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SUMMARY

The activity of individual sensory neurons can be pre-
dictive of an animal’s choices. These decision sig-
nals arise from network properties dependent on
feedforward and feedback inputs; however, the rela-
tive contributions of these inputs are poorly under-
stood. We determined the role of feedforward
pathways to decision signals in MT by recording
neuronal activity while monkeys performed motion
and depth tasks. During each session, we reversibly
inactivated V2 and V3, which provide feedforward
input to MT that conveys more information about
depth than motion. We thus monitored the choice-
related activity of the same neuron both before and
during V2/V3 inactivation. During inactivation, MT
neurons became less predictive of decisions for the
depth task but not the motion task, indicating that a
feedforward pathway that gives rise to tuning prefer-
ences also contributes to decision signals. We show
that our data are consistent with V2/V3 input
conferring structured noise correlations onto the
MT population.

INTRODUCTION

How sensory information is used to guide decisions is a long-

standing question in cognitive and systems neuroscience. The

well-mapped visual response properties of the middle temporal

visual area (MT) in the macaque monkey (reviewed in Born and

Bradley, 2005) have provided a fertile test bed for linking sensory

signals to perceptual decisions (reviewed in Parker and News-

ome, 1998). Such a linkage has now been firmly established be-

tweenMT neurons and tasks involving visual cues for motion and

depth using a variety of approaches, ranging from lesions/inac-

tivation (Chowdhury and DeAngelis, 2008; Newsome and Paré,

1988) to microstimulation (DeAngelis et al., 1998; Krug et al.,

2013; Salzman et al., 1990) to measuring correlations between

the activity of single neurons and both sensory stimuli (Britten

et al., 1992; Uka and DeAngelis, 2003) and behavior (Britten

et al., 1996; Dodd et al., 2001; Parker et al., 2002; Uka and DeAn-

gelis, 2004). The presence of this latter type of correlation means

that an animal’s choices during a perceptual task can be pre-

dicted, albeit imperfectly, by measuring the activity of single

MT neurons, a relationship referred to as either ‘‘choice probabil-

ity’’ (CP) or ‘‘detect probability’’ (DP), depending on the nature of

the task. These signals, subsequently shown to be present in a

number of brain areas during a variety of perceptual tasks (see

Haefner et al., 2013 and Nienborg et al., 2012 for discussion),

have figured prominently in models of sensory decision making

(Haefner et al., 2013; Shadlen et al., 1996).

More recently, neurophysiologists have sought to address the

question of how and where these decision-related signals arise.

Early studies focused on bottom-up sources, such as shared

sensory inputs (Shadlen et al., 1996); however, more recent ex-

periments have made it clear that top-down factors, such as

attention, also play an important role (Cohen and Newsome,

2009; Dodd et al., 2001; Nienborg and Cumming, 2009, 2010).

A top-down contribution has been observed as early in the visual

hierarchy as V2 (Nienborg and Cumming, 2009; DeAngelis et al.,

1998; Salzman et al., 1990).

On the other hand, many of MT’s most salient stimulus-related

response properties appear to be directly inherited from its in-

puts (Movshon and Newsome, 1996; Pack et al., 2006; Priebe

et al., 2006). Individual MT neurons are tuned to both direction

ofmotion and stereoscopic depth of visual stimuli, and it appears

that information about these two features arrives via segregated

anatomical pathways: a direct projection from V1 provides pre-

dominantly motion information (Movshon and Newsome, 1996)

while an indirect input through V2 and V3 provides mainly binoc-

ular disparity information (Figure 1A) (Ponce et al., 2008, 2011). In

the latter study, it was shown that reversibly inactivating V2 and

V3 selectively impaired the tuning of MT neurons for binocular

disparity while leaving tuning for direction of motion largely

intact.

We exploited our ability to selectively and reversibly inactivate

the indirect pathways to MT in order to determine how feedfor-

ward input contributes to decision-related activity of individual

MT neurons. We hypothesized that in a feedforward framework

the same inputs that carry information about a task-relevant

stimulus attribute will also give rise to decision-related signals
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in this task. Insofar as inputs from V2/V3 are important sources

of depth, but not motion, signals, we should see a reduction in

decision-related activity in MT during a perceptual task depen-

dent on depth but not one dependent on motion. To test our

hypothesis, we trained two macaque monkeys to perform mo-

tion and depth detection tasks while we reversibly inactivated

V2/V3. While animals performed the tasks, we recorded the ac-

tivity of single MT neurons, which allowed us to monitor the

changes in choice-related activity of the same neuron both

before and during inactivation. We found that V2/V3 inactiva-

tion reduced the selectivity of MT neurons for binocular

disparity—an important cue for depth—more so than the selec-

tivity for direction of motion, as reported previously (Ponce

et al., 2008; Haefner et al., 2013; Shadlen et al., 1996). In addi-

tion, V2/V3 inactivation reduced MT neurons’ correlation with

behavioral reports during the depth detection task but not dur-

ing the motion detection task, indicating that this feedforward

input has a significant and modality-specific contribution to

choice-related activity in MT. Finally, we discuss our results

in the context of a computational feedforward framework and

show that they can be explained by assuming that detection

decisions are based on the comparison of the activity of two

neural pools.

RESULTS

Two macaque monkeys performed reaction-time motion and

depth detection tasks in which they were rewarded for detect-

ing the onset of coherent motion or depth in a noisy random

dot stimulus (Figure 1B). Signal onset was randomly timed,

and animals were rewarded for responding within 650 ms;

otherwise, the trial was classified as a ‘‘miss’’ and no reward

was given. The two tasks were interleaved in blocks of 25 tri-

als, and the monkeys had to correctly complete two trials at

the easiest signal strength at the start of each block before

more difficult trials were introduced. Each monkey was exper-

imentally naive before these experiments began and thor-

oughly trained to perform both tasks before we began inacti-

vating V2/V3.

We recorded the activity of 75 well-isolated single neurons in

MT both immediately before and during inactivation of V2/V3

(34 in monkey S; 41 in monkey Q). Task stimuli were matched

to the receptive fields of each neuron, which were confined to

the ‘‘scotoma,’’ the part of the visual field previously shown to

be affected by cooling (Figure 2C of Ponce et al., 2008). The

experimental timeline is shown in Figure 1C. Each day, we initi-

ated cooling after mapping the neuron’s receptive field proper-

ties and collecting neuronal and behavioral data during both

tasks at physiological temperature (‘‘pre-cool’’; typically

requiring one hour). We repeated these measurements during

the ‘‘cool’’ phase, which lasted at most 1 hr, and, when possible,

again during ‘‘recovery’’ when the temperature returned to within

�5�C of physiological temperature.

