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Chronic Late Gestation Hypoglycemia Up-Regulates Hepatic
PEPCK Associated with Increased PGC1α mRNA and pCREB in
Fetal Sheep

Paul J. Rozance1, Sean W. Limesand2, James S. Barry1, Laura D. Brown1, Stephanie R.
Thorn1, Dan LoTurco1, Timothy R. H. Regnault1,3, Jacob E. Friedman1, and William W. Hay
Jr.1
1 Perinatal Research Center, Department of Pediatrics, School of Medicine, University of
Colorado Denver and Health Sciences Center, Aurora CO
2 Agricultural Research Complex, Department of Animal Sciences, University of Arizona, Tucson
AZ
3 Department of Obstetrics and Gynaecology, University of Western Ontario, London, Ontario
Canada

Abstract
Hepatic glucose production is normally activated at birth, but has been observed in response to
experimental hypoglycemia in fetal sheep. The cellular basis for this process remains unknown.
We determined the impact of 2 weeks of fetal hypoglycemia during late gestation on enzymes
responsible for hepatic gluconeogenesis, focusing on the insulin signaling pathway, transcription
factors, and coactivators which regulate gluconeogenesis. Hepatic PEPCK and glucose-6-
phosphatase mRNA increased 12-fold and 7-fold respectively following chronic hypoglycemia
with no change in hepatic glycogen. Chronic hypoglycemia decreased fetal plasma insulin with no
change in glucagon, but increased plasma cortisol 3.5-fold. PGC1 mRNA and phosphorylation of
CREB at serine 133 were both increased, with no change in Akt, FOXO1, HNF4α, or C/EBPβ.
These results demonstrate that chronic fetal hypoglycemia triggers signals which can activate
gluconeogenesis in the fetal liver.
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INTRODUCTION
Intrauterine growth restriction (IUGR) affects 4-8% of newborns and is commonly
associated with placental insufficiency and decreased fetal nutrient delivery (12; 45; 52). In
addition to a wide variety of perinatal morbidities, IUGR increases the risk of developing
several adult onset metabolic diseases, including type II diabetes mellitus, a disease
characterized by peripheral insulin resistance and insufficient insulin secretion (24; 49). One
of the hallmarks of type II diabetes is reduced ability of insulin to suppress hepatic glucose
production (22). It is significant, therefore, that in several animal models of IUGR there is
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an early and persistent increase in fetal and neonatal hepatic phosphoenolpyruvate
carboxykinase (PEPCK) expression, the enzyme that catalyzes the first committed step of
gluconeogensis (9; 21; 32; 42; 47; 65). The various nutrient and secondary metabolic
abnormalities in IUGR fetuses that might cause such changes in liver enzyme function and
glucose production is uncertain. The most common metabolic condition in all IUGR fetuses
that would have direct bearing on hepatic glucose production is decreased placental glucose
supply to the fetus and relative fetal hypoglycemia. Studies of experimental fetal
hypoglycemia without placental insufficiency or global nutrient restriction, however, have
shown variable results for induction of hepatic PEPCK (11; 20; 23; 40; 43), which may
reflect species, timing/duration, and other methodological differences.

Among the complex network of transcription factors and cofactors that regulate PEPCK
gene expression, peroxisome proliferator-activated receptor gamma coactivator 1 alpha
(PGC1α) and cAMP response element binding protein (CREB) are particularly important
effectors of the cAMP pathway. PGC-1α does not bind directly to the PEPCK promoter.
Instead it facilitates the transcriptional activity of hepatocyte nuclear factor (HNF)-4α, the
glucocorticoid receptor, and forkhead transcription factor FOXO1 to increase PEPCK gene
transcription (7; 37). The CCAAT enhancer binding protein (C/EBP) α and C/EBPβ bind to
the CRE of the PEPCK promoter and play an important role in cAMP induction (7; 55). The
prevailing model is that induction by cAMP is mediated by phosphorylation of CREB,
which must interact with C/EBP and other factors bound to an upstream accessory enhancer
to stimulate gene transcription (25; 38). Furthermore, CREB induces PGC1α mRNA
expression (37). FOXO1, which is negatively regulated by insulin signaling through Akt via
nuclear exclusion, also facilitates PEPCK gene expression (7).

