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ABSTRACT 

Many studies have tested the association between number magnitude processing and 

mathematics achievement. However, results appear to be quite different depending on the 

number format used. When using symbolic numbers (digits), data consistent and robust across 

studies and populations have been found, with weaker performance associated with weak 

math achievement and dyscalculia. However, when using non-symbolic format (dots), many 

conflicting findings are reported. These inconsistencies might be explained by methodological 

issues. Alternatively, it might be that the processes measured by non-symbolic tasks are not 

particularly critical for school-relevant mathematics. A few neuroimaging studies have also 

shown the brain signature of these effects.  During numerical magnitude processing, the 

degree of brain activation (mostly in parietal areas) varies with the children’s degree of math 

achievement, but the consistency of such relationships for symbolic and non-symbolic 

processing is unclear. These neurocognitive data provide ground for educational 

interventions, which seem to have positive effects on children's numerical development in 

typical and atypical populations. 

 

 

Keywords: mathematical difficulties; magnitude representation; comparison; dyscalculia, 

approximate number system. 
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INTRODUCTION 

One important way in which cognitive neuroscience has made successful connections 

to educational research is by drawing attention to the importance of numerical magnitude 

processing as a foundation for higher-level numerical and mathematical skills (e.g., 

Butterworth et al., 2011; De Smedt et al., 2010). Over the last decade, this has fuelled 

research aimed at investigating the relationship between individual differences in numerical 

magnitude processing skills and arithmetic achievement in typically developing children as 

well as studies probing whether children with atypical mathematical development or 

developmental dyscalculia (DD) are impaired in their abilities to process numerical 

magnitudes. Such research is beginning to lay the foundations for the design and evaluation of 

educational interventions that foster numerical magnitude processing. 

One of the outstanding questions in this emerging body of research is whether 

processing magnitudes in either symbolic (digits) or non-symbolic (dots) formats or both is 

crucial for successful mathematics achievement. Such research can pinpoint more precisely 

the mathematical content that should be included in specific interventions.  

Beyond educational applications, establishing whether symbolic or non-symbolic 

numerical magnitude processing skills, or both, are predictive of children’s mathematics 

achievement is of theoretical importance too. While non-symbolic representations of 

numerical magnitudes are thought be shared across species and can already be measured in 

early infancy (Cantlon, 2012), symbolic representations are uniquely human and relatively 

recent cultural inventions to provide abstract representations of numerical magnitude. Thus, 

by investigating the relationship between, on the one hand symbolic and non-symbolic 

numerical magnitude processing and, on the other, children’s mathematical achievement, 

larger questions concerning the role of evolutionary ancient skills for the acquisition of 

uniquely human number skills and representations can also be constrained. In this 
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contribution, we provide an integrative review of the existing body of data that has dealt with 

this question. 

DEVELOPMENT OF NON-SYMBOLIC NUMBER PROCESSING 

The nature and role of typically developing children’s magnitude representations have 

been commonly explored with magnitude comparison tasks (Box 1). Nonsymbolic (dot) 

comparison tasks are frequently thought to index the precision or acuity of representations 

within the approximate number system (ANS), a system which allows individuals to represent 

and process numerical magnitude information. Representations within the ANS are noisy and 

become increasingly imprecise with increasing magnitude. Individuals with more precise 

ANS representations perform more accurately and faster on magnitude comparison tasks and 

they show smaller effects of ratio or distance. Typically developing children also show an 

increase in the precision of ANS representations over developmental time (e.g., Halberda & 

Feigenson, 2008). 

It has been hypothesized that performance on non-symbolic magnitude comparison 

tasks is related to mathematics achievement, but the evidence to support this proposal is 

mixed (Table 1). A number of studies have found that dot comparison performance is related 

to prior, concurrent and future mathematics achievement. However, many studies have failed 

to find such a significant relationship (see Table 1 for a summary). One possible explanation 

for these contrasting findings is that there is no standardized version of the dot comparison 

task. Studies vary in the size of the dot arrays, the way in which visual characteristics of the 

dots are controlled, the length of time the displays are presented and the performance 

measures used. This final point is particularly important as the range of possible measures 

includes mean accuracy, (median) RT, Weber Fraction (w) estimates, and distance or ratio 

effects, which may be calculated in a number of ways on the basis of accuracy or RT. These 

measures capture different aspects of participants’ performance, they are not interchangeable 
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and may show different relationships with mathematics achievement (Mundy & Gilmore, 