Effects of V2/V3 Inactivation onBehavioral Performance
In order for us to reliably measure choice-related activity, ani-

mals had to be actively engaged in both tasks. Although mon-

keys’ behavioral performance was impaired during both tasks

during inactivation, several lines of evidence indicate that they

continued to fully engage in and perform both tasks quite well.

In the example session in Figure 2A, the percent increase in

behavioral thresholds was 56% and 29% during the depth and

motion tasks, respectively (depth thresholds: 27% pre-cool,

42% cool; motion thresholds: 24% pre-cool, 31% cool). During

this session and others, both monkeys continued to rely on stim-

ulus information during inactivation, evidenced by the sigmoidal

relationship between performance and signal strength. More

than 90% of psychometric functions were well fit by a sigmoid

during both tasks in all conditions (deviance cumulative proba-

bility <0.95; Wichmann and Hill, 2001). Across sessions, behav-

ioral performance was typically impaired somewhat during both

tasks (Figures 2B and 2D). We summarized the effect on

fixation
500 ms noise

500-5,500 ms

time

signal 
650 ms

Depth Detection Task

MT

V1

V2/V3

coolpre-cool recovery

Time (hours)

10°C

tasksRF tasksRFtasksRF

1 20 3

37°C

Motion Detection Task

A

B

C

Figure 1. Experimental Design

(A) Schematic of the two major cortical inputs to MT. The cube icon indicates

data related to depth, and the arrows icon indicates data related to motion

throughout this paper.

(B) Behavioral task design. Each panel depicts a phase of the trial. The gray

region indicates the inactivation ‘‘scotoma,’’ the dotted circle indicates the

edges of a neuron’s receptive field, and the solid circle depicts the extent of the

visual stimulus.

(C) Experimental timeline. ‘‘RF’’ indicates receptive field mapping, and ‘‘tasks’’

refers to the epoch in which the animal performed the motion and depth tasks.
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behavioral threshold in each taskwith an ‘‘effect index’’ (EI) of the

following form:

EI=
cool � pre

pre
(Equation 1)

where pre and cool refer to the behavioral threshold before and

during cooling, respectively. One of the two monkeys (S) was

consistently more impaired during the depth task (median

paired difference in EI, depth � motion = 0.29; p = 0.0005,

sign test; see Table S1 for EI values). The other animal (Q)

tended to be slightly more affected during the motion task,

but the paired difference between tasks was not significant (me-

dian paired difference in EI = �0.14; p = 0.4, sign test). We

discuss the difference between animals in the context of the

changes in the neuronal representation of depth and motion in

MT in the next section.

Additional evidence suggests no change in motivation or de-

gree of guessing. Fitted lapse rates never exceeded 5%, and

we observed only small changes in fixation breaks and false

alarms in both monkeys (Table S1). During 22 sessions we

included a general control for motivation in which, on alternating

trials, we measured behavioral performance in the visual field

ipsilateral to the location of the cryoloops (Figures 2C and 2E).

Median behavioral EIs in this part of the visual field were

%0.05 (Table S1), indicating that behavioral effects of cooling

were restricted to the scotoma and therefore not due to a generic

reduction in motivation.

Behavioral performance was stable within and across cooling

sessions, suggesting no change in strategy.Wedid not find a sig-

nificant difference in performance between the first and last third

of each cooling session in either animal: themediandifferences in

thresholds were less than 3.5% for both animals during both

tasks, and these differences were not significantly different

from zero (sign test p values: depth: 0.24monkey S, 0.49monkey

Q; motion: 0.38 monkey S, 0.54 monkey Q). The behavioral ef-

fects were also stable across several months of repeated inacti-

vation (FigureS1). As in theexample in Figure2A,performance re-

turned to pre-cool values following recovery on all days on which

it was tested. Themedian difference in behavioral thresholdsdur-

ing recovery and pre-cool period was less than 1% in both ani-

mals during both tasks (n = 12 for each animal, data not shown).

Effects of V2/V3 Inactivation on the Representation
of Depth and Motion in MT
At the neuronal level, we found that V2/V3 inactivation led to

larger impairments of binocular disparity processing than direc-

tion processing in MT of both animals. We computed each neu-

ron’s neurometric performance (NP), which describes how well

each neuron can perform the signal detection task and quanti-

fied the change in NPwith an effect index, as described by Equa-

tion 1. NP values were first converted to distances from 0.5, the

chance value (e.g., pre = NP� 0.5). NPwas impaired during both

tasks but more so during the depth task in both monkeys (Fig-

ures 3A and 3B). The difference between depth and motion EI

was significant in the combined data and in monkey S, but not

in monkey Q (difference in medians, EIdepth � EImotion: com-

bined = �0.13, p = 0.03, Wilcoxon rank-sum test; Monkey S =

�0.16, p = 0.03; Monkey Q = �0.1, p = 0.24; see Table S2 for

A

B

C

D

Figure 2. Behavioral Performance

(A) Sample behavioral performance during the depth andmotion task is shown

on the left and right, respectively. Psychometric thresholds are shown in the

upper right corner.

(B) Comparison of pre-cool and cool psychometric thresholds during the

depth (left) and motion (right) tasks, color-coded by monkey. Error bars are

95% confidence intervals on the threshold from bootstraps on the function fit,

shown for every fifth data point. Note log-log axes.

(C) Psychometric thresholds for performance in the visual hemifield ipsilateral

to the cryoloops, where we did not expect effects of cooling. Same conven-

tions as in (B).

(D) Paired comparison of the effect indices (EIs) (see text) in the scotoma.

(E) Histogram of changes in EI in the ipsilateral visual field.

