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Parkinson’s disease (PD) is characterized by resting tremor, rigidity and bradykinesia.
Dopaminergic medications such as L-dopa treat these motor symptoms, but can
have complex effects on cognition. Impulse control is an essential cognitive function.
Impulsivity is multifaceted in nature. Motor impulsivity involves the inability to withhold
pre-potent, automatic, erroneous responses. In contrast, cognitive impulsivity refers to
improper risk-reward assessment guiding behavior. Informed by our previous research,
we anticipated that dopaminergic therapy would decrease motor impulsivity though it
is well known to enhance cognitive impulsivity. We employed the Go/No-go paradigm
to assess motor impulsivity in PD. Patients with PD were tested using a Go/No-go
task on and off their normal dopaminergic medication. Participants completed cognitive,
mood, and physiological measures. PD patients on medication had a significantly higher
proportion of Go trial Timeouts (i.e., trials in which Go responses were not completed
prior to a deadline of 750 ms) compared to off medication (p = 0.01). No significant
ON-OFF differences were found for Go trial or No-go trial response times (RTs), or
for number of No-go errors. We interpret that dopaminergic therapy induces a more
conservative response set, reflected in Go trial Timeouts in PD patients. In this way,
dopaminergic therapy decreased motor impulsivity in PD patients. This is in contrast to
the widely recognized effects of dopaminergic therapy on cognitive impulsivity leading
in some patients to impulse control disorders. Understanding the nuanced effects of
dopaminergic treatment in PD on cognitive functions such as impulse control will clarify
therapeutic decisions.

Keywords: Parkinson’s disease, dopaminergic therapy, Go/No-go task, motor impulsivity, striatum

INTRODUCTION

Parkinson’s disease (PD) is the neurodegenerative disease with the second highest prevalence rate,
affecting approximately 1% of adults over 60 years of age in industrialized nations (de Lau and
Breteler, 2006; Hirtz et al., 2007). Although symptoms of PD can occur throughout the lifetime,
incidence rates of PD increase with age (de Lau et al., 2004; Pringsheim et al., 2014). The hallmark
motor symptoms of PD include resting tremor, rigidity and bradykinesia (Jankovic, 2008).

In recent years, there has been tremendous interest in the autonomic and cognitive
symptoms of PD (Poletti and Bonuccelli, 2013; Goldman and Postuma, 2014; Yang et al.,
2016; Palmeri et al., 2017). Cognitive dysfunction in particular can cause devastating
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impairments to quality of life (Voon et al., 2009; Weintraub
et al., 2015; Aarsland et al., 2017). The pathophysiological bases
of cognitive dysfunction in PD are complex (Cools et al., 2001;
Rowe et al., 2008; MacDonald and Monchi, 2011; MacDonald
et al., 2011).

A central pathophysiological change in PD is significant
degeneration of dopamine-producing neurons in the substantia
nigra pars compacta (SNc; Dauer and Przedborski, 2003). The
SNc is located in the midbrain, and primarily supplies dopamine
to the dorsal striatum (DS) of the basal ganglia (DS; Dauer
and Przedborski, 2003). The bulk of the caudate nuclei and
putamina constitute the DS. In PD, dopamine depletion to theDS
results in the cardinal motor symptoms (Dauer and Przedborski,
2003). In addition to motor functions, the DS has been linked
to cognitive functions (MacDonald P. A. et al., 2014). DS has
been linked to aspects of cognition such as motor planning
(Jankowski et al., 2009), decision making (MacDonald et al.,
2011), cognitive flexibility (Cools et al., 2003), and response
inhibition–in particular resisting attentional capture by salient
stimuli (Ali et al., 2009) or responding with pre-potent or
habitual actions (Ali et al., 2009; MacDonald et al., 2011;
Robertson et al., 2015). Overall, it seems the function of DS is
to promote more deliberate and considered stimulus and action
selections (Benke et al., 2003; Ali et al., 2009; Cameron et al.,
2010; MacDonald et al., 2011; Mestres-Missé et al., 2012; Hiebert
et al., 2014b, 2017; MacDonald A. A. et al., 2014; Robertson et al.,
2015).

The ventral tegmental area (VTA) is located adjacent to
the SNc. The VTA is another dopamine-producing area in the
midbrain (Haber and Fudge, 1997). The VTA primarily supplies
the ventral striatum (VS) of the basal ganglia with dopamine,
as well as the limbic and prefrontal cortices (Haber and Fudge,
1997). The VS is composed of the nucleus accumbens and
the most ventral aspects of the caudate nuclei and putamina.
In contrast to SNc, VTA is generally spared in PD, especially
during the early stages of disease (Kish et al., 1988; Rakshi
et al., 1999). As a result, the cognitive, motivational, and affective
functions mediated by VTA-innervated brain areas are relatively
unaffected in PD (Kish et al., 1988; Rakshi et al., 1999).

The motor symptoms of PD are successfully managed with
dopaminergic medication. The most common dopaminergic
treatments are L-3,4-dihydroxyphenylalanine (L-dopa) and
dopamine agonists (DAs; Dauer and Przedborski, 2003;
Connolly and Lang, 2014). L-dopa is a precursor of dopamine
that crosses the blood-brain barrier into the brain and is
converted into dopamine, acting as an exogenous source
of dopamine for PD patients (Lang and Lees, 2002). DAs
act directly at the dopamine receptor level and upregulate
post-synaptic receptor activity (Blandini and Armentero,
2014). Current clinical practices involve titrating dopaminergic
medications to best address the motor symptoms that PD
patients experience (Connolly and Lang, 2014), while aiming to
avoid or minimize motor, cognitive, autonomic, or psychiatric
side effects associated with dopaminergic therapies.

Although dopaminergic therapies are highly effective at
improving motor function, they have differential and complex
effects on cognitive functioning (Cools, 2006; MacDonald and

Monchi, 2011). Some cognitive functions are improved by
dopaminergic treatment whereas others are impaired (Cools
et al., 2001; Rowe et al., 2008; MacDonald and Monchi, 2011;
MacDonald et al., 2011; Ganjavi and MacDonald, 2015). In
particular, dopaminergic therapy improves decision making,
especially in the face of ambiguity, as well as selective and
divided attention, and cognitive inhibition–processes that have
all previously been attributed to the DS (Benke et al., 2003; Rieger
et al., 2003; Cools et al., 2006; Thoma et al., 2008; Pine et al.,
2009; MacDonald and Monchi, 2011). Learning is the function
most often worsened by dopaminergic therapy (Cools et al.,
2001, 2003; Zink et al., 2003; Jensen et al., 2007; Humphries
and Prescott, 2010; Simões-Franklin et al., 2010; MacDonald and
Monchi, 2011; Esslinger et al., 2013; MacDonald et al., 2013a,b;
Vaillancourt et al., 2013; Hiebert et al., 2014a,b; Vo et al., 2014;
Anderson et al., 2016). Impulse control disorders (ICDs) also
arise with L-dopa but at a much higher rate with DAs in PD
(Pontone et al., 2006; Weintraub et al., 2014). ICDs include
serious behaviors such as pathological gambling, binge eating
and hypersexuality (Pontone et al., 2006; Weintraub et al., 2014)
that can greatly impact quality of life.

Impulsivity is a multifaceted construct. Antonelli et al. (2011)
distinguish cognitive/motivational vs. motor/performance
impulsivity. Cognitive impulsivity is defined as an increased
propensity toward seeking rewards and enacting riskier decisions
to gain reward, coupled with impoverished learning from
feedback (Antonelli et al., 2011). ICDs purportedly develop and
are maintained through dopamine-therapy-mediated impaired
cognitive impulsivity. Motor impulsivity refers to difficulty
holding back pre-potent and more automatic or habitual
behaviors, as well as impairment in cancelling responses that
have been planned or initiated (Antonelli et al., 2011). Motor
impulsivity predisposes patients to falls (Wylie et al., 2012).

The Go/No-go paradigm is a task commonly used to
assess response inhibition and the ability to cancel or override
pre-potent response tendencies (Rubia et al., 2001; Hamidovic
et al., 2008; Antonelli et al., 2014). In this way, the Go/No-go task
provides a measure of motor impulsivity. The standard version
of the task involves presenting two visual stimuli, a Go signal and
a No-go signal. When confronted with a Go signal, participants
are expected to make a keypress response as quickly as they can.
Conversely, when they encounter a No-go signal, participants
are instructed to refrain from making any keypress response.
To enhance the potential for assessing motor impulsivity, the
Go signal should appear at a much greater frequency than the
No-go signal, establishing ‘‘Go’’ as the pre-potent response. For
example, trials are often made up of 75% Go signals and 25%
No-go signals. The Go Timeout rate is the percentage of Go trials
on which participants fail to respond within a pre-set deadline.
Another dependent measure is the percentage of trials on which
participants respond erroneously with a keypress in the No-go
condition, referred to as the No-go Error rate. In this way, more
impulsive, less considered responding is exemplified by: (a) lower
Go Timeout rate; and/or (b) higher No-go Error rate. In contrast,
less impulsive and more considered responding is characterized
by: (a) higher Go Timeout rate; and/or (b) lower No-go Error
rate.
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The Go/No-go paradigm has been employed to investigate
impulsivity and response inhibition in PD. Most studies focused
on differences between various subgroups of PD (Pessiglione
et al., 2005; O’Callaghan et al., 2013; Cohen et al., 2014;
Marzinzik et al., 2015; Peterson et al., 2015). Other studies
compared PD performance to that of healthy, age-matched
controls (Nakashima et al., 1993; Cooper et al., 1994; Franz
and Miller, 2002; Dujardin et al., 2013). However, few studies
have sought to understand the effect of dopaminergic therapy
on motor impulsivity in PD, contrasting performance in
the ON and OFF dopaminergic states (Farid et al., 2009;
Antonelli et al., 2014; Herz et al., 2014). Those that have
investigated the effect of dopaminergic therapy have include
neuroimaging measures as primary output and did not establish
whether or not differences in behavior occur on vs. off
dopaminergic therapy in PD patients. That is, to this point,
these studies using the Go/No-go task to investigate motor
impulsivity in PD have mostly failed to reveal significant group
(i.e., PD vs. Control or PD subgroup comparisons) or ON-OFF
differences (Farid et al., 2009; Antonelli et al., 2014; Herz
et al., 2014). Unfortunately, these null effects have a number
of possible interpretations. Most studies included very low
numbers of participants and potentially were underpowered
to detect differences. Further, the Go/No-go procedures in
these studies often featured task parameters that failed to
clearly establish a pre-potent Go response or confounded their
measure with increased memory and decision-making load,
either by having low proportions of Go trials or multiple Go and
No-go stimuli, respectively (Antonelli et al., 2014; Herz et al.,
2014).

