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Lactate preconditioning promotes 
a HIF-1α-mediated metabolic 
shift from oXpHoS to glycolysis in 
normal human diploid fibroblasts
Alexandra M. Kozlov1, Asad Lone1, Dean H. Betts1,2,3 ✉ & Robert c. cumming1 ✉

Recent evidence has emerged that cancer cells can use various metabolites as fuel sources. 
Restricting cultured cancer cells to sole metabolite fuel sources can promote metabolic changes leading 
to enhanced glycolysis or mitochondrial OXPHOS. However, the effect of metabolite-restriction on 
non-transformed cells remains largely unexplored. Here we examined the effect of restricting media 
fuel sources, including glucose, pyruvate or lactate, on the metabolic state of cultured human dermal 
fibroblasts. Fibroblasts cultured in lactate-only medium exhibited reduced PDH phosphorylation, 
indicative of OXPHOS, and a concurrent elevation of ROS. Lactate exposure primed fibroblasts to 
switch to glycolysis by increasing transcript abundance of genes encoding glycolytic enzymes and, upon 
exposure to glucose, increasing glycolytic enzyme levels. furthermore, lactate treatment stabilized 
HIF-1α, a master regulator of glycolysis, in a manner attenuated by antioxidant exposure. our 
findings indicate that lactate preconditioning primes fibroblasts to switch from OXPHOS to glycolysis 
metabolism, in part, through ROS-mediated HIF-1α stabilization. interestingly, we found that lactate 
preconditioning results in increased transcript abundance of MYC and SNAI1, key facilitators of early 
somatic cell reprogramming. Defined metabolite treatment may represent a novel approach to 
increasing somatic cell reprogramming efficiency by amplifying a critical metabolic switch that occurs 
during ipSc generation.

The preferential use of glycolysis even in the presence of oxygen is known as aerobic glycolysis or the Warburg 
effect, a unique form of metabolism originally identified in cancer cells, but also found in many non-transformed 
cells1,2. By shuttling glucose primarily through glycolysis, cancer cells fuel their proliferation by accumulating 
glycolytic intermediates required for fatty acid and nucleic acid synthesis. As lactate is a by-product of glycol-
ysis, cancer cells exist in an acidic microenvironment which serves to facilitate angiogenesis and tumour inva-
sion3. Research examining the relationship between cancer cells and their microenvironment has revealed a 
novel phenomenon known as the reverse Warburg effect4. The reverse Warburg effect is based on the theory that 
cells within a tumour can switch between glycolysis and oxidative phosphorylation (OXPHOS)5–7. The reverse 
Warburg effect postulates that oxidative cancer cells secrete reactive oxygen species (ROS) which induce oxidative 
stress in surrounding stromal cells such as cancer-associated fibroblast (CAF) cells8,9. To respond to this stress, 
CAFs adopt aerobic glycolysis as their primary form of metabolism8,9. Glycolytic CAFs secrete lactate and pre-
cursors for nucleic acid and fatty acid synthesis, which are then taken up by adjacent cancer cells to fuel OXPHOS 
and support proliferation, thereby continuing the cycle8,9.

Long considered merely a by-product of glycolysis, lactate is emerging as an important signalling molecule 
and energy source10–15. In addition to promoting angiogenesis and tumour invasion, lactate has been shown to 
promote ROS production through the Fenton reaction and prevent the degradation of the transcription factor, 
hypoxia inducible factor one alpha (HIF-1α)15,16. With respect to lactate as a fuel source, extracellular lactate can 
be taken up by monocarboxylic acid transporters (MCTs) and, in a reaction catalysed by lactate dehydrogenase B 
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(LDHB), undergo conversion to pyruvate for subsequent entry into the tricarboxylic acid (TCA) cycle13. Various 
cancer cell types preferentially uptake lactate to fuel adenosine triphosphate (ATP) production, even in the pres-
ence of sufficient glucose17. Indeed, oxygenated cancer cells can utilize glucose, lactate and L-glutamine in concert 
to optimize ATP production while supporting their biosynthetic needs10. Furthermore, studies have demon-
strated that restricting cancer cells to a single fuel source such as pyruvate, can induce a metabolic switch from 
glycolysis to OXPHOS, further demonstrating the metabolic plasticity of cancer cells18.

Many non-cancerous cells exhibit phenotypic changes that are dependent on metabolic switching between 
glycolysis and OXPHOS. For example, both embryonic and adult stem cells exhibit high metabolic plasticity, and 
switch from glycolysis to OXPHOS during differentiation19. In contrast, the generation of induced pluripotent 
stem cells (iPSCs) from human somatic cells is dependent on shifting cellular metabolism from OXPHOS to gly-
colysis19. Due to their developmental potential, patient-derived iPSCs represent a powerful tool that can be used 
for personalized disease modelling, drug discovery and cell replacement therapy20. Unfortunately, the process of 
somatic cell reprogramming is vastly inefficient21. Moreover, the ectopic expression of transcription factors used 
to drive reprogramming raises safety concerns21,22. The original cocktail of transcription factors used to generate 
iPSCs from somatic cells are referred to as Yamanaka factors (OCT4, SOX2, KLF4, c-MYC: OSKM)23,24. OSK are 
the core factors responsible for acquisition of pluripotent stem cell identity25. Enhancer factors such as NANOG, 
GLIS1, SALL4, c-MYC, and LIN28 have been used in combination with OSK or OS to increase reprogramming 
efficiency25,26. While NANOG, GLIS1, SALL4, and LIN28 are normally expressed during early embryonic devel-
opment, MYC is a protooncogene which promotes early phase metabolic remodelling, and ultimately increased 
glycolysis, during reprogramming27.

Initial studies demonstrated that enhancing glycolytic metabolism through exposure to hypoxic culture con-
ditions increases reprogramming efficiency28,29. Furthermore, several studies show that c-MYC can be replaced 
by exposure to pharmacological activators of pyruvate dehydrogenase kinase 1 (PDK1), an enzyme involved in 
promoting glycolytic metabolism30. However, the role of OXPHOS during somatic cell reprogramming is less 
defined. ROS are natural by-products of mitochondrial electron transport chain (ETC) activity31. Although ROS 
are important signalling molecules implicated in cell stress response and development, excess ROS is cytotoxic32. 
Following Yamanaka factor transduction, somatic cells become increasingly oxidative, culminating in a burst of 
ROS production; events shown to be necessary for promoting a “metabolic switch” to glycolytic metabolism and 
subsequent pluripotency acquisition33. Indeed, hindering OXPHOS and/or ROS production before the meta-
bolic switch blunts reprogramming efficiency34–36. Thus, modulation of metabolic flux between glycolysis and 
OXPHOS presents a unique opportunity to either enhance reprogramming efficiency or reduce the number of 
Yamanaka factors required for iPSC generation.