See also Table S1 and Figure S1.
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EI values). These effects are similar to the behavioral impair-

ments of each animal, reinforcing the idea that MT activity is

closely linked to performance on these tasks. Specifically, the

larger impairment in depth task NP in monkey S is consistent

with this animal’s larger behavioral impairment during the depth

task and the more similar effects of cooling on monkey Q’s NP in

the two tasks is consistent with the similar behavioral impairment

in the two tasks, although monkey Q’s behavioral performance

was affected slightly more during the motion task while NP

was affected slightly more during the depth task. It is important

to note, however, that both differences were small and in neither

case could we reject the null hypothesis of no difference (at

alpha = 0.05). We did not find a significant relationship between

the magnitude of the EI and the behavioral impairment across

sessions during either task in either animal (Figure S2). Although

we believe that neurometric impairments in MT are largely

responsible for the animals’ behavioral decrements, the change

in a single neuron’s neurometric threshold probably only cap-

tures a small fraction of the variability of the global cooling effects

on a given day.

Basic tuning for binocular disparity and direction of motion fol-

lowed a similar pattern, but with a more pronounced difference

between the effects on binocular disparity and direction tuning,

consistent with a previous report using different animals (Figures

3C and 3D) (Ponce et al., 2008). We compared tuning with a

discrimination index (DI) (Ponce et al., 2008; Prince et al.,

2002). Values near one indicate the neurons are strongly modu-

lated by the stimulus while small values suggest modulations are

simply due to noise. Themedian change in DI (cool� pre-cool) in

data combined across monkeys was �0.14 for binocular

disparity and �0.03 for direction tuning with a median pairwise

difference (depth � motion) of �0.08, which was significantly

different from zero (sign test, p = 3.7 3 10�8; see Table S2).

Notably, monkey Q exhibited a larger impairment in direction

tuning than monkey S (difference in median direction tuning

impairment = 0.05, p = 0.0007, Wilcoxon’s rank-sum test), a

pattern consistent with the neurometric and behavioral impair-

ment differences between the animals.

Choice-Related Activity in MT Is Selectively Reduced
during the Depth Task
We measured the degree to which neuronal activity in MT was

predictive of behavioral reports by computing the DP, a metric

that compares response distributions between trials on which

the signal onset was detected and those on which it wasmissed.

We computed the time course of DP from firing rates aligned to

the signal onset and combined data across the population of re-

corded MT neurons in both animals (Figure 4A). The population

DP computed in a 375mswindow following signal onset (gray re-

gion) decreased by 40% during the depth task between pre-cool

and cool conditions from 0.60 to 0.56 (p = 0.001, resampling test

for equal pre-cool and cool DPs). The change in motion DP was

smaller and not statistically significant (from 0.58 to 0.59, p =

0.8). The DP change was significantly different between the

two tasks, as determined by a separate bootstrap procedure

that compared the distributions of re-sampled effect magnitudes

(p = 0.003). Results were similar for each animal considered indi-

vidually (Figure 4B; Table S3).

We observed the same pattern when we computed DP for

each neuron (Figure 4C): the median DP during the depth task

changed from 0.57 to 0.55 (p = 0.03) with cooling and during

the motion task from 0.58 to 0.59 (p = 0.64). On a neuron-by-

neuron basis we found no relationship between the changes in

DP during the motion and depth tasks, consistent with the inter-

pretation that individual neurons’ DP changed independently for

the two tasks (r = 0.07, p = 0.56). Further, we found no significant

relationship between the change in DP and changes in behavior

or neurometric performance during either task (DDP versus Dbe-

havior: depth r = �0.01, p = 0.92, motion r = 0.08, p = 0.51; DDP

versus DNP: depth r = 0.09, p = 0.48, motion r =�0.10, p = 0.40).

The selective reduction in depth DP was reversible within sin-

gle sessions. For the nine units for which we collected recovery

data, DP returned close to pre-cool values during the depth task

(Figure 4D), demonstrating that the changes in DP during

inactivation were reversible on a similar timescale (depth

A

B

C D

Figure 3. Neuronal Effects of Inactivation

(A) Each neuron’s neurometric performance (NP) during the depth (left) and

motion (right) tasks, color-coded by monkey. Error bars are the SEM, shown

for every fifth data point.

(B) Histogram of NP EIs combined across monkeys (left) and for each monkey

individually (right two panels). Depth task effects shown in black and motion

task effects shown in gray. Triangles indicate medians.

(C) Tuning DIs for binocular disparity (left) and direction (right) tuning. Same

conventions as in (A).

(D) Paired comparison of the effect of cooling between the direction and

binocular disparity tuning DI. Same marker conventions as in (A).

See also Table S2 and Figure S2.
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DP: pre-cool = 0.65, cool = 0.57, recovery = 0.63, p = 0.25 for dif-

ference in DP between pre-cool and recovery; motion DP pre-

cool = 0.59, cool = 0.59, recovery = 0.60, p = 0.61).

V2/V3 Inactivation Reduces Spiking Variability in MT
Although MT neurons remained robustly visually responsive dur-

ing cooling, visually evoked responses decreased by an average

of 42% (Figure 5A), consistent with the inactivation of a major

excitatory input. Further, although cortical neurons typically

exhibit a stereotyped relationship between the mean and vari-

ance of the spike count across trials (‘‘Fano factor,’’ Geisler

and Albrecht, 1997; Nawrot et al., 2008; Shadlen and Newsome,

1998; Tolhurst et al., 1981), this relationship changed dramati-

cally in MT neurons during inactivation (Figures 5A and 5B).

These data were similar between the two animals and were

therefore combined. The raw Fano factor (FF) computed in 50-

ms bins is shown aligned to stimulus onset and, separately,

signal onset for each task in Figure 5A. The FF was lower during

inactivation than during pre-cool throughout the trial during both

tasks, including during the stimulus-driven decline in FF

(Churchland et al., 2010). We computed the FF for each neuron

in a 250-ms time window after signal onset (see Experimental

Procedures). Unlike other cooling-induced effects, the decline

in FF was not significantly different between tasks (median

paired difference = 0.02, p = 0.76, Wilcoxon signed-rank test),

so we pooled these data for subsequent analyses. The median

A

B

C D Figure 4. Detect Probability

(A) Time course of detect probability (DP) ± SEM,

aligned to signal onset at t = 0. The gray region

indicates the time window used to calculate the

population DP reported in the text, the individual

neurons’ DP in (C) and the DP in (D). Only neurons

that contributed data to both tasks and conditions

(pre-cool and cool) are included in this analysis.

