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Abstract
Advancements in sequencing technologies have revolutionized biological sciences and led to the

emergence of a number of fields of research. One such field of research is metagenomics, which is

the study of the genomic content of complex communities of bacteria. The goal of this thesis was

to contribute computational methodology that can maximize the data generated in these studies

and to apply these protocols to human and environmental metagenomic samples.

Standard metagenomic analyses include a step for binning of assembled contigs, which has pre-

viously been shown to exclude mobile genetic elements. I demonstrated that this phenomenon

extends to all conjugative elements, which are a subset of mobile genetic elements. I proposed

two separate methodologies that could detect contigs that are potential conjugative elements: a

curated set of profile hidden Markov models that are very e�cient to run, or annotation using the

full UniRef90 database, a slower but more sensitive method.

I then applied this framework to a large population-based cohort and to a study examining the

association of the maternal human gut microbiota and the development of spina bifida. Broadly,

the composition and abundances of conjugative elements were discriminatory between the age and

geographic cohorts. In the spina bifida cohort, there was an enrichment of Campylobacter hominis

and a conjugative element belonging to Campylobacter hominis, which was excluded from the

metagenomic bins.

Next, I characterized a novel species belonging to the recently discovered manganese-oxidizing

genus Manganitrophus growing on oil refinery carbon filters. I successfully circularized the genomes

of three strains and got quality assemblies for the remaining two samples. Furthermore, I identified

a previously uncharacterized conjugative plasmid belonging to the species using my framework

developed in chapter 2.

Finally, I developed an assembly pipeline to perform a secondary assembly on binned assemblies

using long reads. The secondary assemblies yielded a number of additional circularized sequences

that would be useful as sca↵olds in future metatranscriptomic, variation analysis, and community

dynamic studies.
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The methodologies and applications in this thesis provide a framework for more complete metage-

nomic analyses going forward that will aid in our understanding of microbial ecology.

Keywords: Bioinformatics, computational biology, microbiome, metagenomics
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Lay Summary
Over recent years, the technology to determine the DNA sequence of species’ genomes has ad-

vanced greatly. These technological advances have allowed for the study of bacterial genomes

living in complex communities without the need to isolate them individually, a field referred to

as metagenomics. As a rapidly expanding field of research, metagenomic analyses required com-

putational tools that can accurately analyze the massive quantities of data being produced. For

my thesis, I sought to develop such tools and apply them to the complex bacterial communities

that colonize the human intestinal tract and to communities that grow on carbon filters from the

wastewater treatment facility of an oil refinery.

Conjugative elements are pieces of DNA that can be exchanged between bacteria. These mobile

genetic elements are of clinical interest because they commonly carry cargo genes that can confer

antibiotic resistance to the bacteria. I demonstrate that standard metagenomic analyses systemati-

cally exclude these elements, and I proposed a methodology to remedy this issue.

I then applied this methodology for identifying conjugative elements to two separate research ques-

tions. First, I showed that conjugative systems are di↵erent depending on the age and geographical

location of the individual, likely due to antibiotic use and diet di↵erences between populations.

Additionally, I showed that harmful bacteria carrying a conjugative element in the guts of expec-

tant mothers may play a role in the development of spina bifida.

Growing on the carbon filters of an oil refinery’s wastewater treatment plant, I discovered a novel

species of bacteria whose closest known relatives on the tree of life are able to use manganese as a

source of energy. I also found a previously uncharacterized conjugative element belonging to this

species that is likely able to remove heavy metals from its environment.

Finally, I developed a method for assembling additional complete bacterial genomes from the

sequencing of complex environments. Additional complete genomes will enable a better ability to

understand the full genetic potential of these bacterial communities from the wastewater treatment

plant.

Overall, I improved computational methods for analyzing complex bacterial communities and ap-
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plied the methods as a proof of principle for their usefulness.
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Chapter 1

General Introduction

Bacterial genomics is a rapidly advancing field centered around the interest in the metabolic poten-

tial of bacteria to modulate human health and remediate the environment. Sequencing technology

and the data so generated that enables bacterial genomic research has been outpacing Moore’s

law [1]. As such, the computational methodology to accurately analyze these increasingly large

datasets must keep pace. While there has been much progress made in this regard, there is still

much data that is overlooked or missed by standard analyses that may be of clinical or environ-

mental interests.

The overarching goal of my thesis was to improve standard metagenomic analyses by employing

and adapting novel technologies and then apply these methodological improvements to problems

as diverse as human gut microbiome and environmental metagenomic investigations. In Chapter

2, I discovered that conjugative elements from bacteria are systematically excluded from metage-

nomic bins and developed a pipeline to identify these systems from metagenomic assemblies.

I then applied this methodology to gut microbiome datasets to identify conjugative elements in

geographic-focused cohorts (cohorts where the primary di↵erence between group is geographic

location of sample location) and in mothers who gave birth to infants with spina bifida (Chapter

3). I also applied the identification of conjugative systems to environmental samples to identify a

large, circularized conjugative plasmid belonging to a species in the manganese-oxidizing genus

1
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Manganitrophus. In addition, I showed that plasmids and chromosomes could be assembled into

circular contigs using a reference-based assembly with long-reads and compared the gene con-

tent of these novel strains to the three known species of the genus (Chapter 4). Extending the

idea that mapped assemblies using high-quality genomes could yield additional circularized bac-

terial genomes, I performed secondary assemblies using reads that strongly align to metagenomic

bins to better characterize the communities of bacteria growing on the carbon filters found at the

wastewater treatment plants of oil refineries (Chapter 5).

1.1 History of sequencing technologies

Ever since the resolution of the three-dimensional double helix structure of DNA by Franklin,

Wilkins, Crick, and Watson [2], and the proposition of the central dogma of biology [3], research

has been conducted on how to obtain the DNA sequences of organisms. The central dogma of

biology led to the belief that the knowledge of the DNA sequence would allow for a comprehensive

understanding of phenotypes and diseases. The nature of DNA, with long sequences and very

little structural di↵erences between bases, made knowledge of protein sequencing inapplicable

[4], so new strategies needed to be developed to rapidly determine nucleic acid sequences. Three

generations of DNA sequencing technologies have been developed (Figure 1.1), each generation

with its own strengths and weaknesses, which has brought about an ability to complete genomes

from complex communities.
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Figure 1.1: The three generations of sequencing technology with key advancements of each gener-
ation highlighted. Sanger sequencing in the first generation of sequencing saw the use of chain ter-
mination with dideoxynucleotide triphosphates and the use of one-dimensional gel electrophoresis
in place of two-dimensional fractionation. In the second generation of sequencing, Solexa/Illumina
introduced bridge amplification of DNA spots to create a clonal cluster to greatly increase sequenc-
ing accuracy. Oxford Nanopore Technologies introduced the nanopore method of sequencing,
which directly sequences the DNA as it transverses the membrane and disrupts the flow of ions.
Created with BioRender.
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1.1.1 First generation sequencing: artisinal

Sequencing of nucleic acids was first conducted with RNA rather than DNA due to the smaller

sequences, RNase enzymes for site-specific cleavage, and established isolation protocols. At first,

only the full composition of the sequence, but not the order of the nucleotide could be determined

[5]. Eventually, following the realization that RNA used uracil in place of thymine [6], Holley

and colleagues were able to establish a method of sequencing capable of sequencing a yeast tRNA

[7]. The same year, Sanger developed a two-dimensional fractionation technique of radiolabeled

nucleotides that enabled the sequencing of a wider pool of tRNA and rRNA sequences [8, 9, 10].

As steady improvements were made to the two-dimensional fractionation technique over the next

decade, the first protein-coding sequence [11] and first complete viral genome were sequenced

[12].

Improvements to sequencing again needed to be made to obtain DNA sequences. It was found

that the overhanging ends of the lambda phage genome could be filled in using a DNA polymerase

supplied with radiolabeled nucleotides. By supplying these nucleotides one at a time, the sequence

of the overhanging ends could be determined [13, 14]. This method was further developed and it

was discovered that the radiolabeled nucleotides could be inserted anywhere [15, 16, 17], but was

still limited to small stretches of DNA.

The next improvements came in the development of two similar techniques that would become the

standard practice for the next period of time. Sanger sequencing [18], also referred to as chain-

termination sequencing, and Maxam-Gilbert sequencing [19], or chemical cleavage sequencing,

both improved on the existing techniques by greatly simplifying the entire process. The change

from two-dimensional fractionation to a four lane, size-based gel electrophoresis approach made

DNA sequencing much more accessible. The first DNA genome sequenced as a result of this tech-

nological advancement was the �X174 bacteriophage genome [20], which is still used to this day

as a positive control in many sequencing runs. A subsequent improvement to Sanger sequenc-

ing was the use of fluorescence in place of phospho-radiolabeling, which allowed for ‘one-pot’

sequencing, which allowed for automation of the process [21, 22, 23, 24, 25, 26, 27].
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At the end of the first-generation sequencing era, there were still technological advancements being

made that improved the data. The development of polymerase chain reaction [28, 29] allowed for

the generation of large quantities of pure DNA for sequencing. These improvements coupled

with the incorporation of Sanger sequencing into automated sequencing machines like the Applied

Biosystems ABI PRISM allowed for the crowning achievement of the first-generation sequencing

era, the first draft human genome [30, 31]. While impressive, sequencing the human genome

required a tremendous amount of time and resources to complete as the low throughput of first

generation sequencing technology was a major limiting factor.

1.1.2 Second generation sequencing: highly-parallel

Second generation sequencing was spurred by the discovery of the ability to measure the release

of pyrophosphate measured by luminescence through the enzyme luciferase [32], also known as

pyrosequencing. By washing a nucleotide solution over a bed of template DNA fixed to a solid

phase, it was possible to determine which nucleotides are being added to each strand in paral-

lel [33]. This method allowed the synthesis to occur with natural nucleotides and be measured

in real-time [34, 35, 36]. A major drawback to the method compared to chain termination was

the inability to easily resolve homopolymers, mono-nucleotide stretches in the sequence. Chain

termination sequencing is capable of resolving homopolymers, though still imperfectly, because

each additional base in the homopolymer increases the length on the gel and can be measured.

However, with pyrosequencing, the bases are added in real time and the bases will be added subse-

quently during the same wash in a homopolymer. Illumination intensity measurement can help to

determine up to strings of five consecutive bases, but it cannot be resolved beyond that. These tech-

nologies were developed into sequencing machines by 454, which allowed for large libraries and

high-throughput. This advancement permitted the sequencing and assembly of a diploid human

genome in far less time than the original Human Genome Project [37].

After 454, Solexa (Illumina) brought about the next advancement with their version of sequencing

by synthesis, which is, in essence, massively parallel Sanger sequencing. Illumina sequencing
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includes a step for bridge amplification where solid phase PCR creates a clonal population of

DNA sequences, which are then sequenced with a fluorescent dNTP. One of the main benefits of

Illumina sequencing is the paired-end reads that it can produce by sequencing the ends of a DNA

fragment. Paired-end reads are beneficial when assembling a genome de novo or when you are

aligning reads to a reference genome, particularly in highly repetitive regions. MGI sequencing has

recently developed nanoball sequencing technology, which also produces high quantities of reads

at comparable quality to Illumina sequencing [38]. The advancements in the second generation of

sequencing technology is primarily where it greatly outpaced Moore’s Law [1]. This generation of

sequencing saw the draft assembly of the human genome go from a triumphant accomplishment to

a relatively mundane exercise.

1.1.3 Third generation sequencing: single molecule

The third generation of sequencing is characterized by single-molecule sequencing (SMS). SMS

originated in the early 2000s where it was demonstrated that single DNA molecules could be se-

quenced using fluorescence microscopy [39]. Early versions of commercialized SMS functioned

similarly to Illumina’s platforms, but without the bridge amplification to clonally expand the pop-

ulation of DNA. While this early version of SMS did not provide any advantages to the dominant

Illumina sequencing platform, it did serve as a springboard for others to enter the SMS space,

namely Pacific Biosciences and Oxford Nanopore. PacBio’s SMRT sequencing platforms uses flu-

orescent dNTPs as well, but carries out the process in a nanostructure referred to as a ‘zero-mode

waveguide’, which allows for precise measurement of the fluorophores being added to the DNA in

real time. This method of sequencing is fast, relatively accurate, and can produce sequences up to

10kb in length.

Oxford Nanopore Technologies sequencing technology is drastically di↵erent than the other meth-

ods that have come before it. Rather than reading out the addition of a nucleotide to a chain by

fluorescence or luminescence, nanopore sequencing directly sequences a strand of DNA or RNA.

It does so by pulling a strand of nucleic acid through a hemolysin ion channel by electrophoresis,
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which disrupts the flow of current across a lipid bilayer [40]. The disruption of the current in the

bilayer is transformed computationally into a DNA sequence through machine learning. Nanopore

sequencing has a number of advantages. Most notably is the ability to produce sequences with

no theoretical upper bound in length. Because the DNA or RNA is sequenced directly with no

synthesis involved, whatever length of nucleic acid chain is input into the sequencer is output to

be analyzed. Additionally, platforms such as the MinION or Flongle are extraordinarily portable

and can be used to sequence in remote locations, such as tracking an Ebola outbreak in Africa

[41]. Nanopore sequencing is, however, not without its drawbacks. Overall sequence quality is

comparatively lower than its competitors (though is continually improved with better basecalling

algorithms) and it also struggles at sequencing homopolymers.

Sequencing technology has advanced rapidly over the last half century. In tandem, computational

tools need to continually evolve and adapt to new avenues of research that continually emerge

with these new technological advancements. While it was only possible to sequence a single

tRNA sequence fifty years ago, and a single draft human genome twenty years ago, with the

advent of second- and third-generation sequencing technologies much more complex sequencing

experiments are now possible.

1.2 Metagenomics

One of the fields of research that has been enabled by the high-throughput sequencing technologies

developed in the past few decades is metagenomics. Sequencing of isolate genomes of bacteria pre-

dates the popularization of high-throughput second generation sequencing with the first bacteria

genome of Haemophilus influenzae published in 1995 [42]. However, the overwhelming majority

of bacteria are not able to be cultured in lab as isolates [43], which complicated their study with

low throughput sequencing methods. Metagenomics, the study of complex communities, aims to

bypass this problem by directly sequencing the community without the need for culturing of the

bacteria. The first instances of metagenomics predates the wide-spread use of second-generation
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sequencing as well. In 1998, the term metagenomic was coined to describe the study of the collec-

tive genomes of the soil microflora [44], where it was proposed that the genomes of uncultivatable

bacteria be cloned into cultivable bacteria for study. They highlighted the overwhelming diversity

of bacteria in the soil and the potential for beneficial metabolic pathways, such as the synthesis of

novel antibiotics, existing in the pool of unknown bacteria.

Similarly to the progression of sequencing technologies, there has been consistent improvements

in the methodologies for metagenomics. Due to the limitations in sequencing, the early form

of metagenomics came in the form of targeted sequencing of phylogenetically relevant regions

such as the 16S rRNA gene. However, as the cost of sequencing has gone down, throughput has

increased, and the emergence of third-generation sequencing technology has allowed for long-read

sequencing, shotgun metagenomics of all DNA in an environment has gained prominence.

1.2.1 Amplicon Sequencing

Targeted, amplicon sequencing permits the study of the phylogeny of bacteria in a complex com-

munity while only sequencing a small portion of the total DNA present. The 16S rRNA gene is

large enough to provide su�cient information, conserved throughout the bacterial kingdom, and

has a level of sequence variation in line with the evolutionary phylogeny [45]. Study of bacteria

using 16S rRNA gene sequences began almost half a century ago with Carl Woese and colleagues

used the 16S sequence to classify methanogenic bacteria [46] in 1977 and to classify Halobac-

terium volcanii in 1983 [47]. As sequencing and PCR technology advanced, the 16S rRNA gene

sequenced could be amplified and sequenced from complex and uncultivatable communities of

bacteria [48, 49, 50].

The general strategy of 16S rRNA gene sequencing is to bind PCR primers to conserved regions

that flank the variable regions, PCR amplify the variable region, and then sequence the region

(Figure 1.2). Compositional analysis pipelines such as DADA2 are able to take the resultant raw

data and pull out the clusters of similar sequences, classify the clusters taxonomically, and then

quantify the relative abundances of the clusters [51].
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Figure 1.2: Example workflow of 16S rRNA gene amplicon sequencing. A variable region within
the 16S gene is identified and primers are designed to anneal to regions flanking it that are well
conserved. The PCR product is amplified and sequenced. The resultant data is passed to a program
such as DADA2 that can generate clusters of sequences (referred to amplicon sequence variants, or
ASVs) that can be aligned to a database to assign taxonomy. The relative abundances of the ASVs
can be used to assess the taxonomic composition within a sample and di↵erences between groups.
Created with BioRender.

16S rRNA gene sequencing, however, has many drawbacks. For one, it struggles broadly to dif-

ferentiate species and some genera [52, 53]. Some species can display up to 99.9% sequence

identity at the 16S rRNA gene level, but have low DNA relatedness in hybridization studies and
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are clearly distinguishable in biochemical assays [45]. Species identification is also contingent on

the quality of the database, which has proven to be problematic in the past with many deposited

low-quality or mis-annotated sequences [54]. The nature of 16S rRNA gene sequencing also has

some systematic blind spots. For instance, because only the 16S rRNA gene is sequenced, no

information on horizontal gene transfer or metabolic capabilities can be confidently derived from

the data. Bioinformatic programs such as PICRUSt attempt to predict and reconstruct biochemical

pathways on the basis of 16S gene sequencing data by using nearest matches in genome databases

to predict the metabolic potential of the bacteria [55]. However, due to the inability of 16S rRNA

gene sequencing to resolve species or strains, these predictions are limited and largely speculative.

1.2.2 Shotgun metagenomic sequencing

Shotgun metagenomic sequencing is an extension of shotgun genomic sequencing that has been

long-used to assemble some of the first DNA sequences such as the bovine mitochondrion [56].

In contrast to isolating DNA from a single organism or organelle and building a library, shotgun

metagenomics builds the sequencing library from all DNA in an environment. This permits the full

analysis of all the gene content in the community. In comparison to amplicon sequencing, shotgun

metagenomic sequencing also allows for the analysis of strain-level di↵erences and horizontal gene

transfer in bacterial communities. The overall pipeline of shotgun metagenomic analysis bears

many similarities to 16S rRNA gene sequencing, but also includes steps for genome assembly,

binning, and gene prediction that are not possible with amplicon sequencing (Figure 1.3).
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Figure 1.3: Example workflow of shotgun metagenomic sequences. First the DNA from the entire
community is isolated and turned into a sequencing library that can be sequenced on second-or
third-generation sequencing platforms. The resultant FASTQ sequencing files can be analyzed
through two separate, but similar, analysis pipelines. In the assembly-free method of analyzing the
shotgun metagenomic data, the sequencing reads are directly analyzed by classifying the taxonomy
or gene content of each read. In the assembly-based method of metagenomic analyses, the reads
are assembled into larger genomic fragments referred to as contiguous DNA sequences, or contigs.
The contigs are then grouped based on features such as mapping coverage and sequence compo-
sition into approximations of bacterial genomes called metagenome-assembled genomes (MAGs).
The open reading frames of the MAGs are predicted to align to protein and pathway databases and
the taxonomy of the full bin is assigned. Created with BioRender.



12

1.2.3 Metagenomic Assembly

To make the most out of the ability of shotgun metagenomic sequencing to capture full genomic

data, the sequencing reads must be stitched together into larger genetic fragments referred to as

contigs though metagenomic assembly. Metagenomic assembly of a complex community, such

as the human gut microbiome, is an extraordinarily di�cult task to accomplish for a multitude

of reasons. Bacterial genomes often share a number of highly similar DNA sequences across the

genome, which can make separation and resolution of the genomes di�cult. Paired-end sequencing

with large inserts or long-read third generation sequencing can help to resolve these ambiguities

by anchoring the reads outside the region of homology. Additionally, metagenomic assembly

of a full metagenome is complicated by the uneven proportions of members of the community.

Oftentimes, there are insu�cient data for the least abundant members of the community to have a

high quality genome produced [57, 58]. One method to overcome this issue would be to simply

sequence more deeply with the hope that the sequencing depth threshold for a quality metagenome-

assembled genome will be crossed for the lower abundance species in the metagenome. However,

this would be expensive and ine�cient because most of the additional sequencing will be consumed

by the higher abundance species that are already su�ciently sequenced. A recent advancement

to overcome this pitfall in metagenomic sequencing and assembly is adaptive sequencing on the

Nanopore third-generation sequencers [59]. This method uses a software-controlled enrichment

protocol that selectively sequences reads based on their similarity to previously assembled low-

abundance MAGs, which prevents the over-sequencing of the high abundance species.

The process of assembly usually follows one of two methods, either overlap-layout-consensus

(OLC) or de-Bruijn-graph [60, 61, 62]. OLC is the classical form of assembly that was popularized

during the era of Sanger sequencing and assembly of simple, isolate genomes. The basic premise is

that overlaps between all reads are formed. Using the overlaps, the reads are laid out in a graph and

the consensus sequence is determined. De-Bruijn graph assembly is a newer technique that does

not involve overlapping all reads, but rather breaking all reads down into a set of k-mers [63, 64].

The k-mers are used to conduct a Eulerian walk along the sequence of the genome. With the
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advent of second-generation sequencing, de-Bruijn graph assembly became the preferred method

of assembly because of computational and memory limitations of OLC assembly [60].

An early metagenomic assembly algorithm was developed as an extension of the isolate de Bruijn

graph assembly algorithm ‘Velvet’ [65, 66, 67]. MetaVelvet is one of the first dedicated assemblers

for metagenomic datasets. Some of the adaptations made to the original algorithm were to use

the di↵erential coverage and graph connectivity to create subgraphs within the de Bruijn graphs.

Because within a metagenome, each species is likely to have a di↵erent sequencing depth, adding

in the step for separating the subgraphs based on coverage was quite e↵ective. As a result, this

metagenomic-focused assembler was able to generate much higher N50 (the size of contig where

equal length and longer contigs compose half the total assembly) than with assemblers that focused

on single genomes [67]. However, as the first iteration of a de Bruijn graph short-read assembler,

there was still much room for improvement.

Another widely used de Bruijn graph metagenomic assembler for second-generation short-read

data was MEGAHIT [68]. Compared to MetaVelvet, MEGAHIT leverages succinct de Bruijn

graphs, which is a compressed version of a de Bruijn graph. While di�cult, it is much more ef-

ficient. Additionally, MEGAHIT also was able to take advantage of the computational power that

had begun to be added to graphics cards. Graphics cards have the ability to massively parallelize

small computational tasks to greatly enhance the speed of processes. MEGAHIT was able to opti-

mize the run time to 3-5 times quicker than the regular de Bruijn graph assemblers that came before

that solely relied on CPU for processing power [68]. MEGAHIT also introduced a step for remov-

ing k-mers that only appeared once in the dataset to prevent the use of sequencing errors as part of

the assembly. Sequencing errors cause spurious edges and bubbles in the graph. MEGAHIT also

implemented multiple k-mer sizes for the building of multiple succinct de Bruijn graphs adapted

from IDBA-UD [69], an iterative graph-based assembler. In this approach, the smaller k-mer sizes

are useful for filtering edges and gaps from low coverage regions, and large k-mer sizes are useful

for repetitive regions in the assembly. Compared to previous metagenomic assemblers, the im-

provements made to the assembly algorithm yielded better assembly metrics across the board in
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nearly a tenth of the computational time [68].