In the single occasion to our knowledge when ON-OFF
differences have been observed, these effects are not interpreted
with respect to the effects of dopaminergic therapy on motor
impulsivity or the ability to withhold pre-potent responses.
Geffe et al. (2016) tested a version of the Go/No-go task in
PD patients on and off dopaminergic therapy though they
included an implicit learning component to their study which
was in fact the focus (Geffe et al., 2016). Geffe et al. (2016)
variant of the Go/No-go task involved a conditioning phase
during which participants were presented with a series of stimuli
consisting of one of three non-target cues or a target stimulus,
such that one cue consistently predicted subsequent target
presentation in the following trial. In the Go block, participants
were instructed to make a keypress in response to the target
stimulus. In the No-go block, participants were required to
make keypress responses to all non-target cues and inhibit the
keypress response for target stimuli. In addition, they had a
deconditioning phase during which no particular non-target
cue predicted the target stimulus. Geffe et al. (2016) found
that for the No-go condition, PD patients off medication and
healthy controls showed increased errors in the deconditioning
phase, which was interpreted as evidence of implicit learning
in the conditioning period. However, this increase in error
rate was not observed for PD patients when on medication,
which they interpreted as an impairment in implicit learning
with the addition of dopaminergic medication. Given that
dopaminergic therapy is known to adversely impact association

learning, this interpretation is highly plausible. These effects
could also be interpreted as evidence that dopaminergic therapy
reduces impulsive responding (i.e., lower No-go error rate ON
relative to OFF dopaminergic therapy). This latter account
was not articulated by the researchers but remains a possible
reinterpretation. Overall, due to the many differences between
the Go/No-go task used by Geffe et al. (2016) (i.e., conditioning
and deconditioning phases, blocked design of Go and No-go
trials, four stimuli of which one is the target stimulus),
straightforward inferences regarding the effect of dopaminergic
therapy on motor impulse control were precluded. This also
makes direct comparisons of this task with the Go/No-go task
implemented in the current study difficult. Consequently, to
our knowledge, this represents the first study to implement a
straightforward Go/No-go paradigm in which clear Go responses
were biased, and in which the impact of dopaminergic therapy on
motor impulsivity in PD patients was unambiguously tested.

Our goal in this study was to elucidate the effect of
dopaminergic therapy on motor impulsivity in PD. Toward this
end, we tested PD patients on and off dopaminergic medication
with the Go/No-go paradigm. PD patients took their usual
dopaminergic therapy as prescribed by their treating neurologist
in the ON Session. For the OFF Session, PD patients refrained
from their dopaminergic therapy for 16–20 h as detailed in
the ‘‘Materials and Methods’’ section. To our knowledge, this
represents the first study to implement a straightforward Go/No-
go paradigm that clearly established the Go response as the
pre-potent response, in which the impact of dopaminergic
therapy in PD patients was directly tested with an ON-OFF
design.

In a previous study, we showed that healthy young controls
using the same Go/No-go task that was implemented in the
current study, evidenced greater Go Timeouts when they were
taking the DA pramipexole relative to placebo, revealing more
considered and less impulsive responding in the DA condition
(Yang et al., 2016). This finding occurred despite the fact that
there were no differences in response times (RTs) between ON
and OFF medication states, making our findings consistent with
differences in motor impulsivity, not motor ability (Yang et al.,
2016). These results further corroborate findings from a study
by Hiebert et al. (2014a). Off dopaminergic medication, PD
patients evidenced greater motor impulsivity in the form of
exaggerated facilitation in the congruent condition of a modified
location Stroop task relative to performance of unmedicated
age-matched controls. When PD patients were tested on their
usual dopaminergic therapy, their performance was normalized.
These studies suggested that dopaminergic therapy actually
reduces impulsive responding on tests of motor impulsivity,
contrary to the common understanding that dopaminergic
medications, DAs in particular, promote (cognitive) impulsivity
in PD, leading to serious ICDs. These findings highlight the
importance of: (a) understanding impulsivity as a multi-faceted
concept rather than a unitary construct; and (b) fully clarifying
effects of dopaminergic therapy across a variety of cognitive
functions.

Based on this previous research, here, we hypothesized that
PD patients would evidence more impulsive responding in
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the OFF state. We expected that dopaminergic therapy would
increase motor impulse control, reducing the tendency to enact
pre-potent responses reflexively and habitually, resulting in
more considered and cautious responding. Again, impulsive
responding was expected to be indexed by: (a) lower Go Timeout
rate; and/or (b) higher No-go Error rate. In contrast, more
cautious and considered responding would be expressed as:
(a) higher Go Timeout rate; and/or (b) lower No-go Error rate,
as described above.

MATERIALS AND METHODS

Participants
Twenty-seven PD patients (16 males, mean age
67.81 ± 8.64 years) were recruited from the University of
Western Ontario and Health Sciences North Hospital in
Sudbury, Ontario. Participants were pre-screened for inclusion
and exclusion criteria. All PD patients had been previously
clinically diagnosed with PD by a licensed neurologist and met
the UK Brain Bank criteria for a diagnosis of PD (Hughes et al.,
1992). Participants were excluded for the following reasons:
neurological disorders other than PD (e.g., stroke, seizures,
dementia, mild cognitive impairment), psychiatric disorders
other than mild-to-moderate depression [i.e., 29/63 > on
Beck Depression Inventory (BDI; Beck et al., 1996)] or anxiety
[i.e., 36/63> on Beck Anxiety Inventory (BAI; Beck et al., 1988)],
or history of alcoholism or drug abuse. Further, PD patients were
excluded if they were not treated with dopaminergic therapy.
Two patients were taking entacapone as an adjunct to L-dopa.
One patient was taking both entacapone and amantadine
as adjunctive therapies. One patient was taking DAs alone
as primary therapy. The remaining patients were taking L-dopa
as their primary therapy: either L-dopa alone (N = 15), or L-dopa
in combination with DAs (N = 8). The data of participants
who scored below 24 on the Montreal Cognitive Assessment
(MoCA) were excluded from analyses. One PD patient was
excluded for this reason. Finally, participants were excluded if
their mean RTs or error rates in the Go or No-go conditions
fell outside 2.5 standard deviations of the Group mean for that
Medication Session (i.e., outliers). Four additional PD patients
were excluded for having data that were deemed outliers.
Analyses were completed with the data of the remaining 22 PD
patients. This study was carried out in accordance with the
recommendations of the Health Sciences Research Ethics Boards
of the University of Western Ontario with written informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki (World
Medical Association, 2013). The protocol was approved by the
Health Sciences Research Ethics Boards of the University of
Western Ontario.

Apparatus
The Go/No-go task was conducted on a desktop computer (LG
model 73821B-10) using the Windows 7 Professional operating
system and a 22.0′′ monitor (LG Flatron W2242TQ) running
on a resolution of 1600 × 900 pixels. Participants were seated

approximately 50 cm away from the screen and used a keyboard
(Logitech K120) to record their responses.

Procedures
All participants completed two testing sessions on consecutive
days at the University of Western Ontario or Health Sciences
NorthHospital. For the OFF Session, PD patients were instructed
to abstain from taking L-dopa/carbidopa and entacapone for
12–18 h before the start of the session, and dopamine agonists
(e.g., pramipexole, ropinirole, pergolide) as well as amantadine,
rasagiline, and selegiline for 16–20 h before the start of the
session. For the ON Session, PD patients were instructed to
take all dopaminergic medications for PD as prescribed by
their treating neurologist. ON-OFF order was randomly assigned
and counterbalanced. After the exclusion of five PD patients
as previously described, twelve participants had an ON-OFF
medication order and the remaining ten participants had an
OFF-ON order. All participants were debriefed about the details
of the study once they completed the second session. Participants
were compensated for their time and participation.

Pre-task Assessments
Demographic and clinical data [i.e., age, sex, education, years
of education, handedness, PD duration, Levodopa Equivalent
Dose (LED)] were collected from all participants. PD duration
refers to the number of years since a diagnosis of PD. LED is a
calculation of the daily dose of dopaminergic therapy in units of
L-dopa equivalents. Calculation of LED (mg) for each PD patient
was based on the theoretical L-dopa equivalence (Wüllner et al.,
2010; Hiebert et al., 2014a) as follows: L-dopa dose (mg) × 1 +
L-dopa controlled release (mg) × 0.75 + L-dopa × 0.33 if taking
entacapone + amantadine (mg)× 0.5 + bromocriptine (mg)× 10
+ cabergoline (mg) × 50 + pergolide (mg) × 100 + pramipexole
(mg) × 67 + rasagiline (mg) × 100 + ropinirole (mg) × 16.67 +
selegiline (mg)× 10.22.

Heart rate (HR), systolic blood pressure (BP) and diastolic
BP were measured using an automated BP monitor (Omron
model BP785N) at the beginning and end of each testing session.
Participants were also given a self-reported visual analog scale
(VAS) at these two time-points to assess subjective alertness
(Bond and Lader, 1974).

To assess baseline cognitive functioning, PD patients
completed general cognitive assessments in the ON state.
These general cognitive assessments and questionnaires were
the American National Adult Reading Test (ANART), MoCA
and Controlled Oral Word Association Test (COWAT). The
ANART is a measure of verbal intelligence that has been
adapted for use in North America (Grober and Sliwinski,
1991). The MoCA is a validated cognitive screening tool
used to detect mild cognitive impairment (Nasreddine et al.,
2005). The COWAT is used to assess verbal and category
fluency (Ross et al., 2007). Participants also completed the
Barratt Impulsiveness Scale (BIS), Sensation Seeking Scale
(SSS), Questionnaire for Impulsive-Compulsive Disorders in
PD—Rating Scale (QUIP-RS), andNew Freezing of Gait (NFOG)
questionnaire. The BIS and SSS are validated questionnaires
estimating trait impulsiveness (Patton et al., 1995) and sensation-
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seeking (Zuckerman et al., 1978), respectively. The QUIP-RS is a
valid and reliable measure of ICD symptom severity (Weintraub
et al., 2012). The NFOG is a questionnaire used to assess freezing
of gait in PD (Giladi et al., 2000).

Additionally, all participants completed the BDI, BAI and
Starkstein Apathy Scale (SAS) in both sessions. The BDI, BAI and
SAS are commonly used assessments of depression (Beck et al.,
1996), anxiety (Beck et al., 1988), and apathy (Starkstein et al.,
1992) in PD populations. Motor function was assessed on both
testing days using the Motor Subscale of the Unified PD Rating
Scale (UPDRS; Goetz et al., 2008).