While the effects of metabolite fuel restriction on cancer cell metabolism has been examined, the effects of 
metabolite restriction on non-transformed cells is less understood. We postulated that culturing normal diploid 
human fibroblast cells in culture medium containing a defined metabolite fuel source could be used to trigger 
a metabolic switch from OXPHOS to glycolysis or vice versa. In this study we examined the metabolic effects 
of restricting human foreskin dermal fibroblast cells to medium containing only glucose, pyruvate or lactate 
as a fuel source. We found that preconditioning fibroblasts to culture medium containing only lactate as a fuel 
source results in a switch from OXPHOS to glycolysis, in part, through ROS-mediated stabilization of HIF-1α. 
Furthermore, this preconditioning strategy resulted in increased transcript abundance of early somatic cell 
reprogramming regulators MYC and SNAI1. Using this novel strategy to force a metabolic switch may provide a 
simple method of increasing somatic cell reprogramming efficiency. In addition, lactate preconditioning could 
also provide an alternative replacement for c-MYC, thereby providing a safer strategy for iPSC generation and 
translational applications.

Results
Defined metabolite treatment alters the metabolism of normal human fibroblast cells. To 
determine if normal cells were capable of using alternative fuel sources in the absence of glucose, we investigated 
the impact of restricted fuel source availability on human foreskin dermal fibroblast (BJ) cell metabolism. To this 
end, BJ fibroblasts were initially cultured in medium containing 20 mM glucose, pyruvate, or lactate as the sole 
metabolite fuel source for 24 h. We first examined the impact of metabolite restriction on the protein and tran-
script abundance of metabolic enzymes. Pyruvate dehydrogenase (PDH) catalyses the conversion of pyruvate to 
acetyl-CoA, ultimately facilitating ATP production by OXPHOS37. Phosphorylation of PDH by PDK1 results in 
inhibition of PDH activity and renders cells more dependent on glycolysis to meet their energy needs38. Pyruvate 
kinase is the enzyme responsible for catalysing the conversion of phosphoenolpyruvate (PEP) to pyruvate, the last 
step in glycolysis38,39. Pyruvate kinase muscle isozyme 2 (PKM2) is an alternatively spliced isozyme of pyruvate 
kinase that, following phosphorylation, can translocate to the nucleus and facilitate increased transcription of 
enzymes that favour lactate production and glycolysis40. Immunoblot analysis revealed that BJ cells restricted to 
medium containing only glucose as a fuel source exhibited a significantly increased ratio of ser232-PDH to total 
PDH (p < 0.001) compared to cells cultured under control conditions. In contrast, BJ cells restricted to pyru-
vate or lactate as a fuel source exhibited a significantly decreased ratio of ser232-PDH to total PDH (p < 0.0001) 
compared to control (Fig. 1a). However, none of the metabolite-restricted media altered PKM2 or PDK1 protein 
levels (Fig. 1a). Interestingly, both pyruvate- and lactate-treated fibroblast cells exhibited significantly increased 
transcript abundance of hexokinase 2 (HK2) (p < 0.01), which enocodes the protein that catalyses the first step in 
glycolysis, compared to control (Fig. 1b)39. Furthermore, only lactate-treated BJ fibroblasts exhibited significantly 
increased transcript abundance of PDK1 (p < 0.05) and phosphoglycerate kinase 1 (PGK1) (p < 0.05), with a small 
but non-significant increase in lactate dehydrogenase A (LDHA) and PKM transcript abundance compared to con-
trol (Fig. 1b). In contrast, pyruvate-treated BJ fibroblasts exhibited significantly decreased glyceraldehyde 3-phos-
phate dehydrogenase (GADPH) (p < 0.05) transcript abundance compared to control (Fig. 1b). While GAPDH 
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and PGK1 catalyse the sixth and seventh step of glycolysis, respectively, LDHA converts pyruvate to lactate at the 
end of glycolysis39,41. Defined metabolite treatment had no effect on the transcript abundance of tricarboxylic 
acid (TCA) cycle genes, ATP citrate lyase (ACLY), isocitrate dehydrogenase 1 (IDH1), oxoglutarate dehydrogenase 
(OGDH), malate dehydrogenase (MDH1), and succinate dehydrogenase complex iron sulphur subunit B (SDHB) 
(see Supplementary Fig. S1). These initial findings suggest defined metabolite treatment primarily impacts glyc-
olytic enzymes rather than OXPHOS.

To validate the real time effect of defined metabolite treatment on BJ cell metabolism, extracellular acidi-
fication rate (ECAR) and oxygen consumption rate (OCR) were measured by the glycolysis stress test and the 
mitochondrial stress test respectively (Fig. 2a). Cells treated with different metabolites exhibited similar basal gly-
colysis, glycolytic capacity and maximal respiration (Fig. 2b,c). However, lactate-treated BJ cells exhibited a signif-
icantly greater glycolytic reserve compared to pyruvate-treated cells (p < 0.05) (Fig. 2b). While lactate-treated BJ 
cells also exhibited significantly greater basal respiration (p < 0.01) than pyruvate-treated cells, pyruvate-treated 
BJ fibroblasts exhibited a significantly greater spare respiratory capacity than lactate-treated cells (p < 0.05) 
(Fig. 2c). These results suggest that lactate-treated BJ fibroblasts exhibit a bivalent metabolism based on their 
ability to switch to glycolysis when glucose becomes available.

In light of the observation that lactate-treated BJ fibroblasts became glycolytic upon injection with glucose 
and pharmacological inhibition of ATP synthase during the glycolysis stress test, we explored if this effect was 
sustained over a longer period. Due to the toxicity elicited by 24 h lactate treatment (Fig. 3a, left panel), we set out 

Figure 1. Defined metabolite treatment promotes post translational and transcriptional changes in human 
fibroblasts. BJ fibroblasts were cultured in defined metabolite media for 24 h prior to protein harvest and 
RNA isolation. (a) Immunoblots were probed with antibodies directed against the indicated metabolic 
markers for glycolysis and OXPHOS. Densitometric analysis of the ratio of ser232-PDH to total PDH band 
intensities normalized to β-Actin, revealed that BJ cells treated with glucose promoted significantly increased 
phosphorylation of PDH (indicative of glycolysis), whereas treatment with pyruvate or lactate resulted in 
significantly decreased phosphorylation of PDH (indicative of OXPHOS) compared to control-treated 
cells. Densitometric analysis of PKM2 and PDK1 band intensities normalized to β-Actin, revealed that 24 h 
defined metabolite treatment did not alter PKM2 or PDK1 protein abundance in BJ cells compared to control 
conditions. (b) qRT-PCR using ACTB and RPL37A as housekeeping genes, revealed that lactate-treatment 
significantly increased transcription of genes encoding the glycolytic enzymes, HK2, PGK1 and PDK1 
compared to control. Pyruvate treatment resulted in a significant increase and decrease in the transcript 
abundance of genes enocding HK2 and GADPH, respectively, compared to control. The data presented 
represent N = 3 ± s.e.m. All qRT-PCR was performed in triplicate. The immunoblots are representative of three 
independent experiments. Full length blots can be found in Supplementary Fig. S4. Asterisks indicate significant 
difference (p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***, p < 0.0001 = ****) and ns = no difference tested by 
One-way ANOVA and Dunnett’s multiple comparisons test.

https://doi.org/10.1038/s41598-020-65193-9


4Scientific RepoRtS |         (2020) 10:8388  | https://doi.org/10.1038/s41598-020-65193-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

to determine the minimum about of time BJ fibroblast cells can be cultured in lactate-only medium prior to being 
switched into glucose-only medium and still exhibit a metabolic shift. Fibroblasts were cultured in glucose or 
lactate medium for 12, 16, 20 and 24 h prior to 48 h culture in glucose medium. Immunoblot analysis of the ratio 
of ser232-PDH to total PDH was used as an indicator for glycolytic metabolism. Densitometric analysis revealed 
that 20 h lactate pre-treatment significantly increased the ratio of ser232-PDH to total PDH (p < 0.01) compared 
to BJ cells cultured only in glucose medium (see Supplementary Fig. S2).