To evaluate the impact of experimental hypoglycemia on fetal glucose metabolism, we
previously used late gestation hypoglycemic fetal sheep produced by a continuous maternal
insulin infusion (10). This renders the fetus chronically hypoglycemic and these fetal sheep
increase endogenous glucose production but the cellular basis for this response is unknown.
Given the propensity for increased glucose production and its contribution to the risk for
Type II diabetes among IUGR offspring, it is important to understand the cellular
mechanisms responsible for increased hepatic glucose production in response to fetal
hypoglycemia.

MATERIALS AND METHODS
Animal Model and Organ Isolation

Studies were conducted in pregnant Columbia-Rambouillet ewes (singleton) during the final
20% of gestation (term of 147 days). Indwelling catheters were surgically placed into the
ewe and fetus as previously described (34; 56). All animal procedures were in compliance
with guidelines of the United States Department of Agriculture, the National Institutes of
Health, and the American Association for the Accreditation of Laboratory Animal Care. The
animal care and use protocols were approved by the University of Colorado Health Sciences
Center Institutional Animal Care and Use Committee. Data for many of the animals used in
this study have been reported, as described in the results section (34; 56). As previously
described animals were randomly placed into one of two groups: euglycemic control (C)
animals (n=15) or hypoglycemic (H) animals (n=16). The H ewes received a two week
intravenous insulin infusion (30-60 pmol min-1 kg-1; Humulin R, Eli Lilly and Co.,
Indianapolis, IN) in 0.5% bovine serum albumin (BSA; Sigma Chemicals, St. Louis, MO) in
0.9% NaCl adjusted on average twice daily to produce a 50% reduction in maternal plasma
glucose (from 60-70 to 30-35 mg/dl) which also decreased fetal glucose concentrations by
50%. The insulin infusion was started on day 122.5±0.6. Gestational ages at necropsy are in
table 1.
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Necropsies were performed as follows: the ewe and fetus were anesthetized with maternally
administered intravenous ketamine (4.4 mg/kg) and diazepam (0.11 mg/kg). After a
hysterectomy, the fetus was removed, weighed, and dissected for organ weights. Sections of
the right hepatic lobe were snap frozen in liquid nitrogen and then transferred to -80°C. The
ewe was then euthanized by administering intravenous concentrated sodium pentobarbital
(10 ml; Sleepaway, Fort Dodge Animal Health, IA). The fetus died under anesthesia
following an intracardiac injection of sodium pentobarbital (1ml).

Biochemical Analysis
Whole blood was collected in EDTA-coated syringes and centrifuged (14,000g) for 3 min at
4°C. Plasma was removed and the glucose and lactate concentrations were determined using
the YSI model 2700 select biochemistry analyzer (Yellow Springs Instruments, Yellow
Springs, OH). The remainder of the plasma was stored at -70°C for hormone measurements.
Plasma insulin concentrations were measured by an ovine insulin ELISA (Alpco, Windham,
NH; inter- and intra-assay coefficients of variation: 2.9 and 5.6%, respectively) and plasma
cortisol concentrations were measured by a salivary cortisol ELISA (Alpco; inter- and intra-
assay coefficients of variation: 5.7 and 4.4%, respectively). Blood oxygen content was
determined using an ABL 520 blood gas analyzer (Radiometer, Copenhagen, Denmark)
(36).

Glycogen Content
Hepatic glycogen content was determined as previously described and results are expressed
as mg glycogen/g liver (wet weight) (2).

