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Parkinson’s disease (PD) is characterized by motor symptoms, such as resting tremor,
bradykinesia and rigidity, but also features non-motor complications. PD patients
taking dopaminergic therapy, such as levodopa but especially dopamine agonists
(DAs), evidence an increase in impulse control disorders (ICDs), suggesting a link
between dopaminergic therapy and impulsive pursuit of pleasurable activities. However,
impulsivity is a multifaceted construct. Motor impulsivity refers to the inability to
overcome automatic responses or cancel pre-potent responses. Previous research
has suggested that PD patients, on dopaminergic medications, have decreased motor
impulsivity. Whether effects on impulsivity are main effects of dopaminergic therapies
or are specific to PD is unclear. Using a Go No-go task, we investigated the effect of
a single dose of the DA pramipexole on motor impulsivity in healthy participants. The
Go No-go task consisted of Go trials, for which keystroke responses were made as
quickly as possible, and lesser frequency No-go trials, on which motor responses were
to be inhibited. We hypothesized that pramipexole would decrease motor impulsivity.
This would manifest as: (a) fewer No-go errors (i.e., fewer responses on trials in which
a response ought to have been inhibited); and (b) more timed-out Go trials (i.e., more
trials on which the deadline elapsed before a decision to make a keystroke occurred).
Healthy volunteers were treated with either 0.5 mg of pramipexole or a standard placebo
(randomly determined). During the 2-h wait period, they completed demographic,
cognitive, physiological and affective measures. The pramipexole group had significantly
more Go timeouts (p < 0.05) compared to the placebo group though they did not
differ in percent of No-go errors. In contrast to its effect on pursuit of pleasurable
activities, pramipexole did not increase motor impulsivity. In fact, in line with findings in
PD and addiction, dopaminergic therapy might increase motor impulse control. In these
patient groups, by enhancing function of the dorsal striatum (DS) of the basal ganglia in
contrast to its effect on impulsive pursuit of pleasurable activities. These findings have
implications for use and effects of pramipexole in PD as well as in other conditions (e.g.,
restless leg, dystonia, depression, addiction-related problems).
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INTRODUCTION

Parkinson’s disease (PD) is the second most common
neurodegenerative disease worldwide (Hirtz et al., 2007).
PD is age-related, with incidence increasing every year after
age 55 (de Lau et al., 2004). The hallmark symptoms of PD are
motor problems such as resting tremor, rigidity and bradykinesia
(Jankovic, 2008). There are a number of non-motor symptoms
of PD. Increasingly, researchers and clinicians are focusing on
cognitive dysfunction in PD because these symptoms are most
likely to lead to loss of independence and to functional disability
(Aarsland et al., 2005). The mechanisms of cognitive dysfunction
in PD are complex with some aspect even attributable to PD
therapy (Cools et al., 2001; Rowe et al., 2008; MacDonald and
Monchi, 2011; MacDonald et al., 2011).

A central pathological change in PD is degeneration of
dopamine-producing neurons in the substantia nigra (SN), a
brain structure located in the midbrain (Dauer and Przedborski,
2003). SN supplies dopamine principally to the dorsal striatum
(DS; Dauer and Przedborski, 2003). The striatum is the input
region of the basal ganglia, a collection of subcortical nuclei
implicated in movement regulation as well as a number of
cognitive functions. In fact, the motor symptoms of PD arise
from DS dopamine depletion. DS has been implicated in
functions such as motor planning, cognitive selections (Balleine
et al., 2007), as well as in performing more considered and
less habitual or pre-potent responses (Benke et al., 2003; Ali
et al., 2009; Cameron et al., 2010; MacDonald et al., 2011, 2014;
Mestres-Missé et al., 2012; Robertson et al., 2015). Another
source of dopamine in the brain is the ventral tegmental area
(VTA), adjacent to the SN (Haber and Fudge, 1997). VTA
projections supply the ventral striatum (VS) of the basal ganglia,
as well as temporal and prefrontal cortices, with dopamine
(Haber and Fudge, 1997). VTA is relatively spared compared to
SN and therefore motivational, cognitive and affective functions
mediated by VTA-innervated brain regions are spared (Kish
et al., 1988; Rakshi et al., 1999).

Dopaminergic therapies successfully treat PD motor
symptoms. Levodopa and dopamine agonists (DAs; Dauer
and Przedborski, 2003; Connolly and Lang, 2014) are the most
effective therapies in PD. Levodopa is a dopamine precursor
that is metabolized into dopamine in the brain (Lang and
Lees, 2002). On the other hand, DAs such as pramipexole
directly upregulate activity at post-synaptic dopamine receptors
(Blandini and Armentero, 2014). Currently, both levodopa and
DAs are titrated to address DS-mediated motor symptoms of PD
(Connolly and Lang, 2014).

Despite the clearly positive effect on motor functions, the
effect of DA therapies on cognitive symptoms in PD are complex
(Cools, 2006; MacDonald and Monchi, 2011). Some cognitive
functions are improved whereas others are impaired (Cools
et al., 2001; Rowe et al., 2008; MacDonald and Monchi, 2011;
MacDonald et al., 2011; Ganjavi and MacDonald, 2015). An
important function that seems to be worsened by DA therapies
is impulse control. In fact, this medication side effect can cause
serious impulse control disorders (ICDs) that put patients at
risk (Pontone et al., 2006; Weintraub et al., 2014). ICDs can

manifest as pathological gambling, hypersexuality, overspending,
hoarding and binge eating (Pontone et al., 2006; Weintraub
et al., 2014). A study by Weintraub et al. (2010) found that
as many as 13.6% of PD patients on DAs have an identified
ICD. These disorders can have serious consequences. Although
levodopa therapy can precipitate ICDs (Voon et al., 2010b;
Weintraub et al., 2010), the percentage of patients experiencing
this symptom on DAs is much higher (Driver-Dunckley et al.,
2003; Pontone et al., 2006; Voon et al., 2006; Weintraub et al.,
2006, 2010; Gallagher et al., 2007; Bostwick et al., 2009; Claassen
et al., 2011; Garcia-Ruiz et al., 2014).