Go No-Go Task
The Go/No-go paradigm is commonly used to assess motor
impulsivity. The task consists of Go trials and No-go trials.
On Go trials, participants were asked to respond by making a
keypress as quickly as possible when the letter ‘‘X’’, the visual
Go signal, was presented. On No-go trials, participants were
instructed to withhold keypress responses, when the letter ‘‘K’’,
the visual No-Go signal, was presented. On every trial, either
the letter ‘‘X’’, the Go signal, or the letter ‘‘K’’, the No-Go
signal, appeared in the center of the screen. Participants were
instructed to press the spacebar for ‘‘X’’ and avoid pressing any
keys for ‘‘K’’. The visual stimuli were presented for a maximum
of 750 ms, or until participants responded with a keypress. A
blank screen was presented for a random duration between
400 and 800 ms during the inter-trial interval. The letter ‘‘X’’
was presented on 75% of trials, and the letter ‘‘K’’ was shown
in the remaining 25% of trials, in a random order. This ratio
of Go to No-go trials was intended to establish the Go keypress
as the pre-potent response. Participants were instructed to make
responses as quickly and accurately as possible. On each testing
day, participants completed a total of 256 trials, organized into
two blocks of 128 trials each, with 10 s breaks at the midpoint
of each block and for a slightly longer break between the two
blocks.

Data Analysis
Physiological measures (i.e., HR, Systolic BP, Diastolic BP and
VAS Alertness) were compared using 2× 2 analysis of variances
(ANOVAs), with Medication (ON vs. OFF) and Time (Pre-Task
vs. Post-Task) as within-subject variables. Affective measures
(i.e., mean BDI, BAI and SAS scores) and dependent measures
derived from theGo/No-go task were compared betweenON and
OFF Medication states using paired-samples two-tailed t-tests.
The dependent measures for the Go/No-go task were: (a) Go
RT, comprising the mean RT for responses that occurred prior
to the 750 ms deadline; (b) No-go RT, consisting of the mean
RT for erroneous responses provided in the No-go condition;
(c) Go Timeout Rate, reflecting the percentage of trials on which
participants failed to respond prior to the 750 ms deadline; and
(d) No-go Error Rate, denoting the percentage of trials on which
participants erroneously made a keypress response in the No-go
condition. RTs were calculated as the time in ms between the
onset of the visual stimuli and the keypress responses. Data values
for Go RTs were trimmed if they fell more than 2.5 standard
deviations from the mean Go RTs in each medication state for

each participant. The same process was used to trim No-go
RT values. Lower Go Timeout rates and higher No-go Error
rates were indicative of greater motor impulsivity whereas higher
Go Timeout rates and lower No-go Error rates indexed less
impulsive responding. Go RTs and No-go RTs were analyzed
using non-parametric two-tailed Wilcoxon Signed Ranks Tests,
and Go Timeout Rate and No-go Error Rate were analyzed using
paired-sample two-tailed t-tests, with the Bonferroni correction
for multiple comparisons. Analyses were performed using Excel
(Version 2016), IBM SPSS Statistics (Version 21), and GraphPad
Prism (Version 6). Data were considered significant if p < 0.05.

RESULTS

Demographic, Baseline Screening
Cognitive, Affective and Physiological
Measures
Demographic and cognitive measures are presented for PD
patients (Table 1). Full demographic data is included as
supplementary material (Supplementary Table S1). All PD
patients were within 2.5 standard deviations of the group
mean for the NFOG, BIS, SSS, QUIP-RS ICD, QUIP-RS Total,

TABLE 1 | Average demographic and cognitive measures for non-excluded
Parkinson’s disease (PD) patients.

Variable Value SD

N 22 -
Age 66.77 9.15
Sex 11 males, 11 females -
Education 15.18 4.11
Handedness 20 right, 2 left -
PD duration 5.23 5.71
LED 626.59 276.31
UPDRS—ON 17.43 6.25

—OFF 21.82 6.06
t(21) = 10.139 p < 0.001

NFOG 7.86 7.52
BIS 59.23 8.99
SSS 11.59 4.74
QUIP-RS ICD 13.05 8.62
QUIP-RS Total 24.91 14.70
MoCA 27.32 1.73
ANART 122.72 6.46
COWAT FAS 15.71 5.22
COWAT Animal 21.23 6.93

Values are presented as group means ± SD unless otherwise listed. All values are
in units of the respective questionnaire or task scale. N: number of participants;
Education (years): number of years of secondary and post-secondary education;
PD duration (years): number of years since PD diagnosis; LED (mg): Levodopa
Equivalent Dose; UPDRS: Motor Subscale Score of the Unified PD Rating
Scale/56, listed for ON and OFF medication; NFOG: New Freezing of Gait
Questionnaire/28; BIS: Barratt Impulsiveness Scale/120; SSS: Sensation-Seeking
Scale/40; QUIP-RS ICD: Questionnaire for Impulsive-Compulsive Disorders in
Parkinson’s disease Rating Scale—Impulse-Control Disorders/64; QUIP-RS Total:
Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s disease Rating
Scale—Total score/112; MoCA: Montreal Cognitive Assessment/30; ANART:
American National Adult Reading Test/135.6; COWAT FAS (number of words):
Controlled Oral Word Association Test FAS Task; COWAT Animal (number of
words): COWAT Animal Task. UPDRS scores were significantly higher OFF
medication (p < 0.001).
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MoCA, ANART, COWAT FAS and COWAT Animal. UPDRS
scores were compared between ON and OFF medication states
using a paired-samples two-tailed t-test. PD patients showed
significantly higher UPDRS scores off dopaminergic medication
compared to on, which was expected (t(21) = 10.139, p < 0.001).

Physiological measures, including HR, Systolic BP, Diastolic
BP and VAS Alertness were analyzed using 2 × 2 ANOVAs,
with Medication (ON vs. OFF) and Time (Pre-Task vs. Post-
Task) as within-subject variables. HR was significantly higher
Pre-Task compared to Post-Task (Figure 1A; F(1,21) = 24.569,
MSe = 31.507, p ≤ 0.001). Additionally, Systolic BP was
significantly higher OFF compared to ON (Figure 1B;
F(1,21) = 15.647, MSe = 88.459, p = 0.001). Diastolic BP showed a
similar significant effect of Medication, with significantly higher
Diastolic BP OFF compared to ON dopaminergic therapy for PD
patients (Figure 1C; F(1,21) = 11.743, MSe = 36.046, p = 0.003).
For VAS Alertness (Figure 1D), no significant differences were
found across Medication and Time (p > 0.05).

Affective measures (BDI, BAI and SAS) were compared
between ON and OFF medication states using paired-samples
two-tailed t-tests (Figure 2). For all affectivemeasures, there were
no significant differences across Medication states (all p > 0.05).

Go No-Go Task
We investigated the effect of Medication (ON vs. OFF) on
the dependent measures of mean Go RT and No-go RT using
two-tailed Wilcoxon Signed Ranks Tests, and Go Timeout Rate
and No-go Error Rate using paired-samples two-tailed t-tests in
the Go/No-go task using the Bonferroni correction. Mean Go
RT was not significantly different for PD patients ON and OFF
dopaminergic medication (Figure 3A; p > 0.05). No significant
difference was found between ON and OFF No-go mean RT
(Figure 3B; p > 0.05). PD patients ON had a significantly
higher Go Timeout Rate compared to OFF dopaminergic therapy
(Figure 3C; t(21) = 2.851, p = 0.010) even after applying the
Bonferonni correction (i.e., α = 0.0125). Examining No-go Error
Rate, there were no significant effects of Medication (Figure 3D;
p > 0.05).

DISCUSSION

We found that dopaminergic medication increased the Go
Timeout rate in PD patients compared to their performance off
medication. This suggests that dopaminergic therapy induced a
more conservative response pattern for PD patients, reducing
motor impulsivity in contradistinction to its widely-recognized
enhancement of cognitive/motivational impulsivity producing
ICDs in PD. We did not see a concomitant decrease in No-go
errors for patients on relative to off dopaminergic treatment,
however. In theNo-go condition, a higher No-go Error rate in the
ON state would also have signaled reduced motor impulsivity to
parallel adoption of amore considered and conservative response
strategy in the Go condition leading to more Go Timeouts. To
engender a pre-potent Go response, there were far fewer No-go
trials relative to Go trials. Consequently, it is possible that the
No-go condition did not have the statistical power to reveal

FIGURE 1 | Physiological measures for Parkinson’s disease (PD) patients
(N = 22). Values are presented as group means ± 95% confidence interval as
per Masson and Loftus (2003). Data were analyzed using two-way analyses of
variances (ANOVAs). (A) Heart rate (HR; beats per minute) was significantly
higher Pre-Task compared to Post-Task (∗∗∗p ≤ 0.001). (B) Systolic blood
pressure (BP; mmHg) was significantly higher for the OFF Session compared
to the ON Session (∗∗∗). (C) PD patients had significantly higher diastolic BP
(mmHg) OFF medication compared to ON (∗∗∗). (D) No differences in visual
analog scale (VAS) Alertness were found across Time and Medication
(p > 0.05).
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FIGURE 2 | Affective measures for PD patients (N = 22). Values are presented
as group means ± 95% confidence interval for repeated measures as per
Masson and Loftus (2003). Affective measures were analyzed using
paired-samples two-tailed t-tests. (A) PD patients did not significantly differ on
the BDI between ON and OFF medication states (p > 0.05). (B) There was no
significant effect of Medication state on the beck anxiety inventory (BAI;
p > 0.05). (C) Starkstein Apathy Scale (SAS) score did not show a significant
difference between ON and OFF states (p > 0.05).

No-go error differences between ON and OFF medication states.
Neither Go RT nor No-go RT were affected by medication status.

FIGURE 3 | Dependent Go/No-go measures for PD patients (N = 22), ON and
OFF dopaminergic medication. Values are presented as group means ± 95%
confidence interval for repeated-measures as per Masson and Loftus (2003).
Go Response times (RTs) and No-go RTs were analyzed using non-parametric
two-tailed Wilcoxon Signed Ranks Tests, and Go Timeout Rate and No-go
Error Rate were analyzed using paired-sample two-tailed t-tests, with the
Bonferroni correction for multiple comparisons. (A) Mean Go RT was not

(Continued)
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FIGURE 3 | Continued
significantly different for PD patients ON and OFF dopaminergic medication
(p > 0.05). (B) No-go RT did not show a significant effect of Medication
(p > 0.05). (C) PD patients had a significantly higher Go Timeout Rate ON
dopaminergic medication compared to OFF (∗∗p = 0.010). (D) No significant
differences were found between ON and OFF Medication for No-go Error Rate.

Comparisons of physiological measures showed that PD
patients had lower HR post- relative to pre-Go/No-go Task. This
trend of lower HR was fully expected because participants were
sitting and inactive for the study period and had acclimatized to
the novelty of the setting. PD patients also had increased systolic
and diastolic BP off relative to on dopaminergic medication. This
was anticipated as L-dopa is known to lower BP (Noack et al.,
2014). Participants did not show any differences in subjective
alertness, BDI score, BAI score, or SAS score across ON-OFF
Sessions, demonstrating that our Go/No-go findings were not
due to changes in alertness or mood between the two medication
states.