Cloning and Real Time PCR for Relative Gene Expression
Total RNA was extracted from pulverized hepatic tissue (100 mg) and reverse transcribed
into complimentary DNA (cDNA) as previously described (35). Cloning and real time
quantitative PCR (qPCR) for ovine ribosomal protein s15, PEPCK, Glucose-6-Phosphatase
(G6Pase), and PGC1α (GenBank accession nos.: AY949774, EF062862, EF062861, and
AY957611, respectively) has been previously described (35; 57). cDNA samples were run
in triplicate and the qPCR was performed as previously described (57) with the standard
curve method of relative quantification used to compare results (66). s15 was used as a
housekeeping gene and was not different between groups.

Protein Extraction and Western Blot Analysis
Protein was extracted from pulverized hepatic tissue (200 mg) by the addition of 600 μl of
ice cold lysis buffer (NaCl 150 mmol/L, Tris, pH 7.4, 20 mmol/L, Nonidet P-40 1% v/v,
EDTA 2 mmol/L, Na4P2O7 2.5 mmol/L, Glycerol 10% v/v. β-Glycerophosphate 20 mmol/L,
phenylmethylsulfonyl fluoride 0.575 mmol/L, Sigma Mammalian Protease Inhibitor
Cocktail 2% v/v, Sigma Phosphatase Inhibitor 0.5% v/v) followed by 30 min on an orbital
rocker at 4°C. The samples were then sonicated for 30 sec, agitated, and placed on an orbital
rocker for another 30 min at 4°C. The protein was separated from cellular debris by
centrifugation at 21,000g for 20 min at 4°C. The supernatant was removed and the protein
concentration was quantified with the BioRad DC Protein Assay (BioRad, Hercules, CA).

Equal amounts of protein were separated by polyacrylamide gel electrophoresis under
reduced conditions (5% β-mercaptoethanol). Proteins were then transferred to a
polyvinylidene difluoride membrane (BioRad). Unless otherwise noted, all Western blot
membranes were blocked for one hour in phosphate buffered saline with 0.1% tween 20
(PBST; BioRad) and 5% nonfat dried milk w/v (NFDM) for one hour at room temperature.
The following primary antibodies were diluted in PBST with 5% NFDM: C/EBPβ (1:1000,
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Santa Cruz Biotechnology, Santa Cruz, CA), CREB (1:1000, Santa Cruz Biotechnology),
HNF4α (1:750, Santa Cruz Biotechnology), and β-Actin (1:40,000, Medimmune, Inc.,
Gaithersburg, MD). Other primary antibodies were diluted in PBST with 5% BSA: ser133
phosphorylated CREB (1:500, Cell Signaling Technology Inc., Danvers, MA), Akt (1:500,
Cell Signaling Technology), ser473 phosphorylated Akt (1:500, Cell Signaling Technology),
FOXO1 (1:250, Cell Signaling Technology), and ser256 phosphorylated FOXO1 (1:500,
Cell Signaling Technology). Membranes probed for insulin receptor β (IRβ) were blocked
for one hour at room temperature in PBST with 5% NFDM with 1% BSA and the primary
antibody (Santa Cruz Biotechnology) was diluted 1:1250 in the same buffer. Horseradish
peroxidase conjugated secondary antibodies were diluted in PBST with 5% NFDM and
applied to membranes for one hour at room temperature. Immunocomplexes were detected
with enhanced chemiluminescence (Amersham ECL Plus, Piscataway, NJ). Densitometry
was performed using Scion Image software (Scion Corporation, Frederick, MD). All results
were normalized to β-Actin to control for loading differences, and a reference sample was
analyzed on every membrane to control for differences in transfer efficiency. Ser473
phosphorylated Akt and ser256 phosphorylated FOXO1 also were normalized to the total
amount of each protein. Antibodies were stripped from the membranes with Restore
Western Stripping Buffer (Pierce, Rockford, IL).