The vast majority of studies investigating effects of
dopaminergic therapy on cognition have evaluated their
effects in PD patients only (Thobois et al., 2010; MacDonald and
Monchi, 2011; Poletti and Bonuccelli, 2013). It therefore remains
unclear whether these results are main effects of dopaminergic
therapy or whether these effects occur as an interaction between
medication and PD pathophysiology. Studying the effects of
dopaminergic therapy in healthy individuals can distinguish
between these alternative explanations. The use of healthy
young adults, in particular, provides an ideal control model for
exploring the effects of dopaminergic medication on cognition.
This strategy is advantageous because it avoids the significant
variability in typical PD patient groups related to wide age
ranges, as well as large differences in disease severity, medication
doses and types. Studies with healthy controls also can rule out
the possibilities that these medication effects on cognition occur
only secondary to dopamine receptor sensitization through
chronic exposure to dopaminergic therapy or to the fact that PD
patients have reductions in dopamine transporter (DAT) levels.
DAT clears and regulates dopamine at the synapse and reduced
DAT levels could predispose to dopamine overdose effects
(Harrington et al., 1996; Voon et al., 2009; Kordower et al., 2013;
Kalia and Lang, 2015). Further, it is important to understand
cognitive effects of dopaminergic therapy independent of PD
because these medications are used in other conditions such
as restless leg syndrome (Comella, 2002; Högl et al., 2006;
Trenkwalder et al., 2008; Zintzaras et al., 2010; Hornyak et al.,
2014) and in some cases of dystonia (Cloud and Jinnah, 2010;
Jankovic, 2013). These treatments are also being explored for
therapeutic effect in depression (Goto et al., 2006; Papakostas,
2006; Hori and Kunugi, 2012, 2013; Howland, 2012), drug
addiction (Carroll et al., 1999; Streeter et al., 2005) and to address
withdrawal symptoms (Ohmura et al., 2011; Makhinson and
Gomez-Makhinson, 2014). Finally, if these cognitive effects are
main results of dopaminergic therapy, this should alert clinicians
to the possibility of cognitive improvements and impairments
related to dopaminergic medications at any stage of PD as
opposed to being more likely or marked with advancing disease
or greater disease severity.

Impulsivity is not a unitary construct, however. Nombela
et al. (2014) used factor analysis across different measures
of impulsivity to identify four orthogonal impulsivity factors
corresponding to measures of: (1) response conflict, interference
and self-reported impulsivity; (2) motor inhibition; (3) time
estimation and delay aversion; and (4) temporal discounting
and reflection impulsivity. Additionally, Antonelli et al. (2011)
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have discussed impulsivity in terms of motivational/cognitive
vs. performance/motor components. Cognitive impulsivity refers
to behaviors such as riskier decision-making, impaired delay
of gratification, increased pursuit of pleasurable activities and
decreased feedback-based learning (Antonelli et al., 2011). This
cognitive impulsivity seems to underlie the development of ICDs
in PD. On the other hand, motor impulsivity is described as
the inability to inhibit more automatic or pre-potent responses,
as well as difficulty in canceling behaviors that have already
been planned or initiated (Antonelli et al., 2011). PD patients
with greater motor impulsivity are more susceptible to falls
(Ahlskog, 2010; Wylie et al., 2012). In contrast to its effect
of motivational/cognitive impulsivity, there is evidence that
dopaminergic therapy might improve motor impulsivity in PD
(Fera et al., 2007; Hiebert et al., 2014a; Caillava-Santos et al.,
2015; van Wouwe et al., 2016). Our aim in the current study, was
therefore to investigate the effect of DA on motor rather than
cognitive impulsivity using the Go No-go paradigm (Simmonds
et al., 2008; Wright et al., 2014).

Though the Go No-go paradigm is a prototypical assessment
of motor impulsivity (Simmonds et al., 2008; Wright et al., 2014),
only a small number of underpowered studies have investigated
the effect of dopaminergic therapy on Go No-go performance in
PD (Farid et al., 2009; Antonelli et al., 2014; Herz et al., 2014).
We are aware of only one previous investigation of the effect
of pramipexole in healthy volunteers on performance of the Go
No-go task. Hamidovic et al. (2008) found that pramipexole
treatment had no significant effect on Go No-go performance.
However, participants were required to make decisions for eight
number pairs, four of which were assigned as Go signals and the
other four assigned as No-go signals. Multiple Go and No-go
signals added complexity to the task and increased working
memory load. Additionally, Hamidovic et al. (2008) presented
Go and No-go signals at a 50:50 ratio, which would not generate
pre-potency of the Go response.

In the present study, using the Go No-go task, we aimed
to investigate the effect of dopaminergic therapy, the DA
pramipexole in particular, on motor impulsivity (Rubia et al.,
2001; Hamidovic et al., 2008; Antonelli et al., 2014) in a
healthy, young control group, given the rationale and advantages
discussed above. In contrast to the study conducted by
Hamidovic et al. (2008), we sought to better isolate the effect
of pramipexole on response withholding by employing one Go
and one No-go signal, eliminating potential impacts of working
memory or cognitive load. Further, we aimed to enhance motor
impulsivity by adjusting the Go:No-go ratio to 75:25, to establish
a strong pre-potent Go response. Understanding pramipexole’s
effect on motor impulsivity will have implications for its use in
PD as well as in other conditions such as restless leg, dystonia,
depression and drug addiction.

