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Deletion of Glycogen Synthase Kinase-3� in Cartilage
Results in Up-Regulation of Glycogen Synthase
Kinase-3� Protein Expression

J. R. Gillespie, V. Ulici, H. Dupuis, A. Higgs, A. DiMattia, S. Patel,
J. R. Woodgett, and F. Beier

Department of Physiology and Pharmacology (J.R.G., V.U., H.D., A.H., A.D., F.B.), Schulich School of
Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1; Children’s
Health Research Institute (F.B.), London, Ontario, Canada N6C 2V5; and Samuel Lunenfeld Research
Institute/Mount Sinai Hospital (S.P., J.R.W.) Toronto, Ontario, Canada M5G 1X5

The rate of endochondral bone growth determines final height in humans and is tightly controlled.
Glycogen synthase kinase-3 (GSK-3) is a negative regulator of several signaling pathways that
govern bone growth, such as insulin/IGF and Wnt/�-catenin. The two GSK-3 proteins, GSK-3� and
GSK-3�, display both overlapping and distinct roles in different tissues. Here we show that phar-
macological inhibition of GSK-3 signaling in a mouse tibia organ culture system results in enhanced
bone growth, accompanied by increased proliferation of growth plate chondrocytes and faster
turnover of hypertrophic cartilage to bone. GSK-3 inhibition rescues some, but not all, effects of
phosphatidylinositide 3-kinase inhibition in this system, in agreement with the antagonistic role
of these two kinases in response to signals such as IGF. However, cartilage-specific deletion of the
Gsk3b gene in mice has minimal effects on skeletal growth or development. Molecular analyses
demonstrated that compensatory up-regulation of GSK-3� protein levels in cartilage is the likely
cause for this lack of effect. To our knowledge, this is the first tissue in which such a compensatory
mechanism is described. Thus, our study provides important new insights into both skeletal de-
velopment and the biology of GSK-3 proteins. (Endocrinology 152: 1755–1766, 2011)

Most bones develop through endochondral ossifica-
tion, in which a cartilage scaffold is first produced

by chondrocytes and then converted to calcified bone tis-
sue by bone-forming cells, osteoblasts. Chondrocytes of
the growth plate are responsible for longitudinal growth
of endochondral bones (reviewed in Refs. 1 and 2). The
growth plate is divided into three distinct zones that can be
identified by histological features, rate of cell cycle pro-
gression, or marker gene expression. The resting zone is
farthest from the midbone (diaphysis) and consists of
small chondrocytes with little cytoplasm and relatively
low rates of proliferation. Some of these cells mature into
proliferative zone chondrocytes that undergo rapid pro-
liferation, resulting in flattened columnar cells surrounded
by cartilage matrix. The proliferating chondrocytes then
withdraw from the cell cycle and differentiate further into

prehypertrophic and ultimately hypertrophic chondro-
cytes residing at the interface between growth plate car-
tilage and ossified bone. These hypertrophic cells repre-
sent the terminal differentiation stage and secrete a large
amount of matrix and regulatory proteins. Finally, the
hypertrophic cells die by apoptosis and leave behind a
cartilage matrix that is invaded by blood vessels accom-
panied by osteoblast (bone-forming) and osteoclast
(bone-resorbing) precursors, ultimately resulting in the
replacement of cartilage by bone tissue (reviewed in
Refs. 3– 8).

The rate at which the chondrocytes progress through
the zones of the growth plate determines the longitudinal
growth of bone. This rate is consequently extremely im-
portant for normal skeletal development and final height
in humans and is therefore tightly regulated both intrin-
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sically and extrinsically by a complicated network of sig-
naling pathways (reviewed in Refs. 2 and 9–11).

Many of these signaling pathways have been linked to
the regulatory kinase glycogen synthase kinase-3 (GSK-3).
Two pathways with relevance to this study are insulin or
IGF/phosphatidylinositide 3-kinase (PI3K)/AKT/GSK-3
(12–16) and Wnt/GSK-3/�-catenin (14, 17, 18). GSK-3 is
a serine/threonine kinase capable of phosphorylating a
large number of substrates including glycogen synthase,
from where its name originated, but its role in physiology
has expanded exponentially since its discovery. GSK-3 is
an unusual kinase in that it is constitutively active and
usually negatively regulates pathways (19–21). Mammals
have two GSK-3 proteins, GSK-3� and GSK-3� (encoded
by different, highly homologous genes), with masses of 51
and 47 kDa, respectively. Regulation of GSK-� and -� can
occur through at least two mechanisms: 1) through direct
phosphorylation (Ser21 and Ser9 of GSK-3� and -�, re-
spectively), for example by the PI3K/AKT (12) signaling
pathway, or 2) through disruption of the protein complex
involved in canonical Wnt signaling (22). Potential cross
talk between these two pathways is highly debated as is the
relationship between the two GSK-3 proteins, GSK-3�

and -�. Many studies have demonstrated that phosphor-
ylation of GSK-3 does not affect �-catenin levels, whereas
other studies have suggested it can (23–27). Likewise,
there is evidence for both overlapping and distinct roles of
GSK-3� and GSK-3� (16, 17, 28–31). Tissue-specific
roles and relations could explain some of these seemingly
contradictory results (16, 32).

