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SUMMARY

We can generate goal-directed motor corrections with surprising speed, but their neural basis is poorly un-
derstood. Here, we show that temporary cooling of dorsal premotor cortex (PMd) impaired both spatial
accuracy and the speed of corrective responses, whereas cooling parietal area 5 (A5) impaired only spatial
accuracy. Simulations based on optimal feedback control (OFC) models demonstrated that ‘‘deactivation’’ of
the control policy (reduction in feedback gain) and state estimation (reduction in Kalman gain) caused impair-
ments similar to that observed for PMd and A5 cooling, respectively. Furthermore, combined deactivation of
both cortical regions led to additive impairments of individual deactivations, whereas reducing the amount of
cooling to PMd led to impairments in response speed but not spatial accuracy, both also predicted by OFC
models. These results provide causal support that frontoparietal circuits beyond primary somatosensory and
motor cortices are involved in generating goal-directed motor corrections.

INTRODUCTION

A hallmark of our voluntarymotor system is the ability to generate

goal-directed motor corrections. This can be as simple as stabi-

lizing a water bottle when filling it from a tap to as complex as

maintaining balance when someone bumps you on a crowded

subway platform while simultaneously moving a cup of hot cof-

fee away from your body to avoid being scalded.

Optimal feedback control (OFC) is a powerful normativemodel

for understanding how the motor system ought to respond to

noise and disturbances in performance.1–5 These controllers

include two key processes: (1) an optimal control policy that flex-

ibly generates motor commands based on task goals and sys-

tem state (position and motion of the body), and (2) optimal state

estimation that uses efference copy of motor commands and

sensory feedback to estimate system state. These models cap-

ture a broad range of behavioral features of motor performance

including the ability to generate variable, but successful, move-

ments6 and goal-directed motor corrections that consider

myriad factors such as limb mechanics, target redundancy, ur-

gency, and the presence of obstactles.3,7–12

How our CNS generates these goal-directed motor correc-

tions is poorly understood. It has been commonly assumed

that goal-directed motor corrections are generated principally

through a rapid transcortical pathway involving primary

somatosensory (S1) and primary motor cortex (M1), leading to

muscle responses in as little as 60 ms for the proximal

arm.5,13,14 However, our recent study highlighted that short la-

tency neural responses can be observed across frontoparietal

circuits in monkeys when mechanical disturbances are applied

to the forelimb in as little as 25 ms, including in higher order mo-

tor (dorsal premotor cortex, PMd) and somatosensory regions

(parietal area 5, A5)15. This observation suggests that the gener-

ation of rapid feedback responses may involve broader fronto-

parietal circuits, normally associated with motor planning and

initiation.16–18

The objective of this study is to provide physiological and

computational support that these cortical regions are causally

involved in goal-directed feedback control by quantifying how

transient deactivation of each cortical region, induced with

cortical cooling,19,20 impacts goal-directed feedback control.

We begin with OFC models to explore how disruption or ‘‘deac-

tivation’’ of different processes impacts feedback control. These

reverse engineering approaches have been used in previous

studies to successfully dissect motor control processes.21,22 In

the present study, we find that reductions in gains associated

with different processes lead to distinct patterns of impairments

to counter mechanical disturbances when maintaining a fixed

spatial position. Observed impairments generated by cooling

PMd and/or A5 in monkeys also generated distinct patterns of
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impairments in feedback control that paralleled impairments

associated with the control policy and state estimate in OFC,

respectively. These results provide causal support that broad

frontoparietal circuits are involved in goal-directed feedback

control, and localized disruption in this circuit generates distinct

patterns of impairments.

RESULTS

OFC model predictions
How could changes in a feedback circuit alter goal-directed

feedback responses? We made theoretical predictions for the

motor deficits that may occur from deactivating a brain region

using a stochastic optimal feedback control (OFC) model (Fig-

ure 1A).1,23 Although other models of the motor system exist,

such as feedback error learning24,25 and active inference,26,27

we use OFC as a general model of the motor system because

it captures the highly flexible nature of biological control, does

not require a desired trajectory like the former, and can manage

sensory and motor delays unlike the latter.

We first optimized model parameters to reproduce the mon-

key’s intact feedback response (Figure 1B). Then, we applied

deactivation to the model parameters (Figure 1A), including

(1) the feedback gain (L) of the control policy, (2) Kalman gain

(K) in state estimation, (3) parameters in the internal forward

model ( bA, bB, and Ĥ), and (4) the sensory observation matrix

(H). Because cooling reduces neural excitability in adjacent tis-

sue,19 we modeled a cooling effect as a reduction of each

parameter (for a different deactivation method based on in-

creases in noise, see ‘‘Alternate deactivation model based on

cooling increasing neural noise’’). First, large reductions in

any parameter ultimately led to failure of the model to generate

appropriate motor corrections to mechanical disturbances (Fig-

ure 1D). Of particular interest is that smaller reductions of pa-

rameters led to unique patterns of feedback impairments for

each parameter (Figures 1C and 1D). Reduction of the feed-

back gain (L), that converts estimates of system state into mo-

tor commands, generates a broad range of impairments,

including reduction in spatial accuracy (endpoint error) and

several metrics related to response speed (return time, max de-

viation, and max deviation time) (Figures 1C and 1D, red; p <

0.05). Reduction of Kalman gain (K) degrades the use of

external sensory feedback, making state estimation more

reliant on internal feedback. This generated impairments in

spatial accuracy (endpoint error), but interestingly, did not

impair response speed (return time and max deviation time) un-

til the gain was reduced more than �60% (Figures 1C and 1D,

blue; p > 0.05). This reflects that reduction of the Kalman gain

induces only a small delay in updating the state estimation

about the presence of a perturbation using external sensory

feedback, but once updated, internal feedback can then appro-

priately counter the external perturbation. Even small reduc-

tions of parameters in the internal forward model ( bA, bB, and
Ĥ) providing internal feedback for state estimation quickly leads

to severe oscillations ( bA, Figure 1C, green; bB and Ĥ, Fig-

ure S1A), with rapid degradation in spatial accuracy (Figures

1D, green, and S1B; p < 0.05) . Finally, reduction of the sensory

observation matrix (H) degrades sensory information. This

generated severe impairments in spatial accuracy and

response speed (Figures 1C and 1D, orange; p < 0.05), qualita-

tively similar to impairments associated with the feedback gain

(L). Taken together, our simulations highlight that deactivation

of different model parameters generates unique patterns, or

signatures, of motor impairments that can be used to disso-

ciate cortical functions.

Impact of PMd and A5 cooling on feedback corrections
The traditional view is that frontal motor cortex is involved in

‘‘motor’’ processing and parietal cortex is involved in ‘‘sensory’’

processing.16,18,28 Thus, we hypothesized that PMd cooling

would cause parallel impairments associated with reductions

in the feedback gain (spatial accuracy and response times) and

A5 cooling would cause parallel impairments associated with

the Kalman gain (only spatial accuracy).

To test our hypotheses, we chronically implanted cooling

probes over the surface of PMd andA5 (Figure 2A). By circulating

chilled methanol through the probes, we are able to cool down

the cortical temperature and deactivate each area19 while

observing changes in motor performance during a single exper-

imental session reversibly and temporarily (Figure 2B). Monkeys

were trained to maintain their fingertip at a central target and to

make corrections to mechanical perturbations unexpectedly

applied to the forelimb (posture perturbation task, Figure 2C).

On separate days, the task was performed before (pre-cool),

during (cool), and after cooling (post-cool) of each cortical re-

gion, including sham controls when cooling was not applied

(monkey A: PMd n = 23, A5 n = 31, sham n = 28; monkey R:

PMd n = 10, A5 n = 18, sham n = 51 sessions).