The gold-standard of metagenomic assemblers for second-generation sequencing data has emerged

to be metaSPAdes [70]. In an independent assessment of the top-of-the-line metagenomic assem-

blers, metaSPAdes outperformed all other compared assemblers, including MEGAHIT, in assem-

bly metrics across multiple datasets [71]. The design of the metaSPAdes assembly algorithm

made improvements on the ability to resolve samples with high levels of microdiversity. The fo-

cus of the core algorithm is to construct a consensus backbone while ignoring some levels of the

strain-specific features. This principle was previously applied in SPAdes [72] to prune ‘bulges’

and ‘tips’ in the assembly graph that represent sequencing errors or exceedingly rare variants. In

metaSPAdes, these parameters were weighted to accommodate the high complexity and microdi-

versity. Part of the SPAdes and metaSPAdes algorithms is the module exSPAnder which aims to

utilize paired-end reads to resolve repeats in the assembly graph [73, 74, 75]. Like MetaVelvet,

metaSPAdes also uses di↵erential coverage to help separate the subgraphs. Together, all of these

advances help metaSPAdes consistently produce highly contiguous and accurate assemblies from

short-read data.

Third-generation single-molecule sequencing allows for the sequencing of reads that are far longer

than what could be produced with PCR-amplified Illumina libraries. With these longer reads that

have obvious benefits and drawbacks that need to be accounted for, a new wave of assembly al-

gorithms needed to be engineered. One such assembler is Canu, which was designed specifically

to accommodate noisy and inaccurate reads produced by sequencing platforms such as the Oxford

Nanopore Technologies line of sequencers [76]. With longer reads once again being used, the

assembly strategy once again returned to a form of OLC that was commonly used for assembly

sequencing data produced by Sanger sequencing. To overcome the slow and computationally in-

tensive process of overlapping the reads to build the graph, the authors instead used a MinHash

Alignment Process [77]. In essence, the reads use a k-mer hash to seed for candidate overlaps

rather than conducting full end to end alignments. This concept was combined with much of the

same base algorithm as the Celera Assembler [78] to create an assembler well-adapted to third-
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generation sequencing. However, while Canu was used for metagenomic assemblies, it was not

explicitly designed for that purpose. It was rather designed as a replacement for the Celera Assem-

bler for assemblies of single genomes.

An assembler that was explicitly developed for the assembly of metagenomic datasets is metaFlye

[79]. Like metaSPAdes, metaFlye is an extension of a single-genome assembler Flye [80]. Also

similarly to metaSPAdes, metaFlye has become the gold standard for metagenomic assembly using

long reads. In an independent assessment of the third-generation sequencing metagenomic aseeml-

bers, metaFlye consistently outperformed all other assemblers [81]. Similarly to Canu, metaFlye

builds a set of k-mers to find overlapping reads that can build the assembly graph. metaFlye primar-

ily looks for high-frequency k-mers to find this overlapping set of reads, which can be detrimental

when there is uneven coverage of species, because the k-mers that comprise the low abundance

species will not be recognized. To address this, metaFlye combines global k-mer counting with

local k-mer distributions to find solid k-mers from the lower abundance species. Overall, metaFlye

is performant with complex communities of bacteria, even with high levels of microdiversity.

Another method of assembly that arose alongside third-generation sequencing is hybrid assembly

which utilizes both long and short reads to construct the assembly graph. One of these assemblers

is the metagenomic assembler UniCycler [82]. Hybrid assemblers attempt to take advantage of

the strengths of both second- and third-generation sequencing to mask the weaknesses of both.

Second generation sequencing is highly accurate, but struggles to assemble through repetitive re-

gions. Long-reads are able to span these regions, but produce assemblies with high levels of error,

especially at homopolymers. Unfortunately, UniCycler and other hybrid metagenomic assemblers

fail to produce comparable quality of assemblies when compared to Canu or metaFlye [81].

Instead, current best practice is to assemble with long-read assemblers such as metaFlye and then

polish the sequences to remove errors. A number of tools exist to fix these errors utilizing both

short and long reads. Pilon was developed to polish genomes using Illumina reads by aligning the

reads to the genome and assessing areas for consistent, problematic alignments [83]. These prin-

ciples were extended to polishing genomes with only long-read data in tools such as Homopolish,
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PEPPER, and Medaka [84, 85, 86], which were able to polish genomes to high-quality levels [87].

Simply assembling metagenomes is not a su�cient analysis. Even with the best sequencing

data and the most sophisticated assembly algorithms, metagenomic assemblies yield heavily frag-

mented assemblies, so the genomic fragments need to be sorted and clustered. Additionally, the

genomic sequence alone is not informative. Annotations and taxonomic assignments need to be

added on to glean useful information from the assembled genomes.

1.2.4 Metagenomic binning

To overcome the pitfall of fragmented assemblies being output from metagenomic assemblies,

the process of metagenomic binning was developed. Broadly, these methods attempt to cluster

metagenomically-assembled contigs based on their measurable features. Such features can include

sequence composition (as measured by k-mer frequencies or GC%), contig abundance, or assembly

graph connectivity. Some forms of binning attempt to preempt the issue of fragmented, mixed

assemblies by partitioning the reads instead prior to binning [88, 89, 90, 91, 92, 93]. Typically,

these algorithms strictly use k-mer frequencies to cluster the reads. Due to the low information

content in short reads and the error frequency of longer reads, these methods are not as e↵ective as

the binning of contigs following a metagenomic assembly [94].

One such binning algorithm for metagenomic assemblies is CONCOCT [95]. CONCOCT uti-

lizes the sequence composition and contig mapping coverage across multiple samples to cluster

contigs together into bins. The k-mer composition and coverage of each contig are transformed

into a combined model projected onto a principal-component plot to reduce the dimensionality of

the data while maintaining the vast majority of the information. On this projection, the contigs

are clustered using a Gaussian mixture model. Another binning algorithm that utilizes the cover-

age and sequence composition data to produce metagenomic bins is MetaBAT2 [96]. MetaBAT2

brings additional steps to the algorithm including normalized tetranucleotide frequency scores, an

iterative graph partitioning procedure, and further steps to include small contigs into bins. Of the

many binning algorithms that utilize coverage and composition to bin the contigs of a metage-
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nomic assembly, MetaBAT2 consistently outperforms the others [97]. Another binning algorithm,

which is aimed to compliment the composition and coverage binning algorithms, is GraphBin [98].

GraphBin refines the bins produced by the other algorithms by employing the information that is

contained within the assembly graphs. Assembly graphs contain information on the connectivity

of contigs that are useful to refine the bin classifications produced by the other binning algorithms.

DAS Tool fills a similar niche in that it is a binning tool to refine the outputs of other binning

algorithms [99]. Rather than performing a secondary layer of binning to refine the binning results

of the other tools, DAS Tool creates an aggregated scoring strategy to create a consensus binning

result from the output of the other tools.

There are a handful of issues with metagenomic binning. One common issue is the generation

of chimeric bins and assemblies [100]. Chimeric bins occur when contigs with true identity to

separate bacteria are included in a single metagenomic bin. In part, DAS Tool’s use of a consensus

of binning from multiple sources has shown to improve the accuracy [99], however chimerism still

remains an issue. To check for the completion level of a metagenomic bin, and whether there is

contamination in the bin, a tool such as CheckM can be utilized [101]. CheckM measures the

presence of the conserved single-copy core bacterial genes for assessing completion and detects

whether any of these genes are deduplicated to measure contamination. Another shortcoming of

binning comes in its inability to properly bin plasmids and genomic islands. Maguire et al. [102]

demonstrated that the binning rate of plasmids and genomic islands were well below 40% whereas

the background binning rate of contigs is generally in the 80-90% range.

Metagenomic bins of high-quality, as measured by tools such as CheckM, are referred to as

metagenomic-assembled genomes (MAGs). Annotation and quantification of these MAGs are

what forms the bulk of metagenomic analyses.

1.2.5 Functional Annotation of Metagenomic-Assembled Genomes

One of the primary benefits of shotgun metagenomic sequencing over amplicon sequencing of

the 16S rRNA gene sequencing is the ability to directly assess the metabolic capabilities of a
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metagenome, not just the inferred capabilities from taxonomy. To annotate MAGs, it is generally

a two-step process. First, the open reading frames of the bacteria are predicted to obtain protein

sequences. These protein sequences are then aligned to databases to predict the gene, or pathway,

that they belong to.

There are a handful of tools available that are able to predict the bacterial open reading frames.

Some annotation pipelines choose to bypass this step and align the genomic sequences directly to

a nucleotide database, such as with MEGAN4 [103]. This is generally not the accepted strategy as

protein sequences are more information dense and easier to align to databases. Instead programs

such as Glimmer and Prodigal are used to first predict the open reading frames and translate them

into protein sequences [104, 105]. Glimmer uses interpolated Markov Models to predicted the

start and stop codons within a bacterial genome [106]. In essence, bacterial genes have regular

patterns and features that can be modelled by Markov models, which allows for the accurate pre-

diction of their boundaries in Glimmer’s algorithm. Sequencing and assembly errors are a major

hurdle for gene prediction algorithms. These errors can commonly cause frameshifts or premature

stop codons, which would cause erroneous protein sequences to be predicted. Both Glimmer and

Prodigal attempt to fix these errors by modelling the base accuracy and looking for overlapping

reading frames indicative of an error at the low quality sites. With Illumina reads, insertions and

deletions that cause frameshifts are rare [107], so the impact of errors in assemblies derived from

such data are low. However, indels (especially at homopolymers) are common in metagenomic

sequencing from long-read sequencing on Nanopore platforms, so these corrections are critical for

those assemblies. Prodigal builds on Glimmer’s algorithm by adding machine learning models

trained on verified bacterial open reading frames to better consider the GC bias of open reading

frames and start codon bias [105]. Prodigal calculates scores of every start and stop codon pair in

the genome and considers the presence of a Shine-Dalgarno sequence [108] and ribosomal binding

sites to determine whether the pair of start and stop codons represents a true open reading frame.

There are two main computational frameworks to align the predicted protein sequences to the

available databases, BLAST and hidden Markov models. Basic local alignment search tool, or
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BLAST, is a simple and robust method for querying databases with either nucleotide or protein

sequences [109]. The core of the algorithm is the splitting of the query sequence into a set of

k-mers, searching the database for a sequence that contains a match for the seed k-mer, and then

extending from that match to generate an alignment score and find high-scoring segment pairs.

The scoring parameters can be adjusted to assign weighting for matches, mismatches, and gaps.

Multiple high-scoring segment pairs can be combined on a sequence to form a longer alignment.

Once a BLAST ‘hit’ is found a full, gapped Smith-Waterman alignment will be generated to the

matched sequences. Many forms of BLAST can be used depending on what queries and databases

are being used. The most basic forms of BLAST, BLASTN and BLASTP, perform nucleotide-

to-nucleotide and protein-to-protein alignments, respectively. PSI-BLAST is a form of protein-to-

protein BLAST that is more sensitive to distant evolutionary relationships in protein sequences that

the standard BLASTP alignment [110]. Another method to map to a protein database is BLASTX

which translates a DNA query in all six potential open reading frames and aligns these potential

sequences against the database. This is e↵ective to find protein coding sequences in a stretch of

genomic DNA or to align cDNA to a protein database. TBLASTX also utilizes all six open reading

frames of a nucleotide sequence as a query, but unlike BLASTX, it aligns these sequences to the six

open reading frames of a nucleotide database. TBLASTN takes a protein query and aligns it to the

translated six open reading frames of a nucleotide database [111]. Each of these variations has its

own optimal use case depending on the available data and the questions that need to be answered.

Accelerated forms of these BLAST algorithms have been implemented in bioinformatic software

that is designed to run on local servers and or cloud computing clusters. For example, the BLASTX

module of the DIAMOND alignment tool was benchmarked as being roughly 20,000 times as fast

as conventional BLASTX [112].

Hidden Markov models, and more specifically profile hidden Markov models have proven to be

e↵ective for searching nucleotide and protein databases for distantly related sequences [113]. Pro-

file hidden Markov model alignments are similar to PSI-BLAST in principle. Certain positions

in protein sequences are more conserved in proteins than others and this position-specific infor-
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mation helps to build and score the alignments. The probabilities of the alignment models are

built o↵ global alignments of protein families. The alignments help to identify the conserved pro-

tein positions, regions of variability, and tolerance of insertions and deletions at a position. The

probabilities in a pHMM are commonly converted to additive log-ratios prior to alignment [114].

Dissimilar to BLAST is how each residue is scored. Because the probability of insertions and dele-

tions is calculated within the alignments, the scoring of gaps and insertions is not arbitrary [113].

Profile hidden Markov model alignments have been implemented in HMMER3, which has sped up

the alignment to the point where it is now as nearly as fast as BLAST for protein searches [115].

Previously, the sensitivity of pHMM methods were heavily o↵set by the much slower speeds, but

the improved speeds brought by HMMER3 bring the speed to a point where it is appropriate to use

on large-scale metagenomic datasets.

For both methods of gene alignment, there are databases available to e↵ectively annotate bacterial

MAGs. Perhaps the most comprehensive database to align sequences to is the UniRef and UniPro-

tKB databases [116, 117, 118, 119]. The Uniref (UniProt Reference Clusters) databases are built

from a clustered set of sequences from the UniProtKB (UniProt Knowledgebase) database [118].

There are three forms of the UniRef databases: UniRef100, UniRef90, and UniRef50. UniRef100

was constructed by combining all identical sequences and subfragments into single entries in the

database. The UniRef90 and UniRef50 databases were constructed by clustering the UniRef100

databases at 90% and 50%, respectively. Each of the databases greatly reduce the size of the

databases resulting in reduced memory requirements and increased search speeds. When using

the UniRef50 database, cluster homogeneity, measured by Gene Ontology terms, was at over 97%

[120], search speed was improved six-fold compared to the UniProtKB database, and was more

sensitive to remote similarities [117]. The UniRef databases are formatted as a set of FASTA en-

tries, so they are best searched using a form of BLASTP such as the accelerated BLASTP module

of the DIAMOND aligner [112]. A pHMM-based database that is similarly comprehensive to the

UniRef databases is the Pfam database [121, 122, 123, 124]. Pfam is a manually curated database

where the seeds of clusters are manually annotated and sorted into protein domains and families.
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Novel sequences can be added to these clusters by various protein clustering and alignment tools.

At the 2021 release of Pfam it represented 77% sequence coverage of the UniProtKB database.

For some applications, it is preferable to use a heavily curated database where the pathway and

function of each database entry is known rather than drawing from a database where the vast

majority of entries have unknown functions. One such database is the Clusters of Orthologous

Genes (COG) database [125, 126, 127, 128]. In concept, it is very similar to the Pfam database

where it is constructed by clustering protein sequences into families of proteins. In contrast to the

Pfam database, which is constructed by comprehensively curating the entirety of the UniProtKB

database, the COG database is built from a limited set of bacterial and archaeal genomes. As of the

2021 release of the COG database, there were 1187 bacterial genomes and 122 archaeal genomes

used resulting in roughly 5000 clusters of orthologous genes [125]. Recent focus has been invested

in improving the diversity of sequences for CRISPR-Cas immunity, sporulation, and photosynthe-

sis [125]. On top of the assignment of the gene/cluster name through annotation, the gene clusters

have additional information regarding the biological pathways and protein domains borrowed from

databases such as Pfam and InterPro [119, 129]. The structure of the database as clusters of ortho-

logues from bacterial species makes the COG database very e↵ective for the annotation of novel

species that are not represented in the database and for conducting comparative and evolutionary

analyses. Another focused database that focuses on curation of gene function is the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) [130, 131, 132]. KEGG was developed to address the

need for a method to biologically interpret sequencing data. KEGG connects collections of pre-

dicted genes to high-level functions within the cell. The pathway and functional assignments are

backed by experimental data with over 75% of the 19000 KEGG entries having PubMed reference

links [130]. The genomes used to build KEGG are primary pulled from the NCBI RefSeq database

[133], with additional prokaryotic genomes being pulled from NCBI GenBank [134]. Annotation

of genomes or metagenomes with KEGG can be conducted using BlastKOALA or GhostKOALA

[135]. As the name would suggest, BlastKOALA utilizes BLAST to perform alignment searches

for matches. GhostKOALA utilizes GHOSTX, which is much more computationally e�cient at
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the expense of sensitivity [136]. KEGG is also integrated into Anvi’o, which o↵ers modules such

as ‘anvi-estimate-metabolism’ that can estimate the completion of metabolic pathways in a MAG

or in the full metagenome [137].

By utilizing multiple sources of annotation, it is possible to make accurate estimations and hypothe-

ses of the metabolic potential of bacteria, even those that have been previously uncharacterized.

This ability is undoubtedly the defining strength of shotgun metagenomic sequencing of bacte-

rial communities. As the tools and databases continue to improve, phenotypes of uncultivatable

bacteria will be possible to predict without biochemical assays.

1.2.6 Taxonomic Assignment of Metagenomic-Assembled Genomes

Taxonomic assignment of MAGs is similarly important in metagenomic analyses as it is in am-

plicon sequencing experiments. Taxonomic information of MAGs assembled from a metagenome

can place the metabolic pathways predicted to a certain species or assess the taxonomic composi-

tion of a microbiome. Because of increased breadth of information there is a greater diversity of

methods for assigning taxonomy to a MAG.

As demonstrated with amplicon sequencing, the 16S sequence is an adequate means of assigning

taxonomy to a sequence. Within a MAG, the 16S rRNA sequence should be present in at least a

single copy if the MAG meets quality control standards. These sequences can be predicted from

the genomic sequence with hidden Markov models, which are implemented in programs such as

RNAmmer or Barrnap [138, 139]. These predicted sequences can be aligned either locally or

through a web server to the SILVA database to assign taxonomy [140]. Using the full sequence of

the 16S rRNA gene greatly improves taxonomic assignment compared to the short fragments gen-

erated by amplicon sequencing [141]. While considerably more reliable than amplicon sequences,

using only the 16S rRNA gene prevent phylogenetic resolution of closely related organisms [142].

Using the 16S rRNA gene sequence to assign taxonomy is an unnecessary limitation when the full

genomic sequence could be used.

A form of utilizing the breadth of information present in MAGs has been present in the Genome
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Taxonomy Database Toolkit (GTDB-Tk) [143]. Rather than using a single locus to assign taxon-

omy, it uses 120 bacterial marker genes to assign the taxonomy. For each genome, the ORFs are

predicted using Prodigal [105] and aligned to the GTDB marker gene set using HMMER [115].

The reference marker gene set is built from a genome set of over 23,000 bacterial genomes pulled

from the NCBI Assembly database [144]. The predicted marker genes from the MAG are concate-

nated and phylogenetically placed on the domain-specific tree using pplacer [145]. A genome’s

placement, its relative evolutionary divergence [146], and its average nucleotide identity to refer-

ence genomes are the bases of the taxonomic assignment. The tree placement gives the coarse

taxonomy and the relative evolutionary distance and average nucleotide identity help to provide a

taxonomic assignment at the species level. Another bioinformatic tool that utilizes marker genes

is PhyloPhlAn [147]. PhyloPhlAn uses a greater breadth of markers (>400 proteins), but is built

from a smaller set of genomes (roughly 87,000). Both marker gene methods outperform taxo-

nomic assignment using the 16S rRNA gene as they are better able to di↵erentiate closely-related

organisms and account for events such as horizontal gene transfer.

In an attempt to use as much of the available data as possible, some taxonomic classification al-

gorithms use taxonomic information gathered from all predicted open reading frames. Contig

Annotation Tool (CAT) utilizes the taxonomic information that is carried by entries in the NCBI

non-redundant (nr) protein database [148]. Within the NCBI-nr database, each protein entry has

an associated taxonomy of the genome that the protein sequence originated from. For each open

reading frame, the matches within the NCBI database are piped to a last common ancestor (LCA)

algorithm that determines the taxonomic level that can be assigned. The taxonomic assignments

for each open reading frame are scored based on confidence and aggregated to create a consensus

taxonomy for the genome with associated probabilities for the assignment. Another taxonomic

assignment algorithm that uses the taxonomic assignments from protein coding sequences is MM-

seqs2 [149]. One of the major drawbacks of CAT is the computational resources required to run

it and the slow speed which is a result of aligning each open reading frame to the full NCBI-nr

database with BLAST. Additionally, the use of Prodigal [105] is a time-limiting step due to its in-
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ability to be multithreaded. MMseqs2 instead uses the translated six possible open reading frames

and has flexible options for the databases used. Overall, MMseqs2 can run up to eighteen times as

fast as other taxonomic prediction algorithms with the improvements made [149].

Taxonomic assignment is critical to answer the core metagenomic question of ‘who is there?’

Taxonomic assignment tools can often give divergent answers, so corroborating the assignment

with multiple, high-quality sources is a good practice. Using a combination of a marker gene and

a full protein alignment will likely result in a high-confidence taxonomic prediction of a MAG.

However, many species remain uncharacterized in the databases and lack closely-related common

ancestors, so more rigorous means of defining these species is required to understand their place

on the tree of life.

1.2.7 Assembly-Free Analysis of Metagenomic Data

Depending on the research questions being asked, sometimes it is not necessary to assemble shot-

gun metagenomic data. In other instances, assembly-free methods are e↵ective for validating the

findings of assembly-based methods. Assembly-free methods are capable of answering both core

metagenomic questions of ‘who is there?’ and ‘what are they doing?’.

For long and short reads there are separate tools to determine the taxonomic composition of the

metagenome. Specifically designed for accurate short read data from Illumina instruments in the

bioinformatic tool MetaPhlAn [150]. Compared to the computationally expensive process of as-

sembling MAGs and annotating them, running MetaPhlAn is very e�cient. Metagenomic reads

are aligned against a curated set of protein-coding sequences that are strong indicators of bacterial

clades. Within the MetaPhlAn database, there are over 1,200 species present with an average of 84

genetic markers per species to assign species-level taxonomy to a read. Additionally, there are over

100,000 markers for high-level taxonomy to assign reads at a higher level if species level assign-

ment is not possible. MEGAN also is a tool that assigns taxonomy to reads, but unlike MetaPhlAn

it also has been designed to handle the high error rate of long reads [151, 152]. Alignment in the

six possible open reading frames to protein databases with typically is performed with BLASTX,
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however it is not the optimal alignment algorithm for error-prone long reads. Instead, MEGAN

uses LAST for alignment [153, 154]. LAST is a frameshift aware aligner for long reads and is far

more suitable than a simple BLASTX. Additionally, MEGAN and MetaPhlAn both o↵er visual-

ization tools to help interpret the data that they generate. Kraken2 uses k-mer searching to assign

taxonomy using an LCA algorithm and attempts to comprehensively assign taxonomy to all reads

rather than subsets that contain marker genes such as MetaPhlAn [155].

HUMAnN3 addresses the question of what functions are present in the metagenome and what their

composition is [147]. The first step in the HUMAnN3 workflow is to identify the known species

present in the community. Once the species are identified, the reads are mapped to pangenomes

of each of the identified species, which captures the strain variation in functions of the species.

In addition, reads that cannot be assigned a taxonomy present in the HUMAnN3 database are

classified using a translated search to assign the function. The output of HUMAnN3 is a table of

functions and proteins and the normalized abundance of reads that mapped to them.

The increased computational e�ciency of assembly-free methods is a distinct advantage over

assembly-based methods and state-of-the-art assembly free methods (MetaPhlAn, MEGAN, and

HUMAnN2) are reasonably reliable for most datasets. However, like with methods like taxonomic

assignment with only the 16S rRNA gene sequence, many of the benefits of shotgun metagenomic

sequencing are unused with these tools. Assembly-free methods can fall short at detecting strain-

level di↵erences or when data are being analyzed from poorly studied communities of bacteria.

1.2.8 Di↵erential Analyses of Metagenomic Data

One of the primary objectives of metagenomic research is to examine the di↵erences between

groups. The are numerous ways that a table of counts can be generated for samples that can be used

as metrics of comparison. For instance, assembly-free methods of taxonomic and functional as-

signments are designed to create such tables to be analyzed. For an assembly-based approach, reads

can be mapped back to the generated MAGs to quantify them with alignment tools such as Min-

imap2 for long reads [156] or Bowtie2 for short reads [157]. The alignment files can be processed
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with SAMtools [158] to generate a table of counts of the number of reads mapping to each MAG

or contig. Another way of creating quantitative data to assess the metabolism of a metagenome is

by performing metatranscriptomic analyses on a community. Metatranscriptomics sequences the

actively transcribed mRNA sequence space of a community. Optimally, metatranscriptomic data

are aligned to the predicted and annotated coding sequences of an assembled metagenome. Meta-

transcriptomics allows for conclusions on what genes are being expressed rather than just what

genes simply are present in the most abundant bacterial species in a community.