By not presenting baseline PD performance relative to
that of controls, we have not established abnormal control of
motor responses (i.e., motor impulsivity) in the PD patients in
our study. This was not our aim, though, as detailed below,
reviews of this literature confirm that PD patients consistently
exhibit deficits in inhibition of pre-potent responses and motor
impulsivity (Kudlicka et al., 2011; Manza et al., 2017). Our
objective was to explicitly investigate, in back-to-back tests
within PD patients, the effect of dopaminergic therapy on
motor impulse control using an accepted measure of this
process (i.e., Go/No-go; Rubia et al., 2001; Hamidovic et al.,
2008; Antonelli et al., 2014). Here, in PD patients, we entirely
replicated the pattern that we observed in healthy young controls
(Yang et al., 2016). Specifically, we previously showed that
dopaminergic therapy increases the Go Timeout rate in healthy
young controls. We previously interpreted this pattern of results,
as we have here, as evidence that dopaminergic therapy increases
control overmotor responses and decreases the tendency tomake
more impulsive responses (Yang et al., 2016).

The alternative explanation that dopaminergic therapy simply
slowed cognitive processes and/or motor execution rather
than specifically promoting a more conservative response
pattern is contradicted by other measures in our study, in
addition to well-studied, established effects of dopaminergic
therapy on behavior and the wider PD literature. Dopaminergic
therapy did not affect overall RTs in our PD patients and it
significantly speeded motor responses assessed with the UPDRS.
Addressing bradykinesia and increasing the speed and fluency
of movements and motor responses is the chief beneficial
effect of dopaminergic therapy in PD (Espay et al., 2011;
Macerollo et al., 2016). There is little evidence to suggest that
dopaminergic therapy generally slows cognitive processes and
in fact there is support that it hastens them (Cools et al.,
2001; Shook et al., 2005; Hood et al., 2007; Righi et al., 2007;
MacDonald and Monchi, 2011; MacDonald et al., 2011; Hanna-
Pladdy et al., 2015). In contrast, as we review in sections
below, dopaminergic therapy has been shown to increase
response inhibition as well as to promote adopting a more

conservative response criterion, consistent with our explanation
for increased Go Timeouts in the ON-state for PD patients in our
study.

It was also not possible for PD patients to be blinded to
their medication status during the ON-OFF manipulation in our
study. This is because patients had to comply with particular
instructions to take or abstain from their usual dopaminergic
therapy in a certain manner for ON and OFF session,
respectively. Even if these instructions could be concealed,
patients are well acquainted with their symptoms both on and
off dopaminergic therapy which precluded blinding patients to
our medication manipulation. Consequently, we cannot rule
out the possibility that expectancy effects contributed to our
results. However, as previously noted, dopaminergic medications
are known to speed motor functions in PD patients (Espay
et al., 2011) and consequently any expectancy effects would have
acted contrarily to the results that we obtained. Overall, despite
these acknowledged alternative interpretations, we interpret
enhanced Go Timeout responses in the ON-state as evidence that
dopaminergic therapy reduces motor impulsivity. This account
for our findings is supported by a larger literature as detailed in
the sections below.

Effects of Dopaminergic Therapy on
Go/No-Go Performance
There are few studies in the PD literature that have investigated
motor impulsivity using the Go/No-go in PD patients. Fewer
still have investigated the effect of dopaminergic therapy on
performance though an important and concerning side effect
of dopaminergic therapy is disordered impulse control. Herz
et al. (2014) compared Go/No-go performance between PD
patients with (N = 13) and without (N = 13) dyskinesia, and
healthy controls (N = 13), with both patient groups being
tested ON and OFF dopaminergic medication. Herz et al. (2014)
used a variant of the Go/No-go task that included multiple
Go responses (i.e., pressing either the left or right key) in
addition to the No-go response. They did not find a modulation
of Go/No-go performance by dopaminergic treatment. The
added complexity related to multiple Go responses potentially
reduced the pre-potency of Go relative to No-go, resulting in
less difficulty withholding responses in the No-go condition.
In another study, Farid et al. (2009) compared Go/No-go
performance of PD patients (N = 9) ON and OFF medication
relative to healthy controls (N = 9) who performed the task
only once. They did not find behavioral differences between
patients ON vs. OFF medication, or relative to performance of
healthy older controls on Go/No-go accuracy or RT. However,
with only nine participants in each group, the study likely
was underpowered statistically to detect true differences if they
occurred. Further, medication order was not counterbalanced.
PD patients were always assessed in the OFF-ON order. In
this way, and because healthy controls only performed the task
once, order effects were confounded with medication effects.
Antonelli et al. (2014) contrasted Go/No-go performance of
PD patients (N = 7) ON and OFF the DA pramipexole. They
found that administration of pramipexole increased impulsive
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choices on a delayed discounting task—their measure of
cognitive impulsivity. However, no ON-OFF differences were
observed on Go/No-go performance–their measure of motor
impulsivity. This study was important in providing evidence
that dopaminergic treatment affects distinct forms of impulsivity
dissimilarly, supporting the idea that impulsivity is not a unitary
concept, but rather is multifaceted. These results must be viewed
with caution, however, considering that due to a sample size
of only seven PD patients, this study was likely underpowered.
Further, the authors’ rendition of the Go/No-go task involved
presenting Go signals at 60%, and No-go signals at 40%, limiting
the pre-potency of the Go response.

Geffe et al. (2016) used a variant of the Go/No-go task to
assess implicit learning in de novo untreated PD patients OFF
vs. ON a single dose of L-dopa. In the conditioning phase,
a series of stimuli were presented such that one non-target
prime stimulus acted as a reliable cue for presentation of the
target stimulus in the subsequent trial. During the conditioning
phase, participants learned to anticipate that the target stimulus
would follow a particular non-target prime stimulus. Each
conditioning phase was followed by a deconditioning phase,
during which non-target stimuli and the target stimulus were
presented randomly. PD patients off medication and healthy
controls were found to make more errors in the No-go condition
of the deconditioning phase. This was interpreted as evidence
that associations between the prime stimulus and the target
stimulus had been learned in the conditioning phase. This
learning enhanced the anticipation that the target stimulus
would follow, leading to more No-go responses. When PD
patients were on medication, they evidenced less No-go errors
in the deconditioning phase. The authors interpreted this as
evidence that association learning between prime stimuli and
target stimuli had been less well learned by patients treated with
dopaminergic therapy. This finding is consistent with previous
research showing that dopaminergic therapy impairs learning
(Swainson et al., 2000; Cools et al., 2001, 2007; MacDonald and
Monchi, 2011; MacDonald et al., 2011; Vaillancourt et al., 2013;
Vo et al., 2014, 2017; Gallant et al., 2016). However, the fact that
PD patients performed fewer No-go responses on dopaminergic
therapy in the deconditioning phase could also be reflective of
enhanced motor control. Due to the design, either interpretation
is possible. There were substantial differences in task parameters
and research goals between Geffe et al. (2016) study and ours.
However, their results are not at odds with our findings.

In summary, we provide the first demonstration that
dopaminergic therapy affects performance in a straightforward
Go/No-go task in PD patients. The limited number of previous
studies investigating the effects of dopaminergic therapy on
Go/No-go performance in PD had small sample sizes and
were impacted by other methodological issues, outlined above,
that might reduce sensitivity to detect medication effects,
predisposing them to null findings. We sought to redress these
concerns by testing a sufficiently large number of PD patients
(i.e., 27 PD patients) and setting the Go/No-go parameters at
75% Go trials, with a single Go stimulus, relative to 25% No-go
trials, establishing a strong pre-potent Go response. We suspect
that these factors explain discrepancies between our findings and

the results of previous investigations of dopaminergic therapy on
motor impulsivity in the Go/No-go task in PD patients.

Our finding of increased Go Timeouts for PD patients when
tested ON relative to OFF dopaminergic therapy is entirely
in keeping with our previous investigations of pramipexole vs.
placebo on Go/No-go performance in young, healthy controls
(Yang et al., 2016). Using the identical paradigm employed in
the present study, we found that pramipexole produced increased
Go Timeouts relative to performance on placebo. We interpreted
this pattern as reflecting a more conservative response set owing
to pramipexole (Yang et al., 2016). Entirely in line with our
findings here, we also found no pramipexole-placebo differences
in terms of No-go errors. As in the current study, there were
far fewer No-go trials and hence we speculated that we were
somewhat underpowered to detect medication-related effects in
this condition.

Effects of Dopaminergic Therapy on
Cognition Including Impulsivity
Consistent with the notion advanced here that dopaminergic
treatment in fact increases motor impulse control, Hiebert
et al. (2014a) found that PD patients evidenced greater
facilitation in the congruent condition of a modified Stroop
task when tested OFF dopaminergic therapy relative to the
degree of facilitation observed in healthy age-matched controls.
Facilitation was normalized when PD patients were tested
ON their usual dopaminergic therapy. We surmised that
enhanced facilitation in the OFF state arose due to more
impulsive and less considered responding, which was rectified
by usual dopaminergic therapy. The current study and those
presented above highlight the fact that dopaminergic treatment
has varied effects on different aspects of impulsivity. These
studies present evidence that dopaminergic therapy reduces
motor impulsivity in contrast to the more widely-understood
effect of increasing cognitive/motivational impulsivity producing
ICDs in PD patients. This understanding is important for the
clinical approach to PD and decisions regarding titration of
dopaminergic therapy considering motor as well as cognitive
symptoms.

Our observations in this study are in accordance with previous
research on response inhibition and/or response withholding in
PD generally. In a meta-analysis of the effects of dopaminergic
medication and PD disease duration on measures of response
inhibition, Manza et al. (2017) found that for studies of response
inhibition with PD participants on dopaminergic medication,
response inhibition deficits were significantly correlated with
disease duration. The authors examined studies of common
measures of response inhibition, including the anti-saccade,
stop-signal, Stroop, and Go/No-go tasks. PD patients were
found to have poorer response inhibition compared to matched
healthy controls, in agreement with conclusions from another
previous meta-analysis (Kudlicka et al., 2011). For studies
with PD patients at earlier disease stages (i.e., <7 years
since diagnosis), dopaminergic medication tended to improve
the ability to inhibit inappropriate responses, resulting in
performance that was worse than but approached the level of
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healthy controls (Manza et al., 2017). Conversely, studies with
PD patients at later disease stages (i.e., >7 years since diagnosis)
tended to find that dopaminergic medication worsened response
inhibition compared to the unmedicated state. The current study
investigated PD patients with an average disease duration of
approximately 5 years (range 1–26 years), comparable to the
patient samples in the studies examined by Manza et al. (2017)
in their meta-analysis of PD patients at earlier disease stages.
Our finding that dopaminergic therapy caused PD patients to
enact more cautious responding, yielding more Go Timeouts, is
entirely in line with the overall observation in the PD literature
that dopaminergic therapy improves inhibition of inappropriate
motor responses in PD.