Several groups have examined how genetic manipu-
lation of Gsk3b affects the skeleton (33, 34). The germ-
line homozygous deletion of Gsk3b shows a variable
phenotype depending on the genetic background and
can result in embryonic lethality (33) or survival to post-
natal d 0 (P0) with cleft palate, bifid sternum, and de-
layed ossification of the sternum, skull, ear bones, and
cranial base (34). Heterozygous deletion of Gsk3b also
causes a skeletal phenotype with increased ossification,
clavicle abnormalities and increased bone resorption (35).
It would appear that these opposing skeletal phenotypes
are Gsk3b dosage-dependent effects; however, all these
are phenotypes based on germline loss of Gsk3b. Conse-
quently it is unclear whether these skeletal phenotypes are
cell or tissue autonomous. Interestingly, GSK-3� global
knockout (KO) mice have also been created; these are vi-
able and fertile with similar body mass compared with
controls (36) but display abnormalities in glucose metab-
olism and brain structure (16, 36, 37) without any de-
scribed skeletal abnormalities. The two global KO models
suggest that GSK-3� may play a more important role in
skeletal development than GSK-3�. Here we address the

role of GSK-3 signaling in chondrocytes using an organ
culture system and cartilage-specific inactivation of the
Gsk3b gene.

Materials and Methods

Materials
The following antibodies were used in this study: actin A5441

(Sigma Chemical Co., St. Louis, MO); cyclin D1 RM-9104-S1
(Neomarkers, Fremont, CA); goat antirabbit horseradish per-
oxidase (hrp) sc-2004, goat antimouse hrp sc-2005, p57/Kipp2
sc-8298 (Santa Cruz Biotechnology, Santa Cruz, CA); GSK-3�
no. 9315, pGSK-3� no. 9336, GSK-3� no. 9338, pGSK-3� and
-� no. 9331, and �-catenin no. 9562 (Cell Signaling Technology,
Danvers, MA). General chemicals and supplies were purchased
from Sigma and VWR (Radnor, PA); organ culture reagents were
from Invitrogen (Carlsbad, CA).

Mouse breeding and genotyping
Mice homozygous for floxed Gsk3b alleles (Gsk3bfl/fl) have

been described previously (16, 38). Gsk3bfl/fl mice were crossed
with mice expressing cre recombinase under control of the car-
tilage-specific mouse Col2a1 promoter, donated by Drs. R. St-
Arnaud and G. Karsenty, that we previously used in our lab (39,
40). Mice heterozygous for the floxed Gsk3b allele and express-
ing Col2a1 cre were backcrossed with homozygous Gsk3b
floxed mice. The offspring from these crosses were analyzed.
Mice were exposed to a 12-h light, 12- h dark cycle and fed tap
water and regular chow ad libitum. All procedures involving
animals were approved by the University of Western Ontario
Animal Care and Use Committee. PCR genotyping was per-
formed from ear notch DNA using primers 5�-GGGGCAAC-
CTTAATTTCATT-3� (forward) and 5�-TCTGGGCTATAGC-
TATCTAGTAACG-3� (reverse) for GSK-3� for 30 cycles of 96
C for 55 sec, 56.5 C for 45 sec, and 68 C for 2 min 45 sec to
amplify. The cre transgene was detected using the primers 5�-
CACACTGTGTAGTGCTTCGT-3� (forward) and 5�-CCTC-
CAAACCATCCAAGAT-3� (reverse) using 40 cycles of 95 C for
45 sec, 58 C for 30 sec, and 72 C for 1 min.

Organ culture
Tibias were isolated from embryonic d 15.5 (e15.5) mice and

cultured for 6 d in serum-free medium containing �-MEM,
ascorbic acid, �-glycerophosphate, BSA, glutamine, and peni-
cillin-streptomycin as described, without exogenous growth fac-
tors (15, 41). After dissection, tibias were incubated in medium
overnight and then treated with dimethylsulfoxide (DMSO)
(control) or the GSK-3 inhibitor SB415286 (SB86; 10 �M), PI3K
inhibitor LY 294002 (10 �M LY), or a combination of the two
inhibitors. Please note that SB86 inhibits both GSK-3 proteins
(42). Media and inhibitor were changed every 48 h. Length of
tibias was measured before start of treatment and at the end of
6 d. Each independent experiment consisted of five to six tibias
per treatment; data represent averages from at least three inde-
pendent experiments. These bones were then either stained with
alcian blue/alizarin red or prepared for paraffin embedding, sec-
tioned, and analyzed by immunohistochemistry (IHC).
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Tibia staining
Tibia staining was performed as described previously (39,

43). Organ culture tibias isolated from e15.5 embryos were de-
hydrated in 95% ethanol for 24 h, followed by acetone for 24 h.
Tibias were stained with 0.015% alcian blue, 0.05% alizarin red,
and 5% acetic acid in 70% ethanol. The stained tibias were
stored in glycerol/ethanol (1:1). Images were taken with a Nikon
SMZ1500 dissecting microscope with a Photometrics (Tucson,
AZ) Coolsnap camera using ImageMaster version 5.0 software.
At least three independent experiments containing four to six
tibias per treatment (n) were used.

