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ARTICLE

Whole-brain modelling identifies distinct but
convergent paths to unconsciousness in
anaesthesia and disorders of consciousness
Andrea I. Luppi 1,2,3,4✉, Pedro A. M. Mediano 5,6, Fernando E. Rosas 7,8,9, Judith Allanson2,10,

John D. Pickard 2,11, Guy B. Williams 2,12, Michael M. Craig1,2, Paola Finoia 2, Alexander R. D. Peattie 1,2,

Peter Coppola 1,2, Adrian M. Owen 13, Lorina Naci 14, David K. Menon 1,12, Daniel Bor5,6 &

Emmanuel A. Stamatakis 1,2

The human brain entertains rich spatiotemporal dynamics, which are drastically reconfigured

when consciousness is lost due to anaesthesia or disorders of consciousness (DOC). Here,

we sought to identify the neurobiological mechanisms that explain how transient pharma-

cological intervention and chronic neuroanatomical injury can lead to common reconfigura-

tions of neural activity. We developed and systematically perturbed a neurobiologically

realistic model of whole-brain haemodynamic signals. By incorporating PET data about the

cortical distribution of GABA receptors, our computational model reveals a key role of

spatially-specific local inhibition for reproducing the functional MRI activity observed during

anaesthesia with the GABA-ergic agent propofol. Additionally, incorporating diffusion MRI

data obtained from DOC patients reveals that the dynamics that characterise loss of con-

sciousness can also emerge from randomised neuroanatomical connectivity. Our results

generalise between anaesthesia and DOC datasets, demonstrating how increased inhibition

and connectome perturbation represent distinct neurobiological paths towards the char-

acteristic activity of the unconscious brain.

https://doi.org/10.1038/s42003-022-03330-y OPEN

1 Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK. 2 Department of Clinical Neurosciences, University of
Cambridge, Cambridge, UK. 3 Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK. 4 The Alan Turing Institute,
London, UK. 5 Department of Psychology, University of Cambridge, Cambridge, UK. 6Department of Psychology, Queen Mary University of London,
London, UK. 7 Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK. 8Data Science Institute, Imperial College
London, London, UK. 9 Centre for Complexity Science, Imperial College London, London, UK. 10 Department of Neurosciences, Cambridge University
Hospitals NHS Foundation, Addenbrooke’s Hospital, Cambridge, UK. 11 Division of Neurosurgery, School of Clinical Medicine, University of Cambridge,
Cambridge, UK. 12Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK. 13 The Brain and Mind Institute, University of Western Ontario,
London, ON, Canada. 14 Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland. ✉email: al857@cam.ac.uk

COMMUNICATIONS BIOLOGY |           (2022) 5:384 | https://doi.org/10.1038/s42003-022-03330-y | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03330-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03330-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03330-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03330-y&domain=pdf
http://orcid.org/0000-0002-3461-6431
http://orcid.org/0000-0002-3461-6431
http://orcid.org/0000-0002-3461-6431
http://orcid.org/0000-0002-3461-6431
http://orcid.org/0000-0002-3461-6431
http://orcid.org/0000-0003-1789-5894
http://orcid.org/0000-0003-1789-5894
http://orcid.org/0000-0003-1789-5894
http://orcid.org/0000-0003-1789-5894
http://orcid.org/0000-0003-1789-5894
http://orcid.org/0000-0001-7790-6183
http://orcid.org/0000-0001-7790-6183
http://orcid.org/0000-0001-7790-6183
http://orcid.org/0000-0001-7790-6183
http://orcid.org/0000-0001-7790-6183
http://orcid.org/0000-0002-5762-6667
http://orcid.org/0000-0002-5762-6667
http://orcid.org/0000-0002-5762-6667
http://orcid.org/0000-0002-5762-6667
http://orcid.org/0000-0002-5762-6667
http://orcid.org/0000-0001-5223-6654
http://orcid.org/0000-0001-5223-6654
http://orcid.org/0000-0001-5223-6654
http://orcid.org/0000-0001-5223-6654
http://orcid.org/0000-0001-5223-6654
http://orcid.org/0000-0002-3908-9255
http://orcid.org/0000-0002-3908-9255
http://orcid.org/0000-0002-3908-9255
http://orcid.org/0000-0002-3908-9255
http://orcid.org/0000-0002-3908-9255
http://orcid.org/0000-0003-2115-7640
http://orcid.org/0000-0003-2115-7640
http://orcid.org/0000-0003-2115-7640
http://orcid.org/0000-0003-2115-7640
http://orcid.org/0000-0003-2115-7640
http://orcid.org/0000-0002-8658-7409
http://orcid.org/0000-0002-8658-7409
http://orcid.org/0000-0002-8658-7409
http://orcid.org/0000-0002-8658-7409
http://orcid.org/0000-0002-8658-7409
http://orcid.org/0000-0002-5738-3765
http://orcid.org/0000-0002-5738-3765
http://orcid.org/0000-0002-5738-3765
http://orcid.org/0000-0002-5738-3765
http://orcid.org/0000-0002-5738-3765
http://orcid.org/0000-0001-9630-3978
http://orcid.org/0000-0001-9630-3978
http://orcid.org/0000-0001-9630-3978
http://orcid.org/0000-0001-9630-3978
http://orcid.org/0000-0001-9630-3978
http://orcid.org/0000-0002-3228-9692
http://orcid.org/0000-0002-3228-9692
http://orcid.org/0000-0002-3228-9692
http://orcid.org/0000-0002-3228-9692
http://orcid.org/0000-0002-3228-9692
http://orcid.org/0000-0001-6955-9601
http://orcid.org/0000-0001-6955-9601
http://orcid.org/0000-0001-6955-9601
http://orcid.org/0000-0001-6955-9601
http://orcid.org/0000-0001-6955-9601
mailto:al857@cam.ac.uk
www.nature.com/commsbio
www.nature.com/commsbio


The human brain generates a dynamically changing reper-
toire of neural activity, supporting its rich variety of con-
scious experiences and cognitive functions1–15. A central

challenge of contemporary neuroscience is the quest to under-
stand how the neurobiology and function of the human brain give
rise to such rich conscious experience16,17. One way to address
this question is to identify changes in brain function that
accompany changes in conscious state18. Recently, increased
focus on brain dynamics2,19–25 has enabled substantial progress
on this question18,26–35.

However, the brain is a paradigmatic example of a complex
system36, and different perturbations of its precise functioning
can serve as a path towards loss of consciousness. Examples
of such perturbations range from transient pharmacological
(general anaesthetic) interventions having widespread effects on
neuromodulation37–40, to chronic disorders of consciousness
arising from injuries of diverse location and extent, often
including changes to the physical connectivity between brain
regions41–58. This similarity of outcomes and neural
signatures18,26–30 despite arising from radically different causes,
begs the question: How can (transient) pharmacological and
(chronic) structural perturbations converge to similar effects on
dynamic brain activity, and the corresponding state of
unconsciousness?

Here, we sought to obtain mechanistic insights into this fun-
damental question by employing whole-brain computational
modelling. Neuropsychological studies in human patients and
experimental lesions in animal models have provided invaluable
insights about brain organisation, function and dysfunction59–62.
Whole-brain computational models can be systematically and
reversibly manipulated in ways that are still beyond the cap-
abilities of experimental research, whether in humans or
animals63,64. Therefore, in-silico whole-brain models23,65,66 are
uniquely suited to investigate how different neurobiological per-
turbations can induce similar alterations of brain
activity23,63,66–78, including recent successful applications to the
study of consciousness with oscillator-based models (Hopf)79–85

or models based on statistical mechanics (Ising)86–88.
Crucially, recent work has demonstrated that more detailed

biophysical models that incorporate neurophysiologically realistic
information about excitation, inhibition and neuromodulation –
so-called Dynamic Mean Field (DMF) models – can provide
insights about pharmacologically-induced changes in macroscale
fMRI haemodynamics, in terms of the underlying
neurobiology89–91. Such neurobiologically realistic computational
models provide a principled way to bridge across scales, relating
the macroscale neural dynamics of fMRI to the microscale neu-
rophysiological mechanisms from which they emerge63,92.
However, to date no studies have harnessed the power of DMF
models to provide neurobiologically realistic accounts of phar-
macological and chronic loss of consciousness.

Here, we leveraged a neurobiologically realistic DMF model
informed by multimodal neuroimaging including empirical brain
activity from functional MRI, anatomical connectivity obtained
from diffusion MRI, and GABA-A receptor density estimated
from positron emission tomography (PET). We used this mod-
elling approach to simulate the empirical fMRI macroscale brain
activity observed in the same n= 16 subjects during wakefulness
and during loss of consciousness induced by the intravenous
anaesthetic, propofol. We also studied the fMRI activity of a
cohort (n= 21) of patients suffering from chronic disorders of
consciousness (DOC) as a result of severe brain injury (traumatic
or anoxic), comparing them with a group of n= 20 healthy
controls. By subjecting the models to virtual anaesthesia (local
modulation of inhibitory gain based on empirical GABA-A
receptor distribution) and virtual DOC (alteration of the model’s

structural connectome), we sought to identify the neurobiological
mechanisms underlying a fundamental question of modern
neuroscience: how can transient perturbations of neuro-
transmission and chronic lesions to the structural connectome,
both give rise to unconsciousness and its characteristic similar
haemodynamic signatures 18,26,27,29,93?

