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ABSTRACT

One of the simplest mathematical models in the study of nonlinear systems is the Kuramoto model, which describes synchronization in sys-
tems from swarms of insects to superconductors. We have recently found a connection between the original, real-valued nonlinear Kuramoto
model and a corresponding complex-valued system that permits describing the system in terms of a linear operator and iterative update rule.
We now use this description to investigate three major synchronization phenomena in Kuramoto networks (phase synchronization, chimera
states, and traveling waves), not only in terms of steady state solutions but also in terms of transient dynamics and individual simulations.
These results provide new mathematical insight into how sophisticated behaviors arise from connection patterns in nonlinear networked
systems.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0078791

The collective behavior of nonlinear oscillator networks has been
used to study systems ranging from biology to physics. In this
context, the Kuramoto model (KM) is of great importance. How-
ever, it remains difficult to directly relate the structure of a
specific network adjacency matrix to the resulting dynamics in
nonlinear systems. Here, we use a complex-valued matrix formu-
lation for the KM, whose argument has a correspondence with the
original model. This allows us to obtain an analytical approach
for the transient dynamics in individual simulations of Kuramoto
oscillator networks. We then apply this to study phase synchro-
nization, chimera states, and waves. Our approach gives us a new,
geometric perspective of synchronization phenomena in terms of
complex eigenmodes, which, in turn, offers a unified geometry
for synchrony, chimera states, and waves in nonlinear oscillator
networks.

Networks of nonlinear oscillators have attracted interest across
physics, neuroscience, biology, and applied mathematics as models

where order can arise without a central coordinator.1,2 Oscillator
networks have been applied to study the behavior of insects,3,4 pat-
terns of social behavior,5,6 neural systems,7,8 and physical systems.9,10

In this domain, the Kuramoto oscillator has emerged as the
central mathematical model for studying these synchronization
phenomena.11–15 While it is quite simple, the Kuramoto model has
led to the discovery of new dynamical phenomena well beyond
the initial study of nodes evolving to the same phase. Three major
dynamical phenomena studied in this model are complete phase
synchronization,12 partially synchronized “chimera” states,16–19 and
traveling waves.20 While much study in mathematics has focused on
the existence and stability of these states, the link between network
topology (i.e., the structure of connections) and transient network
dynamics remains unclear. Here, we report a new mathematical
approach to nonlinear oscillator networks that can provide insight
into how the structure of an individual network drives synchro-
nization phenomena for any single simulation. We find that this
new approach can explain the major synchronization phenomena
that have been found in the Kuramoto model, not only in terms of
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stable, steady state solutions but also in terms of transient behaviors
in finite time.

The original Kuramoto model (KM) with phase-lag is given by

θ̇i = ωi + ε

N
∑

j=1

Aij sin (θj − θi − φ), (1)

where θi(t) ∈ R is the phase of the ith oscillator at time t, ωi is its
natural frequency, N is the number of oscillators, ε scales the cou-
pling strength, A is the adjacency matrix, and φ is the phase lag. We
focus here on the case where all oscillators have the same natural
frequency (ωi = ω for all i ∈ [1, N]). The value of φ transforms the
interaction function from the standard attractive case (φ = 0) to the
cosine version with neutral coupling (φ = π/2).21

Following recent work,22 we can use a complex-valued, alge-
braic approach to the Kuramoto model. Starting with Eq. (1), we can
change to a rotating coordinate frame23 and set ω = 0 without loss
of generality. By subtracting an additional imaginary component in
the interaction term

ψ̇i = ε

N
∑

j=1

Aij

[

sin(ψj − ψi − φ)− i cos(ψj − ψi − φ)
]

, (2)

we arrive at a complex-valued system in a new variable ψi ∈ C that
provides an analytical, algebraic approach to the dynamics of the
original nonlinear KM. Specifically, while the addition of the imag-
inary component results in a modified system, using the analytical
solution of Eq. (2) (detailed below) to propagate across multiple
time windows produces trajectories that match those in the original
KM for long timescales (Figs. S1, S2, and S3 in the supplementary
material). It is important to note that this specific form of the
additional imaginary component is necessary (cf. supplementary
material, Sec. I B).

