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Abstract Most accounts of image and object encoding in inferotemporal cortex (IT) focus on the

distinct patterns of spikes that different images evoke across the IT population. By analyzing data

collected from IT as monkeys performed a visual memory task, we demonstrate that variation in a

complementary coding scheme, the magnitude of the population response, can largely account for

how well images will be remembered. To investigate the origin of IT image memorability

modulation, we probed convolutional neural network models trained to categorize objects. We

found that, like the brain, different natural images evoked different magnitude responses from

these networks, and in higher layers, larger magnitude responses were correlated with the images

that humans and monkeys find most memorable. Together, these results suggest that variation in

IT population response magnitude is a natural consequence of the optimizations required for visual

processing, and that this variation has consequences for visual memory.

DOI: https://doi.org/10.7554/eLife.47596.001

Introduction
At higher stages of visual processing such as inferotemporal cortex (IT), representations of image

and object identity are thought to be encoded as distinct patterns of spikes across the IT population,

consistent with neurons that are individually ‘tuned’ for distinct image and object properties. In a

population representational space, these distinct spike patterns translate into population response

vectors that point in different directions, and information about object identity is formatted such

that it can be accessed from IT neural responses via a weighted linear decoder (Figure 1a; reviewed

by DiCarlo et al., 2012). The magnitude of the IT population response is often assumed to be unim-

portant (but see Chang and Tsao, 2017), and it is typically disregarded in population-based

approaches, including population decoding and representational similarity analyses

(Kriegeskorte et al., 2008). Building on that understanding, investigations of cognitive processes,

such as memory, appreciate the importance of equating image sets for the robustness of their

underlying visual representations in an attempt to isolate the cognitive process under investigation

from variation due to changes in the robustness of the sensory input. This process amounts to

matching decoding performance or representational similarity between sets of images, in order to

control for low-level factors (e.g. contrast, luminance and spatial frequency content) and visual dis-

criminability (Willenbockel et al., 2010). Here we demonstrate that variation in IT population

response magnitude has important behavioral consequences for one higher cognitive process: how
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well images will be remembered. Our results

suggest that the lack of appreciation for this

type of variation in IT population response

should be reconsidered.

‘Image memorability’ refers to the simple

notion that some images are easy to remember

while others are easy to forget (Isola et al.,

2011). While a large component of image mem-

orability variation is consistent across different

individuals (Isola et al., 2011; Khosla et al.,

2015), a full account of the sources of image

memorability has remained elusive. The neural

correlates of memorability are likely to reside at

higher stages of the visual form processing path-

way, where image memorability can be decoded

from human fMRI activity patterns

(Bainbridge et al., 2017; Bainbridge and Riss-

man, 2018), as well as with a consistent cortical

timescale from human MEG data at ~150 msec

(Mohsenzadeh et al., 2019). Linear decodability

could imply that information about image mem-

orability is represented in the same fashion as

information about object identity: as population

response vectors that point in different direc-

tions (Figure 1a; DiCarlo et al., 2012). However,

under this proposal, it is not clear how our expe-

rience of image identity and image memorability

would be represented by the same neural popu-

lations, for example the fact that one image of a

person can be more memorable than another

image of that same person. Here we present an alternative proposal, hinted at by the fact that more

memorable images evoke larger fMRI responses (Bainbridge et al., 2017): we propose that memo-

rability variation is determined principally by the magnitude of the IT population response (Figure 1).

This scenario incorporates a representational scheme for memorability that is orthogonal to the

scheme thought to support object identity, and if correct, would provide a straightforward account

of how a high-level visual brain area such as inferotemporal cortex (IT) multiplexes visual information

about image content (as the population vector direction) as well as memorability (as population vec-

tor magnitude). In an earlier report, we tested the hypothesis that changes in the lengths of IT popu-

lation response vectors with stimulus repetition (‘repetition suppression’) could account for rates of

remembering and forgetting as a function of time (Meyer and Rust, 2018). However, that work

explicitly assumed that the population response vectors corresponding to different images were the

same length (see Methods), whereas here we focus on whether variation in the lengths of these vec-

tors can account for a previously undocumented behavioral signature in monkeys: image

memorability.

Results
To test the hypothesis presented in Figure 1, we obtained image memorability scores by passing

images through a model designed to predict image memorability for humans (Khosla et al., 2015).

The neural data, also reported in Meyer and Rust (2018), were recorded from IT as two rhesus mon-

keys performed a single-exposure visual memory task in which they reported whether images were

novel (never before seen) or were familiar (seen once previously; Figure 2a). In each experimental

session, neural populations with an average size of 26 units were recorded, across 27 sessions in

total. Because accurate estimate of population response magnitude requires many hundreds of

units, data were concatenated across sessions into a larger pseudopopulation in a manner that

aligned images with similar memorability scores (see Methods and Figure 2—figure supplement 1).
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Figure 1. The hypothesis: the magnitude of the IT

population response encodes image memorability. In

geometric depictions of how IT represents image

identity, the population response to an image is

depicted as a vector in an N-dimensional space, where

N indicates the number of neurons in the population,

and identity is encoded by the direction of the

population vector. Here we test the hypothesis that

image memorability is encoded by the magnitude (or

equivalently length) of the IT population vector, where

images that produce larger population responses are

more memorable.