Histology and IHC
Organ culture and isolated P0 tibias were fixed in 4% para-

formaldehyde overnight and decalcified with 0.1 M EDTA/PBS at
room temperature before paraffin embedding and sectioning at

the Robarts Research Institute Molecular Pa-
thology Core Facility (London, Ontario, Can-
ada). Five-micrometer sections were dewaxed in
xylene followed by a graded series of ethanol
washes (100% twice, 95% once, and 70% once).
Sections were stained with either hematoxylin
and eosin or safranin O/fast green (39, 40, 43,
44). For IHC, sections were incubated in 3%
H2O2 for 15 min at room temperature, followed
by antigen retrieval by incubation in either 10
mM sodium citrate at 95 C for 30 min or 0.1%
Triton X-100 for 10 min, followed by blocking
with 5% goat serum in PBS. Sections were incu-
bated with primary antibody overnight at 4 C
and washed (four times in PBS), and secondary
antibody was applied according to manufactur-
ers’ recommendations. For detection, diamino-
benzidine substrate was used and counterstained
with methyl blue. All images were taken with a
Leica DME microscope with a Qimaging Mir-
croPublisher 5.0 RTV camera using QCapture
Pro version 5.1 software (Surrey, British Colum-
bia, Canada).

Quantification of IHC was conducted de-
pending on the target protein. For quantification
of proliferating cell nuclear antigen (PCNA)
IHC, the positively stained (brown) and total nu-
clei were counted to determine the fraction of
PCNA-positive cells in the growth plate. The
quantification of p57 protein in the growth plate
was conducted by measuring the length (proxi-
mal to distal) of the prehypertrophic zone where
darkly stained (brown) nuclei are present.

Western blot analyses
Fresh calvaria, cartilage from the epiphy-

seal ends of long bones (humerus, femur, and
tibia), and organs were dissected from P0 mice
in cold Puck’s solution A (39, 45). Samples
were flash frozen in RIPA buffer and stored at
�20 C overnight and then homogenized, son-
icated, and centrifuged. Total protein content
was determined, and 25–35 �g total protein
(depending on protein yield) was loaded per
lane in precast NuPAGE Novex Midi Tris-ac-
etate gels and separated using the XCell Sure-

lock Mini-cell (Invitrogen) system. Gels were blotted using
XCell II Blot Module (Invitrogen) as per the manufacturer’s
instructions. Blots were blocked in 5% BSA Tris-buffered sa-
line/Tween 20 solution for 1 h and then probed with primary
antibody overnight at 4 C. After washing (Tris-buffered sa-
line/Tween 20), membranes were incubated with appropriate
secondary antibody (hrp conjugated) for 1 h at room temper-
ature, and the resultant signal was detected using the ECL
detection system (Amersham, Piscataway, NJ). Representa-
tive blots from at least three independent pairs of littermates
are shown. Quantitative densitometry analysis was conducted
using a ChemiImager 5500 system (Alpha Innotech, Miami,
FL), subtracting background and normalizing to �-actin load-
ing control signal. Densitometry results were converted rela-
tive to control, allowing comparison between blots and com-
pared statistically by t test analysis.

FIG. 1. Expression of GSK-3 proteins in the growth plate. Expression of GSK-3� and
-� proteins in the growth plate of wild-type P0 tibia was analyzed by IHC. Although
GSK-3� expression was detected in chondrocytes of the articular surface (arrow)
and in particular in prehypertrophic and hypertrophic chondrocytes, GSK-3� is
expressed in all zones of the growth plate. Both proteins are also expressed in
the perichondrium (P), although GSK-3� was restricted to the cells closest to
hypertrophic chondrocytes (H), and GSK-3� was again uniformly expressed
throughout the cells of the perichondrium.
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Statistical analysis
All data were collected from at least three independent organ

culture trial or pairs of littermates. Data are expressed as mean �
SE, and P values � 0.05 were considered significant. For general
measurements and comparisons between two groups of data,
statistical significance was determined by unpaired t test com-
paring control with treated (SB86) or control with cartilage-
specific deletion of GSK-3� (KO) littermates using GraphPad
Prism version 3.00 for Windows. Western blot densitometry
data were normalized to controls and compared by t test. Com-
parison of multiple treatments was done using one-way ANOVA
(normal distribution analyzed) and a Tukey posttest.

Results

GSK-3 expression in the growth
plate

To determine the expression patterns
of both GSK-3 proteins in the growth
plate in vivo, we performed IHC on wild-
type P0 mouse tibia. GSK-3� was ex-
pressed at low levels in chondrocytes at
the articular surface and hardly detect-
able by IHC in resting and proliferating
chondrocytes but strongly expressed in
prehypertrophic and hypertrophic chon-
drocytes (Fig. 1). GSK-3� in the hyper-
trophic chondrocytes appears both cyto-
plasmic and nuclear with the highest
concentration being nuclear. In con-
trast, GSK-3� showed strong expres-
sion throughout the growth plate and
appeared to be more cytoplasmic than
GSK-3�. Both proteins were also ex-
pressed in the perichondrium where
GSK-3� appeared confined to the layer
of cells closest to hypertrophic chon-
drocytes and GSK-3� was again more
uniformly expressed through the cells
of the perichondrium.