2009; Price et al. 2012). However, as shown in Table 1, studies that have or have not found a 

significant relationship cannot be easily differentiated by factors such as the dot comparison 

measure employed or the range of numbers used in a straightforward manner, since both 

positive and negative evidence has been found for the various performance measures and 

there is no clear pattern to suggest that a particular performance measure of non-symbolic 

numerical magnitude processing is particularly sensitive in the way it relates to individual 

differences in mathematics achievement. 

SYMBOLIC PROCESSING DEVELOPMENT 

The development of symbolic number processing has been typically investigated by 

means of magnitude comparison tasks that involve Arabic digits (Box 1). Performance on this 

task improves with age (Holloway & Ansari, 2009; Sekuler & Mierkiewicz, 1977) and is also 

characterized by an effect of distance or ratio. Scores on this task are not straightforward to 

interpret, as they might reflect the nature of underlying ANS representations, or the mapping 

between symbols and the ANS representations, or alternatively the nature of symbolic 

representations themselves, which may or may not be linked to non-symbolic ones. 

Nevertheless, children’s performance on these symbolic comparison tasks has been found to 

be robustly and significantly correlated with concurrent and future mathematics achievement 

1 or 2 years later (Table 2). This relationship appears to be very consistent for overall RT on 

the symbolic comparison task. On the other hand, similar associations with performance 

measures such as accuracy and distance/ratio effects have been observed in most, but not all 

studies (Table 2).  

ATYPICAL NUMERICAL DEVELOPMENT: DEVELOPMENTAL DYSCALCULIA 

Developmental dyscalculia (DD) is a persistent and specific disorder of numerical 

development and mathematical learning despite normal intelligence and scholastic 
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opportunities. Several authors have proposed that DD arises from a fundamental impairment 

in the representation of numerical magnitudes (e.g., Butterworth, 1999, 2005; Wilson & 

Dehaene, 2007). This hypothesis has been tested with numerical magnitude comparison tasks 

(see Table 3). Data on symbolic comparison tasks has led to very consistent results showing 

weaker performance in DD than in controls. This difference is the most robust in terms of 

global RTs (e.g., De Smedt & Gilmore, 2011; Landerl et al., 2004; Landerl & Kölle, 2009; 

Rousselle & Noël, 2007) yet group differences in the size of the distance effect (Rousselle & 

Noël, 2007) and error rate (Rousselle & Noël, 2007) have also been observed. In other words, 

an impairment in symbolic number processing among children with DD has been 

demonstrated using a variety of different dependent measures.  

However, when nonsymbolic stimuli have been employed to measure numerical 

magnitude processing in DD, the results have been far from conclusive. On the one hand, 

some studies support the hypothesis of a deficient ANS in individuals with DD and showed 

reduced ANS acuity (Mazzocco et al., 2011a; Piazza et al., 2010), slower and less accurate 

performance (Mussolin et al., 2010) or less precise estimates of dot collections (Mazzocco, et 

al. 2011a; Mejias et al. 2012) in DD compared to typically achieving children. On the other 

hand, others failed to observe any significant difference between DD and controls in 

nonsymbolic comparison (De Smedt & Gilmore, 2011; Iuculano et al., 2008; Landerl & 

Kölle, 2009; Rousselle & Noël, 2007), although, in those studies, DD children displayed 

significant and systematic impairments in symbolic magnitude comparison. This 

contradictory pattern of results could partly be due to methodological differences. For 

instance, only Piazza et al. (2010) and Mazzocco et al. (2011a) measured the acuity of the 

ANS by calculating the index w and found a difference between DDs and controls. The other 

studies used the distance or the ratio effect as an indicator of ANS precision: Some of these 

studies found significant differences between DD and controls (e.g., Mussolin et al., 2010; 
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Price et al., 2007) whereas others did not (e.g., De Smedt & Gilmore, 2011; Landerl & Kölle, 

2009). 