DOI: https://doi.org/10.7554/eLife.47596.002
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Figure 2. IT population response magnitude strongly correlates with image memorability. (a) The monkeys’ task

involved viewing each image for 400 ms and then reporting whether the image was novel or familiar with an eye

movement to one of two response targets. The probability of a novel versus familiar image was fixed at 50% and

images were repeated with delays ranging from 0 to 63 intervening trials (4.5 s to 4.8 min). Shown are 5 example

trials with image memorability scores labeled. The memorability of each image was scored from 0-1, where the

score reflects the predicted chance-corrected hit rate for detecting a familiar image (i.e., 0 maps to chance and 1

maps to ceiling; Khosla et al., 2015). (b) The relationship between image memorability scores and IT population

response magnitudes. Each point corresponds to a different image (N=107 images). Population response

magnitudes were computed as the L2 norm

ffiffiffiffiffiffiffiffiffiffi
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N

i¼1

r
2

i

s
 !

, where ri is the spike count response of the ith unit, across

a pseudopopulation of 707 units. Spikes were counted in an 80 ms window positioned 180 to 260 ms following

stimulus onset (see Figure 2—figure supplement 3a for different window positions). The Pearson correlation and

its p-value are labeled. The solid line depicts the linear regression fit to the data. For reference, the mean firing

rates for two example images are also labeled (see also Figure 2—figure supplement 3b). (c) Mean and standard

error (across experimental sessions) of monkey behavioral performance on the memory task as a function of

human-based image memorability scores. For visualization, performance was binned across images with

neighboring memorability scores and pooled across monkeys (see Figure 2—figure supplement 4 for plots by

individual). The dashed line corresponds to the grand average performance, and if there were no correlation, all

points should fall near this line. The point-biserial correlation and its p-value, computed for the raw data (i.e. 2889

continuous memorability scores and 2889 binary performance values for each image in each session) are labeled.

Source data are included as Figure 2—source data 1 and Figure 2—source data 2.

DOI: https://doi.org/10.7554/eLife.47596.003

Figure 2 continued on next page
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The resulting pseudopopulation contained the responses of 707 IT units to 107 images, averaged

across novel and familiar presentations.

Figure 2b shows the correlation between image memorability and IT population response magni-

tudes, which was strong and highly significant (Pearson correlation: r = 0.68; p=1�10�15). This corre-

lation remained strong when parsed by the data collected from each monkey individually

(Figure 2—figure supplement 2) and, after accounting for the time required for signals to reach IT,

across the entire 400 ms viewing period (Figure 2—figure supplement 3a). The correlation also

remained strong when computed for a quantity closely related to response magnitude, grand mean

firing rate (Figure 2—figure supplement 3b), as well as when the highest firing units were excluded

from the analysis (Figure 2—figure supplement 3c). A strong correlation was also observed when

images containing faces and/or bodies were excluded from the analysis (Pearson correlation:

r = 0.62; p=2�10�10), suggesting that our results are not an artifactual consequence of recording

from patches of neurons enriched for face or body selectivity (Pinsk et al., 2005; Tsao et al., 2003).

Finally, at the same time that IT neural responses exhibited repetition suppression for familiar as

compared to novel image presentations (mean proportional reduction in this spike count win-

dow = 6.2%; see also Meyer and Rust, 2018), the correlation remained strong when computed for

the images both when they were novel (Pearson correlation: r = 0.62; p=2�10�12) as well as when

they were familiar (Pearson correlation: r = 0.58; p=8�10�11).

The strength of the correlation between memorability and IT response magnitude is notable

given the species difference, as the memorability scores were derived from a model designed to

predict what humans find memorable whereas the neural data were collected from rhesus monkeys.

In contrast to the human-based scores, which reflect the estimated average performance of ~80

human individuals, our monkey behavioral data are binary (i.e. correct/incorrect for each image). As

such, the monkey behavioral data cannot be used in the same way to concatenate neural data across

sessions to create a pseudopopulation sufficiently large to accurately estimate IT population

response magnitudes. However, our data did allow us to evaluate whether human-based memorabil-

ity scores were predictive of the images that the monkeys found most memorable during the single-

exposure visual memory task, and we found that this was in fact the case (Figure 2c).

While the monkeys involved in these experiments were not explicitly trained to report object

identity, they presumably acquired the ability to identify objects naturally over their lifetimes. The

correlations between IT population response magnitude and image memorability could thus result

from optimizations for visual memory, or it could follow more simply from the optimizations that sup-

port visual processing, including object and scene identification. If it were the case that a system

trained to categorize objects and scenes (but not trained to report familiarity) could account for the

correlations we observe between IT response magnitude variation and image memorability, this

would suggest that image memorability follows from the optimizations for visual (as opposed to

Figure 2 continued

The following source data and figure supplements are available for figure 2:

Source data 1. Data used to compute monkey neural responses as well as human-based memorability scores for

each image.

DOI: https://doi.org/10.7554/eLife.47596.008

Source data 2. Data used to compute monkey behavioral responses as well as human-based memorability scores

for each image.

DOI: https://doi.org/10.7554/eLife.47596.009

Figure supplement 1. Distributions of memorability scores for the images used in these experiments.

DOI: https://doi.org/10.7554/eLife.47596.004

Figure supplement 2. The correlation of memorability and population response magnitude, for each monkey

individually.

DOI: https://doi.org/10.7554/eLife.47596.005

Figure supplement 3. The correlation of memorability and the IT population response, applied to different time

windows, assessed with firing rate, and determined with top-ranked firing units removed.

DOI: https://doi.org/10.7554/eLife.47596.006

Figure supplement 4. Human-based memorability scores predict what monkeys find memorable.