We now show that Eq. (2) has a closed-form, analytical solu-
tion. To do this, we can now multiply by i and use Euler’s formula to
obtain (cf. Sec. I B in the supplementary material)

iψ̇i = εe−iψi

N
∑

j=1

Aije
−iφeiψj . (3)

Letting xi = eiψi , we can write

ẋi = ε

N
∑

j=1

Aije
−iφxj, (4)

which has the general solution

Ex(t) = etK Ex(0), (5)

where Ex = (x1, . . . , xN) and

Kij = εe−iφAij, (6)

where K now collates the network topology A, the coupling strength
ε, and the phase lag φ.

We now have two distinct dynamical systems, the original KM
and the complex-valued system with the explicit solution in Eq. (5).
In the complex-valued system, Ex ∈ C

N has complex-valued elements
xi(t) ∈ C whose argument we compare with the numerical solution

of the original KM θi(t) ∈ R (video 1 in the supplementary material).

In more detail, let Eψ = Eψre + i Eψim be the decomposition of Eψ into
the real and imaginary parts. Then, we have

Ex = ei Eψre− Eψim = e− Eψimei Eψre . (7)

From this, we can see that the argument of Ex(t) is the real part

of Eψ . With this, we can show that the real and imaginary parts of
the complex-valued model follow the dynamics (see Sec. I B in the
supplementary material)

d(ψi)re

dt
= ε

N
∑

j=1

Aij

|xj|

|xi|
sin((ψj)re − (ψi)re − φ), (8)

−
d(ψi)im

dt
= ε

N
∑

j=1

Aij

|xj|

|xi|
cos((ψj)re − (ψi)re − φ). (9)

Note that Eqs. (8) and (9) show that the complex-valued system is
not identical to the original KM since moduli |xi(t)| in the complex-
valued system can exhibit amplitude dynamics that increase in the
complex plane. Surprisingly, however, when initialized with unit-
modulus initial conditions |xi(0)| = 1 for all i, with complex argu-
ments Arg[xi(0)] that match the initial phases θi(0) in the original
KM, the trajectories in the original and complex-valued KM corre-
spond for a non-trivial window of time (Fig. S1). In this work, we
introduce an approach to evaluate Eq. (5) in short time windows,
with the goal of utilizing the analytical form to generate insight into
the underlying mechanism of synchronization, chimeras, and trav-
eling waves in nonlinear oscillator networks. The approach involves
(i) taking a unit-modulus state vector Ex(t0) at the beginning of each
window, (ii) propagating the analytical expression by evaluating the
matrix exponential in Eq. (5) for a short time window (down to 1 ms
in the most challenging case of the chimera state), and then (iii) tak-
ing the argument of the result (Arg[(Ex)i(t)] for all i ∈ [1, N]), as done
when we compare the solution of the complex-valued system with
the numerical solution of the original KM. With this approach, the
trajectories in the complex-valued model match those in the original
Kuramoto model in a variety of conditions and across realizations
over random initial conditions (Figs. S6, S7, S8, and S9). A detailed
comparison of dynamics in these two models is provided in the
supplementary material (Sec. I B).

We, thus, compare the argument of our analytical expression
[Eq. (5), hereafter denoted “analytical”] to computer simulations of
the original nonlinear Kuramoto model [Eq. (1), “original KM”]
throughout the rest of this work. The numerical simulations were
performed using Euler’s method, and no significant differences
were observed using a different integration technique. Importantly,
we note that initial conditions (at t = 0) in the complex-valued
Kuramoto model always have unit modulus |xi(0)| = 1 for all i,
with arguments Arg[xi(0)] equal to the initial angles θi(0) in the
original KM.