(B) DP time course shown separately for each

monkey.

(C) DP for each of the 75 neurons, color-coded by

monkey. Filled symbols indicate DPs that were

statistically significantly different between pre-cool

and cool conditions.

(D) Grand DP ± SEM computed in the time window

indicated by the gray region in (A). Note only the

nine neurons for which we had data for all three

conditions were included here.

See also Table S3 and Figure S3.

FF was 1.0 before cooling and 0.67 during

cooling, a reduction that was significantly

different from zero in a paired comparison

(p = 3.6 3 10�17, sign test). The decrease

in FF was independent of differences in

the mean spike count; it persisted when

we compared the FF for spike counts

ranging from five to twelve (gray region

in Figure 5B), which contained approxi-

mately the same number of data points

in the two conditions (pre-cool FF = 1. 0,

cool FF = 0.61; p = 1.8 3 10�15, sign

test). The implications of reduced variability in MT for decision-

related activity are elaborated upon in the Discussion.

Possible Mechanisms for the Changes in Choice-
Related Activity in MT
Theoretical work has shown that choice-related activity depends

both on the structure of correlated variability among the neurons

under study (Shadlen et al., 1996; Nienborg and Cumming, 2010;

Haefner et al., 2013) and on the way neurons’ activity is read out

by decision-making areas (Haefner et al., 2013; Parker and

Newsome, 1998). Several lines of evidence indicate that our re-

sults are most consistent with a change in noise correlations in

MT and not a change in readout weights. Although animals can

quickly alternate between strategies—i.e., readout weights—

within a day’s session (e.g., Cohen and Newsome, 2009; Sasaki

and Uka, 2009), these strategies must first be learned via a

mechanism akin to reinforcement learning over the course of

weeks or months of training (Law and Gold, 2008, 2009; Uka

et al., 2012; Movshon and Newsome, 1996; Ponce et al.,

2008). We saw no evidence of the gradual improvements in per-

formance that would accompany such learning either within or

across sessions (Figure S1), even though we monitored behav-

ioral performance of both animals from the first cooling day.

We also measured DPs as early as the fifth cooling day and in

34 sessions thereafter in one of the animals (Monkey S) and

found no trend or significant relationship between cool DPs

212 Neuron 87, 208–219, July 1, 2015 ª2015 Elsevier Inc.



during either task and session number (Figure S3, regression

slope < j0.001j, p > 0.7 in both cases; see legend for values).

There was no relationship between DP and session number in

the other animal in which we first measured DPs in the fifteenth

cooling session and in 42 sessions thereafter (regression slope <

j0.001j, p > 0.1 in all cases; see Figure S3 for values). Thus, we

saw no evidence that behavior or DP changed gradually, as

would be expected with a learning process.

Instead, it is more likely that our results can be explained by a

change in the correlations among MT neurons resulting from in-

activating a proportion of their inputs. Cooling can affect the cor-

relations among MT responses in two ways: (1) by altering the

input correlations that MT inherits from V1 and V2/V3 and (2)

by reducing the firing rate of MT neurons. We first address why

the latter cannot account for our result. de la Rocha et al.

(2007) reported that a reduction in the firing rate implies a reduc-

tion in the magnitude of the output (or response) correlations

even as input correlations are unchanged. The relationship pre-

sented by de la Rocha et al. (2007) allows us to estimate the over-

all reduction in the correlations between MT responses as a

direct result of the observed reduction in firing rate to be about

7%, which translates into a reduction in DPs of roughly 4% (Sup-

plemental Experimental Procedures; Figure S4). Thus, the

reduction in MT firing rate can only explain a small part of the

40% reduction in DPs that we observed in the depth task.

Excluding the possibility that the decrease in DP is due to a

reduction inMT firing rate leads to the hypothesis that cooling re-

duces the input correlations conferred by V2/V3. While we

acknowledge that cooling V2/V3 may also indirectly affect feed-

back to MT or V1, we will show that our data can be explained by

our manipulation of the direct feedforward pathway alone.

Although the nature of the readout of sensory neurons in

detection tasks is currently unknown, our results are consistent

with a model in which the subject’s decision is based on

comparing the average response of a population of sensory neu-

rons that increase their firing in response to the target stimulus

(called ‘‘pref pool’’) to the average response of neurons that

either decrease their response to or are indifferent to the target

stimulus (‘‘null pool’’)—in analogy to models of discrimination

tasks (Link and Heath, 1975; Shadlen et al., 1996). Such a

readout strategy has the benefit of being able to subtract out

common sources of variability and thereby increase perfor-

mance compared to one-pool models (e.g., Smith et al., 2011).

As previously recognized for discrimination tasks (Nienborg

and Cumming 2010; Haefner et al., 2013), choice-related activity

in the two-pool model is the result of a difference in the average

correlation between neurons in the pref pool, and the average

correlation between neurons belonging to different pools:

�
DPmotion � 1

2

�
motion�pref

=

ffiffiffi
2

p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cMT
motion�same � cMT

motion�diff

q

and

�
DPdisp � 1

2

�
disp�pref

=

ffiffiffi
2

p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cMT
disp�same � cMT

dis�diff

q
: (Equation 2)

cMT
motion�same is the average correlation across pairs of MT neu-

rons in which both neurons belong to the same pool (pref or null)

as defined by the motion task, while cMT
motion�diff is the average

correlation across pairs with neurons belonging to different pools

as defined by the motion task. cMT
depth�same and cMT

depth�diff are the

equivalent quantities for the depth task. In the feedforward

framework, the observed correlations in MT are primarily

inherited from the major input areas V1 and V2 (Figure 6). As a

first approximation, we assume the inputs to MT neurons

to be a linear combination of its V1 and V2 inputs:

r
MT�input
i = rV1i + krV2i . We assume cooling scales down the V2

input, quantified by parameter k ranging from 1 (no cooling) to

0 (complete cooling). Then the correlation between the inputs

to two neurons i and j in the MT population is given by the

following (Experimental Procedures, assuming equal variances):

cMT�input
ij =

cV1
ij + k2cV2

ij + k
h
cV1�V2
ij + cV1�V2

ji

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1+ k2 + 2kcV1�V2

ii Þ
�
1+ k2 + 2kcV1�V2

jj

�r :

(Equation 3)

Importantly, the input correlations to MT depend in such a way

on the correlations between the V1 inputs, cV1ij ; the correlations

A B

Figure 5. Trial-to-Trial Variability

(A) Average firing rate (top) and FF ± SEM (bottom) aligned separately to onset of the visual stimulus and the time of the change during the depth (left) and motion

(tasks).

