies of message broker’s log data can reveal a group of HTTP

tuples containing the initial Start processing HTTP request, the final End processing HTTP

message and all events that have occurred in-between. More specifically, each group corre-

sponds to a different initial type of HTTP request (POST or GET), its corresponding reply or

its corresponding End processing HTTP message, and all the events occurred in between. An

example can be seen in Figure 4.1. In this example partial data for the events corresponding

to one HTTP request partition is shown. In the provided example only partial data is shown,

the @t and @mt components are shown, in order to avoid cluttering. The partition begins with

an event containing the Start processing HTTP request and ends with the event containing the

42

4.1. Filtering Data 43

End processing HTTP request.

After the logs have been filtered and organized into lists of various HTTP message types,

further analysis is conducted on the events captured during the HTTP message’s timeline in

order to obtain additional insights into the data interactions between microservices. The anal-

ysis is based on extracting information related to data manipulation requested (e.g. the request

for a CREATE, READ, UPDATE or DELETE operation to a corresponding data store). For

example, the occurrence of an embedded SQL INSERT statement along with its arguments

reveals data exchanges between a microservice and a database. An example is shown in the

highlighted HTTP event in Figure 4.1 and the complete logged event is shown in Figure 4.2.

The identification of an SQL command within the logs provides initial evidence of data

dependencies. Using the event log’s message template, which can be seen in Figure 4.2 as the

”@mt” attribute, the full event logs can then be queried for any other occurrences of a similar

instance of a SQL command.

Consequently, the SQL statement parameters are extracted from each event that references

the corresponding enclosed SQL statement. The parameters of the SQL statement are char-

acterized by their enclosure using brackets. This can be seen once again in the highlighted

portion of Figure 4.2 with some of the example parameters including (CustomerId, Address,

City, EmailAddress, Name, Postal Code, TelephoneNumber). The collection of the extracted

SQL parameters can then be cross-referenced against the full log corpus to select any Non-

Executed DbCommand event that contain references to the same parameters.

The resulting output returns a list of microservice events containing elements from the SQL

statement parameters. An example of non-message-broker events that were found using this

pattern matching method can be seen in Figure 4.3, with the pattern matched SQL statement

parameters being highlighted. The highlighted attributes, ”Id”, ”Name”, ”Address”, ”Post-

calCode”, ”City”, ”TelephoneNumber” and ”Email” all correspond to Executed DbCommand

events that contained those attributes as SQL Statement parameters.

44 Chapter 4. Event Association and Schema Reconciliation

4.1.2 Filtering SQL Database Events

The final part of filtering data is the filtering of the SQL data. Prior to filtering out any non-

relevant SQL events, the raw log file must first be processed and formatted into a quarriable

data structure. The reasoning for the restructuring of the SQL logs can be seen in Figure 4.4,

in which the raw log data is shown to not be properly organized. Thereforethe SQL logs are

required to be formatted into something more efficient. Figure 4.5 depicts a dictionary data

structure containing all the data of a single SQL event.

After the SQL events have been properly formatted, the SQL events must undergo a filter-

ing process. Similarly to the MSA event logs, the SQL logs are filtered in order to reduce the

volume of data needed to be processed. The SQL filtering is based on the events correspond-

ing to the INSERT, UPDATE, DELETE commands. The reasoning for these three specific

commands, is due to the fact that these type of commands are directly related to the creation,

modification and deletion of data.

4.2 Pairing SQL Database Events with Microservice Names

The database event logs undergo a cross referencing process with additional system logs. In

the previous phase database events and the events emitted by all other components were se-

lected based on their attribute values. However, individually each of these log events does

not contain sufficient information to establish proper associations with other events. There-

fore, more information has to be considered. As depicted in Figure 4.4, in a database logged

event, the only data representative to the microservice which originated the database event is

the database event attribute Client IP. However, aside from the SQL event logs, there does not

exist microservice logs that contain information related the IP address of the microservice. In

order to obtain this information, the docker containers listing the microservice must be dynam-

ically queried, this is due to the fact that the IP address for each docker container varies upon

system initialization. Once the docker container IP information has been retrieved we can then

cross reference all the database logged events (i.e .the SQL log events) and match the Client IP

with the corresponding container name, which in this case is the microservice’s name. The end

result is the ability to associate each database event with the microservice name that caused

4.3. Pairing SQL Database Events withMicroservice Events 45

Figure 4.1: Database event (highlighted) within the partial event data for one HTTP Request
partition

it. Still, we need to go one step deeper, that is associate the specific microservice event that

caused the specific database event. This is discussed in detail in the following section below.

4.3 Pairing SQL Database Events with Microservice Events

In the previous step, a specific database SQL event was associated with a microservice name.

Here, we proceed the analysis further, for associating a specific database SQL event with a

specific causing microservice event. The algorithm used to match a database event logs with a

microservice event (from the microservice identified in the previous step) is depicted in Algo-

rithm 4.1.

The algorithm consists of two parts. In the first part of the algorithm determines potential

matches based on the events timestamps and the intersecting set between the event’s attribute

46 Chapter 4. Event Association and Schema Reconciliation

Figure 4.2: An example log of a message broker’s containing SQL data

sets. After all potential matches have been found, the algorithm then goes through all potential

matches and determines which potential match is most likely to be the correct match.

Algorithm 4.1 takes two parameters MicroserviceEvents and SqlEvents. The first parameter

MicroserviceEvents is a list containing all the microservice events that have been previously

established to contain relevant dependency data. Similarly, the second parameter is a list con-

taining all the database SQL events containing relevant dependency data. Both of these event

lists were obtained from the process discussed in Sections 4.1 and 4.2.

In the beginning of the algorithm, lines 8-11, the algorithm loops through all microservice

events in the MicroserviceEvents list and extracts the event’s attributes and timestamp infor-

mation. The event attributes are stored in a set. Next, in lines 12-13 two lists are instantiated.

The first list, potentialEvents, will contain all potential events. Potential events are defined as

events that occur within a predefined time-frame of each other and share at least one attribute

in common. The second list, timeEvents, will contain all the time events. Time events are

defined as events that occur within a predefined time-frame of each other, but do not contain

any attributes in common.

4.3. Pairing SQL Database Events withMicroservice Events 47

Algorithm 4.1 MSA and SQL Event Reconciliation
1: – Let MicroserviceEvents be the set of microservice events derived from previous phases
2: – Let S qlEvents be the set of SQL events derived from previous phases
3: - Let MatchedEvents be the set of pairs ⟨sql, microservice⟩ of matched events
4: - Let potentialEvents be a list of potential matching events
5: - Let timeEvents be a list of time matching events
6: - Let IncompleteEvents be the set of pairs ⟨microservice, timeEvents⟩
7:
8: procedure reconcileEvents(MicroserviceEvents, S qlEvents)
9: for each eventm in MicroserviceEvents do

10: microserviceAttributes = set(eventm.getAttributes())
11: microserviceT imestamp = eventm.getTimeStamp()
12: potentialEvents = []
13: timeEvents = []
14: for each events in S qlEvents do
15: sqlAttributes = set(events.getAttributes())
16: sqlT imestamp = events.getTimeStamp()
17: if sqlT imestamp is within the timeframe of microserviceT imestamp then
18: intersection = sqlParameters ∩ microserviceParameters
19: if intersection not empty then
20: potentialEvents.append(events)
21: else
22: timeEvents.append([events])
23: end if
24: end if
25: end for
26: matchFound = False
27: for eventp in potentialEvents do
28: if eventp.getMicroservice() == eventm.getMicroservice() then
29: MatchedEvents.append([eventm,eventp])
30: matchFound = True
31: break
32: end if
33: end for
34: if matchFound == False then
35: IncompleteEvents.append([eventm, timeEvents])
36: end if
37: end for
38: return MatchedEvents, IncompleteEvents
39: end procedure

48 Chapter 4. Event Association and Schema Reconciliation

Figure 4.3: An example of two events with attributes highlighting the SQL parameter data
pattern matching

Next, the algorithm iterates through all the SQL events in the SqlEvents and extracts the

attributes and timestamp information from each SQL event, as shown in lines 14-16. In lines

17 the algorithm checks whether the current SQL event occurred within an established time-

frame(+/- 0.5seconds) of the current microservice event. This is the initial determining attribute

that is checked to determine whether or not a microservice event and SQL can be considered

match.

In order for the event pairs to be identified as potential event matches, the intersection

between the two attribute sets (sqlAttributes and microserviceAttributes) must not be empty.

Therefore, if the event pairs share a minimum of one attribute in common, then the algorithm

will append the current database event into a list of potential matches for the current microser-

vice event. If the two events do not share any attributes in common, then the SQL event is

appended onto the timeEvents list. This criteria is defined in lines 18-22

The third criteria for establishing the SQL event and MSA event association, is through

the source microservice of the SQL Event that was established in Section 4.2. In lines 26

the algorithm initiates a Boolean variable matchFound, in order to keep track of whether or

4.3. Pairing SQL Database Events withMicroservice Events 49

Figure 4.4: An example of a raw SQL log file

not a SQL match has been found. In lines 27-31, the algorithm iterates through all potential

database event pair matches (i.e. the ones that have similar timestamp and attribute values with

the microservice event) and selects the database event with a source microservice that matches

paired microservice event. If the pair of events meet all three criteria then they are established

as MatchedEvents and the pair is appended to theMatchedEvents list. Additionally the Boolean

variable matchFound is set to True and the for loop is exited. Once the iteration is either

completed or exited, the algorithm will check the value of the Boolean variable matchFound.

If the value is true, the algorithm continues onto the next eventm in the MicroserviceEvents

list. If the value is false, the algorithm will pair all the timeEvents with the current eventm and

append this tuple to the IncompleteEvents list. This list of incomplete events will be used for

further analysis for compiling the MDG. Lastly, in lines 38, the algorithm will return two lists.

The first is MatchedEvents, a list containing matched pairs of SQL and Microservice events.

The second is IncompleteEvents, a list containing Microservice events paired with a list of

timeEvents.

50 Chapter 4. Event Association and Schema Reconciliation

Figure 4.5: An SQL event stored in a dictionary structure

4.4 Event Association

In the previous sections, Section 4.2 and Section 4.3, most of the microservice event logs

were matched with their corresponding database logs. The main purpose of this section is to

present that process that establishes pairs of events that are associated with each other. These

associations will then be used in Chapter 6 for generating the Microservice Dependency Graph.

The process for establishing these event pairs is illustrated in Algorithm 4.3

4.4. Event Association 51

4.4.1 Attribute Synonym Synchronization

Previously, in Section 4.3 two lists were obtained from Algorithm 4.1. Notably the list Incom-

pleteEvents, containing unmatched microservice events alongside a list of time matched SQL

events. The reasoning for this incompleteness is due to the inconsistency in labelling formats

between loggings systems. As depicted in Figure 3.1, we assume that the microservice sys-

tem being analyzed has numerous loggers M1, M22, . . . Mw for its different components (i.e.

microservices, service busses, pub/sub frameworks, databases) and each such logger incorpo-

rates its own schema. This introduces the problem that two attributes, in two events, logged

by two different loggers, and which refer to the same information are considered as not asso-

ciated because they do not match by name. The database research community has investigated

the problem of schema matching for many years and over the years a number of very efficient

automated approaches have been proposed [50], [53].

An example of this situation is shown in Figure 4.6, in which the data value for highlighted

attribute value pair of the first event match the data value for the highlighted attribute value

pair of the second event. In the example the attributes (’JobId’, ’Item1’, ’Item1’) of the first

event, contain the same values as the attributes (’Id’, ’CustomerId’, ’VehicleLicenseNumber’)

in the second event. However as it is shown, the attribute names are inconsistent. Hence the

existence of the IncompleteEvents list.

The problem is to be able to identify the pairs of event types that share the maximal set of

attributes and corresponding attribute values. For our work, and since the number of microser-

vices was low (i.e. 12 microservices) we initially perfomed performed the synonym analysis

manually. The manual process is illustrated in Algorithm 4.2. The manual process is simple.

By iterating through all microservice events, the attribute key-value pairs were recorded. Then

the key-values pairs were cross referenced with each other and any instance in which the two

values matched but their corresponding keys did not, were recorded and the keys are established

as synonyms. Our approach utilizes an Attribute Synonym dictionary data structure to provide

this attribute-level schema mapping. The attribute synonym dictionary is shown in Figure 4.7.

The purpose of this attribute synonym dictionary is to aid in the short comings discussed in

Section 4.3. The reason why some microservice events were unable to be matched with their

52 Chapter 4. Event Association and Schema Reconciliation

Figure 4.6: An example illustrating inconsistent labeling formats between logs

corresponding database events were due to the inconsistencies in labeling conventions between

the two types of event logs. The pseudo-code for this algorithm is shown in Algorithm 4.2

This manual analysis provided insights on how to automate the process by using Formal

Concept Anaysis. The automated process is discussed in Section 4.4.3.

Algorithm 4.2 is very similar to the Algorithm 4.1, in which the a majority of the computa-

tion is through the iteration of two event lists.

Algorithm 4.2 takes two parameters IncompleteEvents and AttributeSynonyms. The first

parameter IncompleteEvents is the result of the incomplete event matching that occurred in

4.3. The second parameter is the AttributeSynonyms which contains all the attribute synonyms

4.4. Event Association 53

Algorithm 4.2 Event Reconciliation with Attribute Synonym Supplementation
1: - Let IncompleteEvents be the set of time matched pairs ⟨microserviceEvent, timeEvents⟩
2: - Let AttributeS ynonyms be a dictionary containing all the attributes and their correspond-

ing synonyms
3: - Let CompletedEvents be the set of matching event pairs ⟨microserviceEvent, sqlEvent⟩
4: procedure AttributeSynonymSupplementation(IncompleteEvents, AttributeS ynonyms)
5: for each incompleteEvent in IncompleteEvents do
6: microserviceEvent = incompleteEvent.getMicroserviceEvent()
7: microserviceParameters = set(microserviceEvent.getParameters())
8: for each timeEvent in incompleteEvent do
9: timeEventParameters = set(timeEvent.getParameters())

10: intersection = timeEventParameters ∩ microserviceParameters
11: di f f erences = timeEventParameters△microserviceParameters
12: for each di f f erence in di f f erences do
13: synonyms = AttributeS ynonyms.getSynonyms(di f f erence)
14: for each synonym in synonyms do
15: if synonym is in di f f erences & synonym , di f f erence then
16: CompletedEvents.append([microserviceEvent,timeEvent])
17: end if
18: end for
19: end for
20: end for
21: end for
22: return CompletedEvents
23: end procedure

54 Chapter 4. Event Association and Schema Reconciliation

Figure 4.7: A dictionary data structure containing all attribute synonyms

for data labelling in the system.

In the beginning, the algorithm, (line 5) iterates through all instances events in the un-

matched event list. In lines 6-7, the algorithm extracts the parameters from the unmatched

microservice event. In lines 8-9 the algorithm iterates through the list of database events which

have been considered to be a match with the microservice events based only on their timestamp

attribute and also extracts their parameters. In lines 10-11 the intersection and symmetric dif-

ference between the microserviceParameters and timeEventParameters sets is computed. This

is the main difference between this algorithm and the Algorithm 4.1, where microservice event

and data event matches were missed because of different naming conventions in the corre-

sponding schemas. This issue is resolved in the remaining portions of the algorithm. In lines

12-13 the AttributeSynonym is used to retrieve a list of synonyms for each symmetric difference

between the two parameter sets. In lines 14-16 the algorithm iterates through all the retrieved

synonyms and checks whether there exists a synonym that also exists in the symmetric differ-

ence (differences) set but is not the same as the current difference. Thus, the algorithm will

check if the symmetric difference list contains a matching synonym that corresponds to any

except the current difference. If so, then current microserviceEvent and timeEvent are paired

and appended to CompletedEvents. The pairing is established because the algorithm was able

4.4. Event Association 55

to find the existence of matching parameters and since the timeEvents already determined the

events to be a match based on their time-frame then there is no need for repeating this same

attribute verification.