GSK-3 inhibition increases bone
growth and affects growth plate
morphology

To determine the role that GSK-3
plays in endochondral bone growth,
e15.5 tibia organ cultures were cul-
tured for 6 d with the pharmacological
GSK-3 inhibitor SB86 (10 �M) that in-
hibits both GSK-3 proteins (42). Lon-
gitudinal growth over this time was
compared with controls treated with
DMSO. Tibia treated with SB86 grew
31% more than controls over the 6 d of
organ culture (Fig. 2, A and B). A sim-
ilar trend, although not statistically sig-

nificant with a completed n of 3, was also observed using
another GSK-3 inhibitor, 10 �M SB216763 (Supplemental
Fig. 1A, published on The Endocrine Society’s Journals
Online web site at http://endo.endojournals.org). SB86
was used exclusively for the remainder of the experiments.
Interestingly, this increase in bone growth did not affect
the overall length of the growth plate of the treated tibia
(Fig. 2, C and D). However, inhibition of GSK-3 did affect
the organization and relative lengths of the zones within
the growth plate (Fig. 2, E and F). The division between the

FIG. 2. Inhibition of GSK-3 increases bone growth and changes growth plate organization.
The e15.5 mouse tibias were cultured in organ culture for 6 d with a pharmacological
inhibitor of GSK-3 (10 �M SB86) or DMSO [control (Cont)]. A, Representative picture of tibias
stained with alizarin red (bone) and alcian blue (cartilage); B, quantification of growth
(millimeters) of the tibia during the 6 d of treatment; C, Hematoxylin and eosin-stained
paraffin sections of organ culture tibias comparing morphology and growth plate zones, e.g.
resting and proliferating zones (R/P) and hypertrophic zone (H); D, length (millimeters) of the
proximal tibia growth plate in control and SB86-treated tibias; E, resting and proliferating
zone length (millimeters) in control and GSK-3-inhibited organ culture; F, hypertrophic zone
length (millimeters) in control and GSK-3-inhibited organ culture; G, quantification of the
proportion of mineralized bone relative to the whole tibia length in control and GSK-3-
inhibited organ culture. All data were compared using t test analysis, and significant
differences are denoted by asterisks (n � 8; *, P � 0.05).
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resting and proliferating zones was much less distinct in
the SB86-treated bones, and therefore the zone measure-
ments combined both resting and proliferating zones for
accuracy of measurements. The resting and proliferating
zones of the treated tibia were 13% longer than the con-
trols (Fig. 2E), whereas the length of hypertrophic zone
was significantly decreased by 57% (Fig. 2F). Because the
inhibition of GSK-3 caused increased tibia growth but

the total growth plate length was not
increased, we examined the mineral-
ized portion of the tibia (Fig. 2G). The
mineralized portion of the tibia was
found to be significantly longer as a
ratio of total tibia length. These re-
sults together suggest that inhibition
of GSK-3 promotes long bone longi-
tudinal growth by increasing bone
formation.

GSK-3 inhibition rescues most
effects of PI3K inhibition in organ
culture

GSK-3 activity is regulated through
N-terminal phosphorylation by the in-
sulin/PI3K/Akt pathway (12, 46) as
well the IGF/PI3K/Akt pathway that is
an important regulator of chondrocyte
physiology (15, 47). We previously
showed that PI3K inhibition decreased
bone growth and the length of the pro-
liferating and hypertrophic zones (15).
Given that PI3K activates protein ki-
nase B/Akt that in turn phosphorylates
and inhibits GSK-3, inhibition of PI3K
should activate GSK-3 and therefore have
opposite effects as inhibiting GSK-3. Fur-
thermore,if inactivationofGSK-3isoneof
the main effectors of PI3K signaling
in endochondral bone growth, then
GSK-3 inhibition should rescue the ef-
fects of PI3K inhibition, at least in part.
To explore interactions between PI3K/
Akt and GSK-3, the effects of treat-
ments with a PI3K inhibitor (10 �M LY)
in combination with the GSK-3 inhib-
itor (10 �M SB86) on tibia organ cul-
tures were examined (Fig. 3).

To confirm that the inhibition of
PI3K would indeed affect the phos-
phorylation of GSK-3 in our tibia organ
culture model, IHC analyses were con-
ducted using antibodies specific to
phosphorylated GSK-3� (Fig. 3A, top)

or to phosphorylated forms of both GSK-3 proteins (Fig.
3A, bottom). These data show that phosphorylation for
GSK-3� was consistently decreased with LY treatment
through the prehypertrophic/hypertrophic zones where
GSK-3� is primarily expressed in the growth plate (Fig.
3A, top). The IHC detecting both phospho-GSK-3� and -�
demonstrated a decrease in the GSK-3 phosphorylation