Another factor that can explain this incoherent profile is the age of the children tested 

(see Noël & Rousselle, 2011; Table 3). Indeed, a dissociation appears between the studies that 

tested younger (6 to 9-year-olds) versus older children (10-year-olds and above) with only the 

latter group showing significant differences for tasks using non-symbolic numbers. According 

to Noël and Rousselle (2011), this developmental profile suggests that the first deficit seen in 

DD children is specific to the magnitude processing of symbolic numbers and not to the ANS. 

DD children would indeed be impaired in their development of an exact representation of 

natural numbers (Box 2) and this would explain their difficulties in manipulating exact 

numbers and doing exact calculation. This, in turn, would prevent them from refining their 

ANS in the same way as typically developing children do and would explain why difference 

in number acuity between DD and control children only appears later in development. 

Schooling, and more specifically mathematics classes have been shown to increase the acuity 

of the ANS (Dehaene et al., 2008; Piazza al. in press; however see Zebian & Ansari, 2012 for 

data indicating that literacy and schooling affect symbolic but not non-symbolic numerical 

magnitude processing). As children with DD would be slow and error prone in these 

mathematical activities, they would possibly benefit less from these mathematics activities on 

their ANS acuity, relative to their control peers. This could explain why the difference in 

number acuity between DD and control children only appears later in development.  

BRAIN IMAGING DATA 

 There have been a growing number of efforts to uncover which brain regions might 

underlie the associations between numerical magnitude processing and mathematics 

achievement. In studies with both children and adults, the left and the right intraparietal sulci 

(IPS) have been found to be important neural correlates of numerical magnitude processing 
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(see Ansari, 2008; Cohen-Kadosh et al., 2008; Dehaene et al., 2003; see Kaufmann et al., 

2011 for a meta-analysis in children), with evidence suggesting that there is increasing 

specialization of the parietal cortex for numerical magnitude processing over developmental 

time (Ansari et al., 2005; Ansari & Dhital, 2006; Cantlon et al., 2009).  

Moving beyond localization, a very small set of recent studies have started to indicate 

that the degree to which the parietal cortex is activated during numerical magnitude 

processing in children is related to individual differences in their mathematics achievement. 

Specifically, in a functional Magnetic Resonance Imaging (fMRI) study, Bugden et al. (2012) 

demonstrated that the degree to which the left IPS is modulated by numerical ratio, during a 

symbolic number comparison task, is related to standardized measures of arithmetic fluency 

(over and above reading fluency) in 8-10 year old children. In other words, those children 

who exhibited a larger symbolic ratio effect on activity in the left IPS also displayed relatively 

stronger performance on the standardized tests of speeded arithmetic. In another set of recent 

studies (Cantlon & Li, 2013; Emerson & Cantlon, 2012), children viewed educational videos 

(Sesame Street) that had mathematical content, while their brain activity was recorded using 

fMRI. The degree of activity coupling (functional connectivity) between frontal and parietal 

brain regions during the viewing of these clips as well as how similar the brain activation of 

children was to that of a group of adults was found to be related to standardized measures of 

children’s mathematics achievement. However, these studies cannot specifically constrain our 

understanding of the brain regions that underlie the association between symbolic and non-

symbolic numerical magnitude processing and children’s mathematics achievement, since 

they did not explicitly address such relationships. To the best of our knowledge there does not 

exist a study that reveals an association between brain activation during non-symbolic number 

processing and individual differences in mathematical achievement in typically developing 

children.  
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fMRI research with children with DD has revealed a largely inconclusive picture with 

respect to brain regions that might mediate the association between magnitude processing and 

DD. While some studies have shown atypical activation patterns of the parietal cortex (such 

as reduced distance effects on brain activation) in children with DD relative to their typically 

developing peers for non-symbolic (Price et al., 2007) and symbolic (Mussolin et al., 2010) 

numerical magnitude processing (see also Kaufmann et al., 2011 for a meta-analysis), other 

studies have not revealed any differences in the parietal cortex during non-symbolic number 

processing between children with and without DD, instead showing differences in regions 

related to task difficulty (Kucian et al., 2011).  

Taken together, while neuroimaging methods are being used to constrain our 

understanding of the association between numerical magnitude processing and mathematics 

skills in both children with and without DD, there are currently too few studies, often with 

relatively small sample sizes, to allow for clear-cut conclusions to be drawn.  

