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The Centre of the Brain: Topographical Model of
Motor, Cognitive, Affective, and Somatosensory
Functions of the Basal Ganglia

Marie Arsalidou®, Emma G. Duerden, and Margot ). Taylor

Diagnostic Imaging and Research Institute, Hospital for Sick Children, Toronto, Canada

* *

Abstract: The basal ganglia have traditionally been viewed as motor processing nuclei; however, func-
tional neuroimaging evidence has implicated these structures in more complex cognitive and affective
processes that are fundamental for a range of human activities. Using quantitative meta-analysis meth-
ods we assessed the functional subdivisions of basal ganglia nuclei in relation to motor (body and eye
movements), cognitive (working-memory and executive), affective (emotion and reward) and somato-
sensory functions in healthy participants. We document affective processes in the anterior parts of the
caudate head with the most overlap within the left hemisphere. Cognitive processes showed the most
widespread response, whereas motor processes occupied more central structures. On the basis of these
demonstrated functional roles of the basal ganglia, we provide a new comprehensive topographical
model of these nuclei and insight into how they are linked to a wide range of behaviors. Hum Brain
Mapp 34:3031-3054, 2013.  © 2012 Wiley Periodicals, Inc.
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INTRODUCTION

The basal ganglia are a set of deep gray matter nuclei
situated in the centre of the brain, at the base of the fore-
brain. The basic components include the striatum (com-
posed of three subnuclei: the caudate, the putamen, and
nucleus accumbens) and the globus pallidus [Martin,
2003]. Knowledge of the functional roles of the basal gan-
glia has been largely based on patients with motor dys-
function such as Parkinson’s disease [Chenery et al., 2008;
Dagher and Nagano-Saito, 2007] and Huntington’s dis-
ease [Bohanna et al., 2008; Paulsen, 2009], which led the
field to associate these nuclei primarily with motor func-
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tions. However, these subcortical nuclei are also impli-
cated in cognitive disorders, such as attention-deficit/
hyperactivity disorder [Aron and Poldrack, 2005; Bush
et al.,, 2005; Knutson and Gibbs, 2007] and obsessive/
compulsive disorder [Huyser et al.,, 2009]. Furthermore,
evidence from functional magnetic resonance imaging
(fMRI) has suggested more complex roles for the basal
ganglia in processing higher cognitive functions, emotion,
and somatosensation. Despite the recent surge of fMRI
evidence, the processes subserved by the basal ganglia
were characterized as mysterious [Mazzoni and Brace-
well, 2010] and the most recent topographical model of
basal ganglia function was published more than two dec-
ades ago [Alexander et al., 1990]. A wealth of functional
neuroimaging data can now be analyzed to improve our
understanding of these central brain structures. Thus, we
compiled and analyzed existing fMRI data, collected from
healthy adults, to examine functional subdivisions of the
basal ganglia and to provide an updated topographical
model of the various functions: motor, cognitive, affec-
tive, and somatosensory, within the nuclei of the basal
ganglia.
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Basal ganglia involvement in motor behavior is possibly
its longest known function and the most thoroughly
researched [Mattay and Weinberger, 1999; Ungerleider
et al.,, 2002]. More recent qualitative reviews have attrib-
uted cognitive functions to the basal ganglia including
reinforcement learning [Bullock et al., 2009], category
learning [Nomura and Reber, 2008; Shohamy et al., 2008],
sequential decision-making [Cabeza and Nyberg, 2000],
working memory training [Dahlin et al., 2009] and learn-
ing based on evaluation of outcomes [Frank and Claus,
2006; Grahn et al., 2008]. The nucleus accumbens, part of
the ventral striatum, has been implicated in reward-related
processes [Assadi, et al., 2009; Delgado 2007], such as
anticipation of monetary gains [Knutson and Bossaerts,
2007; Knutson and Greer, 2008; Knutson and Peterson,
2005].