Specialized tools needed to be developed to address the nature of the data and the questions being

asked. Metagenomic and metatranscriptomic datasets are extremely high dimensional and are of-

ten underpowered, so the statistical tools developed needed to account for these challenges. Two

commonly used statistical tools are edgeR and DESeq2 [159, 160]. However, these tools fail to

account for the compositional nature of metagenomic and metatranscriptomic datasets [161]. Be-

cause the data are limited by the fixed capacity of the instrument, the data are compositional. If the

measure abundance of a feature goes up (i.e. a bacteria in a microbiome dataset) because of the in-

creased presence in a sample compared to another, then the measured abundance of something else

must go down even if the true abundance of the other feature did not change. This characteristic of

composition data necessitates special transformation to apply conventional statistical tests, which

are often log-ratio transformations. Indeed, log-ratio transformations have been benchmarked to

be much more reliable and provide fewer false positives [162]. Di↵erential abundance analyses

feature centred log-ratio transformation have been implemented in ALDEx2 and have proven to

provide consistent results in datasets with high dispersion or asymmetry [163]. Compositional data

analysis tools can also find associations between clinical metadata and certain bacterial taxa [164].

Di↵erential abundance analyses help to elucidate the bacteria that are of interest in complex com-

munities. However, many of the tools available are prone to false positives. With the sheer number

of bacteria in complex communities, false positives are inevitable, but must be minimized through

improved algorithms and models. Additionally, di↵erential abundance analyses of high-throughput

sequencing is not a complete replacement for benchtop science, but rather a way of generating
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working hypotheses to be validated in vitro or in vivo.

1.2.9 Pangenomics of Bacterial Genomes

Beyond di↵erential abundance analysis, shotgun metagenomic data can be used to construct large-

scale pangenomes of bacterial clades. A pangenome refers to the total genomic content of a bac-

terial clade of interest. A pangenome is built by clustering the protein coding sequences of the

genomes into orthologues and determining which genes are core and which are dispensable [165].

Through these analyses, it is possible to make inferences about the role of genes in the adaptation

of the bacterial clade to environments or the role of bacterial genes in disease pathology.

Many pangenomic analysis tools require a high computational burden to build a pangenome, which

is problematic for the high-throughput nature of metagenomic data. For instance, PanOCT [166]

and PGAP [167] both utilize an all-versus-all BLAST alignment for all open reading frames in

the pangenomes, which even for small-scale pangenomes is very computationally intensive. LS-

BSR [168] pre-clusters the coding sequences prior to BLAST alignments to reduce the number

of alignments required to build the pangenome greatly. The pangenomic tool Roary [169] also

implemented pre-clustering of sequences with CD-HIT [170] and removal of partial sequences,

which resulted in a run time of 4.5 hours and a memory usage of 13GB of RAM for a pangenome

of 1000 isolates, which is feasible to run on a personal laptop. These step-wise improvements to

the pangenomic workflow transformed a computationally intensive process into a workflow that

can be run on a low-grade personal computer. Perhaps the best implementation of a pangenomic

workflow is built as a module in the Anvi’o toolkit [137]. Anvi’o utilizes the ‘minbit’ heuristic from

the ITEP pangenomic workflow [171] to eliminate weak amino acid matches from the BLAST

alignment inputs. Additionally, the MCL algorithm [172] is used to cluster sequences prior to the

BLAST alignments with DIAMOND [112] to further reduce the number of alignments required.

The true benefit of the Anvi’o pangenomic pipeline is the ability to generate high-quality and

interactive visualizations of the pangenome. The interactive interface of Anvi’o allows for the

manual curation of the core and accessory (i.e. dispensable) genomes for the clade. Additionally,
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functional enrichment is implemented in the pangenomic workflow, so comparisons of the strains

between groups can be calculated for potential genes involved in disease pathology.

Pangenomics has been applied to metagenomes from widely di↵erent environments with di↵erent

research questions. From a large-scale metagenome survey marine samples the pangenome of the

Prochlorococcus genome was constructed [173]. The pangenome of Prochlorococcus revealed an

enrichment of hypervariable gene clusters related to sugar metabolism, suggesting a fitness benefit

for harbouring a diverse set of sugar metabolism genes for these marine bacteria. Additionally,

in human studies, a pangenome of Ruminococcus gnavus was constructed from stool samples of

inflammatory bowel disease (IBD) patients (and healthy controls) to identify IBD-specific genes

in these bacteria. These IBD-specific genes in Ruminococcus gnavus were primarily related to the

functions of oxidative stress responses, adhesion, iron-acquisition, and mucus utilization, which

could be related to disease pathology [174].

Pangenomic analyses have come a long way in terms of e�ciency and power to analyze minute

details in bacterial strains. Pangenomics are a powerful tool to complement di↵erential abundance

analyses as they can help explain the enrichment of clades in an environment or explain the di↵er-

ences in community phenotype in the absence of di↵erentially abundant clades.

1.3 Applications of Metagenomics

Metagenomic analyses, and the improvements made to them, were developed with the applications

to research fields in mind. Perhaps the most prominent field of metagenomic research has been the

study of the bacteria that colonize the human body. Bacteria colonize the skin [175], the oral

cavity [176, 177, 178], the lungs [179], and most notably the intestinal tract [180, 181, 182].

Many of the bacterial species that colonize the human intestinal tract are uncultivated as yet [183],

which makes culture-independent metagenomic and metatranscriptomic approaches the primary

methods to analyze them. Human and animals are not alone in being colonized by bacteria as many

plant species have close symbiotic relationships with bacteria as well [184, 185]. Other freely-



29

living environmental bacteria have been discovered to have potential for remediating a wide variety

of anthropogenic pollution [186, 187]. As with studies of the human microbiome, the majority

of environmental bacteria that are involved with plant growth or bioremediation are di�cult to

cultivate or uncultivatable and their study has been enabled by the improvements to sequencing

technologies and bioinformatic analyses.

1.3.1 Human Health and the Human Microbiome

Many areas of the human body are regularly colonized by bacterial communities. These bacterial

communities can form close associations with human tissues and a↵ect human health outcomes.

These bacteria can both be protective and causative in disease in instances of dysbiosis, so accurate

sequencing and analysis is clinically important.

The skin microbiota, and the dysbioses associated with it, is associated with a number of clinical

outcomes. The skin is a challenging environment for bacteria to thrive and is dissimilar to the

intestinal environment that gut microbes can thrive in. The surface of the skin is high-salt, acidic,

and primarily aerobic [188]. Depending on the location and skin type the normal and healthy

compositions of bacterial species can di↵er greatly. For instance, while species of Staphylococcus

are found broadly on the body, Cutibacterium is concentrated on the face and torso [189] whereas

Corynebacterium species are concentrated in areas such as the armpits and elbow [190]. Not

only the species-level composition is important because di↵erent strains of skin microbiota species

can have very divergent phenotypes [191]. In a healthy state, the commensal bacteria of the skin

play an important role in maintaining immune homeostasis [192]. This includes the regulation of

interleukin signaling and the complement cascade [193]. In addition, the skin microbiota also pro-

duce a number of antimicrobial peptides [194, 195]. Production of antimicrobial peptides, among

other competition mechanisms, help the commensal skin bacteria inhibit the growth of the respi-

ratory tract pathogen Streptococcus pneumoniae [196]. Staphylococcus aureus, an opportunistic

skin pathogen, can also be stimulated to become less pathogenic by Corynebacterium commen-

sal strains [197]. Such control of Staphylococcus aureus is important in maintaining skin health
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because an estimated 30% of the population is colonized asymptomatically with Staphylococcus

aureus [198]. Actively pathogenic Staphylococcus aureus can cause abscesses and is associated

with severe atopic dermatitis [191]. Another clade of skin colonizers that can become pathogenic is

the genus Mycobacterium. Species within this genus are known to cause leprosy [199], tuberculo-

sis [200], and Buruli ulcers [201]. Like Staphylococcus, Mycobacterium are long-term colonizers

and opportunistic pathogens that can remain dormant for the entire lifetimes of individuals. It is

estimated that up to a quarter of the world’s population is colonized by Mycobacterium tuberculo-

sis, and despite it being one of the most deadly diseases worldwide, proportionally it only causes

disease in a small fraction of the total colonized population [200]. Because of these characteristics,

many of the colonizers of the human skin are considered pathobionts, where under regular circum-

stances they engage with mutualistic behaviours with the human skin, but under circumstances

of immune suppression can become pathogenic [202]. On the less severe end of the spectrum

of these ‘pathobiont’ relationships is Corynebacterium acnes, which is involved with the devel-

opment of acne. Corynebacterium acnes is in a delicate balance with Staphylococcus aureus in

the facial microbiota and disruption of the balance can induce skin inflammation and eventually

acne. Though many locations of the skin microbiota are aerobic other areas are comparatively

anaerobic [188]. Research of communities living in anaerobic follicles, variations in the composi-

tions of the skin microbiota resulting in inflammation and disease, or even community surveillance

of antimicrobial-resistant Staphylococcus aureus is greatly enabled by cutting-edge metagenomic

techniques.

Significantly more complex than the skin microbiota is the microbiota of the oral cavity. Over 700

microbial species colonize the human oral cavity [203], which makes it the second most complex

microbiota in the human body behind the gut microbiota [204, 205]. At this level of complexity,

isolation of individual strains is not practical, which makes metagenomic approaches to studying

this complex environment optimal. Additionally, over half the bacteria of the oral microbiota are

uncultivatable [206]. A variety of disease-causing viruses, such as Herpes simplex [207], are com-

mon to the oral cavity, but the vast majority of viral sequences are bacteriophage in origin [208].
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The study of the bacteria that colonize the mouth, and that are infected by the aforementioned

bacteriophage, is perhaps the oldest form of microbiota study with Antony van Leeuwenhoek first

studying the bacteria of oral plaques in the seventeenth century [209]. Like the skin microbiota,

the composition of bacteria is dependent on the site within the cavity [210]. The bacterial phyla

of Bacteroidetes, Proteobacteria, Actinobacteria, Spirochaetes, Fusobacteria, and Firmicutes are

the most predominant clades of bacteria that colonize the mouth [211]. There is evidence of a

core oral microbiota, with 47% of species-level OTUs being shared between individuals [212].

Similar to the skin microbiota, the colonization of the mouth with commensal bacteria is protec-

tive against the infection of pathogens such as Staphylococcus aureus [213, 214]. For example,

Streptococcus salivarius produces a bacteriocin that inhibits the growth of periodontits-causing

and halitosis causing bacteria [215, 216]. One of the most common negative health outcomes as-

sociated with the oral microbiota is tooth decay, or dental caries, which are in part a result of acid

produced by carbohydrate fermentation by oral microbes [204]. Following ingestion of high-levels

of carbohydrates, the composition of the oral mircobiota shifts towards one that produces a high

amount of acid [217]. Gingivitis has a adult prevalence of over 90% [218] and is caused by the

formation of bacterial plaques on the tooth surface. Actinomyces species act as the primary col-

onizers of the surface of the teeth and then the full biofilm forms by coaggregation interactions

with other bacterial species [219, 220]. Gingivitis is not necessarily associated with a specific

bacterial species, but rather a general overgrowth, and the greater the plaque load, the more severe

the disease severity [221]. The oral microbiota is complex, but metagenomic analyses have shown

that it is self-regulating with regular dental care and shares a core microbiome between individuals

[204, 212].

The most diverse microbiota of humans, which is associated with the a great number of clinical

outcomes, is the gut microbiota. Up to 60% of the total dry mass of faeces is composed of bac-

teria [222]. With the emergence of shotgun metagenomic sequencing, much research has been

invested into the composition of these abundant and complex communities. Large-scale studies

including the European Metagenomics of the Human Intestinal Tract (MetaHIT) project and the
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Human Microbiome Project (HMP) aimed to broadly sequence the gut microbiome to create a

similar consensus picture as the Human Genome Project [223, 224, 205]. Recently, using a sim-

ilar approach, a near-complete and non-redundant set of bacterial genomes was assembled from

metagenomic data [183]. This dataset represents over 2,500 bacterial genomes with roughly 2,000

being novel and uncultivatable bacteria identified as part of the study. These genomes were as-

sembled from a comprehensive set of metagenomic samples that were available at the time of

publication. Metagenomic studies exploring the association of these microbes with human health

outcomes is being actively catalogued on the platform GMrepo [225, 226]. Nearly 72,00 samples

are curated with metadata on the platform with a roughly 2:1 split of 16S rRNA gene sequenc-

ing and shotgun metagenomic experiments. At present there are 47 phenotype pairs recorded as

metadata on GMrepo to associate the gut microbiota with di↵erent health outcomes.

Two of the most well-studied clinical disorders associated with the human gut microbiota are ir-

ritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). IBS is characterized by

recurrent abdominal pain over the course of a long period of time with abnormalities related to

defecation, and it a✏icts over 10% of the global population [227]. The composition of bacteria that

colonize the human intestinal tract have frequent associations with IBS, with broad generalizations

such as a relative increase of the phylum Firmicutes compared to the phylum Bacteroidetes being

a common association [228, 229]. Another broad microbiota signature that is associated with IBS

is species richness [230]. A lower richness of species found in the intestinal tract is associated with

an increased risk of developing IBS. More specific observations have also been made with a greater

relative abundance of the genera Streptococcus and Ruminococcus and lower relative abundances

of the genera Lactobacillus and Bifidobacteria are associated with IBS [231, 232, 233, 234, 235].

IBD is a chronic inflammatory disorder that encompasses ulcerative colitis and Crohn’s disease,

which has an unclear pathogenesis. Like with the skin microbiota, it is believed that the intestinal

microbiota plays a critical role in the development of regular localized immune responses and dys-

biosis can play a key role in the development of IDB [236]. Inverse to the microbiota signature seen

in IBS, IBD is frequently characterized by a relative increase in abundance of the phylum Firmi-
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cutes compared to the phylum Bacteroidetes [237, 238]. However, similarly to IBS, the microbiota

of IBD is characterized by a reduced species richness [239]. Faecalibacterium prausnitzii is a

gut microbe whose abundance is strongly linked to a protective phenotype for IBD the the abun-

dance is correlated with maintenance of clinical remission [240]. Faecalibacterium prausnitzii has

been shown to reduce the production of pro-inflammatory cytokines in in vitro and in vivo models,

which may help to explain how it is protective against IBD [241]. In contrast, colonization of the

intestinal tract with pro-inflammatory bacteria, such as Escherichia coli, is associated with an in-

creased risk of IBD [242, 243, 244]. The metabolic byproducts of certain bacteria can also possess

proinflammatory e↵ects. For instance, the intestinal epithelium is damaged by hydrogen-sulfate

produced by Desulfovibrio and results in mucosal inflammation [245].

Cardiovascular and metabolic disease have also been associated with the composition of the gut

microbiota [246]. Serum lipid levels are a major risk factor for cardiovascular disease [247], how-

ever, much of the variation in lipid levels cannot be explain by genetics or diet alone [248]. Recent

research has revealed that as much as 25% of the variation in high-density lipoprotein levels may

be attributable to the gut microbiota [249].

Another class of blood lipid that appears to have its level mediated in part by the microbiota are

triglycerides [249]. However, the direct relationship has not been explored directly [246]. For

example, as a secondary outcome, triglyceride levels were found to be reduced following bran

[250] and inulin [251] ingestion, which are prebiotics that alter the composition of the gut micro-

biota. A well-studied cardiovascular disorder with a clear mechanism of action in the pathogenesis

of the disease is atherosclerosis. The metabolism of L-Carnitine or phosphatidylcholine by the

gut microbiota results in the metabolite trimethylamine, which is then converted by the liver into

trimethylamine N-oxide (TMAO) [252, 253]. TMAO is directly linked to the pathogenesis of

atherosclerosis, with serum levels contributing 11% of the total variation in risk for the disease

[254, 255]. TMAO is also a case study in treatment of a disease through modulation of the gut

microbiota. By using a choline analogue, Wang et al. [256] found that the production of trimethy-

lamine by the microbiota could be reduced without the negative side e↵ects that the blockade of the
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conversion of trimethylamine to TMAO resulted in [257]. Metabolic disorders such as obesity and

type 2 diabetes have also been frequently associated with microbiota composition [258, 259, 260].

Like with other inflammatory-based gut disorders like IBS and IBD, the microbiotas of obesity

and type 2 diabetes are characterized by decreased microbial diversity [249, 261, 262]. A major

mediator of intestinal inflammation in the gut that is produced by the microbiota are short-chain

fatty acids. A decrease in the relative abundance of bacteria that produce the short-chain fatty acid

butyrate is associated with the onset of type 2 diabetes [262]. Short-chain fatty acids are potent

inducers of regulatory T cells that mediate inflammatory responses in the gut [263]. A major limi-

tation in the study of cardiovascular and metabolic diseases in association with the gut microbiota

is the over-reliance on 16S rRNA gene sequencing over shotgun metagenomics [246]. Mechanisms

of action are largely speculative with only taxonomic information and hopefully with the lowering

cost of sequencing and improved metagenomic analyses available, more studies utilize shotgun

metagenomics to better understand the involvement of the gut microbiota in these disorders.

Beyond choline analogues for the treatment of atherosclerosis, there have been a handful of health

conditions that have use the gut microbiota as the focus of treatment. Faecal microbiota trans-

plants (FMTs) are one such treatment modality that aims to replace the ‘pathogenic’ stool from an

individual with the healthy stool from another [264]. FMTs have proven e↵ective in the treatment

of IBD [265] and recurrent Clostridium di�cile infections [266]. E↵orts have also been made to

investigate the e↵ectiveness of FMTs in some microbiota-associated metabolic disorders, such as

type 2 diabetes, with some success [267]. However, FMTs can be an invasive procedure that can be

undesirable to many individuals due to the ’ick‘ factor. Probiotics are a suitable, if less e�cacious

alternative, due to their packaging into an oral capsule. Perhaps most consistent are the ability

of probiotics to modulate stool consistency and prevent outcomes such as antibiotic-associated

diarrhea [268]. However, probiotics have also shown e↵ectiveness in reducing the inflammatory

markers in IBD patients [269]. With the ever increasing number of clinical outcomes associated

with the gut microbiome, research into the e↵ects and safety of FMTs and probiotics is of impor-

tance. Given the multifactorial nature of many diseases and disorders, the microbiota is yet another
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target for pharmaceutical development.

Though there is a distinct over-reliance on amplicon sequencing [246], there is a wealth of research

on the associations between the bacteria that colonize the human body and clinical outcomes. As

sequencing technologies and analysis methodologies continue to develop, the accuracy and con-

sistency of the results will also continue to improve. For instance, it is now possible to generate

lineage-resolved and complete metagenome-assembled genomes from a deeply sequenced gut mi-

crobiota [270]. Such advances will help explore the strain-level di↵erences in the microbiota that

can be impactful in health and disease.

1.3.2 Bioremediation

Bacteria do not need to colonize eukaryotic organisms to be of interest in metagenomic research.

Environmental bacterial communities are able to metabolize or sequester pollutants such as heavy

metals [271] and hydrocarbons, including plastics [186]. Anthropogenic pollution as a result of in-

dustrialism poses major threats to marine environments [272]. Pollution with oil and hydrocarbons

is lethal to many marine organisms and millions of tonnes of plastic are deposited in the ocean

annually. The dire nature of these pollutants in the environment necessitates research into how to

most e↵ectively remediate sites of contamination. Research has demonstrated that remediation us-

ing the naturally occurring biochemical pathways in bacteria (i.e. bioremediation) is more e�cient

and cost e↵ective than abiotic processes [273].

Marine bacteria are well-adapted to growth in the harsh marine environment, which has fluctuat-

ing nutrient availability, pH, temperature, and salinity, and they also harbour biochemical pathways

that could be exploited for bioremediation [186]. However, up to 99% of these marine species can-

not be isolated in culture and must be studied through culture-free methods such as metagenomics.

A great number of genera have been shown to degrade hydrocarbons including Achromobacter,

Alcanivorax, Halomonas, and Pseudomonas [274, 275, 276, 277, 278]. Generally speaking, con-

sortia of the hydrocarbon-degrading bacteria are more e�cient than isolates because some only

degrade intermediates or di↵erent compounds and environmental hydrocarbon pollution is usually
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a complex mixture [279, 280, 281]. Degradation of aliphatic hydrocarbons by bacteria involves

membrane-embedded alkane hydroylase enzymes [282, 283]. For aromatic hydrocarbons, bac-

teria encode mono- or dioxygenases that cleave the aromatic ring to generate intermediates of

the tricarboxylic acid cycle [284, 285]. Additionally, bacteria can produce surfactants, which are

more e↵ective than synthetic surfactants at removing hydrocarbons from the environment [276].

To aid the metagenomic identification of hydrocarbon-degrading bacteria, curated databases using

the experimentally-validated hydrocarbon degradation genes have been generated. AromaDeg is

grounded in the phylogenetic analysis of experimentally validated genes that are involved in the

degradation of hydrocarbons [286]. In contrast, CANT-HYD broadly targets genes related to the

degradation of hydrocarbons, not just aromatics, and is built as a hidden Markov model database

to search for distant sequence similarity [287].

Bacteria are also able to metabolize heavy metals into less toxic products through biotransforma-

tion, bioleaching, and biomineralization [288, 289]. In addition, there are a diversity of ways that

bacteria can interact with heavy metals to remove them from the environment. Bacteria can secrete

extrapolymeric substances, metallothioneins, and siderophores that are able to coordinate and se-

quester heavy metals in their surrounding environment [271, 290, 291, 292]. Bacteria are also able

to sequester heavy metals in the environment by uptaking large quantities into their cytoplasm, a

process known as bioaccumulation [293]. Through these processes, bacteria are able to counter

environmental pollution of lead, chromium, cadmium, and arsenic [294, 295, 296, 297, 298].

Given the hardiness of marine bacteria and their innate ability for bioremediation of hydrocarbons

and heavy metals, they are prime candidates for bioengineering [187]. Some progress has been

made in the area by introducing a metallothionein gene into a marine bacteria to induce heavy

metal resistance [299]. However, much more work needs to go into understanding the genetics

of these marine bacteria. In particular, identification of mobile genetic elements that can act as

vectors for bioremediation genes would prove invaluable in e↵orts to bioengineer marine bacteria.
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1.3.3 Conjugative elements

Type IV conjugative elements allow for the exchange of genetic information through cell-to-cell

contact mediated by a pilus that bridges the two cells. DNA can also be exchanged through trans-

formation, which is the uptake of DNA by a bacterium from its surrounding environment, and by

transduction, which is phage-mediated DNA transfer. Conjugative elements can either be carried

on an integrative and conjugative element (ICE) that inserts itself on the chromosomal sequence

or on a plasmid, which exists as a separate, often circular, independently-replicating genomic

element. Essential to the self-mobilization are three categories of proteins: relaxases, type IV cou-

pling proteins (T4CP), and type IV secretion system (T4SS) proteins [300]. Relaxases catalyze

a single stranded nicking reaction at the origin of transfer (oriT) sequence and unwind the DNA

[300, 301]. Relaxases coordinate a divalent metal ion using a conserved histadine triad, as well as a

conserved tyrosine, to catalyze the nicking reaction at the oriT [302, 303]. oriT sequences are dif-

ficult to predict computationally due to poor sequence conservation, so strategies that focus more

on the DNA structure (i.e. looking for potential hairpin loops) are more successful [304]. Type IV

coupling proteins transit the DNA-relaxase complex to the pore complex for transfer [305]. While

T4CP are not required for pilus biogenesis [306], they are critical for e�cient transfer of DNA

sequences through conjugation [307]. The classical model of cojugation, the Agrobacterium tume-

faciens pTi plasmid, contains twelve T4SS proteins VirB1 through VirB12 that form the pilus that

transfers the relaxase-DNA complex [305]. VirB4 and VirB11 are the ATPases and are involved

in the biogenesis of the pilus, though all gram-positive conjugative elements lack the homologue

for VirB11 [305, 308]. Other proteins of the pilus, such as VirB8 which is missing a homologue

in the Escherichia coli F plasmid, also are poorly conserved among conjugative systems [308].