DOI: https://doi.org/10.7554/eLife.47596.007
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mnemonic) processing. To investigate the origin of memorability variation, we investigated the cor-

relate of memorability in a convolutional neural network (CNN) model trained to categorize thou-

sands of objects and scenes but not explicitly trained to remember images or estimate memorability

(Khosla et al., 2015). We found that the correlation between image memorability scores and their

corresponding population response magnitudes was significantly higher in the trained as compared

to a randomly initialized version of the network in all layers, and the strength of this correlation gen-

erally increased across the hierarchy (Figure 3). These results were also replicated in two other

CNNs trained for object classification (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015),

where correlation strength also generally increased across the hierarchy of the network (Figure 3—

figure supplement 1), suggesting that this signature is not unique to this particular architecture or

training procedure. These results suggest that variation in population response magnitude across

images is reflected in visual systems that are trained to classify objects, and that this variation is

directly related to variation in image memorability.

Discussion
Here we have demonstrated that variation in the ability of humans and monkeys to remember

images is strongly correlated with the magnitude of the population response in IT cortex. These

results indicate that memorability is reflected in IT via a representational scheme that lies largely

orthogonal to the one IT has been presumed to use for encoding object identity (Figure 1). For

example, investigations of how monkey IT and its human analogs represent objects using ‘represen-

tational similarity analysis’ typically begin by nor-

malizing population response vector magnitude

to be the same for all images such that all that is

left is the direction of the population response

pattern, under the assumption that population

vector magnitude is irrelevant for encoding

object or image identity (Kriegeskorte et al.,

2008). Before our study, data from human fMRI

had pinpointed the locus of memorability to the

human analog of IT, but we did not understand

‘how’ the representations of memorable and

non-memorable images differed. Our results

point to a simple and coherent account of how

IT multiplexes representations of visual and

memorability information using two complemen-

tary representational schemes (Figure 1).

Investigations of cognitive processes such as

memory have long appreciated the need to

equate image sets for the robustness of their

visual representations. The significance of our

result follows from the unexpected finding that

there is variation in the robustness of visual rep-

resentations within the class of natural images

that is not accounted for by classic population-

based decoding approaches, and that this varia-

tion correlates with our understanding of the

content that makes images more or less memo-

rable. Our results demonstrate that despite the

host of homeostatic mechanisms that contribute

to maintaining constant global firing rates across

a cortical population (Turrigiano, 2012),

changes in image content can result in IT popu-

lation response magnitudes that differ by ~20%

(Figure 2b; Figure 2—figure supplement 3b).

Future work will be required to explore the
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Figure 3. Correlations between memorability and

population response increase in strength across layers

of a CNN trained to classify objects and scenes.

Shown are mean and 95% CIs of the Pearson

correlations between image memorability and

population response magnitude for each hierarchical

layer of the CNN described in Zhou et al. (2014), up

to the last hidden layer. ‘Conv’: convolutional layer;

‘FC’: fully connected layer. p-values for a one-sided

comparison that correlation strength was larger for the

trained than the randomly connected network:

p<0.0001 for all layers.

DOI: https://doi.org/10.7554/eLife.47596.010

The following figure supplement is available for

figure 3:

Figure supplement 1. Correlations between

memorability and population response magnitude are

also reflected in two other CNNs.

DOI: https://doi.org/10.7554/eLife.47596.011
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ultimate bounds of image memorability variation, possibly via the use of newly developed generative

adversarial network models that create images with increased or decreased memorability

(Goetschalckx et al., 2019).

Our work relates to ‘subsequent memory effects’ whereby indicators of higher neural activity in

structures both within and outside the medial temporal lobe during memory encoding are predictive

of more robust remembering later on (reviewed by Paller and Wagner, 2002). To tease apart

whether the origin of memorability could be attributed to optimizations for visual as opposed to

mnemonic processing, we investigated CNNs optimized to categorize objects but not explicitly

trained to predict the memorability of images. While this class of models has been demonstrated to

mimic many aspects of how IT represents visual object identity (reviewed by Yamins and DiCarlo,

2016), image memorability has a distinct representational scheme from identity (Figure 1). The fact

that CNNs trained for object recognition mimic the neural representation of a distinct behavior –

visual memorability – is compelling evidence that this strategy of multiplexing visual identity and

memorability results from the computational requirements of optimizing for robust object represen-

tations. Our results are remarkably well-aligned with one study reporting the correlation between

one CNN that we tested, VGG-16 (Figure 3—figure supplement 1b), and patterns of confusions

during human rapid visual categorization behavior (Eberhardt et al., 2016). The correlation between

what humans and monkeys find memorable (Figure 2c) is at first pass surprising in light of the pre-

sumed differences in what typical humans and monkeys experience. However, understanding that

memorability variation emerges in CNNs trained for object categorization (Figure 3), coupled with

the similarities in object representations between humans and monkeys (Rajalingham et al., 2015),

provides insight into the preservation of memorability correlations across these two primate species.