Defined metabolite treatment alters cell viability in a ROS-dependent manner. Glucose is 
the typical fuel source for most normal somatic cell types maintained in vitro, thus we sought to examine the 
impact of metabolite restriction on BJ cell growth and viability. Control- and glucose-treated cells exhibited 
similar growth over 72 h whereas pyruvate (p < 0.05)- and lactate-treated (p < 0.01) cells exhibited significantly 
decreased cell growth and elevated cell death within 24 h (Fig. 3a, left panel). Restricting cells to pyruvate as 
the sole fuel source strongly directs cellular metabolism to OXPHOS for ATP production18. A by-product of 
OXPHOS is mitochondrial ROS production31. While ROS are important signalling molecules, ROS build-up can 
cause cell death32. To examine if pyruvate- and lactate-induced cell death was a result of ROS build-up, the antiox-
idant precursor, N-acetyl-cysteine (NAC) was added to metabolite restricted media. Indeed, 24 h and 48 h of NAC 

Figure 2. Lactate treatment promotes bivalent metabolism in fibroblasts. BJ fibroblast cells were cultured in 
defined metabolite media for 24 h prior to analysis with the Seahorse XFe24 Flux Analyzer. (a) Extracellular 
acidification rate (ECAR) normalized to total protein was used as proxy measure of glycolytic activity following 
subsequent injections of glucose, oligomycin and 2-deoxy-D-glucose (2-DG) during the glycolysis stress 
test. Oxygen consumption rate (OCR) normalized to total protein was used as a proxy measure of OXPHOS 
following subsequent injections of oligomycin, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) 
and antimycin A/rotenone (AA/RT) during the mitochondrial stress test. (b) No difference in basal glycolysis 
or glycolytic capacity was observed following glucose and oligomycin injection, respectively. However, 
lactate-treated BJ cells exhibited a significantly greater glycolytic reserve than pyruvate-treated cells. (c) Basal 
respiration was significantly elevated in lactate-treated BJ fibroblast cells compared to pyruvate-treated cells. 
However, lactate-treated BJ cells exhibited significantly lower spare respiratory capacity than pyruvate-treated 
cells. Maximal respiration did not differ between treatments. The data presented represent N = 4 ± s.e.m. with 5 
technical replicates per treatment. Asterisks indicate significant difference (p < 0.05 = *, p < 0.01 = **) and  
ns = no difference tested by One-way ANOVA and Tukey’s multiple comparisons test.
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exposure resulted in significantly increased viability of pyruvate- (p < 0.05) and lactate-treated (p < 0.05) fibro-
blast cells, respectively. (Fig. 3a, centre and right panels). These results suggest that pyruvate- and lactate-induced 
toxicity is caused, in part, by increased ROS.

To confirm that pyruvate and lactate treatment induce ROS build-up, BJ fibroblasts were cultured in defined 
metabolite medium for 20 h prior to live cell fluorescent quantification of ROS levels. Quantification of fluores-
cence intensity following staining with whole cell ROS indicator, CM-H2DCFDA, revealed that lactate-treated 
cells produced significantly more ROS than all other conditions (p < 0.0001) (Fig. 3b). Furthermore, NAC 
exposure significantly attenuated ROS production in BJ fibroblasts cultured in lactate medium (p < 0.0001) 
(Fig. 3b). Staining for mitochondrial ROS levels using MitoTracker CM-H2XRos revealed that mitochondrial 
ROS production was significantly reduced by NAC exposure in control- (p < 0.01), pyruvate- (p < 0.05) and 
lactate-treated (p < 0.01) BJ cells (Fig. 3c). A small but non-significant decrease in ROS levels was also observed 
in glucose-treated BJ cells supplemented with NAC (Fig. 3c).

Figure 3. Defined metabolite treatment alters fibroblast cell growth and viability in a ROS-dependent manner. 
(a) BJ fibroblast cells were cultured in defined metabolite media for 24, 48 and 72 h. Trypan Blue exclusion was 
used to determine the number of live cells at each time point. After 24 h, BJ cells cultured in pyruvate or lactate 
medium exhibited significantly decreased cell growth, whereas glucose-treated cells exhibited no difference 
from control. This pattern was sustained at both 48 and 72 h (left panel). Treatment with 1 mM NAC attenuated 
pyruvate-induced cell death at 24, 48- and 72 h post-treatment (middle panel) and attenuated lactate-induced 
cell death at 48 and 72 h post-treatment (right panel). Data presented represent N = 3 ± s.e.m. with 3 technical 
replicates per treatment. Asterisks indicate significant difference (p < 0.05 = *, p < 0.01 = **, p < 0.0001 = ****) 
and ns = no difference tested by One-way ANOVA and Dunnett’s multiple comparisons test as well as an 
Unpaired Two-tailed student’s t-test. (b) BJ fibroblast cells were cultured in defined metabolite medium 
containing glucose, pyruvate or lactate as the sole fuel source with and without 1 mM NAC for 20 h. Live cell 
staining with the fluorescent cellular ROS indicator, CM-H2DCFDA (green), was performed. ImageJ analysis 
revealed that lactate-treated BJ cells produced significantly more ROS than all other treatments. NAC exposure 
significantly attenuated ROS production in lactate-treated cells. (c) Live cell staining with the fluorescent 
mitochondrial ROS indicator, MitoTracker CM-H2XRos (red), was performed. ImageJ analysis revealed that 
NAC significantly attenuated ROS production in control-, pyruvate-, and lactate-treated cells. A small but 
non-significant decrease in ROS levels was also observed in glucose-treated BJ cells supplemented with NAC. 
Nuclei within all cells were counterstained with Hoescht dye (blue). Scale bars = 100 μm. The fluorescence 
images presented are representative of at least three independent experiments. Data presented represent 
N = 3-4 ± s.e.m. with 3 technical replicates per treatment. Asterisks indicate significant difference (p < 0.05 = *, 
p < 0.01 = **, p < 0.0001 = ****) and ns = no difference tested by One-way ANOVA and Tukey’s multiple 
comparisons test.
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Lactate promotes increased HIF-1α protein abundance in fibroblasts in a RoS-dependent 
manner. To gain mechanistic insight into the lactate-induced metabolic switch from OXPHOS to glycol-
ysis, we examined the protein abundance of the transcription factor, HIF-1α. HIF-1α is a master regulator of 
glycolysis that promotes the transcription of several genes involved in glucose uptake and breakdown38. Under 
normoxic conditions, HIF-1α is translated and rapidly degraded in the cytosol42. Previous studies using cultured 
cancer cells have shown that lactate exposure results in stabilization of HIF-1α in normoxia15. To determine if 
lactate-treatment affects HIF-1α levels in non-transformed cells, fibroblasts were cultured in defined metabolite 
conditions for 20 h. BJ cells were cultured in DMEM under normoxic (20% O2) and hypoxic (1% O2) condi-
tions as negative and positive controls respectively. Both pyruvate- (p < 0.01) and lactate-treated (p < 0.0001) 
BJ fibroblasts exhibited significantly increased HIF-1α stabilization compared to the negative control (Fig. 4a). 
Studies have shown that excess ROS can inhibit HIF-1α degradation under normoxic conditions43. To determine 
if lactate- or pyruvate-mediated HIF-1α stabilization was associated with ROS production, the antioxidant NAC 
was added to media containing only pyruvate or lactate as a fuel source. Indeed, NAC significantly attenuated 
HIF-1α stabilization in both pyruvate (p < 0.0001) and lactate-treated (p < 0.05) BJ cells. (Fig. 4b,c). Interestingly, 
NAC had a more pronounced inhibitory effect on HIF-1α stabilization in pyruvate-treated BJ cells compared to 
lactate-treated cells. Thus, lactate-treatment promotes stabilization of HIF-1α in BJ cells, in part, through a ROS 
related mechanism.