In general (see supplementary material Sec. I B for specific con-
ditions), we can write the temporal dynamics of Ex in terms of the
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eigenvectors and eigenvalues of K,

Ex(t) = c1e
λ1t

︸ ︷︷ ︸

µ1

Ev1 + c2e
λ2t

︸ ︷︷ ︸

µ2

Ev2 + · · · + cNeλNt

︸ ︷︷ ︸

µN

EvN, (10)

where λk is the eigenvalue associated with the eigenvector Evk. The
projection on to the kth eigenmode is given by the inner product
µk(t) = 〈Ex(t), Evk〉.

This expression now allows us to understand the three major
synchronization phenomena previously discovered in the Kuramoto
model from a comprehensive mathematical perspective, in terms
of the geometry of µk representing the contribution of kth eigen-
mode. Furthermore, when A follows the same connectivity rule for
all nodes (i.e., where connections can be fully specified by a single
vector cyclically permuted across all nodes, resulting in a circu-
lant matrix), the circulant diagonalization theorem (CDT) allows
obtaining the eigenspectrum analytically, with eigenvectors follow-
ing an ordering of Fourier modes from low to high spatial frequen-
cies (supplementary material, Sec. I B, Figs. S10 and S13).24 Using
Eq. (10), we can then analyze the system in terms of the eigenmode
contributions µk.

We first studied the emergence of phase synchronized states
in Kuramoto oscillators with attractive coupling (φ = 0), where the
adjacency matrix A is given by a complete graph on N = 50 nodes.
Figure 1 shows the precise correspondence between (a) the origi-
nal Kuramoto and (b) the analytical evaluation during the transition
from random initial conditions (θi(0) = Arg[xi(0)] ∼ U[−π ,π])
to synchrony. This transition is measured by the Kuramoto

order parameter R(t) = N−1|
∑N

j=1 exp[iθj(t)]| (where the phases are

obtained from the original KM or complex-valued model), which
also exhibits a precise correspondence between the original KM
and analytical evaluation [Fig. 1(c)]. Using this analytical approach,
we can then analyze the system in terms of the contribution of
individual eigenmodes, represented in color in Fig. 1(d) (log |µ|).
Prior to the transition to synchrony, the eigenmode contributions
are almost uniform. After the transition, however, the contribu-
tions shift away from uniformity, and the first eigenmode becomes
dominant (yellow line at µ1).

The analytical approach we have introduced provides an
opportunity to understand this transition geometrically. Specifically,
we can study how the first eigenmode, which represents the
synchronized state, behaves in relation to the other modes,
which represent more complicated configurations of phase.
As the system transitions to synchronization, the contribution
of the first eigenmode increases in magnitude (modulus) in
the complex plane, while the other eigenmode contributions
collapse to the origin (video 2 in the supplementary material).
Because it is the argument of Eq. (5) that determines the
phase dynamics in the analytical approach, the contribution of
the first eigenmode, which is associated with the eigenvector
Ev1 = (1, 1, . . . , 1)T (and Arg[(Ev1)i] = 0 for all i ∈ [1, N]), explicitly
brings the network toward the synchronized state. This analysis pro-
vides a novel geometric insight into the transition to synchrony and
how the pattern of connections in a network determines the tran-
sition from an incoherent to a coherent state during an individual
simulation. Furthermore, when φ = π/2, interactions in the net-
work are no longer attractive, and in this case, Kuramoto networks

FIG. 1. Analytical description of the transition to synchrony. Solutions of the orig-
inal Kuramoto model (numerical simulation) (a) and the analytical evaluation (b)
are plotted in color-code (dark tones indicate values close to −π and light tones
to π ). As time evolves, the spatiotemporal dynamics become coherent and phase
synchronization appears. A quantitative comparison between the two models is
provided in Fig. S2. The level of synchronization, measured by the Kuramoto order
parameter (c), starts at a low value with the random initial conditions and quickly
approaches unity, which indicates the phase synchronized state of the system.
The eigenmode contribution (log |µ|) is plotted in color (d). The contribution of
the first eigenmode, which represents zero phase difference across oscillators,
dominates when the phase synchronized state appears.

do not synchronize.25 Consistent with this, our analysis shows that
the eigenmode contributions remain uniform across time (Fig. S5
and video 3 in the supplementary material). These results demon-
strate that the geometric view provided by the eigenmodes can
provide insight into the transient dynamics of synchronized and
incoherent states.