The mechanism that we describe here is also likely to be partially but not entirely overlapping

with descriptions of salience, where a relation between memorability and eye movement patterns

exists (Bylinskii et al., 2015) and CNNs trained to categorize objects have been coupled with human

fMRI responses to predict eye movement behavior (O’Connell and Chun, 2018). However, memora-

bility effects are typically found even after controlling for factors commonly associated with salience,

including images features and object categories (Bainbridge et al., 2017; Bainbridge et al., 2013;

Mohsenzadeh et al., 2019), suggesting that memorability and salience are unlikely to be one and

the same. For example, (Bainbridge et al., 2017; Bainbridge et al., 2013) reported differences in

memorability between face stimuli that were identical in saliency in terms of their shapes, parts,

image features, and fixation patterns. Our modeling results offer insight into the nature of the spe-

cific mechanisms that are most likely to contribute to image memorability. The brain perceives and

remembers using both feedforward and feedback processing, and this processing is modulated by

top-down and bottom-up attention. Because of this, it is difficult to attribute an effect like the one

we describe to any single mechanism using neural data alone. The fact that variations in response

magnitudes that correlate with memorability emerge from static, feed-forward, and fixed networks

suggests that memorability variation is unlikely to follow primarily from the types of attentional

mechanisms that require top-down processing or plasticity beyond that required for wiring up a sys-

tem to identify objects.

Materials and methods
As an overview, three types of data are included in this paper: (1) Behavioral and neural data col-

lected from two rhesus monkeys that were performing a single-exposure visual memory task; (2)

Human-based memorability scores for the images used in the monkey experiments, and (3) The

responses of units at different layers of three convolutional neural network models trained to classify

objects and scenes . The Methods associated with each type of data are described below.

Behavioral and neural data collected from two rhesus monkeys that
were performing a single-exposure visual memory task
Experiments were performed on two naı̈ve adult male rhesus macaque monkeys (Macaca mulatta)

with implanted head posts and recording chambers. All procedures were performed in accordance

with the guidelines of the University of Pennsylvania Institutional Animal Care and Use Committee.

Monkey behavioral and neural data were also included in an earlier report that examined the rela-

tionship between behavioral reports of familiarity as a function of the time between novel and
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familiar presentations (e.g., ‘rates of forgetting’) and neural responses in IT cortex (Meyer and Rust,

2018). The results presented here cannot be inferred from that report.

The single-exposure visual memory task
All behavioral training and testing were performed using standard operant conditioning (juice

reward), head stabilization, and high-accuracy, infrared video eye tracking. Stimuli were presented

on an LCD monitor with an 85 Hz refresh rate using customized software (http://mworks-project.

org).

Each trial of the monkeys’ task involved viewing one image for at least 400 ms and indicating

whether it was novel (had never been seen before) or familiar (had been seen exactly once) with an

eye movement to one of two response targets. Images were never presented more than twice (once

as novel and then as familiar) during the entire training and testing period of the experiment. Trials

were initiated by the monkey fixating on a red square (0.25˚) on the center of a gray screen, within

an invisible square window of ±1.5˚, followed by a 200 ms delay before a 4˚ stimulus appeared. The

monkeys had to maintain fixation of the stimulus for 400 ms, at which time the red square turned

green (go cue) and the monkey made a saccade to the target indicating that the stimulus was novel

or familiar. In monkey 1, response targets appeared at stimulus onset; in monkey 2, response targets

appeared at the time of the go cue. In both cases, targets were positioned 8˚ above or below the

stimulus. The association between the target (up vs. down) and the report (novel vs. familiar) was

swapped between the two animals. The image remained on the screen until a fixation break was

detected. The first image presented in each session was always a novel image. The probability of a

trial containing a novel vs. familiar image quickly converged to 50% for each class. Delays between

novel and familiar presentations were pseudorandomly selected from a uniform distribution, in

powers of two (n-back = 1, 2, 4, 8, 16, 32 and 64 trials corresponding to mean delays of 4.5 s, 9 s,

18 s, 36 s, 1.2 min, 2.4 min, and 4.8 min, respectively).

The images used for both training and testing were collected via an automated procedure that

downloaded images from the Internet. Images smaller than 96*96 pixels were not considered and

eligible images were cropped to be square and resized to 256*256 pixels. An algorithm removed

duplicate images. The image database was randomized to prevent clustering of images according to

the order in which they were downloaded. In both the training and testing phases, all images of the

dataset were presented sequentially in a random order (i.e. without any consideration of their con-

tent). During the testing phase, ‘novel’ images were those that each monkey had never encountered

in the entire history of training and testing. To determine the degree to which these results

depended on images with faces and/or body parts, images were scored by two human observers

who were asked to determine whether each image contained one or more faces or body parts of

any kind (human, animal or character). Conflicts between the observers were resolved by scrutinizing

the images. Only 19% of the images used in these experiments contained faces and/or body parts.

The activity of neurons in IT was recorded via a single recording chamber in each monkey. Cham-

ber placement was guided by anatomical magnetic resonance images in both monkeys. The region

of IT recorded was located on the ventral surface of the brain, over an area that spanned 5 mm lat-

eral to the anterior middle temporal sulcus and 14–17 mm anterior to the ear canals. Recording ses-

sions began after the monkeys were fully trained on the task and after the depth and extent of IT

was mapped within the recording chamber. Combined recording and behavioral training sessions

happened 4–5 times per week across a span of 5 weeks (monkey 1) and 4 weeks (monkey 2). Neural

activity was recorded with 24-channel U-probes (Plexon, Inc) with linearly arranged recording sites

spaced with 100 mm intervals. Continuous, wideband neural signals were amplified, digitized at 40

kHz and stored using the Grapevine Data Acquisition System (Ripple, Inc). Spike sorting was done

manually offline (Plexon Offline Sorter). At least one candidate unit was identified on each recording