Homologues of the VirB4 ATPase are critical for the active transport of DNA through the pilus and

their phylogeny is generally similar to the phylogeny of the bacteria harbouring them [308].

In metagenomic analyses, conjugative elements can be di�cult to analyze. As previously men-

tioned, one of the core elements of a conjugative element, the oriT sequence, is di�cult to predict

computationally due to low sequence conservation [304]. Furthermore, assembly of plasmid se-
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quences, which are a common vector for conjugative elements, are near impossible to assemble

from metagenomic data despite their relatively short sequence length [309]. Another factor that

has been recently highlighted is the systematic exclusion of mobile genetic element, including

plasmids and ICEs, from metagenomic bins, which are the core of many metagenomic analysis

workflows [102]. Further refinement of bioinformatic analyses used in metagenomics is needed to

properly capture these widely transferred genetic elements.

1.4 Scope and Objective of Thesis

At the start of my thesis research, metagenomic identification of plasmid and conjugative systems

was still in early development with computational tools such as PlasFlow [310] only having been

just released. I was involved with the sequencing assembly and analysis of a conjugative plasmid

that could e�ciently and selectively kill bacteria using a CRISPR system [311]. However, when

conjugation was attempted with non-lab strains of bacteria, the conjugative plasmid had reduced

conjugation e�ciency and apparent sequence recombination that deactivated the system. With

the eventual goal of using such a system to modulate the composition of the gut microbiota or

to selectively kill intestinal pathogens such as Campylobacter jejuni, better vectors for CRISPR

systems needed to be identified for colonizers of the gut. These early findings in my thesis were

the motivation for Chapters 2 and 3 of my thesis. In Chapter 2, I developed a simple, yet e↵ective,

method for identifying type IV conjugative elements from metagenomic assemblies. I discovered

that these systems were systematically excluded from metagenomic bins, which coincided with a

finding published in the same time period stating that plasmids and mobile genetic elements are

systematically excluded from metagenomic bins [102]. In Chapter 3, I applied the methodology

of identifying these oft-excluded genetic elements to a metagenomic study of the association be-

tween the gut microbiota of mothers and spina bifida in their newborns. I revealed that a MAG of

Campylobacter hominis is highly enriched in the microbiota of mothers who gave birth to infants

and that there was a Campylobacter hominis conjugative element, not included in the metagenomic
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bin, that was also enriched. Though it does not appear to carry genes that are involved in disease

pathogenesis, such an element could serve as a backbone to e↵ectively deliver a CRISPR-killing

system to target this pathogenic bacteria colonizing these mothers.

Also underdeveloped at the outset of my thesis research was third-generation sequencing tech-

niques. I assisted in the completion, and validation, of a number of bacterial genomes from a

complex metagenomic sample using third-generation sequencing early in my thesis [312]. How-

ever, our methods struggled to assemble complete sequences in more complex communities or

when read length was less than optimal. In Chapter 4, I identified a circular and complete se-

quence of a manganese-oxidizing bacterium from a very complex environmental sample. While

present in the other studied samples, the genome could not be resolved into a single, circularized

sequence like in the first sample. To address this issue, I used a reference-guided assembly, using

the first genome, and circularized an additional two genomes. Applying the methods developed

in Chapter 2, I also identified conjugative plasmids from these communities belonging to this bac-

teria as well. In Chapter 5, I expanded on the reference-based assembly used in Chapter 4 by

binning the non-circularized sequences from a metagenomic assembly and using the bins as the

basis for a reference-based assembly. A similar approach, Jorg, has been recently published for

short-read data [313]. With this methodology, additional circularized genomes and plasmids could

be assembled from these complex communities. When paired with the conjugative element identi-

fication I developed in Chapter 2, this blueprint for metagenomic analysis maximized the amount

of information that could be retrieved from the dataset.

Overall, these chapters present additional improvements to standard metagenomic analyses and

apply these improved methodologies to areas of clinical and environmental interest. The stud-

ies provide a blueprint for more complete metagenomic analyses. By applying these improved

methodologies in the future, it is my hope that additional links between the microbiota and human

health can be discovered, novel vectors for microbiota engineering can be identified, and optimal

strains for bioremediation can be found.
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[110] S. F. Altschul, T. L. Madden, A. A. Schä↵er, J. Zhang, Z. Zhang, W. Miller, and D. J.

Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Research, 25(17):3389–3402, September 1997.

[111] E. Michael Gertz, Yi-Kuo Yu, Richa Agarwala, Alejandro A. Schä↵er, and Stephen F.
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Jörg Peplies, and Frank Oliver Glöckner. The SILVA ribosomal RNA gene database project:

improved data processing and web-based tools. Nucleic Acids Research, 41(Database

issue):D590–596, January 2013.

[141] Jethro S. Johnson, Daniel J. Spakowicz, Bo-Young Hong, Lauren M. Petersen, Patrick

Demkowicz, Lei Chen, Shana R. Leopold, Blake M. Hanson, Hanako O. Agresta, Mark Ger-

stein, Erica Sodergren, and George M. Weinstock. Evaluation of 16S rRNA gene sequenc-

ing for species and strain-level microbiome analysis. Nature Communications, 10(1):5029,

December 2019.

[142] Nicola Segata and Curtis Huttenhower. Toward an e�cient method of identifying core genes

for evolutionary and functional microbial phylogenies. PloS One, 6(9):e24704, 2011.

[143] Pierre-Alain Chaumeil, Aaron J. Mussig, Philip Hugenholtz, and Donovan H. Parks. GTDB-

Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics

(Oxford, England), page btz848, November 2019.

[144] Paul A. Kitts, Deanna M. Church, Françoise Thibaud-Nissen, Jinna Choi, Vichet Hem,

Victor Sapojnikov, Robert G. Smith, Tatiana Tatusova, Charlie Xiang, Andrey Zherikov,

Michael DiCuccio, Terence D. Murphy, Kim D. Pruitt, and Avi Kimchi. Assembly: a re-

source for assembled genomes at NCBI. Nucleic Acids Research, 44(D1):D73–80, January

2016.

[145] Frederick A. Matsen, Robin B. Kodner, and E. Virginia Armbrust. pplacer: linear time

maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed refer-

ence tree. BMC bioinformatics, 11:538, October 2010.



61

[146] Donovan H Parks, Maria Chuvochina, David W Waite, Christian Rinke, Adam Skarshewski,

Pierre-Alain Chaumeil, and Philip Hugenholtz. A standardized bacterial taxonomy based on

genome phylogeny substantially revises the tree of life. Nature Biotechnology, 36(10):996–

1004, November 2018.

[147] Francesco Beghini, Lauren J McIver, Aitor Blanco-Mı́guez, Leonard Dubois, Francesco

Asnicar, Sagun Maharjan, Ana Mailyan, Paolo Manghi, Matthias Scholz, Andrew Maltez

Thomas, Mireia Valles-Colomer, George Weingart, Yancong Zhang, Moreno Zolfo, Curtis

Huttenhower, Eric A Franzosa, and Nicola Segata. Integrating taxonomic, functional, and

strain-level profiling of diverse microbial communities with bioBakery 3. eLife, 10:e65088,

May 2021.

[148] F. A. Bastiaan von Meijenfeldt, Ksenia Arkhipova, Diego D. Cambuy, Felipe H. Coutinho,

and Bas E. Dutilh. Robust taxonomic classification of uncharted microbial sequences and

bins with CAT and BAT. Genome Biology, 20(1):217, December 2019.

[149] M. Mirdita, M. Steinegger, F. Breitwieser, J. Söding, and E. Levy Karin. Fast and sensitive
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[198] J. E. E. Totté, W. T. van der Feltz, M. Hennekam, A. van Belkum, E. J. van Zuuren, and

S. G. M. A. Pasmans. Prevalence and odds of Staphylococcus aureus carriage in atopic

dermatitis: a systematic review and meta-analysis. The British Journal of Dermatology,

175(4):687–695, October 2016.

[199] V. N. Sehgal. Leprosy. Dermatologic Clinics, 12(4):629–644, October 1994.

[200] Rein M. G. J. Houben and Peter J. Dodd. The Global Burden of Latent Tuberculosis Infec-

tion: A Re-estimation Using Mathematical Modelling. PLoS medicine, 13(10):e1002152,

October 2016.

[201] Mark Wansbrough-Jones and Richard Phillips. Buruli ulcer: emerging from obscurity.

Lancet (London, England), 367(9525):1849–1858, June 2006.

[202] Heather Lehman. Skin manifestations of primary immune deficiency. Clinical Reviews in

Allergy & Immunology, 46(2):112–119, April 2014.

[203] Robert J. Palmer Jr. Composition and development of oral bacterial communities: Oral

bacterial communities. Periodontology 2000, 64(1):20–39, February 2014.

[204] William G. Wade. The oral microbiome in health and disease. Pharmacological Research,



68

69(1):137–143, March 2013.

[205] Human Microbiome Project Consortium. Structure, function and diversity of the healthy

human microbiome. Nature, 486(7402):207–214, June 2012.

[206] William G. Wade. Advances in Applied Microbiology. Elsevier, August 2004.

[207] D. A. Scott, W. A. Coulter, and P.-J. Lamey. Oral shedding of herpes simplex virus type 1:

a review. Journal of Oral Pathology and Medicine, 26(10):441–447, November 1997.

[208] David T Pride, Julia Salzman, Matthew Haynes, Forest Rohwer, Clara Davis-Long,

Richard A White, Peter Loomer, Gary C Armitage, and David A Relman. Evidence of

a robust resident bacteriophage population revealed through analysis of the human salivary

virome. The ISME Journal, 6(5):915–926, May 2012.

[209] J R Porter. Antony van Leeuwenhoek: tercentenary of his discovery of bacteria. Bacterio-

logical Reviews, 40(2):260–269, June 1976.

[210] Nicola Segata, Susan Haake, Peter Mannon, Katherine P Lemon, Levi Waldron, Dirk Gev-

ers, Curtis Huttenhower, and Jacques Izard. Composition of the adult digestive tract bacte-

rial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome

Biology, 13(6):R42, 2012.

[211] Floyd E. Dewhirst, Tuste Chen, Jacques Izard, Bruce J. Paster, Anne C. R. Tanner, Wen-Han

Yu, Abirami Lakshmanan, and William G. Wade. The Human Oral Microbiome. Journal of

Bacteriology, 192(19):5002–5017, October 2010.

[212] Egija Zaura, Bart JF Keijser, Susan M Huse, and Wim Crielaard. Defining the healthy ”core

microbiome” of oral microbial communities. BMC Microbiology, 9(1):259, 2009.

[213] E J Vollaard and H A Clasener. Colonization resistance. Antimicrobial Agents and

Chemotherapy, 38(3):409–414, March 1994.

[214] Åsa Sullivan, Charlotta Edlund, and Carl Erik Nord. E↵ect of antimicrobial agents on the

ecological balance of human microflora. The Lancet Infectious Diseases, 1(2):101–114,

September 2001.

[215] Philip A Wescombe, Nicholas CK Heng, Jeremy P Burton, Chris N Chilcott, and John R



69

Tagg. Streptococcal bacteriocins and the case for Streptococcus salivarius as model oral

probiotics. Future Microbiology, 4(7):819–835, September 2009.

[216] J.P. Burton, C.N. Chilcott, C.J. Moore, G. Speiser, and J.R. Tagg. A preliminary study of

the e↵ect of probiotic Streptococcus salivarius K12 on oral malodour parameters. Journal

of Applied Microbiology, 100(4):754–764, April 2006.

[217] N. Takahashi and B. Nyvad. The Role of Bacteria in the Caries Process: Ecological Per-

spectives. Journal of Dental Research, 90(3):294–303, March 2011.

[218] J. Coventry, G. Gri�ths, C. Scully, and M. Tonetti. ABC of oral health: Periodontal disease.

BMJ, 321(7252):36–39, July 2000.

[219] Paul E. Kolenbrander, Robert J. Palmer Jr, Alexander H. Rickard, Nicholas S. Jakubovics,

Natalia I. Chalmers, and Patricia I. Diaz. Bacterial interactions and successions during

plaque development. Periodontol, pages 42–47, 2006.

[220] Bente Nyvad and Mogens Kilian. Microbiology of the early colonization of human enamel

and root surfaces in vivo. European Journal of Oral Sciences, 95(5):369–380, October

1987.

[221] S. S. Socransky. Microbiology of Periodontal Disease—Present Status and Future Consid-

erations. Journal of Periodontology, 48(9):497–504, September 1977.

[222] A. M. Stephen and J. H. Cummings. The microbial contribution to human faecal mass.

Journal of Medical Microbiology, 13(1):45–56, February 1980.

[223] Junjie Qin, Ruiqiang Li, Jeroen Raes, Manimozhiyan Arumugam, Kristo↵er Solvsten

Burgdorf, Chaysavanh Manichanh, Trine Nielsen, Nicolas Pons, Florence Levenez, Takuji

Yamada, Daniel R. Mende, Junhua Li, Junming Xu, Shaochuan Li, Dongfang Li, Jianjun

Cao, Bo Wang, Huiqing Liang, Huisong Zheng, Yinlong Xie, Julien Tap, Patricia Lepage,

Marcelo Bertalan, Jean-Michel Batto, Torben Hansen, Denis Le Paslier, Allan Linneberg,

H. Bjørn Nielsen, Eric Pelletier, Pierre Renault, Thomas Sicheritz-Ponten, Keith Turner,

Hongmei Zhu, Chang Yu, Shengting Li, Min Jian, Yan Zhou, Yingrui Li, Xiuqing Zhang,

Songgang Li, Nan Qin, Huanming Yang, Jian Wang, Søren Brunak, Joel Doré, Francisco
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[286] Márcia Duarte, Ruy Jauregui, Ramiro Vilchez-Vargas, Howard Junca, and Dietmar H.

Pieper. AromaDeg, a novel database for phylogenomics of aerobic bacterial degradation

of aromatics. Database: The Journal of Biological Databases and Curation, 2014:bau118,

2014.

[287] Varada Khot, Jackie Zorz, Daniel A. Gittins, Anirban Chakraborty, Emma Bell, Marı́a A.

Bautista, Alexandre J. Paquette, Alyse K. Hawley, Breda Novotnik, Casey R. J. Hubert,

Marc Strous, and Srijak Bhatnagar. CANT-HYD: A Curated Database of Phylogeny-

Derived Hidden Markov Models for Annotation of Marker Genes Involved in Hydrocarbon

Degradation. Frontiers in Microbiology, 12:764058, 2021.

[288] Varenyam Achal, Xiangliang Pan, Qinglong Fu, and Daoyong Zhang. Biomineralization

based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. Journal of

Hazardous Materials, 201-202:178–184, January 2012.

[289] Jinghong Zhang, Xu Zhang, Yongqing Ni, Xiaojuan Yang, and Hongyu Li. Bioleach-

ing of arsenic from medicinal realgar by pure and mixed cultures. Process Biochemistry,

9(42):1265–1271, 2007.

[290] W. C. Leung, M.-F. Wong, H. Chua, W. Lo, P. H. F. Yu, and C. K. Leung. Removal and

recovery of heavy metals by bacteria isolated from activated sludge treating industrial ef-

fluents and municipal wastewater. Water Science and Technology, 41(12):233–240, June

2000.

[291] H. A. Elliott, M. R. Liberati, and C. P. Huang. Competitive Adsorption of Heavy Metals by

Soils. Journal of Environmental Quality, 15(3):214–219, July 1986.

[292] Milind Mohan Naik and Santosh Kumar Dubey. Lead-enhanced siderophore production and

alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Current

Microbiology, 62(2):409–414, February 2011.

[293] Lina Velásquez and Jenny Dussan. Biosorption and bioaccumulation of heavy metals on

dead and living biomass of Bacillus sphaericus. Journal of Hazardous Materials, 167(1-



81

3):713–716, August 2009.

[294] Sonia M. Tiquia-Arashiro. Lead absorption mechanisms in bacteria as strategies for lead

bioremediation. Applied Microbiology and Biotechnology, 102(13):5437–5444, July 2018.

[295] Shahid Sher and Abdul Rehman. Use of heavy metals resistant bacteria—a strategy for ar-

senic bioremediation. Applied Microbiology and Biotechnology, 103(15):6007–6021, Au-

gust 2019.

[296] Bhupendra Pushkar, Pooja Sevak, Sejal Parab, and Nikita Nilkanth. Chromium pollution

and its bioremediation mechanisms in bacteria: A review. Journal of Environmental Man-

agement, 287:112279, June 2021.

[297] Padma Seragadam, Abhilasha Rai, Kartik Chandra Ghanta, Badri Srinivas, Sandip Kumar

Lahiri, and Susmita Dutta. Bioremediation of hexavalent chromium from wastewater using

bacteria-a green technology. Biodegradation, 32(4):449–466, August 2021.

[298] Abd Elnaby Hanan, M Abou Elela Gehan, and A El Sersy Nermeen. Cadmium resisting

bacteria in Alexandria Eastern Harbor (Egypt) and optimization of cadmium bioaccumula-

tion by Vibrio harveyi. African Journal of Biotechnology, 10(17):3412–3423, April 2011.

[299] null Sode, null Yamamoto, and null Hatano. Construction of a marine cyanobacterial strain

with increased heavy metal ion tolerance by introducing exogenic metallothionein gene.

Journal of Marine Biotechnology, 6(3):174–177, August 1998.

[300] Chris Smillie, M Pilar Garcillán-Barcia, M Victoria Francia, Eduardo P C Rocha, and Fer-

nando de la Cruz. Mobility of plasmids. Microbiol Mol Biol Rev, 74(3):434–52, September

2010.

[301] M Victoria Francia, Athanasia Varsaki, M Pilar Garcillán-Barcia, Amparo Latorre, Con-

stantin Drainas, and Fernando de la Cruz. A classification scheme for mobilization regions

of bacterial plasmids. FEMS Microbiol Rev, 28(1):79–100, February 2004.

[302] E C Becker and R J Meyer. Recognition of oriT for DNA processing at termination of a

round of conjugal transfer. J Mol Biol, 300(5):1067–77, July 2000.

[303] Rebekah Potts Nash, Sohrab Habibi, Yuan Cheng, Scott A Lujan, and Matthew R Red-



82

inbo. The mechanism and control of DNA transfer by the conjugative relaxase of resistance

plasmid pCU1. Nucleic Acids Res, 38(17):5929–43, September 2010.
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Chapter 2

Identification of type IV conjugative

systems that are systematically excluded

from metagenomic bins

2.1 Introduction

Bacteria can acquire exogenous DNA through horizontal gene transfer. Conjugation is a common

mechanism of horizontal gene transfer that relies on direct cell-cell contact to unidirectionally

transfer DNA from a bacterial donor to a recipient cell. In bacteria, integrative conjugative ele-

ments (ICEs) and conjugative plasmids are mobilizable through the actions of type IV secretion

systems (T4SS). ICEs are integrated on the chromosomal sequence whereas plasmids are circu-

lar and separate elements from the chromosome. Approximately half of the known plasmids are

mobilizable in trans where the conjugative machinery is on a di↵erent genetic element than the

transferred element, and the remainder are mobilizable in cis because the conjugative machinery

is present on the same genetic element [1]. ICEs encode their own T4SS, and can mobilize other

elements [2]. Conjugative elements (CEs) often contain antibiotic resistance genes, but also can

harbour useful biosynthetic and biodegradation genes [3]. Furthermore, conjugative systems can

84
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serve as vectors to introduce clustered regularly interspaced short palindromic repeats (CRISPR)

systems, metabolic pathways or novel functions into the gut microbiota [4, 5, 6, 7, 8, 9]. There-

fore, characterizing the full complement of conjugative systems in the human gut could expand

the number of useable vectors for these applications. Precise identification of conjugative systems

from metagenomic samples could also provide insights to their distribution in populations and their

correlation with antibiotic exposure, age, and health status.

For a DNA sequence to be considered mobilizable by conjugation, it must encode an origin of

transfer (oriT) sequence that is recognized and nicked by a relaxase protein [1, 10]. Relaxase

proteins contain a conserved histidine triad that coordinates a divalent metal ion, as well as tyro-

sine residues that catalyze the nicking reaction at the oriT DNA sequence [11, 12]. In addition

to a relaxase gene and an oriT sequence, a full complement of type IV secretion system and cou-

pling proteins are required for a sequence to be conjugative. In the well-studied Agrobacterium

tumefaciens conjugative system, there are 12 proteins involved in the transfer of the DNA-relaxase

complex from one bacterial cell to another [13, 14]. Homologs of the VirB4 ATPase that are essen-

tial for assembly of the conjugative system and DNA transfer are generally similar to the phylogeny

of the bacteria harbouring them [15] and thus are useful for classifying conjugative systems [16].

The synteny of conjugative transfer genes is also highly conserved among conjugative systems

[14]. Both the synteny and presence of highly-conserved genes involved in conjugation facilitates

the classification of genetic elements as potentially conjugative if the sequences are annotated as

belonging to the components of the T4SS [17] (Figure 2.1).
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Figure 2.1: Example schematic of the gene organization of a bacterial conjugation system on the
Agrobacterium tumefaciens pTi plasmid.

Previous work has identified novel CEs in the human and animal gut microbiomes, but the focus

was mainly on ICEs and not on conjugative plasmids [3, 18, 19]. Identifying conjugative plas-

mids from a short-read metagenomic assembly is di�cult for several reasons. The initial barrier

is the di�culty in assembling circularized plasmids from short-read sequencing data [20]. A sec-

ond barrier is that the contiguous DNA sequences (contigs) that compose metagenome-assembled

genomes (MAGs) are binned together based on sequence composition and coverage. Binning of

a plasmid with its cognate genome will not happen unless the contigs that compose the plasmid

are maintained in the same copy-number and have the same sequence composition as the chromo-

some. These criteria are generally not met because conjugative systems are usually more AT rich

than the cognate chromosome [1] and often do not have a unit copy number. Since nearly 80%

of the non-redundant set of genomes from the human-gut microbiome are from di�cult-to-culture

species that are known only from MAGs [21], alternate methods must be employed to assemble

and identify conjugative plasmids from the metagenomic sequencing data. Computational tools

have recently been developed to identify plasmids from metagenomic assemblies [22], but would

be less than optimal if applied to already binned data that systematically excludes plasmids [23].

Methods that identify CEs prior to binning should be able to capture the full spectrum of ICEs and

conjugative plasmids.