Functional subdivisions of the basal ganglia have been
proposed based on qualitative evidence, suggesting that
motor selection, preparation and execution processes are
subserved by the rostrocaudal parts of the basal ganglia
(i.e., largely the putamen), eye-movements implicate the
caudate, whereas reward-processes involve the ventral
aspects of the basal ganglia [Lehericy and Gerardin, 2002].
Alexander et al., [1990] proposed the most comprehensive
functional model of the basal ganglia to date, thus we fre-
quently refer to and make contrasts with this previous
work. Primarily based on animal and pathology studies
they illustrated five systems of cortical areas that receive
output from the basal ganglia [Alexander et al., 1990].
These five cortical categories were motor, oculomotor, cog-
nitive dorsolateral (related to the prefrontal cortex Brod-
mann areas 9 and 10), cognitive lateral-orbitofrontal
(related to the prefrontal cortex Brodmann area 10) and
limbic. While this work provided insight into the func-
tional subdivisions of the basal ganglia, more recent neu-
roimaging studies have produced a wealth of evidence on
how these nuclei are involved in cognitive and physiologi-
cal processes such as reward and somatosensory process-
ing in healthy humans. Therefore, an updated function-
based model of the basal ganglia based on quantitative
human brain imaging data is warranted.

We built on the previously proposed categories
[Alexander et al., 1990] to define motor, cognitive, affec-
tive, and somatosensory functions into seven categories:
motor (1) body movements and (2) eye movements; cogni-
tive (3) working-memory, such as storing and manipulat-
ing information and (4) executive functioning that requires
the creation of an executive scheme, such as planning;
affective (5) emotion—eliciting and perceiving emotions
and (6) reward—receiving positive/negative feedback and
monetary outcomes; and (7) sensory—processes that
involve somatosensation, primarily the perception of nox-
ious stimuli. These functions are not necessarily processed
by distinct locations in separate nuclei; therefore, an over-
lap of some categories was expected.

To create a functional atlas of the basal ganglia we used
a data-driven, coordinate-based meta-analytic technique

(Activation Likelihood Estimate, ALE) [Laird et al., 2005;
Turkeltaub et al., 2002]. This method calculates the proba-
bility that a given voxel in the brain is activated consis-
tently across studies. First, 3D-probabilistic maps of each
of the categories were created to quantify the spatial extent
and localization of motor-, cognitive-, affective-, somato-
sensory-evoked activation in specific nuclei in the basal
ganglia. Second, laterality indices were calculated to iden-
tify hemispheric asymmetries related to each nucleus and
each function. Specifically, we examined functional distinc-
tions in the basal ganglia elicited by body movements and
eye movements. We also looked at distinctions between
different cognitive and affective functions as well as soma-
tosensory processes. We provide normative fMRI atlases
for these processes in standard stereotaxic space as well as
topographical models that characterize basal ganglia func-
tions in terms of significant peak ALE values and
lateralization.

METHODS
Literature Search and Article Selection

The literature was searched using the standard search
engine of Web of Science (http://www.isiknowledge.com).
In October 2010, we looked for fMRI articles that men-
tioned the basal ganglia in the whole document (e.g.,
abstract, main text, and references) by using keywords
such as (fMRI and basal ganglia, striatum, caudate, puta-
men, lentiform/lenticular nucleus, globus pallidus, nu-
cleus accumbens). To maintain interpretability based on
imaging method we only selected fMRI studies and did
not include positron emission tomography (PET) studies
in the search criteria. The inclusion of data obtained from
one functional neuroimaging technique has a number of
advantages when performing meta-analyses. Namely, it
reduces variability in the data and this is an important
consideration given that the temporal and spatial resolu-
tion of PET is poorer in comparison to fMRI. Articles were
also restricted to include human participants and to be in
English. This search, which yielded a total of 1,848 studies,
was subjected to two successive criteria to identify articles
that used fMRI and reported coordinates from the basal
ganglia; 699 were neither fMRI studies nor reported coor-
dinates in the basal ganglia, and were excluded. Of these
699 articles, 147 were reviews and 16 were case studies.
The remaining 1,149 studies were incorporated in a full
text review. To preserve data interpretability, we only con-
sidered studies that included healthy independent adult
samples (ages: 17/18-65) with within-group results that
clearly stated using whole-brain random-effects analyses.
We only considered studies that reported positive activa-
tions (not deactivations) related to the basal ganglia using
either the Talairach or Montreal Neurological Institute
(MNI) coordinate systems. The data from 204 studies
passed these criteria and were included in the analyses
(Table I).
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Meta-Analyses

ALE is a coordinate-based meta-analytic method [Laird
et al., 2005; Turkeltaub et al., 2002; Eickhoff et al., 2009]
available through BrainMap (http://brainmap.org/ale/;
Research Imaging Center of the University of Texas in San
Antonio). Contrast coordinates (i.e., foci) from different
studies are used to generate 3D maps describing the likeli-
hood of activation within a given voxel in a template MRI
[Laird et al., 2009]. Significant findings are based on
whether the data are more likely to occur compared to a
random spatial distribution.