MATERIALS AND METHODS

Participants
Forty healthy young adults (16 males and 24 females, mean age
20.65 ± 1.12 years) were recruited at the University of Western

Ontario. Participants were excluded if they had a history of
neurological (e.g., stroke, seizures) or psychiatric conditions (e.g.,
clinical depression, hallucinations), a history of alcohol or drug
abuse, or contraindications for pramipexole (e.g., monoamine
oxidase inhibitors, iron supplements, cardiovascular disease).
This study was approved by the Health Sciences Research Ethics
Board (REB #102018) of the University of Western Ontario. All
participants provided written informed consent before beginning
the experiment in accordance with the Declaration of Helsinki
(1991).

Apparatus
The Go No-go task was performed on a 22.0′′ monitor
(LG Flatron W2242TQ) with a resolution of 1600 × 900
pixels and a desktop (LG model 73821B-10) using the
Windows 7 Professional operating system. The screen was placed
approximately 50 cm away from the participant. A keyboard
(Logitech K120) was used to record participant responses.

Procedures
Participants were instructed to abstain from caffeine, alcohol
and nicotine on the testing day, to eat only light meals
beforehand, and to abstain from food in the hour before
the study to avoid interfering with pramipexole absorption.
Participants were randomly assigned to receive either 0.5 mg
of pramipexole or an equal volume of placebo in an identical
capsule. The dose used here is consistent with previous
studies conducted in healthy volunteers (Samuels et al., 2006,
2007; Drijgers et al., 2012). To ensure double-blindness, both
placebo and pramipexole were administered orally in identical
capsules that were prepared and assigned by a third-party not
involved in data collection. Adverse effects were informally
assessed by asking participants about their general well-being
approximately every 15 min. Cognitive testing using the Go
No-go task began 2 h after capsule administration to allow for
optimal serum drug levels (Kirwin, 2007). At the conclusion
of testing, participants were asked which capsule (placebo
or pramipexole) they think that they received, and whether
they were confident in their prediction. Participants were then
debriefed about the details of the study and compensated for
their time. A schematic outline of the procedure is shown in
Figure 1.

Pre-Task Assessments
Participant demographic measures (age, sex, education, years
of education, handedness) were obtained. Heart rate (HR)
and both systolic and diastolic blood pressure (BP) were
taken with an automated BP monitor (Omron model BP785N)
at three different time points: Pre-Drug administration, Pre-
Task (approximately 2 h post-drug administration) and Post-
Task (approximately 3 h post-administration). Participants
were given a self-reported visual analog scale (VAS) to assess
subjective alertness (Bond and Lader, 1974) at each of the
aforementioned time points as well. This was followed by
a series of cognitive tests, including the (American National
Adult Reading Test, ANART), Montreal Cognitive Assessment
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FIGURE 1 | Schematic outline of the experimental session. VAS, Visual Analogue Scale (Bond and Lader, 1974).

(MoCA), Controlled Oral Word Association Test (COWAT),
as well as personality and affect questionnaires including
the Barratt Impulsiveness Scale (BIS), Sensation Seeking
Scale (SSS), Epworth Sleepiness Scale (Sleepiness), Oxford
Happiness Scale (Happiness), Beck Depression Inventory II
(BDI), Beck Anxiety Inventory (BAI) and Starkstein Apathy
Scale (SAS). These personality and affect measures were
administered only once during the experimental protocol since
they are typically considered as trait measures and were
unlikely to change due to pramipexole over the course of the
experiment.

Go No-go Task
Commonly used to assess motor impulsivity, the Go No-go
paradigm involves two trial types that are signaled by different
visual stimuli. On Go trials, indicated by the target/Go visual
stimulus, participants were required to respond with a keypress
as quickly as possible. On No-go trials, signaled by the
distractor/No-go visual stimulus, participants were instructed to
withhold a keypress response (Rubia et al., 2001; Hamidovic
et al., 2008; Antonelli et al., 2014). Our Go No-go task proceeded
as follows: (i) a small fixation cross was presented in the
center of the screen for 500 ms to signal the beginning of
a trial; (ii) either a target/Go ‘‘X’’ or a distractor/No-go ‘‘K’’
stimulus appeared in the center of the screen for a maximum
of 500 ms during which participants were required to make a
keypress response for targets and withhold a keypress response
for distractors; (iii) a blank screen was presented during the
inter-trial interval (ITI) for 1000–1500 ms. The ITIs were
modulated depending on the participant’s reaction time (RT) to
maintain a constant length of 2000 ms between the beginning
of subsequent trials. Participants were instructed to press the
space bar on the keyboard for ‘‘X’’ Go stimuli and refrain from
making any keystrokes for ‘‘K’’ No-go stimuli. The ‘‘X’’ was
shown in 75% of trials, establishing ‘‘Go’’ as the pre-potent
response. The ‘‘K’’ was shown in the remaining 25% of trials,
randomly interspersed amongst the Go trials. Participants were
asked to make their responses as quickly and accurately as
possible. They were instructed that if their response was not
made before the stimulus disappeared from the screen, this was
deemed a timed-out, error trial. Trials were organized into four
blocks of 64 trials each, with a 10 s break in between each
block.