4.4.2 Event Association - Conceptual Method

In the previous section, Section 4.4.1, the previously unmatched microservice events have now

been matched with their corresponding SQL events. Now the process of establishing pairs

of microservice events associated with each other can begin. This process is established in

Algorithm 4.3.

There are two scenarios in which an event pair can be established as a properMatch. The

first scenario is if they meet the following two criteria. The first criterion is based on the pair

of events occurring within a predefined time-frame, meaning two events must occur within

500milliseconds otherwise they do not meet the first criterion. The second criterion is one of

the event’s attribute values is a complete subset of the other event’s attribute values. If a pair

of events meet both of these criteria, then they are established as properMatches. The second

scenario is a continuation of the first scenario. In the scenario where an event pair only meets

the first criterion, then they are established as a partialMatch. Once all the properMatches

have been established, the partialMatches are cross referenced with the properMatches and

any partialPairs containing Non-ProperMatch events are established as properMatches.

Algorithm 4.3 takes one parameter, EventList. The parameter EventList is the list produced

in Section 4.4.1, which contains a list of microservice events associated with their correspond-

ing database events. In line 3 the list properMatches is initialized, this list will contain the

pairs of events that have been established as a properMatch. In line 4 the list partialMatches is

initialized, this list will contain the pairs of events that have been established as partialMatches.

In lines 5-8 the algorithm iterates through the EventList and stores the timestamp of its cur-

rent event (eventa). During each iteration the algorithm goes through the EventList again and

obtains the timestamp of its current event (eventb). This step is used to compare all combina-

tions of event pairs resulting from EventList, while ignoring pairs comprised of the same event.

The first criterion is reached in lines 9-10, in which the two events must have timestamps that

56 Chapter 4. Event Association and Schema Reconciliation

occur within the predefined time-frame (500milliseconds) of each other. If they pass the first

criteria then the data values for each of the two events are stored.

In lines 11-17 the algorithm evaluates the final requirement for being established as a prop-

erMatch. If the either of the event’s values are a subset of the other event’s values, then they

are considered a properMatch. Otherwise they are considered a partialMatch.

Once all initial properMatches have been found, the algorithm will determine which par-

tialMatches should be considered properMatches. In lines 22-23, two Boolean variables are

initiated. The variables, (partialaMatch) and (partialbMatch) will keep track of whether or not

the events in the partialPair have already been established as part of a properPair. This con-

dition is evaluated in lines 24-30, where the algorithm iterates through all the partialPairs in

partialMatches. During each iteration the algorithm iterates through each properPair in prop-

erMatches. If the first event in the current [partialPair] has already been established in a prop-

erPair then the Boolean variable (partialaMatch) is set to True. The same procedure is excuted

with the second event in the current partialPair and the Boolean variable (partialbMatch).

Once all the properPairs have been iterated through the algorithm determines if the partialPair

should be established as a properMatch, lines 33-36. If both events or one of the two events

were not already established as part of a properPair then the partialPair is now established as

a properPair.

The reasoning for this logic is because we cannot make the assumption that two events

must contain a subset of each others data in order to be associated with each other. In a dis-

tributed system with various databases connected to various system microservices, a receiving

microservice may supplement the receiving data with other relevant data obtained elsewhere,

which would result in a response event containing more than just the receiving data. Addition-

ally, there exists a corner case in which a published event does not contain any data, but rather

it is used as a trigger to execute specific data events from other microservices. An example of

this a DayHasPassed event, of which contains no data other than its label. However there may

exist receiving microservices that contain the business logic that implement some sort of data

event upon the reception of the DayHasPassed event. In this scenario there would no common

attribute values between the two, but rather the only matching property would be the proximity

of timestamps. Considering both of these scenarios, it would be inaccurate to only establish

4.4. Event Association 57

two events as a match if and only if their values are a subset of each other. Hence, we provided

the additional logic for establishing partialMatches as properMatches.

4.4.3 Automating the Attribute Synonym Identification Process

In FCA theory, a formal concept is defined to be a pair (A, B), where A is a set of objects

(called the extent) and B is a set of attributes (the intent) such that: a) the extent A consists of

all objects that share the attributes in B, and dually; b) the intent B consists of all attributes

shared by the objects in A. This creates a lattice where the nodes denote objects with attributes.

The top element of the lattice (i.e. the most general concept) contains all objects and their

common features (if any), while the bottom element of the lattice (i.e. the most specialized

concept) contains the all the objects containing all the features. In the lattice, an attribute v

involves all objects at and above the node at which the attribute appears, while an object A is

required for all attributes at and below the node at which the object appears. In our approach,

the FCA objects are the different event types while the FCA features are the attributes of the

event types.

An example lattice is depicted in Figures 3.9 and 3.10 adapted from [38], while Table 4.1

and Figure 4.8 depict the actual objects and attributes denoted by analyzing the schemas of

the sample microservice system we have experimented with [60]. Table 4.1 depicts the FCA

formal context, while Fig. 4.8 illustrates the corresponding lattice that is obtained from the

formal context.

The purpose of implementing FCA is to initiate the automation process for event associa-

tion. This type of analysis is important for identifying the nature of the mappings and helps on

the formation of the rules (i.e. how many pairs to attribute pairs consider for each rule).

FCA Table Creation

The first step towards automating the process is generating the FCA table. However, as es-

tablished in Section 4.4.1, the inconsistency between labeling formats is an issue. Hence we

present Algorithm 4.4, which addresses the attribute synonym issue as well as creates the FCA

Table.

58 Chapter 4. Event Association and Schema Reconciliation

Algorithm 4.3 MSA Event Association
1: - Let EventList be the set of matched MSA and SQL events from AttributeSynonymSup-

plementation()
2: procedure matchEventPairs(EventList)
3: properMatches = []
4: partialMatches = []
5: for each eventA in EventList do
6: eventATimestamp = eventA.getTimestamp()
7: for each eventB in EventList do
8: if eventA , eventB then
9: eventBTimestamp = eventB.getTimestamp()

10: if eventBTimestamp is within the timeframe of eventATimestamp then
11: eventAValues = set(getValues(eventA))
12: eventBValues = set(getValues(eventB))
13: if eventaValues ⊆ eventbValues OR eventbValues ⊆ eventaValues then
14: properMatches.append([eventA, eventB])
15: else
16: partialMatches.append([eventA, eventB])
17: end if
18: end if
19: end if
20: end for
21: end for
22: partialaMatch = False
23: partialbMatch = False
24: for each partialPair in partialMatches do
25: for each properPair in properMatches do
26: if partialPair[0] in properPair then
27: partialaMatch = True
28: end if
29: if partialPair[1] in properPair then
30: partialbMatch = True
31: end if
32: end for
33: if !(partialaMatch and partialbMatch) then
34: properMatches.append(partialPair)
35: end if
36: end for
37: return properMatches
38: end procedure

4.4. Event Association 59

Algorithm 4.4 utilizes the Attribute Synonym to create a unified FCA table with property

columns representative of the various labeling conventions. The resulting FCA can be seen

in Figure 4.1. Algorithm 4.4 takes two parameters, the first is AttributeSynonyms that was

obtained in Section 4.4.1. The AttributeSystem for the PitStop system is shown in Figure 4.7.

The second parameter is EventList, which is a list of all the logged events containing relevant

information to data dependencies established in Section 4.1 and Section 4.2. In lines 4-6 the

algorithm creates a csv file writer named tableFCA, which will be used to write all the object

and property data for the logged events. The file will be written using a list of lists, where each

inner list contains an entry to each column on the table.

Next, the algorithm creates tableColumns which represent the property headers of the FCA

table, the property headers consist of the keys from the AttributeSynonym since each key rep-

resents a unified synonym for various inconsistent attribute labeling formats. The tableRows is

a list used for storing all the event data corresponding to the table. In lines 7-10 the algorithm

iterates through all the list of events. Additionally, it creates row which is a list that stores

the data for the current event, and it creates eventID and eventAttributes which contain the

event’s ID and attributes respectively. In lines 11-13 the algorithm iterates through each of the

columns in tableColumns (the event properties). During each iteration it gets the synonyms for

the current column(property) and finds the intersection between the returned synonyms set and

the current events attribute set.

In lines 14-17, if the intersection is not empty, then it means the current column is included

in the current events attributes in which case an ’X’ is appended to the row. Otherwise an

empty value is appended to row. An ’X’ value indicates the event contains the property and

an empty value indicates that the event does not contain this property. In lines 20 the row list

which represents the event’s data, is added to the list of other rows in tableRows.

In lines 22-23 the table columns and list of rows are written onto the tableFCA csv. This

table will then be used for creating the FCA lattice.

FCA Lattice Rule Extraction

Using the FCA table previously created, we are now able to construct a lattice and query the

various intensions that were established. The extracted intensions from the lattice formulate

60 Chapter 4. Event Association and Schema Reconciliation

Algorithm 4.4 FCA Table Creation Using Attribute Synonym
1: - Let AttributeS ynonym be a dictionary in which the key is the attribute identifier and the

value is a list of synonymous attribute labels
2: - Let EventList be a list of all the MSA events
3: procedure CreateTableFCA(EventList, AttributeS ynonyms)
4: tableFCA = csv.write(tableFCA.csv)
5: tableColumns = AttributeS ynonyms.getKeys()
6: tableRows = []
7: for event in EventList do
8: row = []
9: eventID = event.getEventType()

10: eventAttributes = set(event.getAttributes())
11: for column in tableColumns do
12: synonyms = set(AttributeS ynonyms[column])
13: intersection = eventAttributes ∩ synonyms
14: if intersection , ∅ then
15: row.append(’X’)
16: else
17: row.append(”)
18: end if
19: end for
20: tableRows.append(row)
21: end for
22: tableFCA.writerow(tableColumns)
23: tableFCA.writerow(tableColumns)
24: end procedure

4.4. Event Association 61

the Rules for which the probabilistic reasoning engine in Chapter 5 can determine associations

between microservice events. The process of extracting the Rules from the FCA Lattice is

illustrated in Algorithm 4.5. The algorithm consists of two parts, in the first part of the al-

gorithm will get all the intensions between events of the same type of microservices. In the

second part, the algorithm will obtain all the intensions between events from different types of

microservices.

The algorithm takes three parameters, the first parameter Lattice is the lattice formed from

the formal contexts obtained in the previous step discussed in Section 4.4.3. The second

parameter is Pairs which is a list of all pair combinations of microservices, including pairs

containing the same microservice (i.e. MicroserviceA, MicroserviceA). The last parameter is

MicroserviceEvents, which is a dictionary data structure in which the keys correspond to a

unique microservice and the values correspond to a list of all the events that occured within

said microservice.

The first half of the algorithm beings with lines 6-7 where we iterate through each pair of

microservices from the Pairs list, and the list Rules is initialized. The Rules list will contain

all the pairs of events that the algorithm determines to be a match. In the next part of the

algorithm (see lines 8-10), the algorithm checks to determine whether both microservices in

the pair are the same. If they are the same then a counter variable is initialized and an event

list is retrieved from MicroserviceEvents that corresponds to the current microservice. Next,

the algorithm iterates through all combinations of events in eventList (see lines 11-13). Within

each combination of events, the algorithm obtains a list of common properties between the two

events through querying the intensions in the lattice (see lines 14). If the query returns one or

more values then the two events are added onto the Rules list (see lines 15-16). The rest of the

algorithm accomplishes the same thing as the first half, with the only difference being that the

events being compared belong to different microservices (see lineslines 21-25).

A sample output of the FCA Lattice Rule Extraction Algorithm for schema reconciliation

is depicted below.

Microservice Pair: NotificationService and

WorkshopmanagementEventHandler

62 Chapter 4. Event Association and Schema Reconciliation

Algorithm 4.5 FCA Lattice Rule Extraction
1: - Let Lattice be the lattice representation of the events
2: - Let Pairs be a set of all microservice pairs ⟨microservice − i, microservice − j⟩
3: - Let MicroserviceEvents be a dictionary with the key representing a microservice and the

value representing a list of all events for that microservice
4: - Let Rules be a set of all event intensions tuples ⟨event − i, event − j,intensions⟩
5: procedure LatticeRuleExtraction(Lattice, Pairs, MicroserviceEvents)
6: Rules = []
7: for each pair in Pairs do
8: if pairi == pair j then
9: counter = 0

10: eventList = MicroserviceEvents[pairi]
11: for each eventa in eventList do
12: counter += 1
13: for each eventb in eventList[counter:] do
14: commonProperties = Lattice.intensions([eventa, eventb])
15: if len(commonProperties) ≥ 1 then
16: Rules.append([eventa, eventb, commonProperties])
17: end if
18: end for
19: end for
20: else
21: for each eventa in MicroserviceEvents[pairi] do
22: for each eventb in MicroserviceEvents[pair j] do
23: commonProperties = Lattice.intensions([eventa, eventb])
24: if len(commonProperties) ≥ 1 then
25: Rules.append([eventa, eventb, commonProperties])
26: end if
27: end for
28: end for
29: end if
30: end for
31: end procedure

4.4. Event Association 63

Event Pair: NotificationService:RegisterCustomer

and WorkshopmanagementEventHandler:

RegisterCustomer

Intensions: (’CustomerId’, ’Name’, ’TelephoneNumber’)

Event Pair: NotificationService:RegisterCustomer

and WorkshopmanagementEventHandler:

RegisterVehicle

Intensions: (’CustomerId’)

Event Pair: NotificationService:RegisterMaintenanceJob

and WorkshopmanagementEventHandler:RegisterVehicle

Intensions: (’CustomerId’, ’LicenseNumber’)

Event Pair: NotificationService:RegisterMaintenanceJob

and WorkshopmanagementEventHandler:

RegisterMaintenanceJob

Intensions: (’LicenseNumber’, ’JobId’, ’StartTime’)

Event Pair: NotificationService:RegisterMaintenanceJob

and WorkshopmanagementEventHandler:FinishMaintenanceJob

Intensions: (’JobId’, ’StartTime’)

In the sample output above, we see the different event types and the shared attributes. The

structured example indicates the microservice pairs that are being examined (in this case No-

tificationService and WorkshopmanagementEventHandler), and a list of five event pairs along

with their intensions derived from the lattice using Algorithm 4.5. The first event pair shown

in the example, is between the event NotificationService:RegisterCustomer and Workshopman-

agementEventHandler, with the derived intensions ’CustomerId’, ’Name’ and ’TelephoneNum-

ber’. These intensions can be verified by looking at the attribute data in Table 4.1, in which the

listened intensions are all properties for each of the two event types.