Coordinates from source datasets were first transformed
into common space. MNI coordinates were transformed
into Talairach space using the best-fit MNI-to-Talairach
transformation [Lancaster et al., 2007]. To maintain data
independence, each meta-analysis contained foci from only
one contrast per study. The b5-category model by
Alexander et al., [1990] was expanded to a 7-category
model. We retained the scheme of Alexander et al. [1990]
for cognitive and motor functions. However, the cognitive
processes we have termed “working memory” and “execu-
tive functions”, were created to correspond with the “dor-
solateral” and “lateral orbitofrontal’” systems of Alexander
et al. [1990]. Similarly, motor movements were separated
into body and oculomotor (eye movement) categories.
Whereas Alexander et al., [1990] grouped emotion and
reward processes as the “limbic system”, we divided these
studies into separate categories. We also added a new cat-
egory of somatosensation.

The criteria for grouping coordinates into the seven cate-
gories were as follows: Motor functions were separated
into body and eye movements. Body movements were
activation foci associated with any movements of the
hands, legs, fingers, etc., whereas eye movements were
mainly evoked by saccade or anti-saccade tasks. Cognitive
functions were categorized separately into working-mem-
ory and executive functions. Although tasks that engage
executive functions often incorporate a component of
working-memory, we chose to categorize executive func-
tion studies separately to be consistent with the model of
Alexander et al. [1990] and to have a reference point for
purposes of comparison. The working memory category
included tasks that required encoding, storing, manipulat-
ing and retrieving information (e.g., n-back tasks, Stern-
berg tasks). Executive functions included tasks that
required strategy planning and strategy formation (e.g.,
judgment and switching tasks). Affective functions were
categorized into emotion and reward processes. Emotional
functions included tasks that required any form of either
eliciting or judging emotion. Reward functions included
tasks that involved receiving positive or negative feedback
and any type of task-related reward. Last, somatosensory
functions included activation evoked by stimuli (noxious
and/or innocuous) applied to the body. In cases where
contrasts involved multiple categories tapping two or
more processes within our categorization scheme (i.e.,

working memory and executive functioning) the original
task description was compared with our criteria to identify
the primary function being assessed. For example, a task
could require working memory processes within the con-
text of decision making. However, if the contrast reflected
encoding, storing, maintaining or retrieving information
then it would be classified as working memory. Table I
provides details on all of the source datasets that were
included in the analyses.

The data were subjected to random-effects analyses
using GingerALE v2.1 [Eickhoff et al., 2009]. Using this
method, activation foci from each study are converted into
three-dimensional Gaussian probability functions. This
process involves smoothing the data using a Gaussian
blurring kernel. The full-width at half maximum (FWHM)
size of the Gaussian blurring kernel is based on the num-
ber of participants used in each contrast. Median FWHM
values across the included studies by category were: body
movements = 9.75, eye movements = 9.57 working-mem-
ory = 9.43, executive = 9.50, emotion = 9.43, reward =
9.23, sensory = 9.75. A voxel-wise likelihood of activation
was calculated and was corrected for multiple compari-
sons using the false discovery rate (FDR) g = 0.001. A con-
junction process was employed to display results from the
ALE maps associated with the different functions, using
AFNI [Cox, 1996]. Activation likelihood estimates of func-
tional categories (e.g., affective processes: emotion and
reward) were overlaid and displayed on a template MRI
using the program 3dcalc; spatial overlap was illustrated
by a common color.

To assess hemispheric dominance for activation associ-
ated with the seven categories of interest, laterality indices
were calculated using AFNI. Regions-of-interest were ana-
tomically defined using an AFNI template [MNI N27 brain
in Talairach space (Eickhoff et al., 2007)]. The masks were
applied to the thresholded ALE maps and hemispheric
dominance was calculated in each region. A laterality
index (LI = [Left — Right] / [Left 4+ Right]) of >0.20 was
deemed left dominant and <—0.20 right dominant; values
in between were considered bilateral.