channel, and 2–3 units were occasionally identified on the same channel. Spike sorting was per-

formed blind to any experimental conditions to avoid bias. For quality control, recording sessions

were screened based on their neural recording stability across the session, their numbers of visually

responsive units, and the numbers of behavioral trials completed. A multi-channel recording session

was included in the analysis if: (1) the recording session was stable, quantified as the grand mean fir-

ing rate across channels changing less than 2-fold across the session; (2) over 50% of neurons were

visually responsive (a loose criterion based on our previous experience in IT), assessed by a visual

inspection of rasters; and (3) the number of successfully completed novel/familiar pairs of trials
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exceeded 100. In monkey 1, 21 sessions were recorded and six were removed (two from each of the

three criteria). In monkey 2, 16 sessions were recorded and four were removed (1, 2 and 1 due to cri-

terion 1, 2 and 3, respectively). The resulting data set included 15 sessions for monkey 1 (n = 403

candidate units), and 12 sessions for monkey 2 (n = 396 candidate units). The sample size (number

of successful sessions recorded) was chosen to match our previous work (Meyer and Rust, 2018).

Both monkeys performed many hundreds of trials during each session (~600–1000, corresponding

to ~300–500 images each repeated twice). The data reported here correspond to the subset of

images for which the monkeys’ behavioral reports were recorded for both novel and familiar presen-

tations (e.g. trials in which the monkeys did not prematurely break fixation during either the novel or

the familiar presentation of an image). Finally, units were screened for stimulus-evoked activity via a

comparison of their responses in a 200 ms period before stimulus onset (�200 ms – 0 ms) versus

after stimulus onset (80–280 ms) with a two-sided t-test, p<0.01. This yielded 353 (of 403) units for

monkey 1 and 354 (out of 396) units for monkey 2.

Accurate estimate of population response magnitude requires many hundreds of units, and when

too few units are included, magnitude estimates are dominated by the stimulus selectivity of the

sampled units. To perform our analyses, we thus concatenated units across sessions to create a

larger pseudopopulation. In the case of the pooled data, this included 27 sessions in total (15 ses-

sions from monkey 1 and 12 from monkey 2). When creating this pseudopopulation, we aligned

data across sessions in a manner that preserved whether the trials were presented as novel or famil-

iar, their n-back separation, and image memorability scores (obtained using Materials and methods

described below). More specifically, the responses for each unit always contained sets of novel/famil-

iar pairings of the same images, and pseudopopulation responses across units were always aligned

for novel/familiar pairs that contained the same n-back separation and images with similar memora-

bility scores. The number of images that could be included in the pseudopopulation was limited by

the session for which the fewest images were obtained.

For the other sessions, a matched number of images were subselected separately for each n-back

by ranking images within that n-back by their memorability scores, preserving the lowest-ranked and

highest-ranked images within that session, and selecting the number of additional images required

as those with memorability scores that were evenly spaced between the two extreme memorability

scores for that session. The resulting pseudopopulation consisted of the responses to 107 images

presented as both novel and familiar (i.e. 15, 15, 16, 17, 17, 15 and 12 trials at 1, 2, 4, 8, 16, 32 and

64-back, respectively). To perform the neural analyses (Figure 2b, Figure 2—figure supplements 2–

3), a memorability score for each of the 107 pseudopopulation images was computed as the mean

of the memorability scores across all the actual images that were aligned to produce that pseudopo-

pulation response. The average standard deviation across the set of memorability scores used to

produce each pseudopopulation response was 0.05, where memorability ranges 0–1. To perform

behavioral analyses (Figure 2c, Figure 2—figure supplement 4), the memorability score as well as

binary performance values (correct/wrong at reporting that a familiar image was familiar) were

retained for each of the 107 images, across each of the 27 sessions. As a control analysis, we created

a second pseudopopulation using the same techniques but after excluding the responses to images

that contained faces and/or body parts (where the content of each image was determined as

described above). The resulting pseudopopulation consisted of the responses to 87 images pre-

sented as both novel and familiar. Because only a small fraction of images contained faces or body

parts (19%), we were not able to create a pseudopopulation with images that only contained only

faces and/or bodies using the same methods applied for the main analysis.

Human-based memorability scores for the images used in the monkey
experiments
We obtained memorability scores for the images used in the monkey experiments using MemNet

(Khosla et al., 2015) estimates. MemNet is a convolutional neural network (CNN) trained to esti-

mate image memorability on a large-scale dataset of natural images (LaMem; Khosla et al., 2015),

publicly available at memorability.csail.mit.edu). LaMem consists of 60K images drawn from a diverse

range of sources (see Khosla et al., 2015 for more detail). Each image in this dataset is associated

with a memorability score based on human performances in an online memory game on Amazon’s

Mechanical Turk. Behavioral performances were corrected for the delay interval between first and

second presentation to produce a single memorability score for each image. Specifically,
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(Isola et al., 2011) demonstrated that memorability follows a log-linear relationship as a function of

the delay interval between the first and second image presentations, described as:

m
i

t
¼m

i

T
þa log

t

T

where m
i

T
denotes the memorability score for image i after a delay of T, ci represents the base mem-

orability, and a is the memorability decay factor over time. Memorability scores were corrected for

delay interval using this equation. After training, MemNet estimates visual memorability of natural

images near the upper bound imposed by human performance: MemNet estimates reach 0.64 rank

correlation with mean human-estimated memorability, while the upper bound of consistency

between human scores has a rank correlation of 0.68. Here we treat MemNet memorability esti-

mates as a proxy for human memorability scores.