HIF-1α accumulation primes fibroblasts to switch from OXPHOS to glycolysis by increasing the 
abundance of PDK1 and PKM2 proteins. Previous studies have shown that culturing BJ cells in hypoxic 
conditions renders them more glycolytic29. To confirm the upregulation of glycolytic proteins downstream of 
HIF-1α, we cultured BJ fibroblasts in DMEM under normoxic (20% O2) and hypoxic (1% O2) conditions for 20 h 
prior to protein harvest (Fig. 5a). PDK1 (p < 0.001) and LDHA (p < 0.05) protein levels were significantly higher 
in BJ cells grown in hypoxia for 20 h compared to normoxic culture conditions (Fig. 5b). However, PKM2 pro-
tein levels were unaffected by hypoxia (Fig. 5b). In order to determine if the lactate-induced switch to glycolytic 
metabolism was sustained over longer periods, we compared the effect of pre-treating BJ cells in either glucose- or 
lactate-only medium for 20 h, followed by 48 h exposure to medium containing only glucose as a fuel source. We 

Figure 4. Pyruvate and lactate-treated fibroblasts exhibit increased HIF-1α stabilization under normoxic 
conditions, which is attenuated by NAC exposure. BJ fibroblast cells were cultured in defined metabolite 
medium containing glucose, pyruvate or lactate as the sole fuel source. BJ cells cultured in DMEM in normoxia 
(20% O2) or hypoxia (1% O2) for 20 h were used as negative and positive controls, respectively. (a) Immunoblot 
analysis revealed that HIF-1α protein levels were significantly increased in pyruvate- and lactate-treated BJ 
cells under normoxic conditions compared to the negative control. BJ cells were cultured in defined metabolite 
medium containing pyruvate or lactate as the sole fuel source with or without 1 mM NAC for 20 h in normoxic 
conditions. (b,c) Immunoblot analysis revealed that HIF-1α levels were lower in BJ cells treated with NAC after 
20 h in both pyruvate and lactate medium. The immunoblots are representative of at least three independent 
experiments. Full length blots can be found in Supplementary Fig. S4. The data presented represent 
N = 3-5 ± s.e.m. Asterisks indicate significant difference (p < 0.05 = *, p < 0.01 = **, p < 0.0001 = ****) and 
ns = no significant difference tested by One-way ANOVA and Dunnett’s multiple comparison’s test and an 
Unpaired Two-tailed student’s t-test.
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Figure 5. Pre-treatment of fibroblasts with lactate promotes increased protein abundance of the downstream 
HIF-1α targets, PDK1 and PKM2. (a) BJ fibroblast cells were cultured in DMEM for 20 h under either 
normoxic (20% O2) or hypoxic (1% O2) conditions and immunoblot analysis for the indicated downstream 
metabolic targets of HIF-1α was performed. (b) Densitometric analysis revealed that PDK1 and LDHA protein 
levels were significantly upregulated under hypoxic conditions, whereas PKM2 was not. (c) BJ cells were 
cultured in either glucose or lactate medium for 20 h prior to 48 h culture in glucose medium under normoxic 
conditions. Immunoblot analysis for the indicated downstream metabolic targets of HIF-1α was performed. (d) 
Densitometric analysis revealed that PDK1 and PKM2 protein levels were significantly upregulated in response 
to lactate-pre-treatment, whereas LDHA was not. The immunoblots presented are representative of four 
independent experiments. Full length blots can be found in Supplementary Fig. S4. The data presented represent 
N = 4 ± s.e.m. Asterisks indicate significant difference (p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***) and ns = no 
difference tested by an Unpaired Two-tailed student’s t-test.
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found that PDK1 (p < 0.05) and PKM2 (p < 0.01) protein levels were significantly increased in lactate pre-treated 
cells compared to glucose-only treated cells (Fig. 5c,d). LDHA levels did not differ between treatments (Fig. 5d).

To confirm that elevated PDK1 and PKM2 protein levels observed in the lactate pre-treated cells were related 
to HIF-1α stabilization, BJ cells were cultured in glucose or lactate medium with and without KC7F2, a phar-
macological inhibitor of HIF-1α44. Due to the combined toxicity of KC7F2 and lactate, BJ fibroblasts were only 
cultured in lactate medium supplemented with 20 μM KC7F2 for 12 h instead of 20 h. We confirmed that 12 h 
treatment with 20 μM KC7F2 was sufficient to significantly reduce HIF-1α protein levels in BJ cells (p < 0.01) (see 
Supplementary Fig. S3). Upregulation of PDK1 (p < 0.001), PKM2 (p < 0.05) and LDHA (p < 0.01) induced by 
12 h culture in hypoxic conditions was significantly attenuated by KC7F2 treatment (Fig. 6a). In contrast, PDK1, 
PKM2 and LDHA protein levels were unchanged in fibroblasts pre-treated with glucose medium in the presence 
of KC7F2 for 12 h (Fig. 6b). However, PDK1 and PKM2 levels were significantly lower (p < 0.05) in fibroblasts 
pre-treated with lactate in the presence of KC7F2 for 12 h (Fig. 6c). These findings support our claim that lactate 
pre-treatment primes BJ fibroblast cells to upregulate glycolytic enzymes in a HIF-1α-dependent manner.

Lactate preconditioning upregulates the transcript abundance of MYC and SNAI1. Recent 
studies have demonstrated that c-MYC promotes a hyperenergetic state during early reprogramming to 
facilitate optimal iPSC generation27. Estrogen related receptor alpha (ERRα) and it’s cofactor, peroxisome 
proliferator-activator receptor gamma coactivator 1-beta (PGC1-β), are also implicated in the acquisition of this 
hyperenergetic state36. In addition to a metabolic switch, somatic cells must undergo a mesenchymal-to-epithelial 
transition during reprogramming45,46. Although snail family transcriptional repressor 1 (SNAIL) is a mediator 
of epithelial-to-mesenchymal transition (EMT), it is paradoxically essential to early somatic cell reprogram-
ming45,46. To gauge the impact of lactate pre-treatment on these markers of early reprogramming, BJ cells were 
cultured in glucose or lactate medium for 20 h prior to 48 h cultivation in glucose-only medium. Significantly 
increased transcript abundance of both MYC (p < 0.05) and SNAI1 (p < 0.01), but not ESRRA or PPARGC1B, was 
observed in lactate pre-treated fibroblast cells compared to cells cultured only in glucose medium (Fig. 7). These 
findings suggest that lactate production may regulate expression of specific genes involved in early somatic cell 
reprogramming.