Here, we show that T4SS conjugative systems can be identified using two distinct methods (Fig-
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ure 2.2). First, we used profile HMMs (pHMMs) to identify conjugative systems directly from

metagenomic assemblies of North American inflammatory bowel disease (IBD) and North Amer-

ican pre-term infant samples. Second, we searched predicted protein sequences from those same

assemblies versus UniRef90 [24] for proteins involved in conjugation to identify conjugative sys-

tems. Both methods were able to find conjugative systems in raw metagenomic assemblies with

pHMMs being computationally more e�cient but less sensitive. Finally, we demonstrate that the

majority of conjugative systems produced by a metagenomic assembly are not included in high-

quality bins that are used as proxies for bacterial genomes in metagenomic analysis pipelines. Our

findings provide a roadmap to integrate the analysis of conjugative systems alongside the chromo-

somal content of bacteria.
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Metagenomic short-read 
sequencing sample

Filter and trim reads using 
Trimmomatic and dedupe.sh

Metagenomic assembly 
using metaSPAdes

Prediction of open reading 
frames using Prodigal

Predict conjugative proteins using 
HMMER integration in anvi'o

Predict conjguative proteins by 
alignment to UniRef90 database

Select contigs with pHMM matches 
to 3 classes of conjugative proteins

Select contigs with annotations 
for relaxase and T4SS or T4CP

Use set of conjugative elements
alongside MAGs in analyses

Figure 2.2: Overview of methods employed in this study. In the left panel is the workflow used to
identify conjugative systems from previously assembled human gut bacterial genomes. The right
panel outlines the workflow for the assembly of select North American samples and the use of
pHMMs to identify the conjugative systems.
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2.2 Methods

2.2.1 Assembly and identification of conjugative systems in North American

short-read data

Samples belonging to a North American IBD (n=50) [25] and a North American pre-term infant

cohort (n=51) [26] were assembled de novo as follows. Reads from these samples were down-

loaded from the Sequence Read Archive using the SRA toolkit version 2.9.2, deduplicated with

‘dedupe.sh’ [27], and trimmed with Trimmomatic version 0.36 [28] with options ‘LEADING:10

TRAILING:10’. Processed reads were assembled sample-by-sample using SPAdes version 3.14.0,

option ‘–meta’ [29].

2.2.2 Identification of conjugative systems using Profile hidden Markov mod-

els

The resultant assemblies were imported into Anvi’o version 6.0 [30] where the presence of T4SS,

T4CP, and relaxase proteins were predicted using the ‘anvi-run-hmms’ module, which integrates

HMMER3 functionality [31]. Instructions for installation of type IV conjugation pHMMs into

Anvi’o can be found in the online code repository

(https://github.com/bjoris33/humanGutConj Microbiome). In short, these pHMMs are the Pfam

models for relaxases, type IV coupling proteins, and for the type IV secretion pilus proteins [32].

Contigs that contained pHMM matches for all three classes of conjugative proteins were extracted

and annotated by aligning open reading frames (ORFs) predicted with Prodigal version 2.6.3 [33]

to the UniRef90 database [24]. Taxonomic prediction of the contigs was conducted with Kaiju

version 1.7.2 utilizing the RefSeq non-redundant protein database [34].
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2.2.3 Identification of conjugative systems using protein alignments to the

UniRef90 database

The contigs of the raw metagenomic assemblies had their ORFs predicted using Prodigal ver-

sion 2.6.3 [33]. The predicted ORFs were then aligned to the UniRef90 database [24] using the

‘blastp’ module of DIAMOND version 0.9.14 [35]. By using keywords such as ‘conjugal’ or ‘mo-

bilization’, the protein alignments were searched for contigs that contained annotations for both a

relaxase and either a type IV secretion system protein or a type IV coupling protein. Through man-

ual curation, type IV secretion system proteins and coupling proteins often shared identical or very

similar annotation entries in the UniRef90 database, so the decision was made not to distinguish

between the two.

2.2.4 Binning of Assemblies

For each assembly, all 101 samples were mapped to the contigs using Bowtie2 [36]. The map-

ping files were sorted and indexed with SAMtools [37] and then the assemblies were binned using

MetaBAT2 version 2.12.1 [38]. CheckM version 1.1.2 was used to assess the quality of the re-

sultant bins [39]. High-quality bins were defined using the same cuto↵s (>90% completion and

<5% redundancy) as Almeida et al [21] defined. Bins not passing that threshold were classified

as ‘low-quality’. The previously identified contigs with conjugative systems were classified based

on their presence in bins, and the types of bins they were present in. Results of this classification

were visualized using SankeyMATIC (http://sankeymatic.com/).
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2.3 Results

2.3.1 Profile hidden Markov models and database alignment successfully

identify conjugative elements from metagenomic assemblies

Fifty-one samples from a pre-term infant cohort and 50 from a North American IBD cohort were

assembled sample-by-sample using metaSPAdes [29] to identify T4SS conjugative systems from a

full pool of assembled contigs (i.e. not binned). Two separate methods we employed to search for

contigs containing type IV conjugative proteins. For the pHMM method of identifying conjugative

systems, contigs with conjugative systems were defined by pHMM matches for a relaxase, a type

IV coupling protein, and a type IV secretion system, which o↵ers a fast and precise method to

annotate a limited number of protein families. From the assembly of the pre-term infant cohort 96

of 470500 contigs met the criteria, whereas 268 of 15100646 contigs from the IBD cohort did.

The second method of identifying conjugative systems utilizes the UniRef90 database by aligning

the predicted ORFs to it using DIAMOND [35]. The alignment results are searched using a key-

word strategy for contigs that contain an alignment for a relaxase or mobilization protein and an

alignment for a type IV secretion or type IV coupling protein. From the pre-term infant cohort

assemblies 242 of 470500 contigs met the described criteria, and 4244 of the 15100646 contigs

from the IBD cohort met the same criteria.

The two outlined methods represent potentially complimentary methods of tackling the same

problem–identifying conjugative systems from a pool of metagenomic-assembled contigs. There is

a large-degree of overlap between the two methods, however alignment to the UniRef90 database

appears to be much more sensitive with only 280 of the 4486 identified conjugative systems also

identified using the pHMM method (Figure 2.3). While it may be less sensitive, the pHMM method

of identifying conjugative systems has a much smaller computational footprint as it does not rely

on aligning to a large protein database, but rather to a small and specific set of profile hidden

Markov models.
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pHMM UniRef90

84
(2%)

4206
(92%)
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Figure 2.3: Venn diagram illustrating the overlap of the two methods of identifying type IV con-
juagtive systems from the 101 assembled metagenomic samples. Each number represents the quan-
tity of contigs that met the classification criteria for the labelled identification method. Intensity
of blue shading indicated the proportion of the total contigs that were identified by a method or
methods.

2.3.2 The majority of conjugative systems identified are omitted from metage-

nomic bins

Metagenomic assemblies from two distinct cohorts were binned using MetaBAT2 [38] to explore

how conjugative systems are distributed within common metagenomic analyses. Of the 364 as-
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sembled contigs containing pHMM matches to all three protein categories, 270 were not included

in any metagenomic bins (Figure 2.4). For the 94 contigs included in metagenomic bins, 65 of

those were found in high-quality bins (>90% completion and <5% redundancy). This is in stark

contrast to the background binning rate of contigs; For contigs above 5kb in size the binning rate

with MetaBAT2 [38] was 70.4% (116112/164843 contigs) and for contigs above 10kb the binning

rate was 79.1% (57214/72300 contigs). Among the 29 contigs included in bins that do not meet

the aforementioned threshold, 8 are within bins that are less than or equal to 1 megabase in size,

potentially suggesting that fragments of a conjugative plasmid may have binned together.

Figure 2.4: Sankey diagram representing the flow of 364 contigs containing conjugative systems
identified using pHMMs into bins generated by MetaBAT2 from assembled data. Bin quality
determined by CheckM.

For the conjugative systems established using alignments to the UniRef90 database, there is an

even lower rate of binning (Figure 2.5). Of the 4486 conjugative systems, only 287 of them were

binned–a rate of 6.4%. Again, a number of the bins that do form are low quality bins below 1mb
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in size that may be the collection of contigs that form a conjugative plasmid.

Figure 2.5: Sankey diagram representing the flow of 4486 contigs containing conjugative systems
identified using predicted protein alignments to the UniRef90 database into bins generated by
MetaBAT2 from assembled data. Bin quality determined by CheckM.

2.4 Discussion

To produce MAGs, contigs generated by metagenomic assembly are typically binned using a pro-

gram such as MetaBAT2 [38]. Conjugative systems are often more AT rich than the parent genomes

[1], which would result in the conjugative system and cognate genome not occurring in the same

metagenomic bin because binning algorithms use GC content as a parameter for clustering. Ad-

ditionally, plasmids are not necessarily maintained in a unit copy number within the cell, causing

di↵erential sequence coverage in comparison to the parent genome, which is another factor that

leads to plasmids being excluded from MAGs. Therefore to capture a more complete image of

the conjugative systems present in an environment, identification of the systems must take place

before binning.
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We have outlined two methods for identifying contigs carrying potentially functional type IV con-

jugative systems from raw metagenomic assemblies. Using a curated set of pHMMs of the three

main classes of type IV conjugative proteins (relaxases, secretion proteins, and coupling proteins),

we were able to classify 364 total contigs as being potentially conjugative. In comparison, the

method that utilized predicted protein alignments to the UniRef90 database found 4486 contigs

that met the criteria, which indicates that it may be the more sensitive method. However, aligning

all predicted open reading frames found in a metagenomic assembly to the full UniRef90 database

is a computationally expensive task and the reduced criteria for classification may lead to more

false positives. Considering that many of the conjugative systems identified by pHMMs are also

found by the protein alignment method (280 of 364 contigs), using pHMMs may be appropriate in

as a first pass method or in situations where computational resources are scarce.

The assembled contigs were binned with MetaBAT2 as a way of quantifying the e↵ect of binning,

which revealed that the vast majority of the assembled conjugative systems were not included in

metagenomic bins and therefore would not be included in a MAG database, which confirms recent

findings [23]. The binning rate of contigs carrying type IV conjugative systems identified by

pHMMs and alignment to UniRef90 was considerably lower than the background binning rate of

equivalently sized contigs (25.8% and 6.4% compared to 70.4%, respectively). Many of the binned

conjugative systems were not within a bin that would pass the quality cuto↵ to be included in a

curated MAG genome set as well [21]. Interestingly, eight of the conjugative systems were binned

into low-quality bins that were smaller than 1MB in size, which may suggest that the fragments

of a conjugative plasmid could be binned together, which would increase the completeness of the

conjugative system.

2.5 Conclusions

Conjugative systems could di↵er between cohorts and require special consideration to ensure that

they are included in metagenomic analyses. ICEs and plasmids can carry harmful systems, such as
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antimicrobial resistance, but also can act as vectors for bile salt metabolism and for detoxification

modules [3]. These cargo genes are relevant for research relating to the gut microbiome’s role in

pathogenicity as well as metabolism, digestion, and host e↵ector molecules. Comprehensive iden-

tification and quantification of conjugative systems could allow for association of conjugative sys-

tems with di↵erent health outcomes. Because assembled conjugative systems are rarely included

in metagenomic bins [23] (Figure 2.4 and Figure 2.5), they need to be identified and analyzed

outside of standard binning pipelines. At present, it is not possible to assemble complete chromo-

somes or plasmids from short-read metagenomic data [20], so it may helpful to identify smaller

bins containing conjugative systems in an attempt to cluster the fragments of plasmids present in

an assembly together. Identifying type IV conjugative systems using pHMMs or UniRef90 anno-

tations and using tools such as PlasFlow [22] to identify plasmids out of a full assembly in parallel

with standard binning analyses will enhance research of the associations between the human gut

microbiome and human health.

In the future, expanding the curated set of pHMMs by building exhaustive protein alignments for

each of the known conjugative system proteins (T4SS, T4CP, and relaxases) could increase the

sensitivity of the method to detect conjugative systems. Additionally, creating a curated set of

conjugation proteins from the UniRef90, instead of exhaustively annotating with the full database,

should improve the computational e�ciency of the UniRef method. Additionally, improvements in

assembly and binning algorithms will continue to improve the recovery of low relative abundance

conjugative elements and improve the completeness and accuracy of the assembled fragments. For

instance, long-read assembly permits the circularization of genomes and plasmids [40, 41] and the

binning of plasmids to their cognate genomes using methylation data [42], which will reduce the

ambiguity of the origins of conjugative systems (i.e. whether they are an ICE or independently cir-

cularized plasmid) and provide a more complete picture of the cargo they carry and the di↵erences

between cohorts.
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Chapter 3

Separation of cohorts on the basis of

bacterial type IV conjugation systems

3.1 Introduction

The human gut microbiome has been a recent target of much research on the connection between

its composition and metabolism with human health. Broadly, the relative abundances of bacte-

rial species in the human gut microbiome is di↵erential between geographically-focused cohorts

[1]. For instance, the microbiota compositions of hunter-gatherer tribes from West Africa are con-

siderably di↵erent than the compositions of individuals from Western societies who are exposed

to oral antibiotics and processed foods [1], which has helped spur investigations on the di↵erent

phenotypes that can be linked to the compositions of the gut microbiota. These di↵erences in

composition can also be a causal or contributing factor to a number of aspects of human health.

A disrupted gut microbiota balance, and the resultant proinflammatory state, has been linked to a

number of gastrointestinal, metabolic, immunological, and neurological diseases [2]. For example,

inflammatory disorders that have associations with the species composition and metabolic output

of the gut microbiota include irritable bowel syndrome, inflammatory bowel disease, and non-

alcoholic fatty liver disease [3, 4, 5, 6]. Additionally, microbiota composition has been linked

102
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with metabolic diseases such as obesity and type 2 diabetes [7, 8], with certain bacterial genera

such as Campylobacter, Porphyromonas, Staphylococcus, and Ruminococcus being enriched in the

microbiota of obese individuals [9]. Beyond metabolic and gastrointestinal disorders, which have

relatively clear mechanisms of pathogenesis from the microbiome, recent research has revealed

associations with neurological diseases, such as the association between the inflammation caused

by lipopolysaccharides and the amyloids formed in Alzheimer disease [10].

Spina bifida (also referred to as myelomeningocele) lies at the interface of metabolic and neuro-

logical disorders. Like the disorders previously mentioned, there is a sizeable proportion of risk

of spina bifida that can be attributed to genetics (60%), however much of the attributable risk is

unknown [11]. Some of the risk of development of spina bifida is related to the behaviours of the

mother during pregnancy. For instance, smoking and alcohol intake are risk factors for congenital

neural tube defects [12] and are also known to modulate the composition of the gut microbiota in

a way that is proinflammatory and resembles the microbiotas of inflammatory bowel disease and

obesity [13, 14]. Consumption of high glycemic index foods are also correlated with the risk of de-

veloping spina bifida [15]; this is a biomarker that can be regulated by gut microbiome [8]. Intake

and plasma levels of vitamins and nutrients such as folate [16], vitamin B12 [16, 17], methionine

[18], choline [19], vitamin C [20], and zinc [21] are all positively associated with the develop-

ment of spina bifida. Many of these vitamins and nutrients are synthesized or metabolized by the

human gut microbiome [22]. Folate, whose deficiency is potentially the most strongly associated

nutrient with spina bifida risk is produced by a wide variety of bacterial taxa, with an estimated

13% of the species colonizing the human gut having the necessary genes for folate synthesis [23];

folate produced by the gut microbiota is bioavailable and a major source of serum folate [24].

Methionine deficiency is another risk factor for spina bifida that could be mediated through the

gut microbiome. Metabolism of methionine by the gut microbiome results in the production of

the short-chain fatty acids propionate and butyrate [25], which are key in the regulation of bowel

permeability and inflammation [26]. Bowel inflammation and a ‘leaky gut’ are associated with a

poorer uptake of nutrients [27], which could lower the serum and amniotic fluid levels of impor-
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tant vitamins such as folate and cobalamin and contribute to spina bifida risk. While there are a

number of potential connections between spina bifida and the gut microbiome, there is an absence

of research on the direct relationship.

In this chapter, the separation of cohorts on the basis of conjugative systems will be explored in

cohorts that di↵er primarily on geographic location as a proof of principle. This is to establish

that conjugative systems are di↵erentially abundant between groups, like metagenomic-assembled

genomes [1]. In the study of the association between spina bifida and the composition of the gut

microbiota of mothers, we processed metageonomic reads following our approach that allows for

the analysis of conjugative elements. As shown in Chapter 2, conjugative systems are system-

atically excluded from metagenomic bins, so they must be separately analyzed for a complete

understanding of the di↵erences in microbiota composition between cohorts. Assembly-based and

assembly-free methods were utilized to examine the di↵erences between the microbiotas of moth-

ers who gave birth to infants with spina bifida compared to the mothers who gave birth to healthy

infants. Conjugative systems were identified using the methods outlined in Chapter 2 and com-

pared independently between groups from the genomic bins. All methods show robust di↵erences

between groups that reveal an association between human gut microbiota composition in mothers

and spina bifida.

3.2 Methods

3.2.1 Reference human gut metagenome set

A near-complete and non-redundant set of human gut microbiome genomes were downloaded from

the European Bioinformatics Institute FTP site [28]. These genomes were assembled from 13,133

metagenomic samples, a comprehensive set of samples available at the time, using SPAdes [29]

and binned using MetaBAT2 [30]. The quality of binned genomes were assessed using CheckM

[31]. High-quality genomes were defined as greater than 90% completeness and less than 5%

contamination and medium-quality genomes were defined as greater than 50% completeness and
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less than 10% contamination, and these genomes were used to create the non-redundant set of

genomes. The program dRep was used to cluster the genomes at 99% sequence identity [32]

thereby dereplicating the genome bins, creating a set of 2505 genomes [28].

3.2.2 Identifying and quantifying conjugative systems in reference human

gut metagenome set

ORFs were predicted in the genome by Prodigal version 2.6.3 [33]. The predicted protein se-

quences were then aligned to the UniRef90 database [34] using the Diamond protein aligner ver-

sion 0.9.14 [35]. Contigs were extracted from the genomes if they contained annotations for a re-

laxase/mobilization protein and a type IV secretion/type IV coupling protein using a word-search

strategy. Short-read data from 785 samples (Supplemental Table 2) [36, 37, 38, 39, 40, 41, 42, 43]

were downloaded from the Sequence Read Archive using the SRA toolkit version 2.9.2. The

downloaded reads were deduplicated with ‘dedupe.sh’ [44], and trimmed with Trimmomatic ver-

sion 0.36 [45] with options ‘LEADING:10 TRAILING:10’. Subregions of the contigs where an-

notations for conjugative proteins were present, with no more than 20 ORFs between successive

UniRef90 annotations for conjugative proteins, were extracted. The processed read data were

mapped to the extracted conjugative systems using Bowtie2 version 2.3.5 [46] with the settings

‘–no-unal –no-mixed –no-discordant’. Extraction of the sub-regions was to avoid an artificially

high proportion of reads mapping in samples where the bacterium is present, but the ICE has not

integrated in its chromosome (Figure 3.1). The proportion of reads mapping to the conjugative sys-

tems was extracted from the Bowtie2 output, and the mapping data was visualized using Anvi’o

[47]. Raw counts of reads mapping to the extracted conjugative systems were transformed using a

centered log-ratio. The principal component coordinates of the first three components were used

for clustering by hdbscan as those components contained the majority of the variance explained

[48].
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Figure 3.1: Conceptual diagram of the mapping coverage of an assembled integrative and conjuga-
tive element. The mapping coverage in the first plot shows an even mapping coverage across the
contig because the ICE is present in the sample and the average mapping coverage of the contig
would be an accurate metric. In the second plot, the ICE is missing in the sample and the mapping
coverage falls to zero where the ICE is located on the contig. As a way to quantify the presence
of the ICE, the average mapping coverage for the entire contig would be artificially high. Limiting
the mapping to only the region containing the conjugative proteins solves this issue.

3.2.3 Metagenomic assembly of spina bifida microbiome

Sequencing reads obtained from the stool microbiomes of 15 mothers who had given birth to

children with spina bifida and 18 samples from mothers who gave birth to healthy children were
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processed prior to assembly. The reads were first aligned to the Genome Reference Consortium

Human Build 38 genome with Bowtie2 [46] to remove any human reads. As previously described,

the reads were processed with ‘dedupe.sh’ [44] and Trimmomatic version 0.36 [45] to remove

duplicated and low quality reads from the dataset. Using the processed reads, the samples were

assembled sample-by-sample using metaSPAdes [29]. To bin the assemblies into approximations

of bacterial genomes, the reads from all samples were mapped to all assembled metagenomes

using Bowtie2 [46], sorted and indexed using SAMtools [49], and binned using MetaBAT2 version

2.12.1 [30]. All MetaBAT2 bins were pooled and dereplicated at a 99% sequence identity using

dRep [32], a threshold that was used for the non-redundant gut microbiome genome set [28].

Bins with greater than 50% completion and less than 10% redundancy were used for quantitative

analyses.

3.2.4 Identification of conjugative elements in spina bifida microbiome

Conjugative elements were identified from the unbinned metagenomic assembly by leveraging the

profile hidden Markov model method of identifying conjugative systems developed in Chapter 2.

For the assembly of each sample, the contigs were imported into Anvi’o [47] where the HMMER

[50, 51] tool was used to search the open reading frames of the assembled contigs for conjugative

systems. If a contig contained pHMM alignments for all three classes of type IV conjugative

proteins (relaxase, type IV secretion system, and type IV coupling), then the contig would be

deemed as conjugative.

3.2.5 Annotation and quantification of bins and conjugative elements in the

spina bifida microbiome

Dereplicated bins and conjugative contigs were taxonomically assigned using two methods. Firstly,

the bins were classified taxonomically using PhyloPhlAn with the database version SGB.Jul20

[52]. The primary assignment of the bin was used as the putative PhyloPhlAn taxonomic as-
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signment. Secondly, the bins and conjugative contigs were taxonomically assigned with the bin

assignment tool of the CAT software package [53]. Processed sequencing reads were aligned to

the bins using Bowtie2 version 2.3.5 [46] with the settings ‘–no-unal –no-mixed –no-discordant’ to

quantify the abundances in each sample; read counts were obtained from the resultant SAM align-

ment files. The dereplicated bins were annotated with KEGG to estimate the metabolic capabilities

of each bin [54]. KEGG analyses were conducted using the implementation in Anvi’o version 7.0

[47] with the functions ‘anvi-run-kegg-kofams’ and ‘anvi-estimate-metabolism’. The open reading

frames (ORFs) of the dereplicated bins were also predicted separately using Prodigal version 2.6.3

[33]. The predicted ORFs were annotated using InterProScan version 5.48-83.0 [55] using the

Pfam [56] and GO databases [57, 58]. Average coverage of the predicted ORFs was computed us-

ing ‘anvi-export-gene-coverage-and-detection’ module of Anvi’o, which was then converted into

separate count tables for both Pfam and GO database entries. Di↵erences in relative abundances of

bins and conjugative elements between groups was assessed using the ALDEx2 R package [59].

3.3 Results

3.3.1 Mapping human gut microbiome data from cohorts to conjugative sys-

tems reveals distinct geographic-based patterns

As a proof of principle of the utility of the conjugative system identification frameworks estab-

lished in chapter 2, we explored relative abundances of conjugative systems in a larger number

of cohorts, without having to conduct computationally-expensive metagenomic assemblies. For

this analysis, conjugative systems were identified from a set of 2505 bacterial genomes, which

represent a non-redundant and near-complete picture of the human gut microbiome [28]. A total

of 1598 contigs from 787 genomes that contain UniRef90 annotations for relaxase/mobilization

and T4SS/T4CP proteins were identified. From these contigs, 3216 subregions where conjugative

protein annotations were concentrated on the contig were extracted, with 2413 being >1kb in size

and used for visualization. Short-read human gut microbiome sequencing data from 785 samples,
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spread across 8 cohorts were aligned to the extracted subregions.

With the conjugative systems identified from the human gut metagenome set, there are distinct

patterns that arise that are distinct to each cohort (Figure 3.2). Only a very small number of the

reads from the North American and European Infant cohorts mapped to conjugative systems. The

only notable signal is in the Proteobacteria phylum for the North American pre-term infants, a

finding consistent with what was found by de novo assembly of these samples in chapter 2.