64 Chapter 4. Event Association and Schema Reconciliation

Figure 4.8: The extracted FCA lattice for the log data set

4.5 Summary

This chapter focused on the schema reconciliation and conceptual event association aspects of

our proposed framework for generating a Microservice Dependency Graph. The initial part of

the chapter focused on filtering the raw data logs in order to reduce the computational costs,

as described in Section 4.1. The filtering process is required given the vastness of logging that

occurs throughout a microservice based system, most of which is not relevant to the establish-

ment of data dependencies. Next, SQL events were paired with their corresponding source

Microservice names as described in Section 4.2. This step was required due to the incomplete-

ness of the logs which resulted in missing relational data. Specifically, SQL events contained

creation, modification and deletion information however it does not contain any data regarding

4.5. Summary 65

Event Types Attributes

Cu
sto

m
er

Id
N

am
e

A
dd

re
ss

Po
sta

lC
od

e
Ci

ty

Te
le

ph
on

e
Em

ai
l

Li
ce

ns
e

Br
an

d

Ty
pe

D
at

e

Jo
bI

d

St
ar

tT
im

e
En

dT
im

e
D

es
cr

ip
tio

n
N

ot
es

Id

Rabbitmq:CustomerRegistered D D D D D D D
Rabbitmq:VehicleRegistered D D D D
Rabbitmq:WorkshopPlanningCreated D
Rabbitmq:MaintenanceJobPlanned D D D D D D D D D D
Rabbitmq:DayHasPassed D D D
Rabbitmq:MaintenanceJobFinished D D D D
InvoiceService:RegisterCustomer D D D D D
InvoiceService:RegisterMaintenanceJob D D D D
InvoiceService:FinishMaintenanceJob D D D
InvoiceService:InvoiceSentToCustomer D D
NotificationService:RegisterCustomer D D D D
NotificationService:RegisterMaintenanceJob D D D D D
NotificationService:SentNotification D
NotificationService:NotificationMailSent D
NotificationService:RemoveFinishedMaintenanceJob D
WorkshopManagementEventHandleer:RegisterCustomer D D D
WorkshopManagementEventHandler:RegisterVehicle D D D D
WorkshopManagementEventHandler:RegisterMaintenanceJob D D D D D
WorkshopManagementEventHandler:FinishMaintenanceJob D D D

Table 4.1: Associated attributes on event logs

the microservice that invoked this action. Therefore, the SQL events need to be paired with

their corresponding source microservice. Afterwards, SQL events were paired with their cor-

responding source Microservice events as described in Section 4.3. This step was required in

order to progress towards data completion capable of representing the system. In order to begin

to establish the flow of data dependencies throughout the system, the first step is establishing

the dependencies between microservice events and SQL events.

Those three sections constituted the schema reconciliation portion of the chapter. The sec-

ond portion of the chapter focused on initial development for event association automation.

Section 4.4 was composed of three subsections. The first subsection was Section 4.4.1, in

which synchronization between attribute synonyms was conducted in order to establish consis-

tency throughout all the labeled attributes in the log data. This step is required due to labeling

inconsistencies that resulted in incompleteness in the schema reconciliation, as well the at-

tribute synonyms established will be used in the automation process. The next subsection,

Section 4.4.2, discussed a conceptual methodology for establishing associations between mi-

croservice events. This subsection provided the initial ground work required for developing an

automated process capable of establishing the event associations. The final subsection Section

4.4.3, discussed the implementtaon of the first step towards the automation of the event asso-

ciation process. This first step is based on FCA in order to represent the Microservice event

log data in a concept hierarchy, which can then be used in a second step by a probabilistic

66 Chapter 4. Event Association and Schema Reconciliation

reasoning engine as it wil lbe discussed in Chapter 5.

Chapter 5

System-Wide Event Matching

5.1 Final Matching of System-wide Events

Once the system-wide events (i.e. events between microsevices and between microservices and

the database) have been cross-referenced, then the objective shifts on defining that two events

match (i.e. associate). The event matching process is based on a probabilistic reasoning engine

which aims to identify pairs of events that match.

We say that two events match if they contain common attributes, each of the attributes have

the same value, and the events have occurred within a pre-specified time window. These events

are said to be matched and are part of a transaction event collection. This reasoning process

deducing whether two events match is based on three main elements. The first element is a set

of facts that are extracted from the logs. The second element is a set of event matching rules.

The third element is a probabilistic reasoning engine that utilizes Markov Logic Networks.

5.1.1 Fact Base

For the rule-based event association technique, we have identified five types of fact predicates

as follows:

• feature(attribute,event): Indicates that event has attribute

• inOrder(event1,event2): Indicates that event1 occurs (i.e. has timestamp) within the

same timeframe (i.e. +/- x milliseconds) with event2

67

68 Chapter 5. System-Wide EventMatching

• featureMatch(attribute1,attribute2,event1,event2): Indicates that attribute1 in event1 is

a synonym with attribute2 in event2

• sameValue(attribute1,attribute2,event1,event2): Indicates that attribute1 in event1 has

the same value as attribute2 in event2

• match(event1,event2): Indicates that event1 (i.e. is related with event2 in the same trans-

action collection.

Fact Extraction

The feature() predicate facts were extracted from the event logs of each event pair that were
established in Chapter 4. The event logs were iterated through and a feature() predicate fact was
generated for every individual attribute of the events that occurred in the logs. Therefore for
an event with ’x’ amount of attributes, it would result in ’x’ amount of feature() predicate facts
with each containing one of the ’x’ attributes. The feature() fact consists of two parts, the name
of the attribute and the second is an event identifier that represents the source microservice and
the event type. The generated predicate facts are in the format presented below:

feature(attribute, event)

A similar process is required for the extraction of the inOrder() predicate facts. In this
process all the event logs of each event pair from Chapter 4 are cross-referenced with each
and compared based on their timestamp attribute. In the instance where two events occurring
within a predetermined timeframe (+/-0.5 seconds) a predicate fact is generated. The inOrder()

predicate fact consists of two event identifiers. The predicate format presented below:

inOrder(event1, event2)

The featureMatch() predicate facts are extracted from the Formal Concept Analysis that
was discussed in Section 4.4.3. By applying Formal Concept Analysis, all possible pair com-
binations of the events are used to query the formal context to find the list of intensions between
the two events. Using the list of event pair intensions a predicate fact is generated for each of
the attributes in the list. The featureMatch() predicate fact generated consists of two event
identifiers each representing a different event, and two attribute identifiers each representing
each event’s attribute. The format of the fact is presented below:

featureMatch(attribute1,attribute2,event1,event2)

5.1. FinalMatching of System-wide Events 69

The sameValue() and match() predicate facts are generated through a more detailed process.

The pseudo-code explaining the algorithm can be found in Algorithm 5.1. The predicate fact

sameValue() represents two events that contain the same attribute and their values are consistent

with one another. The predicate fact match() represents two events that comply with a rule

derived from the FCA lattice as discussed in Section 4.4.3. The format of the two facts is

presented below:

sameValue(attribute1, attribute2, event1, event2)

match(event1, event2)

Algorithm 5.1, takes two parameters. The first parameter eventList is a set of all event pairs

derived from the event list established in Chapter 4. The second parameter is ruleBase, which

denotes a dictionary based on the FCA Lattice Rule Extraction (see Algorithms 4.5 and 4.4)

where the keys are a pair of microservices and the values are a list of intensions. The data used

for populating the ruleBase was obtained through the FCA implementation in Section 4.4.3.

The first part of Algorithm 5.1, (see lines 6-7), iterates through all event pairs in eventList

and checks to see that the event pair does not consist of a single duplicate event. Next, the

algorithm retrieves the list of intensions from ruleBase using the microserivce of each event as

key, and then proceeds to extract the attributes from each of the events (see lines 8-10). The

rules correspond to the FCA intensions between events of the two types of microservices, as

described in Section 4.4.3.

Next, in lines 11-13, the algorithm iterates through each of the rules corresponding to the

two current event microservices. In each iteration the algorithm also goes through each attribute

within the current rule and initializes the Boolean variable matchFound. If the current attribute

is not found inside either the list of attributes of eventA or eventB, then the Boolean variable

previously established is set to false, as seen in lines 14-16. On the other hand, if the attribute

is found in both eventA and eventB, then an external function is called to determine if the

attribute value for each event are equal. If the attribute values are equal, then a fact of type

sameValue(attribute1, attribute2, event1, event2) is created and stored. Otherwise, when the

attribute values are not equal with each other, then the Boolean variable matchFound is set to

false as seen in lines 16-22.

70 Chapter 5. System-Wide EventMatching

Algorithm 5.1 featureMatch and match fact extraction
1: – Let eventList be the set of all events pairs from the event list derived in previous phases
2: – Let ruleBase be a dictionary with keys being of type ⟨microservicea, microserviceb⟩ and

values being a list of ⟨intensions⟩
3: - Let sameValueList be a list of sameValue facts
4: - Let matchList be a list of match facts
5: procedure factExtraction(eventList, ruleBase)
6: for each (eventa,eventb) in eventList do
7: if eventa , eventb then
8: rules = ruleBase [(eventa, eventb)]
9: eventaAttributes = eventa.getAttributes()

10: eventbAttributes = eventb.getAttributes()
11: for each rule in rules do
12: matchFound = True
13: for each attribute in rule do
14: if attribute not in eventaAttributes OR eventbAttribute then
15: matchFound = False
16: end if
17: if attribute in eventaAttributes AND eventbAttribute then
18: sameValue = sameValue(eventa[attribute], eventb[attribute])
19: if sameValue == True then
20: sameValueList.append(sameValue(attribute, attribute, eventa,

eventb))
21: else
22: matchFound = False
23: end if
24: end if
25: end for
26: if matchFound == True then
27: matchList.append(match(eventa, eventb))
28: end if
29: end for
30: end if
31: end for
32: end procedure

5.1. FinalMatching of System-wide Events 71

At the end of the loop iterating through the attributes, if the Boolean variable matchFound

is true, then this means the each attribute in the current FCA rule was found inside each of

the two events and the attribute values were consistent (i.e. equal). In this case a fact of type

match(event, event) is created and stored. Otherwise, if the Boolean variable, matchFound is

false, then there was an instance in which a pair of attributes had different values, in which case

no fact is generated. This is shown in lines 26-27.

Fact Examples

These are the types of facts populate a fact-base which will be used for training rules and de-

ducing which event matches with which another event. An excerpt of the fact-base is presented

below:

feature(CustomerId, InvoiceService:RegisterCustomer)

feature(Name, InvoiceService:RegisterCustomer)

feature(Address, InvoiceService:RegisterCustomer)

feature(PostalCode, InvoiceService:RegisterCustomer)

feature(City, InvoiceService:RegisterCustomer)

feature(CustomerId, NotificationService:RegisterCustomer)

feature(Name, NotificationService:RegisterCustomer)

feature(Telephone, NotificationService:RegisterCustomer)

feature(Email, NotificationService:RegisterCustomer)

featureMatch(CustomerId, CustomerId,

InvoiceService:RegisterCustomer,

NotificationService:RegisterCustomer)

featureMatch(Name, Name,

InvoiceService:RegisterCustomer,

NotificationService:RegisterCustomer)

inOrder(InvoiceService:RegisterCustomer,

NotificationService:RegisterCustomer)

sameValue(CustomerId, CustomerId,

72 Chapter 5. System-Wide EventMatching

InvoiceService:RegisterCustomer,

NotificationService:RegisterCustomer)

sameValue(Name, Name,

InvoiceService:RegisterCustomer,

NotificationService:RegisterCustomer)

match(InvoiceService:RegisterCustomer,

NotificationService:RegisterCustomer)

The example above is a result from the log traversal of the two microservice logs, Invoice and

Notification, that correspond to the events InvoiceService:RegisterCustomer and Notification-

Service:RegisterCustomer. The example predicate facts depicted above can be categorized into

the following six sets:

• First set contains the feature(attribute, event) predicate facts for InvoiceService

• Second set contains the feature(attribute, event) predicate facts for NotificationService

• Third set contains the featureMatch(attribute1, attribute2, event1, event2) predicate facts

for InvoiceService and NotificationService

• Fourth set contains the inOrder(event1, event2) predicate facts for InvoiceService and

NotificationService

• Fifth set contains the sameValue(attribute1, attribute2, event1, event2) predicate facts for

InvoiceService and NotificationService

• Sixth set contains the match(event1, event2) predicate facts for InvoiceService and Noti-

ficationService.

The first set contains five predicate facts which were extracted from the Invoice event, in

which a feature(attribute, event) predicate fact is generated for each of the attributes within

the Invoice event. The second set contains four predicate facts that are similar to the previous

set, except these predicate facts correspond to the Notification event. The third set contains

5.1. FinalMatching of System-wide Events 73

the featureMatch(attribute1, attribute2, event1, event2) predicate facts for each attribute syn-

onym match between the two events, the Invoice event and theNotification event. The fourth

set contains the predicate facts of type inOrder(event1, event2) between the two Invoice and

Notification events. The fifth set of predicate facts are the sameValue(attribute1, attribute2,

event1, event2), these predicate facts represent the existence of two common attributes be-

tween the events which when compared have consistent values. The final set of predicate facts

is the match(event1, event2). This predicate fact represents the existence of a two events that

have been established to be associated with each other. Two events are established as being a

match based on the existence of the previous predicate facts, feature(attribute, event), feature-

Match(attribute1, attribute2, event1, event2), inOrder(event1, event2), sameValue(attribute1,

attribute2, event1, event2), according to an individual rule derived from the FCA Lattice in

Chapter 4.

5.1.2 Rule Base

The second element in the event association process is a set of rules that aim to denote the

domain logic whether two events relate to the same collection in a given transaction sequence.

The rules conclude the predicate match(event1,event2). In a nutshell, the rules encode the logic

that:

“if two events have attributes that are reconciled in the FCA phase of the process, and if

these attributes in the two events have the same values pairwise, and if the events have occurred

in the same approximate time, then the two events belong to the same collection”.

In this context, two questions arise. The first question relates to what types of attributes any

two events should be considered on. The second question relates to how many attributes any

two events should be considered for event matching purposes.

The answer to the first question lies on the feature(attribute, event) predicate that denotes

that event has attribute and the featureMatch(attribute1, attribute2, event1, event2) predicate

that denotes that attribute1 and attribute2 are synonyms in event1 and event2. The answer to

the second question lies on the results obtained from the FCA analysis. For example, as seen in

Table 4.1 event types Rabbitmq:MaintenanceJobPlanned, Rabbitmq:DayHasPassed and, Rab-

74 Chapter 5. System-Wide EventMatching

bitmq:MaintenanceJobFinished share three attributes, namely Job, StartTime and EndTime,

while event types InvoiceService:Register Customer and NotificationService:RegisterCustomer

share two attributes namely Customer and Name. In this respect, we devise rules that consider

one pair, two pairs, and three pairs of attributes to be matched in the rules.

A sample rule-set is provided below.

For one pair the rule is:

feature(a1,e1) ˆ feature(a2,e2) ˆ

featureMatch(a1,a2,e1,e2) ˆ sameValue(a1,a2,e1,e2) ˆ

inOrder(e1,e2) => match(e1,e2)

For two pairs the applicable rule is:

feature(a3,e3) ˆ feature(a4,e4) ˆ

featureMatch(a3,a4,e3,e4) ˆ

sameValue(a3,a4,e3,e4) ˆ feature(a5,e3) ˆ

feature(a6,e4) ˆ featureMatch(a5,a6,e3,e4) ˆ

sameValue(a5,a6,e3,e4) ˆ inOrder(e3,e4) =>

match(e3,e4)

For events with three pairs of reconciled attributes the applicable rule is:

feature(a7,e5) ˆ feature(a8,e6) ˆ

featureMatch(a7,a8,e5,e6) ˆ

sameValue(a7,a8,e5,e6) ˆ feature(a9,e5) ˆ

feature(a10,e6) ˆ featureMatch(a9,a10,e5,e6) ˆ

sameValue(a9,a10,e5,e6) ˆ feature(a11,e5) ˆ

feature(a12,e6) ˆ featureMatch(a11,a12,e5,e6) ˆ

sameValue(a11,a12,e5,e6) ˆ inOrder(e5,e6) =>

match(e5,e6)

These three rules denote the logic presented above, that is if the attributes are reconciled, and

their values are the same, and the events have occurred within a predefined time window, then

the two events are associated (i.e. they match).