Discussion
In this study, we demonstrated that pre-treating human fibroblast cells with culture medium containing lactate 
as the sole fuel source, facilitates a metabolic switch from OXPHOS to glycolysis, in part, through ROS-mediated 
stabilization of HIF-1α. Specifically, we observed that BJ fibroblasts cultured in medium containing lactate or 
pyruvate as a fuel source for 24 h exhibited significantly reduced phosphorylation of PDH. Conversely, fibro-
blasts cultured in glucose-containing medium for 24 h displayed elevated PDH phosphorylation, a marker of 
glycolytic metabolism38,47. These findings are consistent with a previous study in which HeLa cells grown 
under glucose-only culture conditions exhibited reliance on aerobic glycolysis18. However, when cultured in 
pyruvate-only medium, HeLa cells switched to OXPHOS to facilitate ATP production18. Interestingly, despite 
glucose deprivation, lactate-treated BJ cells unexpectedly exhibited increased transcript abundance of several 
genes encoding proteins responsible for catalysing steps of the glycolytic pathway. A recent study by Zhang et al. 
discovered that lactate acts as an epigenetic regulator by inducing histone lactylation in a dose-dependent man-
ner48. Indeed, the onset of aerobic glycolysis or hypoxia-induced glycolysis directly correlated with both increased 
lactate production and histone lactylation, and direct induction of glycolytic gene expression48. Therefore, it is 
possible that in our model, lactate medium transcriptionally primes human fibroblasts for glycolytic metabolism 
pending substrate availability. Earlier studies have demonstrated that cancer cells are capable of using lactate as 
their preferred fuel source14,17. Furthermore, a study by Hui et al. revealed that lactate is the primary fuel source 
for the TCA cycle in most tissues and tumours13.

Metabolic flux, as assessed by Seahorse analysis, further supported our theory that lactate treatment primes 
BJ cells for glycolytic metabolism. BJ fibroblasts pre-treated with lactate medium exhibited a significantly greater 
glycolytic reserve and significantly lower spare respiratory capacity compared to fibroblasts pre-treated with 
pyruvate medium. Recent studies using primary human dermal fibroblasts showed that mitochondrial spare 
respiratory capacity negatively correlates with somatic cell reprogramming efficiency as well as pluripotency37,49. 
Interestingly, we found that lactate pre-treatment resulted in greater BJ cell basal respiration compared to pyru-
vate pre-treatment. Elevated basal respiration and reduced spare respiratory capacity in lactate pre-treated fibro-
blasts implies that these cells were respiring at their maximum capacity even prior to induced ETC uncoupling. 
c-MYC induces a hyperenergetic metabolic state during reprogramming that is necessary for the transition to 
pluripotency27. Our findings demonstrate that while both pyruvate and lactate treatment result in reduced PDH 
phosphorylation, only lactate pre-treatment promotes a hyperenergetic bivalent metabolic state.

Although BJ fibroblasts were capable of using lactate or pyruvate as fuel sources, both metabolites promoted 
an inhibition of cell growth and elevated cell death. Cell growth is maintained by the production of anabolic 
precursors such as ribose-5-phosphate (R5P), in a manner largely dependent on the pentose phosphate pathway 
(PPP)50,51. In addition to providing R5P, the PPP also produces nicotinamide adenine dinucleotide phosphate 
(NADPH), a key metabolic product that provides the reducing power to fuel protein-based antioxidant systems 
and recycle oxidized glutathione51. Since PPP activity relies on glycolytic flux, it is possible that restricting fibro-
blasts to lactate or pyruvate as a fuel source results in a deprivation of vital upstream glycolytic intermediates 
within the PPP that would otherwise support proliferation and antioxidant systems. Supplementation with NAC, 
a precursor to the antioxidant, glutathione, improved the viability of pyruvate- and lactate-treated BJ fibroblast 
cells. These findings suggest that pyruvate and lactate treatments elicit cytotoxicity via oxidative stress caused by 
excess ROS production and/or insufficient antioxidant synthesis52.
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Figure 6. Pharmacological inhibition of HIF-1α attenuates lactate-induced upregulation of the glycolytic 
enzymes PDK1 and PKM2 in fibroblasts. To confirm that HIF-1α regulates PDK1, PKM2 and LDHA, BJ 
fibroblast cells were cultured in DMEM for 12 h under hypoxic (1% O2) conditions with and without the 
HIF-1α inhibitor, KC7F2. (a) Immunoblot analysis of the indicated downstream metabolic targets of HIF-1α 
was performed. Densitometric analysis revealed that PDK1, PKM2 and LDHA protein levels were significantly 
downregulated in the presence of KC7F2 under hypoxic conditions. To determine if lactate pre-treatment 
upregulates PDK1 and PKM2 in a HIF-1α dependent manner, BJ cells were cultured in either glucose or lactate 
medium for 12 h with and without the HIF-1α inhibitor, KC7F2, prior to 48 h culture in glucose medium 
under normoxic (20% O2) conditions. Immunoblot analysis of downstream metabolic target of HIF-1α was 
performed. (b) Densitometric analysis revealed that PDK1, PKM2 and LDHA protein levels were unaffected by 
KC7F2 in BJ cells pre-treated with glucose. (c) However, BJ cells pre-treated with lactate exhibited significantly 
lower protein levels of PDK1 and PKM2 in the presence of KC7F2 compared to lactate pre-treatment alone. 
The immunoblots presented are representative images of three independent experiments. Full length blots can 
be found in Supplementary Fig. S4. The data presented represent N = 3 ± s.e.m. Asterisks indicate significant 
difference (p < 0.05 = *, p < 0.01 = **, p < 0.001 = ***) and ns = no significant difference tested by and 
Unpaired Two-tailed student’s t-test.
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While peroxisomes and the endoplasmic reticulum are organelles capable of generating cellular ROS, mito-
chondria are the major site of ROS production in mammalian cells53. ROS exit the mitochondria and enter the 
cytosol by diffusion or passage through voltage dependent anion channels (VDAC)54. Under oxidative stress 
conditions, a growing body of work has revealed that mitochondrial ROS activates transient openings of 
voltage-gated mitochondrial permeability transition pore (mPTP) channels55,56. When open, matrix metabo-
lites, such as ROS, exit the mitochondria through mPTPs and enter the cytosol54–56. This effect has been coined 
ROS-induced ROS release (RIRR)55,57. Cytosolic ROS has the potential to react with redox-sensitive molecules, 
activate redox-sensitive signalling pathways and induce RIRR in proximal mitochondira55. For example, during 
the Fenton reaction, hydrogen peroxide (H2O2) reacts with ferrous iron (Fe2+) to generate ferric iron (Fe3+), a 
hydroxyl radical (•OH), and a hydroxyl ion (OH−)58. Transient ROS-induced mPTP openings are associated with 
early phase somatic cell reprogramming and their metabolic switch35,59. Studies in human and mouse fibroblast 
cells have shown that mPTP openings promote demethylation of pluripotency promoters, an integral event in 
the acquisition of pluripotency during the later stages of reprogramming35,59. Indeed, increasing mPTP opening 
frequency with ROS-inducing agents prior to the metabolic switch was shown to increase reprogramming effi-
ciency35. Our findings demonstrate that while pyruvate- and lactate-treated fibroblasts do not differ in their pro-
duction of mitochondrial ROS after 20 h, lactate-treated cells exhibit significantly greater total cellular ROS levels. 
It is possible that lactate promotes mPTP openings, accelerating the release of ROS into the cytosol. Furthermore, 
lactate has been shown to propagate ROS production via the Fenton reaction by forming a complex with Fe3+ 
that reacts with H2O2 to produce additional •OH60. As such, we are currently investigating the impact of lactate 
medium on ROS-induced mPTP openings.