The memorability scores were obtained using the network weights reported in

Khosla et al. (2015) and publicly available at http://memorability.csail.mit.edu/download.html. This

network was originally trained using the Caffe framework (Jia et al., 2014), and we ported the

trained network to Pytorch (Paszke et al., 2017) using the caffe-to-torch-to-pytorch package at

https://github.com/fanq15/caffe_to_torch_to_pytorch. Before passing images into MemNet, we pre-

processed them as described in Zhou et al. (2014): we resized images to 256 � 256 pixels (with

bilinear interpolation), subtracted the mean RGB image intensity (computed over the dataset used

for pretraining, as described in Zhou et al., 2014), and then produced 10 crops of size 227 � 227

pixels. The 10 crops were obtained by cropping the full image at the center and at each of the four

corners and by flipping each of these five cropped images about the vertical axis. All 10 crops were

passed through MemNet. The average of these 10 scores was used as the mean prediction of the

model for the input image. This mean prediction was then linearly transformed to obtain the esti-

mated memorability score:

Memorability_score = min (max ((output - mean_pred)*2 + additive_mean, 0), 1)

where following Khosla et al. (2015), we set mean_pred = 0.7626 and additive_mean = 0.65.

The responses of units at different layers of CNN models trained to
classify objects and scenes
We evaluated the correlation between response magnitude and image memorability on images

from the LaMem dataset (Khosla et al., 2015) using three commonly used convolutional neural net-

works (CNNs). All reported models were evaluated on the full test set of split 1 of LaMem, which

contains 10,000 images. We chose to use LaMem images, as each image in this dataset is labeled

with a memorability score computed directly from human behavioral performance (i.e. not estimated

with a model; see above and Khosla et al., 2015 for details of data collection and memorability

score computation). All networks were run in TensorFlow 1.10 (Abadi et al., 2016; software available

from tensorflow.org), using custom Python evaluation code.

The results presented in Figure 3 were obtained by running images from this dataset through

HybridCNN (Zhou et al., 2014). HybridCNN is a network with an identical architecture to AlexNet

(Krizhevsky et al., 2012). HybridCNN was first trained to classify natural images of objects and

scenes using data from the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012, a

1000-way object classification dataset (Deng et al., 2009), as well as the Places 183-way scene classi-

fication dataset (Zhou et al., 2014), for a combined 1183-way classification task. For details of train-

ing, see Zhou et al. (2014). Results were obtained using the network weights reported in

Zhou et al. (2014) and publicly available at http://places.csail.mit.edu/downloadCNN.html. This net-

work was originally trained using the Caffe framework (Jia et al., 2014), and we ported the trained

network to TensorFlow using the caffe-tensorflow package https://github.com/ethereon/caffe-

tensorflow. Random initialization baselines were obtained using the same architecture, but randomly

sampling the weights using the initialization algorithm described in Glorot and Bengio (2010).

Before passing images into each network, we preprocessed them as described in Zhou et al.

(2014) and above: we resized images to 256 � 256 pixels (with bilinear interpolation), subtracted

the mean RGB image intensity (computed over the training dataset), and then cropped the central

227 � 227 and passed it into the network. The response magnitude (L2 norm) of each layer was

computed over the full output vector of each hidden layer. In all cases, we show the magnitude of

hidden layer output after applying the nonlinear operation. Results for the two networks presented
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in Figure 3—figure supplement 1 were obtained in an identical manner, except for the image pre-

processing step. For each network, images were preprocessed as described in the original papers

(AlexNet: Krizhevsky et al., 2012; VGG-16: Simonyan and Zisserman, 2015).

For all three networks (HybridCNN, AlexNet, and VGG-16), we computed correlations for all con-

volutional and fully-connected hidden layers. The Pearson correlation coefficient was used to mea-

sure correlation. All correlations were computed over the full set of 10,000 images described above.

95% confidence intervals for the correlation coefficient of each layer were obtained by bootstrap-

ping over the set of 10,000 per-image layer magnitudes and memorability scores. 95% confidence

intervals were estimated empirically as the upper and lower 97.5%-centiles of the bootstrapped cor-

relation coefficients for each layer and condition. Bootstrapped resampling was performed indepen-

dently for each layer and each condition (trained or randomly connected). In all cases, bootstrap

estimates were performed using 10,000 samples (with replacement) of the full dataset of 10,000

images. The bootstrapping procedure was also used to conduct one-tailed tests to determine

whether the correlations between memorability and response magnitude were stronger in the

trained as compared to the randomly initialized network at each layer separately. p-values were esti-

mated by taking pairs of correlation coefficients computed on the bootstrapped data for each condi-

tion and measuring the rate at which the correlation for the random layer exceeded the correlation

for the trained layer.

Acknowledgements
This work was supported by the National Eye Institute of the National Institutes of Health (award

R01EY020851 to NCR), the Simons Foundation (Simons Collaboration on the Global Brain award

543033 to NCR), and the National Science Foundation (award 1265480 to NCR and award 1532591

to AO).