The West African and South American cohorts also share similar characteristics as both have an

overall lower apparent relative abundance of conjugative systems compared to the other non-infant

cohorts, particularly in the Bacteroidetes phylum. The other four cohorts appear similar with

regards to the presence and absence of the conjugative systems. The cohorts separated into three

distinct clusters (Figure 3.3 and 3.4), when the principal components of the centered log-ratio

transformed data were clustered using hdbscan [48]. In this analysis infant cohorts were excluded

because of their extreme sparsity. The majority of the West African and South American samples

clustered together consistent with Figure 3.2. Not readily apparent from the cladogram was the

East Asian cohort that clustered primarily on its own. The North American Indigenous, North

American IBD, and Western European general samples largely clustered together. The distinct

clustering of samples into geographic locations on the basis of the abundances of conjugative

elements is similar to that of the broader gut microbiome [1].
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Figure 3.2: Anvi’o cladogram of potentially conjugative systems originating from 785 samples
across 8 cohorts. Inner rings of the phylogram represent individual samples and the outermost ring
being the phylum of conjugative system. Each slice of the circle phylogram are individual conjuga-
tive regions. For each point on the inner plot, the intensity of the black colouring corresponds to
the mean coverage of the system for a given sample proportional to the other conjugative systems.
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Figure 3.3: Clustering of the principal component coordinates of the CLR transformed relative
abundances of the extracted conjugative regions from the genome database. Coloured points rep-
resent membership to clusters with grey points not belonging to a cluster. Ellipses represent a 95
percent confidence interval using a multivariate t-distribution about the cluster.
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Figure 3.4: Stacked bar plot of the proportions of samples belonging to the hdbscan clusters from
each cohort.

3.3.2 Di↵erential abundances of taxa and functions in metagenomic bins in

spina bifida microbiome

Having established that conjugative elements could discriminate between populations, we applied

the protocol to human health-focused study. Metagenomic assembly and binning of 33 metage-

nomic samples from 15 mothers who gave birth to children with spina bifida and 18 who gave birth

to healthy children yielded a total of 406 medium quality bins; Medium quality bins are defined as

having greater than 50% completion and less than 10% redundancy as measured by CheckM using

the single-copy bacterial genes [31]. dRep [32] was utilized to remove genomic bins that were

duplicated in the assembly process in multiple samples by clustering the bins at a 99% sequence

identity. Reads from each sample were mapped to the deduplicated bins to examine the di↵erential

abundances of taxa between the spina bifida and control cohorts. A principal component analysis

of the abundances of the bins show some degree of separation between the spina bifida and control
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samples on components 1 and 2 (Figure 3.5). Di↵erential abundance analysis via ALDEx2 [59]

on count tables shows that the most di↵erentially abundant bin belongs to the bacteria Campy-

lobacter hominis, which had an e↵ect size of 0.96 and was enriched in the mothers who gave birth

to infants with spina bifida (Figure 3.6). Secondarily, there was a genomic bin belonging to the

genus Peptoniphilus that also was enriched in the cases, with an e↵ect size of 0.73. To confirm

that Campylobacter hominis and Peptoniphilus are di↵erentially abundant between the groups, an

orthogonal method, MetaPhlAn [60], was used to classify the taxonomy of each read to create a

count table of the taxa abundances in each sample. By this method, the two most di↵erentially

abundant species are Campylobacter hominis and Peptoniphilus with e↵ect sizes of 0.86 and 0.79,

respectively, which confirms the enrichment in mothers who gave birth to infants with spina bifida.
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Figure 3.5: Principal component analysis diagram of the 15 spina bifida and 18 control samples
for the mapping to the dereplicated bins. Ellipses represent a 95% confidence interval using a
multivariate t-distribution about the samples belonging to each group. Orange points are samples
from the control group and blue points are for the samples of mothers that gave birth to infants
with spina bifida.
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Figure 3.6: E↵ect plot of the dereplicated genomic bins. Median Log2 Dispersion is the within
group observed variability in the relative abundances of a genomic bin. Median Log2 Di↵erence
is the between group variability in the relative abundances of a genomic bin. Positive values of
a Median Log2 Di↵erence suggest and enrichment in the control samples and negative values
suggest an enrichment of a bin in mothers who gave birth to infants with spina bifida (labeled with
rab.win.control and rab.win.case on the axis). Bins for Campylobacter hominis and Peptoniphilus,
which are enriched in the case samples, were highlighted with blue and orange points, respectively,
on the plot. Dashed lines are the approximate boundary of an e↵ect size of one.

Relative abundances of reads mapping to the ORFs of genes predicted by the gene ontology and

Pfam modules of InterproScan were compared between groups as well (Table B.1). From the

Pfam annotations, the most enriched gene annotation in the spina bifida group was for a putative
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serine esterase with an e↵ect size of 1.16. Of note, the annotations for serine esterases are only in

genomic bins from the genera Ruminococcus and Porphyromonas, so the enrichment of this gene is

not attributable to the enrichment of Campylobacter and Peptoniphilus species that was seen from

the taxonomic analysis. This is in contrast to the second most enriched Pfam annotation which is of

a Campylobacter major outer membrane protein (e↵ect size 0.95) and is only found in the genomic

bin of Campylobacter hominis. The bins containing the gene annotation for serine esterase were

of a lower enrichment with e↵ect sizes ranging from 0.27 to 0.6. Additionally, multiple Pfam

annotations for STT3 oligosaccharyl transferase genes were found to be enriched at an e↵ect size

of 0.87, which is corroborated by the enrichment of the GO term oligosaccharyl transferase activity

with an e↵ect size of 0.9. Interestingly, there is also a slight enrichment of the GO term ‘regulation

of conjugation’ in the spina bifida group with an e↵ect size of 0.7.

3.3.3 Di↵erential abundances of conjugative systems in spina bifida micro-

biome

From the 3079136 total assembled contigs across the 33 samples, 116 of them were identified as

being potentially conjugative by selective annotation with pHMMs. The UniRef90 method of con-

jugative systems identification was intractable for identification of conjugative elements with the

computational resources available at the time. To quantify the di↵erences in conjugative systems

between groups reads were mapped to the regions localized with conjugative proteins (Figure 3.1).

Unlike the bins, there is no apparent separation between groups with mostly overlapping distri-

butions on the principal component diagram (Figure 3.7). Though, with a much lower e↵ect size

(0.54) than the genomic bin of Campylobacter hominis, the most enriched conjugative system in

the mothers who gave birth to an infant with spina bifida belongs to Campylobacter hominis (Fig-

ure 3.8). Importantly, this contig was not included in the genomic bin of Campylobacter hominis,

which is in line with the findings of Chapter 2 that the vast majority of conjugative systems are not

included in metagenomic bins. Annotations of this contig with the UniRef90 database [34] show

that the majority of the open reading frames are of Vir family conjugative proteins, toxin-antitoxin
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systems, helicases, and a glyoxalase protein.
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Figure 3.7: Principal component analysis diagram of the 15 spina bifida and 18 control for the
relative abundances of the predicted conjugative elements. Ellipses represent a 95% confidence
interval using a multivariate t-distribution about the samples belonging to each group. Orange
points are samples from the control group and blue points are for the samples of mothers that gave
birth to infants with spina bifida.
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Figure 3.8: E↵ect plot of the conjugative elements identified with pHMMs. Median Log2 Disper-
sion is the within group observed variability in the relative abundances of a conjugative element.
Median Log2 Di↵erence is the between group variability in the relative abundances of a conjuga-
tive element. Positive values of a Median Log2 Di↵erence suggest and enrichment in the control
samples and negative values suggest an enrichment of a element in mothers who gave birth to in-
fants with spina bifida (labeled with rab.win.control and rab.win.case on the axis). A conjugative
element with the taxonomic assignment of Campylobacter hominis, which was enriched in the case
samples, was highlighted with a blue on the plot. Dashed lines are the approximate boundary of
an e↵ect size of one.
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3.4 Discussion

Conjugative systems appear to be di↵erential between cohorts in a similar manner to what has

been demonstrated with the overall composition of bacterial species in the human gut between

geographically-based cohorts [1]. The starkest di↵erence is the apparent lack of abundance in

the North American pre-term infant and European infant datasets of conjugative systems found

in the human gut reference set of metagenomic-assembled genomes (Figure 3.2). This is not a

result of a lack of conjugative systems, as evidenced by conjugative systems being successfully

assembled from the same pre-term infant samples in chapter 2, but rather a bias in the databases

towards well-studied cohorts such as the general adult populations from North America or Europe.

This logic can be extended to populations that showed a sparser range of conjugative systems in

Figure 3.2, such as the West African cohort, which are data from the microbiomes of a hunter

gatherer tribe and are unlikely to be well-represented in a Western-biased database. However,

these findings do illustrate that conjugative elements are broadly di↵erential between populations.

In conjunction with the findings of chapter 2 that conjugative elements as systematically excluded

from metagenomic bins, it emphasizes the need to specifically include an analysis of conjugative

systems if the goal is to capture the di↵erences in the composition of the microbiome between

groups. Although these di↵erences in these elements likely reflects the di↵erences in the overall

microbiota composition, there could be biologically-relevant cargo genes that are being excluded

from metagenomic bin-centric analyses.

In the gut microbiota of mothers who gave birth to infants with spina bifida, there is a consistent

enrichment of the species Campylobacter hominis (Figure 3.6), which was di↵erentially abundant

using metagenomic binning and an assembly-free method. Also enriched in the genomic bins

were annotations for serine esterases that were only found in genomic bins belonging to the genera

Ruminococcus and Porphyromonas. Campylobacter, Ruminococcus, and Porphyromonas are all

genera that have been previously associated with obesity and the resultant proinflammatory micro-

biota [9]. Additionally, in the assembly-free method of di↵erential abundance analysis the species

Peptoniphilus duerdenii was enriched in the mothers who gave birth to infants with spina bifida.
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Peptoniphilus duerdenii and other Peptoniphilus species have been previously associated with the

development of bloodstream infections, which is a risk factor for spina bifida [61].

Di↵erential abundance analysis of the identified conjugative elements from the assemblies also

revealed that the most enriched genetic element in the spina bifida cohort belonged to the species

Campylobacter hominis. While the annotations of the conjugative element do not reveal an obvious

biological mechanism for causing spina bifida, conjugative elements can be re-purposed to vectors

to carry CRISPR systems that can selectively kill pathogenic bacteria. [62]. If Campylobacter

hominis is indeed causing systemic inflammation that leads to mothers giving birth to infants,

then having a vector that could serve as a vector for selectively killing Campylobacter hominis

would be of clinical interest. Recently, one of the conjugative systems identified in the human gut

reference genome set has been synthesized de novo and shows greater conjugation e�ciency to

its cognate species than to Escherichia coli (personal communications, Thomas Hamilton). Due

to limitations in computational resources, the UniRef90 method of annotation and conjugative

element identification was not possible for these sample. Given the apparent greater sensitivity

of the method, additional di↵erentially abundant conjugative elements may be present in these

samples that were not detected by the pHMM method. In future confirmational studies of the

association of spina bifida and the maternal gut microbiota, the more robust method should be

used.

Transferable genetic elements are clinically relevant, and their systematic exclusion from genomic

bins makes precise identification critical in metagenomic analyses. In the microbiomes of mothers

who gave birth to infants with spina bifida, conjugative systems present represent clinical interest,

but are likely to be omitted in a standard analysis. Expanding the analysis to include conjugative

elements revealed a potential vector for modulation of the microbiota to reduce inflammation.

Conjugative elements show distinct patterns in geographically-based cohorts, which likely extends

to di↵erences between cohorts focused on human health. A meta-analysis of studies of the human

gut microbiome and human health may reveal a catalogue of potential vectors that can be used to

modulate the composition in states of dysbiosis.
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Chapter 4

Pangenomic analysis of five new strains

belonging to the manganese-oxidizing genus

Manganitrophus

4.1 Introduction

Bacteria harbour a great diversity of metabolic pathways that are being discovered continually as

previously unculturable bacteria are cultured using novel methods or sequenced metagenomically

from environmental samples. Novel metabolic pathways from extreme environments have become

of interest as they can play a key role in e↵orts to engineer communities of bacteria for the purposes

of bioremediation. Through anthropogenic pollution of the environment by industrial processes,

large quantities of heavy metals enter the environment causing broad ranges of toxicity to plants

and animals. Technology and methods have been developed that are abiotic, however, they are

expensive and ine�cient in comparison to the use of biological processes [1]. Plants have been

utilized to remove heavy metals from the environment, a process called phytoremediation [2],

but the slow doubling time of plants make them di�cult to scale and a sub-optimal candidate for

remediation of the environment. Bacteria have quick doubling times and have been found to be able

130
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to counter the pollution of heavy metals such as lead, chromium, cadmium, and arsenic [3, 4, 5, 6,

7]. The cell surfaces of some species of bacteria are rich in transporters that allow heavy metals

to cross the cell membrane [8]. This permits bacteria to uptake large quantities of heavy metals

into their cytoplasm and out of the environment, a process known as bioaccumulation [9]. The

machinery to transport and bioaccumulate heavy metals are often carried on plasmids by bacteria

that can be dispersed throughout the environment to other bacteria [10]. Once inside the cell, the

bacteria can metabolize the toxic heavy metal into a less toxic product through biotransformation,

bioleaching, or biomineralization [11, 12]. In addition, bacteria are able to secrete molecules such

as extracellular polymeric substances [13, 14], metallothioneins [15], or siderophores [16] that can

sequester the heavy metals.

Heavy metal waste is commonly produced through oil refinement, which also expels large vol-

umes of contaminant hydrocarbons into the waste water and it has been hypothesized that bacteria

may have the metabolic capabilities of degrading these complex hydrocarbons. Indeed, a number

of bacteria have been identified as being capable of using polyaromatic hydrocarbons (PAHs) as

a sole energy source [17]. Similarly to heavy metal removal, the use of microbes to remediate

oil spills is believed to be more environmentally friendly and more e�cient [18]. Pathways for

bioremediation of heavy metals, such as biomineralization, are also used for the sequestration of

PAHs like naphthalene [19]. More well-studied than biomineralization of PAHs is the oxidation

and degradation of PAHs where the bacteria utilize the high-energy bonds of hydrocarbons to fuel

their metalbolism. Species from the genera Sphingomonas, Rhodococcus, and Alcanivorax are

well-known metabolizers of PAHs and other hydrocarbons [20, 21, 22]. Similar to heavy metal

bioremediation, the genes critical for the metabolism and sequestration of hydrocarbons are com-

monly found on plasmids [23]. Metabolism of PAHs is primed by the aromatic ring cleavage with

oxygenases and dioxygenases, which results in products that can be metabolized by the tricar-

boxylic acid cycle [24, 25, 26]. Importantly, hydrocarbon degradation and heavy metal contam-

ination may potentially be linked. Ammonia oxidation is inhibited by environmental chromium

contamination [27], and general impairment of metabolism could extend to hydrocarbon oxida-
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tion as well. This may be a contributing reason as to why microbial consortium are much more

e↵ective at metabolizing hydrocarbons than individual bacteria [28]. There are members of the

community that can sequester and metabolize heavy metals present in the wastewater, which al-

lows the hydrocarbon-degrading bacteria to perform metabolism uninhibited. E↵orts have been

made to engineer Deinococcus radiodurans that can metabolize both heavy metal and hydrocar-

bons [29], but because cometabolism is so important for PAH degradation [30], it would still likely

be more e�cient to introduce a consortia than an optimized isolate.

A clade of bacteria that has garnered interest for bioremediation, and the unique metabolic path-

ways present in its member species, has been the phylum Nitrospirota (formerly known as Nitro-

spirae). The primary bioremediation function that is found in the Nitrospirota phylum is complete

ammonia oxidation in the genus Nitrospira [31, 32, 33, 34, 35]. Though some Nitrospira species

are only able to oxidize nitrite, many are able to oxidize both nitrite and ammonia [36]. This

capacity to completely oxidize ammonia is of environmental interest for bioremediation because

ammonia runo↵ from industrial farming causes toxic algal blooms, which may be preventable with

the metabolism of ammonia by Nitrospira. Other interesting metabolic functions of Nitrospirota

species include the reduction of sulfate [37, 38, 39, 40, 41], disproportionation of inorganic sul-

fur [42], oxidation of iron [43], and the capactity to align themselves with the earth’s magnetic

fields [44]. Recently, a novel genus of Nitrospirota was discovered that has the ability to oxi-

dize manganese as its sole energy source [45, 46]. Through the reverse tricarboxylic acid cycle,

members of the genus Manganitrophus are able to utilize the potential of manganese electrons to

drive their autotrophic growth [45]. Given that manganese is a very common element in the earth’s

crust, it follows that there should be a widespread abundance of bacteria that are able to utilize this

biochemical process to fuel their growth.

Here, we present five metagenomic-assembled genomes from a novel candidate species belonging

to the genus Manganitrophus. These novel strains were assembled from long-read metagenomic

data collected from biofilms growing on granular activated charcoal filters from an oil refinery’s

wastewater treatment plant in Sarnia, Canada. The novel strains can be placed within the same
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genus as the recently described Candidatus Manganitrophus noduliformans and Candidatus Man-

ganitrophus morganii species through a phylogenetic tree based on the single-copy core genes.

The candidate species share the same gene clusters related to manganese oxidation and hydrocar-

bon degradation, but the novel strains also have a increased genetic capacity to transport heavy

metals across their cellular membrane. By publishing these genomes and comparing them to the

other members of their genus, insight into how these manganese-oxidizing bacteria adapt to their

harsh environment has been gained.

4.2 Methods

4.2.1 Isolation and sequencing of DNA from granular activated charcoal

biofilms

To a 50mL falcon tube containing 10 g of granular activated carbon (GAC) sample, 10 mL of lysis

bu↵er (10 mM Tris-HCl, 100 mM NaCl, 25 mM EDTA, 0.5% (w/v) SDS) and 2.5 mg of lysozyme

was added and mixed by slowly rotating the tube horizontally to minimize granule movement. The

mixture was incubated for 1 hour at 37°C, while slowly mixing every 15 minutes. 5µL of RNAse

(20 mg/mL) was subsequently added to the mix and incubated at 37°C for another 30 minutes,

with slow mixing every 15 minutes. Finally, 100 µL of Proteinase K (800 units/mL) was added

and the mixture was incubated at 57°C for 1 hour and 30 minutes. Following incubation, the

sample was spun at 3000g for 5 minutes to spin down small GAC particles that are suspended

in the lysate before being decanted into a new 50 mL falcon tube. Then, 1 volume of 25:24:1

phenol:chloroform:isomayl alcohol was added and mixed by rocking for 8 minutes, before being

spun down at 3000g for 3 minutes. The aqueous phase was transferred to a new 50 mL falcon tube

using wide bore pipette tips for a chloroform wash. To the aqueous phase, 1 volume of chloroform

was added and mixed by gentle rocking for 8 minutes, before being spun down at 3000g for 3

minutes. The aqueous phase was transferred to a new tube and the chloroform wash step was

repeated. Next, 1/10 volume of sodium acetate (3 M, pH 5.2) was added and mixed by inversion. 2
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volumes of ice cold 100% ethanol was then added and mixed by inversion. High molecular weight

DNA that precipitated was spooled out into a 1.5 mL Eppendorf tube containing 200 µL of 75%

ethanol using a Pasteur pipette that was melted into hook. The DNA was spun down at 10000g

for 3 minutes. The ethanol was removed without disturbing the pellet and another 200 µL of 75%

ethanol was added, before being spun at 10000 g for 3 minutes. After spinning, the ethanol was

removed and the pellet was left to air dry for 2 minutes. Depending on the size of the pellet, the

DNA was resuspended with 200 µL to 1 mL of Tris-HCl (10 mM, pH 8) overnight.

The recovered DNA was size selected to retain fragments greater than 40kb using the Circulomics

Short Read Eliminator XL kit according to the manufacturer’s protocol. The sequencing library

was prepared from the size selected DNA using the Oxford Nanopore ligation sequencing kit

(SQK-LSK110) and its associated protocol, with a few changes. In the DNA repair and end prep

steps, the DNA was incubated in the thermal cycler for 20 minutes at 20 °C and 20 minutes at

65 °C. Instead of AMPure XP beads, Omega Bio-Tek Mag-Bind beads were used in clean up

steps. The library was sequenced on Oxford Nanopore’s MinION platform, using a 9.4.1 flow cell.

Basecalling was performed with Guppy 5.0.16 in super accuracy mode (dna r9.4.1 450bps sup).

4.2.2 Metagenomic assembly and identification of strain GAC1

Prior to assembly, reads were trimmed using Nanofilt [47] with settings ‘-q 10 -l 500’ to filter out

reads with an average quality score below 10 or a read length less than 500 base pairs. The filtered

reads were then metagenomically assembled using Flye [48] with settings ‘–nano-raw –meta -g

5m’. The reads were aligned to the contigs using Minimap2 [49] and then the alignments were

filtered using GERENUQ [50] to avoid polishing with poorly aligned sequences or chimeric reads

erroneously generated during sequencing. Polishing using Racon [51] with settings ‘-m8 -x -6 -g -8

-w 500’ and subsequently using Medaka [52] with settings ‘-m r941 min sup g507’ was performed

to correct sequence errors in the assembly. Taxonomic assignment of all contigs present in the pol-

ished assembly was performed using CAT [53] with the database release ‘CAT prepare 20210107’.

Conjugative elements were identified using a previously established method using profile hidden
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Markov model integration in Anvi’o [54, 55]. Contigs from the first assembly with the taxonomic

assignment of Candidatus Manganitrophus noduliformans were extracted for further analysis.

4.2.3 Mapped assembly of subsequent strains

For the remaining four strains of Manganitrophus, the genomes could not be resolved from a stan-

dard metagenomic assembly. To successfully assemble these strains, the reads from these samples

were aligned to the genome of the GAC1 strain using Minimap2 [49], filtered using GERENUQ

[50] to select for reads with full-length alignments, then assembled using Flye [56] on standard

settings. For strains 3 and 5, which did not yield circular, single-contig assemblies through this

mapped assembly strategy, contigs were selected using Bandage [57] that formed a circular sub-

graph on the assembly graph. Subsequently, we repeated this process using the circular conjugative

plasmid identified belonging to the genus Manganitrophus from sample GAC1. Plasmid sequences

were retrieved for plasmid-specific analyses from Candidatus Manganitrophus noduliformans and

Candidatus Manganitrophus morganii SA1 by aligning their published genomes to the GAC1

plasmid sequence and selecting for strongly aligning sequences through manual inspection of the

alignment length and match scores. Circularization of chromosomes and plasmids was confirmed

by aligning reads using minimap2 [49] to the contigs and identifying a read tiling path along the

sequence with reads over 5000bp in length that overlap by at least 500bp–with an additional read

that maps to the start and end of the genetic sequence.

4.2.4 Phylogenomics and genome annotation

Three Manganitrophus genomes were accessed from the NCBI database for direct pangenomic

comparison from BioProject IDs PRJNA562312 and PRJNA776098. Additionally, 15 reference-

level genomes of the phylum Nitrospirota were downloaded from the NCBI Assembly Database

[58] to help construct the unrooted tree. CheckM [59] was run on all genomes to assess completion,

contamination, GC%, and to generate a concatenated protein alignment of the single copy core bac-

terial genes for phylogenetic analysis. Construction of the phylogenetic tree was performed using
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FastTree [60] integration in Anvi’o [55] and visualization of the unrooted tree was conducted with

iTOL [61]. Average nucleotide identity of the 8 Manganitrophus genomes was performed using

pyANI [62]. FastANI [63] was utilized to visualize the alignment between the GAC1 conjugative

element and the published Candidatus Manganitrophus noduliformans genome. The eight Man-

ganitrophus genomes were imported into Anvi’o, annotated with NCBI COGs [64] and KEGG

[65], and built into a pangenome of gene clusters. Gene cluster bins were assigned manually on

the basis of presence in the species and strains. The genomes were further annotated by aligning the

open reading frames predicted with Prodigal to the UniRef50 [66] and AromaDeg [67] databases

using the Diamond [68, 69] aligner with settings ‘–id 50 –query-cover 50 -f 6 –salltitles -p 10 -k

1’ and ‘–very-sensitive -f 6 –salltitles -p 10 -k 1’, respectively. Additionally, the predicted protein

sequences were queried to the CANT-HYD [70] database using HMMER3 [71] and CRISPR ar-

rays were predicted in the nucleotide sequences using PilerCR [72]. Pangemomic clustering and

annotation was repeated for the separated plasmid sequences. Plasmid origins of replication were

identified using the Ori-Finder2 web tool [73]. Plasmids were additionally annotated through an

alignment to UniRef90 database [66] to identify proteins involved in conjugation.