RESULTS

The data from 204 fMRI datasets were included in the
meta-analyses. Figure 1 shows the number of studies per
year included in the meta-analyses as well as the number
of studies and foci related to each function. A total of
3,518 participants (99% right handed) took part in these
studies; 45.3% were female. The average age ranged
between 19.5 and 51.1 years with most participants being
around 25 (mode = 24, median = 25.51, mean 26.94 + 4.93
years; for more details on the source datasets see Table I).

Peak foci showing concordance across studies are shown
in Table II (corrected for multiple comparisons using the
false discovery rate, g = 0.001). Figure 2 illustrates the
location and spatial extent of significant concordance in
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Figure I.

Source datasets. (@) Number of fMRI studies that reported ac-
tivity on basal ganglia and passed selection criteria as a function
of year, (b) the distribution of datasets, and (c) number of foci
that contributed to the analysis of each functional category. A
single contrast from each study was selected for a category; in a

each category observed across studies. We also illustrate
the overlap for motor, cognitive and affective categories
(Fig. 3). Figure 4 portrays laterality proportions as well as
laterality indices associated with each function by basal
ganglia structure. We highlight four main findings, dis-
cussed in detail below:

a. Motor processes occupied central basal ganglia
structures (putamen and globus pallidus); eye
movements were left lateralized, whereas body
movements were either bilateral or right dominant
in the putamen and globus pallidus;

b. Working-memory processes (encoding, storing,
manipulating, and retrieving information) elicited
the most widespread responses, which were the
least lateralized; executive processes (e.g., planning
and task switching) were anterior and ventral to
those elicited by working-memory processes;

c. Reward processes evoked activity in the anterior
parts of the caudate head and overlapped most
extensively with emotional processes in the left
hemisphere, which suggests differential hemispheric
contributions (Fig. 3).

few instances two contrasts were selected and entered in differ-
ent categories (e.g., a contrast for reward and working-memory
categories; see Table | for more details on functional categoriza-
tion of contrast and selection).

d. Somatosensory processing, particularly pain, showed
preferential activation in the dorsal putamen.

DISCUSSION

For decades, our knowledge of the basal ganglia has
been largely limited to lesion and animal studies. We used
neuroimaging data from healthy, human participants to
create a new cohesive topographical model of the func-
tions of the basal ganglia. The results provide novel
insight into the role of the basal ganglia in motor, cogni-
tive, affective, and somatosensory processing.

Body movements showed significant concordance across
studies in central areas of the basal ganglia bilaterally with
the highest likelihood of activation in the left putamen.
Eye movements also had a significant likelihood of activat-
ing the putamen, but ventral to the activation evoked by
body movements; indices of hemispheric dominance
showed that eye movements were left lateralized. Previous
reviews on movement disorders proposed that the puta-
men was essential for learning novel, complex, and
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TABLE Il. Concordant basal ganglia substructures as a function of functional category

Area X y z ALE Value Volume (mm?)
Body motion
L. Putamen —-22 —4 14 0.036 5312
L. Putamen —24 —6 4 0.027
R. Lateral Globus Pallidus 22 —6 2 0.033 5224
R. Putamen 22 6 14 0.025
L. Caudate Body -6 8 8 0.016 176
R. Caudate Body 2 16 8 0.014 72
Eye motion
L. Putamen -20 2 6 0.031 936
R. Putamen 20 6 4 0.020 160
Working—memory
L. Putamen —14 6 6 0.070 23768
R. Putamen 16 6 6 0.065
L. Lateral Globus Pallidus —26 -14 -2 0.025
Executive
R. Caudate Head 12 10 2 0.038 2880
L. Putamen —14 8 2 0.036 2512
R. Putamen 24 —6 4 0.022 352
L. Caudate Body —-18 —16 22 0.014 16
R. Caudate Body 16 -12 26 0.014 16
Emotion
L. Caudate Body -10 8 6 0.035 5296
L. Caudate Body —-16 2 14 0.029
L. Medial Globus Pallidus —14 -2 -2 0.022
L. Putamen —-22 16 4 0.017
R. Caudate Body 12 2 18 0.024 2304
R. Caudate Body 10 8 12 0.023
R. Putamen 18 4 6 0.022
Reward
L. Caudate Head -10 6 0 0.063 4240
L. Lateral Globus Pallidus —12 6 —4 0.062
L. Putamen —16 8 —6 0.061
R. Lateral Globus Pallidus 12 6 0 0.062 2832
Sensory
L. Putamen —26 6 —4 0.019 424
R. Caudate Body 10 8 8 0.012 128
L. Caudate Body -10 8 10 0.012 56