We now use this approach to understand two more sophis-
ticated dynamical phenomena that have been discovered in the
Kuramoto model: partially synchronized chimera states and trav-
eling waves. Chimera states, which are a sophisticated mixture of
synchronized and non-synchronized clusters in oscillator networks,
are known to arise in models with distance-dependent (non-local)
connections and a constant phase lag (φ).17,26–28 Here, we con-
sider the case where connections follow a deterministic, distance-
dependent power rule that specifies a real-valued connection weight
(supplementary material, Sec. I E 2). Figure 2 depicts the spatiotem-
poral dynamics for the original KM and our analytical solution
for the cases φ = 1.15 (a) and φ = 1.30 (b). In Fig. 2(a), one can
see a transient chimera, where the system transitions from inco-
herence, to a chimera state, and finally to phase synchronization.
In Fig. 2(b), the system transitions from incoherence to a chimera
state that continues for all times we simulated. Importantly, in
both cases, the spatiotemporal dynamics produced by our analyt-
ical evaluation depicts a good correspondence with the chimera
states observed in the numerical simulation (videos 4 and 5 in the
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FIG. 2. Analytical description of the chimera state. Spatiotemporal dynamics for
original KM (simulation) and analytical evaluation are plotted in color-code for
the distance-dependent networks with φ = 1.15 (a), and φ = 1.30 (b). In these
cases, chimera states are observed, where part of the network is synchronized
and coexists with an incoherent region. Here, it is important to emphasize that
the original KM and analytical expression are evaluated separately, using only the
same initial condition. This demonstrates that the analytical approach is able to
capture important details of the Kuramoto dynamics.

supplementary material). A quantitative comparison between the
analytical and original KM results in this case is provided in Fig. S3.

We now use the geometric approach to the Kuramoto dynam-
ics to derive insight into the mechanism underlying chimera states

in oscillator networks. Specifically, in networks where the same
connectivity rule is applied to each node, the eigenmodes higher
than µ1 take the form of traveling waves from low to high spatial
scales in their arguments (Fig. S13).24 Analysis of the eigenmode
contributions (log |µ|), plotted as solid lines representing an average
over 100 simulations (with shaded regions representing the standard
deviation over simulations), reveals that the chimera is created by
an interplay of the synchronizing mode µ1 and a set of modes rep-
resenting waves traveling in opposite directions with progressively
higher spatial frequencies (t = 10 s, blue line, Fig. 3, right panel).
This is in contrast to the completely synchronous state, where the
contribution of the first eigenmode and the rest differ by more
than 12 orders of magnitude 10 s into the simulation (burgundy
line, Fig. 3, middle panel), and in contrast to the incoherent case
(φ = π/2), where the contributions across eigenmodes remain uni-
form (yellow line, Fig. 3, right panel). These results allow us to
understand the emergence of the chimera as an interplay between
specific types of modes in the Kuramoto system. Furthermore,
analysis of the aggregate connectivity matrix K illustrates that the
underlying mechanism for this interplay of modes is a rotation of
the eigenvalues in the complex plane, which reduces the differ-
ence between the real part of the eigenvalue associated with the
synchronized state and the real part of the rest (Figs. S10 and S11).

To illustrate the insight into the chimera state this geo-
metric approach can provide, we can now rewrite the analytical
solution using a subset of contributing modes and compare this
truncated approximation to the numerical simulation [Fig. 4(a),
see also Fig. S12]. With only the first 10 modes in the solution
({µ1,µ2, . . . ,µ10}), the synchronization in the system is overesti-
mated (Fig. 4(b)). Moreover, with only the last 10 modes in the solu-
tion ({µ216,µ217, . . . ,µ225}), the synchronization is underestimated
[Fig. 4(d)], leaving the system with no signature of the chimera. With
the first and last 10 modes ({µ1,µ2, . . . ,µ10,µ216,µ217, . . . ,µ225}),
however, the dynamics in the numerical simulation are recovered,
and the main structures defining the chimera state are observed in
the analytical approximation [Fig. 4(c)]. These results demonstrate
this analytical approach can capture highly non-trivial dynamical