5.1. FinalMatching of System-wide Events 75

Rule Extraction

The rules shown above are a general representation that encompass the rules derived from

Algorithm 4.5.

The One Pair Rule is product of a general representation of FCA Lattice rules. An example

of this is between the events NotificationService:RemoveFinishedMaintenanceJob and Work-

shopmanagementEventHandler:FinishMaintenanceJob. From the FCA Lattice rule extraction

in Algorithm 4.5 we discover the intension of ’JobId’ between the two event types. In combi-

nation with the predicate facts generated in Section 5.1.1 we are able to establish the One Pair

Rule. An example outline for the FCA Lattice rule and its corresponding predicate facts are

shown below:

Event Pair: NotificationService:RemoveFinishedMaintenanceJob

and WorkshopmanagementEventHandler:FinishMaintenanceJob

Intensions: (’JobId’)

feature(’JobId’, NotificationService:RemoveFinishedMaintenanceJob)

feature(’JobId’, WorkshopmanagementEventHandler:FinishMaintenanceJob)

featureMatch(’JobId’, ’JobId’,

NotificationService:RemoveFinishedMaintenanceJob,

WorkshopmanagementEventHandler:FinishMaintenanceJob)

inOrder(NotificationService:RemoveFinishedMaintenanceJob,

WorkshopmanagementEventHandler:FinishMaintenanceJob)

sameValue(’JobId’, ’JobId’,

NotificationService:RemoveFinishedMaintenanceJob,

WorkshopmanagementEventHandler:FinishMaintenanceJob)

match(NotificationService:RemoveFinishedMaintenanceJob,

WorkshopmanagementEventHandler:FinishMaintenanceJob)

The construction of the Two Pair Rule is similar to that of the previous rule. An exam-

ple of this occurrence can be seen between the events InvoiceService:RegisterCustomer and

76 Chapter 5. System-Wide EventMatching

NotificationService:RegisterCustomer. From the FCA Lattice rule extraction in Algorithm 4.5

we once again discover the existence of the intension containing ’CustomerId’ and ’Name’.

Supplemented with the facts generated in Section 5.1.1 we establish the Two Pair Rule. An

example outlining the FCA Lattice rule and its corresponding facts are shown below:

Event Pair: InvoiceService:RegisterCustomer

and NotificationService:RegisterCustomer

Intensions:(’CustomerId’, ’Name’)

feature(’CustomerId’, InvoiceService:RegisterCustomer)

feature(’Name’, InvoiceService:RegisterCustomer)

feature(’CustomerId’, NotificationService:RegisterCustomer)

feature(’Name’, NotificationService:RegisterCustomer)

featureMatch(’CustomerId’, ’CustomerId’,

InvoiceService:RegisterCustomer,

NotificationService:RegisterCustomer)

featureMatch(’Name’, ’Name’,

InvoiceService:RegisterCustomer,

NotificationService:RegisterCustomer)

inOrder(InvoiceService:RegisterCustomer,

NotificationService:RegisterCustomer)

sameValue(’CustomerId’, ’CustomerId’,

InvoiceService:RegisterCustomer,

NotificationService:RegisterCustomer)

sameValue(’Name’, ’Name’,

InvoiceService:RegisterCustomer,

NotificationService:RegisterCustomer)

match(InvoiceService:RegisterCustomer,

NotificationService:RegisterCustomer)

The construction of the final rule, the Three Pair Rule, is based on the same process as the

5.1. FinalMatching of System-wide Events 77

previous two rules. For this rule the example is between the events InvoiceService:FinishMaintanenceJob

and WorkshopMangementEventHandler:FinishMaintenanceJob. Based on the FCA Lattice

rule extraction in Algorithm 4.5 we derive the intension containing ’JobId’, ’StartTime’ and

’EndTime’. Accompanied with the predicate facts generated in Section 5.1.1 we establish the

Three Pair Rule. An example of the FCA Lattice rule and the event Facts is shown below:

Event Pair: InvoiceService:FinishMaintanenceJob

and WorkshopMangementEventHandler:FinishMaintenanceJob

Intensions:(’JobId’, ’StartTime’, ’EndTime’)

feature(’JobId’, InvoiceService:FinishMaintanenceJob)

feature(’StartTime’, InvoiceService:FinishMaintanenceJob)

feature(’EndTime’, InvoiceService:FinishMaintanenceJob)

feature(’JobId’, WorkshopMangementEventHandler:FinishMaintenanceJob)

feature(’StartTime’, WorkshopMangementEventHandler:FinishMaintenanceJob)

feature(’EndTime’, WorkshopMangementEventHandler:FinishMaintenanceJob)

featureMatch(’JobId’, ’JobId’

InvoiceService:FinishMaintanenceJob,

WorkshopMangementEventHandler:FinishMaintenanceJob)

featureMatch(’StartTime’, ’StartTime’

InvoiceService:FinishMaintanenceJob,

WorkshopMangementEventHandler:FinishMaintenanceJob)

featureMatch(’EndTime’, ’EndTime’

InvoiceService:FinishMaintanenceJob,

WorkshopMangementEventHandler:FinishMaintenanceJob)

inOrder(InvoiceService:FinishMaintanenceJob,

WorkshopMangementEventHandler:FinishMaintenanceJob)

sameValue(’JobId’, ’JobId’,

InvoiceService:FinishMaintanenceJob,

WorkshopMangementEventHandler:FinishMaintenanceJob)

sameValue(’StartTime’, ’StartTime’,

InvoiceService:FinishMaintanenceJob,

WorkshopMangementEventHandler:FinishMaintenanceJob)

78 Chapter 5. System-Wide EventMatching

sameValue(’EndTime’, ’EndTime’,

InvoiceService:FinishMaintanenceJob,

WorkshopMangementEventHandler:FinishMaintenanceJob)

match(InvoiceService:FinishMaintanenceJob,

WorkshopMangementEventHandler:FinishMaintenanceJob)

5.1.3 Reasoning

The third element of the event association process is the reasoning engine. We opted for a

probabilistic reasoning framework for two reasons.

The first reason has to do with incomplete data. In First Order Logic if one or more of the

premises of a Horn Clause is not satisfied the whole rule fails. In the case of software systems,

some logs may be inaccessible, or not emitting the events requited by a specific rule. In that

case we would like to still be able to reason and deduce with a reduced level of confidence that

two events match.

The second reason has to do with completeness of the rule-set itself. Engineers may not

be able to model with one rule-set all possible scenarios of two events matching. The more

specific the rules become the fewer systems they will be applicable to, and the more general

they become the less precision occurs in the results (i.e. more events are considered as being

matched).

In this paper we utilize a probabilistic reasoning engine that is based on Markov Logic and

Markov Logic Networks.

Markov Logic and Markov Logic Networks

Markov Logic combines statistical and logic-based approaches. Rules are denoted as sets of

Horn Clauses mapped into a Conjunctive Normal Form. Rules are annotated with weights

signifying the importance of each rule. Rules constitute a rule-base while ground predicates

(predicates with ground atom values – i.e. facts) constitute the fact-base. The rule-base and

the fact-base create what is referred to as the Markov Logic Network. In simplified terms,

a Markov Logic Network is a graph where the nodes are ground predicates and edges link

5.1. FinalMatching of System-wide Events 79

Figure 5.1: An example Markov Logic Network [48], [10]

Figure 5.2: An example Markov Logic Network [48], [10]

ground predicates if these appear in a rule. The analysis of the Markov Logic Network assigns

a probability value to a world (i.e. a collection of grounded facts and rules) by a formula of

the form depicted in equation 5.1.3. An example of Markov Logic Network adapted from [10]

is depicted in Figures 5.1 and 5.2, where the nodes are facts and the edges denote that two

predicates appear in the same rule. The truth vales (T or F) associated with each fact denote

the observation as to whether this fact is proven true of false during the fact acquisition phase.

The probability of a world pw is given by a formula of the form:

P(pw) ∝ exp
(∑

weights of formulas it satisies
)

(5.1)

80 Chapter 5. System-Wide EventMatching

Training and Inference

For our work we have obtained the logs from the middleware service bus, the SQL data base

server, and the microservices. From all these logs we have obtained the 50% of the logs

for training the rules (i.e. assigning weights to the rules), and we kept the other 50% for

testing. The testing focuses first on evaluating the accuracy of the obtained results, that is

whether two events that have been identified as matches (i.e. the predicate match(e1, e2) has

probability more than 90%) are indeed associated, and second whether there are any events

that are unmatched (i.e. do not associate with any other event).

As discussed above, we have used Alchemy [1] for encoding the facts, the rules, and per-

forming reasoning. As discussed above, Alchemy allows for assigning weights to rules using

training, or assigning weights manually to rules, based on how important the analysts belied a

rule is more important or less important than other rules in the rule-base.

We have experimented with both weight assignment techniques (automatic using training

and manual) with comparable results.

It is worth noting the change in event labeling. Previously we had referenced events in
the format (MicroserviceName:EventType), this type of labeling was used to document quick
information regarding the event. However in order to properly train the MLN, the various
instances of the same event type occurring but with different data values must have unique
events identifiers. For example two instances of the event InvoiceService:RegisterCustomer for
two different users, cannot be labelled the same since they correspond to different transaction
flow of data. Therefore a unique event identifier is required for all events. In order to provide
the MLN with unique event IDs we formatted the events using the format (MicroserviceName-

EventCount). An example of the changed labeling format is shown below:

InvoiceService:RegisterCustomer -> InvoiceEvent-0

NotificationService:RegisterCustomer -> NotificationEvent-8

WorkshopMangementEventHandler:FinishMaintenanceJob -> WorkshopEvent-9

An excerpt of the results obtained by exercising the rules deducing the match(e1, e2) facts

along with their probability scores is provided below.

5.1. FinalMatching of System-wide Events 81

match(InvoiceEvent-5,InvoiceEvent-5) 0.172033

match(InvoiceEvent-5,InvoiceEvent-6) 0.175032

match(InvoiceEvent-5,InvoiceEvent-7) 0.187031

match(InvoiceEvent-5,InvoiceEvent-8) 0.179032

match(InvoiceEvent-5,InvoiceEvent-9) 0.20303

match(InvoiceEvent-5,NotificationEvent-8) 0.99995

match(InvoiceEvent-5,NotificationEvent-9) 0.151035

match(InvoiceEvent-5,NotificationEvent-10) 0.155034

match(InvoiceEvent-5,NotificationEvent-11) 0.182032

match(InvoiceEvent-5,NotificationEvent-12) 0.179032

match(InvoiceEvent-5,NotificationEvent-13) 0.190031

match(InvoiceEvent-5,NotificationEvent-14) 0.187031

match(InvoiceEvent-5,NotificationEvent-15) 0.176032

match(InvoiceEvent-5,RabbitEvent-8) 0.99995

match(InvoiceEvent-5,RabbitEvent-9) 0.185031

match(InvoiceEvent-5,RabbitEvent-14) 0.193031

match(InvoiceEvent-5,WorkshopEvent-5) 0.99995

match(InvoiceEvent-5,WorkshopEvent-6) 0.19703

Inference Result Analysis

From the results shown above we can examine the two event pairs that achieved a probability

of over 90%. The event logs for the pair of events, InvoiceEvent-5 and NotificationEvent-8, is

shown in Figure 5.3. A breakdown of the predicate facts generated by the first high probability

event pair and the Two Pair rule from Section 5.1.2 is presented below:

Two Pair Rule :

feature(a3,e3) ˆ feature(a4,e4) ˆ

featureMatch(a3,a4,e3,e4) ˆ

sameValue(a3,a4,e3,e4) ˆ feature(a5,e3) ˆ

feature(a6,e4) ˆ featureMatch(a5,a6,e3,e4) ˆ

sameValue(a5,a6,e3,e4) ˆ inOrder(e3,e4) =>

match(e3,e4)

Event Pair:

(InvoiceEvent-5, NotificationService-8)

82 Chapter 5. System-Wide EventMatching

Facts:

feature(’CustomerId’, InvoiceEvent-5)

feature(’Name’, InvoiceEvent-5)

feature(’Address’, InvoiceEvent-5)

feature(’PostalCode’, InvoiceEvent-5)

feature(’City’, InvoiceEvent-5)

feature(’CustomerId’, NotificationService-8)

feature(’Name’, NotificationService-8)

feature(’TelephoneNumber’, NotificationService-8)

feature(’City’, NotificationService-8)

featureMatch(’CustomerId’, ’CustomerId’,

InvoiceEvent-5,NotificationService-8)

featureMatch(’Name’, ’Name’,

InvoiceEvent-5,NotificationService-8)

featureMatch(’City’, ’City’,

InvoiceEvent-5,NotificationService-8)

inOrder(InvoiceEvent-5, NotificationService-8)

sameValue(’CustomerId’, ’CustomerId’,

InvoiceEvent-5, NotificationService-8)

sameValue(’Name’, ’Name’,

InvoiceEvent-5, NotificationService-8)

As shown in the example above, the event pair produces nine feature(attribute, event) predicate

facts each representing one of the event’s attributes. The event pair also produce three fea-

tureMatch(attribute1, attribute2, event1, event2) predicate facts each representing the attribute

synonyms between the event pair. Additionally the event pair produced one inOrder(event1,

event2) fact. The timestamps for each event can be seen in Figure 5.3 and based on the times-

tamps, the two events occurred just over ten milliseconds of each other. The final type of

fact produced is the sameValue(attribute1, attribute2, event1, event2) fact for the attributes

CustomerId and Name. As shown in Figure 5.3, in which the Id attribute for both events

5.1. FinalMatching of System-wide Events 83

Figure 5.3: Log Breakdown for the event pair InvoiceEvent-5 (Top) and NotificationEvent-8
(Bottom)

are consist with a value of ’778610af9e8040d88e73543d7b8407f1’ and the Name attribute for

both events are also consist with a value of ’J. Cole’. Therefore the fact match(InvoiceEvent-

5,NotificationEvent-8) can is correctly inferred based on the Two Pair rule established in Sec-

tion 5.1.2.