During early somatic cell reprogramming, elevated OXPHOS promotes a ROS burst which subsequently 
activates the transcription factor Nuclear factor erythroid 2-related factor 2 (NRF2) which, in turn, promotes 
increased transcription of HIF-1α34. HIF-1α facilitates increased glycolytic metabolism by upregulating tran-
scription of genes encoding glycolytic enzymes such as PDK1, PKM2 and LDHA37. Under normoxic conditions, 
HIF-1α is rapidly synthesized and degraded in the cytosol42. HIF-1α degradation is mediated by prolyl hydrox-
ylase domain protein (PHD), which hydroxylates HIF-1α, recruiting the von Hippel Lindau (VHL) complex15. 
Once bound, VHL poly-ubiquitinates HIF-1α, tagging it for proteasomal degradation15. PHD requires the cofac-
tors O2, Fe2+, and α-ketoglutarate (α-KG)61. Under hypoxic conditions, insufficient O2 renders PHD inactive, 
permitting HIF-1α to escape degradation, accumulate in the cytosol, and translocate to the nucleus where it 
facilitates transcription15.

As many tumours exist in hypoxic environments, it is not surprising that they exhibit high levels of HIF-1α62. 
However, various cellular conditions exist which allow for HIF-1α accumulation in normoxia15,43,63. For exam-
ple, ROS stabilizes HIF-1α under normoxic conditions by oxidizing Fe2+ to Fe3+, thereby rendering PHD inac-
tive64,65. Further evidence has emerged that lactate can inhibit PHD activity through its conversion to pyruvate 
which competitively inhibits α-KG from associating with PHD15. In this study we showed that both pyruvate 
and lactate are capable of stabilizing HIF-1α protein levels under atmospheric oxygen. However, NAC treat-
ment only partially attenuated lactate-induced HIF-1α stabilization whereas pyruvate-induced HIF1α stabiliza-
tion was almost entirely ablated by NAC exposure. These findings suggest that while both pyruvate and lactate 
can facilitate HIF-1α stabilization through ROS production, lactate may further directly stabilize HIF-1α in a 
ROS-independent manner. It is also possible that lactate-induced histone lactylation indirectly contributes to 
lactate-mediated HIF-1α stabilization in BJ fibroblast cells. Although these are plausible mechanisms to explain 
our finding that exogenous lactate increases the transcript abundance of genes encoding several glycolytic 
enzymes, further studies are warranted to explore this relationship.

In this study we showed that lactate pre-treatment significantly increased PDK1 and PKM2 protein levels 
in BJ cells through a HIF-1α-dependent mechanism. Small molecule activation of HIF-1α during somatic cell 

Figure 7. Pre-treatment of fibroblasts with lactate promotes increased transcript abundance of MYC and 
SNAI1. BJ fibroblast cells were cultured in either glucose or lactate medium for 20 h followed by 48 h culture 
in glucose medium under normoxic conditions prior to RNA extraction. qRT-PCR analysis using HPRT1 and 
RPL37A as housekeeping genes revealed that MYC and SNAI1 transcript abundance was significantly increased 
in response to lactate pre-treatment. In contrast, ESRRA and PPARGC1B transcript abundance were no different 
between treatments. The data presented represent N = 3 ± s.e.m. with 3 technical replicates per treatment. 
Asterisks indicate significant difference (p < 0.05 = *, p < 0.01 = **) and ns = no significant difference tested by 
an Unpaired Two-tailed student’s t-test.
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reprogramming has been shown to dramatically increase fibroblast reprogramming efficiency by upregulating 
PDK1 and PKM238. It is possible that lactate promotes HIF-1α stabilization by inhibiting PHD activity through 
competitive inhibition of α-KG and by propagating the Fenton reaction (Fig. 8). Furthermore, as NRF2 has been 
shown to act upstream of HIF-1α, it is possible that lactate-mediated ROS production initiates the NRF2 cell 
stress response pathway to further upregulate HIF-1α34 (Fig. 8). However, further studies are warranted to discern 
the impact of lactate treatment on NRF2 activity in BJ fibroblasts.

In addition to lactate pre-treatment promoting increased PKM2 and PDK1 protein abundance, we demon-
strated that this pre-treatment strategy results in increased transcript abundance of SNAI1 and MYC. Elevated 
SNAI1 transcript abundance following lactate exposure is in line with a study conducted in lung cancer cells 
which demonstrated that that lactate promotes SNAI1 expression in a dose-dependent fashion66. With respect 
to MYC, recent focus has shifted towards its endogenous role. Exogenous expression of MYC is considered a 
dispensable Yamamaka factor that can be replaced by overexpression of PDK1 and PKM2, various chemicals, or 
other enhancer factors such as NANOG and LIN2825,26,30,38. Prieto et al. demonstrated that endogenous c-MYC 
is fundamental to early stage reprogramming events such as mitochondrial remodelling and activation of glyc-
olysis27. It is therefore possible that the lactate-induced metabolic shift from OXPHOS to glycolysis observed in 
this study is in part mediated by endogenous c-MYC. Interestingly, other markers for early stage reprogramming, 
including ESRRA and PPARGC1B, where not affected by lactate exposure. It is possible that lactate exposure 
promotes lactylation of specific histone lysine residues and selectively induces expression of certain pluripotency 

Figure 8. Proposed mechanism of action for lactate-induced upregulation of glycolytic metabolism in 
normal human diploid fibroblasts. Extracellular lactate is taken up by monocarboxylic acid transporters 
and can then be converted to pyruvate to fuel the tricarboxylic acid (TCA) cycle, which produces reducing 
agents that support electron transport chain (ETC)-mediated adenosine triphosphate (ATP) production by 
oxidative phosphorylation (OXPHOS). The mitochondrial reactive oxygen species (ROS) produced by ETC 
activity translocate to the cytosol freely, through voltage dependent anion channels (VDAC), or through 
open mitochondrial permeability transition pores. In the cytosol ROS inhibit prolyl hydroxylase (PHD) 
activity through the Fenton reaction which oxidizes ferrous iron (Fe2+), a critical PHD cofactor, to ferric iron 
(Fe3+). Following the inactivation of PHD, hypoxia inducible factor 1 alpha (HIF-1α) is no longer tagged for 
proteasomal degradation. Instead, HIF-1α translocates to the nucleus where it dimerizes with HIF-1β and 
binds to the hypoxia response element (HRE) initiating the transcription of glycolytic enzymes such as pyruvate 
dehydrogenase kinase 1 (PDK1) and pyruvate kinase muscle isozyme 2 (PKM2). Lactate is also capable of 
inhibiting PHD activity through its conversion to pyruvate which competitively inhibits PHD co-factor, 
α-ketoglutarate (α-KG), from associating with PHD. Lactate may also enhance ROS-mediated inhibition of 
PHD by the ROS induced ROS release (RIRR) effect. Lactate can form a complex with Fe3+ which then reacts 
with the ROS generated from the Fenton reaction to propagate the production of more ROS. It is also possible 
that lactate-mediated ROS production promotes increased HIF-1α levels by activating nuclear factor erythroid 
2-related factor 2 (NRF2). However, future studies are required to elucidate the role of NRF2 in lactate-mediated 
induction of glycolytic metabolism.
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genes. Future studies using chromatin immunoprecipitation with anti-lactyllysine antibodies48 will help identify 
genes regulated by histone lactylation following exposure of human fibroblasts to exogenous lactate.