It is now understood that dopaminergic treatment in PD leads
to improvements in some aspects of cognition, but impairments
in others (Cools et al., 2001; Rowe et al., 2008; MacDonald
and Monchi, 2011; MacDonald et al., 2011). These complex
cognitive effects are explained by differences in dopaminergic
levels at baseline across different brain regions in PD. According
to this view, dopaminergic therapy is titrated to a dose needed
to replenish the dopamine-deficient DS and improve movement
symptoms in PD. Dopaminergic therapy distributes in a
non-targeted fashion, however, overdosing regions such as the
VS and medial prefrontal regions that are at baseline dopamine-
replete, innervated by the relatively-spared VTA (Gotham et al.,
1986, 1988; Swainson et al., 2000; Cools et al., 2001; Cools, 2006;
Vaillancourt et al., 2013). As a result, DS-mediated cognitive
functions such as selective attention (Baunez and Robbins, 1999;
MacDonald et al., 2011; de Manzano et al., 2013), decision-
making (Balleine et al., 2007; MacDonald et al., 2011; Hiebert
et al., 2014b), response inhibition (Zandbelt and Vink, 2010;
MacDonald andMonchi, 2011;Wylie et al., 2012), and overriding
pre-potent and automatic responses to enact more considered
and accurate responding (Ali et al., 2009; MacDonald et al.,
2011; MacDonald A. A. et al., 2014; Robertson et al., 2015) show
improvements with the addition of dopaminergic treatment.
This is entirely in line with our findings here in the Go/No-go
task. In contrast, cognitive functions mediated by brain regions
receiving dopamine from VTA such as reward processing,
feedback learning (Swainson et al., 2000; Cools et al., 2001,
2007; MacDonald and Monchi, 2011; MacDonald et al., 2013b;
Vaillancourt et al., 2013; Vo et al., 2014, 2017; Gallant et al., 2016),
motivation (Humphries and Prescott, 2010; Simões-Franklin
et al., 2010; MacDonald and Monchi, 2011), and orienting to
stimuli (Zink et al., 2003; Jensen et al., 2007; MacDonald and
Monchi, 2011; Esslinger et al., 2013; Anderson et al., 2016) are
impaired.

Our finding in the Go/No-go task along with the results
of the meta-analysis conducted by Manza et al. (2017), are
compatible with reducedmotor impulsivity due to dopaminergic
therapy in PD. These effects co-exist with the recognition
of ICDs arising with dopaminergic treatment (Pontone
et al., 2006; Weintraub et al., 2014), reflecting enhanced
cognitive/motivational impulsivity in PD. Though presenting
opposite effects of dopaminergic therapy on cognition, these
patterns are understood through the same framework provided
above. DS has been implicated in limiting motor impulsivity

by ensuring more considered and less habitual responding
(Hood et al., 2007; Cools et al., 2010; Djamshidian et al., 2011;
MacDonald et al., 2011; Ness and Beste, 2013; Robertson et al.,
2015). In contrast, VTA-innervated brain regions such as VS and
orbitofrontal cortex mediate motivation and reward processing
(Balleine et al., 2007; Rowe et al., 2008; Drijgers et al., 2012). In
PD, dopaminergic therapy normalizes DS dopamine deficiency
and therefore predictably improves the ability to make deliberate
and less impulsive responses as we see here (Balleine et al.,
2007; Rowe et al., 2008; Drijgers et al., 2012). Conversely,
treatment with dopaminergic agents overdoses VS and other
VTA-innervated brain areas, dysregulating motivation and
impairing reward processing, leading to ICDs. Our findings and
the literature linking ICDs to dopaminergic therapy are easily
reconciled, understanding that impulsivity is a multifaceted
concept, with its various forms mediated by distinct brain
regions that are differentially dopamine-depleted in PD and
hence dissimilarly affected by dopaminergic therapy.

CONCLUSION

Overall, we provide support for the role of dopaminergic
therapy in decreasing motor impulsivity in PD. Our findings
illustrate the importance of recognizing impulsivity as a multi-
faceted construct. These findings enhance our understanding of
the effect of dopaminergic therapy on cognition in PD. This
knowledge will ultimately inform clinical decisions regarding
dosing of dopaminergic therapy in PD, taking into account
different cognitive as well as motor symptoms.
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et al. (2016). The role of dopamine in value-based attentional orienting. Curr.
Biol. 26, 550–555. doi: 10.1016/j.cub.2015.12.062

Antonelli, F., Ko, J. H., Miyasaki, J., Lang, A. E., Houle, S., Valzania, F., et al. (2014).
Dopamine-agonists and impulsivity in Parkinson’s disease: impulsive choices
vs. impulsive actions. Hum. Brain Mapp. 35, 2499–2506. doi: 10.1002/hbm.
22344

Antonelli, F., Ray, N., and Strafella, A. P. (2011). Impulsivity and Parkinson’s
disease: more than just disinhibition. J. Neurol. Sci. 310, 202–207. doi: 10.1016/j.
jns.2011.06.006

Balleine, B. W., Delgado, M. R., and Hikosaka, O. (2007). The role of the
dorsal striatum in reward and decision-making. J. Neurosci. 27, 8161–8165.
doi: 10.1523/jneurosci.1554-07.2007

Baunez, C., and Robbins, T. W. (1999). Effects of dopamine depletion of the
dorsal striatum and further interaction with subthalamic nucleus lesions in
an attentional task in the rat. Neuroscience 92, 1343–1356. doi: 10.1016/s0306-
4522(99)00065-2

Beck, A. T., Epstein, N., Brown, G., and Steer, R. A. (1988). An inventory for
measuring clinical anxiety: psychometric properties. J. Consult. Clin. Psychol.
56, 893–897. doi: 10.1037//0022-006x.56.6.893

Beck, A. T., Steer, R. A., and Brown, G. K. (1996). BDI-II, Beck Depression
Inventory: Manual. San Antonio, TX: Psychological Corporation.

Benke, T., Delazer, M., Bartha, L., and Auer, A. (2003). Basal ganglia lesions
and the theory of fronto-subcortical loops: neuropsychological findings in two
patients with left caudate lesions. Neurocase 9, 70–85. doi: 10.1076/neur.9.1.70.
14374

Blandini, F., and Armentero, M.-T. (2014). Dopamine receptor agonists
for Parkinson’s disease. Expert Opin. Investig. Drugs 23, 387–410.
doi: 10.1517/13543784.2014.869209

Bond, A., and Lader, M. (1974). The use of analogue scales in rating subjective
feelings. Br. J. Med. Psychol. 47, 211–218. doi: 10.1111/j.2044-8341.1974.
tb02285.x

Cameron, I. G. M., Watanabe, M., Pari, G., and Munoz, D. P. (2010). Executive
impairment in Parkinson’s disease: response automaticity and task switching.
Neuropsychologia 48, 1948–1957. doi: 10.1016/j.neuropsychologia.2010.
03.015

Cohen, R. G., Klein, K. A., Nomura, M., Fleming, M., Mancini, M., Giladi, N., et al.
(2014). Inhibition, executive function and freezing of gait. J. Parkinsons Dis. 4,
111–122. doi: 10.3233/JPD-130221

Connolly, B. S., and Lang, A. E. (2014). Pharmacological treatment of
Parkinson disease: a review. JAMA 311, 1670–1683. doi: 10.1001/jama.20
14.3654

Cools, R. (2006). Dopaminergic modulation of cognitive function-implications for
l-DOPA treatment in Parkinson’s disease. Neurosci. Biobehav. Rev. 30, 1–23.
doi: 10.1016/j.neubiorev.2005.03.024

Cools, R., Barker, R. A., Sahakian, B. J., and Robbins, T. W. (2001). Enhanced
or impaired cognitive function in Parkinson’s disease as a function of
dopaminergic medication and task demands. Cereb. Cortex 11, 1136–1143.
doi: 10.1093/cercor/11.12.1136

Cools, R., Barker, R. A., Sahakian, B. J., and Robbins, T. W. (2003).
L-Dopa medication remediates cognitive inflexibility, but increases impulsivity
in patients with Parkinson’s disease. Neuropsychologia 41, 1431–1441.
doi: 10.1016/s0028-3932(03)00117-9

Cools, R., Ivry, R. B., and D’Esposito, M. (2006). The human striatum is
necessary for responding to changes in stimulus relevance. J. Cogn. Neurosci.
18, 1973–1983. doi: 10.1162/jocn.2006.18.12.1973

Cools, R., Lewis, S. J. G., Clark, L., Barker, R. A., and Robbins, T. W. (2007).
L-DOPA disrupts activity in the nucleus accumbens during reversal learning
in Parkinson’s disease. Neuropsychopharmacology 32, 180–189. doi: 10.1038/sj.
npp.1301153

Cools, R., Rogers, R., Barker, R. A., and Robbins, T. W. (2010). Top-down
attentional control in Parkinson’s disease: salient considerations. J. Cogn.
Neurosci. 22, 848–859. doi: 10.1162/jocn.2009.21227

Cooper, J. A., Sagar, H. J., Tidswell, P., and Jordan, N. (1994). Slowed central
processing in simple and go/no-go reaction time tasks in Parkinson’s disease.
Brain 117, 517–529. doi: 10.1093/brain/117.3.517

Dauer, W., and Przedborski, S. (2003). Parkinson’s disease: mechanisms and
models. Neuron 39, 889–909. doi: 10.1016/S0896-6273(03)00568-3

de Lau, L. M., and Breteler, M. M. (2006). Epidemiology of Parkinson’s disease.
Neurol. 5, 525–535. doi: 10.1016/S1474-4422(06)70471-9

de Lau, L. M. L., Giesbergen, P. C. L. M., de Rijk, M. C., Hofman, A.,
Koudstaal, P. J., and Breteler, M. M. B. (2004). Incidence of parkinsonism and
Parkinson disease in a general population: the rotterdam study. Neurology 63,
1240–1244. doi: 10.1212/01.wnl.0000140706.52798.be

de Manzano, Ö., Cervenka, S., Jucaite, A., Hellenäs, O., Farde, L., and Ullén, F.
(2013). Individual differences in the proneness to have flow experiences are
linked to dopamine D2-receptor availability in the dorsal striatum.Neuroimage
67, 1–6. doi: 10.1016/j.neuroimage.2012.10.072

Djamshidian, A., O’Sullivan, S. S., Lees, A., and Averbeck, B. B. (2011). Stroop test
performance in impulsive and non impulsive patients with Parkinson’s disease.
Parkinsonism Relat. Disord. 17, 212–214. doi: 10.1016/j.parkreldis.2010.
12.014