4.3 Results

4.3.1 Assembly of five novel genomes belonging to the Manganitrophus genus

from a biofilm growing on charcoal filters

The genus Manganitrophus is a recently described clade of bacteria from the phylum Nitrospirota

that has been shown to have the capability to oxidize Manganese (II) carbonates as a sole source of

energy [45]. The first genome published was of Candidatus Manganitrophus noduliformans which

was serendipitously enriched from Californian tap water and the next two genomes were of Candi-

datus Manganitrophus morganii SA1 and SB1 which were enriched from samples collected from

South Africa and California growing on a rock surface and an iron oxide mat, respectively. In this

study, the novel genomes were identified via metagenomic assembly from a biofilm growing on a
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granular activated charcoal (GAC) filter from Suncor Energy’s Sarnia, Ontario, Canada oil refinery.

High molecular weight DNA was isolated from the biofilm and sequenced on an Oxford Nanopore

Minion (9.41 flow cell). From the first sample, a circularized genomic element was taxonomi-

cally assigned as belonging to the clade Candidatus Manganitrophus noduliformans. However,

genomes from subsequent samples were not able to be successfully assembled into circularized

genomes using metaFlye due to the complexity of the communities and the apparent intrasample

heterogeneity. To obtain circularized or highly contiguous genomes of the novel species for the

other four samples, the long reads were aligned to the complete and circular genome of sample

GAC1, filtered, and reassembled as a ‘pseudo-isolate’, which yielded two additional circularized

genomes and two highly contiguous genomes (Table 4.1). Circularization of chromosomes from

samples GAC1, GAC2, and GAC4 were confirmed through an overlapping read tiling path.

Table 4.1: Genome quality and summary metrics of the newly assembled and previously published
Manganitrophus strains including plasmid sequences as evaluated by CheckM.

Completion Contamination Strain Heterogeneity GC Content Size (bp) # Contigs
M. noduliformans 98.58 4.55 0 56.41 5171380 22
M. morganii SA1 97.67 3.64 0.00 56.10 4257136 8
M. morganii SB1 97.67 3.64 0.00 56.20 4287287 1

M. GAC1 95.40 2.73 0.00 56.13 4562547 2
M. GAC2 96.58 3.64 0.00 56.10 4602354 6
M. GAC3 89.38 16.74 78.26 56.29 5306623 31
M. GAC4 90.93 2.78 0.00 56.37 4553225 3
M. GAC5 96.49 42.50 84.13 56.05 5615601 18

4.3.2 Assembly of five novel conjugative plasmids

In addition to the 5 chromosomal genomes of a novel Candidatus Manganitrophus bacteria, five

conjugative plasmids were also identified. A circularized genetic element of roughly 330kb in

length was identified from the first GAC sample that was assigned the same taxonomy as the

chromosomal DNA. Ori-Finder2 [73] predicted bacterial origin of replication sequences within

the chromosome of GAC1 as well as within the separate circularized sequence presumed to be

a plasmid. To confirm that this circular genetic element found within the metagenome was in-

deed a plasmid belonging to the novel Candidatus Manganitrophus species, the plasmid sequence



138

was aligned to the published Candidatus Manganitrophus noduliformans genome with FastANI,

which showed that multiple contigs from the published isolate genome were of plasmid origin

(Figure A.1). This finding suggests that this large, conjugative plasmid is well-maintained within

this genus. Indeed, the novel plasmid also aligned with contigs from the published Candidatus

Manganitrophus morganii SA1 genome. However, the published genome of Candidatus Man-

ganitrophus morganii SB1 only contained a single contig that did not have any alignments to the

plasmid. For samples 2-5, circularized contigs could not be obtained from a standard metagenomic

assembly, so the mapped assembly strategy was used to obtain two additional circularized plasmids

and two highly contiguous plasmid sequences (Table 4.2). Circularization of plasmids from sam-

ples GAC1, GAC3, and GAC5 were confirmed through an overlapping read tiling path. All of the

assembled and identified plasmids had multiple open reading frames annotated by UniRef90 as

components for type IV conjugative transfer. Additionally, carried as cargo on these plasmids are a

multitude of genes related to the transport and biotransformation of metals such as cobalt, copper,

and mercury.

Table 4.2: Summary information of identified conjugative plasmids. Summary information on GC
content, size, and contigs were obtained from CheckM and the number of conjugation genes was
determined by annotation of the genome with the UniRef50 database.

GC Content Size (bp) # Conjugation genes # Contigs
M. noduliformans 54.71 342241 5 4
M. morganii SA1 53.55 288825 5 1

M. GAC1 53.57 328837 8 1
M. GAC2 53.85 364954 6 5
M. GAC3 53.74 330790 6 1
M. GAC4 53.74 318819 6 2
M. GAC5 53.74 295087 7 1

4.3.3 Placement of novel genomes into the genus Manganitrophus

The first indication that the novel genomes belonged to the genus Manganitrophus was the taxo-

nomic assignment provided by the Contig Annotation Tool of Candidatus Manganitrophus noduli-

formans. All representative genomes from the Nitrospirota phylum were downloaded from the
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NCBI assembly database to confirm the placement of the newly assembled genomes in the genus

Manganitrophus. The phylogenetic tree was based on the protein alignments of the concatenated

single-copy core genes predicted by CheckM and constructed using FastTree integration in Anvi’o.

In an unrooted phylogenetic tree, the five novel genomes were very closely associated on a branch

with Candidatus Manganitrophus noduliformans, Candidatus Manganitrophus morganii SA1 and

Candidatus Manganitrophus morganii SB1 (Figure 4.1). To further elucidate the fine-grain rela-

tionships between the Manganitrophus species, the eight genomes were compared using pyANI

to obtain average nucleotide identity values. The five novel strains show high similarity to one

another, but form a separate branch when hierarchically clustered with M. morganii and M. noduli-

formans (Figure 4.2). Based on the phylogeny and ANI clustering, we propose our assembled

genomes belonging into a novel, uncharacterized species in the Manganitrophus genus.
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Figure 4.1: Unrooted phylogenetic tree of the phylum Nitrospirota generated by FastTree using
alignments of bacterial single copy genes produced by CheckM.
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Figure 4.2: Average nucleotide identity heat map and hierarchical clustering of the eight Mangan-
itrophus genomes calculated by pyANI.

4.3.4 Establishing the core and accessory genes in the Manganitrophus

pangenome

The Anvi’o suite of pangenomic tools were used to cluster orthologous genes within the eight

Manganitrophus genomes, assign the gene clusters into bins based on presence in certain genomes,

and to annotate the gene clusters with KEGG and NCBI COG. The result of the gene cluster can be

visualized with Anvi’o (Figure 4.3). The largest group of gene clusters that are found consistently
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in all eight of the strains are referred to as the stable core. It is unlikely that the orthologues

present in these gene clusters are responsible for the di↵erences between the species. The stable

core contains all the single-copy core genes that are identified by CheckM. There is also another

large bin that is labelled as the ‘Unstable Core’. These gene clusters are mostly found in all of the

strains, but contain some degree of variation and absence in strains that do not follow the species

boundaries. These two bins of gene clusters form what is referred to as the core gene set and the

remaining gene clusters form the accessory gene set.
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Figure 4.3: Pangenomic visualization of the full genomic content of the genus Manganitrophus.
Black shading of circular track represents the presence of a gene cluster in a given strain. Bins
of gene clusters on outer ring were determined manually to denote the pattern of presence in the
groups of strains or strains. CM GAC are genes clusters primarily present in the GAC strains, CM
M N are primarily in the Manganitrophus morganii and noduliformans strains, and the CM N,
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The accessory genes are more likely to be involved in the di↵erences between species, given that

they are not conserved throughout the genus or species, and can permit some insight into the

adaptation of the species to their given environments. By using the COG annotations of the gene
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clusters, proportions of gene clusters belonging to di↵erent functional categories can be compared

between the core and accessory genome (Figure 4.4). In the core genome, well-conserved func-

tional categories such as translation and protein metabolism make up a greater proportion of the

core genes that in the accessory genome. In contrast, protein categories such as defence mech-

anisms, cell wall biogenesis, and inorganic ion transport and metabolism make up an out-sized

proportion of the accessory genome. The last of which is of particular interest given the known

ability of the Manganitrophus genus to oxidize manganese as the sole source of energy. Interest-

ingly, the manganese oxidases responsible for this process are found in both the core and accessory

genome. Manganese oxidase genes, as annotated by KEGG, are found in both the stable and un-

stable core gene cluster bins and the CM GAC bin, which are the genes found primarily in only the

novel assembled genomes. Additionally, c-type cytochrome genes are found in the core genome

as well, and were noted as being a key component in the oxidation of manganese [45].
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Figure 4.4: Proportions of core and accessory gene clusters found in the full genomes annotated
as each COG functional group. Percentage calculated as the number of gene clusters annotated as
COG functional group in the core or accessory genome relative to the total number of gene clusters
in either the core or accessory genome.

4.3.5 Establishing the pangenome of the Manganitrophus plasmid

Though the plasmid was included in the pangenome displayed in Figure 4.3, it is important to

separately analyze an independently replicating genetic element that in theory could be exchanged

with other bacteria. Like the full pangenome, there are a number of gene clusters that are conserved

within the genus (Figure 4.5). Also in a similar manner to the full pangenome, there are a number

of genes that appear to be exclusive, or enriched, in the novel genomes assembled from the GAC

community. In contrast to the full pangenome, cell wall biogenesis is enriched in the gene clusters
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of the core genome (Figure 4.6). Also, comparatively more represented in the core genome are

gene clusters with functions of protein turnover and replication. In the accessory genome is an

enrichment of genes related to the mobilome, signal transduction, and motility, which is sugges-

tive that there may be some di↵erences between the plasmids in terms of conjugative machinery

because orthologues for these gene categories are not necessarily found in each plasmid sequence.

In the full pangenome inorganic ion transport was shown to be more represented in the accessory

than the core. However, this di↵erence does not appear to be due to the di↵erences in ion transport

carried as cargo on the conjugative megaplasmid, which commonly harbour genes related to heavy

metal transport [10]. Indeed, there are UniRef90 alignments on these plasmids for transporters and

binding proteins of metals such as cadmium, nickel, mercury, and copper. Copper binding proteins

and transporters are found among all of the species, but cadmium transporters are only annotated

on the plasmids of the GAC strains.
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Figure 4.6: Percentage of core and accessory gene clusters found in the plasmids annotated as each
COG functional group. Percentage calculated as the number of gene clusters annotated as COG
functional group in the core or accessory genome relative to the total number of gene clusters in
either the core or accessory genome.

4.3.6 Gene clusters characteristic to novel bacteria growing on GAC filters

Though there are 682 gene clusters in the ’CM GAC’ gene cluster bin, that does not mean that

there are 682 unique genes. For instance, manganese oxidase genes are found in the ‘CM GAC’

gene cluster bin but also the ‘Stable Core’ and ‘Unstable Core’ gene cluster bins. There is a high

degree of overlap between the annotations for the gene clusters that appear divergent. This was ad-

dressed by searching for unique KEGG annotations of the gene clusters ‘CM GAC’, ‘CM GAC2’,

‘CM GAC 1’, ‘CM GAC 3’, ‘CM GAC 4’, ‘CM GAC 5’ (Table 4.3). Many of the genes are
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unique to these gene cluster bins, which suggests there is a di↵erence with how these novel bacte-

ria exchange DNA and other substrates with other bacteria in their environment due to the presence

of unique conjugation genes. Also unique to the novel bacteria are a number of genes related to

metal resistance. Zn2+/Cd2+-exporting ATPase, nickel/cobalt transporter (NicO) family protein,

and copper resistance protein C are among the KEGG annotations unique to the GAC bacteria.

These genes, among others, suggest that these bacteria are adapted to the harsh environment in the

refinery e✏uent that is enriched with heavy metals and toxic compounds.

Table 4.3: Unique COG annotations for each Manganitrophus GAC strain sorted into their respec-
tive COG categories.

COG Category GAC1 GAC2 GAC3 GAC4 GAC5
Signal transduction mechanisms 20 13 31 24 24

Inorganic ion transport and metabolism 8 5 6 7 4
Intracellular tra�cking, secretion, and vesicular transport 9 7 7 8 8

Extracellular structures 11 8 8 9 9
Nucleotide transport and metabolism 5 8 5 5 6

Transcription 5 4 6 5 5
General function prediction only 4 2 4 3 4

Cell wall/membrane/envelope biogenesis 9 6 6 7 6
Coenzyme transport and metabolism 2 2 2 2 2

Posttranslational modification, protein turnover, chaperones 6 4 3 0 2
Replication, recombination and repair 4 1 4 7 2

Function unknown 8 9 6 8 6
Mobilome: prophages, transposons 3 4 3 1 1

Cell motility 2 1 1 1 1
Carbohydrate transport and metabolism 3 4 2 3 2
Amino acid transport and metabolism 5 5 3 4 3

Defense mechanisms 2 2 1 2 1
Secondary metabolites biosynthesis, transport and catabolism 1 1 1 1 1

Translation, ribosomal structure and biogenesis 1 1 2 1 0
Lipid transport and metabolism 1 1 0 1 0

Energy production and conversion 0 0 1 0 1

In addition, the annotations unique to M. noduliformans and M. morganii were explored. Of note,

there are separate type IV secretion system protein and plasmid separation proteins, which co-

incides with the notion that the original M. noduliformans genome has an additional conjugative

plasmid in comparison to the other seven genomes. In Table 4.1, it is clear that M. noduliformans

is much larger than the other non-redundant genomes that have been surveyed. Additionally, there

are CRISPR systems unique to these genomes, which are represented in the defense mechanism
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enrichment in the accessory genome in Figure 4.4. CRISPR arrays are only predicted on two

contigs belonging to M. noduliformans and may be unique to that species.

4.3.7 Hydrocarbon metabolism in the genus Manganitrophus

The ability of Manganitrophus species to degrade toxic compounds is of special interest because

of the environment that these novel genomes are derived from. The wastewater that is filtered

through the GAC systems are rich in naphthenic acids, asphaltenes, and other hydrocarbons, and

it is presumed that the bacteria growing on these filters play a role in the removal of these com-

pounds through degradation. Given the di↵erences in environments between the novel species and

M. noduliformans or M. morganii, which were recovered from tap water and sediments, one would

expect di↵erences in the capacity to metabolize hydrocarbons. However, there is a near complete

overlap in the hydrocarbon metabolism genes predicted by CANT-HYD and AromaDeg (Table

4.4). Within the genus Manganitrophus, there appears to be a capacity to metabolize phthalate,

gentisate, salicylate, monocyclic aromatic hydrocarbons, and biphenyls (as predicted through the

AromaDeg database). Predicted by CANT-HYD, are genes responsible for the metabolism of ben-

zene, alkane, p-cymene, phenol, dibenzothiophene, ethylbenzene, naphthalene, monoaromatics,

polyaromatics, propane, butane, and toluene throughout the genus. Metabolism of hydrocarbons

as a source of energy is evidently a well-conserved function in this genus despite the disparate

environments they were discovered in.

Table 4.4: Summary of hyrdocarbon metabolism annotation through CANT-HYD and AromaDeg.

CANT-HYD annotations AromaDeg annotations
M. noduliformans 16 12
M. morganii SA1 16 14
M. morganii SB1 15 13

M. GAC1 17 13
M. GAC2 17 14
M. GAC3 15 14
M. GAC4 17 14
M. GAC5 16 14
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4.3.8 Evidence of intrasample heterogeneity in genomes

As evidenced by the incomplete and contaminated assemblies of strains GAC3 and GAC5 (Table

4.1), there is intrasample strain heterogeneity in the novel genomes. To some extent, the hetero-

geneity can be visualized through the assembly graphs of GAC3 and GAC5 (Figures 4.7 and A.2).

There are multiple bubbles on the assembly graphs that show potential strains within the closed-

loop assembly graphs. In the strain GAC3, the bubbles on the graph exist as a set of two paths

with one path usually at about 20x coverage and the other path as 30x coverage. GAC5 has 3 ap-

parent bubbles on the assembly graph where the two paths are at roughly 100x and 200x coverage

compared to the mean coverage of roughly 300x, which is strong evidence of two strains within

this sample (Figure 4.7). By separating the strains from sample GAC5, CheckM can be performed

to assess the completion, contamination, and strain heterogeneity for each of the two proposed

strains identified on the assembly graph. Strain 1, the red/black path on Figure 4.7, showed high

completion and low contamination with no strain heterogeneity, whereas strain 2 (the blue/black

path) showed lower completion, higher contamination, and strain heterogeneity (Table 4.5). The

quality metrics show that strain 1 is a high-quality genome of the novel Manganitrophus species

and that strain 2 still has too much heterogeneity to be considered a high-quality representation of

the species. Performing a mapped assembly to each of the strains did not result in a higher quality

assembly, likely due to the high similarity in sequences resulting in cross mapping and retention

of the other strain in the filtered reads. Unfortunately due to the similar coverage of the two strains

in the assembly graph of GAC3, the strains present could not be resolved in the same manner as

GAC5.
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Figure 4.7: Assembly graph of sample GAC5 with strains highlighted. Edges of the graph in black
are shared between the strains, edges in red are those belonging to strain 1, and edges in blue are
those belonging to strain 2.

Table 4.5: Quality and summary metrics strains resolved from sample GAC5 as evaluated by
CheckM.

Completion Contamination Strain Heterogeneity GC Content Size (bp) # Contigs
Strain 1 93.58 2.73 0 56.36 4168356 11
Strain 2 74.03 5.45 50.00 56.75 3089018 11

4.4 Discussion

In summary, five novel sequences recovered from metagenomic datasets were analyzed in the con-

text of their genus. These sequences are of particular interest because they expand the range of

non-core functions for the recently described genus Manganitrophus, whose biochemical pathway

for manganese oxidation for energy has been thoroughly analyzed [45, 46]. Through an unrooted
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phylogenetic tree built on alignments of the single-copy core genes, the novel sequences were

placed onto the same branch of the tree as the three known genomes of the Manganitrophus genus

(Figure 4.1). The closeness on the tree was suggestive of a high degree of similarity, which is

confirmed by ANI calculations that places the published genomes between 91-95% identity to the

novel sequences (Figure 4.2). Indeed, many genes are highly conserved within the genus included

genes for manganese oxidase, which is found in the core, variable core, and GAC strain-specific

bins of gene clusters in the pangenome (Figure 4.3). Based on the conservation of manganese

oxidase and the high degree of sequence identity, it is likely that these novel strains are able to

utilize the oxidation of manganese for energy in the same manner that Candidatus Manganitro-

phus noduliformans was shown to be capable of in culture [45]. Another metabolic pathway that

is conserved among all members of the Manganitrophus genus, which is of interest for bioreme-

diation, are hydrocarbon degradation pathways. Many genes are predicted through alignments to

the CANT-HYD and AromaDeg databases [67, 70], which suggest the capacity for these species

to degrade aromatic and non-aromatic hydrocarbons, which are byproducts of oil extraction and

processing. Given that the novel strains presented were found in a consortium that grows on the

carbon filters at a wastewater treatment facility for an oil refinery, it is possible that the metabolism

of hydrocarbons is a major source of energy for these bacteria. One of the metabolic pathways

that the novel strains diverge greatly from the other Manganitrophus species is the ability to trans-

port heavy metal ions. Found exclusively in the GAC strains are genes for zinc, cobalt, cadmium,

nickel, and copper transport, which has implications for bioremediation as many of these metals

are common environmental contaminants in the refinery e✏uent [4]. Additionally, heavy metal

contamination is known to inhibit biochemical processes such as ammonia oxidation [27]. The

ability of this species to transport and sequester heavy metals from a heavily contaminated envi-

ronment may work synergistically with the other members of the biofilm to metabolize the wide

array of hydrocarbons uninhibited. Furthermore, the refinery e✏uent is anoxic, so these bacteria

need an energy source not tied to oxygen, which the anaerobic metabolism of hydrocarbons can

provide [74].
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Culturable bacteria make up the bulk of the databases due to their ease of study [75], which makes

the use of metagenomic analyses to study the more-abundant, uncultured bacteria (as seen in hu-

man gut microbiome studies) greatly important [76]. To obtain circularized, or highly contiguous,

genomes from the five metagenomic samples of bacteria growing on the GAC filters, methods

beyond standard metagenomic assembly had to be developed and employed. From the standard

long-read metagenomic assembly of the samples, one genome could be successfully assembled

into a circular contig. However, for the other samples, metagenomic assembly resulted in a heav-

ily fragmented Manganitrophus genome. The complexity of the community growing on the GAC

filters and the apparent strain heterogeneity of the novel species necessitated the use of methods

that can overcome these obstacles. Drawing inspiration from reference-guided assemblies and

Jorg [77], which attempts to assemble circularize sequences using short reads that map to bins,

long reads were mapped to the successfully circularized GAC1 strain and filtered for reads with

full-length alignments using GERENUQ [50], which will discard reads that are poor alignments

to the genome due to cross mapping from other species or chimeric reads that were erroneously

sequenced. Using this filtered set of reads, the two additional circularized sequences and two

highly contiguous sequences could be assembled. The chromosomal sequences in samples GAC3

and GAC5 could not be completed due to the high level of strain heterogeneity in the samples.

In sample GAC5, the two competing strains of the Manganitrophus genome can be visualized on

the assembly graph (Figure 4.7). By selecting for the contigs with a consistent coverage pattern,

the strains of GAC5 can be resolved, in part. Strain 1 of GAC5 has high completion and low re-

dundancy and mirrors the three circularized strains in size. Knowing the circularized sequences

of the bacterial genomes permitted pangenomic comparisons between strains of the novel strains

and to the published Candidatus Manganitrophus noduliformans and Candidatus Manganitrophus

morganii genomes.

In addition to the chromosomal sequences of the novel Manganitrophus genomes, the sequences

of a large conjugative plasmid belonging to the strain was recovered from each sample. Similar to

the chromosomal sequences, the circularized sequence of the GAC1 plasmid was assembled and
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identified from the metagenomic assembly of the sample. Also similarly, the subsequent mapped

assembly of the plasmid sequence with the four other samples yielded two circularized and two

highly-contiguous plasmids. Furthermore, plasmid sequences from Candidatus Manganitrophus

noduliformans and Candidatus Manganitrophus morganii SB1 were identified through alignment

to the GAC1 plasmid. Given that plasmids commonly harbour genes related to hydrocarbon degra-

dation and heavy metal regulation [23, 30, 10], it is essential that plasmids can be identified and

separated from their cognate chromosome. In addition to the conserved plasmid identified in seven

of the eight genomes, the analysis suggests that the published Candidatus Manganitrophus noduli-

formans has an additional conjugative plasmid that harbours a CRISPR system. Plasmids are

known to regularly harbour these gene-editing systems [78] and this sequence is likely responsible

for the enrichment in defense mechanisms in the accessory genome seen in Figure 4.4. Plasmids

represent a potentially transferable genetic element, so knowing their sequences can give insight

into the potential metabolic pathways that can be exchanged by these species within a biofilm.