The second example from the MLN inferences, infer the highly probable association be-

tween events InvoiceEvent-5 and event RabbitEvent-8. The event logs for both events are

shown in Figure 5.4. A breakdown of the predicate facts generated by the two events alongside

the Three Pair rule from Section 5.1.2 is presented below:

Three Pair Rule:

84 Chapter 5. System-Wide EventMatching

feature(a7,e5) ˆ feature(a8,e6) ˆ

featureMatch(a7,a8,e5,e6) ˆ

sameValue(a7,a8,e5,e6) ˆ feature(a9,e5) ˆ

feature(a10,e6) ˆ featureMatch(a9,a10,e5,e6) ˆ

sameValue(a9,a10,e5,e6) ˆ feature(a11,e5) ˆ

feature(a12,e6) ˆ featureMatch(a11,a12,e5,e6) ˆ

sameValue(a11,a12,e5,e6) ˆ inOrder(e5,e6) =>

match(e5,e6)

Event Pair:

(InvoiceEvent-5, RabbitEvent-8)

Facts:

feature(’CustomerId’, InvoiceEvent-5)

feature(’Name’, InvoiceEvent-5)

feature(’Address’, InvoiceEvent-5)

feature(’PostalCode’, InvoiceEvent-5)

feature(’City’, InvoiceEvent-5)

feature(’CustomerId’, RabbitEvent-8)

feature(’Name’, RabbitEvent-8)

feature(’Address’, RabbitEvent-8)

feature(’PostalCode’, RabbitEvent-8)

feature(’City’, RabbitEvent-8)

feature(’TelephoneNumber’, RabbitEvent-8)

feature(’EmailAddress’, RabbitEvent-8)

featureMatch(’CustomerId’, ’CustomerId’,

InvoiceEvent-5, RabbitEvent-8)

featureMatch(’Name’, ’Name’,

InvoiceEvent-5, RabbitEvent-8)

featureMatch(’Address’, ’Address’,

InvoiceEvent-5, RabbitEvent-8)

featureMatch(’PostalCode’, ’PostalCode’,

InvoiceEvent-5, RabbitEvent-8)

featureMatch(’City’, ’City’,

InvoiceEvent-5, RabbitEvent-8)

5.1. FinalMatching of System-wide Events 85

inOrder(InvoiceEvent-5, RabbitEvent-8)

sameValue(’CustomerId’, ’CustomerId’,

InvoiceEvent-5, RabbitEvent-8)

sameValue(’Name’, ’Name’,

InvoiceEvent-5, RabbitEvent-8)

sameValue(’Address’, ’Address’,

InvoiceEvent-5, RabbitEvent-8)

sameValue(’PostalCode’, ’PostalCode’,

InvoiceEvent-5, RabbitEvent-8)

sameValue(’City’, ’City’,

InvoiceEvent-5, RabbitEvent-8)

As shown in the example above, the event pair produces twelve feature(attribute, event)

predicate facts each representing one of the event’s attributes. The event pair also produce

five featureMatch(attribute1, attribute2, event1, event2) predicate facts each representing the

attribute synonyms between the event pair. Additionally the event pair produced one in-

Order(event1, event2) predicate fact. The timestamps for each event can be seen in Figure

5.4 and based on the timestamps, the two events occurred just over 160 milliseconds of each

other. The final type of predicate fact produced is the sameValue(attribute1, attribute2, event1,

event2) predicate fact for the attributes Id and Name. As shown in Figure 5.4, in which all the

attributes of InvoiceEvent-5 are also included in RabbitEvent-8. Comparing attribute values,

all the attribute values for (CustomerId, Name, Address, PostalCode) and (City) are consistent

in both events. In this event pair there are five sameValue(attribute1, attribute2, event1, event2)

predicate facts produced. Although the MLN is only trained using up to three pair rule, the ex-

istence of more than three pairs of attributes matching further support the association between

the two events.

As a final example from the MLN inferences, we will breakdown a pair of events in which

the MLN did not provide a high probability of them being a match. The event pair that will

be examined is between the event InvoiceEvent-5 and event InvoiceEvent-6. The event logs for

both events are shown in Figure 5.5. A breakdown of the predicate facts generated by the two

86 Chapter 5. System-Wide EventMatching

Figure 5.4: Log Breakdown for the event pair InvoiceEvent-5 (Top) and RabbitEvent-8 (Bot-
tom)

events that failed to meet any of the inference rules is presented below:

Event Pair:

(InvoiceEvent-5, InvoiceEvent-6)

Facts:

feature(’Id’, InvoiceEvent-5)

feature(’Name’, InvoiceEvent-5)

feature(’Address’, InvoiceEvent-5)

feature(’PostalCode’, InvoiceEvent-5)

feature(’City’, InvoiceEvent-5)

5.1. FinalMatching of System-wide Events 87

feature(’JobId’, InvoiceEvent-6)

feature(’Description’, InvoiceEvent-6)

feature(’CustomerId’, InvoiceEvent-6)

feature(’VehicleLicenseNumber’, InvoiceEvent-6)

featureMatch(’Id’, ’CustomerId’,

InvoiceEvent-5, InvoiceEvent-6)

sameValue(’Id’, ’CustomerId’,

InvoiceEvent-5, InvoiceEvent-6)

Figure 5.5: Log Breakdown for the event pair InvoiceEvent-5 (Top) and InvoiceEvent-6 (Bot-
tom)

As shown in the example above, the event pair produced nine feature(attribute, event)

88 Chapter 5. System-Wide EventMatching

predicate facts each representing one of the event’s attributes. The event pair also produces

one featureMatch(attribute1, attribute2, event1, event2) predicate fact that represents an at-

tribute synonyms between the event pair. Notably the event pair produces zero inOrder(event1,

event2) predicate facts, since the two events occurred did not occur within the pre-defined

time frame. The timestamps for each event can be seen in Figure 5.5 and based on the

timestamps, the two events occurred just over two minutes of each other. The final type

of fact produced was the sameValue(attribute1, attribute2, event1, event2) fact for the at-

tributes Id and CustomerId. As shown in Figure 5.5 the Id attribute value for InvoiceEvent-

5 events is consist with the CustomerId attribute value for InvoiceEvent-6 with a value of

’778610af9e8040d88e73543d7b8407f1’. However since the event pair only contains one match-

ing attribute and did not occur within the pre-defined time frame then MLN infers that these

two events are not associated with each other.

5.2 Summary

This chapter focused on the system-wide event matching aspect of our proposed framework

for generating a Microservice Dependency Graph. The technique used for system-wide event

matching centered around a probabilistic reasoning engine known as Markov Logic Networks.

The implementation of the MLNs is based on the associations discovered in the conceptual

event association in Section 4.4.2. In the first section of the chapter, Section 5.1.1, fact pred-

icates for event pairs were developed. In that section, all possible microservice event pairings

were analyzed and their resulting fact predicates were extracted based on the event’s attribute

values. These predicates were used later in the chapter for the development of the MLN.

The next section, Section 5.1.2, rules were derived from the FCA concepts developed in Sec-

tion 4.4.3. The derived rule-base consists of the intensions between all possible microservice

event pairings in the FCA lattice. The extracted intensions represent the relationship between

microservices in terms of their attributes. Through the usage of the fact predicates and the rule-

base developed in the previous sections, Section 5.1.3 uses these inputs to develop, train and

test a Markov Logic Network capable of inferring event pair associations. The output from the

MLN consists of a list of microservice event pairs alongside a probability value representing

5.2. Summary 89

the likelihood of the events being associated with each other. The resulting list of associated

event pairs are used in the next chapter, Chapter 6 to develop the Microservice Dependency

Graph.

Chapter 6

Microservice Dependency Graph

Extraction

6.1 MDG Domain Model

In order to represent the Microservice Dependency Graph in a form which is processable by

another software component which can automate the analysis process, we must first denote a

schema (i.e. a domain model) for the proposed Microservice Dependency Graph (MDG). For

this thesis, the MDG domain model is implemented as a collection of Meta-Object Facility

Classes and is depicted in Figure 6.1. A description of each class and their corresponding

attributes and associations are provided in the following sections.

Class Description

• MDGNode: Represents the node(s) in the microservice dependency graph

• Microservice: Represents the microservice(s) in a MSA based system

• Infrastructure: Represents the framework(s) that supports the systems organization

• DataBase: Represents the structured framework used for data storage

• PubSub: Represents the asynchronous communication framework known as ”Pub\Sub”

90

6.1. MDG DomainModel 91

Figure 6.1: MDG Domain Model

• ServiceBus: Represents the communication framework utilized by the various microser-

vices in the system

• Dependency: Represents the dependencies between microservices in the MSA based

system

• DataDependency: Represents the dependencies associated with data between microser-

vices in the MSA based system

• CallDependency: Represents the dependencies associated with invocation calls between

microservices in the MSA based

• Policy: Represents the business logic requirements and restrictions for a system

• Guard: Represents the checkpoints used for the assessment of a predefined policy

Relationship Description

• Association (MDGNode - Dependency): Each MDGNode is associated with one or more

incoming Dependency as well as zero or more outgoing Depndency. Dependency type

92 Chapter 6. Microservice Dependency Graph Extraction

can be of either DataDependency or CallDependency

• Association (Dependency - MDGNode): Each Dependency is associated with one source

MDGNode and one target MDGNode

• Association (MDGNode - Policy) : Each MDGNode is associated with zero or one Policy

• Association (Policy - Guard) : Each Policy is associated with a Guard

• Generalization (MDGNode - Microservice): MDGNode is a generalization of Microser-

vice

• Generalization (MDGNode - Infrastructure): MDGNode is a generalization of Infras-

tructure. Infrastructure type can be DataBase, PubSub, or ServiceBus

• Generalization (Infrastructure - DataBase): Infrastructure is a generalization of DataBase

• Generalization (Infrastructure - PubSub): Infrastructure is a generalization of PubSub

• Generalization (Infrastructure - ServiceBus): Infrastructure is a generalization of Ser-

viceBus

• Generalization (Dependency - DataDependency): Dependency is a generalization of

DataDependency

• Generalization (Dependency - CallDependency): Dependency is a generalization of

CallDependency

6.2 Event Collection Formation

The techniques and frameworks presented in Chapter 5 were used to deduce a list of event pairs,

in which each event pair contains two events that are associated with each other. In the example

from Section 5.1.3, this is manifested by the emission of facts of the form match(InvoiceEvent-

5, NotificationEvent-8), where InvoiceEvent-5 is a specific event in the logs of InvoiceEvent

service and, NotificationEvent-8 is a specific event in the logs of the NotificationEvent service.

Each such fact is associated with a probability score as deduced by the Markov Logic Network

6.2. Event Collection Formation 93

inferencing. For our work, we retain the facts for which their probability scores are equal or

above 90%.

Once the reasoning process terminates, the selected match(ei, e j) facts (i.e. the facts with a

probability score >90%) are post-processed and we obtain a list of pairs of the form {⟨ei, e j⟩....

{⟨em, en⟩} indicating that event ei matches with event e j, and event em matches with event en.

The next step is to form an event collection from these pairs. Algorithm 6.2 analyzes these

list of event pairs and creates a list of lists. Each inner list is a collection of associated (i.e.

matched events). Here we present a simple version of the algorithm for illustration purposes.

The idea behind Algorithm 6.2 is to iterate through the list of pairs, initiate a new collection,

if the events do not belong already on the current collection, and for each such pair find all

other pairs of events that match. For example, the pair ⟨ei, e j⟩ and the pair ⟨em, en⟩ will form a

collection [ei, e j, em] if match(ei, e j) and match(ei, em) or match(e j, em).

Algorithm 6.1 Event Collection Formation
1: – Let Facts be a list of facts from the logs
2: – let Rules be the list of Rules
3: - Let matchedEvents be a list of pairs ⟨ei, e j⟩ of matched events
4: - Let result = []
5: – Let tempResult = []
6: – Let matchedEvents = MLNReasoning(Facts,Rules)
7:
8: procedure calculateCollections(matchedEvents)
9: for each ⟨ ei, e j⟩ in matchedEvents do

10: tempResult = [ei, e j]
11: for each ⟨ ek, em⟩ in matchedEvents where
12: ek , ei and e j , em do
13: if ek ∈ tempResult and
14: em < tempResult then
15: tempResult = add(tempResult, em)
16: end if
17: if em ∈ aggregateResult and
18: ek < aggregateResult then
19: tempResult = add(tempResult, ek)
20: end if
21: end for
22: result = add(result, tempResult)
23: end for
24: return result
25: end procedure

94 Chapter 6. Microservice Dependency Graph Extraction

A excerpt of the collections obtained is depicted below.

COLLECTION 1:

[’InvoiceService:RegisterCustomer’,

’NotificationService:RegisterCustomer’,

’Rabbitmq:CustomerRegistered’,

’WorkshopManagementEventHandler:RegisterCustomer’]

COLLECTION 2:

[’InvoiceService:RegisterMaintenanceJob’,

’NotificationService:RegisterMaintenanceJob’,

’Rabbitmq:MaintenanceJobPlanned’,

’WorkshopManagementEventHandler:RegisterMaintenanceJob’]

COLLECTION 3:

[’InvoiceService:FinishMaintenanceJob’,

’NotificationService:RemoveFinishedMaintenanceJob’,

’Rabbitmq:MaintenanceJobFinished’,

’WorkshopManagementEventHandler:FinishMaintenanceJob’]

COLLECTION 4:

[’Rabbitmq:CustomerRegistered’,

’WorkshopManagementEventHandler:RegisterCustomer’,

’InvoiceService:RegisterCustomer’,

’NotificationService:RegisterCustomer’]

6.3 Path Extraction - Sequences of Events

The collections established in Section 6.2 contain information regarding which events are as-

sociated with each other, meaning it depicts events that correspond to the same instance of data

creation and propagation. However the events in the collections do not contain any information

regarding the sequence in which the events occurred (i.e. the directed paths) nor the sequence

in which the microservices instantiated each event. From the example above, COLLECTION

1 contains four events, each containing the microservice that corresponds to that event. How-

6.3. Path Extraction - Sequences of Events 95

ever, this does not paint the complete picture for the progressive flow of events for that instance

of data. The event Rabbitmq:CustomerRegistered, is an event originating from the message

broker. This however is an issue since the message broker is not a source of events rather an

intermediary for the distribution of the event. Therefore the collection does not contain in-

formation regarding the source microservice for the message broker event. Additionally, the

collection of events does not contain any information regarding SQL associations. In order to

extract the complete paths for each collection, two additional pieces of information must be

retrieved. The first is the source microservice for the message broker events, the second is the

SQL event association for any of the collection events. Both of these pieces of information

have already been established in Chapter 4, where MSA events were matched with their corre-

sponding SQL events and message broker events were matched with their source microservice

using SQL events.

Algorithm 6.2 illustrates the extraction of the individual paths from each event collection.

The algorithm consists of two parts, in the first part each event in the collection is identified as

either a response event or a published event. In the second part, additional logic is implemented

in order to establish the correct order sequence for the events. The logic used is presented

below:

• Predicate - S end(mw, ex): We define S end(mw, ex) as the initiator(publisher) microservice

mw with its corresponding event ex.

• Predicate - Receive(my, ex): We define Receive(my, ex) as the receiving microservice my

receiving the event ex.

• Predicate - HappenedBe f ore(ex, ez): We define HappenedBe f ore(ex, ez) as the event ex

occurring before the event ez.

• Predicate - Per f orms(my, ez,mw, ex): We define Per f orms(my, ez,mw, ex) as the microser-

vice my receiving the event ex from microservice mw and responding with event ez such

that ex happens before ez.

From the message broker event logs, we are able to establish the predicate S end(mw, ex),

since every data event logged in the message broker are intended to be distributed throughout

96 Chapter 6. Microservice Dependency Graph Extraction

the system. Additionally, from the event logs we can establish Receive(my, ez) through the ex-

istence of message broker exchange queue initialization, examples of these types of event logs

are shown in Figure 6.2. Figure 6.2 contains three events, each event displaying the initial-

ization of a channel in the message broker with the intended queue destination. By detecting

these types of event logs occurring after an event is published into the message broker, we

are able to establish to which microservice the published event will be directed. For example,

in Figure 6.2 the queues established for each channel are WorkshopManagement, Notification

and Invoicing are depicted. Additionally, from the event log the associated microservice is

labeled under Application attribute. Therefore, each channel initialization provides the infor-

mation regarding to which microservice the published event will be distributed. The predicate

HappenedBe f ore(ex, ez) is established by comparing the timestamps of the two events. The

establishment of the predicates, S end(mw, ex), Receive(my, ex) and HappenedBe f ore(ex, ez)

constitude the existence of the Per f orms(my, ez,mw, ex) predicate.