Coordinates (x, y, z) are in Talairach space using FDR (g = 0.001); L, Left; R, Right; ALE, activation likelihood estimate.

voluntary movements [Bartels and Leenders, 2008; Cebal-
los-Baumann, 2003], but less important for automated,
well learned movements [Ceballos-Baumann, 2003]. In line
with these claims, we showed concordance of activity in
the putamen for body movements and also provided spa-
tially specific coordinates as they were evoked in the
healthy basal ganglia. In addition, we distinguished eye
movements from body movements. Eye movements, a
subdivision of motor movements, were previously related
to basal ganglia activity, whether these were voluntary
saccades [Leigh and Kennard, 2004; Sweeney et al., 2007]
or anti-saccades [Dillon and Pizzagalli, 2007]; the informa-
tion provided by these studies was not spatially specific.
In contrast to our results, Alexander et al., [1990] proposed
that the putamen and the globus pallidus mediated body
movements and that eye movements primarily recruited
the caudate body and the globus pallidus. For eye move-

ments, we found no evidence of peak concordance in the
globus pallidus or in the caudate body, but rather in the
anterior putamen. Thus, the current analytical approach
based on quantitative data, both complements and extends
previous qualitative reviews by providing new informa-
tion on the spatial extent and lateralization of body and
eye movements subserved by specific basal ganglia nuclei.

The model by Alexander et al., [1990] distinguished
between working-memory processes, subserved by the
dorsolateral prefrontal cortex (Brodmann areas 9 and 10),
and executive functioning, processed by the lateral orbito-
frontal cortex (Brodmann area 10). They suggested that
working-memory processes would recruit the dorsolateral
caudate head and continue rostrocaudally to posterior
regions, whereas the executive functions would implicate
the ventromedial sector of the caudate head and extend to
posterior structures just medial to those involved in
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Figure 2.
Brain maps demonstrating significant concordance across studies centered over the peak ALE
value for each category. A voxel-wise likelihood of activation was determined using false discov-
ery rate (FDR) g = 0.001 multiple comparison control. Left = Left.

working-memory. Our data showed that working-memory
processes (maintaining and manipulating information)
recruited large areas of the basal ganglia primarily cen-
tered over the anterior putamen, while executive functions
(e.g., planning and set-shifting) activated the head of the
caudate nucleus. Additionally, working-memory processes
were either left dominant or bilateral and executive proc-
esses were right lateralized (head and body of the
caudate).

In relation to findings of lateralization of working mem-
ory processes in the cortex, nonhuman primate studies
[Parker and Gaffan, 1998] and some human imaging stud-
ies [Petrides et al., 1993] have noted differential hemi-
spheric processing of verbal and spatial tasks, with the
former type involving the left hemisphere and the latter
right hemisphere processes. In our classification scheme of
working memory tasks, divisions between verbal and spa-
tial tasks were not created. Rather the goal of this study
was to examine broad working memory processing in the
basal ganglia; however, future research could assess the
lateralization of more specific working memory domains.

A more recent hypothesis regarding lateralization of
working memory processes states that hemispheric asym-
metries are not merely domain-specific or material-specific,
but instead vary on two distinct but continuous dimen-

sions of imaginability (right hemisphere) and verbalizabil-
ity [left hemisphere; Casasanto, 2003]. This hypothesis
may extend to include processes that we considered here
as working memory and executive functions of the basal
ganglia. For instance, the current findings show left domi-
nance in the caudate head for working-memory processes,
whereas right dominance was observed for executive func-
tions in the same region. If this hypothesis is assimilated,
then in the caudate head, for example, working-memory
processes may be more verbalizable, while executive func-
tion may require more imaginable processes. In line with
this, we also note that executive-functioning activity was
contained within the region of activity of working-memory
processes in the left, but not the right, hemisphere. As it is
difficult to separate working-memory and executive proc-
esses, these findings are particularly interesting because
they suggest that hemispheric asymmetries may character-
ize these often subtle cognitive differences. The Alexander
et al., [1990] model did not account for hemispheric contri-
butions of basal ganglia structures.