(B) Scatter plot of the variance and mean of the spike count collapsed across tasks and time. Each data point corresponds to a unique stimulus presented to one

neuron, and there are two to 14 data points per neuron.
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between the inputs from V2, cV2ij ; and the correlations between

the inputs from V1 and V2, cV1�V2
ij , that they can either increase,

stay unchanged, or decrease as k decreases from 1 toward

0 during cooling depending on the specific values for these input

correlations. In order to gain an intuition, we can ignore the

inter-area correlations (which appear both in numerator and de-

nominator and which are likely smaller than the within-area

correlations) and find that, as a first approximation, the input cor-

relations to MT are the weighted average of the correlations

contributed by V1 and V2, respectively. This means that if the

correlation contributed by V1 is greater than that contributed

by V2, cooling will lead to an increase in correlations, otherwise

a decrease.

We assume that binocular disparity and direction tuning in

MT are independent of each other (DeAngelis and Newsome,

1999; Smolyanskaya et al., 2013) and, for simplicity, that

V2/V3 input confers only information about binocular disparity

and V1 input only information about motion. We further

assume that the correlation between two inputs depends

primarily on their stimulus tuning (i.e., the correlation of V1

inputs differs systematically depending on the motion prefer-

ence of the MT neurons they contribute to, while V2 inputs

selective to binocular disparity will have different correlations

depending on their disparity tuning). This assumption is

based on the positive relationship between similarity of tun-

ing and noise correlations observed in a large number of

studies (reviewed in Cohen and Kohn, 2011). As a result,

on average, model V2 input correlations will be the same

to MT neuron pairs belonging to the same or to different mo-

tion pools but will vary with regard to MT neuron’s binocular

disparity tuning preferences. The opposite will be true for MT

neurons belonging to the same or different binocular disparity

pools.

It then directly follows from Equation 3 that the correlation dif-

ference between motion pools increases with cooling (i.e., with

decreasing k) (ignoring V1-V2 correlations for simplicity, full

equations in Experimental Procedures):

cMT�input
motion�same � cMT�input

motion�diff =
1

1+ k2

�
cV1
motion�same � cV1

motion�diff

�
:

(Equation 4)

Equivalently, it follows for the disparity-task related input

correlations:

cMT�input
disp�same � cMT�input

disp�diff =
k2

1+ k2

�
cV2
disp�same � cV2

disp�diff

�
:

(Equation 5)

We see that as k decreases, the binocular-disparity-related

difference in input correlations decreases and—together with

the decrease in firing rates—leads to the decreasing disparity

DPs that we empirically observe. Note that while complete cool-

ing reduces the disparity-related structure in the correlations,

and hence disparity DP, by 100%, the increase in motion-related

structure is only 50%, which would translate into a DP increase

of 22% if firing rates did not change with cooling. Since firing

rates decrease, the increase in observed DP is predicted to be

even smaller. Note also that optimal readouts are a special

case of the two-pool readout discussed here, with the main dif-

ference being that the above equations systematically overesti-

mate DPs for readouts close to optimal (Haefner et al., 2013).

For illustration purposes, we show the results of a representa-

tive simulation based on homogenous V1 and V2 populations

providing input to MT. We assumed limited-range correlations

commonly found in cortex and readout weights that depend sys-

tematically on the preferred stimulus of each neuron (Figure 7).

As in the data and the analytical prediction, cooling leads to a

reduction in DP during the depth task and a slight increase in

DP during the motion task. The results are qualitatively the

same for realistic simulations with heterogeneous neuronal pop-

ulations and are robust to the details of the readout (i.e., whether

pooling weights are random or optimal; Figure S5). These simu-

lations demonstrate that a large class of feedforward models,

including a wide range of readouts from uniform to optimal,

and realistic correlation structure, is compatible with our empir-

ical observations.

DISCUSSION

We found that the feedforward V2/V3 input toMT, which conveys

more information about depth than motion, makes a substantial

contribution to choice-related signals in MT during a depth task

but not a motion task. Our modeling results suggest that the se-

lective change in decision signals can be explained by a change

in noise-correlation structure among MT neurons that would be

expected from the selective inactivation of inputs that confer

selectivity for binocular disparity.

Based on several lines of evidence, we think it is highly likely

that V2 confers noise correlations on pairs of MT neurons ac-

cording to the similarity of their tuning for binocular disparity.

There are two basic, non-exclusive ways in which this can

happen: (1) V2 might already contain such correlations and

pass them on toMT, and (2) theymight be created by the conver-

gence of V2 inputs on to MT neurons. With respect to the first

possibility, there is already evidence from many studies that

similar stimulus selectivity generally entails higher noise correla-

tions (summarized in Cohen and Kohn 2011), and furthermore,

such a correlation structure is required for observing choice-

related activity in V2 in a depth discrimination task, as reported

byNienborg andCumming (2006). The second possibility is likely

Figure 6. Feedforward Model Framework

Correlated inputs from V1 and V2 determine the output (response) correlations

in MT. Cooling reduces the firing rate of V2 and MT neurons and thereby the

relative weighting of correlated V1 and V2 inputs. Since our data suggest no

change in readout weights with cooling, the observed changes in DP must be

due to the reduction in correlated V2 input. Quantities affected by cooling are

indicated in blue. See also Figure S4.
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due to the mechanisms of inherited stimulus selectivity—that is,

MT neurons that have similar tuning properties for binocular

disparity are more likely to receive convergent input from simi-

larly tuned V2 neurons. Given these reasonable assumptions, it

follows that inactivating V2 would reduce the noise correlations

amongMT neurons selectively according to the similarity of their

tuning for binocular disparity.