When PMd was cooled, motor responses were slowed (Fig-

ure 3A, bottom, circles) and response accuracy was reduced

(Figure 3A, top, squares), resulting in a significant increase in

endpoint errors (t[79.7] = 4.8, p < 0.05) (Figure 3C) and

response speed (return time, max deviation, and max deviation

time, t[87.2] = 5.7, t[83.8] = 4.4, t[88.1] = 5.4, p < 0.05, respec-

tively). Correspondingly, the muscle stretch response was

reduced beginning in the long-latency time epoch (R3 epoch,

75–120 ms after perturbation onset, t[92.3] = 3.6, p < 0.05) (Fig-

ure 3D), which is the first instance that transcortical feedback

can contribute to feedback corrections.12–14,29 These results

are consistent with our hypothesis that PMd cooling impairs

the feedback control policy. These behavioral effects were

consistent between two load conditions (SE+EE and SF+EF)

with some differences, such as a continued change in endpoint

error after A5 cooling only in SF+EE load (Figure S2). We also

confirmed that these behavioral effects were consistent be-

tween two monkeys with some individual variations in effect

size (Figure S3). Importantly, we confirmed that these effects

were not induced by the direct cooling of M1 (Figure 4). In mon-

key A, we implanted a chamber over M1 and recorded intra-

cortical temperature by inserting a thermocouple needle into

the arm area of M1 (PMd cooling, n = 2, dual PMd and A5 cool-

ing, n = 1). We found that a change of M1 temperature was min-

imal (<2�C) and higher than the cortical temperature

that suppresses neural activity (<20�C).19

When A5 was cooled, the endpoint variability was increased

similarly to the PMd cooling (Figure 3B, top, squares). However,

in contrast to PMd cooling, during A5 cooling monkey was still

able to return to the target quickly within 500 ms (Figure 3B,
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bottom, circles). These results were confirmed by significant in-

crease in endpoint errors (t[162] = 5.3, p < 0.05, Figure 3C), but

no significant change in parameters of response speed (return

time, max deviation, and max deviation time, t[200] = 0.4, t

[162] = 0.4, and t[201] = 1.4, p > 0.5, respectively). This result

suggests that although spatial accuracy was impaired, the abil-

ity to generate the rapid motor response was preserved during

A5 cooling. This was confirmed by the lack of significant

changes in EMG during the R3 epoch during A5 cooling (t

[63] = 1.8, p = 0.42, Figure 3E). These results are consistent

with the results of deactivation of Kalman gain (K) in the state

estimation where spatial accuracy was impaired but not

response speed, supporting our hypothesis that A5 cooling im-

pairs state estimation.

Simultaneous cooling of PMd and A5 emulates
deactivation of feedback control gain and Kalman gain
Because our simulation showed that reductions of feedback

control gain (L) and sensory observation matrix (H) caused

qualitatively similar effects (Figure 1D), we could not separate

whether PMd cooling impaired feedback gain or sensory

observation. Therefore, we further dissociate their effects by

simulating the simultaneous cooling of PMd and A5 with a

A

C

D

B Figure 1. OFC model predictions

(A) Optimal feedback control model.

(B) Response of the model to mechanical pertur-

bations in optimized condition.

(C) Response of the model in deactivated condi-

tions. Black lines denote the optimized condition

(same to B). Colored lines denote trials when each

parameter was reduced by 50%. Red, feedback

gain in feedback controller (L); blue, Kalman gain

(K) in state estimator; green, a parameter of for-

ward model ( bA); orange, observation matrix in

sensory observation (H).

(D) Performance measures impaired by the deac-

tivation of model parameters. All measures

showed significant interaction and main effects in

a two-way ANOVA (deactivation size 3 deacti-

vated parameters), suggesting unique patterns of

motor impairments for each parameter (p < 0.05).

Filled circles, significant difference from optimal

condition (t test, p < 0.05).

See also Figure S1.

simultaneous reduction of L and K (L &

K), or H and K (H & K). Figure 5A shows

the results of simultaneous reduction of

L & K. The top panels show the impair-

ment of each performance measure as

a function of deactivation of L (horizon-

tal axis) with different size of deactiva-

tion K (different colors). As expected,

the size of impairments was increased

as deactivation size was increased. To

highlight the difference of the effects

between the different deactivation size

of K, the effect in K100% condition

(0% deactivation of K) was subtracted

from each plot (difference from

K100%, Figure 5A, bottom row). The result shows that plots

are mostly flat or slightly decreasing, indicating that simulta-

neous reduction of L & K led to impairments that were a linear

sum or a sublinear interaction of impairments for each param-

eter separately (Figure 5A). In contrast, when we tested the

interaction between the deactivation of H and K, the impair-

ments become larger than the linear summation of impair-

ments induced by each parameter (Figure 5B). These results

indicate simultaneous reduction of H & K caused supralinear

interaction of impairments.

To test the interaction of the effect of PMd and A5 cooling, we

simultaneously cooled PMd and A5 (n = 20 and 10 in monkey A

and R, Figure 6A, ‘‘Dual’’). The result showed that impairments

were a linear sum (endpoint error, return time, and max deviation

time) or a trend of the sublinear interaction (max deviation) of im-

pairments induced by individual cooling of each area separately

(Figure 6A, ‘‘Sum’’; endpoint error, return time, andmaxdeviation

time, t[59] = 0.7, t[59] = 0.1, and t[59] = 0.3, p > 0.9, respectively;

max deviation, t[59] = 1.2, p = 0.47). These behavioral effects

were consistently observed between two monkeys (Figure S4).

Importantly, these results are qualitatively similar to the effects

of the simultaneous cooling of L & K (Figure 5A). These results

provide further support for our hypotheses that PMd and A5 are
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involved with the feedback control policy (L) and state estimation

(K), respectively.

Milder cooling of PMd selectively impacts speed of
motor corrections
We further tested a prediction obtained from the model. Our

simulation of deactivation of the feedback gain L (Figure 1D,

red) showed that although a larger reduction of L induced the

impairment of all measures, a small reduction in L (%20%)

would lead to a unique pattern of impairments in which all pa-

rameters, but not endpoint error, would be impaired (e.g., 10%

deactivation of L in Figure 1D). Therefore, we predicted that if

PMd cooling impaired the feedback gain L, the milder deactiva-

tion of PMd impaired all measurements but endpoint error. We

tested this prediction by applying milder cooling of PMd in one

animal (8�C instead of 1�C in probe temperature, n = 5 in mon-

key R). Results showed that milder cooling of PMd significantly

impaired all parameters (return time, max deviation, and max

deviation time, t[11] = 3.2, t[10] = 3.3, and t[10] = 4.0, p <

0.05, respectively) except endpoint errors (Figure 6B, pink, t

[12] = 0.8, p = 1.0). This result further validates our hypothesis

that PMd cooling impaired feedback gain L of feedback

responses.

Alternate deactivation model based on cooling
increasing neural noise
In addition to downscaling, we also simulated the effect of

cortical cooling by adding scaled Gaussian noise to each OFC

parameter (see STAR methods). This method was based on an

assumption that cortical cooling deactivates a population of

excitatory and inhibitory neurons that increases noise in the

gain rather than unidirectionally downscaling neural gain. Re-

sults showed that the noise addition produced qualitatively

similar effects on behavioral parameters to the downscaling

A B

C D

Figure 2. Experimental setups for cortical

cooling

(A) Cooling probes were implanted over dorsal

premotor cortex (PMd) and parietal area 5 (A5) in the

right hemisphere of monkeys. as, arcuate sulcus;

cs, central sulcus; ips, intraparietal sulcus; pcd,

postcentral dimple; sps, superior precentral sulcus.

(B) Feedback motor responses were tested before

(pre-cool), during (cool), and after (post-cool) cool-

ing.

(C) Postural perturbation task. Monkey must main-

tain its hand at a central target. A mechanical load

was applied to the limb and the monkey must return

its hand to the same spatial target in less than

500 ms and maintain its hand for another 3 s.

(D) Hand position and speed in an exemplar trial.

Symbols denote behavioral measures: max devia-

tion (triangle), return time (circle), and endpoint

(square).

(Figures 1 versus 7). First, noise addition

to feedback gain (L) impaired both spatial

accuracy (endpoint error) and response

speed (return time), whereas noise addi-

tion to Kalman gain (K) impaired the

endpoint error but less for return time at smaller deactivations

(10%–30% coefficient of variation). Second, noise addition to

forward models ( bA, bB, Ĥ) led to severe oscillations. Last, noise

addition to sensory observation matrix (H) impaired both spatial

accuracy and response speed (max deviation andmax deviation

time).

It is noteworthy, however, that there were some discrepancies

between simulation results with noise addition and cortical cool-

ing. First, the max deviation and max deviation time was less

impaired by noise addition to feedback gain (L) or Kalman gain

(K). This is inconsistent with the results of PMd cooling, where

all these parameters were significantly impaired (Figure 3C).

Second, a smaller noise addition to feedback gain (L) was not

able to predict the results of milder cooling of PMd (8�C in probe

temperature), which impaired response speed but not spatial ac-

curacy. Although both mechanisms (reduction of gain and in-

crease of noise) might underlie the effect of cortical cooling,

the downscaling of model parameters appears to be a better

model to explain the effects of cortical cooling.

DISCUSSION

In this study, we combined deactivation experiments applied

with cortical cooling and simulations based on an OFC model

to examine the contributions of PMd and A5 on online feedback

control. The results highlight that deactivation of PMd impaired

both spatial accuracy and response speed, whereas deactiva-

tion of A5 impaired spatial accuracy, but not response speed

(Figure 3), indicating their causal involvement to the generation

of feedback motor corrections. Correspondingly, simulations

based on optimal feedback control (OFC) model demonstrated

that deactivation of the control policy (reduction of feedback

gain L) impaired both spatial accuracy and response speed,

whereas deactivation in state estimation (reduction of Kalman
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gain K) impaired spatial accuracy but not response speed (Fig-

ure 1), paralleling the impairments observed from deactivation

of PMd and A5, respectively. Furthermore, simultaneous deacti-

vation of PMd and A5 led to additive impairments of individual

deactivations (Figure 6A), whereas milder cooling of PMd led

to impairments in response speed, but not spatial accuracy (Fig-

ure 6B). Again, the OFC model predicted both of these observa-

tions. These results clearly support our hypothesis that PMd and

A5 are causally involved in goal-directed feedback control: the

corresponding patterns of impairment suggest distinct roles

related to the control policy and state estimation, respectively.