FIG. 3. Interaction of PI3K and GSK-3 signaling in organ culture. Tibia organ cultures (e15.5)
were treated with GSK-3 inhibitor (10 �M SB86), PI3K inhibitor (10 �M LY), a combination of
both inhibitors (10 �M SB6 plus 10 �M LY), or DMSO [control (Cont)] for 6 d. A, IHC analyses
of GSK-3 phosphorylation using phosphospecific antibodies specific for GSK-3� (top) or both
GSK-3� and � (bottom); B, representative picture of tibias after 6 d of culture stained with
alizarin red (bone) and alcian blue (cartilage); C, quantification of longitudinal growth of tibias
(millimeters) over 6 d of culture; D, resting and proliferating zone length (micrometers) of
bones treated with the various inhibitors; E, hypertrophic zone length (micrometers) of bones
treated with the various inhibitors. All data were compared using one-way ANOVA with a
Tukey posttest analysis; significant differences are denoted by asterisks (n � 3; *, P � 0.05).
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through the resting and proliferating zones but a less sig-
nificant change in the prehypertrophic zone (Fig. 3A, bot-
tom). This suggests that GSK-3�, which is more widely
expressed in the growth plate, is the predominate GSK-3
form targeted by inhibition of the PI3K pathway through

the resting and proliferating zones,
whereas GSK-3� is the main target in
the prehypertrophic zone.

Consistent with our earlier studies,
SB86 (Fig. 2) increased and LY (15) de-
creased tibia growth in culture (Fig. 3, B
and C). The effect of the PI3K inhibitor
was partially recovered by the combi-
nation with the GSK-3 inhibitor (LY
plus SB86) (Fig. 3, B and C). None of
the treatments had significant effects on
the total length of the growth plates
(Supplemental Fig. 1B). Similar to the
bone growth, the combination of the
inhibitors was able to partially recover
the effect of PI3K inhibition on the
length of the resting/proliferative zone
(Fig. 3D), whereas both inhibitors in-
dividually and in combination reduced
the length of the hypertrophic zone
(Fig. 3E).

Chondrocyte-specific ablation of
GSK-3� in vivo

Todeterminewhethertheexvivo tibia
organ cultures results would translate
into an in vivo model and to address the
roles of individual GSK-3 proteins, we
generated mice with cartilage-specific
lossofGSK-3�.Micehomozygoteforthe
floxed alleles of GSK-3� (Gsk3bfl/fl) (16,
38) were crossed with mice heterozygote
for the floxed allele and expressing
cre recombinase gene under control of
the mouse collagen II (Col2a1) pro-
moter (Gsk3bfl/wt cre�) (39, 48). This
breeding scheme produced cartilage-spe-
cific GSK-3� deletion in (Gsk3bfl/fl

cre�) referred to as knockout mice
(KO), heterozygous mice (Gsk3bfl/wt

cre�), as well as control (Cont) litter-
mates (Gsk3bfl/fl cre� or Gsk3bfl/wt

cre�). Efficiency of GSK-3� deletion was
determined through Western blot analy-
sis and immunohistochemistry (Fig. 4).
Long bone growth plate extracts from P0
mice demonstrated an 80% reduction in
GSK-3�protein inKOcartilage (Fig.4A,

B). Immunohistochemistry (IHC) of P0 tibia paraffin section
demonstrated strong expression of GSK-3� in the prehyper-
trophicandhypertrophiczonesofcontrolmicewithvirtually
acomplete lossof signal inKOlittermates (Fig.4C).GSK-3�

FIG. 4. Cartilage-specific deletion of GSK-3�. Cartilage-specific GSK-3� KO mice carrying
two alleles of the floxed Gsk3b gene and expressing cre recombinase under the control of the
collagen II (Col2a1) promoter (KO) were created and compared with the control littermates
(Cont). Panel A, Western blot analyses using GSK-3� antibodies conducted on growth plate
(GP) protein extracts from newborn littermate mice of Gsk3bfl/fl cre� (KO) and control
(Gsk3b

fl/fl
cre�, or Gsk3bfl/wt cre�) (Cont) genotype; panel B, densitometric quantification of

GSK-3� protein in P0 growth plate extracts; panel C, IHC using GSK-3� antibodies on
paraffin sections of P0 tibia, with black box in top image indicating the location of the lower
higher-magnification images; panel D, Western blot analyses of GSK-3� protein in calvarial
tissue (Calv); panel E, Western blot analyses of GSK-3� protein in heart, brain, and kidney
protein samples of control (C) and KO mice; panel F, tibia length (millimeters) measurements
from P0 control and KO mice; panel G, paraffin sections of P0 tibias from control and KO
mice stained with safranin O. All Western blot analyses used �-actin as a loading control.
Quantification used t test analyses where significance was denoted with an asterisk (n � 3;
*, P � 0.05).
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protein levels were explored in many tissues to evaluate the
specificity of the deletion (Fig. 4, D and E). Calvaria tissue
samples showed that GSK-3� expression was not affected in
bone tissue (Fig. 4D). No loss of GSK-3� protein was ob-
served in any other tissues of KO mice (Fig. 4E).

Thecartilage-specificGSK-3�KOmicedidnotdisplayan
observable skeletal phenotype (Supplemental Fig. 2, A and
B). The size and weight of KO mice were similar to those of
control sex-matched littermates throughout their life, from
birth to1yr (datanot shown).The lengthof the tibiasatbirth

P0 (Fig. 4F) and at P21 (Supplemental
Fig. 2C) were not significantly different
from control mice. The growth plate
zones were also not visually affected
upon cartilage-specific GSK-3� deletion
(Fig. 4G, Supplemental Fig. 2, D–F).