Results
We employed a neurobiologically realistic dynamic mean-field
(Fig. 1) model to investigate how perturbations of neuro-
transmission and lesions to brain connectivity can both give rise
to the characteristic spatiotemporal patterns of brain activity
observed during loss of consciousness. The DMF model reduces
the intricate dynamics of individual neurons to a set of coupled
differential equations which approximate the detailed microscale
neural properties of spiking neurons (incorporating realistic
aspects of neurophysiology such as synaptic dynamics and
membrane potential)94 via a mean-field reduction19,22,25,95,96.
Specifically, cortical regions are represented as macroscopic
neural fields, whose local dynamics are coupled together by a
network of anatomical connections19,22,25. An additional bio-
physical haemodynamic model can then be used to turn the DMF
model’s activity into a realistic simulator of BOLD signals97.

Following previous DMF modelling work89, we evaluate the
quality of fit in terms of the Kolmogorov-Smirnov distance
between the distributions of real and simulated functional con-
nectivity dynamics (FCD), corresponding to the patterns of inter-
temporal correlations between sliding windows of functional
connectivity, thereby taking into account both spatial and tem-
poral aspects of haemodynamic activity. We followed this pro-
cedure for each of our two datasets (Supplementary Figure 1 and
Methods): for the propofol dataset we optimised the model to fit
the functional connectivity dynamics of empirical fMRI data
acquired during the awake scan, and for the DOC dataset we
optimised the model to fit the FCD observed in the healthy
controls. These two calibrated DMF models - with their corre-
sponding global coupling values fitted to the BOLD signals of the
conscious brain for each of our two datasets - constitute the
starting point for our investigations.

Inhibitory modulation from GABA-A receptor distribution
reveals a shared mechanism for loss of consciousness. Propofol
is a potent agonist of inhibitory GABA-A receptors98,99. The
effects of propofol anaesthesia on the brain were therefore
modelled by capitalising on the recently built whole-brain map of
GABA-A regional receptor density, generated on the basis of
benzodiazepine receptor (BZR) density measured from [11C]flu-
mazenil Positron Emission Tomography (PET; see Methods)100.
Incorporating this information in the DMF model allowed us to
evaluate the extent to which the dynamics of the anaesthetised
brain can be explained in terms of propofol-induced alterations in
the detailed balance of local excitation and inhibition.

In seminal previous work, Deco and colleagues89 modelled the
effects of the serotonergic drug LSD by locally modulating the
neuronal gain of each excitatory population in the model
according to the empirical distribution of 5HT-2A receptors
across brain regions89. Inspired by their approach, here we
demonstrate that the influence of regional GABA-A receptor
density on functional dynamics can be modelled using a DMF
model informed by regional GABA-A receptor density.

The strategy followed by Deco and colleagues89 was to first
calibrate the model on awake data to obtain a global coupling
value (see Methods), and then fit a secondary inhibitory
parameter separately on awake and post-propofol (anaesthetised)
data. Our approach follows Deco’s but differs in one key respect:
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given the inhibitory nature of GABA, we modulated the
inhibitory (rather than excitatory) local gain (note that the
excitatory and inhibitory populations within each region in the
biophysical model are mutually and recursively coupled, and
hence both excitation and inhibition are eventually affected by
this procedure) (Fig. 2a). To do so, we introduced an inhibitory
gain scaling parameter in the model, denoted by sI. This
parameter allowed us to scale the inhibitory gain at each region

according to the empirical local density of GABA-A receptors, as
quantified based on PET-derived maps of receptor density100.

This procedure allowed us to ask whether adjusting the value of
inhibitory gain sI according to local GABA-A receptor density
would allow the model to simulate the spatiotemporal patterns of
haemodynamic activity that characterise acute propofol-induced
unconsciousness. A positive answer to this question would
implicate regional GABA-ergic inhibition as a neurobiological

Fig. 1 Overview of whole-brain computational model incorporating multimodal neuroimaging data. Based on a cortical parcellation with 68 regions of
interest, each node (cortical region) is modelled through a neurophysiologically realistic biophysical model incorporating excitatory (NMDA) as well as
inhibitory (GABA) synaptic dynamics. Nodes are connected by structural connectivity (from diffusion MRI) and the model’s simulated BOLD signals are
fitted to simulate empirical BOLD signal patterns (from functional MRI). Neurotransmitter information from PET can also be added in the model as
modulating the local neuronal gain89.

Fig. 2 Modulation of inhibitory gain by empirical GABA-A receptor density improves model fit to propofol dynamics. a The inhibitory gain of each node
in the balanced DMF model is modulated by the regional density of GABA-A receptors, estimated from PET. b Box-plots show the model fit for
n= 100 simulations, quantified as the KS-distance (lower is better) to the functional connectivity dynamics (FCD) derived from the propofol
(anaesthetised) condition, using a value of gain for inhibitory scaling sI derived from calibrating the model with respect to either the awake (blue) or
propofol (grey on shaded background) conditions. Middle line: median; box limits, upper and lower quartiles; whiskers, 1.5x inter-quartile range; “+” symbol
indicates outliers; ***p < 0.001 from t-test. Source data are provided in Supplementary Data 1. We replicated this result using an alternative version of the
KS-distance, which in addition to the distribution of FCD values also takes into account the temporal lag between them (Supplementary Fig. 2).
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mechanism behind the action of propofol (a known GABA-ergic
agonist) in inducing the characteristic macroscale activity
patterns observed during loss of consciousness due to propofol
anaesthesia18,26,28,29.

To address this issue, we studied whether some appropriate
value of sI (which scales the gain related to the local GABA-A
receptor density) would improve the model’s ability to simulate
the dynamics of deep propofol anaesthesia. For this purpose, we
used the previously calibrated DMF model to generate simulations
for each value of sI between 0 (corresponding to the model
without local GABA inhibitory modulation) and 1, in increments
of 0.02. Then, for each value of sI, we computed the KS distance
between the model’s simulated functional connectivity dynamics,
and the empirical FCD observed in the awake and in the
anaesthetised subjects, respectively. Separately for each condition,
the optimal value of sI, was then identified as the value that
resulted in the minimum mean KS distance between empirical and
simulated FCD (across n= 10 simulations for each value of sI).

Having completed the fitting procedure for our models, we
then proceeded to analyse the models’ performance. To this end,
we generated n= 100 simulations from each of the propofol-
fitting and awake-fitting models. For both models, we then
computed the KS distance between each simulation, and the
empirical FCD observed during wakefulness, and during
anaesthesia. This provided us with a way to quantify the ability
of each model (in terms of goodness of fit, i.e., low KS distance) to
simulate the empirical patterns of spatiotemporal brain activity
observed during wakefulness, and the empirical patterns of
spatiotemporal brain activity observed during propofol-induced
loss of consciousness.

Our results indicate that the DMF model’s ability to simulate
the empirical FCD observed during propofol-induced anaesthesia
can be significantly improved (lower KS-distance) by increasing
the inhibitory gain scaling from the value that best reproduces the
awake functional connectivity dynamics (sI= 0.02) to a higher
value (sI= 0.52) (Fig. 2b and Supplementary Table 1). In other
words, the modulation of inhibition in accordance with the
empirical distribution of GABA-A receptors across brain regions,
makes the model capable of switching between simulating awake
or anaesthetised brain activity. Since propofol is a well-known
GABA-ergic agonist, these results confirm that taking into
account GABA agonism (local modulation of inhibitory gain by
regional GABA-A receptor density) is sufficient to recapitulate
the known effects of the GABA-ergic agent propofol on empirical
brain activity patterns, leading to dynamics that are known to
characterise the state of unconsciousness.

Crucially, we also confirmed that the improved fit to
anaesthetised dynamics is not merely the result of increasing
overall inhibition in the model: rather, regional information about
the distribution of GABA receptor density plays a key role in
the model’s improved fit. To demonstrate this point, we show that
the results are not replicated if the PET-derived regional
distribution of GABA-A receptor density is reshuffled across
regions while preserving spatial autocorrelation (Methods)
(Fig. 3a, b), or if uniform values are used for each region (i.e.,
by setting all regions to have a value equal to the mean of the
distribution; Fig. 3c). In both cases, the model’s ability to fit
anaesthetised dynamics is significantly impaired compared with
the model using the empirical distribution of GABA-A receptors
obtained from in vivo PET imaging (Fig. 3 and Supplementary
Table 1). Therefore, our results show that the specific regional
distribution of GABA-A receptors across the cortex plays a
key role in generating the spatiotemporal patterns of brain
activity characteristic of unconsciousness induced by propofol
administration.

Simulated brain injury induces unconscious-like dynamics.
Whole-brain computational models provide a unique tool to
understand the effects of connectome alterations on macroscale
brain activity73,74,86. We developed a procedure to probe which of
two conditions is more compatible with a given perturbation of
the connectome, in terms of the connectome’s capacity to support
the corresponding brain activity. We term this procedure, Con-
nectome Replacement Analysis. The procedure involves (i) cali-
brating the model based on the healthy connectome; (ii)
evaluating the relative suitability of this healthy calibrated model
to reproduce the empirical activity patterns of the healthy con-
scious brain, versus the empirical activity patterns of our condi-
tion of interest (here, DOC patients), in terms of the difference
between the KS-distance to the respective empirical FCDs; (iii)
replacing the underlying healthy connectome of the initial cali-
brated model, with a perturbed connectome, and generating new
simulated haemodynamic signals; (iv) re-evaluating the relative
difference in KS-distance to each condition (healthy and DOC)
for the new simulated brain activity.