Control models predict a variety of motor impairments
Many studies show how disruption or alteration of motor circuits

can lead to complex impairments inmotor performance.30–37 For

example, genetic ablation of cervical propriospinal neurons,

Figure 3. Impact of PMd and A5 cooling on feedback corrections

(A and B) Hand trajectories (top) and hand displacements (bottom) when the limb was unexpectedly perturbed with a shoulder extension and elbow flexion

(SE+EF) load in pre-cool, cool, and post-cool PMd conditions (A) and corresponding A5 conditions (B). Calibration bars, 1 cm. Ellipses, 95% confident interval of

endpoints. Time = 0, perturbation onset.

(C) Performancemeasures for PMd (red), A5 (blue), and sham (black) cooling sessions. Averages across twomonkeys and two torque directions after normalized

to pre-cool condition. Error bars, SEM. All measures displayed significant interaction and main effects in a two-way ANOVA (cooling epochs 3 target areas)

indicating different effects of cortical cooling (p < 0.05). *Significant difference from sham condition (t test, p < 0.05).

(D and E) Averaged EMG responses to mechanical perturbations in PMd (red), A5 (blue), and sham (black) cooling sessions. Responses were binned to baseline

(100–0 ms before perturbation), R1 (20–50 ms post-perturbation), R2 (50–75 ms), R3 (75–120 ms), and voluntary (120–180 ms) time windows (gray and dark gray

rectangles). Shaded areas, SEM. *Significant difference from sham condition (t test, p < 0.05).

See also Figures S2 and S3.
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projecting to brainstem pre-cerebellar nucleus, causes severe

oscillations during reaching whereas locomotion and posture

control are intact.34 As well, disruption of thalamocortical activity

prevents movement initiation or halts ongoing movement,35 and

cooling in dentate nucleus causes oscillations or tremor during

reaching andwhen responding tomechanical perturbations.36,37

Why does disruption of motor circuits lead to such complex mo-

tor impairments?

We used a formal control model to interpret how disruption of

key processes impacts motor corrections. We used a stochastic

optimal feedback control model because this has been a com-

mon normative model for interpreting motor behavior for the

last 15 years.1,2,5,38 We expect qualitatively similar results would

be observed for other control models that possess a

control policy and state estimation that integrates internal and

external sensory feedback, known features of the voluntary mo-

tor system.39–42 Our model was initially optimized to generate

feedback corrections that matched the speed and accuracy

observed for the monkeys prior to cooling. Notable in Figure 1

is how a small reduction in an optimized parameter can lead to

minimal or profound impairments in performance. For example,

even a 10% reduction in parameters related to the forward

model ( bA) leads to extremely poor control, and larger reductions

lead to instability (Figures 1C and 1D, green). This requirement to

have a very accurate forward model is a known challenge with

stochastic OFC.43 Other control frameworks, such as robust

control, help tomitigate this problemby considering the potential

presence of systematic errors in the model44,45 and suchmodels

capture certain features on how humans move, and in particular,

deal with unexpected disturbances and adaptation to novel

loads.41,46

Perhaps the most surprising pattern of impairment was pre-

dicted for the Kalman gain where reductions up to 50% largely

impacted only endpoint error and not the speed of the correction

(return time and max deviation time, Figure 1D, blue). The Kal-

man gain is the weighting between internal feedback provided

by a forward model based on efference copy and external sen-

sory feedback from the limb or other sensory modalities: a

smaller value means the model relies more on internal feedback

(x* in Figure 1A). Intuitively, one might assume that the corrective

response should be delayed when relying less on external sen-

sory feedback as well as increasing the endpoint error. However,

when the Kalman gain was reduced, only increases in endpoint

error were observed in the model. The simple explanation is

that a reduction in the Kalman gain induces only a small delay

in updating the presence of a perturbation that must be sensed

from external sensory feedback, but once updated, internal

feedback from the forward model can appropriately counter

the external perturbation. Endpoint errors do increase with a

reduced (i.e., suboptimal) Kalman gain, because one must

continuously adjust motor commands for noise in the system.

This highlights how alterations in control parameters can

generate unexpected changes in performance. Note that our

simulation used a point massmodel that will not capture features

such as intersegmental interaction where there is a difference

between joint motion and the applied torques.7,29 However,

this should not really impact the general properties of speed

and accuracy of corrective responses, which was the focus of

the present study.

It is also noteworthy that the reductions in return time andmax

deviation were observed whether cortical cooling was applied or

not (sham, Figure 3C, black circles) and reflect a general change

in the performance of the animals with time during a behavioral

session. In contrast, endpoint error and max deviation time

showed differences from the sham condition after A5 cooling

(Figure 3C) and suggest some changes in performance remained

after cooling was stopped. This can be also observed as a slight

increase of EMG after A5 cooling (Figure 3E). This may suggest

that the motor system was trying to adapt during the cooling

period, and that is an interesting issue warranting further

investigation.

Interpreting computations in brain circuits based on
OFC
The use of OFC or other formal control models provide a way of

understanding the complex relationship between specific con-

trol processes and motor performance. OFC has been

commonly used as a normative model to describe motor func-

tion at the behavioral level and captures many aspects of human

motor performance including successful movements with a high

trial-to-trial variability47,48 and goal-directed modulation of feed-

back responses to mechanical perturbation of the limb accord-

ing to shape and location of the spatial goal,10,49 features of

the environment,8,11 and urgency of the response.50

The mathematical techniques associated with OFC are

certainly not performed by the motor system, but general pro-

cesses related to a control policy and state estimation including

forward models capture many behavioral aspects of the motor

A B Figure 4. PMd and M1 temperature changes

during PMd cooling

(A) Example of cortical temperature measured from

M1 during a PMd cooling experiment. Cooling

probe on PMd was cooled to 1�C and the probe

temperature was measured (top). An independent

thermocouple was acutely inserted to M1 arm area

(bottom).

(B) Averaged temperature of PMd probe and M1 in

pre-cool and cool epochs of PMd only (n = 2) and

dual PMd and A5 cooling (n = 1). *Significant dif-

ference between pre-cool and cool conditions (t

test, p < 0.05). ns, non-significant. Note that during

PMd cooling or dual cooling, a change of M1

temperature was minimal (<2�C) and did not reach

significant limit.
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system.4,5,12,40 However, directly applying these control pro-

cesses to motor circuits is not straightforward. Motor circuits

that support online control are highly distributed, including

many cortical and subcortical regions. Many different regions

likely contribute to each process, and a single brain region

may participate in multiple processes.38 Thus, it is highly unlikely

that a single brain region is exclusively responsible for a single

parameter or control process.

For example, the control policy in which motor commands are

generated based on the present state of the body likely involves

cortical, brainstem, and spinal processing, because each level

contributes to a certain degree to the final pattern of muscle ac-

tivity during a motor action. The final motor command only

emerges at the motoneuronal level (the final common path)51

as some descending projections synapse directly onto moto-

neurons.52 This distributed and hierarchical organization means

that the contribution at the highest cortical level will not simply

reflect the pattern of muscle activity for a motor action. Thus,

temporary deactivation in any of these brain regions involved in

feedback control could lead to impairments that look like a

reduction in control policy gains.

What is perhaps surprising is that deactivation of PMd leads to

impairments that parallel those for reductions in control policy

gains, because this cortical region is normally associated with

motor planning rather than motor execution.53–55 Evidence to

support its role in motor planning come from the large body of

research, such as delayed reaching tasks, in which neural activ-

ity increases in PMd when the monkey has been instructed on

the location of a spatial goal.56–61 In contrast, M1 is associated

with motor execution and online control, because this motor

cortical region displays less preparatory activity but displays

substantive activity during movement execution.57,59–61

There are at least two explanations as to why deactivation of

PMd leads to patterns of impairment that match that associ-

ated with a control policy. First, PMd has strong projections

to M1, brainstem, and spinal cord.62–64 Thus, deactivation in

this cortical region indirectly impacts feedback performance

by altering other regions that are part of the control policy.38

Alternatively, PMd may be more directly involved in online con-

trol. Previous work highlights that this brain region responds in

as little as 25 ms to mechanical disturbances of the limb, and

this pattern of activity is altered based on behavioral context.15

Although PMd certainly displays preparatory activity prior

to movement, it also displays substantial activity during

movement execution.56–61 Recent studies highlight how neural

activity during preparatory period can be maintained in a

A

B

Figure 5. Simulation of the effect of dual deactivations

(A and B) Results for dual deactivation of feedback gain and Kalman gain (L & K, A) and observation matrix and Kalman gain (H & K, B). Top: performance

measures were normalized to the optimal condition (dashed line). Bottom: difference from the K100% condition (0% deactivation of K). Horizontal dashed lines

denote the linear sumof the deactivation of parameters (L&K orH&K). Filled circle, significant difference from the linear sum (t test, p < 0.05). Note that the effects

are linear or sublinear for L & K deactivation, whereas they are supralinear for H & K.
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neural subspace such that it does not influence motor output.