EDUCATIONAL INTERVENTIONS 

Various attempts have been made to design educational interventions to foster the 

development of numerical magnitude processing. These types of interventions have been 

embedded in larger-scale kindergarten programs for children from low-income communities 

(Dyson et al., 2013; Griffin, 2004) and children at-risk for DD (Toll et al., 2013). These 

programs comprised a wide variety of numerical activities, including number recognition, 

counting, comparing sets, playing board games, etc., and have been shown to have significant 

effects on children’s understanding of numbers and tests of early numeracy when they enter 

formal schooling. From these interventions, it is, however, not possible to determine the 

precise effects of stimulating numerical magnitude processing. 

More relevant are therefore intervention studies that only focused on very specific 

aspects of numerical magnitude processing, as reviewed in Table 4 and Box 3. These 
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interventions have been presented in game-like formats using both symbolic and non-

symbolic stimuli, and have been shown to have positive effects on children’s numerical 

magnitude processing. It is important to note that these intervention effects have been mainly 

observed on symbolic but not non-symbolic measures of numerical magnitude processing 

(Table 3). The effects of these interventions seem to generalize to other mathematical skills, 

such as arithmetic (e.g., Ramani & Siegler, 2011; Siegler & Ramani, 2009) and standardized 

measures of mathematics achievement (Obersteiner et al., 2013; but see Rasanen et al., 2009 

and Wilson et al., 2009), which suggests that numerical magnitude processing might be 

causally related to children’s mathematics achievement.  

Most of the existing interventions have been applied to kindergarteners or children 

from low-income backgrounds, yet surprisingly few studies have focused on older children or 

children with DD. Wilson et al. (2006) and Kucian et al. (2011) showed that computerized 

interventions significantly improved children with DD’s numerical magnitude processing 

skills. Both studies did not include a control group who did not receive the intervention, 

which makes it difficult to evaluate whether these improvements were related to the 

intervention or to other factors, such as maturation or repeated testing. Interestingly, data by 

Vilette et al. (2010) indicate that in children with DD a short computerized game that focuses 

on the numerical meaning of symbolic numbers leads to larger improvements in (symbolic) 

number processing and calculation than a game that only taps into exact calculation, without 

specific attention to the numerical meaning of symbolic numbers. In all, it will be crucial for 

future research to investigate whether the interventions reviewed above also improve the 

numerical skills of children with DD. 

A next step will be to investigate how brain activity changes in response to the 

educational interventions reviewed above, an approach that has been successfully applied in 

the field of reading (McCandliss, 2010). Only one study has examined the effect of a 
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computerized numerical training program “Rescue Calcularis” on brain activity in children 

with and without DD (Kucian et al., 2011) and revealed significant neuroplastic changes of 

the intervention in both groups. Future research is, however, needed to pinpoint more 

carefully how these interventions affect brain activity in children. 

SUMMARY AND CONCLUSIONS 

One of the most robust findings in the literature that sought to uncover the association 

between numerical magnitude processing and mathematics achievement is that children who 

are better in determining which of two symbolic numbers is the largest have higher 

achievement in mathematics. Relatedly, children with DD show significant deficits in their 

ability to compare symbolic numbers. These data may suggest that children with low 

mathematics achievement or DD have difficulties in mapping symbols to their ANS 

representation or, alternatively, that they fail to adequately construct a system for the 

representation of symbolic number that is fundamentally different from the ANS (see Box 2). 

Data on non-symbolic comparison tasks, however, have been inconclusive so far, in both 

typically developing and DD populations. These inconsistencies might be explained by 

differences in the age of the participants, the stimuli used as well as indices that were 

calculated to tap into nonsymbolic processing and mathematics achievement. While there may 

well be important methodological issues that obscure the relationship between non-symbolic 

magnitude processing and mathematics achievement in many of the studies we have 

reviewed, it is nevertheless important to note that the correlations between symbolic 

numerical magnitude processing and mathematics achievement do not appear to be subject to 

such constraints. In view of this, it can be argued that such relationships are more robust and 

that the difficulty in finding relationships between non-symbolic numerical magnitude 

processing and mathematics achievement may indicate that the kinds of representations and 



 
 

12 
 

processes measured by these tasks are not particularly critical for children’s development of 

school-relevant mathematical competencies.  