Leveraging this capability, we subjected the DMF model to the
virtual equivalent of severe brain injury: namely, we replaced the
underlying connectivity matrix governing the long-range inter-
actions between brain regions with a consensus connectome101

obtained from diffusion-weighted imaging of n= 21 patients with
chronic DOC due to severe brain injury (Fig. 4a). This procedure
imparts the model with effects akin to what severe brain injury
does on anatomical connectivity. This virtual DOC provides a

Fig. 3 Modulation of inhibitory gain by reshuffled or uniform GABA-A
receptor density. After identifying the value of sI that leads to the best fit
with the empirical propofol data when modulating the inhibitory gain of
each node in the balanced DMF model according to the empirical
distribution of GABA-A receptors (a), the simulation is repeated after
randomly reshuffling the regional receptor densities across the cortex (b),
or setting them all to a uniform value (mean of the empirical distribution)
(c). Box-plots show the model fit to the propofol data for
n= 100 simulations, quantified as KS-distance (lower is better) between
simulated and empirical FCD, for each variant of the model. Middle line:
median; box limits, upper and lower quartiles; whiskers, 1.5x inter-quartile
range; “+” symbol indicates outliers; **p < 0.01; ***p < 0.001 from t-test.
Source data are provided in Supplementary Data 1. We replicated this result
using an alternative version of the KS-distance, which in addition to the
distribution of FCD values also takes into account the temporal lag between
them (Supplementary Fig. 2).
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way to isolate the effects over brain dynamics of connectivity
disruptions that result in loss of human consciousness.

Note that such substantial perturbations are naturally expected
to deteriorate the model’s ability to replicate empirical brain
activity (i.e., increasing the KS distance, corresponding to
decreased goodness-of-fit): the initial calibrated model was
optimised with biophysical parameters pertaining to healthy
brains, and using a healthy connectome. However, what matters
for this analysis is not the absolute value of the fit, but rather its
relative difference between the two conditions. Specifically, our
hypothesis was that the haemodynamic activity generated by the
model with DOC connectome should be more similar (lower KS
distance, indicating a better fit) to the empirical dynamics of
DOC patients’ brains, than to the dynamics of conscious, healthy
brains.

Our results supported these predictions. The calibrated model
based on the healthy connectome exhibited a better fit for the
dynamic activity patterns of the healthy brain than for the DOC
patients’ brain activity (positive difference in KS-distance; Fig. 4b
and Supplementary Table 2). This pattern was reversed upon
replacing the healthy connectome with the consensus
connectome101 obtained from DOC patients’ DTI data, such that
the difference in KS-distance to the two conditions became
negative, indicating on average a better fit to the empirical brain
activity of DOC patients than healthy controls (Fig. 4c and
Supplementary Table 2).

This observation supports our hypothesis, demonstrating that
unconscious brain dynamics are more compatible with the DOC
connectome than conscious dynamics; below, we also demon-
strate that this result is not specific to the chronic unconscious-
ness that characterises disorders of consciousness, but rather it
generalises to the transient unconsciousness caused by propofol
anaesthesia, too. We also replicated this result when constructing
the DOC “consensus connectome” after excluding the n= 6 DOC
patients whose diffusion-weighted data were acquired with a
different protocol (see Methods), thereby excluding this potential
confound as an explanation for our results (Supplementary
Fig. 4).

Remarkably, these results could be replicated by replacing the
original healthy structural connectome with a randomised version
having the same average connectivity102. After perturbation, the
model’s fit to DOC patients’ empirical brain activity became
better than the model’s fit to the spatiotemporal activity of the
conscious brain (Fig. 4d and Supplementary Table 2), suggesting
that the dynamics underlying unconsciousness are more
compatible with a randomised connectome than the dynamics
underlying the activity of the conscious brain. In contrast, this
effect could not be observed when the original connectome was
rewired into a regular (lattice) network, indicating that not just
any perturbation of the connectome is suitable to improve the
model’s fit to unconscious brain activity vis-à-vis conscious brain
activity. Together, these results suggest that DOC dynamics are
more compatible with an unstructured connectome.

Generalisation across datasets. Having identified the role of
GABA-mediated inhibition for propofol anaesthesia, we next
sought to determine to what extent inhibition can also explain the
dynamics of unconsciousness arising from severe brain injury.
Our rationale was that, even though these patients have not been
exposed to GABA-ergic agents but rather owe their condition to
severe brain injury, recent evidence suggests similarities of
dynamic spatiotemporal patterns of brain activity during anaes-
thesia and disorders of consciousness18,26,27,30,103. A positive
answer to this question would further implicate a change in the
excitation-inhibition balance, not just in the generation of brain
activity pertaining to propofol anaesthesia, but more broadly as a
general mechanism responsible for the characteristic dynamics of
unconscious states - whether due to anaesthesia or brain injury.

Therefore, we followed the same virtual anaesthesia procedure
with empirical data from healthy controls and DOC patients
(note that this analysis did not involve a direct comparison with
the data from the Ontario dataset, neither for the awake nor for
the propofol conditions). Intriguingly, we observed analogous
results: local modulation of inhibitory gain based on GABA-A
receptor density (optimal sI= 0.4) allowed the model to
substantially improve its fit to DOC patients’ brain activity,

Fig. 4 Connectome replacement analysis with DOC connectome. a The original healthy connectome of the model is replaced with the group-average
connectome obtained from diffusion MRI of n= 21 DOC patients, and the resulting model is used to generate n= 100 simulations. b–e Box-plots show the
difference in model fit (KS-distance) between the two conditions (fit to DOC patients’ data minus fit to healthy controls’ data, over n= 100 simulations),
for the initial model calibrated based on the healthy connectome (b), and after replacing the model’s initial connectome with either the DOC patients’
empirical consensus connectome (c), or after rewiring the initial connectome into a random network (d), or into a regular (lattice) network (e). Middle line:
median; box limits, upper and lower quartiles; whiskers, 1.5x inter-quartile range; “+” symbol indicates outliers; ***p < 0.001; n.s. Not significant (p > 0.05)
from t-test. Source data are provided in Supplementary Data 2. We replicated this result using an alternative version of the KS-distance, which in addition
to the distribution of FCD values also takes into account the temporal lag between them (Supplementary Fig. 3).
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compared with a model incorporating the same information
about receptor distribution, but whose inhibitory gain scaling sI
was optimised to fit the controls’ brain activity (sI= 0.02) (Fig. 5a,
b and Supplementary Table 3). However, in contrast with
propofol anaesthesia, the improvements were also observed when
the regional receptor map was scrambled, or replaced by a
uniform map, such that no significant difference was observed
between these latter two models, and the model incorporating the
empirical distribution of GABA-A receptors obtained from PET
(Fig. 5c, d and Supplementary Table 3). Thus, these results
suggest that whereas propofol anaesthesia depends on the specific
distribution of GABA-A receptors across the cortex, indicating
that these receptors are mediating the effects of propofol, the
characteristic dynamics of DOCs are less selective, and appear to
correspond to a non-specific increase in global inhibition.

Additionally, if propofol and severe injury are different ways by
which the human brain can be pushed towards unconsciousness,
then inducing a virtual DOC via connectome replacement should
also lead to a model that is better able to simulate the
characteristic spatiotemporal activity patterns of an anaesthetised
brain, than an awake brain - thereby recapitulating what we
previously observed with the macroscale brain activity of DOC
patients. Remarkably, results show that - as previously observed
with DOC patients -simulated functional connectivity dynamics
generated from a model using the DOC connectome are more
compatible (lower relative KS distance) with the functional
connectivity dynamics of propofol anaesthesia than with the FCD
of awake subjects’ brains (Fig. 6a, b and Supplementary Table 4).

Furthermore, the importance of the topology of the perturbed
connectome was also observed for brain activity under propofol,
with randomisation of the connectome similarly reversing the
relative difference in the model’s ability to fit the FCD of
conscious brains (awake) vis-à-vis unconscious brains (propofol)
in favour of the latter (Fig. 6c and Supplementary Table 4).
Conversely, the opposite effect was observed when the original
connectome was replaced with a regular (lattice) network, which
resulted in a further significant deterioration in the model’s ability
to reproduce the FCD of the anaesthetised brain vis-à-vis the
awake brain (Fig. 6d and Supplementary Table 4).

These findings generalise our DOC results to propofol
anaesthesia, indicating that the DOC connectome is not only
more compatible with the macroscale spatiotemporal patterns of
DOC patients’ brain activity than with the brain activity of
healthy individuals. Rather, the generalisation to propofol
anaesthesia suggests that the DOC connectome may be more
compatible with unconscious dynamics in general: whether
arising from brain injury or pharmacological intervention.

Alternative approaches. We also considered alternative metho-
dological approaches to complement our main analyses. Per-
taining to modelling the propofol data, although for our main
analyses we followed previous publications in employing a
regionally homogeneous value of the gain scaling parameter sI89,
we considered whether this value may also vary in a regionally-
specific manner - in addition to the regional heterogeneity that we
already incorporate in our model by taking into account the
empirically-derived regional GABA receptor density. We rea-
soned that, if there is regional variability in inhibitory gain scaling
(independent of the local density of receptors), a plausible
account for this phenomenon may be the regional prevalence of
specific types of inhibitory interneurons. Therefore, in addition to
regional GABA-A receptor density from PET, we added regional
variability in sI values in proportion to empirical regional values

Fig. 5 Modulation of inhibitory gain by empirical GABA-A receptor
density improves model fit to DOC brain dynamics. Box-plots show the
KS-distance (lower is better) to the empirical brain activity of DOC
patients, for n= 100 simulations of a model that (a) is informed by
empirical GABA-A regional density, using the value of gain for inhibitory
scaling sI derived from calibrating the model with respect to healthy
controls’ empirical brain activity (blue); (b) is informed by empirical GABA-
A regional density, using the value of gain for inhibitory scaling sI that
provides the best fit to the DOC patients’ empirical brain activity (red); (c)
same as (b), but the regional receptor densities are randomly reshuffled
across the cortex; (d) same as (b), but the receptor densities are all set to a
uniform value (the mean of the empirical distribution). Middle line: median;
box limits, upper and lower quartiles; whiskers, 1.5x inter-quartile range;
“+” symbol indicates outliers; ***p < 0.001. n.s. Not significant (p > 0.05)
from t-test. Source data are provided in Supplementary Data 3.