After a ‘‘go’’ cue, this activity shifts to another subspace that

can influence motor output.65–67 It is possible that PMd could

simultaneously be involved in motor planning in one subspace,

while it also contributes to online feedback control in another

orthogonal subspace.

As a higher somatosensory region, A5 has traditionally been

associated with body representations for sensation and volun-

tary control.68 Many studies demonstrate lesions or deactivation

of this area cause sensorimotor deficits associating with the

impairment in voluntary control.69–73 The present study found

temporary deactivation in A5 led to impairments in rapid motor

corrections for mechanical perturbation of the limb that were

qualitatively similar to those expected for reductions in the Kal-

man gain (i.e., increase of endpoint error but no change

of return time). As with the control policy, the Kalman gain likely

involves many cortical and subcortical regions. However, tem-

porary deactivation in this cortical region appears to be sufficient

to disrupt this key process, again directly by impacting activity

within A5 and/or indirectly through its influence in other sensori-

motor regions.

It is also interesting to note that reductions in parameters

associated with the forward model led to large errors even for

small reductions in gain and even oscillatory behavior for reduc-

tions at �50% (Figures 1C and S1A). Accumulating evidence

supports a role of the cerebellum for forward models in motor

control74–79. The forward model is essential to make a prediction

of the state to overcome sensorimotor delays that can destabi-

lize control39,80. Our results demonstrate that relatively small er-

rors in the forward model can induce undesirable oscillatory

behavior. Interestingly, the oscillatory behavior we observed re-

sembles ataxia of cerebellar patients and a pattern of impairment

when the dentate nucleus in the cerebellum was cooled36,37.

These results provide mechanistic explanation for the emer-

gence of cerebellar ataxia.

Limitations of study
There are clear limitations in comparing OFCmodels to our cool-

ing experiments on monkeys. Notably, it is not possible to know

how cooling in a brain region should be compared to the amount

of reduction in a given control parameter. We nominally

compared our behavioral results to 50% reductions in the control

parameters. However, the pattern of impairment for reductions

in the Kalman gain are reasonably stable for reductions between

20%–60%; values less than this range lead to minimal effects,

whereas greater values lead to both speed and accuracy errors.

Reductions in control policy gain were also fairly stable from

20%–50% with both speed and accuracy being affected. Cool-

ing in a cortical region never entirely stopped the monkey’s abil-

ity to generate goal-directed responses during cortical cooling.

The first possible explanation is that the cooling impacted a

limited region of PMd or A5. Although a previous study showed

A

B

Figure 6. Effects of dual cooling and milder PMd cooling

(A) Performancemeasures of dual cooling of PMd and A5 (filled circle, ‘‘Dual’’) were compared with a linear summation of the effects of single PMd and A5 cooling

(open circle, ‘‘Sum’’). *Significant difference between dual cooling and linear sum (t test, p < 0.05).

(B) Comparison of original cooling (1�C in probe temperature, red) and milder cooling of PMd (8�C, pink). *Significant difference from sham condition (t test,

p < 0.05). Error bars, SEM. All measures showed significant interaction and main effects in a two-way ANOVA (cooling epochs3 target areas) indicating different

effects of cortical cooling (p < 0.05).

See also Figure S4.
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that the cortical cooling silences almost all postsynaptic activity

in the cooled region,19 it is possible that our cooling did not affect

the entire cortical territory, such as deeper regions of a sulcus.

Second, other regions may also contribute to that specific pro-

cess in a parallel manner. For example, M1, which is almost

certainly involved in processes associated with the control

policy5,13,14,29,81, was still active with PMd cooling and likely con-

tributes to a control policy. Further studies exploring this issue by

recording in regions such as M1 when PMd or A5 is cooled are

warranted.

In many ways, it is surprising that 50% reductions of some

gains only lead to small impairments in control. Further, the pat-

terns of impairments change as the gain is reduced, and impair-

ments can have linear or non-linear interactions depending on

the components that are disrupted. Our follow-up experiments

(i.e., dual cooling and milder cooling) exploited these complex

features of control providing testable predictions. Thus, intuition

is not sufficient to interpret the behavior of a dynamical system

like our motor system and demonstrates the need for control

models to aid interpretation. Although OFC models proved use-

ful for cortical circuits, more biological-inspired hierarchical

models will likely be necessary to interpret how the disruption

of brainstem and spinal circuits impact control.
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( bA, bB, Ĥ) led severe oscillations. Finally, noise

addition to sensory observation matrix (H)

impaired both spatial accuracy and response

speed (max deviation and max deviation time).

ll

1484 Current Biology 31, 1476–1487, April 12, 2021

Article

https://doi.org/10.1016/j.cub.2021.01.049
https://doi.org/10.1016/j.cub.2021.01.049


Writing – Review & Editing, T.T., S.G.L., D.J.C., and S.H.S.; Funding Acquisi-

tion, S.H.S.; Supervision, S.H.S.

DECLARATION OF INTERESTS

S.H.S. is co-founder and Chief Scientific Officer of Kinarm that commercializes

the robotic technology used in this study and holds several related patents.

Received: November 6, 2020

Revised: January 13, 2021

Accepted: January 13, 2021

Published: February 15, 2021

REFERENCES

1. Todorov, E., and Jordan, M.I. (2002). Optimal feedback control as a theory

of motor coordination. Nat. Neurosci. 5, 1226–1235.

2. Scott, S.H. (2004). Optimal feedback control and the neural basis of voli-

tional motor control. Nat. Rev. Neurosci. 5, 532–546.

3. Franklin, D.W., and Wolpert, D.M. (2008). Specificity of reflex adaptation

for task-relevant variability. J. Neurosci. 28, 14165–14175.

4. Diedrichsen, J., Shadmehr, R., and Ivry, R.B. (2010). The coordination of

movement: optimal feedback control and beyond. Trends Cogn. Sci. 14,

31–39.

5. Scott, S.H., Cluff, T., Lowrey, C.R., and Takei, T. (2015). Feedback control

during voluntary motor actions. Curr. Opin. Neurobiol. 33, 85–94.

6. Liu, D., and Todorov, E. (2007). Evidence for the flexible sensorimotor

strategies predicted by optimal feedback control. J. Neurosci. 27,

9354–9368.

7. Kurtzer, I.L., Pruszynski, J.A., and Scott, S.H. (2008). Long-latency re-

flexes of the human arm reflect an internal model of limb dynamics.

Curr. Biol. 18, 449–453.

8. Shemmell, J., An, J.H., and Perreault, E.J. (2009). The differential role

of motor cortex in stretch reflex modulation induced by changes in

environmental mechanics and verbal instruction. J. Neurosci. 29,

13255–13263.

9. Knill, D.C., Bondada, A., andChhabra,M. (2011). Flexible, task-dependent

use of sensory feedback to control hand movements. J. Neurosci. 31,

1219–1237.

10. Nashed, J.Y., Crevecoeur, F., and Scott, S.H. (2012). Influence of the

behavioral goal and environmental obstacles on rapid feedback re-

sponses. J. Neurophysiol. 108, 999–1009.

11. Nashed, J.Y., Crevecoeur, F., and Scott, S.H. (2014). Rapid online selec-

tion between multiple motor plans. J. Neurosci. 34, 1769–1780.

12. Scott, S.H. (2016). A Functional Taxonomy of Bottom-Up Sensory

Feedback Processing for Motor Actions. Trends Neurosci. 39, 512–526.

13. Evarts, E.V., and Tanji, J. (1976). Reflex and intended responses in motor

cortex pyramidal tract neurons of monkey. J. Neurophysiol. 39, 1069–

1080.

14. Cheney, P.D., and Fetz, E.E. (1984). Corticomotoneuronal cells contribute

to long-latency stretch reflexes in the rhesus monkey. J. Physiol. 349,

249–272.

15. Omrani, M., Murnaghan, C.D., Pruszynski, J.A., and Scott, S.H. (2016).

Distributed task-specific processing of somatosensory feedback for

voluntary motor control. eLife 5, e13141.

16. Shadmehr, R., and Wise, S.P. (2005). The Computational Neurobiology of

Reaching and Pointing: A Foundation for Motor Learning (MIT Press).

17. Andersen, R.A., andCui, H. (2009). Intention, action planning, and decision

making in parietal-frontal circuits. Neuron 63, 568–583.

18. Rizzolatti, G., and Kalaska, J.F. (2013). Voluntary movement: the parietal

and premotor cortex. In Principles of Neural Science, Fifth Edition

(McGraw Hill Professional), pp. 1–29.