Statistical Analysis
Statistical analysis was performed using SAS version 9.1 (58). All results are presented as
mean ± standard error and groups were compared using either the Student's t test
(parametric) or the Mann-Whitney test (nonparametric), both two tailed, and a level of 0.05
or less was considered significant.

RESULTS
Fetal Characteristics

Information on the experimental conditions and necropsy measurements have been
previously reported for many of the fetuses used in these experiments (34; 56).
Characteristics for the group of fetuses used in this study are summarized in table 1. We
previously reported no difference in fetal arterial plasma glucagon, epinephrine or
norepinephrine concentrations between the groups (34). Reported here for the first time
(table 1), fetal arterial plasma cortisol concentrations are significantly greater (3.5-fold
increase, p<0.0005) in the H group than in the C group. The percent of male fetuses was not
statistically different (60% C, 40% H) and there was no distinguishable effect of fetal sex on
any measurements.

G6Pase and PEPCK mRNA Expression and Glycogen Content
PEPCK mRNA was significantly greater (12-fold, p<0.05) in H fetal livers compared to C
fetuses (figure 1a). The same expression pattern was found for G6Pase mRNA (7-fold
increase, p<0.0005, figure 1b). Chronic fetal hypoglycemia did not affect hepatic glycogen
content (figure 2).

Insulin Receptor and Akt
Hepatic content of the β-subunit of the insulin receptor was significantly higher (34%
increase) in H fetuses compared to C fetal livers (p<0.05, figure 3a,b). There were no
differences in the hepatic content of Akt (1.00±0.13 C, 0.87±0.09 H, arbitrary units relative
to C) or in the ratio of phosphorylated Akt at the serine 473 position to total Akt (1.00±0.23
C, 1.17±0.29 H, arbitrary units relative to C).
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Transcription Factors and Transcription Co-Activators (CREB, C/EBPβ, HNF4α, FOXO1,
and PGC1)

There was a significantly lower amount of total CREB (38% decrease) present in H livers
compared to C fetal livers (p<0.001, figure 3a,c). The ratio of phosphorylated (active) CREB
on serine 133 to total CREB was 2-fold higher in H fetal livers compared to C (p<0.01,
figure 3a,d). C/EBPβ (1.00±0.08 C, 1.12±0.12 H, arbitrary units relative to C), HNF4α
(1.00±0.16 C, 0.88±0.17 H, arbitrary units relative to C), FOXO1 (1.00±0.10 C, 0.94±0.11
H, arbitrary units relative to C), and the ratio of FOXO1 phosphorylated at the serine 256
position to total FOXO1 (1.00±0.08 C, 0.77±0.09 H, arbitrary units relative to C) were not
different between groups. PGC-1 mRNA was 2.5-fold greater in H compared to C fetal
livers (p<0.05, figure 1c).

DISCUSSION
The major finding in the present study is that fetal glucose deprivation activates hepatic
PEPCK and G6Pase mRNA expression. Fetal hypoglycemia does not affect hepatic
glycogen content. This demonstrates that fetal glucose production following chronic
hypoglycemia is due to sustained gluconeogenesis as previously postulated (10) and not to
persistent glycogenolysis. Normally, hepatic gluconeogenesis in fetal sheep does not occur
until very late in gestation when it develops in response to a surge in fetal cortisol secretion,
which occurs at gestational ages beyond the time point used in this study (18; 19). The
central role of fetal cortisol secretion in activating glucose production has been determined
by studies showing that hypophysectomy in fetal sheep renders them incapable of increasing
plasma cortisol concentrations. Such fetuses have significantly decreased hepatic activities
of gluconeogenic enzymes. Furthermore, fetal cortisol infusions increase these enzyme
activities (17; 18). Our data suggest that fetal hypoglycemia increases fetal cortisol
production and plasma concentrations and induces both PGC1α mRNA and phosphorylated
CREB, all of which are important regulatory components in the gluconeogenic response.