Fig. 6 Connectome replacement analysis with DOC connectome
generalises to propofol anaesthesia. Box-plots show the difference in
model fit (KS-distance) between the two conditions (fit to propofol data
minus fit to awake data, over n= 100 simulations), for the initial model
calibrated based on the healthy connectome (a), and after replacing the
model’s initial connectome with either the DOC patients’ empirical
consensus connectome (b), or after rewiring the initial connectome into a
random network (c), or into a regular (lattice) network (d). Middle line:
median; box limits, upper and lower quartiles; whiskers, 1.5x inter-quartile
range; “+” symbol indicates outliers; ***p < 0.001 from t-test. Source data
are provided in Supplementary Data 4.
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of different types of interneurons. We obtained these maps from
the Allen Institute for Brain Science transcriptomic dataset,
parcellated using standard pipelines from the abagen toolbox:104

somatostatin-positive (SST+ ), parvalbumin-positive (PVALB+
) and vasoactive intestinal peptide-positive (VIP+ ) ones, which
together account for the majority of cortical interneurons. This
analysis did not indicate significant improvements in the ability of
the model to fit the propofol data, compared with our main
model incorporating regionally heterogeneous GABA-A receptor
densities but homogeneous sI (Supplementary Fig. 5). Although a
computationally intensive joint optimisation of both regionally
variable parameters may yield additional insights, our results
show that taking into account the empirical heterogeneity of
regional GABA-A receptor densities is already sufficient to
improve the model’s ability to fit propofol data - which was
our goal.

Pertaining to modelling the DOC data, insight about the effects
of perturbations on a dynamical system can also be obtained by
studying the system’s Jacobian, which takes into account both the
system’s dynamics and its underlying network structure (here, the
different connectomes: healthy, DOC, random and lattice), and
whose eigenspectrum provides information about stability in the
vicinity of fixed points in the system’s dynamics105. In Supplemen-
tary Note 1, we show that the real part of the eigenvalues of the
reconstructed Jacobians from the healthy connectome exhibits the
least similarity (correlation) with the eigenvalues obtained from
perturbed connectomes (DOC, random and lattice), which are
more highly correlated with each other (Supplementary Fig. 6).
While our main results also clearly point to a similarity between the
effects of random and DOC connectomes on simulated brain
activity, our computational modelling suggests that their effects
differ from those of a regular (lattice) network (Fig. 4). Thus,
eigenspectrum analysis of the reconstructed system Jacobian and
comparison of simulated versus empirical functional connectivity
dynamics point to complementary insights that can be derived from
these different methodologies.

Discussion
Here, we sought to identify neurobiological mechanisms that are
capable of explaining how highly dissimilar causes - such as
transient perturbations of neurotransmission versus chronic
lesions to brain anatomy and connectivity - can give rise to loss of
consciousness and its characteristic dynamic patterns of brain
activity63. To this end, we employed a whole-brain Dynamic
Mean Field model that simulates the macroscale functional hae-
modynamics of the human brain by means of neurobiologically
realistic biophysical modelling, which integrates empirical spa-
tiotemporal patterns from functional MRI, anatomical con-
nectivity obtained from diffusion MRI, and neurotransmitter
receptor density estimated from Positron Emission
Tomography89–91. Our results demonstrate fundamental simila-
rities, not just between the macroscale dynamic patterns of brain
activity that characterise anaesthesia and disorders of
consciousness18,26–30 but also between the neurobiological
mechanisms from which they can arise - despite the fact that
anaesthesia is a transient pharmacological intervention and
DOCs are the result of permanent neuroanatomical injury. Both
disorders of consciousness and propofol anaesthesia were shown
to arise from neurobiological mechanisms that are functionally
equivalent to connectome randomisation, and both involve
increased perturbed excitation-inhibition balance, as indicated by
incorporating into the model information about regional GABA-
A receptor density estimated from PET

The effect of inhibition was assessed by enriching the DMF
model, modulating the neuronal gain of each inhibitory

population according to the empirical density of GABA-A
receptors across cortical regions, quantified using in-vivo
PET100. Our results demonstrate that GABA-mediated inhibi-
tion plays a mechanistic role in the emergence of the character-
istic macroscale dynamic neural activity observed during
propofol-induced unconsciousness. These results align with
neurophysiological evidence indicating that propofol is primarily
a GABA-A receptor agonist98,99. Indeed, our results further
indicate that propofol anaesthesia is crucially dependent on the
specific regional distribution of GABA-A receptors across the
cortex, since neither reshuffling this distribution across regions
nor setting all regions to equal density values could reproduce the
same effect.

Remarkably, our PET-informed results showed that consider-
ing GABA-mediated scaling of regional inhibitory gain also
improved the model’s ability to simulate the characteristic neural
activity of DOC patients’ brains, even though these patients owe
their chronic condition to severe brain injury rather than phar-
macological intervention. This observation suggests a change of
excitatory-inhibitory balance in favour of inhibition, not just in
the generation of haemodynamic activity pertaining to propofol
anaesthesia, but more broadly as a general neurobiological
mechanism for the macroscale spatiotemporal activity patterns
that characterise unconsciousness - whether due to anaesthesia or
brain injury. Indeed, there is evidence that physiologically awake
but unconscious DOC patients show cortical OFF-periods ana-
logous to those observed in healthy individuals during sleep106,
possibly arising from reduced cortico-cortical connectivity and a
resulting shift in excitatory-inhibitory balance towards excessive
inhibition107, as is observed at a local level after stroke108. And
indeed, both disorders of consciousness and general anaesthesia
are known to correspond to reduced cerebral metabolism, as
measured with PET109,110.

Nevertheless, a key difference emerged between anaesthesia
and DOC: whereas anaesthesia critically depends on propofol’s
specific pattern of local inhibition across the cortex, incorporating
regional specificity of GABA receptor density distribution did not
further improve the model’s ability to simulate DOC patients’
functional connectivity dynamics, beyond the improvement
provided by using a uniform or scrambled GABA-A receptor
map. Therefore, whereas our results suggest that propofol
anaesthesia may be causally mediated by GABA-A receptors and
their specific distribution across the cortex, it appears that a
global increase in inhibition is sufficient to generate the char-
acteristic neural activity of disorders of consciousness.

Our results from connectome replacement point to injury-
induced randomisation of the connectome as one such candidate
mechanism in DOC patients. Specifically, our findings show that
(a) unconscious fMRI functional connectivity dynamics (whether
due to propofol anaesthesia or brain injury) are more compatible
with the empirical DOC connectome, than conscious functional
connectivity dynamics; and (b) unconscious functional con-
nectivity dynamics are also more compatible with a random
connectome than conscious ones, whereas the opposite holds for
a lattice-like connectome (i.e., a regular network, the topological
opposite of a random network), at least in the case of anaesthesia.

It is also remarkable that the same results from connectome
replacement - greater compatibility of unconscious neural activity
with the DOC connectome perturbation - could be generalised to
the propofol dataset. For DOC patients, such a result may per-
haps be expected, since the initial connectome used in the model
was obtained from healthy controls, whereas the perturbed DOC
connectome was obtained by combining the individual con-
nectomes of the same DOC patients. However, observing the
same result in the propofol dataset is a powerful validation of our
approach, demonstrating that the results are specific to the
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presence vs absence of consciousness, rather than being influ-
enced by the specific dataset used. Thus, thanks to connectome
replacement we can infer that the increased neuronal inhibition
that characterises both disorders of consciousness and anaes-
thesia, is functionally equivalent to randomisation of the con-
nectome. However, propofol’s anaesthetic effects are mediated by
GABA-A receptors according to their specific regional distribu-
tion, whereas disorders of consciousness can be explained in
terms of a more generic increase in global inhibition - possibly
arising from randomisation of the connectome due to anatomical
lesions, whose extent and location are do not follow uniform
patterns. Anaesthesia may be expected to operate similarly across
individuals, in terms of which regions are more or less affected by
propofol. In contrast, each DOC patient is unique in the cause,
extent and location of their brain injury. As a result, whereas
anaesthesia may depend on specific localised patterns, it stands to
reason that the characteristic macroscale dynamics of DOC
patients’ brains should arise from global-scale neurobiological
mechanisms, which may originate from a variety of causes
without necessarily depending on specific locations for injury.