We did not record from pairs of neurons in our experiment

and were therefore not able to measure such noise correla-

tions directly. However, the reduction in spike count variability

in our data is highly suggestive of a reduction in correlated

input in a classic model of cortical neuron responses relating

spike count variability to input correlations (Shadlen and News-

ome, 1998). Prevailing models of cortical spiking necessitate

the presence of input correlations to account for the typically

high levels of spike count variability (e.g., FF R 1) observed

in neocortex (Shadlen and Newsome, 1998; Stevens and Za-

dor, 1998). A decline in FF is therefore likely a signature of a

decline in correlated input arriving to MT neurons via the V2/

V3 pathway. The observation that the FF was reduced during

both tasks, both before and during stimulus onset, and during

receptive field mapping (data not shown), when the animal’s

only task was to maintain fixation, argues against a feed-

back-mediated change in task strategy. That one of the two

animals exhibited a neurometric and behavioral impairment

during the motion task provides additional evidence against

a top-down change. The impetus for top-down mediated

changes—in the form of an increased number of errors during

inactivation—was almost as strong in this animal with regard to

motion processing as that for depth; however, motion task DP

did not change.

It is not clear why one animal’s task-relatedmotion processing

was impaired even though tuning was substantially more

impaired for binocular disparity, as in the three other animals in

which it has been tested (this study and Ponce et al. 2008). It is

possible that more motion information arrived via V2/V3 in this

animal or that this animal was simply more susceptible to non-

specific visual changes that may have been produced by inacti-

vation. Whatever the reason, the data indicate that even if some

motion information arrives via V2/V3, this input does not confer

the structured correlations that give rise to motion task DPs.

Instead, these arrive via the convergence of V1 input, from feed-

back to MT, or both.

We found that considerable choice-related activity remained

during the depth task, even though V2 neurons were virtually

silenced by inactivation (Ponce et al., 2008). This reveals an over-

simplification in our model, in which we assume that the V2/V3

input is the only source of binocular disparity information in

MT. In fact, various measures of binocular disparity information

in MT—neurometric performance and tuning index—confirm

that some information remains during V2/V3 inactivation. These

signals could either arrive directly from V1, which also contains

neurons tuned for binocular disparity (Cumming and DeAngelis,

2001), or they could arise from neurons in V2 or V3 that are

incompletely silenced.

Our analytical modeling results assume that the decision is

based on the difference in average activity of two pools of neu-

rons (Shadlen et al., 1996). Using simulations, we confirmed

that our qualitative conclusions hold for a wide range of

readout schemes. As long as the two pools are approximately

balanced in their contribution to the decision, depth-task DPs

depend primarily on the binocular disparity-related structure

in MT correlations, and motion DPs depend primarily on the

motion-related structure, and not on other details such as

average correlations or structure with respect to variables

that are not related to the task. If, on the other hand, the

A B C

D E F

Figure 7. Simulation of the Effect of V2

Inactivation

(A) Correlation structure of inputs from V1 to MT.

MT neurons sorted by preferred motion direction.

(B) Correlation structure of inputs from V2 to MT.

SinceMTneuronsaresortedbypreferreddirection,

and since we assumed no systematic relationship

between direction and disparity tuning in MT, the

limited-range correlation structure with respect to

disparity (analogous to the one with respect to

motion direction in (A) is shuffled in this view.

(C) Resulting input correlation structure toMT in the

control condition. During cooling, the influence of

V2 decreases, and with complete cooling, the total

input correlations to MT are identical to those pro-

vided by V1 shown in (A).

(D) Readout weights depend on the preferred

stimulus in each of the motion and depth tasks

(different for each task) such that most informative

neurons are preferentially read out. Qualitatively

identical results are obtained in (E) and (F) for

random weights and optimal weights (see also

Figure S5).

(E) Motion DP change due to cooling. Blue:

simulation; red: analytical approximation.

(F) Depth DP change due to cooling. For simulation parameters, see Experimental Procedures. For DP calculations, we assume the total input correlations to MT

to be equal to the response correlations, since the effect of the decrease in firing rate on output correlations is small in our data.
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decision is only based on comparing the activity of a single

pool of neurons to an internal threshold, the effect of cooling

on DP will depend on these other factors and on the V1-V2 cor-

relations. In this scenario, the model requires fine-tuning to

reproduce the observed effects, making the two-pool model

the more parsimonious one.

Our work differs from previous studies aimed at dissociating

the roles of different sources of choice-related signals, which

focused primarily on measuring the relative contributions of

causal bottom-up signals and top-down cognitive modulations

(Cohen and Newsome, 2009; Nienborg and Cumming, 2009;

Smith et al., 2011). It has been reported that a large component

of the decision signals in V2 arises from a source resembling top-

down attention (Nienborg and Cumming, 2009). As a conse-

quence, the feedforward pathway from V2 to MT is likely to carry

a mix of bottom-up and top-down information. Thus, inactivating

V2 has the effect of removing both a sensory (‘‘bottom-up’’) and

a task-related (‘‘top-down’’) contribution to decision-related sig-

nals in MT. Furthermore, it is possible that direct feedback onto

MT neurons changed during V2/V3 inactivation simply by virtue

of the fact that inactivation likely changes activity in higher level

visual areas that feed back onto MT. To account for the dispro-

portionate change in DP during the depth task, this top-down

input would have to selectively affect neurons based on their

depth preferences. Although such selective feedback mecha-

nisms are known to exist (Treue and Martı́nez Trujillo, 1999), it

is not known whether or how they are affected by inactivation

of bottom-up inputs.

There are several trivial explanations for changes in decision

signals that we believe do not account for our results. They fall

into two categories of factors that may differ with inactivation:

changes in neuronal response properties or changes in the ani-

mals’ behavioral state. The differential changes in DP during

the two tasks, which were interleaved in short blocks and

measured for every neuron reported, could not be due to generic

changes in the gain of the neuronal response or reduced behav-

ioral motivation. Instead, to account for our results, any changes

must be specific to the depth task. Since the changes in neuronal

responsiveness were similar between the two tasks, this rules

out confounds from changes in spiking statistics.

The link between neuronal activity and behavior can be broken

if animals simply guessed more often during inactivation. How-

ever, our data indicate that motivation was unchanged. Both an-

imals’ performance was unaffected on interleaved trials pre-

sented in the ipsilateral visual field, they continued to respond

to the stimuli in proportion to the amount of signal in each trial,

and we found no changes in false alarms or breaks in fixation

that would suggest reducedmotivation or a decrease in criterion.

We also found no relationship between changes in behavioral

performance and changes in DP within sessions. Together,

these results demonstrate that our results are not due to chang-

ing behavioral strategies.