Mesenchymal to epithelial transition (MET) is another hallmark of reprogramming fibroblasts to iPSCs45,46. 
Counterintuitively, Unternaehrer et al. demonstrated that human and mouse fibroblasts cells expressing higher 
levels of endogenous SNAI1, an EMT regulator, actually exhibited more efficient reprogramming45. These 
researchers further postulated that SNAI1 expression increases reprogramming efficiency by inhibiting let-7 fam-
ily members45. Let-7 is a family of tumour suppressors whose inhibition has been shown to promote reprogram-
ming efficiency67. LIN28, a regulator of stem cell metabolism, is a known repressor of let-7 miRNA processing68,69. 
It is therefore possible that lactate pre-treatment has the potential to increase reprogramming efficiency not only 
by promoting the metabolic switch event, but also by mirroring LIN28-mediated repression of let-7 miRNA pro-
cessing through increased SNAI1 expression.

In conclusion, our work demonstrates that short-term culturing of normal human dermal fibroblast cells 
in medium containing lactate as the sole metabolite fuel source primes BJ fibroblast cells to transition from 
OXPHOS to glycolysis metabolism. Indeed, fibroblasts cultured in lactate medium exhibit increased ROS produc-
tion which, in part, contributes to the stabilization of HIF-1α and subsequent upregulation of glycolytic enzymes, 
PDK1 and PKM2. By promoting the transition from OXPHOS to glycolysis, lactate pre-treatment could serve as a 
novel approach to amplify the metabolic switch during the generation of iPSCs. Furthermore, by triggering HIF-
1α-mediated upregulation of PDK1 and PKM2 as well as increased transcript abundance of MYC and SNAI1, 
lactate treatment may be able to eliminate the need for exogenous c-MYC during somatic cell reprogramming. 
We are currently in the process of exploring these hypotheses. Ultimately, the findings from this study may lead to 
the development of a safer and more efficient method of creating human iPSCs that can be utilized for pluripotent 
stem cell-based therapies.

Materials and Methods
cell culture. The normal, diploid (46, XY) BJ fibroblast cell line (ATCC CRL-2522) was purchased from 
the American Type Culture Collection. This cell line was maintained in Dulbecco’s Modified Eagle’s Medium 
(DMEM) (#319-005-CL; Wisent) supplemented with 10% fetal bovine serum (FBS) (#c17-513F; Gibco) and 1% 
penicillin and streptomycin (#15140122; Gibco) at 5% CO2, 37 °C. To generate a positive control for HIF-1α 
experiments, fibroblasts were maintained in the above culture medium and incubated in a HypoxyLab (Oxford 
Optronix) chamber at 5% CO2, 37 °C, 1% O2.

Defined metabolite media were prepared as follows. Base medium was prepared by dissolving DMEM powder 
lacking glucose, L-glutamine, sodium pyruvate and sodium bicarbonate (#5030; Sigma-Aldrich) in 1 L deionized/
double distilled water supplemented with 3.7 g/L sodium bicarbonate (#SX0320-1; EMD Millipore) and steri-
lized through a 0.1 μm filter. Immediately prior to experimentation, base media was supplemented with 4 mM 
L-glutamine (#17605-E; Lonza) and 10% FBS. FBS was dialyzed using regenerated cellulose dialysis tubing with 
a 3,500 Dalton cut-off (#21-152-9; Fisher Scientific) for 2 d in buffered base medium with one media change and 
sterilized through a 0.2 μm filter. Control, glucose, pyruvate and lactate defined metabolite media were prepared 
by adding 20 mM D-(+)-glucose (#G7021; Sigma-Aldrich) and 1 mM sodium pyruvate (#P2256; Sigma-Aldrich), 
20 mM glucose, 20 mM sodium pyruvate and 20 mM sodium L-lactate (#71718; Sigma-Aldrich), respectively, to 
the supplemented base medium. A metabolite concentration of 20 mM was selected based on reports that the 
concentration of lactate in tumour microenvironments most commonly lies within the range of 10–30 mM10,70. 
Prior to treatment with defined metabolite medium, fibroblasts were washed twice with phosphate buffered saline 
(PBS) (#17-513F; Lonza) to remove traces of DMEM.

To determine if BJ fibroblasts were producing ROS as a result of their treatment, the antioxidant, 
N-acetyl-L-cysteine (NAC) (#A7250; Sigma-Aldrich), was added at a concentration of 1 mM to cultures. NAC 
was prepared as a 0.5 M stock solution in buffered base medium and stored at 4 °C.

immunoblot analysis. BJ fibroblasts were washed twice in PBS and lysed in ice-cold RIPA buffer (10 mM 
Tris-HCl pH 8.0, 1% Triton-X-100, 0.1% Sodium deoxycholate, 0.5 mM EGTA, 0.1% SDS, 140 mM NaCl) contain-
ing 0.5X Halt Protease Inhibitor Cocktail (100×) (#1862209; Thermo Scientific), 0.5X EDTA (100×) (#1861274; 
Thermo Scientific), 1X phenolmethanesulfonyl fluoride (PMSF) (#P7626; Sigma-Aldrich) and 1X sodium ortho-
vanadate (NaOV) (#S6508; Sigma-Aldrich) for 15 min on ice prior to the removal of cellular debris by centrifuga-
tion at 14,800 rpm for 10 min at 4 °C. Following determination of protein concentration using a DC protein assay 
(Bio-Rad), protein extracts (15–20 µg) were resolved by 10% SDS-PAGE, then electroblotted onto polyvinylidene 
fluoride (PVFD) membranes (Bio-Rad) and blocked in TBS-T containing 3% bovine serum albumin (#0331; VWR) 
and 1% non-fat dry milk (#9999 S; Cell Signalling). The following primary antibodies were used: pSER232-PDH 
(#AP1063; EMD Millipore); PDH (#ab110334; ABCAM); PDK1 (#ADI-KAP-PK112-f; Enzo Life Science); PKM2 
(#3198; Cell Signalling); LDHA (#2012; Cell Signalling); HIF-1α (#ab179483; ABCAM) and β-Actin (#sc-47778; 
Santa Cruz). Following overnight incubation with primary antibodies, PVDF membranes were incubated with 
HRP-conjugated secondary mouse (sc-2006; Santa Cruz) and rabbit (#sc-2006; Santa Cruz) antibodies at a 1:10,000 
dilution. Bands were detected using SuperSignal West Pico chemiluminescence substrate (#34080; Thermo 
Scientific), Luminata Classico chemiluminescence substrate (#WBLUC0500; EMD Millipore), or Luminata Forte 
chemiluminescence substrate (#WBLUF0500; EMD Millipore). Immunoblots were imaged using a Chemidoc XRS 
System (Bio-Rad). Band density quantification was performed using Image Lab software version 5.2 (Bio-Rad).