Data Analysis
Four participants withdrew from the study due to nausea
and dizziness. Their incomplete data was not included in
the analysis. Demographic, cognitive and affective measures
were analyzed between placebo and pramipexole groups using
independent two-tailed t-tests. Physiological measures were
compared between the two groups usingmixedmeasures analysis
of variance (ANOVA), with Medication status (Pramipexole vs.
Placebo) as the between-subject factor and Time point (Pre-Drug
vs. Pre-Task vs. Post-Task) as the within-subject variable. Percent
errors in the Go trials and erroneous keypress responses in
the No-go trials (No-go errors) were main dependent measures
on a pair of independent sample t-tests. Whether participants
failed to make a response (i.e., an omission error) or if they
did not make a response within the deadline (i.e., timeout
error), no response was recorded and therefore we could
not distinguish between these types of errors. Go responses
are quite straightforward. Further, Go trials accounted for
75% of trials, making the Go response pre-potent. We did
not anticipate that young healthy participants would fail to
respond entirely. Consequently, errors on Go trials are essentially
synonymous with timeout errors. Lower numbers of timeouts on
the Go trials and higher numbers of keypress responses in the
No-go trials provide indicators of more impulsive responding.
Percent of Go timeouts and of No-go errors were analyzed
between the two groups with two-tailed independent t-tests.
RTs were calculated in both the Go and No-go trials as the
onset of the keypress response minus the onset of the visual
stimulus (i.e., X or K) in milliseconds (ms). Correct No-go
trials during which no keypresses were made were obviously
excluded from the RT calculations. RTs of Go trials and
No-go trials were analyzed between the two groups with two
independent two-tailed t-tests. All data analysis was conducted
using Excel (Version 2013), IBM SPSS Statistics (Version 21),
and GraphPad Prism (Version 6). Significance values were set at
p < 0.05.

RESULTS

Demographic, Cognitive and Affective
Measures
Measurements of various demographic, cognitive and
affective variables were compared between participants
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TABLE 1 | Demographic, cognitive and affective measures for healthy
participants treated with either standard placebo or 0.5 mg pramipexole.

Treatment group

Variable Placebo Pramipexole

N 20 subjects 20 subjects
Age 20.50 ± 1.28 years 20.80 ± 0.95 years
Sex 8 males, 12 females 8 males, 12 females
Education 15.40 ± 1.05 years 15.55 ± 0.89 years
Confidence 60% confident 45% confident
Prediction 75% correct 70% correct
BDI 9.60 ± 7.18 8.16 ± 5.38
BAI 8.60 ± 8.29 7.45 ± 6.18
SAS 11.50 ± 4.80 11.20 ± 3.44
Happiness 4.45 ± 0.58 4.47 ± 0.64
Sleepiness 10.05 ± 2.65 9.60 ± 3.94
BIS 62.05 ± 10.29 58.60 ± 11.41
SSS 19.80 ± 5.72 20.05 ± 4.47
ANART 118.95 ± 6.46 118.71 ± 4.44
COWAT FAS 40.15 ± 11.00 words 38.60 ± 10.61 words
COWAT animal 24.55 ± 1.12 words 24.80 ± 1.33 words
MoCA 27.8 ± 1.51 27.8 ± 1.94

Values are presented as group means ± SEM. All values are in units of

the respective questionnaire or task scale, unless otherwise stated (N = 20).

Confidence: whether the subject could confidently predict which treatment

they received; Prediction: whether the subject correctly or incorrectly predicted

which treatment they received; BDI, Beck Depression Inventory II; BAI, Beck

Anxiety Inventory; SAS, Starkstein Apathy Scale; Happiness, Oxford Happiness

Questionnaire; Sleepiness, Epsworth Sleepiness Scale; BIS, Barratt Impulsiveness

Scale; SSS, Sensation-Seeking Scale; ANART, American National Adult Reading

Test; COWAT FAS, Controlled Oral Word Association Test FAS Task; COWAT

Animal, COWAT Animal Task; MoCA, Montreal Cognitive Assessment. All factors

were analyzed using two-tailed t-tests and no significant differences were found

between the two groups (p > 0.05 for all factors).

treated with placebo or pramipexole (Table 1). Age,
education, BDI, BAI, SAS, Happiness, Sleepiness, BIS, SSS,
ANART, COWAT FAS Task, COWAT Animals Task and
MoCA were analyzed with independent two-tailed t-tests.
It is important to note that all of these measures were
obtained before pramipexole effects, to establish baseline
for both groups. No significant differences between the
groups were found for any of the variables (p > 0.05 for
all variables; age t(38) = −0.84; education t(38) = −0.49;
BDI t(38) = 0.78; BAI t(38) = 0.50; SAS t(38) = 0.23; Happiness
t(38) = −0.06; Sleepiness t(38) = 0.42; BIS t(38) = 1.00;
SSS t(38) = −0.15; ANART t(38) = 0.14; COWAT FAS
t(38) = 0.46; COWAT Animal t(38) =−0.14; MoCA t(38) = 0.00).
This establishes that there were no differences between
our randomly assigned groups in cognitive ability, affective
predisposition or other important demographic details such
as age.

Physiological Measures
Physiological and alertness measures comprising HR, systolic
BP, diastolic BP and VAS Alertness Scores were compared
between placebo- and pramipexole-treated groups at the
three time points with repeated-measures, two-way ANOVAs
(Table 2).