It is important to point out that the existing body of studies have typically employed 

standardized or curriculum measures of mathematics achievement, which encompass a range 

of mathematical skills (e.g. number fact knowledge, conceptual understanding, strategy use 

and proficiency). It is likely that any meaningful relationship between numerical magnitude 

representations and mathematics will vary across different mathematical skills. In other 

words, numerical magnitude processing will be more important for some aspects of 

mathematical competencies than others. Thus, more specific measures of mathematical 

performance will be needed to explore such specific associations (e.g., Vanbinst et al., 2013). 

Relatively few longitudinal studies have been conducted to investigate how the 

associations between numerical magnitude processing and mathematics achievement change 

with age. Such research is, however, necessary to unravel the developmental trajectory of 

these associations. These data will also help to reveal developmental changes in impairments 

in numerical magnitude processing, i.e. the precise time course as to when deficits in 

symbolic and/or non-symbolic processing emerge. 

Intervention research indicates that board games and computer games can be used to 

effectively foster children’s symbolic representations of magnitude. These games seem to 

have effects on more general measures of mathematics achievement, although not all studies 

have observed such generalization effects and not all studies have used matched control 

groups to evaluate the specificity of any training effects observed. It should be noted that the 

studies reviewed above have typically included both symbolic and non-symbolic 

interventions. Future studies should contrast interventions that focus on non-symbolic 

processing, symbolic processing or both, to evaluate which of these interventions has the 

largest impact on children’s numerical magnitude processing and more generally on their 
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mathematical development. This type of research is also necessary to determine whether 

children’s symbolic and/or nonsymbolic processing skills are causally related to their 

mathematics achievement. In view of the above- reviewed studies, it would even be more 

compelling to run these studies across different ages, to verify which type of intervention is 

appropriate at which age. 

From a practical point of view, the existence of computer games to foster children’s 

understanding of numerical magnitudes is extremely relevant for the early intervention of at-

risk children. Such games allow teachers and parents not only to stimulate this knowledge but 

also provide a motivating environment. This is particularly interesting in view of the 

increasing availability of tablets and smartphones, which offer opportunities to practice these 

skills at home.  
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TABLES 

Table 1  

The nature of the relationship between nonsymbolic (dot) comparison task performance and 

mathematics achievement in typically developing participants. The dot comparison 

measure(s) used and number range of the task are given in brackets. 

Relationship between dot comparison performance and mathematics 

Significant Nonsignificant 

Children 

Halberda et al. (2008) [w; 5-16] a 

Mundy & Gilmore (2009) [acc; 1-9] 

Inglis et al. (2011) [w; 5-22] 

Libertus et al. (2011) [acc, w, RT; 4-15] 

Mazzocco et al. (2011b) [acc, w; 1-14] a 

Bonny & Lourenco (2013) [w, acc; 4-12] 

Libertus et al. (2013) [acc, w, RT ; 4-15] 

 

Children 

Holloway & Ansari  (2009) [NDE; 1-9] 

Mundy & Gilmore (2009) [NDE; 1-9] 

Soltesz et al. (2010) [acc, RT, NRE; 4-20] 

Lonneman et al. (2011) [NDE; 4-6] 

Ferreira et al. (2012) [acc; 20-44] 

Sasanguie et al. (2012a) [RT/error, NDE; 1-9] 

Sasanguie et al. (2012b) [RT/error, NDE; 1-9] a 

 Vanbinst et al. (2012) [NDE; 1-9] 

Fuhs & McNeil (2013) [acc; 1-30] 

Kolkman et al. (2013) [acc; 1-100] 

Sasanguie et al. (2013) [w, acc; 6-26] a 

Adults 

Lyons & Beilock (2011) [w; 1-9] 

Halberda et al. (2012) [w, RT; 5-20] 

Libertus et al .(2012) [w; 5-20] 

Lourenco et al. (2012) [acc; 5-14] 

 

Adults 

Inglis et al. (2011) [w; 9-70] 

Castronovo & Göbel (2012) [w; 12-40]  

Price et al. (2012) [w, NDE; 6-40] 
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Acc = accuracy; NDE = numerical distance effect; NRE = numerical ratio effect; RT = 

response time; w = estimates of Weber fraction; aLongitudinal data.  
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Table 2  

The nature of the relationship between symbolic (digit) comparison task performance and 

mathematics achievement in typically developing participants. The digit comparison 

measure(s) used and number range of the task are given in brackets. 