Additional information

Funding

Funder Grant reference number Author

National Eye Institute R01EY020851 Nicole Rust

Simons Foundation 543033 Nicole Rust

National Science Foundation 1265480 Nicole Rust

National Science Foundation 1532591 Aude Oliva

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Andrew Jaegle, Vahid Mehrpour, Yalda Mohsenzadeh, Conceptualization, Investigation, Writing—

original draft, Writing—review and editing; Travis Meyer, Investigation, Writing—review and editing;

Aude Oliva, Nicole Rust, Conceptualization, Funding acquisition, Writing—original draft, Project

administration, Writing—review and editing

Author ORCIDs

Andrew Jaegle https://orcid.org/0000-0003-1698-9901

Vahid Mehrpour https://orcid.org/0000-0003-1682-5931

Yalda Mohsenzadeh https://orcid.org/0000-0001-8525-957X

Travis Meyer http://orcid.org/0000-0003-4672-5368

Aude Oliva https://orcid.org/0000-0002-6920-914X

Nicole Rust https://orcid.org/0000-0002-7820-6696

Jaegle et al. eLife 2019;8:e47596. DOI: https://doi.org/10.7554/eLife.47596 10 of 12

Short report Neuroscience

https://orcid.org/0000-0003-1698-9901
https://orcid.org/0000-0003-1682-5931
https://orcid.org/0000-0001-8525-957X
http://orcid.org/0000-0003-4672-5368
https://orcid.org/0000-0002-6920-914X
https://orcid.org/0000-0002-7820-6696
https://doi.org/10.7554/eLife.47596


Ethics

Animal experimentation: All procedures were performed in accordance with the guidelines of the

University of Pennsylvania Institutional Animal Care and Use Committee under protocol 804222.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.47596.014

Author response https://doi.org/10.7554/eLife.47596.015

Additional files

Supplementary files
. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.47596.012

Data availability

Source monkey behavioral and neural data are included in the manuscript as supporting files.

References
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M. 2016.
TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv. https://arxiv.org/abs/
1603.04467.

Bainbridge WA, Isola P, Oliva A. 2013. The intrinsic memorability of face images. Journal of Experimental
Psychology 142:1323–1334. DOI: https://doi.org/10.1037/a0033872

Bainbridge WA, Dilks DD, Oliva A. 2017. Memorability: a stimulus-driven perceptual neural signature distinctive
from memory. NeuroImage 149:141–152. DOI: https://doi.org/10.1016/j.neuroimage.2017.01.063, PMID: 2
8132932

Bainbridge WA, Rissman J. 2018. Dissociating neural markers of stimulus memorability and subjective
recognition during episodic retrieval. Scientific Reports 8:8679. DOI: https://doi.org/10.1038/s41598-018-
26467-5, PMID: 29875370

Bylinskii Z, Isola P, Bainbridge C, Torralba A, Oliva A. 2015. Intrinsic and extrinsic effects on image memorability.
Vision Research 116:165–178. DOI: https://doi.org/10.1016/j.visres.2015.03.005, PMID: 25796976

Chang L, Tsao DY. 2017. The code for facial identity in the primate brain. Cell 169:1013–1028. DOI: https://doi.
org/10.1016/j.cell.2017.05.011, PMID: 28575666

Deng J, Dong W, Socher R, Li L-J, Fei-Fei L. 2009. ImageNet: a large-scale hiearchical image database. IEEE
Computer Vision and Pattern Recognition (CVPR). DOI: https://doi.org/10.1109/CVPR.2009.5206848

DiCarlo JJ, Zoccolan D, Rust NC. 2012. How does the brain solve visual object recognition? Neuron 73:415–434.
DOI: https://doi.org/10.1016/j.neuron.2012.01.010, PMID: 22325196

Eberhardt S, Cader J, Serre T. 2016. How deep is the feature analysis underlying rapid visual categorization?
29th Conference on Neural Information Processing Systems.

Glorot X, Bengio Y. 2010. Understanding the difficulty of training deep feedforward neural networks.
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics.

Goetschalckx L, Andonian A, Oliva A, Isola P. 2019. GANalyze: toward visual definitions of cogntive image
properties. Proceedings of the IEEE International Conference on Computer Vision.

Isola P, Xiang J, Torralba A, Oliva A. 2011. What makes an image memorable? IEEE Conference on Computer
Vision and Pattern Recognition. DOI: https://doi.org/10.1109/CVPR.2011.5995721

Jia Y, Shelhamer E, Donahua J, Karayev S, Long J, Girshick R, Guadarraa S, Darrell T. 2014. Caffe: convolutional
architecture for fast feature embedding. 22nd ACM International Conference on Multimedia (MM’14).
DOI: https://doi.org/10.1145/2647868.2654889

Khosla A, Raju AS, Torralba A, Oliva A. 2015. Understanding and predicting image memorability at a large scale.
International Conference on Computer Vision (ICCV). DOI: https://doi.org/10.1109/ICCV.2015.275

Kriegeskorte N, Mur M, Bandettini P. 2008. Representational similarity analysis - connecting the branches of
systems neuroscience. Frontiers in Systems Neuroscience 2:4. DOI: https://doi.org/10.3389/neuro.06.004.2008,
PMID: 19104670

Krizhevsky A, Sutskever I, Hinton GE. 2012. ImageNet classification with deep convolutional neural networks.
International Conference on Neural Information Processing Systems (NIPS).