Heart Rate
HR showed a significant main effect of Time (Table 2;
F(2,74) = 32.40, p < 0.001), with decreases in HR from
Pre-Drug to Pre-Task (p < 0.001) and Pre-Drug to Post-
Task (p < 0.001). There was also a Time × Medication
interaction effect (F(2,74) = 4.37, p = 0.016). Bonferroni-
corrected pairwise comparisons revealed that for
both placebo and pramipexole groups, HR decreased
significantly from Pre-Drug to Pre-Task and from Pre-
Drug to Post-Task (all p < 0.05), though this difference
was greater in the placebo than in the pramipexole
group.

Blood Pressure
Systolic BP showed a significant main effect of Time
(F(2,74) = 3.54, p = 0.034) with Bonferroni-corrected
pairwise comparisons revealing a significant decrease
in systolic BP from Pre-Drug to Pre-Task (p = 0.005).
However, systolic BP showed no main Medication effects
or Time × Medication interaction effects. Diastolic BP also
showed a significant main effect of Time (F(2,74) = 5.167,
p = 0.008) with Bonferroni-corrected pairwise comparisons
revealing significant decreases in diastolic BP from Pre-
Drug to Pre-Task (p = 0.035) and from Pre-Drug to
Post-Task (p = 0.034). No main Medication effects or
Time × Medication interaction effects were found for
diastolic BP.

In summary, physiological measures indicated that both
HR and BP decreased over time. With regards to HR, the
placebo group showed a larger decrease than the pramipexole
group.

Alertness
VAS Alertness was found to have a significant main effect
of Time (F(2,74) = 13.650, p < 0.001) with Bonferroni-
corrected pairwise comparisons revealing significant decreases
in VAS Alertness Score from Pre-Drug to Pre-Task (p = 0.001)
and from Pre-Drug to Post-Task (p < 0.001). The main
effect of Time was qualified by a Time × Medication
interaction effect (F(2,76) = 4.111, p = 0.02), with significantly
greater decreases in the pramipexole group from Pre-Drug
to Pre-Task (p < 0.001) and from Pre-Drug to Post-Task
(p < 0.001). No significant main effect of Medication was found,
however.

These decreases in physiological and alertness measures were
not surprising, because participants were sitting, inactive, and
becoming more comfortable and habituated to the experimental
setting throughout the 3-h study period.

Behavioral Go No-go Measures
Percent of Go timeouts and No-go errors were analyzed
with two-tailed independent t-tests. Participants treated with
pramipexole had a significantly higher percent of Go timeouts
(t(38) = −2.265, p = 0.029) compared to those treated with
placebo (Figure 2A). Percent of commission errors on No-go
trials was not significantly different between the placebo and
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TABLE 2 | Physiological measures for healthy participants treated with either standard placebo or 0.5 mg pramipexole.

Means ± SD

Variable Placebo Pramipexole

HR (beats per minute)
Pre-Drug 76.158 ± 9.400 73.250 ± 12.298
Pre-Task 66.684 ± 9.434 68.750 ± 10.652
Post-Task 64.368 ± 8.902 67.850 ± 10.733

Systolic BP (mmHg)
Pre-Drug 106.737 ± 8.723 112.650 ± 12.816
Pre-Task 102.421 ± 8.402 108.100 ± 12.473
Post-Task 101.947 ± 8.488 105.200 ± 25.816

Diastolic BP (mmHg)
Pre-Drug 71.579 ± 9.459 72.850 ± 7.604
Pre-Task 65.368 ± 15.126 67.950 ± 7.075
Post-Task 67.789 ± 5.170 69.500 ± 7.931

VAS alertness score
Pre-Drug 62.678 ± 12.219 64.422 ± 14.429
Pre-Task 58.639 ± 17.700 48.550 ± 15.475
Post-Task 56.761 ± 19.312 45.311 ± 14.931

Variable F stat P-value Comparisons

HR (beats per minute)
Medication effect F(1,37) = 0.08 p = 0.774
Time effect F(2,74) = 32.40 p < 0.001 Pre-Drug > Pre-Task ∗∗∗, Pre-Drug > Post-Task ∗∗∗

Medication × Time Interaction F(2,74) = 4.37 p = 0.016 Placebo: Pre-Drug > Pre-Task ∗∗∗, Pre-Drug > Post-Task ∗∗∗

Pramipexole: Pre-Drug > Pre-Task ∗, Pre-Drug > Post-Task ∗∗

Systolic BP (mmHg)
Medication effect F(1,37) = 1.812 p = 0.185
Time effect F(2,74) = 3.54 p = 0.034 Pre-Drug > Pre-Task ∗∗

Medication × Time interaction F(2,74) = 0.192 p = 0.825
Diastolic BP (mmHg)

Medication effect F(1,37) = 0.739 p = 0.395
Time effect F(2,74) = 5.167 p = 0.008 Pre-Drug > Pre-Task ∗, Pre-Drug > Post-Task ∗

Medication × Time interaction F(2,74) = 0.073 p = 0.930
VAS alertness score

Medication effect F(1,37) = 2.628 p = 0.113
Time effect F(2,74) = 13.650 p < 0.001 Pre-Drug > Pre-Task ∗∗∗, Pre-Drug > Post-Task ∗∗∗

Medication × Time interaction F(2,76) = 4.111 p = 0.020 Pramipexole: Pre-Drug > Pre-Task ∗∗∗, Pre-Drug > Post-Task ∗∗∗