In our model glucagon and epinephrine concentrations are not elevated, although the insulin
to glucagon ratio is decreased (34). Plasma cortisol is higher, and excess glucocorticoids
increase PEPCK gene expression directly and act permissively to augment induction by
other stimuli (6). Glucagon, a decrease in the insulin to glucagon ratio, or epinephrine,
activate CREB by stimulating phosphorylation at position 133, which in turn increases
expression of the nuclear co-activator PGC1α as well as directly increases PEPCK and
G6Pase expression (27; 54; 60). Insulin in contrast suppresses hepatic PGC1α
transcriptional activity in part via Akt-mediated phosphorylation and nuclear export of the
forkhead family activator FOXO1 (50). In addition insulin has recently been shown to
stimulate phosphorylation of PGC1α directly to inhibit its ability to activate PEPCK gene
transcription (33). Given that we found no changes in the distal insulin signaling targets,
either phosphorylated FOXO1 or Akt, our results suggest that the up-regulation of PEPCK
during hypoglycemia was more likely due to increased activation by cortisol and a decrease
in the insulin to glucagon ratio through either CREB or PGC1α, rather than a reduction in
insulin signaling.

The increase in PGC1α mRNA by chronic fetal hypoglycemia is similar to the findings in
the bilateral uterine artery ligation model of IUGR in the rat in which both PGC1α and
PEPCK mRNA are increased (32). In addition to PGC1α we also measured other factors
that are known to increase PEPCK and G6ase expression and activity, including C/EBPβ
and HNF4α (5; 8; 53). However, neither of these factors was increased by chronic fetal
hypoglycemia. An interesting negative result was no change in HNF4α because it differs
from fetal rats exposed to exogenous glucocorticoids. These fetuses have increased hepatic
concentrations of PEPCK and HNF4α mRNA but normal hepatic concentrations of PGC1α
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(41). In our model of fetal hypoglycemia, with increased endogenous fetal glucocorticoids,
hepatic PEPCK and PGC1α mRNA are increased but HNF4α protein is not different. These
differences suggest that the surge in fetal cortisol may not be the sole mechanism up-
regulating PEPCK in the hypoglycemic fetal sheep.

The maintenance of hepatic glycogen content in the hypoglycemic group, despite a lower
insulin concentration and decreased glycogenic precursors (glucose and lactate), confirms
the results of some earlier fetal experiments, but is in conflict with others. Several
experimental models of IUGR and nutrient deprivation have demonstrated decreased hepatic
glycogen (4; 39; 43; 44; 46). In each of these models, when reported, fetal oxygen values
(partial pressure, hemoglobin-oxygen saturation, or blood oxygen content) either are normal
or decreased and fetal plasma glucagon concentration is increased. It is possible that the
increased fetal oxygenation in our hypoglycemic group allows for maintenance of hepatic
glycogen. When tested in late gestation fetal sheep, hypoxemia without hypoglycemia
decreases fetal hepatic glycogen content (63). Another difference between this model and
the models in which hepatic glycogen decreases is that fetal glucagon is not elevated in the
hypoglycemic group (34). In a different late gestation fetal sheep model of nutrient
deprivation, fetuses subjected to a five day maternal fast had significantly lower fetal weight
and maternal hepatic glycogen content, but did not have different fetal glucagon
concentrations or hepatic glycogen contents (29; 59). In addition, piglets did not have lower
liver glycogen contents following a maternal fast for the final seven or 21 days of gestation
(15) and unilateral ligation of the uterine artery in guinea pigs produced IUGR fetuses that
had increased hepatic glycogen content (31). Our results are consistent with the studies that
demonstrate no decrease in hepatic glycogen following fetal nutrient deprivation, but there
clearly are variations among studies.