 

Relationship between digit comparison performance and mathematics 

Significant Nonsignificant 

Children 

Durand et al. (2005) [acc; 3-9] 

De Smedt et al. (2009) [acc, RT, NDE, 1-9] a 

Holloway & Ansari  (2009) [RT, NDE; 1-9] 

Mundy & Gilmore (2009) [acc, NDE; 1-9] 

Bugden & Ansari (2011) [RT, NDE; 1-9] 

Lonneman et al. (2011) [RT, NDE; 4-6] 

Sasanguie et al. (2012a) [RT/error, NDE; 1-9] 

Sasanguie et al. (2012b) [RT/error; 1-9] a 

Vanbinst et al. (2012) [NDE; 1-9] 

Kolkman et al. (2013) [acc; 1-100] 

Sasanguie et al. (2013) [RT; 1-9] a 

Children 

Lonneman et al. (2011) [NDE; 1-3] 

Ferreira et al. (2012) [acc ; 1-9] 

Sasanguie et al. (2012b) [NDE; 1-9] a 

Sasanguie et al. (2013) [NDE; 1-9] a 

 

 

 

Adults 

Lyons & Beilock (2011) [acc; 1-9] 

Castronovo & Göbel (2012) [RT, NDE; 31-

99]  

 

Adults 

 

Acc = overall accuracy; RT = overall response time; NDE = numerical distance/ratio effect. 
aLongitudinal data.  
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Table 3 

Comparison of the performance of children with developmental dyscalculia (DD) and matched controls (C) in symbolic or non-symbolic number 

comparison tasks.  

Study Age 

(years) 

Symbolic 

significant 

Symbolic 

ns 

Non-symbolic 

significant 

Non-symbolic 

ns 

De Smedt & Gilmore 

(2011)  

6 RT: [1-9] NDE(RT)  RT, NDE(RT): [1-9] 

Rousselle & Noël 

(2007)  

7 RT, Size(RT), NDE(RT), Acc: [1-9]   RT, NDE(RT), Acc: 

[5-28] 

Landerl & al. (2004)  8-9 RT : [1-9] 

 

NDE(RT)   

Iuculano & al. (2008)  8-9 RT: [1-9] 

 

  

 

 

RT, Acc: [1-9] 

RT: [10-58] 

Landerl & Kölle (2009)  8-10 RT: [1-9] 

RT, Acc: [21-98] 

NDE(RT) 

 

 

 

RT, NDE(RT): [20-72] 
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Landerl, Fussenegger & 

al. (2009) 

8-10 RT: [1-9], RT: [21-98] NDE(RT) RT: [20-72]  

Piazza & al. (2010) 10 -  W: [12-40] RTs 

Mussolin & al. (2010)  10-11 NDE(Acc): [1-9] Acc, RT NDE(Acc): [1-9] Acc, RT 

Price & al. (2007)  12 -  NDE(RT): [1-9] Acc, NDE(acc), RT 

Anderson & al., (2012) 

 

11-13 

 

RT, NDE(RT): [1-9] 

RT:[2-digit] 

  RT: [2-8] 

Mazzocco & al. (2011a) 14 -  w: [5-16]  

 

 

 

Acc = overall accuracy; RT = overall response time; NDE = numerical distance/ratio effect 
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Table 4 

Cognitive interventions that focused on numerical magnitude processing 

Study Sample 
size 

Age (years) Participant 
group(s) 

Intervention Control Duration Outcome(s) Main Effect(s) 

Whyte & Bull (2008) 54 3.8 Middle-class and 
working class  

Linear number BG 
Nonlinear number BG 

Linear color BG 
 

6 × 25 min Symbolic comparison 
 
 

Number BG > Color BG  
 

Ramani & Siegler 
(2008) 