19. Lomber, S.G., Payne, B.R., and Horel, J.A. (1999). The cryoloop: an adapt-

able reversible cooling deactivation method for behavioral or

electrophysiological assessment of neural function. J. Neurosci.

Methods 86, 179–194.

20. Payne, B.R., and Lomber, S.G. (1999). A method to assess the functional

impact of cerebral connections on target populations of neurons.

J. Neurosci. Methods 86, 195–208.

21. Benyamini, M., and Zacksenhouse, M. (2015). Optimal feedback control

successfully explains changes in neural modulations during experiments

with brain-machine interfaces. Front. Syst. Neurosci. 9, 71.

22. Mathis, M.W., Mathis, A., and Uchida, N. (2017). Somatosensory Cortex

Plays an Essential Role in Forelimb Motor Adaptation in Mice. Neuron

93, 1493–1503.e6.

23. Todorov, E. (2005). Stochastic optimal control and estimation methods

adapted to the noise characteristics of the sensorimotor system. Neural

Comput. 17, 1084–1108.

24. Kawato, M., Furukawa, K., and Suzuki, R. (1987). A hierarchical neural-

network model for control and learning of voluntary movement. Biol.

Cybern. 57, 169–185.

25. Kawato,M. (1990). Feedback-error-learning neural network for supervised

motor learning. In Advanced Neural Computers, R. Eckmiller, ed. (North-

Holland), pp. 365–372.

26. Friston, K. (2010). The free-energy principle: a unified brain theory? Nat.

Rev. Neurosci. 11, 127–138.

27. Friston, K. (2011). What is optimal about motor control? Neuron 72,

488–498.

28. Schaffelhofer, S., and Scherberger, H. (2016). Object vision to hand action

in macaque parietal, premotor, and motor cortices. eLife 5, 6436.

29. Pruszynski, J.A., Kurtzer, I., Nashed, J.Y., Omrani, M., Brouwer, B., and

Scott, S.H. (2011). Primary motor cortex underlies multi-joint integration

for fast feedback control. Nature 478, 387–390.

30. Machado, A.S., Marques, H.G., Duarte, D.F., Darmohray, D.M., and

Carey, M.R. (2020). Shared and specific signatures of locomotor ataxia

in mutant mice. eLife 9, 18.

31. Schieber, M.H., and Poliakov, A.V. (1998). Partial inactivation of the pri-

mary motor cortex hand area: effects on individuated finger movements.

J. Neurosci. 18, 9038–9054.

32. Stepniewska, I., Gharbawie, O.A., Burish, M.J., and Kaas, J.H. (2014).

Effects of muscimol inactivations of functional domains in motor, premo-

tor, and posterior parietal cortex on complex movements evoked by elec-

trical stimulation. J. Neurophysiol. 111, 1100–1119.

33. Brochier, T., Boudreau, M.J., Par�e, M., and Smith, A.M. (1999). The effects

of muscimol inactivation of small regions of motor and somatosensory

cortex on independent fingermovements and force control in the precision

grip. Exp. Brain Res. 128, 31–40.

34. Azim, E., Jiang, J., Alstermark, B., and Jessell, T.M. (2014). Skilled reach-

ing relies on a V2a propriospinal internal copy circuit. Nature 508, 357–363.

35. Sauerbrei, B.A., Guo, J.-Z., Cohen, J.D., Mischiati, M., Guo,W., Kabra, M.,

Verma, N., Mensh, B., Branson, K., and Hantman, A.W. (2020). Cortical

pattern generation during dexterous movement is input-driven. Nature

577, 386–391.

36. Meyer-Lohmann, J., Conrad, B., Matsunami, K., and Brooks, V.B. (1975).

Effects of dentate cooling on precentral unit activity following torque pulse

injections into elbow movements. Brain Res. 94, 237–251.

37. Hore, J., and Flament, D. (1986). Evidence that a disordered servo-like

mechanism contributes to tremor in movements during cerebellar

dysfunction. J. Neurophysiol. 56, 123–136.

38. Scott, S.H. (2012). The computational and neural basis of voluntary motor

control and planning. Trends Cogn. Sci. 16, 541–549.

39. Wolpert, D.M., and Ghahramani, Z. (2000). Computational principles of

movement neuroscience. Nat. Neurosci. 3 (Suppl ), 1212–1217.

40. Shadmehr, R., and Krakauer, J.W. (2008). A computational neuroanatomy

for motor control. Exp. Brain Res. 185, 359–381.

ll

Current Biology 31, 1476–1487, April 12, 2021 1485

Article

http://refhub.elsevier.com/S0960-9822(21)00114-7/sref1
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref1
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref2
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref2
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref3
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref3
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref4
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref4
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref4
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref5
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref5
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref6
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref6
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref6
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref7
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref7
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref7
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref8
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref8
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref8
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref8
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref9
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref9
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref9
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref10
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref10
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref10
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref11
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref11
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref12
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref12
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref13
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref13
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref13
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref14
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref14
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref14
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref15
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref15
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref15
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref16
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref16
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref17
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref17
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref18
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref18
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref18
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref19
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref19
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref19
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref19
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref20
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref20
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref20
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref21
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref21
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref21
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref22
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref22
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref22
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref23
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref23
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref23
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref24
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref24
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref24
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref25
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref25
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref25
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref26
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref26
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref27
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref27
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref28
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref28
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref29
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref29
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref29
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref30
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref30
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref30
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref31
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref31
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref31
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref32
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref32
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref32
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref32
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref33
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref33
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref33
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref33
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref33
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref34
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref34
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref35
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref35
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref35
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref35
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref36
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref36
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref36
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref37
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref37
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref37
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref38
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref38
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref39
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref39
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref39
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref40
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref40


41. Crevecoeur, F., Scott, S.H., and Cluff, T. (2019). Robust Control in Human

Reaching Movements: A Model-Free Strategy to Compensate for

Unpredictable Disturbances. J. Neurosci. 39, 8135–8148.

42. Bian, T., Wolpert, D.M., and Jiang, Z.-P. (2020). Model-Free Robust

Optimal Feedback Mechanisms of Biological Motor Control. Neural

Comput. 32, 562–595.

43. Miall, R.C., Weir, D.J., Wolpert, D.M., and Stein, J.F. (1993). Is the cere-

bellum a smith predictor? J. Mot. Behav. 25, 203–216.

44. Zhou, K., Doyle, J.C., and Glover, K. (1996). Robust and Optimal Control

(Prentice Hall).

45. Basxar, T., and Bernhard, P. (2008). H-Infinity Optimal Control and Related

Minimax Design Problems (Springer Science & Business Media).

46. Cluff, T., Crevecoeur, F., and Scott, S.H. (2019). Tradeoffs in optimal con-

trol capture patterns of human sensorimotor control and adaptation.

bioRxiv. https://doi.org/10.1101/730713.

47. Messier, J., and Kalaska, J.F. (1999). Comparison of variability of initial ki-

nematics and endpoints of reaching movements. Exp. Brain Res. 125,

139–152.

48. van Beers, R.J., Haggard, P., and Wolpert, D.M. (2004). The role of execu-

tion noise in movement variability. J. Neurophysiol. 91, 1050–1063.

49. Pruszynski, J.A., Kurtzer, I., and Scott, S.H. (2008). Rapid motor re-

sponses are appropriately tuned to the metrics of a visuospatial task.

J. Neurophysiol. 100, 224–238.

50. Crevecoeur, F., Kurtzer, I., Bourke, T., and Scott, S.H. (2013). Feedback

responses rapidly scale with the urgency to correct for external perturba-

tions. J. Neurophysiol. 110, 1323–1332.

51. Sherrington, S.C.S. (1906). The Integrative Action of the Nervous System

(Yale University Press).

52. Fetz, E.E., Perlmutter, S.I., Prut, Y., and Maier, M.A. (1999). Primate spinal

interneurons: muscle fields and response properties during voluntary

movement. Prog. Brain Res. 123, 323–330.

53. Wise, S.P. (1985). The primate premotor cortex fifty years after Fulton.

Behav. Brain Res. 18, 79–88.

54. Wise, S.P. (1985). The primate premotor cortex: past, present, and prepa-

ratory. Annu. Rev. Neurosci. 8, 1–19.

55. Wise, S.P., Boussaoud, D., Johnson, P.B., and Caminiti, R. (1997).

Premotor and parietal cortex: corticocortical connectivity and combinato-

rial computations. Annu. Rev. Neurosci. 20, 25–42.