In summary, we used a causal intervention to selectively probe

the role of a feedforward anatomical input to decision signals in

MT. The strength of our experiment comes from monitoring the

choice-related activity of the same neuron both before and dur-

ing inactivation, allowing us to make a direct assessment of the

contribution of this input. We found that the V2/V3 pathway,

which conveys sensory information predominantly about binoc-

ular disparity to MT, makes a substantial contribution to choice-

related activity during a depth task but not a motion task. These

results provide the first direct evidence for a modality-specific

role of feedforward inputs to choice-related activity. Further,

we propose a mechanism by which this input contributes to

choice-related activity in MT by inducing structured correlated

noise among MT neurons. Combining these methods with pop-

ulation recording techniques in the future will allow us to more

completely understand how feedforward inputs affect the corre-

lation structure and decision signals at subsequent processing

stages.

EXPERIMENTAL PROCEDURES

All animal procedures complied with the National Institutes of Health Guide for

Care and Use of Laboratory Animals and were approved by the Harvard Med-

ical Area Standing Committee on Animals.

Detailed methods regarding the behavioral task, visual stimuli, and electro-

physiology can be found in the Supplemental Experimental Procedures. In

brief, two experimentally naive adult male macaques (Macaca mulatta, 10

and 12 kg) performed reaction-time depth andmotion detection tasks in which

they detected onset of coherent depth—as specified by binocular disparity—

or motion in noisy random dot stimuli (Cook and Maunsell, 2002a). After a

500 ms fixation period, a random dot stimulus appeared. Stimuli were noisy

with regard to either depth or motion, depending on the task block, and after

a random time (0.5–5.5 s, exponentially distributed with a mean of 1.4–1.6 s)

changed to contain signal in the relevant dimension (‘‘signal onset’’). Animals

were rewarded for making an eye movement toward the stimulus within

200–650 ms after signal onset. Trials were classified as false alarms if the an-

imal responded early or less than 200ms after signal onset and asmisses if the

animal did not respond within 650 ms of signal onset. When fixation deviated

from the 0.8�–1.2� window around the fixation point, the trial was aborted and

excluded from analysis.

Activity of single neurons in MT was recorded using standard electrophysi-

ological techniques. Great care was taken to ensure single-unit isolation during

the entire experiment using online windowing and offline spike sorting.

Inactivation

Cortical tissue was inactivated by cooling loops of metal tubing—‘‘cryo-

loops’’—chronically implanted in the lunate sulcus as described by Ponce

et al. (2008). Chilled methanol was pumped through the cryoloops to cool

the surrounding brain tissue to 10�C–15�C, which is sufficient to eliminate

visually evoked activity in the immediately surrounding cortex (Lomber

et al., 1999). Temperature at each cryoloop was monitored and indepen-

dently controlled by changing the flow rate of methanol from its dedicated

pump.

Experimental Protocol

Figure 1C depicts each day’s experimental timeline. Upon isolation of a single

MT neuron at physiological temperature (35�–38�C), its preferred location,

size, and speed were determined by hand mapping, and direction and binoc-

ular disparity tuning were measured quantitatively using 100% coherent stim-

uli presented for 400 ms at least six times. Direction tuning was measured with

a range of eight directions spaced 45� apart and disparity tuning with 11 dis-

parities with the following values: ±1.2, ±0.8, ±0.6, ±0.4, ±0.2, and 0. If a neuron

did not have a clear tuning preference for either direction or binocular disparity,

it was not studied further, although such neurons were rare. Otherwise,

monkeys performed the detection tasks with visual stimuli tailored to the pref-

erences of the neuron. ‘‘Pre-cool’’ task data were collected as monkeys per-

formed the tasks for approximately 1 hr. ‘‘Cool’’ data collection began after

the temperature at the cryoloops had stabilized at 10�C–15�C for at least

5min. This was done in the sameway as the pre-cool data, with repeatedmea-

sures of tuning properties followed by about an hour of task performance.

Cooling lasted at most 1 hr and was never initiated more than once per day.
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Whenever possible, we collected ‘‘recovery’’ data when temperatures re-

turned to at least 30�C at the cryoloops, sufficiently warm to resume normal

visually evoked activity (Lomber et al., 1999; Nienborg et al., 2012; Shadlen

et al., 1996).

Data Analysis

Behavioral Performance

The proportion correct trials (out of correct and missed trials) as a function of

signal strength was fitted with a logistic function using the psignifit toolbox

version 2.5.6 for Matlab (http://bootstrap-software.com/psignifit/), which im-

plements the maximum-likelihood method described by Wichmann and Hill

(2001) (Palmer et al., 2007; Smith et al., 2011). To account for any changes

in the animal’s guess rate between conditions, we fixed the lower saturation

to an estimate of the guess rate, which was obtained by convolving the rate

of false alarms as a function of trial duration with the probability of the signal

onset as a function of trial duration while accounting for the allowed reaction

time window. Typically, the animals could make correctly timed guesses

with a frequency of 5%–15%. Behavioral performance was summarized with

the behavioral threshold, the signal strength at which performance was 80%

correct.

Task-Related Neuronal Activity

Spiking activity of single neurons was collected as the animals performed the

two tasks described above. Neurons were included in this study only if their

mean spiking response to low-signal stimuli was greater than 15 spikes/sec

in all conditions (pre-cool and cool) to preclude violations of normal assump-

tions. Results were similar when these neurons were included. Neuronal

data were aligned to the onset of the signal stimulus unless stated otherwise.

Only correct and missed trials were used.

Neurometric Performance

For trials at each signal strength, the distribution of responses in the 500 ms

immediately before signal onset was compared to those 50–550 ms after

signal onset with the area under the receiver operating characteristic (ROC)

curve (e.g., Bosking and Maunsell, 2011). For correct trials, spikes were only

included up to 100 ms before the reaction time to exclude post-decision sig-

nals (Cook and Maunsell, 2002b; Price and Born, 2010), but results were

similar with a variety of windows. To determine the effect of cooling on cell

sensitivity, we approximated a neurometric threshold by choosing the signal

strength at which the neurometric performance was closest to 0.8 in the

pre-cool condition and calculating the change in neurometric performance

during cooling only at that signal strength. Since most MT neurons are more

strongly modulated by direction than binocular disparity (DeAngelis and

Uka, 2003), many neurons did not achieve neurometric performance at or

above 0.8 at the strongest disparity signal strengths, leading to slightly lower

pre-cool thresholds during the depth task.