The following modifications were made for immunoblot analysis of HIF-1α. BJ fibroblasts were washed once 
in ice-cold PBS and lysed in ice-cold Triton-X-100 buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 10% glycerol, 
1% Triton-X-100, 6 mM MgCl2) containing 0.5X Halt Protease Inhibitor Cocktail (100×), 0.5X EDTA (100×), 
1X PMSF, and 1X NaOV for 15 min on ice followed by centrifugation to remove cellular debris at 14,800 rpm at 
4 °C for 10 min. Sample preparation steps did not differ from above protocol. For the HIF-1α positive control, all 
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steps up to the 15 min lysis in Triton-X-100 buffer were performed in the HypoxyLab (Oxford Optronix). Samples 
of 20-30 μg protein were resolved by 10% SDS-PAGE, electroblotted onto PVDF membranes and processed as 
described above.

RnA extraction and real time pcR analysis. RNA was isolated from BJ fibroblasts using Trizol and chlo-
roform extraction. RNA concentration was quantified using a Nanodrop 2000 (Thermo Scientific) and all samples 
underwent DNase treatment using a DNase Treatment Kit (#AMP D1; Sigma) prior to reverse transcription 
using Moloney’s-Murine Leukemia Virus Reverse Transcriptase (M-MLV) Kit (#28025-021; Life Technologies) 
with random primers (#C1181; Promega) and dNTP’s (#R0181; Life Technologies). TaqMan Gene Expression 
Assays (Life Technologies) and TaqMan Fast Advanced Master Mix (#4444557; Life Technologies) were used to 
facilitate amplification as per the manufacturer’s directions. TaqMan Gene Expression Assay details can be found 
in Supplementary Table S1. The threshold cycle (Ct) value was determined using a CFX96 Touch Real-Time PCR 
Detection System (Bio-Rad). Relative transcript abundance (ΔΔCq) was calculated using CFX Maestro 1.1 soft-
ware version 4.1.2433.1219 (Bio-Rad). Transcript abundance was normalized against the geometric mean of two 
of the following housekeeping genes, ACTB, HPRT1 and RPL37A. Housekeeping genes were determined using 
Human Endogenous Control Panels (#4426696; Applied Biosystems).

Seahorse Xfe24 flux analysis. BJ fibroblasts were seeded on XFe24 microplates (Agilent) coated with 50 
μg/mL poly-D-lysine/well in control, glucose, pyruvate or lactate defined metabolite medium at the following 
densities: 45,000 cells/well (control), 50,000 cells/well (glucose), 68,000 cells/well (pyruvate), 53,000 cells/well 
(lactate).

Prior to the glycolysis stress test, fibroblasts were washed twice in sodium bicarbonate-free XF Base Medium 
(#102353-100; Agilent) supplemented with 4 mM L-glutamine at a pH of 7.35+/−0.05 and incubated in the 
assay medium for 1 h at 37 °C, 0% CO2. Basal extracellular acidification rate (ECAR) was determined following 
injection of 10 mM glucose. 1 μM Oligomycin and 50 mM 2-Deoxy-D-glucose (2-DG) were sequentially injected 
to determine glycolytic capacity and glycolytic reserve. All injections were provided in a Seahorse XF Glycolysis 
Stress Test Kit (#103020-100; Agilent).

Prior to the Mitochondrial Stress Tests, fibroblasts were washed twice in sodium bicarbonate-free XF Base 
Medium pH 7.35+/−0.05, supplemented with 4 mM L-glutamine, 10 mM glucose, and 1 mM sodium pyruvate 
and incubated in assay medium for 1 h at 37 °C, 0% CO2. Oxygen consumption rate (OCR) was first measured 
at baseline. Following sequential injection of 1 μM Oligomycin, 1 μM FCCP and 0.5 μM antimycin A/rotenone, 
maximal respiration and spare respiratory capacity were determined. All injections were provided in a Seahorse 
XF Cell Mito Stress Test Kit (#103015-100; Agilent). ECAR and OCR were normalized to total protein by lysing 
cells using RIPA buffer and quantifying protein content using a DC protein assay (Bio-Rad). Wave Desktop soft-
ware version 2.4.1, Mitochondrial Stress Test Report Generator version 3.0.5 and Glycolysis Stress Test Report 
Generator version 3.0.6 were used to process data.

cell viability assay. BJ fibroblasts were seeded at 53,000 cells/well in 12-well dishes in DMEM and allowed 
to adhere overnight. Cells were then washed twice with PBS and subjected to either control, glucose, pyruvate 
or lactate treatment +/−1 mM NAC. The number of live cells/well was counted using Trypan blue (#17-942E; 
Lonza) dye exclusion every 24, 48, and 72 h after exposure to defined metabolite media. Cells were counted using 
a haemocytometer viewed under a Leica phase contrast microscope using a 10X objective.

fluorescence microscopy. BJ fibroblasts were cultured in defined metabolite media for 20 h +/−1 mM 
NAC prior to live cell fluorescence imaging. To detect whole cell ROS, cells were washed twice with PBS and 
stained with 2.5 μM CM-H2DCFDA (#C6827; ThermoFisher) in serum-free defined metabolite media for 15 min 
at 5% CO2, 37 °C. To detect mitochondrial ROS, Cells were washed twice with PBS and stained with 200 nM 
MitoTracker CM-H2XRos (#M7513; ThermoFisher) in serum-free defined metabolite media for 20 min at 5% 
CO2, 37 °C. Following incubation, BJ cells were washed with PBS and stained with 10 μg/mL Hoechst (#H3570; 
Life Technologies) for 1 min at room temperature. Fibroblasts were washed once more in PBS and imaged in 
phenol red-free defined metabolite media at room temperature using a Zeiss Axio Observer A1 microscope. 
Digital images were acquired using a Q-Imaging Retiga camera and processed using ImageJ software version 
2.0.0-rc-43/1,50e.

pharmacological agents. The HIF-1α inhibitor, KC7F2 (#4324; TOCRIS) was dissolved in DMSO 
(#D8418; Sigma-Aldrich) to obtain a stock concentration of 50 mM. BJ fibroblasts were cultured in defined 
metabolite media or DMEM containing 20 μM KC7F2 under either hypoxic (1% O2) or normoxic (20% O2) 
conditions for 12 h to induce inhibitory effects.

Statistical analysis. All data presented represent the mean ± s.e.m. of at least three biological replicates. 
Difference between three or more means was assessed using One-way ANOVA and Dunnett’s multiple com-
parisons or Tukey’s multiple comparisons test. Difference between two means was assessed by an Unpaired 
Two-tailed student’s t-test in GraphPad Prism version 8.1.2. The difference between means was deemed signifi-
cant at p < 0.05. The ROUT method was used to identify outliers among biological replicates (with Q set to 1%).

Data availability
All data generated or analysed during this study are included in this published article.
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