Algorithm 6.2 receives one parameter, allCollections. This contains a list of collections

of events that have been established to be associated with each other as discussed in Section

6.2. The algorithm begins by iterating through the list of collections and initializes a list and

a dictionary. The publisherEvent list will contain the MessageBroker event and the Publisher

microservice. The second is the responseEvents dictionary, in which the keys contain the Re-

sponse events and the values represent their corresponding SQL event, (lines 4-6). Next the

algorithm iterates through each event in the current collection and check to see if the event is

from the message broker. If the event is from the message broker then the Publisher is extracted

and stored, otherwise the event is considered a Response event in which case the SQL event

is retrieved and stored, (lines 7-13). After all the events in the collection have been iterated

through the algorithm iterates through each of the responseEvents and assemble the path. The

path is constructed based on the message broker distribution logs previously explained. For

each of the Response events the path will logically begin with the Publisher event followed by

the MessageBroker event. This can be deduced as a Response event cannot occur prior to the

instantiation from the Publisher event. Although there does not exist a logged event detailing

the publisher microservice publishing the event to the message broker, for the purpose of com-

pletion, a ’pseudo-event’ is created as a placeholder in the path list to demonstrate the source

6.3. Path Extraction - Sequences of Events 97

of the event. The label for this ’pseudo-event’ will be in the format Microservice:EventType,

where the microservice is the source microservice name and the EventType is the event type

derived from the response events. Then, the path continues to the Response event, and finishes

with its corresponding SQL event. The finalized path is then stored into the allPaths list, LOC

18, which will be used later on for the creation of the Microservice Dependency Graph.

Algorithm 6.2 Path Extraction from Event Collections
1: Let allCollections = calculateCollections(matchedEvents)
2: allPaths = []
3: procedure PathExtraction(allCollections)
4: for each collection in allCollections do
5: publisherEvent = []
6: responseEvents = {}
7: for each event in collection do
8: if event.microservice() =MessageBroker then
9: publisherEvents = [event, event.getPublisher()]

10: else
11: responseEvents[event] = event.getSQL()
12: end if
13: end for
14: for each responsee in responseEvents do
15: publishere = publisherEvents[1]
16: middleWaree = publisherEvents[0]
17: sqle = responsee.getSQL()
18: allPaths.append([publishere, middlewaree, responsee, sqle])
19: end for
20: end for
21: return allPaths
22: end procedure

An example of the Collections and their resulting paths is shown below:

COLLECTION 1:

[’InvoiceService:RegisterCustomer’,

’NotificationService:RegisterCustomer’,

’Rabbitmq:CustomerRegistered’,

’WorkshopManagementEventHandler:RegisterCustomer’]

PATHS from COLLECTION 1:

[’CustomerManagementAPI:CustomerRegistered’, ’Rabbitmq:CustomerRegistered’,

98 Chapter 6. Microservice Dependency Graph Extraction

Figure 6.2: Message Broker exchange initialization examples

’InvoiceService:Register customer’, ’InvoiceSQL:InvoiceRegisterCustomer’]

[’CustomerManagementAPI:CustomerRegistered’,’Rabbitmq:CustomerRegistered’,

’NotificationService:RegisterCustomer’, ’NotificationSQL:RegisterCustomer’]

[’CustomerManagementAPI:CustomerRegistered’,’Rabbitmq:CustomerRegistered’,

’WorkshopManagementEventHandler:RegisterCustomer’, ’WorkshopmagementSQL:RegisterCustomer’]

COLLECTION 2:

[’InvoiceService:RegisterMaintenanceJob’,

’NotificationService:RegisterMaintenanceJob’,

’Rabbitmq:MaintenanceJobPlanned’,

’WorkshopManagementEventHandler:RegisterMaintenanceJob’]

PATHS from COLLECTION 2:

[’WorkshopManagementAPI:RegisterMaintenanceJob’, ’Rabbitmq:MaintenanceJobPlanned’,

’InvoiceService:RegisterMaintenanceJob’, ’InvoiceSQL:egisterMaintenanceJob’]

[’WorkshopManagementAPI:RegisterMaintenanceJob’, ’Rabbitmq:MaintenanceJobPlanned’,

’NotificationService:RegisterMaintenanceJob’, ’NotificationSQL:RegisterMaintenanceJob’]

[’WorkshopManagementAPI:RegisterMaintenanceJob’, ’Rabbitmq:MaintenanceJobPlanned’,

’WorkshopManagementEventHandler:RegisterMaintenanceJob’,

’WorkshopmagementSQL:RegisterMaintenanceJob’]

6.4. Microservice Dependency Graph Creation 99

In the example above, COLLECTION 1 contains three Response events and one Mes-

sageBroker event. The derived PATHS each contain the additional events generated in Al-

gorithm 6.2, the first additional event is the Publisher event. In the example for COLLEC-

TION 1, the MessageBroker event is ’Rabbitmq:CustomerRegistered’ and its corresponding

Publisher event is ’CustomerManagementAPI:CustomerRegistered’. Thus, each of the PATHS

will contain two events at the beginning. The Response events are next followed by their

corresponding SQL event. In this example, the Response event ’InvoiceService:Register cus-

tomer’ is followed by the SQL event ’InvoiceSQL:InvoiceRegisterCustomer’. Similarly the re-

maining two Response events ’NotificationService:RegisterCustomer’ and ’WorkshopManage-

mentEventHandler:RegisterCustomer’ are followed by their SQL events ’NotificationSQL:RegisterCustomer’

and ’WorkshopmagementSQL:RegisterCustomer’ respectively. Therefore the original COL-

LECTION 1 results in the creation of three separate but related Paths.

6.4 Microservice Dependency Graph Creation

The Paths generated in Section 6.3, are used to develop the Microservice Dependency Graph.

The process for generating the MDG is simple and is summarized in Algorithm 6.3. The

process iterates through each path in the list of event paths, and for each event in a path it

creates a source node and a target node (if not already created) along with an edge indicating the

current event in the path. In this respect, nodes denote microservices, middleware components

(pub/sub infrastructure, service busses), and data base servers, while edges denote data transfer

or call relations.

Here, we focus mostly on data exchange dependencies between microservices as in most

situations data transfer is a result of parameter passing on a call or a result being returned as

a result of a request. Furthermore, compliance analysis can benefit more by analyzing data

exchange dependencies, as these are pivotal for assessing privacy, and access control policy

violations.

As it was discussed in Section 2 microservice call dependencies have been investigated

in the related literature, by analyzing the source code of the microservices involved, or by

analyzing the corresponding Docker configuration files. Here, we take a different approach

100 Chapter 6. Microservice Dependency Graph Extraction

Algorithm 6.3 MDG Creation
1: Let MDG = []
2: Let allPaths be a list of paths derived from the collections in calculateCollections()
3:
4: procedure CreateMDG(result)
5: for each path in allPaths do do
6: for each event ei in path do do
7: mk = FindMicroserviceEmmitting(ei)
8: mn = FindMicroServiceReceiving(e j) and match(ei, e j)
9: Nodek = CreateNode(mk) /* if not already created

10: Noden = CreateNode(mn) /* if not already created
11: edgek, n, I, j = CreateEdge(mk,mn, ei, e j)
12: MDG = add(⟨Nodek, Noden, edgek, n, I, j⟩)
13: end for
14: end for
15: end procedure

and we consider only run-time information by analyzing system logs.

6.4.1 Microservice Dependency Graph Applications

The proposed technique to compile a Microservices Dependency Graph is the first step towards

a bigger goal, that is to perform compliance analysis and audits on microservice architecture

systems. We envision three main uses of the MDG.

MDG Traversal

The first use is to perform off-line audits. As the system runs, a MDG will be created and

will become stable after a short period of time, assuming there are no changes in the source

code of the microservices involved. At any point, the MDG can be examined off-line (i.e. au-

dited) for non-compliant data exchanges between microservices, to reveal possible violations.

These violations may related to privacy, or access control. An example policy algorithm is

shown in Algorithm 6.4. This algorithm for example is used to ensure that a microservice-A

only receives a specific list of data from other microservices, and if any non-compliant data

exchanges are encountered the algorithm will traverse the MDG and determine if there have

been any subsequent data propagation’s.

Algorithm 6.4 is divided into two main sections. The first part of the algorithm focuses

6.4. Microservice Dependency Graph Creation 101

Algorithm 6.4 MDG Compliance Policy-A
1: Let MDG represent the Microservice Dependency Graph
2: Let edgePolicy be a list of edgeTypes allowed to be received a given microserivce
3: Let nodePolicy be a list of nodes (microservices) allowed to receive a given edgeType
4: procedure PolicyA(MDG, edgePolicy, nodePolicy)
5: policyViolations = []
6: for each node in nodePolicy do
7: edgeViolations = []
8: inEdges = MDG.getNode(node).getInEdges()
9: for each inEdge in inEdges do

10: if inEdge not in edgePolicy then
11: edgeViolations.append(inEdge)
12: end if
13: end for
14: policyViolations.append([node, edgeViolations])
15: end for
16: propagationList = []
17: for violation in policyViolations do
18: nodev = violation.getNode()
19: edgeListv = violation.getEdgeList()
20: for each edgev in edgeListv do
21: paths = MDG.findPaths(nodev. edgev)
22: propagationList.append(paths)
23: end for
24: end for
25: return propagationList
26: end procedure

102 Chapter 6. Microservice Dependency Graph Extraction

on determing if the specified node has any data exchange violations. This section of the algo-

rithm begins in line 5, where policyViolations will store a list containing all the data exchange

violations for each of the specified nodes in nodePolicy. Then the algorithm, (lines 6-8) it-

erates through the list of specificed nodes and calls on the auxiliary methods getNode() and

getInEdges() to return a list of incoming edges to the specified node. Next, in lines 9-13 the

algorithm iterates through each of the incoming edges and cross reference them with the spec-

ified edgePolicy. The specified edge policy list contains a list of edge types that are allowed

to transmit data to the node. If the incoming edge is not in the specified list then the algo-

rithm stores the edge violation in edgeViolations. After each incoming edge has been cross

referenced, the violations that were discovered are stored in policyViolations alongside their

corresponding node, (line 16).

The second half of the algorithm focuses on taking the violations from the first part of the

algorithm and finding if any of the data violations propagated elsewhere in the graph. In lines

17-20 the algorithm iterates through each of the violations, and during each iteration it stores

the source node nodeV and iterates through all the edge violations edgeV that occurred in that

node. During each iteration of the node’s edge violation, the MDG is called to extract all the

paths with the source node nodeV and edge type edgeV. The resulting paths are then added

onto the propagationList and the algorithm continues iterating through the remaining edges

and violations, (lines 21-22). Lastly the algorithm returns propagationList containing a list of

data exchange violation paths with each path containing the source node, the edge type and all

nodes that the edge violation was propagated onto.

RMI Guard Implementation

The second use is to perform run-time compliance analysis. This can be achieved by attaching

“guards” in the MDG edges. More specifically, “guards” will entail business logic as to what

type of data a microservice can send to another, or in which context such data exchange is legal.

For example, during a transaction between microservice A and microservice B the MDG can be

consulted and if different type of events, than the ones encoded in the MDG, are observed, then

an alarm can be raised or the transaction will not be allowed to proceed. Figure 6.3 illustrates

the process interactions in a sample implementation of RMI Guards.

6.4. Microservice Dependency Graph Creation 103

Figure 6.3: Sequence Diagram illustrating an RMI Guard implementation

Figure 6.3 depicts a RMI Guard implementation consisting of six components, the Con-

troller, Edge, Policy Repo, Policy Proxy, Policy Handler and External Service. The Controller

initiates the process by calling on the Edge using the isTriggered(). Then, the Edge calls Policy

Repo by using FetchPolicy() along with the parameter ’e’ , which represents an edge in the

MDG. The Policy Repo contains a list of all the policies and their corresponding edges. The

Policy Repo returns ’p’ which is the corresponding policy that correspond to the given edge

’e’. After receiving the policy, Edge calls on Policy Proxy and sends the policy ’p’ using Ex-

ecutePolicy(). From there the Policy Proxy will call on Policy Handler using HandlePolicy()

and giving it the policy ’p’ as a parameter. Then the Policy Handler takes the given policy

and sends it to the corresponding component External Service. The External Service evaluates

the given policy and returns a Boolean value ’result’ corresponding to the assessment of the

policy. The Boolean value is then returned to Policy Handler which then returns it to Policy

Proxy which will finally return the value to Controller. The Controller then determines the

next course of action regarding the data propagation on the edge based on the returned value.

104 Chapter 6. Microservice Dependency Graph Extraction

Development Aid

A third use of the system is during development. The development process of modern com-

plex systems follows an agile methodology that calls for very short release cycles. This is

referred to as Continuous Software Engineering and calls for Continuous Integration and Con-

tinuous Delivery (CI/CD). The challenge here is to minimize the failure risk despite the short

release cycles and CI/CD processes. A MDG can help developers quickly run “what-if” sce-

narios and observe the impact the changes they introduced in the source code have on how

data are exchanged between microservice, and whether any policies or constraints can be vi-

olated. Additionally the proposed MDG can be used for the detection of Anti-Patterns. As

discussed in Section 2.6, there is already established research in the field of Anti-Pattern De-

tection. However most of the research revolves around the Call Dependency Graph. Therefore

similar detection methods can be applied to our proposed MDG to detect potential Ant-Patterns

in repects to data dependencies and not just call dependencies.

6.5 Summary

This chapter is the finalization of the proposed Microservice Dependency Graph framework.

This chapter takes the associated event pairings that were developed in Chapter 5 and generates

the MDG. At the start of the chapter in Section 6.1, a domain model alongside a description for

its elements is provided in order to illustrate the structure of the MDG. The finalization of the

MDG consists of three parts, event collection formation, path extraction, and MDG creation.

The first part is in Section 6.2 in which all the event pairings from Chapter 5 are analyzed and

a list of event collections are developed. The event pairs obtained through the MLN provide

information regarding pairs of events that are associated with each other. However, in order

to establish complete associations between events, the pairings must be cross-referenced with

each other and compile event collections that represent all the data dependencies for an event

flow. The process of developing event collections consisted of the implementation of the tran-

sitive property among event pairs. In the second section, Section 6.3, the event collections

from the previous section are inspected and individual paths are extracted from each collec-

tion. Each path represents a directed flow of related data between events. In order to develop

6.5. Summary 105

the complete paths corresponding to a single event flow, additional relational data was applied

to the event collections. The additional relational data was derived from the event logs that

established specific relationships between events. Specifically the relationship of happenedBe-

fore, in which EventA happened before EventB. The combination of this relationship alongside

the contents of the event collections are used to establish the event flow within each event col-

lection. Lastly, in Section 6.4 the list of paths from the previous section are used to generate

the Microservice Dependency Graph. Additionally, example usages of the developed MDG

were described. These examples include, off-line audits using traversal algorithms, run-time

compliance analysis using RMI Guard implementations, and as a development aid for what-if

analysis and continuous software engineering.

Chapter 7

Experiments and Discussion

In this section we present the set up used for our experiments, the results obtained, and we

discuss threats to validity.

7.1 Infrastructure Set up

The prototype system was developed in Python and Java and was applied to the PitStop open

source microservice architecture system [60]. PitStop simulates the operations of a garage

shop, from the customer registration phase to job planning and final invoicing phases. It com-

prises of 12 major components including a middleware component (RabbitMQ) and a MS-SQL

database server. An overview of the system’s solution architecture can be seen in Figure 7.1.