DP

DP was calculated for a given signal strength from the area under the ROC

curve for spike counts compared between correct and missed trials. The DP

time course was computed in a 100-ms time window moved in 20-ms steps

(Price and Born, 2010). The results did not vary with reasonable variations of

this window. For each neuron, DP was calculated using only stimuli that had

at least five completed trials and in which one trial outcome (i.e., correct or

miss) did not occur more than 75% of the time (Kang and Maunsell, 2012). Re-

sponses were z-scored and combined across all signal strengths that met

these criteria. For the population comparison, responses were combined

across all neurons with both pre-cool and cool data for both tasks; thus, re-

sponses were combined across neurons that were not recorded simulta-

neously. The DP at each time point was given by the area under the ROC curve

for the combined z scored responses at that time. The SEMwas computed via

a bootstrap procedure (Efron and Tibshirani, 1998). At each time point, we

sampled, with replacement, unpermuted pairs of z scored rate and behavioral

response to compute a new DP value. The SD of 1,000 samples was taken to

be the SEM.

To compare changes in DP between pre-cool and cool conditions, DP

was computed from the combined z-scored rates across all neurons in a

single time window 100–475 ms following signal onset. We used a similar

resampling procedure to determine whether DP values were different be-

tween pre-cool and cool conditions, with the null hypothesis being that dif-

ferences in DP were drawn from a distribution with mean 0. We first

computed resampled DPs for each task and condition (cool, pre-cool) by

sampling with replacement from the neuronal responses associated with

each behavioral outcome. The reported p value is the probability of

observing a difference greater than zero in the distribution of differences be-

tween resampled cool and pre-cool DP for each task. Controls for involun-

tary eye movements are described in the Supplemental Experimental

Procedures.

Spike Count Mean to Variance Relationship

The FF time course was computed in a sliding 50-ms window moved every

25 ms using the Variance toolbox (Churchland et al., 2010; Wheatstone,

1838) without mean matching. At each time point, we computed the mean

and variance of the spike count response to each unique stimulus tested

with each neuron. Individual neurons’ FF was computed from spike counts

collected in a fixed window 50–300 ms after signal onset. The variance-to-

mean ratio was computed for each unique stimulus type—each signal strength

for each task—and then averaged for each neuron.

Modeling

Assuming a linear readout of the responses r of a population of sensory neu-

rons by a hypothetical decision neuron, rD = wTr (Shadlen et al., 1996, Haefner

et al., 2013), which is compared to a fixed threshold to make a binary decision,

the DP of an individual neuron i, DPi, is related to the noise covariance matrix

for the sensory population, C= covðr; rÞ; the readout weights, w; and the frac-

tion of detect trials, pdetect, by the following (approximate) equation (Haefner,

2015):

DPiz
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2
+
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p

ðCwÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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��2�
4pdetectð1� pdetectÞ :

(Equation 6)

As described in the Supplemental Experimental Procedures, the range of

fraction of detect trials, 0:3%pdetect%0:7, is narrow enough in our experiments

that the influence of the criterion, gðpdetectÞ, can be ignored and that we can use

Equation 2, previously derived for choice probabilities (Haefner et al., 2013).

While Equation 2 was derived for uniform weights within each pool, it is a

good approximation for the average DP for a wide range of readout weights

(e.g., weights proportional to how informative a neuron is about a stimulus)

(Figure S5). The deviation from the true DPs becomes larger for weights closer

to linear optimality but is still largely confined to an overall scaling (Haefner

et al., 2013).

For our model, we assume the inputs to MT neurons to be a linear combina-

tion of the V1 and V2 inputs: rMT
i = rV1i + krV2i . Based on this assumption, we

can compute the correlation between the inputs to two MT neurons i and j

from the ratio of their covariance and variances:

cov
�
rV1i + krV2i ; rV1j + krV2j

�
=CV1

ij + k2CV2
ij + kCV1�V2

ij + kCV2�V1
ij (Equation 7)

and

var
�
rV1i + krV2i

�
=CV1

ii + k2CV2
ii + 2kCV1�V2

ii ; (Equation 8)

where CX
ij is the covariance between inputs i and j from area X, and Cii are the

corresponding variances. For homogenous inputs of equal response variance,

the covariance C in these equations can be replaced by correlations to directly

yield Equation 3.

In the remainder of the main text we ignored the correlations between inputs

received from V1 and from V2 for simplicity. Including them, Equations 4 and 5

read:

cMT�input
motion�same � cMT�input

motion�diff =

*
cV1
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ k2 + 2kcV1�V2
ij

q
+
ði;jÞ˛motion�same

�
*

cV1
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ k2 + 2kcV1�V2
ij

q
+
ði;jÞ˛motion�diff

:

(Equation 9)

Since cV1�V2
ij will generally be small and positive (Cohen and Kohn, 2011),

this expression behaves qualitatively the same as the case of cV1�V2
ij = 0
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presented in the main text, increasing in value as k decreases from 1 to 0 with

cooling. Equivalently, it follows for the disparity-task related input correlations:

cMT�input
disp�same � cMT�input

disp�diff =

*
k2cV2

ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ k2 + 2kcV1�V2

ij

q
+
ði;jÞ˛disp�same

�
*

k2cV2
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ k2 + 2kcV1�V2
ij

q
+
ði;jÞ˛disp�diff

:

(Equation 10)

We assumed a population size of 1,000 neurons in our simulations. We

drew the covariance matrices for the V1 and V2 inputs from a Wishart distri-

bution with 104 degrees of freedom around a mean defined by limited-range

correlations with an exponential decay. A 10:1 ratio between degrees of

freedom and number of neurons was chosen to yield an intermediate level

of heterogeneity in the resulting covariance structures, but our results were

not sensitive to this parameter. The maximum value for inputs to neurons

with the most similar tuning preferences was 0.2, and it decreased to 0.07

for the least similar neurons. We did not attempt to fit measured DP values

exactly, since that would require too many assumptions about unconstrained

details of the correlation structure, but emphasize the qualitative agreement

with our data.
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