FIG. 3. Geometry of eigenmodes explains the mechanism for the chimera state. The eigenmode contribution (log |µ|) for increasing values of φ at t = 1 s (left) and t = 10 s
(middle) demonstrates the evolution of the first modes in the case ofφ = 0, while forφ = 1.30, the first and last eigenmodes contribute in balance (right). Solid lines represent
average eigenmode contribution over 100 simulations, and shaded regions represent standard deviation.
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FIG. 4. A subset of contributing eigenmodes creates an analytical approxima-
tion to the chimera state numerically simulated in the original KM (a). The first
10 eigenmodes {µ1,µ2, . . . ,µ10} create a partially synchronized region that is
too broad (b), while the last 10 eigenmodes {µ216,µ217, . . . ,µ225} create no
signature of a chimera (d). However, using the first 10 and last 10 eigenmodes
{µ1,µ2, . . . ,µ10,µ216,µ217, . . . ,µ225} creates an analytical approximation to
the chimera state (c).

phenomena such as chimera states that emerge from the network
structure and nonlinear dynamics of the Kuramoto model.

Finally, we considered traveling waves in the Kuramoto model.
While, when φ = 0, the synchronized state occurs starting from a
broad range of random initial conditions (as in Fig. 1), Kuramoto
networks can also exhibit traveling wave states that exist for arbi-
trary lengths of time [original KM and analytical, Fig. 5(a) and 5(b).
A quantitative comparison between these two results is provided
in Fig. S4]. While the stability of such traveling wave, or “twisted,”
states has been the subject of much investigation,29–32 our geomet-
ric approach provides insight into transient wave dynamics, which
have recently been observed to play important roles in several fields,
from neural systems33,34 to ecology35 and power grids.36 Analysis of
eigenmode contributions during a traveling wave on a ring graph
reveals that these states exist as contributions from a single eigen-
mode representing a more structured configuration of phase than
µ1 (Figs. S14 and S15).

If the network receives a perturbation with sufficient magni-
tude, however, the traveling wave state can transition to synchrony
[Fig. 5(c)]. In this case, our analytical approach also captures the
timecourse of these transient dynamics well (see video 6 and Fig. S15
in the supplementary material). In this case, the transition to syn-
chrony has a specific signature: while the eigenmode contribution is
localized to µ2 prior to the perturbation, the contributions become
spread out during the transition before collapsing to µ1 [Fig. 5(d)],

FIG. 5. Original KM (a) and analytical evaluation (b) for an example of a wave
state on a ring graph (N = 100, k = 1, see Sec. I E 2 in the supplementary mate-
rial), resulting from a special set of initial conditions, a “twisted” state [see Eq. (27)
in the supplementary material]. In this context, traveling wave states constitute
the contribution of a single eigenmode to the dynamics (2nd eigenmode, in this
case) (cf. Fig. S13). The Kuramoto order parameter (c) in the traveling wave state
remains at R = 0. However, when a finite perturbation is applied to the system
at t = 2 s, the network transitions to a phase synchronized state (R = 1). The
relative instantaneous frequencies following the perturbation exhibit a non-trivial
self-organized state during the transition to synchrony (c, inset). This transition is
captured by the eigenmode contributions (d), where the 2nd eigenmode gives way
to the 1st eigenmode when phase synchronization is reached.

since the system transitions from a wave state to phase synchro-
nization [where R = 1 in Fig. 5(c)]. Furthermore, after the per-
turbation is applied, the instantaneous frequency is no longer the
same across oscillators, which results in a non-trivial, self-organized
“falcon” shape in the instantaneous frequencies leading to phase-
synchronization after the transition [inset, Fig. 5(c)]. These results
demonstrate that the geometric view can provide novel insight into
transient dynamics in Kuramoto systems following perturbation.