Drijgers, R. L., Verhey, F. R. J., Tissingh, G., van Domburg, P. H. M. F.,
Aalten, P., and Leentjens, A. F. G. (2012). The role of the dopaminergic system
in mood, motivation and cognition in Parkinson’s disease: a double blind
randomized placebo-controlled experimental challenge with pramipexole and
methylphenidate. J. Neurol. Sci. 320, 121–126. doi: 10.1016/j.jns.2012.07.015

Dujardin, K., Tard, C., Duhamel, A., Delval, A., Moreau, C., Devos, D., et al.
(2013). The pattern of attentional deficits in Parkinson’s disease. Parkinsonism
Relat. Disord. 19, 300–305. doi: 10.1016/j.parkreldis.2012.11.001

Espay, A. J., Giuffrida, J. P., Chen, R., Payne, M., Mazzella, F., Dunn, E.,
et al. (2011). Differential response of speed, amplitude and rhythm to
dopaminergic medications in Parkinson’s disease.Mov. Disord. 26, 2504–2508.
doi: 10.1002/mds.23893

Esslinger, C., Braun, U., Schirmbeck, F., Santos, A., Meyer-Lindenberg, A.,
Zink, M., et al. (2013). Activation of midbrain and ventral striatal regions
implicates salience processing during a modified beads task. PLoS One
8:e58536. doi: 10.1371/journal.pone.0058536

Farid, K., Sibon, I., Guehl, D., Cuny, E., Burbaud, P., and Allard, M. (2009). Brain
dopaminergic modulation associated with executive function in Parkinson’s
disease.Mov. Disord. 24, 1962–1969. doi: 10.1002/mds.22709

Franz, E. A., and Miller, J. (2002). Effects of response readiness on reaction time
and force output in people with Parkinson’s disease. Brain 125, 1733–1750.
doi: 10.1093/brain/awf192

Gallant, H., Vo, A., Seergobin, K. N., and MacDonald, P. A. (2016). Pramipexole
impairs stimulus-response learning in healthy young adults. Front. Neurosci.
10:374. doi: 10.3389/fnins.2016.00374

Ganjavi, H., and MacDonald, P. A. (2015). ON-OFF effects of dopaminergic
therapy on psychiatric symptoms in Parkinson’s disease. J. Neuropsychiatry
Clin. Neurosci. 27, e134–e139. doi: 10.1176/appi.neuropsych.14030055

Geffe, S., Schindlbeck, K. A., Mehl, A., Jende, J., Klostermann, F., andMarzinzik, F.
(2016). The single intake of levodopa modulates implicit learning in drug
naïve, de novo patients with idiopathic Parkinson’s disease. J. Neural Transm.
(Vienna) 123, 601–610. doi: 10.1007/s00702-016-1557-y

Giladi, N., Shabtai, H., Simon, E., Biran, S., Tal, J., and Korczyn, A. (2000).
Construction of freezing of gait questionnaire for patients with Parkinsonism.
Parkinsonism Relat. Disord. 6, 165–170. doi: 10.1016/s1353-8020(99)00062-0

Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-
Martin, P., et al. (2008). Movement disorder society-sponsored revision of
the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation
and clinimetric testing results. Mov. Disord. 23, 2129–2170. doi: 10.1002/mds.
22340

Goldman, J. G., and Postuma, R. (2014). Premotor and nonmotor features of
Parkinson’s disease:. Curr. Opin. Neurol. 27, 434–441. doi: 10.1097/WCO.
0000000000000112

Gotham, A., Brown, R., and Marsden, C. (1986). Levodopa treatment may benefit
or impair ‘‘frontal’’ function in Parkinson’s disease. Parkinsonism Relat. Disord.
2, 970–971. doi: 10.1016/s0140-6736(86)90617-3

Frontiers in Human Neuroscience | www.frontiersin.org 11 January 2018 | Volume 11 | Article 642

https://doi.org/10.1038/nrneurol.2017.27
https://doi.org/10.1162/jocn.2009.21352
https://doi.org/10.1016/j.cub.2015.12.062
https://doi.org/10.1002/hbm.22344
https://doi.org/10.1002/hbm.22344
https://doi.org/10.1016/j.jns.2011.06.006
https://doi.org/10.1016/j.jns.2011.06.006
https://doi.org/10.1523/jneurosci.1554-07.2007
https://doi.org/10.1016/s0306-4522(99)00065-2
https://doi.org/10.1016/s0306-4522(99)00065-2
https://doi.org/10.1037//0022-006x.56.6.893
https://doi.org/10.1076/neur.9.1.70.14374
https://doi.org/10.1076/neur.9.1.70.14374
https://doi.org/10.1517/13543784.2014.869209
https://doi.org/10.1111/j.2044-8341.1974.tb02285.x
https://doi.org/10.1111/j.2044-8341.1974.tb02285.x
https://doi.org/10.1016/j.neuropsychologia.2010.03.015
https://doi.org/10.1016/j.neuropsychologia.2010.03.015
https://doi.org/10.3233/JPD-130221
https://doi.org/10.1001/jama.2014.3654
https://doi.org/10.1001/jama.2014.3654
https://doi.org/10.1016/j.neubiorev.2005.03.024
https://doi.org/10.1093/cercor/11.12.1136
https://doi.org/10.1016/s0028-3932(03)00117-9
https://doi.org/10.1162/jocn.2006.18.12.1973
https://doi.org/10.1038/sj.npp.1301153
https://doi.org/10.1038/sj.npp.1301153
https://doi.org/10.1162/jocn.2009.21227
https://doi.org/10.1093/brain/117.3.517
https://doi.org/10.1016/S0896-6273(03)00568-3
https://doi.org/10.1016/S1474-4422(06)70471-9
https://doi.org/10.1212/01.wnl.0000140706.52798.be
https://doi.org/10.1016/j.neuroimage.2012.10.072
https://doi.org/10.1016/j.parkreldis.2010.12.014
https://doi.org/10.1016/j.parkreldis.2010.12.014
https://doi.org/10.1016/j.jns.2012.07.015
https://doi.org/10.1016/j.parkreldis.2012.11.001
https://doi.org/10.1002/mds.23893
https://doi.org/10.1371/journal.pone.0058536
https://doi.org/10.1002/mds.22709
https://doi.org/10.1093/brain/awf192
https://doi.org/10.3389/fnins.2016.00374
https://doi.org/10.1176/appi.neuropsych.14030055
https://doi.org/10.1007/s00702-016-1557-y
https://doi.org/10.1016/s1353-8020(99)00062-0
https://doi.org/10.1002/mds.22340
https://doi.org/10.1002/mds.22340
https://doi.org/10.1097/WCO.0000000000000112
https://doi.org/10.1097/WCO.0000000000000112
https://doi.org/10.1016/s0140-6736(86)90617-3
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Yang et al. Dopaminergic Therapy Increases Go Timeouts

Gotham, A., Brown, R., and Marsden, C. (1988). ‘Frontal’ cognitive function
in patients with Parkinson’s disease ‘‘On’’ and ‘‘Off’’ levodopa. Brain 111,
299–321. doi: 10.1093/brain/111.2.299

Grober, E., and Sliwinski, M. (1991). Development and validation of a model
for estimating premorbid verbal intelligence in the elderly. J. Clin. Exp.
Neuropsychol. 13, 933–949. doi: 10.1080/01688639108405109

Haber, S. N., and Fudge, J. L. (1997). The primate substantia nigra and
VTA: integrative circuitry and function. Crit. Rev. Neurobiol. 11, 323–342.
doi: 10.1615/critrevneurobiol.v11.i4.40

Hamidovic, A., Kang, U. J., and de Wit, H. (2008). Effects of low to moderate
acute doses of pramipexole on impulsivity and cognition in healthy volunteers:.
J. Clin. Psychopharmacol. 28, 45–51. doi: 10.1097/jcp.0b013e3181602fab

Hanna-Pladdy, B., Pahwa, R., and Lyons, K. E. (2015). Paradoxical
effect of dopamine medication on cognition in Parkinson’s disease:
relationship to side of motor onset. J. Int. Neuropsychol. Soc. 21, 259–270.
doi: 10.1017/S1355617715000181

Herz, D. M., Haagensen, B. N., Christensen, M. S., Madsen, K. H., Rowe, J. B.,
Løkkegaard, A., et al. (2014). The acute brain response to levodopa heralds
dyskinesias in Parkinson disease. Ann. Neurol. 75, 829–836. doi: 10.1002/ana.
24138

Hiebert, N. M., Owen, A. M., Seergobin, K. N., and MacDonald, P. A. (2017).
Dorsal striatum mediates deliberate decision making, not late-stage, stimulus-
response learning. Hum. Brain Mapp. 38, 6133–6156. doi: 10.1002/hbm.
23817

Hiebert, N. M., Seergobin, K. N., Vo, A., Ganjavi, H., and MacDonald, P. A.
(2014a). Dopaminergic therapy affects learning and impulsivity in Parkinson’s
disease. Ann. Clin. Transl. Neurol. 1, 833–843. doi: 10.1002/acn3.128

Hiebert, N. M., Vo, A., Hampshire, A., Owen, A. M., Seergobin, K. N., and
MacDonald, P. A. (2014b). Striatum in stimulus-response learning via feedback
and in decision making. Neuroimage 101, 448–457. doi: 10.1016/j.neuroimage.
2014.07.013

Hirtz, D., Thurman, D. J., Gwinn-Hardy, K., Mohamed, M., Chaudhuri, A. R., and
Zalutsky, R. (2007). How common are the ‘‘common’’ neurologic disorders?
Neurology 68, 326–337. doi: 10.1212/01.WNL.0000252807.38124.a3

Hood, A. J., Amador, S. C., Cain, A. E., Briand, K. A., Al-Refai, A. H.,
Schiess, M. C., et al. (2007). Levodopa slows prosaccades and improves
antisaccades: an eye movement study in Parkinson’s disease. J. Neurol.
Neurosurg. Psychiatry 78, 565–570. doi: 10.1136/jnnp.2006.099754

Hughes, A. J., Daniel, S. E., Kilford, L., and Lees, A. J. (1992). Accuracy of clinical
diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of
100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181–184. doi: 10.1136/jnnp.55.
3.181

Humphries, M. D., and Prescott, T. J. (2010). The ventral basal ganglia, a selection
mechanism at the crossroads of space, strategy, and reward. Prog. Neurobiol.
90, 385–417. doi: 10.1016/j.pneurobio.2009.11.003

Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. J. Neurol.
Neurosurg. Psychiatry 79, 368–376. doi: 10.1136/jnnp.2007.131045