GSK-3 inhibition increases
chondrocyte proliferation

To determine why ex vivo inhibition
of GSK-3 affects bone growth whereas in
vivo GSK-3� deletion had no observable
effect, the cellular mechanisms control-
ling growth plate dynamics were ex-
plored. Because the rate at which chon-
drocytes cycle through the growth plate
stages determines both zone morphology
and bone growth, chondrocyte prolifer-
ation was assessed through IHC analyses
using PCNA antibodies (Fig. 5). The
PCNA IHC was quantified as the frac-
tion of positively stained cells per total
number of cells. GSK-3 inhibition (SB86)
did increase the amount of actively pro-
liferating cells in the tibia organ culture
almost 2-fold (Fig. 5, A and B). Prolifer-
ation was not significantly decreased be-
low the control levels upon treatment
with the PI3K inhibitor (LY), whereas
treatment with both inhibitors increased
proliferation significantly over the LY
treatment, similar to the effect of GSK-3
inhibition only (Fig. 5B). Similar data
were obtained using bromodeoxyuridine
labeling and detection (Supplemental
Fig. 1G). In contrast, no difference in the
fraction of PCNA-positive chondrocytes
was observed upon cartilage-specific
GSK-3� deletion (Fig. 5, C and D).

Prehypertrophic cell cycle exit
increased upon GSK-3 inhibition

Hypertrophic chondrocyte differen-
tiation is initiated by cell cycle exit, giving rise to prehy-
pertrophic chondrocytes (49, 50). The cyclin-dependent
kinase inhibitor p57 is both a marker of prehypertrophic
chondrocytes and promotes cell cycle exit in the growth
plate (49–54). In tibia organ culture, inhibition of GSK-3
or dual treatments of GSK-3 and PI3K inhibitors greatly
increased the zone of p57 protein expression in the pre-
hypertrophic zone (Fig. 6A, black arrows in insets),
whereas the addition of the PI3K inhibitor did reduce this

FIG. 5. GSK-3 inhibition increases proliferation in organ culture, whereas GSK-3� deletion in
cartilage has no effect on proliferation in vivo. PCNA was used to stain proliferating cells in
both tibia organ culture experiments and cartilage-specific GSK-3� KO mice. A, IHC analyses
of PCNA on paraffin section of tibia organ cultures treated with GSK-3 inhibitor (10 �M

SB86), PI3K inhibitor (10 �M LY), a combination of both inhibitors (10 �M SB86 plus 10 �M

LY), or DMSO [control (Cont)]. B, Quantification of the PCNA staining from A as percentage
of stained cells to total cells. Results were statistically compared using a one-way ANOVA with
Tukey posttest analyses, and significance is denoted by asterisks (n � 3; *, P � 0.05). C,
PCNA IHC analyses of P0 tibia from cartilage-specific GSK-3� KO mice and control littermates
(Cont). D, PCNA staining quantified as fraction of positive stained cells. Results were
compared by t test (n � 3; *, P � 0.05).
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zone, although not statistically significantly (Fig. 6, A and
B). This p57-positive staining was localized to the cell nu-
cleus in the prehypertrophic zone (Fig. 6A, far right inset).
In cartilage-specific GSK-3� KO mice, p57 protein ex-
pression was similar to that of control littermates (Fig.
6C), and quantification did not show any significant
change in the length of the p57-positive zone (data not
shown).

�-Catenin expression in prehypertrophic
chondrocytes is up-regulated upon inhibition of
GSK-3

Arguably the most studied downstream target of GSK-3
is the transcription factor �-catenin, a target of the canonical
Wnt pathway that is a central regulator of skeletal develop-
ment (7, 55–59). An increase in the amount of �-catenin
protein was observed specifically throughout the prehyper-
trophic/hypertrophic zone of tibias in organ culture treated

with the GSK-3 inhibitor (Fig. 7A). IHC
for �-catenin was also performed on the
other two treatments discussed above,
LY and SB86 plus LY; however, PI3K in-
hibition yielded no change, and dual in-
hibition results were inconclusive (data
not shown). Western blot showed no sig-
nificant change in �-catenin protein lev-
els in the growth plate of cartilage-spe-
cific GSK-3� KO mice, although levels
consistently appeared increased in mu-
tant cartilage (Fig. 7B). However, IHC
suggested that �-catenin levels are in-
creased in specific subsets of chondro-
cytes in cartilage-specific GSK-3� KO
mice, in particular prehypertrophic
chondrocytes and the articular surface
(Fig. 7C).