Our focus here was on modelling signatures of unconsciousness
that are shared across anaesthesia and disorders of consciousness;
while this approach has enabled us to provide valuable insights
about the neural mechanisms supporting human consciousness,
this focus on common aspects means that we considered the
cohort of DOC patients as a whole, both in terms of fitting the
functional data and for obtaining a consensus connectome. In
theory, it is possible that each patient may only exhibit increased
inhibition in a specific region, but if such regions differ across
patients, then considering them together may result in apparently
uniform inhibition. Likewise, the similar effects of perturbation
using a random connectome or the DOC connectome may in fact
arise because we obtained a single DOC connectome from the
combination of several patients, whose individual lesions may be
specific but distinct. It is clear that the diversity of disorders of
consciousness in terms of aetiology and severity can benefit from
an individual-subject approach, to obtain complementary insights
about each unique patient for the purposes of diagnosis, prognosis,
and ultimately treatment111. In this regard, it is intriguing that
some DOC patients can be paradoxically awakened by adminis-
tration of the drug zolpidem, which is a GABA-ergic agonist112,
which suggests that - at least for some patients - the causative
neurobiological mechanisms may be substantially different from
those identified here based on a group-average DOC connectome.
Thus, having demonstrated the efficacy of our modelling approach
at the group level, in future efforts we will build on the present
results and apply the frameworks developed here to individual
patients, to explore their specific deficits and potential avenues to
promote recovery at a finer-grained level. Likewise, our framework
could be adapted to model individual susceptibility to anaesthesia
with GABA-ergic agents – and potentially predict individual risk
of experiencing post-anaesthetic complications, such as emergence
delirium113,114.

A well-known adage asserts that “All models are wrong”, and
the present work is no exception. Models of neurobiological
function can vary in complexity related to the level of physiolo-
gical detail and scale, with both aspects incurring costs in terms of
computational resources and time. Thus, trade-offs between
realism and complexity are unavoidable23. Indeed, a variety of
other modelling approaches are possible; even among DMF
models, alternatives have been developed that incorporate addi-
tional information about regional neurobiology101,115 or use
different fitting procedures90. More broadly, no single model can
presently reproduce all relevant features of brain activity at once –
in part because there is no consensus on what features of brain
activity should be considered as relevant, or what the most

appropriate scale for modelling is. In turn, these experimental and
methodological considerations jointly shape what counts as a
satisfactory model (i.e., the fitting criterion) – although here we
sought to alleviate this concern by replicating our results with
multiple fitting criteria. Likewise, alternative models (e.g. Hopf,
Ising) have recently been used to investigate loss of consciousness
during sleep79–84 anaesthesia81–83,85,87,88 and also disorders of
consciousness83,85,86. Though less neurobiologically detailed, such
models have been able to provide insights about different aspects
of brain function, such as criticality and the predicted effects of
applying external perturbations to individual regions. Thus, it is
clear that further complementary insights may be obtained by
considering additional neurobiological mechanisms and multiple
levels of explanation - each of which may require a different
modelling approach23,63,66.

Our results combining functional MRI (dynamic macroscale
neural activity), diffusion MRI (anatomical connectivity) and PET
(neurotransmitter system) demonstrate that human conscious-
ness arises from the delicate balance of local excitation and
inhibition, interacting across an intricate network of anatomical
connections. Many paths can lead to unconsciousness by dis-
turbing this balance, whether by influencing the nodes’ activity
(through inhibitory modulation) or the connectivity between
them (through connectome randomisation). As befits such a
complex dynamical system as the human brain, it is likely that
other paths to unconsciousness will also exist, explaining phe-
nomena such as regular sleep-wake alternation, epileptic seizures,
and the effects of non-GABAergic anaesthetics such as ketamine
– some of which have already started to be explored using whole-
brain computational modelling71,79,81,82,84. Extending the present
framework to account for additional ways of losing consciousness
will be a crucial endeavour. Likewise, molecular mechanisms
beyond GABA-ergic inhibition provide a rich neuromodulatory
landscape to support consciousness, with recent evidence indi-
cating a common deficit of dopaminergic innervation across
anaesthesia and disorders of consciousness116. Finally, it is vital to
combine multimodal neuroimaging and whole-brain modelling
to identify paths from unconsciousness back to consciousness,
using our understanding of post-anaesthetic recovery to restore
consciousness in DOC patients, whether by means of custom-
designed drugs or deep brain stimulation66,67,89.

Overall, the present findings begin to unravel the neurobiolo-
gical mechanisms by which different perturbations of the brain’s
structure and function - transient pharmacological intervention
and chronic neuroanatomical injury - can lead to unconscious-
ness. Having demonstrated the power of whole-brain computa-
tional modelling to address this challenge, the same framework
may also prove fruitful to address the reverse problem: namely,
how the recovery of consciousness after anaesthesia can inform
our ability to restore consciousness in DOC patients.

Methods
Anaesthesia data: Recruitment. The propofol data employed in this study have
been published before18,36,117. For clarity and consistency of reporting, where
applicable we use the same wording as our previous studies. The propofol data
were collected between May and November 2014 at the Robarts Research Institute
in London, Ontario (Canada)18. The study received ethical approval from the
Health Sciences Research Ethics Board and Psychology Research Ethics Board of
Western University (Ontario, Canada). Healthy volunteers (n= 19) were recruited
(18–40 years; 13 males). Volunteers were right-handed, native English speakers,
and had no history of neurological disorders. In accordance with relevant ethical
guidelines, each volunteer provided written informed consent, and received
monetary compensation for their time. Due to equipment malfunction or phy-
siological impediments to anaesthesia in the scanner, data from n= 3 participants
(1 male) were excluded from analyses, leaving a total n= 16 for analysis18.

Anaesthesia data: Procedure. Resting-state fMRI data were acquired at different
propofol levels: no sedation (Awake), and Deep anaesthesia (corresponding to
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Ramsay score of 5). As previously reported18, for each condition fMRI acquisition
began after two anaesthesiologists and one anaesthesia nurse independently
assessed Ramsay level in the scanning room. The anaesthesiologists and the
anaesthesia nurse could not be blinded to experimental condition, since part of
their role involved determining the participants’ level of anaesthesia. Note that the
Ramsay score is designed for critical care patients, and therefore participants did
not receive a score during the Awake condition before propofol administration:
rather, they were required to be fully awake, alert and communicating appro-
priately. To provide a further, independent evaluation of participants’ level of
responsiveness, they were asked to perform two tasks: a test of verbal memory
recall, and a computer-based auditory target-detection task. Wakefulness was also
monitored using an infrared camera placed inside the scanner.

Propofol (a potent agonist of inhibitory GABA-A receptors98,99) was
administered intravenously using an AS50 auto syringe infusion pump (Baxter
Healthcare, Singapore); an effect-site/plasma steering algorithm combined with the
computer-controlled infusion pump was used to achieve step-wise sedation
increments, followed by manual adjustments as required to reach the desired target
concentrations of propofol according to the TIVA Trainer (European Society for
Intravenous Aneaesthesia, eurosiva.eu) pharmacokinetic simulation program. This
software also specified the blood concentrations of propofol, following the Marsh
3-compartment model, which were used as targets for the pharmacokinetic model
providing target-controlled infusion. After an initial propofol target effect-site
concentration of 0.6 µg mL−1, concentration was gradually increased by increments
of 0.3 µg mL1, and Ramsay score was assessed after each increment: a further
increment occurred if the Ramsay score was lower than 5. The mean estimated
effect-site and plasma propofol concentrations were kept stable by the
pharmacokinetic model delivered via the TIVA Trainer infusion pump. Ramsay
level 5 was achieved when participants stopped responding to verbal commands,
were unable to engage in conversation, and were rousable only to physical
stimulation. Once both anaesthesiologists and the anaesthesia nurse all agreed that
Ramsay sedation level 5 had been reached, and participants stopped responding to
both tasks, data acquisition was initiated. The mean estimated effect-site propofol
concentration was 2.48 (1.82–3.14) µg mL−1, and the mean estimated plasma
propofol concentration was 2.68 (1.92–3.44) µg mL−1. Mean total mass of propofol
administered was 486.58 (373.30–599.86) mg. These values of variability are typical
for the pharmacokinetics and pharmacodynamics of propofol. Oxygen was titrated
to maintain SpO2 above 96%.

At Ramsay 5 level, participants remained capable of spontaneous cardiovascular
function and ventilation. However, the sedation procedure did not take place in a
hospital setting; therefore, intubation during scanning could not be used to ensure
airway security during scanning. Consequently, although two anaesthesiologists
closely monitored each participant, scanner time was minimised to ensure return
to normal breathing following deep sedation. No state changes or movement were
noted during the deep sedation scanning for any of the participants included in the
study18.

Anaesthesia data: Design. As previously reported18, once in the scanner parti-
cipants were instructed to relax with closed eyes, without falling asleep. Resting-
state functional MRI in the absence of any tasks was acquired for 8 min for each
participant. A further scan was also acquired during auditory presentation of a
plot-driven story through headphones (5 min long). Participants were instructed to
listen while keeping their eyes closed. The present analysis focuses on the resting-
state data only; the story scan data have been published separately87 and will not be
discussed further here.

Anaesthesia data: FMRI data acquisition. As previously reported18, MRI scan-
ning was performed using a 3-Tesla Siemens Tim Trio scanner (32-channel coil),
and 256 functional volumes (echo-planar images, EPI) were collected from each
participant, with the following parameters: slices= 33, with 25% inter-slice gap;
resolution= 3 mm isotropic; TR= 2000 ms; TE= 30 ms; flip angle= 75 degrees;
matrix size= 64 × 64. The order of acquisition was interleaved, bottom-up. Ana-
tomical scanning was also performed, acquiring a high-resolution T1- weighted
volume (32-channel coil, 1 mm isotropic voxel size) with a 3D MPRAGE sequence,
using the following parameters: TA= 5 min, TE= 4.25 ms, 240 × 256 matrix size, 9
degrees flip angle18.

Disorders of consciousness patient data: Overview. The DOC patient data
employed in this study have been published before18,29,58,118. For clarity and
consistency of reporting, where applicable we use the same wording as our previous
studies.