Meyer T, Rust NC. 2018. Single-exposure visual memory judgments are reflected in inferotemporal cortex. eLife
7:e32259. DOI: https://doi.org/10.7554/eLife.32259, PMID: 29517485

Mohsenzadeh Y, Mullin C, Oliva A, Pantazis D. 2019. The perceptual neural trace of memorable unseen scenes.
Scientific Reports 9:6033. DOI: https://doi.org/10.1038/s41598-019-42429-x, PMID: 30988333

Jaegle et al. eLife 2019;8:e47596. DOI: https://doi.org/10.7554/eLife.47596 11 of 12

Short report Neuroscience

https://doi.org/10.7554/eLife.47596.014
https://doi.org/10.7554/eLife.47596.015
https://doi.org/10.7554/eLife.47596.012
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
https://doi.org/10.1037/a0033872
https://doi.org/10.1016/j.neuroimage.2017.01.063
http://www.ncbi.nlm.nih.gov/pubmed/28132932
http://www.ncbi.nlm.nih.gov/pubmed/28132932
https://doi.org/10.1038/s41598-018-26467-5
https://doi.org/10.1038/s41598-018-26467-5
http://www.ncbi.nlm.nih.gov/pubmed/29875370
https://doi.org/10.1016/j.visres.2015.03.005
http://www.ncbi.nlm.nih.gov/pubmed/25796976
https://doi.org/10.1016/j.cell.2017.05.011
https://doi.org/10.1016/j.cell.2017.05.011
http://www.ncbi.nlm.nih.gov/pubmed/28575666
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.neuron.2012.01.010
http://www.ncbi.nlm.nih.gov/pubmed/22325196
https://doi.org/10.1109/CVPR.2011.5995721
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1109/ICCV.2015.275
https://doi.org/10.3389/neuro.06.004.2008
http://www.ncbi.nlm.nih.gov/pubmed/19104670
https://doi.org/10.7554/eLife.32259
http://www.ncbi.nlm.nih.gov/pubmed/29517485
https://doi.org/10.1038/s41598-019-42429-x
http://www.ncbi.nlm.nih.gov/pubmed/30988333
https://doi.org/10.7554/eLife.47596


O’Connell TP, Chun MM. 2018. Predicting eye movement patterns from fMRI responses to natural scenes.
Nature Communications 9:5159. DOI: https://doi.org/10.1038/s41467-018-07471-9, PMID: 30514836

Paller KA, Wagner AD. 2002. Observing the transformation of experience into memory. Trends in Cognitive
Sciences 6:93–102. DOI: https://doi.org/10.1016/S1364-6613(00)01845-3, PMID: 15866193

Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A. 2017.
Automatic differentiation in PyTorch. Neural Information Processing Systems (NIPS).

Pinsk MA, DeSimone K, Moore T, Gross CG, Kastner S. 2005. Representations of faces and body parts in
macaque temporal cortex: a functional MRI study. PNAS 102:6996–7001. DOI: https://doi.org/10.1073/pnas.
0502605102, PMID: 15860578

Rajalingham R, Schmidt K, DiCarlo JJ. 2015. Comparison of object recognition behavior in human and monkey.
Journal of Neuroscience 35:12127–12136. DOI: https://doi.org/10.1523/JNEUROSCI.0573-15.2015,
PMID: 26338324

Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition.
International Conference on Machine Learning (ICLR).

Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RB. 2003. Faces and objects in macaque cerebral
cortex. Nature Neuroscience 6:989–995. DOI: https://doi.org/10.1038/nn1111, PMID: 12925854

Turrigiano G. 2012. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal
function. Cold Spring Harbor Perspectives in Biology 4:a005736. DOI: https://doi.org/10.1101/cshperspect.
a005736, PMID: 22086977

Willenbockel V, Sadr J, Fiset D, Horne GO, Gosselin F, Tanaka JW. 2010. Controlling low-level image properties:
the SHINE toolbox. Behavior Research Methods 42:671–684. DOI: https://doi.org/10.3758/BRM.42.3.671,
PMID: 20805589

Yamins DL, DiCarlo JJ. 2016. Using goal-driven deep learning models to understand sensory cortex. Nature
Neuroscience 19:356–365. DOI: https://doi.org/10.1038/nn.4244, PMID: 26906502

Zhou B, Lapedriza A, Xiao J, Torralba A, Oliva A. 2014. Learning deep features for scene recognition using
Places database. Neural Information Processing Systems (NIPS).

Jaegle et al. eLife 2019;8:e47596. DOI: https://doi.org/10.7554/eLife.47596 12 of 12

Short report Neuroscience

https://doi.org/10.1038/s41467-018-07471-9
http://www.ncbi.nlm.nih.gov/pubmed/30514836
https://doi.org/10.1016/S1364-6613(00)01845-3
http://www.ncbi.nlm.nih.gov/pubmed/15866193
https://doi.org/10.1073/pnas.0502605102
https://doi.org/10.1073/pnas.0502605102
http://www.ncbi.nlm.nih.gov/pubmed/15860578
https://doi.org/10.1523/JNEUROSCI.0573-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26338324
https://doi.org/10.1038/nn1111
http://www.ncbi.nlm.nih.gov/pubmed/12925854
https://doi.org/10.1101/cshperspect.a005736
https://doi.org/10.1101/cshperspect.a005736
http://www.ncbi.nlm.nih.gov/pubmed/22086977
https://doi.org/10.3758/BRM.42.3.671
http://www.ncbi.nlm.nih.gov/pubmed/20805589
https://doi.org/10.1038/nn.4244
http://www.ncbi.nlm.nih.gov/pubmed/26906502
https://doi.org/10.7554/eLife.47596

	Population response magnitude variation in inferotemporal cortex predicts image memorability
	Citation of this paper:
	Authors

	15670783793305 1..12