Up-regulation of GSK-3� protein
in response to GSK-3� deletion
in vivo

The two forms of GSK-3, � and �,
play both overlapping and distinct roles
(16, 17, 28, 29, 31). GSK-3� levels and
overall phosphorylation of the GSK-3
proteins were examined to understand
the apparent lack of phenotype in the
cartilage-specific GSK-3� KO mice
(Fig. 8). Surprisingly, Western blotting
demonstrated an approximately 2-fold
increase in GSK-3� protein in KO car-
tilage (Fig. 8, A and B). IHC further sup-
ported these data by showing an in-
crease in GSK-3� protein throughout

the prehypertrophic and hypertrophic area as well as the
resting zone and articular surface (Fig. 8C). To a lesser
extent, an increase in GSK-3� protein was observed in the
proliferating zone (Fig. 8C). There was no obvious change
in the total phosphorylation of the GSK-3 proteins in all
zones (Fig. 8D), providing further evidence that up-regu-
lation of GSK-3� compensates for the loss of GSK-3� in
cartilage.

Discussion

This study contributes important and novel data to our
understanding of both skeletal development and GSK-3
signaling. Our results demonstrate profound effects of
GSK-3 inhibition on bone growth in a tibia organ culture
system, which is contrasted by minimal phenotypes ob-
served upon cartilage-specific deletion of GSK-3�. This

FIG. 6. GSK-3 regulates p57 expression in the prehypertrophic zone in vitro, whereas
cartilage-specific GSK-3� deletion does not affect p57 expression in vivo. A, IHC analyses of
p57 expression in paraffin sections of tibia organ culture treated with GSK-3 inhibitor (10 �M

SB86), PI3K inhibitor (10 �M LY), a combination of both inhibitors (10 �M SB86 plus 10 �M

LY), or DMSO [control (Cont)]. Black boxed insets are higher-magnification images depicting
the zones of p57 staining (black arrows). Far right image is a higher-magnification (boxed
area) of staining to determine cellular localization. B, Quantification of the length
(micrometers) of the zone of p57 staining observed in A. Data were analyzed by one-way
ANOVA with a Tukey posttest with significance denoted by asterisks (n � 3; *, P � 0.01). C,
IHC analysis of p57 expression in paraffin sections of P0 tibias of cartilage-specific GSK-3� KO
mice compared with littermate controls (Cont).
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absence of phenotype is likely due to compensatory up-
regulation of GSK-3� expression, a mechanism that has,
to our knowledge, not been reported for any other tissue
or context.

Our tibia organ culture experiments show that inhibi-
tion of GSK-3 results in increased longitudinal growth of
endochondral bones. This was likely caused, at least in
part, by increased proliferation of chondrocytes in the
resting and proliferating zones. The shortened hypertro-
phic zone resulting from GSK-3 inhibition appears to be
counterintuitive to the increase in growth observed by us.
However, the larger proportion of PCNA-labeled chon-
drocytes, the increase in p57 staining, and the relative in-
crease in the length of the mineralized zone all suggest that
all processes in the growth plate (proliferation, differen-

tiation, and replacement of cartilage by
bone) occur at a faster rate upon GSK-3
inhibition, thus resulting in increased
bone growth. The reduced length of the
hypertrophic zone would therefore not
be due to delayed differentiation but
rather to faster turnover of hypertro-
phic cartilage to bone.

Our observations of increased
chondrocyte proliferation and accel-
erated bone maturation in response to
GSK-3 inhibition are opposite to find-
ings from Naski and colleagues (60)
who showed that a different pharma-
cological GSK-3 inhibitor reduced
chondrocyte proliferation and differ-
entiation in a metatarsal organ cul-
ture system. These differences might
be due to the nature and/or concen-
tration of the inhibitors, the duration
of treatment, or the identity of the
skeletal elements investigated, sug-
gestingthattheeffectsofGSK-3incartilage
might be context dependent. However,
our data showing that GSK-3 inhibi-
tion promotes endochondral bone
growth, which is unlikely to occur
when both proliferation and hypertro-
phy of chondrocytes are inhibited, are
supported by a recent in vivo study
where loss of one allele of the Gsk3b
gene rescues the dwarfism of mice de-
ficient for cGMP-dependent kinase II
(cGKII), another upstream inhibitor of
GSK-3 (24). cGKII is a key mediator of
the anabolic effects of C-type natri-
uretic peptide on endochondral bone
growth (61). These data by Kawasaki et

al. (24) show that inhibition of GSK-3 activity is required
for the anabolic effects of cGKII in bone, an effect we
mimic by pharmacological inhibition of GSK-3.

Our data also provide insights into the relationship be-
tween PI3K and GSK-3 signaling in cartilage. PI3K inhi-
bition resulted in decreased phosphorylation (indicating
increased activity) of GSK-3. In agreement with these data,
pharmacological inhibition of GSK-3 rescued many of the
effects of the PI3K inhibitor, in particular on bone growth.
However, this was not true for the length of the hyper-
trophic zone, which was reduced by either inhibitors in-
dividually or in combination. However, these effects on
the hypertrophic zone could be due to the different mech-
anisms, because PI3K inhibition appears to delay chon-

FIG. 7. GSK-3� regulates �-catenin expression in the prehypertrophic zone. A, Sections of
tibia organ cultures treated with a GSK-3 inhibitor (10 �M SB86) or DMSO [control (Cont)]
were analyzed by IHC using �-catenin antibodies. Black brackets indicate the zone of �-
catenin-stained cells in the prehypertrophic zone. B, Western blot analyses of P0 growth plate
(GP) protein extracts from cartilage-specific GSK-3� KO mice and control (Cont) littermates
probed with �-catenin antibodies, with �-actin as loading control. C, Localization of �-catenin
protein was conducted by IHC using �-catenin antibodies on paraffin tibia sections from mice
described in B.