124 4.9 Low-income Number BG 
 

Color BG 4 × 15-20 min Symbolic comparison 
 
 

Number BG > Color BG 
Effect remained after 9 

weeks 
 
 

Siegler & Ramani 
(2009) 

88 4.8 Low-income Linear number BG 
 

Circular number BG 
Numerical activities 

control 

5 × 15-20 min Symbolic comparison 
 

Arithmetic 

Linear BG > Circular + 
numerical control 

 
 
 
 

Ramani & Siegler 
(2011) 

88 4.0 Middle-upper 
class 

Linear number BG 
 

Circular number BG 
Numerical activities 

control 

5 × 15-20 min Symbolic comparison 
 

Arithmetic 

Linear BG > Circular + 
numerical control 

 
Linear BG showed 

transfer to arithmetic 
 

Wilson et al. 2006 9 8.1 DD NRG None 16 × 20-30 min Symbolic comparison 
Nonsymbolic 
comparison 

 
Addition 

Subtraction 

Performance increased 
only in symbolic 
comparison and 

subtraction 
 
 
 
 
 

Wilson et al. 2009 53 5.6 Low SES NRG  Reading control game 6 × 20 min Symbolic comparison 
Nonsymbolic 
comparison 

NRG > Reading on 
symbolic comparison 
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Addition 

No improvements in 
nonsymbolic 
comparison. 

 
 

Räsanen et al. 2009 59 6.6 SEN-children, 
TD 

NRG, Graphogame 
Math 

 

No game 15 × 10-15min Symbolic comparison 
 

Addition 

Interventions improved 
symbolic comparison 

 
No other effects 

 
Obersteiner et al. 
2013 

147 6.9 TD NRG - Exact 
NRG – Approximate 

NRG Exact + 
Approximate 

Language game 10 × 30 min Symbolic comparison 
Nonsymbolic 
comparison 

 
Approximate 
calculation 
Arithmetic 

NRG > Language game  
 

Approximate NRG 
showed largest effects 
on comparison tasks 

 
 
 
 

Vilette et al. 2010 20 11.0 DD, TD The Estimator Numerical games 
without estimation 

5 × 20 min Standardized number 
battery (ZAREKI) 

 
Addition, subtraction 

The Estimator > 
numerical games 

         

Kucian et al. 2011 32 9.5 DD, TD Rescue calcularis  25 × 15 min Standardized number 
battery (ZAREKI) 

 

Both groups improved  
 

Note. Only studies that included numerical magnitude comparison tasks or mathematics achievement tests as outcome measures were included 
and only these outcome measures were reported in the table. BG = Board Game. NRG = Number Race Game. DD = Developmental Dyscalculia. 
TD = Typically Developing children. SEN = Special Educational Needs.
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BOXES 

 

BOX 1: Magnitude Comparison Tasks 

The nature of numerical representations is typically explored using magnitude comparison 

tasks. In a standard nonsymbolic magnitude comparison task, participants are shown two dot 

arrays – or sequences of sounds – and asked to select the more numerous. The difficulty of 

making this decision is manipulated by varying the ratio or the numerical distance between 

the two arrays. For example, it is more difficult to distinguish 12 and 9 dots (ratio 0.75; 

numerical distance 3) than it is to distinguish 12 and 6 dots (ratio 0.5; numerical distance 6).  

Typical measures of performance include overall accuracy, response time (RT), ratio or 

distance effects or the w index. This Weber fraction (w) can be calculated on the basis of the 

participants’ performance across different ratios, and provides a measure of the acuity of ANS 

representations. Individuals with a smaller w have more precise ANS representations than 

those with a larger w.  

To increase the possibility that participants use the number of dots rather than visual 

characteristics of the displays (e.g., dot size, density, total area), the dot arrays are typically 

constructed in such a manner so that these characteristics do not correlate with numerosity 

across the task, i.e. dot size, density and area vary across the experiment. However, recent 

data by Gebuis & Reynvoet (2012) indicate that it is impossible to perfectly control for these 

non-numerical parameters and that the number of items in a set cannot be extracted 

independently of visual cues. While the existing studies all controlled for non-numerical 

parameters in their experimental design, the degree to which some visual properties of the 

stimuli are controlled for varies between them and this might also account for the differences 

in the results they obtained. In other words, it is unclear how participants use the various non-

numerical visual characteristics of the stimuli to guide their decision as to which array of dots 
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is larger and how this process might differ between children who have various levels of 

mathematical competence. On the other hand, the data by Gebuis & Reynvoet (2012) also call 

into question the degree to which non-symbolic number processing can truly be measured.   