Disorders of consciousness patient data: Recruitment. A total of 71 DOC
patients were recruited from specialised long-term care centres from January 2010
to December 201518. Ethical approval for this study was provided by the National
Research Ethics Service (National Health Service, UK; LREC reference99/391).
Patients were eligible to be recruited in the study if they had a diagnosis of chronic
disorder of consciousness, provided that written informed consent to participation
was provided by their legal representative, and provided that the patients could be
transported to Addenbrooke’s Hospital (Cambridge, UK). The exclusion criteria

included any medical condition that made it unsafe for the patient to participate,
according to clinical personnel blinded to the specific aims of the study; or any
reason that made a patient unsuitable to enter the MRI scanner environment (e.g.,
non-MRI-safe implants). Patients were also excluded based on substantial pre-
existing mental health problems, or insufficient fluency in the English language
prior to their injury. After admission to Addenbrooke’s Hospital, each patient
underwent clinical and neuroimaging testing, spending a total of five days in the
hospital (including arrival and departure days). Neuroimaging scanning took place
at the Wolfson Brain Imaging Centre (Addenbrooke’s Hospital, Cambridge, UK),
and medication prescribed to each patient was maintained during scanning.

For each day of admission, Coma Recovery Scale-Revised (CRS-R) assessments
were recorded at least daily. Patients whose behavioural responses were not
indicative of awareness at any time, were classified as UWS. In contrast, patients
were classified as being in a minimally conscious state (MCS) if they provided
behavioural evidence of simple automatic motor reactions (e.g., scratching, pulling
the bed sheet), visual fixation and pursuit, or localisation to noxious stimulation.
Since this study focused on whole-brain properties, coverage of most of the brain
was required, and we followed the same criteria as in our previous studies:18,29

before analysis took place, patients were systematically excluded if an expert
neuroanatomist blinded to diagnosis judged that they displayed excessive focal
brain damage (over one third of one hemisphere), or if brain damage led to
suboptimal segmentation and normalisation, or due to excessive head motion in
the MRI scanner (exceeding 3 mm translation or 3 degrees rotation). One
additional patient was excluded due to incomplete acquisition. Out of the initial
sample of 71 patients who had been recruited, a total of n= 21 adults (13 males;
17–70 years; mean time post injury: 13 months) meeting diagnostic criteria for
unresponsive wakefulness syndrome/vegetative state (UWS; N= 10) or minimally
conscious state (MCS; N= 11) due to brain injury were included in this study
(Table 1). In addition to the researcher and radiographer, a research nurse was also
present during scanning. Since the patients’ status as DOC patients was evident, no
researcher blinding was possible.

Disorders of consciousness patient data: FMRI data acquisition. As previously
reported18, resting-state fMRI was acquired for 10 min (300 volumes, TR= 2000
ms) using a Siemens Trio 3 T scanner (Erlangen, Germany). Functional images
(32 slices) were acquired using an echo planar sequence, with the following
parameters: 3 × 3 × 3.75 mm resolution, TR= 2000 ms, TE= 30 ms, 78 degrees FA.
Anatomical scanning was also performed, acquiring high-resolution T1-weighted
images with an MPRAGE sequence, using the following parameters: TR= 2300 ms,
TE= 2.47 ms, 150 slices, resolution 1 × 1 × 1 mm.

Disorders of consciousness patient data: Acquisition of diffusion-weighted
imaging data. As we previously reported58, the DOC patients’ data were acquired
over the course of several years, and as a result two different diffusion-weighted

Table 1 Demographic information for patients with disorders
of consciousness.

Sex Age Aetiology Diagnosis CRS-
R Score

Scan

M 46 TBI UWS 6 12 dir
M 57 TBI MCS 12 12 dir
M 35 Anoxic UWS 8 12 dir
M 17 Anoxic UWS 8 12 dir
F 31 Anoxic MCS 10 12 dir
F 38 TBI MCS 11 12 dir
M 29 TBI MCS 10 63 dir
M 23 TBI MCS 7 63 dir
F 70 Cerebral bleed MCS 9 63 dir
F 30 Anoxic MCS 9 63 dir
F 36 Anoxic UWS 8 63 dir
M 22 Anoxic UWS 7 63 dir
M 40 Anoxic UWS 7 63 dir
F 62 Anoxic UWS 7 63 dir
M 46 Anoxic UWS 5 63 dir
M 21 TBI MCS 11 63 dir
M 67 TBI MCS 11 63 dir
F 55 Hypoxia UWS 7 63 dir
M 28 TBI MCS 8 63 dir
M 22 TBI MCS 10 63 dir
F 28 ADEM UWS 6 63 dir

CRS-R Coma Recovery Scale-Revised, UWS Unresponsive Wakefulness Syndrome, MCS
Minimally Conscious State, TBI Traumatic Brain Injury.
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image acquisition schemes were used. For the first acquisition scheme, we collected
5 sets of 12 non-collinear diffusion-sensitising gradient directions, each set using a
different b-value (5 b-values in total) ranging from 340 to 1590 s/mm2; therefore, a
total of 60 diffusion-weighted volumes were acquired for each patient with this
acquisition scheme. An echo planar sequence was used (TR= 8300 ms, TE= 98
ms, matrix size= 96 × 96, 63 slices, slice thickness= 2 mm, no gap, flip angle=
90°). This acquisition scheme was used for the first n= 6 patients (Table 1). The
second, more recent acquisition scheme included 63 directions with a b-value of
1000 s/mm2; this acquisition scheme was adopted for all remaining DOC patients
and also for all healthy controls. Each of these DWI acquisition types has been used
before with DOC patients 49,51,58.

Healthy control data: Overview and recruitment. We also acquired fMRI and
DWI data from n= 20 healthy volunteers (13 males; 19–57 years), with no history
of psychiatric or neurological disorders58. The Cambridgeshire 2 Research

Ethics Committee approved the study (LREC 08/H0308/246), and data were
collected between October 2009 and September 2010. The mean age was not
significantly different between healthy controls (M= 35.75; SD= 11.42) and DOC
patients (M= 38.24; SD= 15.96) (t(39)=−0.57, p= 0.571, Hedges’s g=−0.18;
permutation-based t-test).

Healthy control data: FMRI data acquisition. Resting-state fMRI was acquired
for 5:20 min (160 volumes, TR= 2000 ms) using a Siemens Trio 3 T scanner
(Erlangen, Germany). The acquisition parameters were the same as those for the
DOC patients: Functional images (32 slices) were acquired using an echo planar
sequence, with the following parameters: 3 × 3 × 3.75 mm resolution, TR= 2000
ms, TE= 30 ms, 78 degrees FA. High-resolution T1-weighted anatomical images
were also acquired, using an MPRAGE sequence with the following parameters:
TR= 2300 ms, TE= 2.47 ms, 150 slices, resolution 1 × 1 × 1mm.

Healthy control data: Acquisition of diffusion-weighted imaging data. The
diffusion-weighted acquisition scheme was the same 63-directions scheme used for
the DOC patients, as described above and in previous work:58 TR= 8300 ms,
TE= 98 ms, matrix size= 96 × 96, 63 slices, slice thickness= 2 mm, no gap, flip
angle= 90°, 63 directions with a b-value of 1000 s/mm2.

A summary of the data included in our modelling pipelines is provided in
Table 2.

Functional MRI preprocessing and denoising. We followed the preprocessing
pipeline described in our previous work18, which is based on the standard pipeline
implemented within the SPM12-based (http://www.fil.ion.ucl.ac.uk/spm) CONN
toolbox (http://www.nitrc.org/projects/conn), version 17 f119. The following steps
are included in the standard CONN pipeline: removal of the first five scans to allow
magnetisation to reach steady state; functional realignment and motion correction;
slice-timing correction to account for differences in time of acquisition between
slices; identification of outlier scans for subsequent regression by means of the
quality assurance/artifact rejection software Artifact Detection Toolbox (art; (http://
www.nitrc.org/projects/artifact_detect); spatial normalisation to MNI-152 standard
space with 2 mm isotropic resampling resolution, using each volunteer’s high-
resolution T1-weighted image to obtain each individual’s segmented grey matter,
combined with an a priori grey matter template.

Given the presence of brain injury and corresponding deformations, DOC
patients’ brains were individually preprocessed using SPM12, with visual
inspections after each step. Additionally, to further reduce potential movement
artifacts, data underwent despiking using the hyperbolic tangent squashing
function from the CONN toolbox119. This method applies a continuous squashing
function to the BOLD signal, rather than utilizing an absolute threshold that would
result in cropping any values above that threshold. Since the controls had a shorter
scan duration than DOC patients, the number of DOC functional volumes were
truncated to be the same as the control subjects’ ones, after removal of the initial
volumes to achieve steady-state magnetisation of the scanner, in order to ensure
comparability between the two sets of Cambridge-acquired data (note that we do

not perform direct comparisons between the Cambridge data and the data from
London, Ontario).

Denoising also followed the same procedure as in our previous work:18 to
reduce noise due to cardiac and motion artifacts we applied the anatomical
CompCor method120 (also implemented within the CONN toolbox), by regressing
out of the functional data the first five principal components attributable to each
individual’s white matter signal; the first five components attributable to individual
cerebrospinal fluid (CSF) signal; six subject-specific realignment parameters (three
translations and three rotations) as well as their first-order temporal derivatives;
the artifacts identified by art; and main effect of scanning condition120. Finally,
after linear detrending, each individual’s denoised BOLD signal timeseries were
band-pass filtered in the 0.008−0.09 Hz.range, to eliminate both low-frequency
drift effects and high-frequency noise.