56. Weinrich, M., and Wise, S.P. (1982). The premotor cortex of the monkey.

J. Neurosci. 2, 1329–1345.

57. Weinrich, M., Wise, S.P., and Mauritz, K.H. (1984). A neurophysiological

study of the premotor cortex in the rhesus monkey. Brain 107, 385–414.

58. Kurata, K. (1993). Premotor cortex of monkeys: set- and movement-

related activity reflecting amplitude and direction of wrist movements.

J. Neurophysiol. 69, 187–200.

59. Crammond, D.J., and Kalaska, J.F. (2000). Prior information in motor and

premotor cortex: activity during the delay period and effect on pre-move-

ment activity. J. Neurophysiol. 84, 986–1005.

60. Cisek, P., Crammond, D.J., and Kalaska, J.F. (2003). Neural activity in pri-

mary motor and dorsal premotor cortex in reaching tasks with the contra-

lateral versus ipsilateral arm. J. Neurophysiol. 89, 922–942.

61. Nakayama, Y., Yamagata, T., and Hoshi, E. (2016). Rostrocaudal func-

tional gradient among the pre-dorsal premotor cortex, dorsal premotor

cortex and primary motor cortex in goal-directed motor behaviour. Eur.

J. Neurosci. 43, 1569–1589.

62. Kuypers, H.G.J.M. (1981). Anatomy of the descending pathways. In The

Nervous System, Handbook of Physiology, Vol. 2, V. Brooks, ed.

(Williams and Wilkins), pp. 597–666.

63. Wiesendanger, M. (1981). Organization of secondary motor areas of cere-

bral cortex. In Handbook of Physiology: The Nervous System, Vol. 13

(American Cancer Society), pp. 1121–1147.

64. Dum, R.P., and Strick, P.L. (1991). The origin of corticospinal projections

from the premotor areas in the frontal lobe. J. Neurosci. 11, 667–689.

65. Kaufman, M.T., Churchland, M.M., Ryu, S.I., and Shenoy, K.V. (2014).

Cortical activity in the null space: permitting preparation without move-

ment. Nat. Neurosci. 17, 440–448.

66. Elsayed, G.F., Lara, A.H., Kaufman, M.T., Churchland, M.M., and

Cunningham, J.P. (2016). Reorganization between preparatory and move-

ment population responses in motor cortex. Nat. Commun. 7, 13239.

67. Perich, M.G., Gallego, J.A., and Miller, L.E. (2018). A Neural Population

Mechanism for Rapid Learning. Neuron 100, 964–976.e7.

68. Head, H., and Holmes, G. (1911). Sensory disturbances from cerebral le-

sions. Brain 34, 102–254.

69. Wolpert, D.M., Goodbody, S.J., and Husain, M. (1998). Maintaining inter-

nal representations: the role of the human superior parietal lobe. Nat.

Neurosci. 1, 529–533.

70. Desmurget, M., Epstein, C.M., Turner, R.S., Prablanc, C., Alexander, G.E.,

and Grafton, S.T. (1999). Role of the posterior parietal cortex in updating

reaching movements to a visual target. Nat. Neurosci. 2, 563–567.

71. Pisella, L., Gr�ea, H., Tilikete, C., Vighetto, A., Desmurget, M., Rode, G.,

Boisson, D., and Rossetti, Y. (2000). An ‘automatic pilot’ for the hand in hu-

man posterior parietal cortex: toward reinterpreting optic ataxia. Nat.

Neurosci. 3, 729–736.

72. Prablanc, C., Desmurget, M., and Gr�ea, H. (2003). Neural control of on-line

guidance of hand reaching movements. Prog. Brain Res. 142, 155–170.

73. Battaglia-Mayer, A., Ferrari-Toniolo, S., Visco-Comandini, F.,

Archambault, P.S., Saberi-Moghadam, S., and Caminiti, R. (2013).

Impairment of online control of hand and eye movements in a monkey

model of optic ataxia. Cereb. Cortex 23, 2644–2656.

74. Wolpert, D.M., Miall, R.C., and Kawato, M. (1998). Internal models in the

cerebellum. Trends Cogn. Sci. 2, 338–347.

75. Blakemore, S.J., Frith, C.D., and Wolpert, D.M. (2001). The cerebellum is

involved in predicting the sensory consequences of action. Neuroreport

12, 1879–1884.

76. Nowak, D.A., Timmann, D., and Hermsdörfer, J. (2007). Dexterity in cere-

bellar agenesis. Neuropsychologia 45, 696–703.

77. Miall, R.C., Christensen, L.O.D., Cain, O., and Stanley, J. (2007).

Disruption of state estimation in the human lateral cerebellum. PLoS

Biol. 5, e316.

78. Izawa, J., Criscimagna-Hemminger, S.E., and Shadmehr, R. (2012).

Cerebellar contributions to reach adaptation and learning sensory conse-

quences of action. J. Neurosci. 32, 4230–4239.

79. Zimmet, A.M., Cao, D., Bastian, A.J., and Cowan, N.J. (2020). Cerebellar

patients have intact feedback control that can be leveraged to improve

reaching. eLife 9, e53246.

80. Crevecoeur, F., and Scott, S.H. (2013). Priors engaged in long-latency re-

sponses to mechanical perturbations suggest a rapid update in state esti-

mation. PLoS Comput. Biol. 9, e1003177.

81. Pruszynski, J.A., Omrani, M., and Scott, S.H. (2014). Goal-dependent

modulation of fast feedback responses in primary motor cortex.

J. Neurosci. 34, 4608–4617.

82. Scott, S.H. (1999). Apparatus for measuring and perturbing shoulder and

elbow joint positions and torques during reaching. J. Neurosci. Methods

89, 119–127.

83. Herter, T.M., Korbel, T., and Scott, S.H. (2009). Comparison of neural re-

sponses in primary motor cortex to transient and continuous loads during

posture. J. Neurophysiol. 101, 150–163.

84. Scott, S.H., Sergio, L.E., and Kalaska, J.F. (1997). Reaching movements

with similar hand paths but different arm orientations. II. Activity of individ-

ual cells in dorsal premotor cortex and parietal area 5. J. Neurophysiol. 78,

2413–2426.

85. Coderre, A.M., Zeid, A.A., Dukelow, S.P., Demmer, M.J., Moore, K.D.,

Demers, M.J., Bretzke, H., Herter, T.M., Glasgow, J.I., Norman, K.E.,

et al. (2010). Assessment of upper-limb sensorimotor function of subacute

stroke patients using visually guided reaching. Neurorehabil. Neural

Repair 24, 528–541.

ll

1486 Current Biology 31, 1476–1487, April 12, 2021

Article

http://refhub.elsevier.com/S0960-9822(21)00114-7/sref41
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref41
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref41
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref42
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref42
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref42
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref43
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref43
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref44
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref44
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref45
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref45
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref45
https://doi.org/10.1101/730713
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref47
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref47
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref47
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref48
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref48
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref49
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref49
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref49
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref50
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref50
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref50
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref51
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref51
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref52
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref52
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref52
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref53
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref53
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref54
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref54
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref55
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref55
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref55
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref56
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref56
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref57
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref57
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref58
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref58
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref58
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref59
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref59
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref59
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref60
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref60
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref60
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref61
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref61
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref61
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref61
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref62
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref62
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref62
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref63
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref63
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref63
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref64
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref64
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref65
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref65
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref65
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref66
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref66
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref66
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref67
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref67
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref68
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref68
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref69
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref69
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref69
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref70
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref70
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref70
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref71
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref71
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref71
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref71
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref71
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref72
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref72
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref72
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref73
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref73
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref73
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref73
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref74
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref74
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref75
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref75
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref75
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref76
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref76
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref77
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref77
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref77
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref78
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref78
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref78
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref79
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref79
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref79
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref80
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref80
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref80
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref81
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref81
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref81
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref82
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref82
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref82
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref83
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref83
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref83
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref84
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref84
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref84
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref84
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref85
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref85
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref85
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref85
http://refhub.elsevier.com/S0960-9822(21)00114-7/sref85


86. Kurtzer, I., Pruszynski, J.A., Herter, T.M., and Scott, S.H. (2006). Primate

upper limb muscles exhibit activity patterns that differ from their anatom-

ical action during a postural task. J. Neurophysiol. 95, 493–504.

87. Omrani, M., Pruszynski, J.A., Murnaghan, C.D., and Scott, S.H. (2014).

Perturbation-evoked responses in primary motor cortex are modulated

by behavioral context. J. Neurophysiol. 112, 2985–3000.

88. Brown, I.E., Cheng, E.J., and Loeb, G.E. (1999). Measured and modeled

properties of mammalian skeletal muscle. II. The effects of stimulus

frequency on force-length and force-velocity relationships. J. Muscle

Res. Cell Motil. 20, 627–643.