Effect of treatment with either standard placebo or 0.5 mg pramipexole on HR (beats per minute), systolic blood pressure (BP; mmHg), diastolic BP (mmHg) and visual

analog scale (VAS) drowsiness score (N = 20). Data represent group means ± SD. All factors were analyzed with repeated-measures two-way ANOVAs. Measurements

were taken Pre-Drug, Pre-Task (2 h after treatment) and Post-Task (3 h after treatment). A significant main effect of time was found for heart rate (HR; ∗∗∗p < 0.001),

with Bonferroni multiple comparisons analysis showing decreased HR from Pre-Drug to Pre-Task (∗∗∗) and from Pre-Drug to Post-Task (∗∗∗). The main effect of time was

qualified by the time-medication interaction effect, with both placebo and pramipexole groups showing significantly decreased HR from Pre-Drug to Pre-Task and Pre-Drug

to Post-Task (all p < 0.05). No significant main effect of medication was found. A significant main effect of time was found for systolic BP (∗p < 0.05), with Bonferroni

multiple comparisons analysis showing decreased systolic HR from Pre-Drug to Pre-Task (∗∗p < 0.01). No significant main effects of medication or time-medication

interaction effects were found. A significant main effect of time was found for diastolic BP (∗∗), with Bonferroni multiple comparisons analysis showing decreased diastolic

BP from Pre-Drug to Pre-Task (∗) and from Pre-Drug to Post-Task (∗). No significant main medication effects or time-medication interaction effects were found. A significant

main effect of time was found for VAS Alertness Score (∗∗∗), with further Bonferroni multiple comparisons analysis showing decreased VAS Alertness Score from Pre-Drug

to Pre-Task (∗∗∗) and from Pre-Drug to Post-Task (∗∗∗). The main effect of time was qualified by the time-medication interaction effect, with the pramipexole group showing

significantly decreased VAS Alertness Score from Pre-Drug to Pre-Task (∗∗∗) and from Pre-Drug to Post-Task (∗∗∗). No significant main effect of medication was found.

pramipexole groups (Figure 2B, t(38) = −0.675, p = 0.504).
Overall RTs of Go trials and No-go trials were analyzed between
placebo and pramipexole groups using two-tailed t-tests. Neither
Go trial RT (Figure 3A, t(38) = −0.574, p = 0.569) nor
No-go trial RT (Figure 3B, t(38) = 1.315, p = 0.196) showed
significant differences between placebo and pramipexole groups,
revealing that Go trial timeouts were not simply related to a
general tendency toward slower responding in the pramipexole
group.

DISCUSSION

Summary of Findings
In this study, we found that the percentage of No-go errors
was not increased for participants treated with pramipexole
relative to those treated with placebo. However, the pramipexole
group had significantly more timeouts in the Go condition
compared to their placebo-treated counterparts. This
pattern of findings suggests that pramipexole does not
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FIGURE 2 | Effect of treatment with either standard placebo or 0.5 mg of pramipexole on Go trial timeouts and No-go trial errors (N = 20). Both
variables were analyzed with two-tailed t-tests. Data represent mean ± SEM. (A) Participants treated with pramipexole timed out in a significantly greater number of
Go trials compared to participants treated with placebo (∗p < 0.05). (B) No significant difference was found for number of No-go trial errors between the placebo-
and pramipexole-treated participants (p > 0.05).

FIGURE 3 | Reaction time (RT; ms) for Go trials and No-go trials during the Go No-go task for healthy participants treated with either standard
placebo or 0.5 mg pramipexole (N = 20). Both variables were analyzed with two-tailed t-tests. Data represent mean ± SEM. (A) No significant differences
between placebo and pramipexole groups were found for Go trial RT (p > 0.05). (B) No significant differences between placebo and pramipexole groups were found
for No-go trial RT (p > 0.05).

enhance motor impulsivity, in contrast to its detrimental
effect on cognitive impulsivity and potential for producing
ICDs in PD (Cools et al., 2003; Riba et al., 2008; Voon
et al., 2010a; Antonelli et al., 2014). The finding of more
timeout errors in the Go condition might suggest that
pramipexole leads to less impulsive responding. Lower motor
impulsivity or evidence of a more conservative criterion
for responding was not replicated for pramipexole-treated
participants in the No-go condition though. There were
no between-group differences in terms of No-go errors.
There were far fewer No-go than Go trials, however, and
in this way, the Go timeout measure was potentially better
powered to detect a subtle biasing effect of pramipexole on
impulsivity.

The equivalent RTs between the placebo and pramipexole
groups showed that the increased number of Go timeouts
was not simply due to impaired motor function or generally
slowed processing related to pramipexole. Further, although
there were decreases in HR, systolic BP, diastolic BP and VAS

Alertness Score across the experiment, there were no main
effects of Medication on these measures. We attribute these
changes in our physiological measures to increased comfort
with the testing situation as well as to physical inactivity
during the testing session. A significant Time × Medication
interaction on VAS, suggests that the pramipexole group rated
themselves as having greater differences in alertness from
baseline to Pre- and Post-Task measures than the placebo
group. However, entirely equivalent RTs between groups
makes it less likely that our finding of increased Go trial
timeouts was attributable to decreased alertness alone. Further,
even at the very end of the experiment, the Pramipexole
group’s average VAS score hovered around the neutral mark,
indicating that they were feeling neither very sleepy nor very
alert.