DWI preprocessing and tractography. The diffusion data were preprocessed with
MRtrix3 tools, using the following steps (this is the same pipeline adopted in our
previous work;58,121 for clarity and consistency of reporting, where applicable we
use the same wording as in our previous publications). After manually removing
diffusion-weighted volumes with substantial distortion51, the pipeline involved the
following steps: (i) DWI data denoising by exploiting data redundancy in the PCA
domain122 (dwidenoise command); (ii) Correction for distortions induced by eddy
currents and subject motion by registering all DWIs to b0, using FSL’s eddy tool
(through MRtrix3 dwipreproc command); (iii) rotation of the diffusion gradient
vectors to account for subject motion estimated by eddy;123 (iv) b1 field inho-
mogeneity correction for DWI volumes (dwibiascorrect command); (v) generation
of a brain mask through a combination of MRtrix3 dwi2mask and FSL BET
commands.

After preprocessing, the DTI data were reconstructed using the model-free q-
space diffeomorphic reconstruction algorithm (QSDR) implemented in DSI Studio
(www.dsi-studio.labsolver.org)124, following our previous work58,125. Use of QSDR
is desirable when investigating group differences52,124,126 because this algorithm
preserves the continuity of fiber geometry for subsequent tracking124, since it
reconstructs the distribution of the density of diffusing water in standard space.
This approach has therefore been adopted in previous connectomics studies
focusing on healthy individuals127 but also brain-injured patients128 and DOC
patients specifically52,58. QSDR initially reconstructs DWI data in native space, and
subsequently computes values of quantitative anisotropy (QA) in each voxel, based
on which DSI Studio performs a nonlinear warp from native space to a template
QA volume in Montreal Neurological Institute (MNI) space. Once in MNI
standard space, spin density functions are reconstructed, with a mean diffusion
distance of 1.25 mm with three fiber orientations per voxel124.

Finally, fiber tracking was carried out by means of DSI Studio’s own FACT
deterministic tractography algorithm, requesting 1000,000 streamlines according to
widely adopted parameters:58,125,127–129 angular cutoff= 55◦, step size= 1.0 mm,
tract length between 10 mm (minimum) and 400 mm (maximum), no spin density
function smoothing, and QA threshold determined by DWI signal in the cerebro-
spinal fluid. Streamlines were automatically rejected if they presented improper
termination locations, based on a white matter mask automatically generated by
applying a default anisotropy threshold of 0.6 Otsu’s threshold to the anisotropy
values of the spin density function125,127,129.

Brain parcellation. For both BOLD and DWI data, brains were parcellated into 68
cortical regions of interest (ROIs), according to the Desikan-Killiany anatomical
atlas130, in line with previous whole-brain modelling work101.

Functional connectivity dynamics. Following Deco et al. (2018)89, functional
connectivity dynamics (FCD) were quantified in terms of Pearson correlation
between regional BOLD timeseries, computed within a sliding window of 30 TRs
with increments of 3 TRs. Subsequently, the resulting matrices of functional
connectivity at times tx and ty were themselves correlated, for each pair of time-
points tx and ty, thereby obtaining an FCD matrix of time-versus-time correlations.
Thus, each entry in the FCD matrix represents the similarity between functional
connectivity patterns at different points in time.

Table 2 Summary of subjects included in modelling pipelines.

Group N M/F Site Data type # fMRI volumes used DWI directions

Awake/Propofol 16 12/4 London, ON fMRI 250 (Awake)
250 (Propofol)

Not acquired

Healthy controls 20 13/7 Cambridge, UK fMRI, DWI 155 63 directions, B= 1000
DOC patients 21 13/8 Cambridge, UK fMRI, DWI 155 63 directions, B= 1000 (n= 15);

5 × 12 directions, B ranging from 340 to 1590
(n= 6)

Awake and propofol data were acquired from the same subjects, respectively before and after infusion with the anaesthetic. For the DOC patients, 300 volumes were acquired in total, but to ensure
consistency with controls we only used 155 consecutive volumes from each patient. Note that no direct comparisons were performed between data acquired in London, ON and data acquired in
Cambridge, UK.
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Consensus group structural connectivity. The structural connectivity (SC) for
the DMF model was obtained by following the procedure described in Wang et al.
(2019)101 to derive a group-consensus structural connectivity matrix. Separately for
the healthy controls and DOC patients, a consensus matrix C was obtained as
follows. For each pair of regions i and j, if more than half of subjects had non-zero
connection i and j, Cij was set to the average across all subjects with non-zero
connections between i and j. Otherwise, Cij was set to zero. Note that this proce-
dure for constructing a group-consensus connectome will retain or exclude a given
connection between two regions only if it is present (respectively, absent) in the
majority of individuals in the cohort, such that the final consensus connectome is
not expected to reflect the idiosyncrasies of individual patients, but only systematic
patterns.

Whole-brain computational modelling. Whole-brain spontaneous brain activity
(as quantified using blood oxygen level dependent (BOLD) signal data from
functional MRI) was simulated using a neurobiologically realistic Dynamic Mean
Field (DMF) model131. The DMF model19,22,25 uses an empirically validated
mathematical mean-field approach to represent the collective behaviour of
integrate-and-fire neurons by means of coupled differential equations, providing a
neurobiologically plausible account of regional neuronal firing rate.

Specifically, the model simulates local biophysical dynamics of excitatory
(NMDA) and inhibitory (GABA) neuronal populations, interacting over long-
range neuroanatomical connections (white matter tracts obtained from diffusion
MRI). The model further incorporates multimodal neuroimaging information
about empirical brain dynamics (measured using functional MRI) and
neurotransmitter receptor density, estimated from positron emission tomography
(PET)89.

Each cortical area n (defined by a parcellation scheme) is represented in terms
of two reciprocally coupled neuronal masses, one excitatory and the other
inhibitory, with the synaptic connections between excitatory neuronal populations
in different regions given by the weight of structural connectivity, to account for
the number and density of interregional axon fibers. The DMF model has only one
free parameter: a global coupling parameter, denoted by G, which scales the
excitatory-to-excitatory coupling between brain regions, as established by the
empirical structural connectome. Additional factors that can influence the long-
range excitatory-to-excitatory coupling between brain regions, such as
neurotransmission but also synaptic plasticity mechanisms, are accounted for by
this global coupling parameter. Since conductivity of the white matter fibers is
assumed to be constant across the brain, G constitutes the only free parameter in
the model.

The following differential equations therefore govern the model’s behaviour:

IðEÞn ¼ WEI0 þ wþJNMDAS
ðEÞ
n þ GJNMDA ∑

N

p
CnpS

ðEÞ
p � JFICn SðIÞn ð1Þ

IðIÞn ¼ WII0 þ JNMDAS
ðEÞ
n � SðIÞn ð2Þ

rðEÞn ¼ F IðEÞn

� � ¼
gE IðEÞn � IðEÞthr

� �

1 � exp �dEgE IðEÞn � IðEÞthr

� �� � ð3Þ

rðIÞn ¼ F IðIÞn
� � ¼

gNMn gI IðIÞn � IðIÞthr
� �

1 � exp �dIgNMn gI IðIÞn � IðIÞthr
� �� � ð4Þ

dSðEÞn ðtÞ
dt

¼ SðEÞn

τNMDA
þ 1 þ SðEÞn

� �
γrðEÞn þ σνnðtÞ ð5Þ

dSðIÞn ðtÞ
dt

¼ SðIÞn
τGABAA

þ rðIÞn þ σνn tð Þ ð6Þ

gNMn ¼ 1 þ sId
GABA
n ð7Þ

Following previous work89,91, “for each excitatory (E) and inhibitory (I) neural
mass, the quantities IðE:IÞn , rðE;IÞn , and SðE;IÞn represent its total input current (nA),
firing rate (Hz) and synaptic gating variable, respectively. The function F(·) is the
transfer function (or F–I curve), representing the non-linear relationship between
the input current and the output firing rate of a neural population. Finally, JFICn is
the local feedback inhibitory control of region n, which is optimized to keep its
average firing rate at approximately 3 Hz25,91, and νn is uncorrelated Gaussian
noise injected to region n”. The model’s fixed parameters are reported in
Table 325,89,91. Additionally, gNMn is the neuromodulatory scaling factor modulating
the transfer function for each cortical region in the model as a function of dGABAn ,
the regional density of GABA-A receptors (see below for details) and an inhibitory
gain scaling parameter sI . The original DMF model (corresponding to a DMF
model with uniform GABA-A regional inhibitory gain, and no regionally
heterogeneous neuromodulation) is obtained by setting sI to zero, in which case G
remains the sole free parameter in the model. Details for optimisation of the sI
parameter for the GABA-A modulated model are provided below.

A Balloon-Windkessel (BW) hemodynamic model97 was then used to turn
simulated regional neuronal activity into simulated regional BOLD signal. The
Balloon-Windkessel model considers the BOLD signal as a nonlinear function of
the normalized total deoxyhemoglobin voxel content, normalized venous volume,
resting net oxygen extraction fraction by the capillary bed, and resting blood
volume fraction. The BOLD-signal estimation for each brain area is computed
from the level of neuronal activity in that particular area. Finally, simulated
regional BOLD signal was bandpass filtered in the same range as the empirical data
(0.008–0.09 Hz).

Implementation. The code used to run all the simulations in this study was written
in optimised C++ using the high-performance library Eigen. The C++ core of the
code, together with Python and Octave/Matlab interfaces is publicly available as
“FastDMF”131 and maintained at http://www.gitlab.com/concog/fastdmf.