Endocrinology, May 2011, 152(5):1755–1766 endo.endojournals.org 1763

D
ow

nloaded from
 https://academ

ic.oup.com
/endo/article/152/5/1755/2457079 by U

niversity of W
estern O

ntario user on 01 Septem
ber 2022



drocyte hypertrophy and the associated bone growth (15)
(reviewed in Ref. 62), whereas our data presented here
suggest that GSK-3 inhibition accelerates the replacement
of hypertrophic cartilage by mineralized tissue. Further-
more, the similar effects of both inhibitors on the hyper-
trophic zone reflect the fact that PI3K also acts through
other downstream effectors in addition to GSK-3 (63),
whereas GSK-3 is also involved in the response to signals
not mediated by PI3K, such as Wnts.

Given the significant impact of GSK-3 inhibition in organ
culture, the absence of a clear phenotype in cartilage-specific
Gsk3b KO mice was surprising. However, our subsequent
molecular analyses revealed the putative explanation. First,
the expression of GSK-3� in cartilage is quite restricted, at
least in comparison with the more ubiquitously expressed

GSK-3�. These different expression pat-
terns were also shown at the mRNA level
in our earlier microarray studies on mi-
crodissected mouse growth plates (64).
More importantly, GSK-3� expression
wasup-regulatedmarkedly inall zonesof
thegrowthplatesofGsk3b-mutantmice,
even where very low levels of GSK-3�

wereseeninwild-typemice(suchas inthe
proliferative zone). These data suggest
that GSK-3� is able to compensate for
most functions of GSK-3� in chondro-
cytes. However, our results cannot ex-
clude alternative explanations for the
lackofaphenotype inourKOmice;anal-
yses of double-KO mice for both Gsk3
genes will be required to firmly establish
redundant functions of these two genes.

The molecular basis of the increase
in GSK-3� levels in our mutants is
currently unknown. Because GSK-3�

regulates the stability of many other
proteins (65), it is tempting to specu-
late that loss of GSK-3� leads to sta-
bilization of GSK-3� protein. How-
ever, to our knowledge, no such cross
talk between the two GSK-3 proteins
has been described. Alternatively, it is
plausible that increased GSK-3� ex-
pression in our KO mice is due to in-
creased transcription, mRNA stabil-
ity, and/or translation. Future studies
will need to address the mechanisms
involved.

Theoneexception tocompensationap-
peared to be up-regulation of �-catenin
protein levels in specific chondrocytes of
cartilage-specificGsk3bKOmice, suggest-

ing that GSK-3� is not able to fully substitute for GSK-3�

function in all chondrocytes. Because this effect was seen in
only a few chondrocytes, it was not reflected in Western blot
analyses of extracts from the entire cartilage, but it was very
reproducible in immunohistochemical analyses of tissue sec-
tions. Notably, increased staining for �-catenin in mutant
mice was seen in exactly those cells that express detectable
levels of GSK-3� in wild-type mice (e.g. articular and pre-
hypertrophic/hypertrophic chondrocytes), suggesting that
GSK-3� cannot fully compensate for this aspect of GSK-3�

function in these cells. The reason for this inability is unclear
but might be related to the particular levels of expression of
the two GSK-3 proteins in specific chondrocyte populations.
Analysesofdoublemutants forbothGsk3geneswillprovide

FIG. 8. In vivo deletion of GSK-3� causes up-regulation of GSK-3� protein in chondrocytes.
A, Western blot analyses of GSK-3� protein in growth plate (GP) protein extracts of cartilage-
specific GSK-3� KO and control (Cont) mice, with �-actin as loading control; B, densitometric
quantification of GSK-3� Western blot analyses (A); statistical analysis was conducted using t
test, and significance is indicated by asterisk (*) (n � 3, *: P � 0.05); C, IHC analyses using
GSK-3� antibodies on paraffin sections of P0 KO and control tibias; D, IHC analysis using
antibodies detecting the phosphorylated state of both GSK-3 forms, � and �.
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further insight into this unexpected finding. Although chon-
drocyte function is very sensitive to both supra- and super-
physiological levels of �-catenin (56, 57), the moderate
change in expressionobservedhereappears tobe insufficient
to inducechanges incartilagedevelopmentandbonegrowth,
at least over the time frame evaluated here. It will be inter-
esting to examine in the future whether increased �-catenin
orotheraspectsof cartilage-specific lossofGSK-3� alters the
susceptibility to cartilage degeneration in osteoarthritis.

In closing, we believe that this study contributes impor-
tant and novel information to our understanding of the com-
plicatedrelationshipbetween the twoGSK-3proteinsaswell
as to our understanding of the signaling pathways control-
ling endochondral bone development. Additional studies,
such as the simultaneous inactivation of both Gsk3 genes
in cartilage, will further elucidate the role of these key
signaling molecules in the physiology and pathophysiol-
ogy of cartilage.
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