Finally, our results were not due to pre-existing group
differences in impulsivity, demographic, cognitive or affective
factors. Baseline measures of these factors were not significantly
different between groups.
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Previous Studies of Dopaminergic Therapy
on Go No-go Performance
Here, we replicate the finding of Hamidovic et al. (2008)
that pramipexole had no effect on No-go errors in healthy
controls. At odds with their results, however, we found
significantly more timeout errors in the pramipexole relative
to placebo groups, hinting at the possibility that pramipexole
does not enhance but potentially reduces motor impulsivity.
As previously discussed, Hamidovic et al. (2008) task
differed from ours in a number of critical ways possibly
accounting for slightly different findings. They employed
multiple Go and No-Go signals, confounding the measure
of motor impulsivity with working memory and cognitive
load. Further, in their study, Go and No-go trials were
presented in equal proportion. By using one Go and one
No-go stimulus, we eliminated potential effects related to
memory load, better isolating motor impulsivity. To enhance
the difficulty of withholding a response, we presented Go
and No-go trials in a ratio of 75:25, establishing a pre-
potent Go response. To our knowledge, no other studies
have investigated the effect of pramipexole on healthy
controls in a standard Go No-go paradigm as we have
performed here. Ours is also the first to find the suggestion
of less impulsive responding in the Go condition in healthy
participants.

Only a small number of studies have directly investigated the
effect of dopaminergic therapy on Go No-go task performance
in PD patients. Comparing performance on vs. off pramipexole
in PD patients (N = 7), Antonelli et al. (2014) found
that medication had no effect on motor impulsivity in a
simple Go No-go task. Farid et al. (2009), also employed
a simple Go No-go paradigm and tested patients on and
off levodopa (N = 9) relative to healthy controls (N = 9).
They found no differences in RT or overall task accuracy
between healthy controls and patients, and there were no
differences related to levodopa. It is important to note that
PD patients were tested twice whereas the healthy controls
were tested only once. The results confounded as patients
might have experienced practice effects during the second
testing session, which was always performed in the on state.
Another study, by Herz et al. (2014), used a more complex Go
No-go paradigm involving three stimuli. They found no RT
or accuracy differences between PD patients with and without
dyskinesia, whether they were tested on or off medication
(N = 13, 13), relative to healthy controls (N = 13). Due to
the added complexity of their paradigm, in which they were
asked to press left or right keys or to withhold a response,
the task might not have established the necessary pre-potent
response.

In general, the small number of Go No-go studies
investigating the effect of dopaminergic therapy in PD
failed to reveal any significant differences across on and off
states. However, these studies included very small numbers
of participants raising suspicion that they were underpowered
to detect medication effects. Further, differences in task
parameters preclude direct comparisons to our study. Studies
using standard versions of the Go No-go task in a larger

sample of PD patients is warranted to better investigate these
effects.

Dopaminergic Therapy on Motor vs.
Cognitive Impulsivity in PD and Addiction
In paradigms other than the Go No-go task, there is evidence
that motor impulsivity is improved by dopaminergic therapy. In
a study by Hiebert et al. (2014a), PD patients off dopaminergic
medications demonstrated greater motor impulsivity in the
form of enhanced facilitation in the congruent condition of
a modified Stroop task that was in fact normalized relative
to performance of age-matched controls by dopaminergic
treatment. This study provided an example of impulsive
behavior, specifically motor impulsivity, being improved, not
worsened, by dopaminergic therapy, supporting the notion
that impulsivity is not a unitary construct (Antonelli et al.,
2011). Conversely, Stroop interference in the incongruent
condition was improved in the on relative to off states for
PD patients in terms of accuracy (Fera et al., 2007) and
RT (Caillava-Santos et al., 2015). van Wouwe et al. (2016)
found that both levodopa and DAs reduced the magnitude
of the Simon effect in PD patients. That is, on medication,
PD patients exhibited less interference when they had to
respond with a left or right button press that was opposite
to the left-right position of a target relative to fixation.
These studies in PD patients reveal reduced motor impulsivity
related to dopaminergic therapy. These studies are in line
with our finding of increased timeout responses in the Go
condition for the pramipexole group, perhaps suggesting
reduced motor impulsivity in pramipexole-treated healthy
controls.

The effect of dopaminergic medications on cognition in
PD is complex, with improvements in some functions, and
impairments in others (Cools et al., 2001; Rowe et al., 2008;
MacDonald and Monchi, 2011; MacDonald et al., 2011). The
dopamine overdose hypothesis has been proposed to explain
these differential effects (Gotham et al., 1986, 1988; Swainson
et al., 2000; Cools et al., 2001; Cools, 2006; Vaillancourt et al.,
2013). This view contends that dopamine therapy titrated to
the significantly dopamine-depleted DS, overdose the more
dopamine-replete brain regions supplied by the relatively-
spared VTA (Gotham et al., 1986, 1988; Swainson et al., 2000;
Cools et al., 2001; MacDonald and Monchi, 2011; MacDonald
et al., 2011; Vaillancourt et al., 2013). Cognitive functions that
are mediated by DS such as selective attention (Baunez and
Robbins, 1999; MacDonald et al., 2011; de Manzano et al.,
2013), response deliberation (Balleine et al., 2007; MacDonald
et al., 2011; Hiebert et al., 2014b), overcoming automatic or
pre-potent responding (Ali et al., 2009; MacDonald et al.,
2011, 2014; Robertson et al., 2015), as well as response
inhibition (Zandbelt and Vink, 2010; MacDonald and Monchi,
2011; Wylie et al., 2012) are actually improved. In contrast,
functions mediated by VTA-innervated brain regions (e.g., VS,
hippocampus, prefrontal cortex), particularly reward processing
and learning are worsened by dopaminergic therapy, potentially
accounting for ICDs (Gotham et al., 1986, 1988; Swainson et al.,
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2000; Cools et al., 2001, 2007; MacDonald and Monchi, 2011;
MacDonald et al., 2013; Vaillancourt et al., 2013; Vo et al.,
2014).