7.1.1 The Systems Microservice

As mentioned previously the system is comprised of 12 microservices, a description of each

microservice alongside their responsibilities in terms of event handling is presented below

Web App

The WebApp is the front-end microservice, that provides users the ability to interact with the

system. Through this service the users are able to manage vehicles, customers and workshop

appointment setup. The WebApp service communicates strictly with the APIs in the system,

106

7.1. Infrastructure Set up 107

Figure 7.1: The solution architecture of the MSA system ’PitStop’

this includes VehicleManagementAPI, CustomerManagementAPI and WorkshopManagemen-

tAPI

Customer Management API

The CustomerManagementAPI microservice implements the API used by WebApp for the man-

agement of customers in the system. This microservice service is responsible for publishing

the CustomerRegistered event into the MessageBroker

Vehicle Management API

The VehiclerManagementAPI microservice implements the API used by WebApp for the man-

agement of vehicles in the system. This microservice service is responsible for publishing the

VehicleRegistered event into the MessageBroker

Workshop Management API

The WorkshopManagementAPI microservice implements the API used by WebApp for the

management of workshop appointments in the system. This microservice service is responsi-

ble for publishing the WorkshopPlanningCreated, MaintenanceJobPlanned and Maintenance-

JobFinished events into the MessageBroker

108 Chapter 7. Experiments and Discussion

Message Broker

The MessageBroker microservice implements the RabbitMQ framework used in the system.

This microservice is responsible for receiving events from producers and distributing events

to the corresponding consumer queue. The exchange type of the established connections are

all of type Fanout, meaning the message broker will distribute the incoming messages to all

queues that have been bounded.

Auditlog Service

The Auditlog microservice is a logging microservice that captures all the events that occur in

the MessageBroker and stores them.

Workshop Management Event Handler

The WorkshopManagementEventHandler microservice offers no API and is responsible for

the handling of customer and vehicle data regarding workshop appointments. This microser-

vice handles events strictly from the MessageBroker. The events handled by this microservice

are CustomerRegistered, VehicleRegistered, MaintenanceJobPlanned and MaintenanceJobFin-

ished.

Notification

The Notification microservice offers no API and is responsible for the notifying customers

regarding their scheduled appointments. This microservice handles events strictly from the

MessageBroker. The events handled by this microservice are CustomerRegistered, DayHass-

Passed, MaintenanceJobPlanned and MaintenanceJobFinished.

Invoice

The Invoice microservice offers no API and is responsible for the invoice creation regard-

ing customers appointments. This microservice handles events strictly from the MessageBro-

ker. The events handled by this microservice are CustomerRegistered, DayHasPassed, Main-

tenanceJobPlanned and MaintenanceJobFinished.

7.1. Infrastructure Set up 109

Time

The Time microservice offers no API and is only responsible for publishing the event DayHas-

Passed at a predefined time.

Mail

The Mail microservice implements MailDev to simulate an email. This simulation framework

includes an SMTP server and a POP3 server alongside a front-end framework for user interac-

tion.

SQL

The SQL microservice implements a single instance of MS SQL Server to host all databases

used throughout all the microservices.

7.1.2 Systems Event Types

The system was ran under all possible scenarios and a log data set was collected. The logs

gathered were generated by all the various components in the system that implemented a log-

ging framework. The components that implemented logging frameworks include the message

broker auditing service, the SQL database server, as well as a majority of the services in the

system that either published or handled events. A description of each of the event types is pro-

vided below. The following descriptions are obtained from the documentation of the PitStop

[60] application.

Customer Registered Event

This event is created and published to the MessageBroker by the CustomerManagementAPI

microservice. This event corresponds to the registration of a new customer in the system. The

customer data included in this event are the following, CustomerId, Name, Address, Postral-

Code, City, TelephoneNumber and EmailAddress.

110 Chapter 7. Experiments and Discussion

Vehicle Registered Event

This event is created and published to the MessageBroker by the VehicleManagementAPI mi-

croservice. This event corresponds to the registration of a new vehicle in the system. The

vehicle data included in this event are the following, LicenseNumber, Brand, Type and OwnerId

Workshop Planning Created Event

This event is created and published to the MessageBroker by the WorkshopManagementAPI

microservice. This event corresponds to the intialization of an appointment event occurring.

This event only contains one piece of information, which is Date.

Maintenance Job Planned Event

This event is created and published to the MessageBroker by the WorkshopManagementAPI

microservice. This event corresponds to the scheduling of a new workshop appointment in the

system. The workshop appointment data included in this event are the following, JobId, Start-

Time, EndTime, CustomerId, Name, TelephoneNumber, License, Brand, Type and Description.

Maintenance Job Finished Event

This event is created and published to the MessageBroker by the WorkshopManagementAPI

microservice. This event corresponds to the finishing of a workshop appointment in the system.

The workshop appointment data included in this event are the following, JobId, StartTime,

EndTime and Notes.

Day Has Passed Event

This event is created and published to the MessageBroker by the Time microservice. This event

contains no data due to the fact that it is used as a signalling event to trigger a reaction from

other microservices.

7.2. Sample Run and Output 111

7.2 Sample Run and Output

7.2.1 Data Collection

The PitStop system’s loggers generate 26 different types of events. The Formal Concept Anal-

ysis of the data schemas considered all possible event types and their attributes and generated

23 concepts as depicted in Fig. 4.8 and in Table 4.1. In order to extract the log data set, we

run the PitStop system 10 times under different operational scenarios. These sample runs gen-

erated 400 events related to data dependency, and each event was encoded in JSON format.

These 400 events were analyzed and a total of 1,587 facts were generated. A breakdown of the

distribution of events obtained throughout each operational scenario is depicted below.

Event Collection

Operational Scenarios Total Events Data Dependency Events

Scenario 1 348 54

Scenario 2 471 65

Scenario 3 352 30

Scenario 4 641 61

Scenario 5 135 7

Scenario 6 446 20

Scenario 7 610 45

Scenario 8 212 23

Scenario 9 491 39

Scenario 10 720 56

7.2.2 Rule Training

In order to assign weights to the rules a training phase commenced. During the training phase

we applied 864 facts to the rule base so that a Markov Logic Network can be created. Once

the network was trained and rules were assigned weights, we have applied the trained rule-set

to the rest 723 facts, in order to obtain ground match(e1, e2) type of facts, that indicate with a

probability score whether two events e1 and e2 are associated (i.e they will belong to the same

112 Chapter 7. Experiments and Discussion

collection).

As discussed above, we have three rules deducing the match(e1, e2) ground facts. The first

rule is applicable to events that share one pair of attributes with the same value, the second

rule for the events that share two pairs and the third rule for events that share three pairs of

attributes. Considering events that share more than three pairs of attributes makes the system

less tractable, and generates match(e1, e2) ground facts with absolute certainty (probability

1), so we opted to limit the analysis to events that share three or less pairs of attributes. Our

experiments assigned a weight of 1.51836 for the first rule (one common pair), a weight of

1.30469 for the second rule, and a weight of 1.22014. Even though for all practical purposes

the rules have very similar weights, the training favours rules applicable to events sharing less

attributes. This is happening because the number of events sharing three attributes is subsumed

by the ones sharing two attributes, and similarly the events sharing two attributes are subsumed

by the ones sharing one attribute. In this respect, this higher number of occurrences makes the

weights differ in favour of fewer common attributes.

7.2.3 Fact Association

The application of rules in the 723 facts (approx.. 50% of the fact data set) yielded 676 pairs of

matched events with various degrees of probability ranging from 12.01% to 99.99% of match-

ing probability between two events. The standard deviation was 15.7%. Out of these 676

matched pairs, 586 had marching probability less than 20%, 64 had matching probability be-

tween 20.1% and 50%, none had probability between 50.1% and 89.9%, and 26 had matching

probability between 90% and 99.9%. Out of the 64 in the range of 20.1% and 50%, none of

them was a true match. This indicates a very clear classification of true positives and true nega-

tives in the results obtained by the MLN reasoner. A breakdown of the event match probability

distribution is depicted in the table below.

7.3. Threats to Validity 113

Event Match Probability Distribution

Match Probability Number of Matched Events

0%-20% 586

20.1%-50% 64

50.1%-89.9% 0

90%-99.9% 26

The experiments on this log data set also yielded 4 events out of 400 which are unaccounted

for, that is they do not match with other events. Manual analysis indicated that these events

where automatic responses by the middleware.

7.2.4 Microservice Dependency Graph Output

The Microservices Dependency Graph (MDG) which was compiled from this log data set is

modelled using the JGraphT library and is visualized by the JGraphX library. It comprises of

12 nodes and 56 edges denoting different types of data transfer dependencies. As discussed

above, in order to obtain the log data set used for our experiments, we have run the PitStop

system 10 times under different scenarios. After a number of re-runs of different scenarios, the

resulting MDG became stable so for this particular system there was no need to run the system

under different scenarios for more than 10 times. The resulting MDG is shown in Figure 7.2.

7.3 Threats to Validity

There are four points we consider as threats to validity.

The first point deals with the complexity of the log schemas. In very large systems with

many different logging systems, a manual analysis of the schemas to identify attribute syn-

onyms may be a difficult task. In this respect, this step of the process should be automated by

using schema matching techniques. An analysis of these techniques is important in order to

identify their strengths and limitations when applied to event logs as opposed to general data

base schemas.

The second point deals with the size and specificity of the rule-set. We have experimented

114 Chapter 7. Experiments and Discussion

Figure 7.2: The MDG for the PitStop Application

as a proof-of-concept with simple rules. In large systems, there may corner cases and engi-

neers have to draft the event matching rules carefully. Too many rules may make the system

not tractable for real-time use (even though would be perfectly acceptable for off-line use i.e.

auditing), and may limit recall, while too many general rules will hinder precision. Careful

modeling and design of an optimal rule-set requires domain experts.

The third point deals with the availability of logs. In our system we have logs emitted from

the middleware and the data base server. In deployments with limited logging capabilities the

compilation of an MDG may not yield fully accurate results (i.e. missing dependencies). The

approach is based on the assumption that adequate logging infrastructure is in place.

Finally, the fourth point deals with the MDG itself. We are extracting mostly data exchange

type of dependencies between microservices, and we infer call information from these data ex-

changes. However, there may other types of dependencies that may not involve data exchanges,

7.3. Threats to Validity 115

such as signals which may be issued by one microservice and trigger processing steps in an-

other microservice. Currently, we are no able to capture these types of dependencies, and an

extension of the MDG domain model along with log analysis techniques would be needed.

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis we presented a log analysis technique that allows for the extraction of data depen-

dencies between microservices. The approach is based first on the reconciliation of schemas

between events using Formal Concept Analysis, second on the association of events using

Markov Logic Networks as a probabilistic inference engine, third on the identification of col-

lections of related events in the log data set, fourth is the extraction of progressive data flow

paths from the collections, and fifth on the compilation of a graph we refer to as Microservice

Dependency Graph. Nodes in this graph correspond to microservices, or middleware com-

ponents (pub/sub, service busses), or data base servers, while edges denote data exchanges

between components. Data exchanges can take the form of data passing as call parameters

or data that originate from external sources or data bases. The novelty of this work is that it

utilizes domain logic in the form of a weighted rule-set, and a probabilistic reasoning engine

to identify sets of related events in large log data sets.

The identification of dependencies between microservices is a pivotal first step towards the

implementation of various frameworks. First, the MDG can be used to develop compliance

analysis frameworks for microservice architectures. Compliance analysis may take the form

of auditing a deployed system, to ensure that data are flowing from one component to another

as specified (e.g. compliance with privacy policies), or data are not reaching or used by mi-

croservices not authorized to process these specific data (e.g. compliance with access control

116

8.2. FutureWork 117

policies). Second, the MDG can be used to develop what-if analysis utilities. More specifi-

cally, as new features are added to the MSA system, an MDG can be compiled from test cases

and the software engineers can identify what the interactions between the MSA components

would be, if these features were finally released. This is an important aspect for minimizing

the risk of unwanted interactions when the system is in production. Third, the MDG can be

used to identify failure risk. A possible avenue of research would be to train a model to identify

interaction patterns that are known to lead to failures. In this respect, when a new feature is

added, the MDG interactions can be fed to the trained model and identify the failure risk prone-

ness if this feature were to be released. This is an important utility for achieving continuous

integration and continuous deployment (CI/CD).

8.2 Future Work

This work can be extended in several ways. One possible extension is to design a new or

adapt an existing generic log schema for representing events. There exist many standards for

event logging such as the Common Event Format (CEF), the NCSA Common Log Format,

and Extended Log Format (ELF). Through a generic log schema, the MDG framework can

be adapted to be capable of analyzing various different input streams form various types of

microservices when creating the MDG. Another extension would be to harvest and analyze

logs lower in the stack and in particular network traffic logs in order to disambiguate sources

and targets of transactions or sequencing. Currently the MDG uses the MSA data event logs

and SQL event logs to determine the source and target microservice, however a more reliable

approach may be achieved with the usage of lower level network traffic logs. A third extension

would be to develop a run-time monitor to identify interactions (i.e. edges) not currently in

the MDG. Once the MDG and its corresponding edges have been established from the log

files, a run time monitor can reveal new dependencies which are not currently modeled in

the MDG. This may be related to one of two issues. First, this use case was not considered

when the MDG was compiled, in which case the MDG is enhanced. The second issue is

more sinister and may relate to the fact that the system has evolved and now is not compliant

with its specification. A fourth extension would be to design and attach policies/guards to

118 Chapter 8. Conclusion and FutureWork

MDG edges for compliance analysis. In Section 6.4.1, the possible application of guards were

discussed. In this respect, future work for the MDG framework would involve implementing

guards into the MDG model. The implementation of the guards would further improve the

utility afforded by the run time monitor (future work previously stated). In combination with a

run time monitor, any changes made to the system would be captured by the run time monitor

while the implemented guards would evaluate the changes as they are made. Finally, a fifth

extension would be to associate MDG structure with Anti-Patterns, revealing design errors.

Previous research in Anti-Pattern detection was discussed in Section 2.6. However, previous

related research has focused on Anti-Pattern detection based on a call dependency graph. Using

the MDG framework, additional analysis can be conducted to determine if any Anti-Patterns

related to the data dependencies throughout the system.

Bibliography

[1] Alchemy: Open source ai. http://alchemy.cs.washington.edu/.

[2] How to become FedRAMP authorized. https://www.fedramp.gov/. Accessed: 2022-

8-13.

[3] Hidenao Abe and Shusaku Tsumoto. Analyzing behavior of objective rule evaluation

indices based on a correlation coefficient. In Ignac Lovrek, Robert J. Howlett, and

Lakhmi C. Jain, editors, Knowledge-Based Intelligent Information and Engineering Sys-

tems, pages 758–765, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[4] arvindpdmn and devbot5S. Shift left. https://devopedia.org/shift-left, October

2018. Accessed: 2022-8-7.

[5] Leonard Peter Binamungu, Suzanne M Embury, and Nikolaos Konstantinou. Maintain-

ing behaviour driven development specifications: Challenges and opportunities. In 2018

IEEE 25th International Conference on Software Analysis, Evolution and Reengineering

(SANER), pages 175–184. IEEE, 2018.

[6] Grzegorz Blinowski, Anna Ojdowska, and Adam Przybyłek. Monolithic vs. microservice

architecture: A performance and scalability evaluation. IEEE Access, 10:20357–20374,

2022.

[7] André B Bondi. Characteristics of scalability and their impact on performance. In Pro-

ceedings of the 2nd international workshop on Software and performance, pages 195–

203, 2000.

119

http://alchemy.cs.washington.edu/
https://www.fedramp.gov/
https://devopedia.org/shift-left

120 BIBLIOGRAPHY

[8] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe

Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya, et al. Managing

technical debt in software-reliant systems. In Proceedings of the FSE/SDP workshop on

Future of software engineering research, pages 47–52, 2010.

[9] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory al-

gorithm for bound constrained optimization. SIAM Journal on scientific computing,

16(5):1190–1208, 1995.

[10] Giuseppe Carenini. Lectures 30-32. https://www.cs.ubc.ca/˜carenini/

TEACHING/CPSC422-17/index.html.