89. Crevecoeur, F., Sepulchre, R.J., Thonnard, J.L., and Lefèvre, P. (2011).
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Takei (takeitomohiko@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The primary datasets and simulation codes used in the current study are available at Mendely (https://dx.doi.org/10.17632/

xfwfyv74pr.1) and GitHub (https://github.com/TomohikoTakei/kalman_lqg_pertpost1dof).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects and apparatus
Twomale rhesus monkeys (Macaca mulatta, 10–17 kg, monkeys A and R) were used in this study following procedures approved by

the Queen’s University Animal Care Committee. They were trained to perform upper limbmotor tasks with their left armwhile wearing

a robotic upper-limb exoskeleton (NHP Kinarm Exoskeleton Lab; Kinarm, Kingston, Ontario, Canada) that permitted and monitored

horizontal shoulder and elbow motion.82 A virtual reality system presented visual targets and a cursor representing hand position in

the workspace while direct view of their limb was occluded.
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METHOD DETAILS

Behavioral task
We trained monkeys to perform a posture perturbation task, which has been described previously.83 In the task, the monkey was

required to maintain a small cursor (0.2 cm radius) representing the position of the index fingertip at a visual target (0.6 cm radius)

displayed near the center of the arm’s workspace (�30� and 90� degrees at the shoulder and elbow joints, respectively) (Figure 2C).

Themonkeys initiated each trial by moving their hand to the visual target andmaintaining it within the target’s acceptance window for

0.5 to 2.5 s (monkey A) or from 0.5 to 1.25 s (monkey R). The size of the acceptancewindowwas individually adjusted to eachmonkey

(0.8 and 1.0 cm radius for monkey A and R, respectively). Then, one of three mechanical loads was applied to the monkeys’ arm. The

load conditions included shoulder extension and elbow flexion (SE+EF), shoulder flexion and elbow extension (SF+EE), and an un-

loaded condition (catch trials). These loads stayed until the end of the trial (a step-torque perturbation) and the monkeys were

required to counter the load to return to the target within 0.5 s and maintain it there for another 3.0 s (monkey A) or 2.0 s (monkey

R) to receive a liquid reward. Shoulder and elbow torques of magnitude 0.28 Nm (monkey A) or 0.20 Nm (monkey R) were used.

Each block consisted of four SE+EF trials, four SF+EE trials and one catch trial in randomorder (total nine trials per block). Tomitigate

the contribution of visual feedback for the rapid motor responses, we removed the hand cursor feedback for 200 ms after perturba-

tion onset.

Cortical Cooling
After behavioral training was complete, we performed surgical procedures to implant two cooling probes over PMd and A5 as well as

a head fixation post. Inmonkey A, we alsomade a craniotomy overM1 and implanted a recording chamber to record the temperature

of M1. The surgeries were performed using isoflurane anesthesia (1.0%–2.0% in O2) and under aseptic conditions. PMd and A5 lo-

cations were identified based on sulcus structures on the cortical surface according to a previous electrophysiological study.84 PMd

probe was implanted between upper limb of arcuate sulcus and superior precentral sulcus, whereas A5 probe was implanted be-

tween intraparietal sulcus and postcentral dimple (Figure 2A).

Cooling probes were made with 23G stainless-steel tubing in 33 5 mm dimension.19 A thermocouple is attached to the tip of the

probe to monitor probe temperature. By circulating chilled methanol, the probe temperature was controlled at the desired temper-

ature. Previouswork has shown that cooling the probe to 1�Cdeactivates cortex up to a distance of 1.5mm,which coversmost of the

cortical layers.19 Thus, the estimated volume of deactivated cortical tissue is 72–126 mm3.

Experimental procedure
On each experimental day, one of the cooling conditions was chosen. In experiment 1, one of the probes (PMd and A5) was cooled or

no cooling was applied (sham). In experiment 2, PMd and A5was simultaneously cooled (dual cooling). In experiment 3, PMd inmon-

key R was cooled to a milder target temperature (8 ± 1�C in probe temperature) instead of 0 – 1�C (milder cooling).

Each experiment was initiated with a brief practice set (3 and 2 blocks of trials for monkey A and R, respectively) with a normal

acceptance window (0.8 and 1.0 cm radius for monkey A and R). After that, the pre-cooling epoch started (Figure 2B). In the pre-cool-

ing epoch, the monkeys performed 6 (monkey A) or 3 blocks (monkey R) of trials, which consisted of 48 or 24 perturbed trials and 6 or

3 catch trials, respectively. Since we expected a motor impairment during cooling, we relaxed the acceptance window to 1.8 and

2.0 cm radius (monkey A and R) and we used the same window during all epochs (pre-cool, cool and post-cool) except for the initial

practice set.

After the pre-cooling epoch, we started to circulate chilledmethanol through the cooling probes andmanually controlled the flow to

keep the probe temperatures at the target temperature (0 – 1�C for experiment 1 and 2 and 8 ± 1�C for experiment 3). It took 80 ± 39 s

to reach the target temperature (0 – 1�C). After that, we waited �5 min for the temperatures to become stable. Then we collected

behavioral data in the cooling epoch. In the cooling epoch, the monkeys performed 9 (monkey A) or 5 – 6 blocks (monkey R), which

consisted of 72 or 40 – 48 perturbed trials and 9 or 5 – 6 catch trials, respectively. It took �20 min to complete all blocks.

Then, methanol circulation was stopped and after�5 min the post-cooling epoch started. It took 126 ± 45 s for the temperature to

return back to normal (> 36�C). In the post-cooling epoch, the monkeys performed 9 (monkey A) or 5 – 6 blocks (monkey R), which

consisted of 72 or 40 – 48 perturbed trials and 9 or 5 – 6 catch trials, respectively. In some recording sessions (9/94 sessions), monkey

R did not complete the post-cooling epoch and we included only pre-cool and cool epoch data. We verified that inclusion of these

incomplete sessions did not qualitatively affect the cooling results.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analyses
All subsequent analyses were performed offline using MATLAB (MathWorks, Natick, MA, USA).

Kinematics analyses
Kinematic data and applied torques were acquired directly by the Kinarm device andwere sampled at 4000Hzwith PlexonMAPData

Acquisition system (Plexon Inc., Dallas TX, USA) and low-pass filtered (6th order double-pass filter, cutoff = 10Hz). We quantified four

behavioral measurements related to spatial accuracy and response speed of the mechanical perturbation (Figure 2D).
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Endpoint error was quantified to measure spatial accuracy of the feedback response. First, we identified the endpoint of the initial

corrective response after the perturbation. To do this, we calculated radial hand velocity relative to the center of the target and iden-

tified the timing of the maximum inward (i.e., returning) velocity. After this time point, we sought the first timing when the monkey’s

hand had stopped moving according to a two-threshold method:85 (1) the first local minimum in hand speed below 0.05 m/s or (2)

when hand speed dropped below 0.005 m/s (endpoint, Figure 2D, square). Endpoint error was measured as a distance between

hand position at the endpoint and the center of the target.

Return time was measured as the time interval from perturbation onset to when the hand cursor reentered the target area. Prac-

tically, we used a larger acceptance window (1.8 and 2.0 cm for monkey A and R) to keep animals rewarded even with motor impair-

ments. However, when we calculated the return time, we used the original target size (0.8 and 1.0 cm for monkey A and R) that the

monkeys were trained with (Figure 2D, circle).

Max deviation was defined as the peak hand displacement from the pre-perturbation hand position (Figure 2D, triangle). Pre-

perturbation hand position was calculated as the averaged hand position during an interval from 100 to 0 ms before perturbation

onset. Max deviation time is the time when max deviation occurred relative to perturbation onset.

Modulation of behavioral measures was tested by using a two-way ANOVA (cooling epochs3 target areas, p < 0.05). As post hoc

analyses, Welch’s t tests were performed to compare between cooling and sham conditions (p < 0.05 with Bonferroni correction).

Since we verified the difference of torque directions (SE+EF or SF+EE) did not qualitatively affect cooling results, we pooled the

data into one dataset.

Sample size selection
After we collected the data from the first animal (monkey A), we estimated a sample size that was required for a statistical test (t test)

between sham and each cooling condition to have a power of (1 – b) = 0.90 with a significance level of a = 0.01. This calculation was

done with the SAMPSIZEPWR function of MATLAB. The mean and standard deviation of the null hypothesis was set to those of the

shamcondition and the sample sizewas estimated for endpoint error, which showed significant impairment in both PMd and A5 cool-

ing (Figure 3C). Results showed that the optimal sample size was 9 and 11 sessions for PMd and A5 cooling. Given the high variability

of behaviors between animals, we set a minimal sample size for the second animal to 10 sessions for each condition.