Jankowski, J., Scheef, L., Hüppe, C., and Boecker, H. (2009). Distinct striatal
regions for planning and executing novel and automated movement
sequences. Neuroimage 44, 1369–1379. doi: 10.1016/j.neuroimage.2008.
10.059

Jensen, J., Smith, A. J., Willeit, M., Crawley, A. P., Mikulis, D. J., Vitcu, I., et al.
(2007). Separate brain regions code for salience vs. valence during reward
prediction in humans. Hum. Brain Mapp. 28, 294–302. doi: 10.1002/hbm.
20274

Kish, S. J., Shannak, K., andHornykiewicz, O. (1988). Uneven pattern of dopamine
loss in the striatum of patients with idiopathic Parkinson’s disease. N. Engl.
J. Med. 318, 876–880. doi: 10.1056/nejm198804073181402

Kudlicka, A., Clare, L., and Hindle, J. V. (2011). Executive functions in Parkinson’s
disease: systematic review and meta-analysis. Mov. Disord. 26, 2305–2315.
doi: 10.1002/mds.23868

Lang, A. E., and Lees, A. (2002). Levodopa. Mov. Disord. 17, S23–S37.
doi: 10.1002/mds.5558

MacDonald, P. A., Ganjavi, H., Collins, D. L., Evans, A. C., and Karama, S. (2014).
Investigating the relation between striatal volume and IQ. Brain Imaging Behav.
8, 52–59. doi: 10.1007/s11682-013-9242-3

MacDonald, P. A., MacDonald, A. A., Seergobin, K. N., Tamjeedi, R., Ganjavi, H.,
Provost, J.-S., et al. (2011). The effect of dopamine therapy on ventral and dorsal

striatum-mediated cognition in Parkinson’s disease: support from functional
MRI. Brain 134, 1447–1463. doi: 10.1093/brain/awr075

MacDonald, P. A., and Monchi, O. (2011). Differential effects of dopaminergic
therapies on dorsal and ventral striatum in Parkinson’s disease: implications
for cognitive function. Parkinsons Dis. 2011:572743. doi: 10.4061/2011/
572743

MacDonald, A. A., Monchi, O., Seergobin, K. N., Ganjavi, H., Tamjeedi, R., and
MacDonald, P. A. (2013a). Parkinson’s disease duration determines effect of
dopaminergic therapy on ventral striatum function.Mov. Disord. 28, 153–160.
doi: 10.1002/mds.25152

MacDonald, A. A., Seergobin, K. N., Owen, A. M., Tamjeedi, R., Monchi, O.,
Ganjavi, H., et al. (2013b). Differential effects of Parkinson’s disease and
dopamine replacement onmemory encoding and retrieval. PLoS One 8:e74044.
doi: 10.1371/journal.pone.0074044

MacDonald, A. A., Seergobin, K. N., Tamjeedi, R., Owen, A. M., Provost, J.-S.,
Monchi, O., et al. (2014). Examining dorsal striatum in cognitive effort
using Parkinson’s disease and fMRI. Ann. Clin. Transl. Neurol. 1, 390–400.
doi: 10.1002/acn3.62

Macerollo, A., Chen, J., Korlipara, P., Foltynie, T., Rothwell, J., Edwards, M. J.,
et al. (2016). Dopaminergic treatment modulates sensory attenuation at the
onset of the movement in Parkinson’s disease: a test of a new framework for
bradykinesia.Mov. Disord. 31, 143–146. doi: 10.1002/mds.26493

Manza, P., Amandola, M., Tatineni, V., Li, C. R., and Leung, H.-C.
(2017). Response inhibition in Parkinson’s disease: a meta-analysis of
dopaminergic medication and disease duration effects. NPJ Parkinsons Dis.
3:23. doi: 10.1038/s41531-017-0024-2

Marzinzik, F., Herrmann, A., Gogarten, J., Lueschow, A., Weber, J.,
Schindlbeck, K., et al. (2015). Dysfunctional action control as a specific feature
of Parkinson’s disease. J. Neural Transm. 122, 1125–1133. doi: 10.1007/s00702-
014-1354-4

Masson, M. E. J., and Loftus, G. R. (2003). Using confidence intervals for
graphically based data interpretation. Can. J. Exp. Psychol. 57, 203–220.
doi: 10.1037/h0087426

Mestres-Missé, A., Turner, R., and Friederici, A. D. (2012). An anterior-posterior
gradient of cognitive control within the dorsomedial striatum. Neuroimage 62,
41–47. doi: 10.1016/j.neuroimage.2012.05.021

Nakashima, K., Shimoyama, R., and Takahashi, K. (1993). Paired choice reaction
tasks in patients with Parkinson’s disease. Acta Neurol. Scand. 87, 178–183.
doi: 10.1111/j.1600-0404.1993.tb04097.x

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V.,
Collin, I., et al. (2005). The montreal cognitive assessment, MoCA: a brief
screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699.
doi: 10.1111/j.1532-5415.2005.53221.x

Ness, V., and Beste, C. (2013). The role of the striatum in goal activation
of cascaded actions. Neuropsychologia 51, 2562–2571. doi: 10.1016/j.
neuropsychologia.2013.09.032

Noack, C., Schroeder, C., Heusser, K., and Lipp, A. (2014). Cardiovascular effects
of levodopa in Parkinson’s disease. Parkinsonism Relat. Disord. 20, 815–818.
doi: 10.1016/j.parkreldis.2014.04.007

O’Callaghan, C., Naismith, S. L., Hodges, J. R., Lewis, S. J. G., and Hornberger, M.
(2013). Fronto-striatal atrophy correlates of inhibitory dysfunction in
Parkinson’s disease versus behavioural variant frontotemporal dementia.
Cortex 49, 1833–1843. doi: 10.1016/j.cortex.2012.12.003

Palmeri, R., Lo Buono, V., Corallo, F., Foti, M., Di Lorenzo, G., Bramanti, P.,
et al. (2017). Nonmotor symptoms in parkinson disease: a descriptive
review on social cognition ability. J. Geriatr. Psychiatry Neurol. 30, 109–121.
doi: 10.1177/0891988716687872

Patton, J. H., Stanford, M. S., and Barratt, E. S. (1995). Factor structure of the
Barratt impulsiveness scale. J. Clin. Psychol. 51, 768–774. doi: 10.1002/1097-
4679(199511)51:6<768::aid-jclp2270510607>3.0.co;2-1

Pessiglione, M., Czernecki, V., Pillon, B., Dubois, B., Schüpbach, M., Agid, Y.,
et al. (2005). An effect of dopamine depletion on decision-making: the temporal
coupling of deliberation and execution. J. Cogn. Neurosci. 17, 1886–1896.
doi: 10.1162/089892905775008661

Peterson, D. S., Fling, B. W., Mancini, M., Cohen, R. G., Nutt, J. G., and
Horak, F. B. (2015). Dual-task interference and brain structural connectivity
in people with Parkinson’s disease who freeze. J. Neurol. Neurosurg. Psychiatry
86, 786–792. doi: 10.1136/jnnp-2014-308840

Frontiers in Human Neuroscience | www.frontiersin.org 12 January 2018 | Volume 11 | Article 642

https://doi.org/10.1093/brain/111.2.299
https://doi.org/10.1080/01688639108405109
https://doi.org/10.1615/critrevneurobiol.v11.i4.40
https://doi.org/10.1097/jcp.0b013e3181602fab
https://doi.org/10.1017/S1355617715000181
https://doi.org/10.1002/ana.24138
https://doi.org/10.1002/ana.24138
https://doi.org/10.1002/hbm.23817
https://doi.org/10.1002/hbm.23817
https://doi.org/10.1002/acn3.128
https://doi.org/10.1016/j.neuroimage.2014.07.013
https://doi.org/10.1016/j.neuroimage.2014.07.013
https://doi.org/10.1212/01.WNL.0000252807.38124.a3
https://doi.org/10.1136/jnnp.2006.099754
https://doi.org/10.1136/jnnp.55.3.181
https://doi.org/10.1136/jnnp.55.3.181
https://doi.org/10.1016/j.pneurobio.2009.11.003
https://doi.org/10.1136/jnnp.2007.131045
https://doi.org/10.1016/j.neuroimage.2008.10.059
https://doi.org/10.1016/j.neuroimage.2008.10.059
https://doi.org/10.1002/hbm.20274
https://doi.org/10.1002/hbm.20274
https://doi.org/10.1056/nejm198804073181402
https://doi.org/10.1002/mds.23868
https://doi.org/10.1002/mds.5558
https://doi.org/10.1007/s11682-013-9242-3
https://doi.org/10.1093/brain/awr075
https://doi.org/10.4061/2011/572743
https://doi.org/10.4061/2011/572743
https://doi.org/10.1002/mds.25152
https://doi.org/10.1371/journal.pone.0074044
https://doi.org/10.1002/acn3.62
https://doi.org/10.1002/mds.26493
https://doi.org/10.1038/s41531-017-0024-2
https://doi.org/10.1007/s00702-014-1354-4
https://doi.org/10.1007/s00702-014-1354-4
https://doi.org/10.1037/h0087426
https://doi.org/10.1016/j.neuroimage.2012.05.021
https://doi.org/10.1111/j.1600-0404.1993.tb04097.x
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://doi.org/10.1016/j.neuropsychologia.2013.09.032
https://doi.org/10.1016/j.neuropsychologia.2013.09.032
https://doi.org/10.1016/j.parkreldis.2014.04.007
https://doi.org/10.1016/j.cortex.2012.12.003
https://doi.org/10.1177/0891988716687872
https://doi.org/10.1002/1097-4679(199511)51:6<768::aid-jclp2270510607>3.0.co;2-1
https://doi.org/10.1002/1097-4679(199511)51:6<768::aid-jclp2270510607>3.0.co;2-1
https://doi.org/10.1162/089892905775008661
https://doi.org/10.1136/jnnp-2014-308840
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Yang et al. Dopaminergic Therapy Increases Go Timeouts

Pine, A., Seymour, B., Roiser, J. P., Bossaerts, P., Friston, K. J., Curran, H. V., et al.
(2009). Encoding ofmarginal utility across time in the human brain. J. Neurosci.
29, 9575–9581. doi: 10.1523/JNEUROSCI.1126-09.2009

Poletti, M., and Bonuccelli, U. (2013). Acute and chronic cognitive effects of
levodopa and dopamine agonists on patients with Parkinson’s disease: a review.
Ther. Adv. Psychopharmacol. 3, 101–113. doi: 10.1177/2045125312470130

Pontone, G., Williams, J. R., Bassett, S. S., and Marsh, L. (2006). Clinical features
associated with impulse control disorders in Parkinson disease. Neurology 67,
1258–1261. doi: 10.1212/01.wnl.0000238401.76928.45

Pringsheim, T., Jette, N., Frolkis, A., and Steeves, T. D. L. (2014). The prevalence
of Parkinson’s disease: a systematic review and meta-analysis.Mov. Disord. 29,
1583–1590. doi: 10.1002/mds.25945