[11] Pankaj Chejara and W. Wilfred Godfrey. Comparative analysis of community detection

algorithms. In 2017 Conference on Information and Communication Technology (CICT),

pages 1–5, 2017.

[12] Richard Cole, Thomas Tilley, and Jon Ducrou. Conceptual exploration of software struc-

ture: A collection of examples. In CLA, pages 135–148, 2005.

[13] Ward Cunningham. The wycash portfolio management system. ACM SIGPLAN OOPS

Messenger, 4(2):29–30, 1992.

[14] North Dan. Behavior modification. Better Software, 2006-03, 2006.

[15] Datalust. clef-tool. https://github.com/datalust/clef-tool.

[16] Datalust. Serilog. https://datalust.co/seq.

[17] Luc De Raedt and Luc Dehaspe. Clausal discovery. Machine Learning, 26(2):99–146,

1997.

[18] Kelley Dempsey, Victoria Yan Pillitteri, Chad Baer, Robert Niemeyer, Ron Rudman, and

Susan Urban. Assessing information security continuous monitoring (iscm) programs.

NIST Special Publication, 800:137A, 2020.

https://www.cs.ubc.ca/~carenini/TEACHING/CPSC422-17/index.html
https://www.cs.ubc.ca/~carenini/TEACHING/CPSC422-17/index.html
https://github.com/datalust/clef-tool
https://datalust.co/seq

BIBLIOGRAPHY 121

[19] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara, Fab-

rizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: yesterday, today, and

tomorrow. Present and ulterior software engineering, pages 195–216, 2017.

[20] Council of the European Union European Parliament. Council regulation (EU) no

2016/679, 2016.

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:

32016R0679.

[21] Robert Filepp, Constantin Adam, Milton Hernandez, Maja Vukovic, Nikos Anerousis,

and Guan Qun Zhang. Continuous compliance: Experiences, challenges, and opportuni-

ties. In 2018 IEEE World Congress on Services (SERVICES), pages 31–32. IEEE, 2018.

[22] Brian Fitzgerald and Klaas-Jan Stol. Continuous software engineering and beyond: trends

and challenges. In Proceedings of the 1st International Workshop on Rapid Continuous

Software Engineering, pages 1–9, 2014.

[23] Brian Fitzgerald, Klaas-Jan Stol, Ryan O’Sullivan, and Donal O’Brien. Scaling agile

methods to regulated environments: An industry case study. In 2013 35th International

Conference on Software Engineering (ICSE), pages 863–872. IEEE, 2013.

[24] Edgars Gaidels and Marite Kirikova. Service dependency graph analysis in microservice

architecture. In Robert Andrei Buchmann, Andrea Polini, Björn Johansson, and Dim-

itris Karagiannis, editors, Perspectives in Business Informatics Research, pages 128–139,

Cham, 2020. Springer International Publishing.

[25] Isuru Udara Piyadigama Gamage and Indika Perera. Using dependency graph and graph

theory concepts to identify anti-patterns in a microservices system: A tool-based ap-

proach. In 2021 Moratuwa Engineering Research Conference (MERCon), pages 699–

704, 2021.

[26] Bernhard Ganter and Rudolf Wille. Formale Begriffsanalyse: mathematische grundlagen.

Springer-Verlag, 1996.

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32016R0679

122 BIBLIOGRAPHY

[27] Bernhard Ganter and Rudolf Wille. Formal concept analysis: mathematical foundations.

Springer Science & Business Media, 2012.

[28] Javad Ghofrani and Daniel Lübke. Challenges of microservices architecture: A survey

on the state of the practice. ZEUS, 2018:1–8, 2018.

[29] Pooyan Jamshidi, Claus Pahl, Nabor C Mendonça, James Lewis, and Stefan Tilkov. Mi-

croservices: The journey so far and challenges ahead. IEEE Software, 35(3):24–35, 2018.

[30] Hiroshi Kazato, Shinpei Hayashi, Satoshi Okada, Shunsuke Miyata, Takashi Hoshino,

and Motoshi Saeki. Feature location for multi-layer system based on formal concept

analysis. In 2012 16th European Conference on Software Maintenance and Reengineer-

ing, pages 429–434, 2012.

[31] G. Nagendra Kumar and Ch. Aswani Kumar. Generation of high level views in reverse

engineering using formal concept analysis. In 2014 First International Conference on

Networks & Soft Computing (ICNSC2014), pages 334–338, 2014.

[32] Anthony Kwan, Jonathon Wong, Hans-Arno Jacobsen, and Vinod Muthusamy. Hyscale:

Hybrid and network scaling of dockerized microservices in cloud data centres. In 2019

IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pages

80–90, 2019.

[33] Yuanyuan Lan, Lei Fang, Mingzhu Zhang, Jianhua Su, Zhongguo Yang, and Han Li.

Service dependency mining method based on service call chain analysis. In 2021 Inter-

national Conference on Service Science (ICSS), pages 84–89, 2021.

[34] Ze Shi Li, Colin Werner, Neil Ernst, and Daniela Damian. Gdpr compliance in the context

of continuous integration. arXiv preprint arXiv:2002.06830, 2020.

[35] Christian Lindig and Gregor Snelting. Assessing modular structure of legacy code based

on mathematical concept analysis. In Proceedings of the 19th international conference

on Software engineering, pages 349–359, 1997.

BIBLIOGRAPHY 123

[36] Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Shengfang Gong, Ziang Li,

Jiayu Ou, and Zheshun Wu. Microhecl: High-efficient root cause localization in large-

scale microservice systems. CoRR, abs/2103.01782, 2021.

[37] Haifeng Liu, Jinjun Zhang, Huasong Shan, Min Li, Yuan Chen, Xiaofeng He, and Xi-

aowei Li. Jcallgraph: Tracing microservices in very large scale container cloud platforms.

In Dilma Da Silva, Qingyang Wang, and Liang-Jie Zhang, editors, Cloud Computing –

CLOUD 2019, pages 287–302, Cham, 2019. Springer International Publishing.

[38] Peter Lutzeier. Wort und Feld: Wortsemantische Fragestellungen mit besonderer

Berücksichtigung des Wortfeldbegriffes. PhD thesis.

[39] Shang-Pin Ma, Chen-Yuan Fan, Yen Chuang, Wen-Tin Lee, Shin-Jie Lee, and Nien-Lin

Hsueh. Using service dependency graph to analyze and test microservices. In 2018 IEEE

42nd Annual Computer Software and Applications Conference (COMPSAC), volume 02,

pages 81–86, 2018.

[40] Shang-Pin Ma, Chen-Yuan Fan, Yen Chuang, I-Hsiu Liu, and Ci-Wei Lan. Graph-based

and scenario-driven microservice analysis, retrieval, and testing. Future Generation Com-

puter Systems, 100:724–735, 11 2019.

[41] Shang-Pin Ma, I-Hsiu Liu, Chun-Yu Chen, Jiun-Ting Lin, and Nien-Lin Hsueh. Version-

based microservice analysis, monitoring, and visualization. pages 165–172, 12 2019.

[42] E Michael Maximilien and Laurie Williams. Assessing test-driven development at ibm.

In 25th International Conference on Software Engineering, 2003. Proceedings., pages

564–569. IEEE, 2003.

[43] Fabiola Moyon, Kristian Beckers, Sebastian Klepper, Philipp Lachberger, and Bernd

Bruegge. Towards continuous security compliance in agile software development at scale.

In 2018 IEEE/ACM 4th International Workshop on Rapid Continuous Software Engineer-

ing (RCoSE), pages 31–34. IEEE, 2018.

124 BIBLIOGRAPHY

[44] Fabiola Moyón, Kristian Beckers, Sebastian Klepper, Philipp Lachberger, and Bernd

Bruegge. Towards continuous security compliance in agile software development at scale.

pages 31–34, 05 2018.

[45] Sam Newman. Building Microservices. O’Reilly Media, Inc., 2015.

[46] Feng Niu, Christopher Ré, AnHai Doan, and Jude Shavlik. Tuffy: Scaling up statistical

inference in markov logic networks using an rdbms. arXiv preprint arXiv:1104.3216,

2011.

[47] Linda M Ott and Jeffrey J Thuss. The relationship between slices and module cohesion. In

Proceedings of the 11th International Conference on Software Engineering, pages 198–

204, 1989.

[48] Daniel Lowd Pedro Domingos. Markov Logic. Springer Cham, 2009.

[49] Ilaria Pigazzini, Francesca Arcelli Fontana, Valentina Lenarduzzi, and Davide Taibi. To-

wards microservice smells detection. 05 2020.

[50] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema

matching. The VLDB Journal, 10(4):334–350, Dec 2001.

[51] Akond Ashfaque Ur Rahman and Laurie Williams. Software security in devops: Synthe-

sizing practitioners’ perceptions and practices. In 2016 IEEE/ACM International Work-

shop on Continuous Software Evolution and Delivery (CSED), pages 70–76, 2016.

[52] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning,

62(1):107–136, 2006.

[53] Tanvi Sahay, Ankita Mehta, and Shruti Jadon. Schema matching using machine learn-

ing. In 2020 7th International Conference on Signal Processing and Integrated Networks

(SPIN), pages 359–366, 2020.

[54] Serilog. Serilog. https://github.com/serilog/serilog.

[55] Gregor Snelting and Frank Tip. Reengineering class hierarchies using concept analysis.

SIGSOFT Softw. Eng. Notes, 23(6):99–110, nov 1998.

https://github.com/serilog/serilog

BIBLIOGRAPHY 125

[56] Carlos Solis and Xiaofeng Wang. A study of the characteristics of behaviour driven devel-

opment. In 2011 37th EUROMICRO conference on software engineering and advanced

applications, pages 383–387. IEEE, 2011.

[57] Robert E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,

1:146–160, 1972.

[58] Edith Tom, Aybüke Aurum, and Richard Vidgen. An exploration of technical debt. Jour-

nal of Systems and Software, 86(6):1498–1516, 2013.

[59] Tom Tourwé and Kim Mens. Mining aspectual views using formal concept analysis. In

Source Code Analysis and Manipulation, Fourth IEEE International Workshop on, pages

97–106. IEEE, 2004.

[60] Edwin van Wijk. Pitstop - garage management system. https://github.com/

EdwinVW/pitstop/wiki.

[61] Janno von Stülpnagel, Jens Ortmann, and Joerg Schoenfisch. It risk management with

markov logic networks. In Matthias Jarke, John Mylopoulos, Christoph Quix, Colette

Rolland, Yannis Manolopoulos, Haralambos Mouratidis, and Jennifer Horkoff, editors,

Advanced Information Systems Engineering, pages 301–315, Cham, 2014. Springer In-

ternational Publishing.

[62] Eberhard Wolff. Microservices: flexible software architecture. Addison-Wesley Profes-

sional, 2016.

[63] Hamzeh Zawawy, Kostas Kontogiannis, John Mylopoulos, and Serge Mankovskii.

Requirements-driven root cause analysis using markov logic networks. In Jolita Ralyté,

Xavier Franch, Sjaak Brinkkemper, and Stanislaw Wrycza, editors, Advanced Informa-

tion Systems Engineering, pages 350–365, Berlin, Heidelberg, 2012. Springer Berlin Hei-

delberg.

[64] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b:

Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions

on mathematical software (TOMS), 23(4):550–560, 1997.

https://github.com/EdwinVW/pitstop/wiki
https://github.com/EdwinVW/pitstop/wiki

Curriculum Vitae

Name: Andres Rodriguez Ishida

Degrees: University of Western Ontario
London, ON
2016 - 2020 BSc. Specialization in Computer Science

University of Western Ontario
London, ON
2020 - 2022 MSc. Software Engineering

Related Work: Teaching Assistant, University of Western Ontario 2020-2022
CS2212 - Introduction to Software Engineering
CS3357 - Computer Networks I
CS4417 - Unstructured Data

Conference Presentations: A. Rodriguez, ”Extracting Microservice Dependencies:A Log
Based Approach”. In IBM CASCON ”Compliance by Design:
Software Analytics and AIOps” Workshop 2021

Publications: A. Rodriguez, K. Kontogiannis, C. Brealey, ”Extracting Micro
Service Dependencies Using Log Analysis”. In Proceedings
29th IEEE Software Technology Conference 2022 (To Appear)

IBM CASCON x EVOKE 2022, ”Framework for Extracting
Microservice Dependencies Using Log Analysis” Exhibits
Conference Track of WeaveSphere

126

	Extracting Microservice Dependencies Using Log Analysis
	Recommended Citation

	Abstract
	Summary for Lay Audience
	Acknowledgements
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Preamble
	Conceptual Outline of the Approach
	Thesis Contributions
	Thesis Organization

	Background and Related Work
	Microservices
	Introduction
	Advantages
	Replaceability and Strong Modularization
	Continuous Delivery
	Scalability

	Challenges

	Shift-Left
	Introduction
	Technical Debt
	Benefits
	Application
	Test-Driven Development
	Behaviour-Driven Development
	DevSecOp

	Compliance
	Compliance and Continuous Compliance
	FedRAMP
	GDPR

	Formal Concept Analysis
	Reverse Engineering
	Re-Engineering

	Markov Logic Networks
	General Representation
	Risk Management

	Microservice Dependency Graph Analysis
	Service/Invocation chain logs
	Graph Algorithms on Dependency Graphs
	Source Code Analysis
	Dynamic Service Graph Generation
	Version-Based Microservice Analysis

	Research Gap

	Process Outline and Architecture
	General Outline
	Data Extraction
	Log Schema Reconciliation
	Schema Reconciliation
	Filtering Microservice Events
	Filtering SQL Database Events
	Pairing SQL Database Events with Microservice Names
	Pairing SQL Database Events with Microservice Events

	Conceptual Event Association
	Attribute Synonym Synchronization
	Event Association - Conceptual Method
	Automating the Attribute Synonym Process

	System-Wide Event Matching
	Microservice Dependency Graph Extraction
	Event Collection
	Path Extraction and Graph Formation

	Event Association and Schema Reconciliation
	Filtering Data
	Filtering Microservice Events
	Filtering SQL Database Events

	Pairing SQL Database Events with Microservice Names
	Pairing SQL Database Events with Microservice Events
	Event Association
	Attribute Synonym Synchronization
	Event Association - Conceptual Method
	Automating the Attribute Synonym Identification Process
	FCA Table Creation
	FCA Lattice Rule Extraction

	Summary

	System-Wide Event Matching
	Final Matching of System-wide Events
	Fact Base
	Fact Extraction
	Fact Examples

	Rule Base
	Rule Extraction

	Reasoning
	Markov Logic and Markov Logic Networks
	Training and Inference
	Inference Result Analysis

	Summary

	Microservice Dependency Graph Extraction
	MDG Domain Model
	Class Description
	Relationship Description

	Event Collection Formation
	Path Extraction - Sequences of Events
	Microservice Dependency Graph Creation
	Microservice Dependency Graph Applications
	MDG Traversal
	RMI Guard Implementation
	Development Aid

	Summary

	Experiments and Discussion
	Infrastructure Set up
	The Systems Microservice
	Web App
	Customer Management API
	Vehicle Management API
	Workshop Management API
	Message Broker
	Auditlog Service
	Workshop Management Event Handler
	Notification
	Invoice
	Time
	Mail
	SQL

	Systems Event Types
	Customer Registered Event
	Vehicle Registered Event
	Workshop Planning Created Event
	Maintenance Job Planned Event
	Maintenance Job Finished Event
	Day Has Passed Event

	Sample Run and Output
	Data Collection
	Rule Training
	Fact Association
	Microservice Dependency Graph Output

	Threats to Validity

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Curriculum Vitae