Affective processes elicited a similar hemispheric asym-
metry to that observed for cognitive functions. Emotion
and reward processes overlapped to a greater extent in the
left hemisphere, whereas in the right hemisphere, reward
activities fell toward the caudate head rather than the
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Figure 3.
Conjunction display of ALE maps showing concordance over basal ganglia nuclei for motor, cog-
nitive, and affective functions. A voxel-wise likelihood of activation was determined using false
discovery rate (FDR) g = 0.001 multiple comparison control. Left = Left.
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Laterality indices for basal ganglia structures. Region of interest masks were applied to the
thresholded ALE maps and hemispheric dominance was calculated for each region. Laterality
index (LI = [Left — Right]/[Left + Right]) of >0.20 was deemed left dominance and <—0.20 right
dominance, values in between were considered bilateral. Bars represent proportion of activity in
each hemisphere.

* 3044 »



¢ Topographical Model of the Basal Ganglia ¢

a
caudate tail

b
caudate tail

medial GP

lateral GP

putamen

caudate body

medial GP

lateral GP

putamen

caudate body

caudate head

caudate tail

emotion

caudate tail

Figure 5.
Topographical model of the functions of the basal ganglia. We illustrate the basal ganglia struc-
tures in a schematic representation. Using color codes we illustrate (a) basal ganglia regions con-
cordant across studies and (b) hemispheric dominance for each functional category; thicker

stripes indicate larger hemispheric contribution. Left = Left.

caudate body. Alexander et al., [1990] did not distinguish
between emotion and reward processes, but rather classi-
fied them both as a part of the limbic system. They sug-
gested that the limbic system engaged the most ventral
parts of the caudate; however, in contrast to our results,
they did not consider the putamen and globus pallidus as
nuclei involved in emotion and reward [Alexander et al.,
1990]. Historically, emotional processing has not been
ascribed to the basal ganglia and only reward processing
has recently been specifically associated with the nucleus

accumbens, located in the ventral striatum [Frank and
Claus, 2006; Knutson and Bossaerts, 2007; Knutson and
Greer, 2008; Knutson and Peterson, 2005]. Our results show
key distinctions between reward and emotion processes.
Specifically, our findings suggest that reward processes
occupy more anterior parts of the caudate head (bilateral)
and emotion processes occupy superior structures in cau-
date body (bilateral) and putamen (left lateralized).

Basal ganglia activation in response to somatosensory
stimuli was evoked mainly by studies using noxious
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stimuli. Pain is a complex, multifaceted sensation that
involves sensory-discriminative and affective-motivational
processing, and also cognitive appraisal [Duerden and
Duncan, 2009]. A recent qualitative review indicated that
pain and reward pathways were processed similarly by
the dorsal and ventral striatum and the globus pallidus
[Leknes and Tracey, 2008]. However, the current results
indicate that pain-evoked activation was largely distinct
from other forms of reward and punishment, as they
showed the highest concordance in the dorsal parts of the
left putamen, whereas reward processes were mediated by
the anterior caudate nucleus. To date, somatosensory func-
tions are not commonly ascribed to being mediated by the
basal ganglia, nor contrasted to other motor, affective or
cognitive functions.

Animal studies have been key for understanding the
histology [e.g., Carpenter et al., 1972; Kemp et al., 1971]
and cortical connections [Haber, 2003; Bar-Gad and Berg-
man, 2001] of the basal ganglia. Despite the valuable con-
tributions of animal models of basal ganglia function in
relation to behavior [Chudasama, 2011], it is difficult to
compare some studies to human data as tasks must be
adapted for use with either population. For example, tasks
used to assess cognitive abilities in animals or humans
tend to be modified so that the degree of complexity can
be adjusted to avoid floor or ceiling effects. Although
gross similarities in brain structure and function between
animals and humans exist, a major advantage of having a
human model is that no assumptions need to be made to
bridge the gap of performance or structural differences
between species.

The nuclei of the basal ganglia are connected to brain
regions implicated in motor, cognitive, affective and soma-
tosensory functions. Several of the processes were found
to overlap functionally in the nuclei of the basal ganglia
that may be indicative of multimodal neuronal processing.
However, some regions of the nuclei were associated with
activation evoked by unique functions, a finding that
could provide support for the presence of unisensory neu-
rons in these structures.