The connection between network structure and resulting non-
linear dynamics is a central question in modern physics. In this
work, we have studied an analytical approach to the Kuramoto
model, a canonical model for synchronization dynamics in nature.
The geometric view enabled by our analytical approach pro-
vides insight into three major synchronization phenomena in the
Kuramoto model (phase synchronization, partially synchronized
chimera states, and traveling waves). The key novel feature of our
analytical approach is that it is valid at finite scales and for indi-
vidual realizations of the model, which can provide more detailed
insight into specific, moment-by-moment dynamics in the sys-
tem than statistical or asymptotic theoretical approaches. Here, the
insight provided by this approach allows us to explain the fully
synchronized state as a dominant first eigenmode of the complex
system (Fig. 1), partially synchronized chimera states as an inter-
play between modes representing a set of waves traveling in oppo-
site directions (Figs. 2–4), and traveling waves as localizations in
higher eigenmodes (Fig. 5). This unifying insight into three main
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dynamical phenomena that have been discovered in the Kuramoto
model demonstrates the utility of the non-asymptotic, algebraic
approach to network structure and nonlinear dynamics in this
work.

Our approach involves a complex-valued system that admits an
explicit analytical solution and whose trajectories correspond to the
original, nonlinear KM for a non-trivial window of time. Motivated
to see how precisely the trajectories between the two models could
match, here we developed an approach to evaluate the analytical
expression in Eq. (5) in short time windows. Again, briefly, we
start with unit-modulus complex-valued initial conditions, corre-
sponding to the initial phases of the original KM, at the start of
each window. We then evaluate the matrix exponential for a short
time window (down to 1 ms in the most challenging case of the
chimera state). Finally, we take the argument of each element in the
resulting state vector (Arg[(Ex)i(t)] for all i ∈ [1, N]), as always done
when comparing the solution of the complex-valued system with the
numerical solution of the original KM.

This approach to evaluating the complex-valued system rep-
resents an initial step toward an operator-based approach to non-
linear dynamics. Specifically, while it is possible to evaluate the
complex-valued system directly, by applying the matrix exponen-
tial to produce a solution that agrees with the original KM for
a short, but non-trivial, length of time, here we find this win-
dowed approach produces trajectories that precisely match those
in the original, nonlinear KM across many different dynamical
regimes, including synchronization, chimeras, and traveling waves.
The approach taken in this work can be viewed as the combina-
tion of two operators: the matrix exponential and Arg. Importantly,
while this approach is more complicated than a standard evaluation
of the solution to a linear system by using the matrix exponential,
this approach allows us to describe the microscopic evolution of
the Kuramoto system in terms of a linear operator acting on an
instantaneous state. This, in turn, permits analytical insight into
the mechanisms underlying states such as chimeras in terms of
the spectrum of the adjacency matrix. This approach thus allows
us to connect the nonlinear dynamics generated in an individual
simulation of a network of Kuramoto oscillators to the specific
adjacency matrix for that system. In addition to investigating the
mechanisms of these dynamical phenomena further using spectral
graph theory, we aim to understand more fully how the nonlin-
ear dynamics in the original KM can be described to the high
precision necessary to match a chimera state, which is known to
be a chaotic transient,28 by the iterative application of two simple
operators.

Finally, because the Kuramoto model has been extensively
studied both as a model for neural dynamics37 and as a funda-
mental model for computation,33,38,39 these results open up several
possibilities for studying the connections between network struc-
ture, nonlinear dynamics, and computation. The importance of a
recurrent network structure is becoming increasingly recognized
both in biological40 and artificial41 visual processing, and, in recent
work, we introduced a theoretical framework for studying how
recurrent connections and traveling waves shape computation in
the visual system.34 Understanding how precise network structure
can support specific computations in the brain and artificial learn-
ing systems through these analytical approaches may lead to a more

comprehensive mathematical understanding of neural computation
in future work.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional mathematical
details about the methodology, models and networks, complemen-
tary figures, description of the parameters used in the analyses, and
description of the supplementary movies.
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