Rakshi, J. S., Uema, T., Ito, K., Bailey, D. L., Morrish, P. K., Ashburner, J.,
et al. (1999). Frontal, midbrain and striatal dopaminergic function in early
and advanced Parkinson’s disease A 3D [18F]dopa-PET study. Brain 122,
1637–1650. doi: 10.1093/brain/122.9.1637

Rieger, M., Gauggel, S., and Burmeister, K. (2003). Inhibition of ongoing responses
following frontal, nonfrontal, and basal ganglia lesions. Neuropsychology 17,
272–282. doi: 10.1037/0894-4105.17.2.272

Righi, S., Viggiano, M. P., Paganini, M., Ramat, S., and Marini, P. (2007).
Recognition of category-related visual stimuli in Parkinson’s disease: before
and after pharmacological treatment. Neuropsychologia 45, 2931–2941.
doi: 10.1016/j.neuropsychologia.2007.06.002

Robertson, B. D., Hiebert, N. M., Seergobin, K. N., Owen, A. M., and
MacDonald, P. A. (2015). Dorsal striatum mediates cognitive control,
not cognitive effort per se, in decision-making: an event-related fMRI
study. Neuroimage 114, 170–184. doi: 10.1016/j.neuroimage.2015.
03.082

Ross, T. P., Calhoun, E., Cox, T., Wenner, C., Kono, W., and Pleasant, M. (2007).
The reliability and validity of qualitative scores for the controlled oral word
association test. Arch. Clin. Neuropsychol. 22, 475–488. doi: 10.1016/j.acn.2007.
01.026

Rowe, J. B., Hughes, L., Ghosh, B. C. P., Eckstein, D., Williams-Gray, C. H.,
Fallon, S., et al. (2008). Parkinson’s disease and dopaminergic
therapy—differential effects on movement, reward and cognition. Brain
131, 2094–2105. doi: 10.1093/brain/awn112

Rubia, K., Russell, T., Overmeyer, S., Brammer, M. J., Bullmore, E. T., Sharma, T.,
et al. (2001). Mapping motor inhibition: conjunctive brain activations across
different versions of Go/No-Go and stop tasks. Neuroimage 13, 250–261.
doi: 10.1006/nimg.2000.0685

Shook, S. K., Franz, E. A., Higginson, C. I., Wheelock, V. L., and Sigvardt, K. A.
(2005). Dopamine dependency of cognitive switching and response repetition
effects in Parkinson’s patients. Neuropsychologia 43, 1990–1999. doi: 10.1016/j.
neuropsychologia.2005.03.024

Simões-Franklin, C., Hester, R., Shpaner, M., Foxe, J. J., and Garavan, H.
(2010). Executive function and error detection: the effect of motivation on
cingulate and ventral striatum activity. Hum. Brain Mapp. 31, 458–469.
doi: 10.1002/hbm.20879

Starkstein, S. E., Mayberg, H. S., Preziosi, T. J., Andrezejewski, P., Leiguarda, R.,
and Robinson, R. G. (1992). Reliability, validity, and clinical correlates of
apathy in Parkinson’s disease. J. Neuropsychiatry Clin. Neurosci. 4, 134–139.
doi: 10.1176/jnp.4.2.134

Swainson, R., Rogers, R. D., Sahakian, B. J., Summers, B. A., Polkey, C. E.,
and Robbins, T. W. (2000). Probabilistic learning and reversal deficits in
patients with Parkinson’s disease or frontal or temporal lobe lesions: possible
adverse effects of dopaminergic medication. Neuropsychologia 38, 596–612.
doi: 10.1016/s0028-3932(99)00103-7

Thoma, P., Koch, B., Heyder, K., Schwarz, M., and Daum, I. (2008). Subcortical
contributions to multitasking and response inhibition. Behav. Brain Res. 194,
214–222. doi: 10.1016/j.bbr.2008.07.016

Vaillancourt, D. E., Schonfeld, D., Kwak, Y., Bohnen, N. I., and Seidler, R.
(2013). Dopamine overdose hypothesis: evidence and clinical implications.
Mov. Disord. 28, 1920–1929. doi: 10.1002/mds.25687

Vo, A., Hiebert, N. M., Seergobin, K. N., Solcz, S., Partridge, A., and
MacDonald, P. A. (2014). Dopaminergic medication impairs feedback-based
stimulus-response learning but not response selection in Parkinson’s disease.
Front. Hum. Neurosci. 8:784. doi: 10.3389/fnhum.2014.00784

Vo, A., Seergobin, K. N., and MacDonald, P. A. (2017). Effects of levodopa on
stimulus-response learning versus response selection in healthy young adults.
Behav. Brain Res. 317, 553–561. doi: 10.1016/j.bbr.2016.10.019

Voon, V., Fernagut, P.-O., Wickens, J., Baunez, C., Rodriguez, M., Pavon, N.,
et al. (2009). Chronic dopaminergic stimulation in Parkinson’s disease:
from dyskinesias to impulse control disorders. Lancet Neurol. 8, 1140–1149.
doi: 10.1016/S1474-4422(09)70287-X

Weintraub, D., David, A. S., Evans, A. H., Grant, J. E., and Stacy, M. (2014).
Clinical spectrum of impulse control disorders in Parkinson’s disease. Mov.
Disord. 30, 121–127. doi: 10.1002/mds.26016

Weintraub, D., Mamikonyan, E., Papay, K., Shea, J. A., Xie, S. X., and
Siderowf, A. (2012). Questionnaire for impulsive-compulsive disorders in
Parkinson’s disease-rating scale. Mov. Disord. 27, 242–247. doi: 10.1002/mds.
24023

Weintraub, D., Simuni, T., Caspell-Garcia, C., Coffey, C., Lasch, S., Siderowf, A.,
et al. (2015). Cognitive performance and neuropsychiatric symptoms in early,
untreated Parkinson’s disease. Mov. Disord. 30, 919–927. doi: 10.1002/mds.
26170

World Medical Association. (2013). World medical association declaration of
helsinki: ethical principles for medical research involving human subjects.
JAMA 310, 2191–2194. doi: 10.1001/jama.2013.281053

Wüllner, U., Kassubek, J., Odin, P., Schwarz, M., Naumann, M., Häck, H.-J.,
et al. (2010). Transdermal rotigotine for the perioperative management of
Parkinson’s disease. J. Neural Transm. 117, 855–859. doi: 10.1007/s00702-010-
0425-4

Wylie, S. A., van den Wildenberg, W., Ridderinkhof, K. R., Claassen, D. O.,
Wooten, G. F., and Manning, C. A. (2012). Differential susceptibility
to motor impulsivity among functional subtypes of Parkinson’s disease.
J. Neurol. Neurosurg. Psychiatry 83, 1149–1154. doi: 10.1136/jnnp-2012
-303056

Yang, X. Q., Glizer, D., Vo, A., Seergobin, K. N., and MacDonald, P. A. (2016).
Pramipexole increases Go timeouts but Not No-go errors in healthy volunteers.
Front. Hum. Neurosci. 10:523. doi: 10.3389/fnhum.2016.00523

Zandbelt, B. B., and Vink, M. (2010). On the role of the striatum in response
inhibition. PLoS One 5:e13848. doi: 10.1371/journal.pone.0013848

Zink, C. F., Pagnoni, G., Martin, M. E., Dhamala, M., and Berns, G. S. (2003).
Human striatal response to salient nonrewarding stimuli. J. Neurosci. 23,
8092–8097.

Zuckerman, M., Eysenck, S. B., and Eysenck, H. J. (1978). Sensation seeking in
England America: cross-cultural, age, and sex comparisons. J. Consult. Clin.
Psychol. 46, 139–149. doi: 10.1037//0022-006x.46.1.139

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Yang, Lauzon, Seergobin and MacDonald. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Human Neuroscience | www.frontiersin.org 13 January 2018 | Volume 11 | Article 642

https://doi.org/10.1523/JNEUROSCI.1126-09.2009
https://doi.org/10.1177/2045125312470130
https://doi.org/10.1212/01.wnl.0000238401.76928.45
https://doi.org/10.1002/mds.25945
https://doi.org/10.1093/brain/122.9.1637
https://doi.org/10.1037/0894-4105.17.2.272
https://doi.org/10.1016/j.neuropsychologia.2007.06.002
https://doi.org/10.1016/j.neuroimage.2015.03.082
https://doi.org/10.1016/j.neuroimage.2015.03.082
https://doi.org/10.1016/j.acn.2007.01.026
https://doi.org/10.1016/j.acn.2007.01.026
https://doi.org/10.1093/brain/awn112
https://doi.org/10.1006/nimg.2000.0685
https://doi.org/10.1016/j.neuropsychologia.2005.03.024
https://doi.org/10.1016/j.neuropsychologia.2005.03.024
https://doi.org/10.1002/hbm.20879
https://doi.org/10.1176/jnp.4.2.134
https://doi.org/10.1016/s0028-3932(99)00103-7
https://doi.org/10.1016/j.bbr.2008.07.016
https://doi.org/10.1002/mds.25687
https://doi.org/10.3389/fnhum.2014.00784
https://doi.org/10.1016/j.bbr.2016.10.019
https://doi.org/10.1016/S1474-4422(09)70287-X
https://doi.org/10.1002/mds.26016
https://doi.org/10.1002/mds.24023
https://doi.org/10.1002/mds.24023
https://doi.org/10.1002/mds.26170
https://doi.org/10.1002/mds.26170
https://doi.org/10.1001/jama.2013.281053
https://doi.org/10.1007/s00702-010-0425-4
https://doi.org/10.1007/s00702-010-0425-4
https://doi.org/10.1136/jnnp-2012-303056
https://doi.org/10.1136/jnnp-2012-303056
https://doi.org/10.3389/fnhum.2016.00523
https://doi.org/10.1371/journal.pone.0013848
https://doi.org/10.1037//0022-006x.46.1.139
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Dopaminergic therapy increases Go timeouts in the Go/No-Go task in patients with parkinson’s disease
	Citation of this paper:

	Dopaminergic Therapy Increases Go Timeouts in the Go/No-Go Task in Patients with Parkinson's Disease
	INTRODUCTION
	MATERIALS AND METHODS
	Participants
	Apparatus
	Procedures
	Pre-task Assessments
	Go No-Go Task

	Data Analysis

	RESULTS
	Demographic, Baseline Screening Cognitive, Affective and Physiological Measures
	Go No-Go Task

	DISCUSSION
	Effects of Dopaminergic Therapy on Go/No-Go Performance
	Effects of Dopaminergic Therapy on Cognition Including Impulsivity

	CONCLUSION
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	SUPPLEMENTARY MATERIAL
	REFERENCES