EMG analyses
In some recording sessions (n = 33 and 58 in monkey A and R, respectively), electromyographic (EMG) activity was recorded from

upper-limb muscles by attaching surface EMG electrodes over each muscle belly (Delsys Bagnoli, Delsys, Natwick MA, USA). Mus-

cles were selected that predominantly contributed to flexion and extension movements at the shoulder and elbow (biceps, brachior-

adialis, brachialis, long/lateral triceps, anterior/middle/posterior deltoid, pectoralis major).86 Muscle activity was recorded at

4000 Hz, band-bass filtered (25-350Hz, 6th order Butterworth), full-wave rectified and downsampled to 1000 Hz before analysis.

EMG signals were aligned to perturbation onset and averaged across trials. Preferred torque direction (PTD) of each EMG was

determined as the torque combination (SE+EF or SF+EE) that produced the larger response in a time window from 50 to 100ms after

perturbation onset. We identified EMG as perturbation responsive if the EMG response (50 – 100 ms after perturbation) in the PTD

was significantly higher than that in an unloaded catch condition (t test, p < 0.05). In total, we identified 293 EMG samples (n = 165 and

128 in monkey A and R) to be perturbation responsive and analyzed further (n = 140, 90 and 63 in sham, PMd and A5 cooling con-

ditions, respectively).

EMG traces were first normalized by their mean activity during the last 2 s of the trials when the monkey was countering the load in

the PTD. This normalization value was calculated with data only from the pre-cool epoch, and then the same value was applied to all

EMG data in the pre-cool, cool and post-cool epochs. Then, we averaged the normalized EMG traces across muscles separately for

each cooling condition. From our pilot observation, we found that EMG signals hadmuch higher noise than kinematic signals. There-

fore, we performed a selection process of the EMG data based on the behavioral effects of cooling. Our behavioral analyses showed

both PMd and A5 cooling increased endpoint errors (Figure 3C). Therefore, we selected EMG data in sessions when the endpoint

error was higher than the 90th percentile of the endpoint error from sham conditions. As a result, we selected 64 out of 153 EMG

datasets (33 / 90 and 31 / 63 for PMd and A5 cooling). Importantly, we only used endpoint error for the selection and we used the

same criteria for PMd cooling and A5 cooling. For the sham cooling data, no selection was applied (n = 140).

Muscle activity was compared across predefined epochs (baseline, 100-0 ms before perturbation onset; R1, 20-50 ms post-

perturbation; R2, 50-75 ms post-perturbation; R3, 75-120 ms post-perturbation; voluntary 120-180 ms post-perturbation).81,87

Welch’s t test was used to evaluate whether the binned muscle activity was significantly modulated from sham condition (p <

0.05 with Bonferroni correction).

Temperature measurement in M1
In order to evaluate the change ofM1 temperature during PMd cooling sessions, we recorded intracortical temperature ofM1 onPMd

cooling (n = 2) or dual cooling of PMdandA5 (n = 1) sessions. Prior to the temperature recording, wemapped the arm area ofM1 using

intracortical microstimulation (11 pulses, 333 Hz, 0.2 ms pulse width, % 20mA). In each recording day, we inserted a thermocouple

(HYP0-33-1-T-G-60-SMPW-M, Omega Engineering Inc, CT, USA) into the arm area of M1.We then started the experimental proced-

ure to collect pre-cool, cool and post-cool epochs. The temperatures were sampled at 4000 Hz along with the kinematic signals.
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Mean temperature during pre-cool (for 5min before cooling onset) and cool (for 5min before cooling offset) epochswere compared

in M1 and PMd (probe temperature) separately (Figure 4). Significant modulation of temperature was evaluated with paired t test (p <

0.05 with Bonferroni correction).

Model simulation
Weused an optimal feedback control (OFC)model developed in our previous report.10We considered the translation of a single-point

mass (m = 1 kg) in one dimension. The control system was described by the following differential equations:

m €p = �G _p+Fctrl +Fext

t _Fctrl = u� Fctrl

wherem is mass, p(t) is the position of the point mass as a function of time (t), G is the viscous constant, Fctrl and Fext are the control

and external forces, respectively, u is the motor command and t is the time constant of the linear filter for the motor command. Each

trial began with Fext set to 0 Nm (no external load) and after 500ms Fext was suddenly changed to +2 Nm and maintained for another

1000ms until the end of the trial (a step-torque perturbation).Gwas set to 1 N$s$m–1, and twas set to 40ms,which is compatible with

the first approximation of muscle dynamics.88 Stochastic dynamics and noise disturbances are described in a discrete time system

with a 10-ms time step:

xk + 1 = Axk +Buk +motor noise

where xk+1 is the state vector at time k+1, A and B are matrices that describe the system dynamics, and uk is the motor command at

time k. Motor noise is a signal dependent Gaussian noise with variance of (0.125)23 u6. The state vector is represented with the four-

dimensional vector,

xk = ½pðkÞ _pðkÞ FctrlðkÞ FextðkÞ�u

which was augmented with previous states to take feedback delays into account.89 The feedback delay was set to 50 ms (5 time

steps) to reflect the transcortical feedback loop delay of the long-latency response.38 This resulted in the augmented state vector

with 24 dimensions.

The feedback signal at each time step (yk) can be written as,

yk +1 = Hxk + sensory noise

where H is the observation matrix, which allows the system to observe only the most delayed state (50ms before). Otherwise, the

system is fully observable. Sensory noise is an additive Gaussian noise with variance 10�10. To compensate the time delay of the

feedback signal, the OFCmodel includes an optimal linear state estimator (Kalman filter) that consists in weighting prior beliefs about

the next state of the system with sensory feedback to derive a maximum likelihood estimate of the system state. Let bxkbe the esti-

mated state at time k. The prior belief about the next state (x*k+1) is defined as

x�k + 1 = bAbxk + bBuk +prediction noise

where bA and bB are the internal model of the system dynamics, A and B. Prediction noise is an additive Gaussian noise with variance

10�8. Then, the feedback correction yields the state estimation by taking yk+1 into account as

bxk + 1 = x�k + 1 +Kk + 1

�
yk + 1 � bHx�k + 1

�

whereKk+1 is the Kalman gain at time k+1 and bH is the internal model of the observationmatrix,H. Finally, the feedback control policy

is defined as

uk = � Lk bxk

where Lk represents the optimal feedback gain at time k.

The cost function for the task was defined as:

J =
X
t = 1

qpðtÞpðtÞ2 +qvðtÞ _pðtÞ2 + ruðtÞ2

where J is the total-cost including error cost (position and velocity) and motor cost over a time-course of the trial. qp and qv are time-

dependent factors which define the cost of position and velocity errors, respectively. Both were set to 1 before and 500 ms after the

perturbation, but they were set to 0 between 0 and 500 ms after the perturbation. This means that the model is required to stay at (p,

ṗ) = (0, 0) except for just after the perturbation. r is a constant factor which defines the cost of control and it was set to 10�6.

With these definitions of the system dynamics, feedback signals, noise parameters, and cost functions, we computed the optimal

feedback gains (L) and Kalman gains (K) following algorithms adapted for the presence of signal-dependent noise.23,89

ll

Current Biology 31, 1476–1487.e1–e5, April 12, 2021 e4

Article



Simulation for cortical deactivations
To apply deactivation of the optimized model parameters, we used two different methods: downscaling and noise addition. For

downscaling, we multiply a scalar between 0 – 1 to deactivate the parameter. For example, when we deactivate a parameter by

20%, we multiply 0.8 ( = 1 – 0.2) to the optimized value of the parameter. The rational of this method is that cortical cooling is known

to reduce neural excitability at mainly post-synaptic terminals,90 suggesting that cooling reduced the gain to the pre-synaptic inputs.

Another possibility is that cortical cooling adds some noise to the neural computations by affecting the balance of excitatory and

inhibitory neural activity. To replicate this scenario, we added scaled Gaussian noise to the target parameters. To control for manip-

ulation size, the noise was chosen from a normal distribution whose standard deviation was scaled with the absolute value of each

parameter:

noise � Nð0; ajxjÞ
where |x| is absolute of the optimal value for the target parameter and a is a scaling factor of added noise chosen from 0 to 1. This

means that noise size was normalized to the coefficient of variation (CV): a = 0 indicates that no noise was added (0% CV), whereas

a = 1 indicates that noise chosen from normal distribution with standard deviation of |x| (100%CV). Once noise was selected for each

parameter in each simulation repeat, the value was fixed and not changed during a trial time course.

With either deactivationmethod, we applied deactivation to each target parameter and evaluated the behavioral measures with the

same algorithms used for the monkey behavioral analyses (Figure 2D). Then we applied a two-way ANOVA (deactivation size3 de-

activated parameters) and post hoc paired t tests to evaluate whether the behavioral measures were modulated from the optimal

conditions (p < 0.05 with Bonferroni correction). Deactivation size for downscaling was chosen from 0 – 100% with a 5% step

size, whereas deactivation size for noise addition was chosen from 0 – 40% with a 2% step size.
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