Symbolic comparison tasks typically have the same format, except that the quantities are 

represented as Arabic digits, or in some studies, number words. Similar effects of distance or 

ratio on performance are observed when people perform this task.   
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BOX 2: The nature of symbolic representations 

For several authors (see Carey, 2004; 2009; Noël et al., 2008; Wiese, 2003, 2007), symbolic 

numbers do not acquire their meaning from a mapping with the ANS. Indeed recent research 

with adults suggests that the association between numerical symbols and the ANS may be 

much weaker than has been traditionally assumed (Lyons et al., 2012). Rather, learning the 

meaning of number words leads to the emergence of a new numerical representation that 

would be exact and with a semantic content based on the ordinal information enclosed in the 

symbol sequence. This exact representation would then connect with the ANS and this 

mapping would contribute to the increase of the precision of the ANS (Piazza et al. 2010; 

Piazza et al., in press).  



 
 

35 
 

BOX 3: Interventions that foster numerical magnitude processing 

Number board games 

These games are similar to existing board games, such as snakes and ladders or chutes and 

ladders, and consist of consecutively numbered spaces, on which children have to move their 

token, depending on the number they produced via a spinner or dice. The games can differ in 

the spatial organisation of the numbered spaces (linear or circular). It is argued that these 

games provide multimodal cues to connections between symbols and their respective 

quantities: the larger the number indicating how many squares their token needs to be moved, 

the larger the distance the child needs to move the counter, the larger the number of moves to 

be made and the number of number words to be spoken (Siegler, 2009). 

Number Race Game 

The Number Race Game (Wilson et al., 2006) was specifically designed as a remediation 

program for children with DD. The game provides training in comparing numbers and tries to 

establish links between numbers and space by asking children to position their counter on a 

board, depending on the number of coins they earned during the comparison of two presented 

numbers. Numbers are presented in nonsymbolic and symbolic formats. At higher levels, 

small addition and subtraction problems are also included. The game is adaptive and presents 

stimuli depending on the level of the learner. 

The Estimator 

Estimator is a computer game for children with DD that aims to develop the connection 

between exact and approximate number representations in addition and subtractions (Vilette 

et al., 2010). A calculation problem (12+23=) appears on the screen and children have to 

indicate the approximate position of the answer on a 0-100 number line. If this approximation 

is correct, the result of the calculation is presented and the next trial starts. If the estimate is 



 
 

36 
 

incorrect, the number corresponding to the position of the cursor on the number line appears 

and the child is invited to estimate again. 

Rescue Calcularis 

In this game, children control a spaceship to rescue the planet “Calcularis” (Kucian et al., 

2011), by travelling through 10 planets through which the child can refuel the spaceship to 

arrive at Calcularis. On each planet, children have to solve a series of problems of increasing 

difficulty: they have to position their spaceship on a number line, depending on the Arabic 

digit, collection of dots or arithmetic problem displayed on the spaceship. 
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BOX 4: Outstanding questions 

 

- How does the association between numerical magnitude processing and mathematics 

achievement change over developmental time? Is there a sensitive period for this 

association which should be the target of education?  

- How do numerical symbols acquire developmentally their semantic meaning and how 

might this process be disrupted in children with DD?  

- What is the role of non-numerical parameters (such as density of the arrays, the areas 

of individual dots, their luminance etc.) that covary with non-symbolic numerical 

magnitude stimuli in the typical and atypical development of the ANS?  

- Are there cultural differences in the development of numerical magnitude 

representations? 

- What are the effects of numerical magnitude interventions on children (with DD)’s 

numerical magnitude skills? Do these effects generalize to other mathematical skills 

(e.g., arithmetic, complex calculation, etc.) ? Do these effects sustain over longer time 

periods? 

- How do brain structure and function change in response to numerical magnitude 

interventions? 
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