In the study by Hiebert et al. (2014a), we interpreted
our findings as relating to the fact that DS mediates more
considered and less impulsive motor behaviors whereas
VTA-innervated brain regions such as VS and medio-
frontal regions (e.g., orbitofrontal cortex) underlie reward
processing and motivation to pursue appetitive experiences
(i.e., cognitive/motivational impulsivity, reflective impulsivity).
DS’s role in controlled cognitive and motor responses has
been well documented (Hood et al., 2007; Cools et al., 2010;
MacDonald et al., 2011; Ness and Beste, 2013; Robertson
et al., 2015). Similarly, VS and orbitofrontal cortex are
extensively implicated in reward processing and motivation
(Balleine et al., 2007; Rowe et al., 2008; Drijgers et al.,
2012). Referring to the well-supported dopamine overdose
hypothesis (Gotham et al., 1986, 1988; Swainson et al., 2000;
Cools et al., 2001; Cools, 2006; Vaillancourt et al., 2013), it
is entirely expected that dopaminergic therapy would cause
improvements in DS-mediated deliberate responding and
thus reduced motor impulsivity in PD (Fera et al., 2007;
Caillava-Santos et al., 2015; van Wouwe et al., 2016). In
contrast, due to overdose of VTA-innervated brain regions that
govern these processes, dopaminergic therapy is predicted to
impair reward processing and motivation, causing increased
motivational/cognitive impulsivity and hence ICDs (Cools et al.,
2003; Riba et al., 2008; Voon et al., 2010a; Antonelli et al.,
2014).

The finding of decreased motor impulsivity related to
dopaminergic therapy is also supported by findings in addiction.
Modafinil, a dopamine-enhancing medication, has been shown
to increase abstinence in cocaine users (Martínez-Raga et al.,
2008; Anderson et al., 2009), to reduce laboratory cocaine
self-administration and cocaine dependence in double-blind,
placebo-controlled clinical studies (Dackis et al., 2005; Hart
et al., 2008). Further, in patients with addiction, modafinil
reduces impulsive decision-making (Schmaal et al., 2014)
and increases response inhibition (Schmaal et al., 2013). In
line with the interpretation that pramipexole might reduce
motor impulsivity through activation of DS, using fMRI in
substance abusers, modafinil and other medications that
have dopaminergic properties, enhance activation of DS
(Goudriaan et al., 2013; for a review see Cabrera et al., 2016)
and cortical regions to which DS is reciprocally connected
such as fronto-parietal cortex (Schmaal et al., 2014), anterior
cingulate cortex (Ghahremani et al., 2011; Goudriaan et al.,
2013) and supplementary motor cortex (Schmaal et al., 2013).
Analogously, using PET in a pre- and post-test design relative
to an untreated substance abuser control group, modafinil
reduces dopamine ligand binding in bilateral caudate and
putamen, reflecting increased endogenous dopamine in
these regions related to treatment (Karila et al., 2016). In
contrast, modafinil and other dopaminergic medications
such naltrexone and bupropion, decrease activation in
VTA (Goudriaan et al., 2013) and VS (Myrick et al., 2008;
Courtney et al., 2016), which correlates with decreased craving

(Myrick et al., 2008; Courtney et al., 2016). These findings
are consistent with the PD literature in that dopaminergic
therapy decreases activation and reduces functions of VS
and other VTA-innervated brain regions and increases
activity and improves functions of SN-innervated DS and
its cortical partners. Indeed, in a recent review of imaging
in substance abuse, Cabrera et al. (2016) summarized that
therapies that reduce craving tend to decrease or normalize
activation in reward and motivation brain centers (e.g., VS,
VTA, amygdala, orbitofrontal cortex), whereas those that
correlated with increased sober days and greater self-control,
increase activation in cognitive and response control centers
(e.g., DS, supplementary motor area, dorsolateral prefrontal
cortex).

CONCLUSION

In healthy young controls, we found that DA pramipexole
had no effect on error rate in the No-go condition. In
contrast to its effect on cognitive/motivational impulsivity,
pramipexole did not increase motor impulsivity. The
finding that pramipexole-treated participants performed
significantly more timeout errors in the Go condition
relative to placebo controls even hints at the possibility that
pramipexole reduces motor impulsivity. In line with this
possibility, motor impulsivity is reduced by dopaminergic
therapy in PD and addiction patients. These effects in PD
and addiction are attributed to enhanced DS function related
to exogenous dopamine therapy (Cools, 2006; Cabrera et al.,
2016).

Effects of dopaminergic therapy on cognition have
predominantly been investigated in PD patients. The
interpretation of these findings, however, is ambiguous,
potentially reflecting main effects of dopaminergic therapy or an
interaction between medication and PD pathophysiology. Only
by studying effects of dopaminergic therapy in healthy controls
can the main effects of these medications be understood.
We found that dopaminergic therapy affected Go No-go
performance—a measure of motor impulsivity—similarly
for healthy controls compared to reported effects in PD
patients. This suggests that similar effects of dopaminergic
therapy are expected independent of disease stage or severity
in PD. Further, these findings have implications for patients
treated with dopaminergic therapy for other conditions such
as restless leg syndrome (Comella, 2002; Högl et al., 2006;
Trenkwalder et al., 2008; Zintzaras et al., 2010; Hornyak
et al., 2014) and dystonia (Cloud and Jinnah, 2010; Jankovic,
2013), as well as potential depression (Goto et al., 2006;
Papakostas, 2006; Hori and Kunugi, 2012, 2013; Howland,
2012) and addiction (Carroll et al., 1999; Streeter et al., 2005;
Ohmura et al., 2011; Makhinson and Gomez-Makhinson,
2014).
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