We propose a new human model that incorporates topo-
graphical and hemispheric contributions of basal ganglia
structures for motor, affective, cognitive and somatosen-
sory functions. Basal ganglia activity is readily observed in
fMRI studies of these functions (Fig. 5). In two schematic
representations we illustrate (a) basal ganglia regions con-
sistently activated across studies by using the peak likeli-
hoods of activation for each functional category (Fig. 5a)
and (b) hemispheric contributions of each nucleus of the
basal ganglia for each functional category (Fig. 5b). The
functional categories studied here were processed by sub-
divisions of the basal ganglia that were consistent with the
afferent and efferent projections to and from cortical
regions, which subserve these functions. For example, the
head of the caudate nucleus was likely to be activated by
rewarding stimuli (in the left hemisphere) and executive
functioning processes (in the right hemisphere); this is

likely reflective of this region’s neuroanatomical connec-
tions with the orbitofrontal and medial prefrontal cortices
— structures involved in these processes, respectively
[Haber et al., 1995]. Additionally, somatosensation showed
concordant activity in dorsolateral parts of the putamen
that may reflect this region’s connections to cortical areas
involved in pain processing, such as the anterior cingulate
cortex and insula [Mufson and Mesulam, 1982]. The basal
ganglia can be considered, at least allegorically, the centre
of the brain, as they are a collection of nuclei responsible
for receiving and transmitting information to and from
major components of the cerebral cortex that contribute to
sensation, perception and behavior; fundamental activities
that include motion, emotion, sensation, cognition, and
reward.

The comprehensive mapping of the functions of the ba-
sal ganglia made possible by meta-analytic techniques pro-
vides valuable information that may translate into
advances in clinical practices and targeted hypothesis test-
ing. In this work, the original five-category model of the
basal ganglia proposed by Alexander et al. [1990] was
assessed with the inclusion of two additional categories,
using functional neuroimaging data collected in healthy
participants. Potentially we could have increased our cate-
gorization scheme to include such processes as motor
planning, goal-directed planning, and motivation [Haber,
2003]. However, to further subcategorize the contrasts
included in our seven-category model would result in a
loss of statistical power. Furthermore, several of these
additional cognitive processes lack unanimity in the litera-
ture to be clearly defined for meta-analytic purposes. Our
classification scheme both confirms and extends previous
work on the functional roles of the basal ganglia and will
serve as a basis for further, more detailed analyses.

Another important consideration is that the results of
this study reflect the statistical concordance across a broad
range of studies classified into categories that included an
array of contrasts. The contrast selection was based on
thoroughly researched predefined criteria. However, the
classification of functions is inherently difficult as some
higher order tasks may recruit several processes and as a
result, this could account for some of the observed over-
lap. Optimally, data of identical contrasts should be ana-
lyzed, as they would be less influenced by methodological
factors; however, such an approach would allow the inclu-
sion of fewer neuroimaging studies and would make
meta-analytic analyses difficult to interpret. An additional
consideration is that methodological approaches selected
by the original sources also varied, such as imaging pa-
rameters and statistical approaches. Nonetheless, we did
take steps to control for aspects of the methodological var-
iance, such as choosing only fMRI studies and selecting
articles that performed whole-brain analyses.

An additional point of interest that could not be
assessed with these data is the issue of age-related func-
tional differences in the basal ganglia. More subtle catego-
rizations of function or age-range selections could not be
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completed as it would significantly reduce the power of
the analyses. Despite these limitations, it is encouraging
that we observed convergence of evidence over a large se-
ries of data, compiled over independent research groups
studying common domains (i.e., motor, cognition, affect,
and somatosensation).

In summary, basal ganglia structures are involved not
only in motor processes but also cognitive, affective, and
somatosensory functions key to a host of human behav-
iors. Our analyses provide functional distinctions of basal
ganglia structures, as well as lateralization information, an
aspect that was previously neglected. This work can serve
as a basis for understanding subcortical/cortical interac-
tions and future work could focus on more specific func-
tions of the basal ganglia. Also, the proposed normative
adult model could be used for a prori region-of-interest
analyses to assess basal ganglia development or examine
dysfunction in relation to neuropsychiatric disease.
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