To simulate BOLD data, FastDMF splits the problem in two steps: integrating
the coupled differential equations underlying the DMF model, to obtain excitatory
firing rates in each brain region; and using these firing rates to integrate the
(uncoupled) differential equations of the BW hemodynamic model and obtain
BOLD timeseries.

Integration of the DMF equations is performed with the Euler-Maruyama
method, and it is highly parallelizable and bounded by the O(N^2) complexity of
the matrix-vector multiplication corresponding to the excitatory-to-excitatory
coupling between brain regions. Simulated excitatory firing rates are stored in a
cylindrical array with a fixed buffer size to limit memory requirements.

In addition, a further set of threads is spawned to solve the BW model using the
simulated excitatory firing rates. Since the BW solver reads from the same
cylindrical array, it interfaces with the DMF solver with a controlled multi-
threaded architecture. Every TR-equivalent in simulation time the value of all
BOLD signals is copied to a pre-allocated array, to be returned at the end of the
requested simulation time.

In a standard laptop, FastDMF attains a speed-up of between 5x and 10x over
publicly available Matlab implementations, due to the speed of Eigen and the
parallelisation of DMF and BW solvers. In addition, due to the cylindrical buffer,
this implementation is able to simulate arbitrarily long BOLD time series with a
fixed memory overhead, thereby allocating orders of magnitude less memory than
a naive Matlab implementation.

Finally, the library includes interface functions for Matlab (via its C Matrix API)
and Python (via the Boost.Python library). In both languages the function returns a
standard array (numpy.ndarray in the case of Python) that can be easily processed
for further analysis.

Fitting of the G parameter. Calibrating the model corresponds to finding the
value of G that allows the model to best simulate observed fMRI activity patterns of
the human brain at rest. In order to identify appropriate parameters for the
simulations, early whole-brain modelling efforts used the grand average FC as
target for fitting the model to empirical data. However, it has since become
apparent that the macroscale neural signals measured by functional MRI are not
static, even on the timescale of a few tens of seconds: rather, they exhibit a wide
range of dynamic patterns. Therefore, in order to properly take into account the
time-dependencies of FC, it is advantageous to fit the model to empirical functional
connectivity dynamics (FCD). Doing so ensures that the simulated BOLD data will
exhibit realistic patterns of time-evolving functional connectivity89,96.

Unlike matrices of inter-regional connectivity, where each brain region is the
same across different scans, FCDs are represented as matrices encoding the
relationship between brain dynamics at different timepoints. Since timepoints are
not the same across individuals or scans, as our functional MRI data were acquired

Table 3 Dynamic Mean Field model parameters.

Parameter Symbol Value

External current I0 0.382 nA
Excitatory scaling factor for I0 WE 1
Inhibitory scaling factor for I0 WI 0.7
Local excitatory recurrence w+ 1.4
Excitatory synaptic coupling JNMDA 0.15 nA
Threshold for F (In(E)) Ithr(E) 0.403 nA
Threshold for F (In(I)) Ithr(I) 0.288 nA
Gain factor of F (In(E)) gE 310 nC−1

Gain factor of F (In(I)) gI 615 nC-1

Shape of F (In(E)) around Ithr(E) dE 0.16 s
Shape of F (In(I)) around Ithr(I) dI 0.087 s
Excitatory kinetic parameter γ 0.641
Amplitude of uncorrelated Gaussian noise vn σ 0.01 nA
Time constant of NMDA τNMDA 100ms
Time constant of GABA τGABAA

10 ms
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under conditions of task-free rest rather than being time-locked to a particular
event, FCD matrices cannot be compared by means of simple correlation.
Therefore, to evaluate model performance in terms of producing meaningful
temporal dynamics, here we follow the approach of Deco et al. (2018)89, using the
Kolmogorov-Smirnov distance to compare the histograms of empirical and
simulated FCD values (obtained from the upper triangular FCD matrix), to find the
G parameter that results in the best match between empirical and simulated
functional connectivity dynamics. The same KS-distance was also used as the
goodness-of-fit measure to quantify the similarity between empirical and simulated
macroscale brain activity.

To find the value of G that generates simulations whose FCD best match
empirical FCD, we generated n= 100 simulations for each value of G between 0.1
and 2.5, using increments of 0.1. For each simulation at each value of G, we
computed the KS distance between empirical (group-wise) and simulated FCD.
Finally, we set the model’s G parameter to the value that minimised the mean KS
distance - corresponding to the model that is best capable of simulating the
temporal dynamics of functional connectivity observed in the healthy human brain
at rest.

This procedure was performed separately for the propofol dataset (with 250
TRs) and the DOC dataset, which was truncated to the number of TRs available for
the healthy controls (155 TRs). For validation, we also replicated our main results
when the traditional KS-distance was replaced with an alternative, two-dimensional
version of the KS-distance as the chosen goodness-of-fit measure. This alternative
measure, introduced by Peacock (1983)132, was used to take into account not only
the distribution of inter-temporal correlation values (i.e., the values in the FCD
matrix), but also their relative temporal position with respect to each other, in
terms of the number of intervening sliding-windows between them.
Mathematically, this corresponds to comparing the empirical and simulated
distributions p(r, τ) for a given FC correlation r across a time-lag τ.

Local inhibitory gain modulation from GABA-A maps. Since the general
anaesthetic propofol is an agonist of the GABA-A receptor, we modulated local
inhibitory gain based on the recent high-resolution quantitative atlas of human
brain GABA-A receptors, generated on the basis of benzodiazepine receptor (BZR)
density measured in vivo from [11C]flumazenil Positron Emission Tomography
(PET) autoradiography100, made available by the Neurobiology Research Unit of
the Copenhagen University Hospital. Briefly, a parametric map reflecting maximal
binding of [11C]flumazenil was obtained by averaging Logan analysis estimates
based on PET data obtained from n=16 (7 males) healthy volunteers (age range:
16–46 years: M= 26.6 +/− 8 years). Data were acquired with a High-Resolution
Research Tomograph (CTI/Siemens). We refer the reader to the original publica-
tion for full details of the data acquisition and map generation procedure100.
Following133, after parcellating the cortical map according to the Desikan-Killiany
atlas used in the present study, the data were Z-scored, before normalising the
values to lie between 0 and 1.

We then used the previously calibrated DMF model to generate simulations for
values of sI up to 1, varying in increments of 0.02. Then, for each value of sI, we
computed the KS distance between the model’s simulated macroscale dynamics
and the empirical dynamics observed in each condition (awake or propofol, control
or DOC). For each condition, the optimal value of sI, was then identified as the
value that resulted in the minimum mean KS distance between empirical and
simulated dynamics (across n= 10 simulations for each value of sI).

As validation analysis, we also repeated the same procedure, optimising the
inhibitory gain scaling sI, but with two different kinds of receptor density maps: a
scrambled map, whereby the values of GABA-A receptor density obtained from
PET were randomised across regions while preserving their spatial
autocorrelation134,135; and a uniform map, whereby each region was set to the
same value, corresponding to the mean of the distribution of PET-derived receptor
densities.

Connectome replacement. Connectome replacement was performed using the
initial balanced DMF model (i.e., with optimised G parameter, but without addi-
tional inhibitory gain modulation), based on the consensus connectome from
diffusion imaging of healthy controls (referred to as the healthy connectome).

Three perturbed connectomes were used. Firstly, the consensus connectome
obtained from diffusion imaging of n= 21 DOC patients, referred to as the DOC
connectome. Secondly, the original healthy connectome was randomised according
to the weight-preserving procedure of102 to generate a random connectome that
differs from the original in terms of topology, but preserves the weight distribution.
Thirdly, we used the procedure described in102 to turn the healthy connectome into
a lattice network with the same weight distribution - providing a different and
opposite perturbation of the network’s topology.

For each perturbed connectome, the DMF model was used to generate
n= 100 simulations, using the optimal global coupling G, but with inter-regional
connectivity given by the perturbed connectome rather than the original
connectome. This was repeated for each dataset (propofol and DOC) and the
resulting simulations were compared with each condition (awake/propofol and
control/DOC) in terms of KS-distance.

Statistics and reproducibility. Statistical differences were evaluated for sig-
nificance at the standard alpha level of 0.05 (two-sided), using permutation-based
between-subjects t-tests on the distributions of KS-distance values obtained from
n= 100 simulations from the corresponding models being compared Mean and
standard error of the mean of the data are displayed in the Figures. Supplementary
Tables 1–4 report the test results. Effect sizes were estimated as Cohen’s d (stan-
dardised difference of means).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data underlying Figs. 2b and 3 are presented in Supplementary Data 1. Source
data underlying Fig. 4 are presented in Supplementary Data 2. Source data underlying
Fig. 5 are presented in Supplementary Data 3. Source data underlying Fig. 6 are presented
in Supplementary Data 6. The propofol and DOC patient data that support the findings
of this study are available from Dr. Emmanuel Stamatakis, University of Cambridge
(email: eas46@cam.ac.uk) upon reasonable request. The GABA PET maps are available
from the Neurobiology Research Unit at Copenhagen University Hospital (https://xtra.
nru.dk/BZR-atlas/).

Code availability
The C++ core of the DMF code, together with Python and Octave/Matlab interfaces, has
been made publicly available131, and it is actively maintained at http://www.gitlab.com/
concog/fastdmf. The CONN toolbox is freely available online (http://www.nitrc.org/
projects/conn). DSI Studio is freely available online: dsi-studio.labsolver.org. MRtrix3 is
freely available online: https://www.mrtrix.org. The abagen toolbox is freely available
online: https://abagen.readthedocs.io/en/stable/.
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