Cortisol is important for hepatic glycogen accumulation and at gestational ages beyond 135
days, fetal sheep plasma cortisol is almost entirely of fetal origin (26). Increased cortisol
concentrations in response to hypoglycemia have been described before in a variety of late
gestation and neonatal mammals (13; 28; 62). In the sheep, like many mammalian species,
liver glycogen content increases during the later part of gestation (61). The increase in
hepatic glycogen during the last part of gestation is dependent on cortisol (1; 51; 64) and in
fact exogenous cortisol can augment and accelerate late gestation hepatic glycogen synthesis
and deposition (3; 16; 30; 64). These results have been confirmed with in vitro studies using
fetal liver explants and primary fetal hepatocytes which show glucocorticoids are necessary
for allowing insulin stimulated glycogen synthesis and deposition (14; 48; 64).

In conclusion, two weeks of experimental hypoglycemia in late gestation fetal sheep
increases hepatic PEPCK and G6Pase mRNA and stimulates hepatic glucose output (10).
This is associated with increased fetal plasma cortisol concentrations, increased hepatic
PGC1α mRNA, and activation of hepatic CREB. In addition, fetal hepatic glycogen content
is maintained despite decreased insulin and glycogen precursors. However, hepatic glucose
production was not enough to restore fetal glucose concentrations to normal indicating that
maternal glucose supply to the fetus is a critical factor regulating fetal glucose
concentrations.
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Figure 1. Hepatic mRNA concentrations
PEPCK (A), G6Pase (B), and PGC1α (C) mRNA concentrations were determined in livers
from Control and Hypoglycemic fetuses by real-time quantitative PCR. Data was
normalized to ribosomal protein s15 and is presented as fold change relative to control
fetuses with SEM bars. Treatment groups are listed on the x-axis. The * denotes a higher
amount of PEPCK (p<0.05) and G6Pase (p<0.0005) and PGC1α (p<0.05) in Hypoglycemic
livers compared to Control livers. All statistics are from the Mann-Whitney test for
nonparametric analysis.
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Figure 2. Hepatic Glycogen
Glycogen content (milligram per gram of tissue) with SEM bars was determined for Control
and Hypoglycemic fetuses. No differences were found between treatment groups, which are
listed on the x-axis.
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Figure 3. Hepatic Protein Concentrations
(A) Representative Western Blots for Insulin Receptor β, CREB, ser133 phosphorylated
CREB, and β-actin. (B-D) Results of Western Blot analysis for Insulin Receptor β
normalized to β-actin (B), CREB normalized to β-actin (C), and ser133 phosphorylated
CREB normalized to total CREB (D). Treatment groups are listed on the x-axis. The *
denotes a higher amount of Insulin Receptor β (p<0.05) and a higher ratio of ser133
phosphorylated CREB to total CREB (p<0.01) in Hypoglycemic livers compared to Control
livers, and a lower amount of CREB in Hypoglycemic livers compared to Control livers
(p<0.001). Statistics are from either Student's t test (parametric) or the Mann-Whitney test
(nonparametric).
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Table 1

Fetal Characteristics

Control Hypoglycemic p value

Gestational Age, days 138.6 ± 0.3 138.8 ± 0.6 NS

Weight, kg 4.380 ± 0.116
3.370 ± 0.137

* <0.0001

Liver Weight, g 121.96 ± 5.55
93.19 ± 5.54

* <0.005

Liver/Body Weight, % 2.78 ± 0.09 2.80 ± 0.12 NS

Glucose, mmol/L 1.12 ± 0.03
0.58 ± 0.02

* <0.0001

Lactate, mmol/L 1.98 ± 0.16
1.33 ± 0.10

* <0.005

Oxygen, mmol/L 3.20 ± 0.17
4.15 ± 0.18

* <0.001

Insulin, ng/ml 0.32 ± 0.04
0.12 ± 0.02

* <0.0001

Cortisol, ng/ml 5.3 ± 0.7
19.0 ± 4.2

* <0.0005

Values are means ± SE.

*
The refers to a significant difference between Hypoglycemic and Control fetuses by Student's t test (parametric) or the Mann-Whitney test

(nonparametric).
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