4.5 Conclusion

An ever-increasing number of unculturable bacteria are being sequenced whose metabolism pushes

the limit on what was thought to be possible. Five additional genomes have been added to the genus

that is able to oxidize manganese for energy and by doing so has increased the resolution of the

genomes within the genus that came before. With these additional genomes, it is now known

that there is a large megaplasmid of over 300kb in length that is well-conserved among most, if

not all members of the genus. Additionally, it is likely that these bacteria utilize hyrdocarbons as

another energy source given the high number of predicted genes involved in the process and the

environment from which the novel strains were sequenced within. Isolation of the novel species

and testing of the metabolic potential for heavy metals and hydrocarbons could shed further light

on the role of this unique species growing on the biofilms that form on granular activated charcoal

filters in an oil refinery.
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Chapter 5

Secondary assembly of potential

hydrocarbon-degrading bacterial

communities yields additional complete

genomes

5.1 Background

Long-read sequencing with Oxford Nanopore Technologies platforms has enabled the sequencing

of reads with a nearly unbound upper limit for length. The read length advantage that third gen-

eration sequencing technologies have introduced has provided benefits to many genomics fields,

including metagenomics[1]. Assembly algorithms such as metaFlye [2] were developed to specif-

ically take advantage of the longer, yet error-prone, reads. As a result of the long reads being

capable of spanning repetitive regions that would previously confound short read metagenomic

assemblies, long-read metagenomic assemblies could generate far more contiguous assemblies. In

fact, in recent years as improved methodology have increased the integrity of the extracted DNA

and the length of the sequenced DNA, a number of studies have been published that have suc-

166



167

cessfully circularized bacterial genomes from complex environments, such as the human gut and

activated sludge [3, 4, 5, 6]. In perhaps the most extreme example of the potential of long reads,

a total of 44 circuluar metagenome-assembled genomes (MAGs) were generated from a single

sample [7]. While it is unreasonable to sequence 255 Gbp per sample due to the expense in a typi-

cal metagenomic study, this study highlights the potential of long-read sequencing to characterize

complex communities down to the strain level.

Despite the promise of long-read sequencing, much of the development of metagenomic assembly

protocols remains focused on short-read sequencing and there is much room for growth for tools

and frameworks for utilizing long reads to their maximum potential. For short read assembly data,

there are tools such as Recycler [8] and Jorg [9] that look to maximize the potential of the data by

increasing the assembly quality beyond the primary assembly by inferring circular sequences from

the assembly graphs or by conducting subsequent assemblies on binned contigs. These tools recog-

nize the benefit of identifying and assembling circular contigs from bacterial metagenomic assem-

blies. Complete chromosomal sequences can allow for precise identification of a genome’s taxa

without concerns about contamination and chimerism that can occur with metagenomic binning

[10], full knowledge of the synteny of genes, and quality sca↵olds to examine genetic variation. In

addition, the circularization of extra-chromosomal elements with these approaches helps alleviate

the concerns with the exclusion of plasmids and other mobile elements from metagenomic bins

[11, 12]. While long reads are able to circularize sequences from a metagenomic assembly, long

reads still fail to completely assemble all sequences present in a metagenome. As such, similar

approaches to those used to maximize short-read assembly data could yield better results than a

simple primary metagenomic assembly.

Here we present a framework for performing a secondary assembly on binned long-read assem-

blies. The contigs from the primary assembly are partitioned into uncircularized and circular-

ized contigs. Uncircularized contigs from the primary metagenomic assembly are binned with

MetaBAT2 and reads are aligned to bins and filtered for long-reads that align end-to-end. This

subset of reads is then assembled as a pseudo-isolate in an attempt to generate circularized or
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higher quality assemblies as a result. The framework was applied to nine samples from an oil

refinery environment: eight samples growing on granular-activated charcoal filters and one from

wastewater flocculent. A total of 48 contigs over 1Mb were assembled in the primary metagenomic

assemblies and the secondary assemblies yielded another 66 contigs over this size threshold. For

smaller contigs the primary assembly generated 3522 small, circular contigs, whereas the sec-

ondary assembly only yielded 536 small, circular contigs. With these findings, we demonstrate the

general utility of performing secondary assemblies with long read data to obtain additional circular

contigs.

5.2 Methods

5.2.1 Phenol-Chloroform DNA extraction

Eight samples of granular activated carbon (GAC) and a single sample of flocculent were collected

over a period of two years from the SunCor Energy Sarnia Canada facility. High molecular weight

DNA was extracted from approximately 10 g of GAC sample or 50 mL flocculent using the same

method. Prior to extraction, however, the flocculent was spun down to pellet at 4000 g for 10

minutes at RT and the supernatant was discarded.

10 mL of lysis bu↵er (10 mM Tris-HCl, 100 mM NaCl, 25 mM EDTA, 0.5% (w/v) SDS) and

2.5 mg of lysozyme was added to a 50 mL falcon tube containing the sample (either GAC or

flocculent), and was mixed by slowly rotating the tube horizontally around its vertical axis to

minimize granule movement. The mixture was incubated for 1 hour at 37 °C. 5 µL of RNAse (20

mg/mL) was then added to the mix and incubated at 57 °C for 30 minutes. Finally, 100 µL of

Proteinase K (800 units/mL) was added and the mixture was incubated at 57 °C for 1 hour and

30 minutes. During each incubation step, the lysate was mixed using the aforementioned mixing

technique every 15 minutes.

Following incubation, the sample was spun at 3000 g for 5 minutes to spin down small GAC

particles that are suspended in the lysate before being decanted into a new 50 mL falcon tube. 1
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volume of 25:24:1 phenol:chloroform:isomayl alcohol was added to the lysate, mixed by rocking

on a destainer for 8 minutes, then spun down at 3000 g for 3 minutes. The aqueous phase was

transferred to a new 50 mL falcon tube using wide bore pipette tips, then 1 volume of chloroform

was added and the mixture was rocked on a destainer for 8 minutes, before being spun down at

3000 g for 3 minutes. The aqueous phase was transferred to a new tube and the chloroform wash

step was repeated. Next, 1/10 volume of NaAC (3 M, pH 5.2) was added to the transferred aqueous

phase and mixed by inversion. 2 volumes of ice cold 100% ethanol was then added and mixed by

inversion. High molecular weight DNA that precipitated was spooled out into a 1.5 mL Eppendorf

tube containing 200 µL of 75% ethanol using a Pasteur pipette that was melted into hook. The

DNA was spun down at 10000 g for 3 minutes. The ethanol was removed without disturbing the

pellet and another 200 µL of 75% ethanol was added and then spun at 10000 g for 3 minutes.

Following centrifugation, the ethanol was removed and the pellet was left to air dry for 2 minutes.

Depending on the size of the pellet, the DNA was resuspended with 200 µL to 1 mL of Tris-HCl

(10 mM, pH 8) at 4 °C overnight.

The recovered DNA was size selected to retain fragments greater than 40kb using the Circu-

lomics Short Read Eliminator XL kit according to the manufacturer’s protocol. The sequenc-

ing library was prepared from the size selected DNA using Nanopore’s ligation sequencing kit

(SQK-LSK110) and its associated protocol, with a few changes. In the DNA repair and end prep

steps, the DNA was incubated in the thermal cycler for 20 minutes at 20 °C and 20 minutes at

65 °C. Instead of AMPure XP beads, Omega Bio-Tek Mag-Bind beads were used in bead clean

up steps. The library was sequenced on Oxford Nanopore’s MinION platform, using a FLO-

MIN106 R9.4.1 flow cell. Basecalling was performed with Guppy 5.0.16 in super accuracy mode

(dna r9.4.1 450bps sup).

5.2.2 Read quality control and primary assembly

Prior to assembly the reads were filtered for read length and quality with NanoFilt [13] with settings

‘-q 10 -l 500’ to retain reads greater than 500 base pairs in length and a mean read quality score of
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10 or greater. The filtered reads were assembled metagenomically using metaFlye [2] with settings

‘–meta -g 5mb’. Following the assembly contigs were partitioned for whether metaFlye tagged the

contig as being circular and not repetitive. Non-circular contigs were passed to the binning and

secondary assembly pipeline.

5.2.3 Binning and secondary assembly

Reads from all samples were aligned to the set of non-circular contigs from each sample using

minimap2 [14]. Using the alignment records, the contigs were grouped into bins using MetaBAT2

[15]. To each of the bins, the reads from the corresponding sample were aligned to the bin and

filtered for strong, end-to-end alignments using GERENUQ [16]. GERENUQ filters alignments to

those over 1000 base pairs in length, with an overall alignment score of 1, and with at least half of

the base pairs matching. Using the filtered alignments to subset the reads, a secondary assembly

of the bin was performed using Flye with the setting of genome size set to the total size of the bin.

5.2.4 Assembly quality assessment and validation

The quality of the bins were assessed before and after the secondary assembly using CheckM

[17]. In addition, the contigs circularized from the primary assembly and the contigs that could

not be binned by MetaBAT2 were also assessed for completion and contamination. To validate the

annotation of contigs as being circularized by Flye, reads were first aligned to all contigs using

minimap2 and output into the PAF format. A complete tiling path along the contig using reads

greater than 5000bp in length that overlap by 500bp, with a read that aligns to the start and end

of the contig, was used to confirm the circularization of the sequence. Assessment of the shared

contigs and bins between samples was determined by dRep [18]. Contigs and bins were clustered

at a level of 95% sequence identity, which is roughly at the boundary for species-level for bacteria

[19], and the number of species per cluster was evaluated.
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5.2.5 Taxonomic assignment and annotation of bins and contigs

Contigs initially reported by Flye as circularized, unbinned contigs, and secondarily assembled

bins were assigned taxonomy using the Contig Annotation Tool (CAT) [20] version 5.2.2 with the

database version ‘2021-01-07 taxonomy’. Circularized contigs 1Mb or greater in size and bins

that exceeded a completion of 80% and were below a contamination level of 10% were addition-

ally taxonomically assigned using GTDB-Tk [21] version 2.1.0 with database version ‘R207 v2’.

Contigs and bins were imported into Anvi’o [22] version 7.0 to annotate with NCBI COGs [23].

Plasmids were identified using PlasFlow version 1.1 [24]. Conjugative systems were identified

with HMMER [25] by using a curated set of profile hidden Markov models (pHMMs) to search

for contigs containing a relaxase, a type IV coupling protein, and a type IV secretion system pro-

tein [12]. Hydrocarbon and aromatic metabolic genes were specifically annotated for by aligning

open reading frames predicted by Prodigal version 2.6.3 [26] to two databases: AromaDeg [27]

with the BLASTP module of Diamond version 2.0.4 [28] and to CANT-HYD [29] using HMMER

version 3.3.2 [25].

5.3 Results

5.3.1 Assembly of oil refinery metagenomes

To reconstruct the genomes of the bacteria that colonize the granular-activated charcoal filters and

flocculent of Suncor Energy’s Sarnia Canada oil refinery wastewater treatment facility, two rounds

of assembly were conducted on the metagenomic reads sequenced on the Nanopore MinION plat-

form (Figure 5.1). Uncircularized contigs from the primary metaFlye assembly were binned using

MetaBAT2 and reads were aligned and filtered to these bins to created a pseudo-isolate set of reads

that can be secondarily assembled using Flye. The three desired outcomes of the secondary as-

sembly of the metagenomic bins were circularization of the chromosomal DNA, circularization

of extra-chromosomal DNA, or a general increase in the overall assembly quality of the bin (as
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measured by completion, contamination, and contiguity of the assembly).

Figure 5.1: Methodological overview of the assembly pipeline. Initial assembly is performed with
metaFlye. Reads are aligned to the bins produced by MetaBAT2 and filtered to create a reduced
set of reads to use for a secondary assembly. Secondary assembly is performed with Flye instead
of metaFlye because the subset reads being assembled should belong to a single species rather
than a complex community of species. There are 3 desired outcomes for the secondary assembly:
circularization of chromosomal elements, circularization of extra-chromosomal elements, or an
increase in the contiguity of the bin. Created with Biorender.
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From every sample, except for the flocculent sample, a contig greater than 1Mb was found to

be circularized by metaFlye from the initial metagenomic assembly (Table 5.1). Additionally, an

average of nearly 400 sequences under 1Mb per sample were found to be circularized. Highlight-

ing the complexity of the communities that grow on the GAC filters, an average of over 1,100

metagenomic bins per sample were formed by MetaBAT2, which were used for the subsequent

secondary assembly. The secondary assembly using subsets of reads that strongly aligned to each

bin yielded a number of additional circularized contigs. The total number of new contigs greater

than 1Mb that were circularized by the secondary assembly of the bins (66) was greater than the

number of contigs found to be circularized by the primary assembly (48). Comparatively, the num-

ber of smaller circular contigs in the secondary assembly was far fewer (536) than in the primary

assembly (3522). While the secondary assembly was successful in circularizing a number of ad-

ditional sequences, the overall assembly quality statistics showed a minimal to null improvement.

The mean change in N50 was an increase of 40402.27, but with a standard deviation of 441235.1.

Change in completion and contamination were largely centred around zero with mean values of

0.051 (SD 3.77) and 1.58 (SD 8.03).

Table 5.1: Summary statistics of the initial and secondary assemblies. Read stats are of the filtered
read set used for assembly. Contigs are flagged as being circularized based on the assembly stats
output by Flye.

Floc 1 GAC 1 GAC 2 GAC 3 GAC 4 GAC 5 GAC 6 GAC 7 GAC 8
Read N50 15,046 8,149 17,906 13,614 6,403 19,889 9,515 12,287 12,451

Mean quality score 12.1 13.5 14.2 14.1 13.2 13.9 13.6 13.5 13.5
Initial circular contigs � 1Mb 0 1 13 8 5 5 4 4 8
Initial circular contigs < 1Mb 150 184 628 453 512 450 318 470 357

Number of bins 282 639 1068 1352 1317 834 972 769 783
Secondarily assembled circular contigs � 1Mb 1 3 10 8 11 7 9 8 9
Secondarily assembled circular contigs < 1Mb 11 21 63 105 89 40 74 70 63

To validate that the contigs reported by Flye as being circular were indeed circular a tiling path of

reads greater than 5kb in length that overlap by a minimum of 500bp was built for each assembled

contig with an additional read that aligned to the start and end of the sequence. For sequences over

1Mb in size, both primarily and secondarily assembled, that were annotated as circularized by

Flye had an 83.3% rate of being validated as being circular through the tiling path. For primarily
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assembled contigs less than 1Mb in size, the success rate was 85.8%, whereas, the success rate for

the secondarily assembled contigs less than 1Mb was only 66.4% with the tiling path. Interestingly,

across the 9 samples there were an additional 1000 contigs that met the circularization criteria with

the tiling path that were not flagged as circular by Flye. This includes an additional 27 contigs

that were over 1Mb in size and 574 contigs that were less than 1Mb in size from the secondary

assemblies. As well, there were 399 contigs from the unbinned fraction of contigs that were less

than 1Mb in size that met the tiling path criteria.

5.3.2 Taxonomic composition and stability of communities

Taxonomy was assigned to each of the contigs and secondarily-assembly bins using the Contig

Annotation Tool, which utilizes all protein coding sequences to determine the taxonomy rather

than marker genes which are featured in bioinformatic tools such as GTDB. Because many of the

contigs featured in the analysis are plasmids without association to genomes that lack the core,

single-copy genes, classification by marker gene analysis would struggle to assign taxonomy for

them. On the other hand, a total protein coding approach would be much more e↵ective for mo-

bile elements. However, the overall rate of assignment of specific taxonomy was quite low. For

contigs and bins over 1Mb, the rate was roughly 12% for genus-level taxonomic assignment, and

the rate for contigs less than 1Mb was roughly 14%. This low rate of taxonomic assignment could

be attributable to a combination of factors including the novelty of the community, contamination

of the bins and assemblies, and the low accuracy of Nanopore reads negatively a↵ecting the open

reading frames that are used for the taxonomic assignment. Therefore, higher-level taxonomic

classification was used to assess the compositions of the communities. The proportions of reads

mapping to contigs and bins assigned at the phylum level showed that the communities are domi-

nated by species belonging to the phylum Proteobacteria, which comprised the majority of reads

in every sample (Figure 5.2). Other phyla that are well-represented in these samples are Acidobac-

teria, Planctomycetes, Bacteriodetes, and Nitrospirota. The samples that have an apparent lower

abundance of species belonging to the Proteobacteria have spikes in the abundance of either Aci-
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dobacteria or Nitrospirota. At the class level, there appears to be variability within the classes of

Proteobacteria with some samples being dominated by the class Betaproteobacteria while other

samples have equal proportions of Betaproteobacteria and Gammaproteobacteria (Figure 5.3).

Figure 5.2: Heat map of the percentage of reads mapping to contigs or bins assigned at the phylum
level. Taxonomy was assigned to the circularized contigs and bins using CAT and truncated to the
phylum level. Reads were aligned to the contigs and bins using minimap2 and quantified using
SAMtools.
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Figure 5.3: Heat map of the percentage of reads mapping to contigs or bins assigned at the class
level with a focus on the classes belonging to the phylum Proteobacteria. Taxonomy was assigned
to the circularized contigs and bins using CAT and truncated to the class level. Reads were aligned
to the contigs and bins using minimap2 and quantified using SAMtools.

Taxonomy was also assigned to 390 circularized contigs and high-quality bins across the 9 sam-

ples using the GTDB-Tk classify workflow in an attempt to get a higher resolution taxonomy

for elements that should contain the marker genes used by GTDB-Tk for taxonomic assignment.

While taxonomic assignment at the genus level was more successful than with CAT, there was

still a overall lack of taxonomic resolution for these largely uncharacterized bacteria. Overall,

73.6% of the contigs and bins were assigned to some degree at the genus level, but the quality

of the assignments was not necessarily consistent. For instance, the most common assignment

at the genus level was OLB17, which was identified 18 times. This is an uncharacterized genus

with the family Pyrinomonadaceae. Another example is the second-most common genus-level

assignment of JAEUIA01, which is only characterized as belonging to the phylum Planctomyce-
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tota. However, roughly 20% of the contigs and bins had taxonomic assignments to characterized

genera including: Rugosibacter, Ferruginibacter, Terricaulis, Accumulibacter, Manganitrophus,

Macondimonas, Methylotenera, Sphingobium and Hyphomicrobium.

To additionally assess the stability of the communities, contigs and bins that were � 1Mb in size

were clustered at a 95% sequence identity threshold, which is the rough estimate for the species

boundary in bacteria. Overall, there was a high proportion of shared species across the samples

(Figure 5.4). There were 10 clusters of contigs and bins that were shared between all 9 samples

and 84 total clusters that were found to be present in 5 or more samples. While there were still a

number of these contigs and bins that were unique to samples, the majority were shared between

multiple samples.

Figure 5.4: Plot of the clusters of species-level (95%) identity for contigs and bins greater than
1Mb in size and the proportion of the samples that they are found in. Those species present in 1
sample are unique to that sample and those found in 9 samples are species present in all samples.
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5.3.3 Annotation of mobile elements and hydrocarbon metabolism genes

Featured among the assembled contigs and bins was a large number of contigs that were annotated

as being plasmid sequences (Table 5.2). In addition, there were a number of contigs that contained

pHMM matches for relaxase proteins, type IV coupling proteins, and type IV secretion system

proteins, which is indicative of the contigs being conjugative elements. Of the predicted plasmid

sequences, 13.7% of them were circular. For the conjugative systems, 22.4% of the sequences

were annotated as circular by Flye.

Table 5.2: Summary statistics for the annotation of the circularized contigs, unbinned contigs,
and secondarily-assembled bins. Plasmid-based contigs identified using PlasFlow and conjugative
elements determined by matches to Pfam pHMMs of relaxases, type IV coupling proteins, and
type IV secretion system proteins.

Sample ID Plasmids Conjugative elements Percent with CANT-HYD annotations Percent with AromaDeg annotations
Floc 1 213 41 29.9 20.3
GAC 1 501 21 22.6 17.9
GAC 2 879 100 24.1 18.0
GAC 3 1842 94 18.6 14.6
GAC 4 1908 71 12.8 9.2
GAC 5 676 73 23.5 17.3
GAC 6 1162 55 17.4 13.3
GAC 7 969 46 15.5 11.6
GAC 8 962 67 21.1 16.4

Genes responsible for the metabolism of aromatic hydrocarbon were observed to be highly abun-

dant throughout the communities (Table 5.2), which is expected given the highly contaminated

environment that these microbes grow in. All contigs and bins were annotated with two separate

hydrocarbon databases, CANT-HYD and AromaDeg, to assess the commonality of these metabolic

genes in the communities. For the AromaDeg database, a mean of 15.4% (SD 3.5) of contigs and

bins contained at least one annotation for a gene within the database. A mean of 20.6% (SD 5.1)

of contigs and bins contained an alignment to an entry within the CANT-HYD database.

5.4 Discussion

Mirroring the general algorithmic principles presented in Jorg [9], we were able to circularize a

number of contigs from complex communities that colonize the wastewater treatment facilities of
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an oil refinery using long reads. The number of circularized contigs over 1Mb in size more than

doubled by performing a secondary assembly using the reads that strongly aligned to the bins.

GERENUQ was used to filter the reads and eliminate that cross map between species or chimeric

reads that were erroneous sequenced by the Nanopore MinION [16]. Comparatively, contigs un-

der 1Mb were not as successfully circularized by the secondary assembly compared to the primary

assembly with only a 13% increase in the overall number of circularized contigs under 1Mb. This

could be related to the phenomenon of mobile genetic elements, such as plasmids, being system-

atically excluded from metagenomic bins by algorithms such as MetaBAT2 [11, 12]. Because

plasmids would be the target for circularization for contigs under 1Mb, their exclusion from the

bins used for the secondary assembly explains the poor yield of the small, circular elements in the

secondary assemblies. Indeed, roughly 24% of the plasmids predicted by PlasFlow are in the un-

binned fraction of contigs. The systematic exclusions of plasmid sequences by binning algorithms

highlights the need to identify them using tools such as PlasFlow and to circularize their sequences

for easy recognition in a complex environment.

Taxonomic assignment of the contigs proved di�cult given the novelty of the member species of

these communities. As such only a small proportion of all contigs and bins could get a genus-level

taxonomic assignment using a protein coding sequence-based tool in CAT. Even using the gold

standard marker gene-based taxonomic assignment tool (GTDB TK) for the large-cicularized con-

tigs and high-quality bins, many sequences could not be assigned with a high-resolution taxonomic

assignment. However, for the contigs and bins that did have genus-level taxonomies assigned, the

genera have previously been shown to possess metabolic capabilities that would enable growth in

the waste water and filters found at an oil refinery. For example, nine bins were assigned the taxon-

omy of Rugosibacter, a genus that has been shown to be capable of using both monoaromatic and

polyaromatic hydrocarbons for growth [30]. Other genera that were found in these samples such as

Sphingobium [31, 32, 33], Macondimonas [34], and Ferruginibacter [35] have also been found in

the literature to grow in hydrocarbon-contaminated wastewater. The potential of these bacteria to

metabolize the hydrocarbons found in the environment is substantiated by the frequency of annota-
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tion for hydrocarbon degradation genes throughout the microbiome. CANT-HYD genes are found

in over 20% of the assembled contigs and bins and AromaDeg annotations are found in over 15%

(Table 5.2). It is clear that these complex and poorly characterized communities are involved in the

metabolism and removal of hydrocarbon from the wastewater. Other members of the community

may also participate in the bioremdiation of heavy metals from the environment.

In the GAC samples, there are species belonging to the genus Manganitrophus, whose member

species have been shown to oxidize manganese as a source of energy and also contain genes related

to the transport of a number of other heavy metals [36, 37]. Ferruginibacter have also been found to

harbour genes for mercury transport and detoxification [38]. With the high concentrations of heavy

metals in the oil refinery e✏uent, genes related to heavy metal transport and biotransformation are

equally as important for bioremediation as genes related to hydrocarbon degradation.

The communities, which were sequenced over a period of over 2 years from the SunCor Energy

Sarnia Canada facility, showed a high degree of consistency. Across all nine samples there was

a consistent dominance of the phylum Proteobacteria (Figure 5.2). Some variation could be seen

sample-to-sample in the relative abundances of the Acidobacteria and Nitrospirota, the latter of

which is primarily composed of contigs and bins belonging to the manganese-oxidizing genus

Manganitrophus. Further investigation into the association of the abundances of metals, such as

manganese, in the e✏uent and the relative abundance Manganitrophus is warranted. Perhaps the

best proxy for the stability of the complex communities is the shared proportion of contigs and

bins over the size of 1Mb across samples (Figure 5.4). Using a sequence identity cuto↵ of 95%,

which has been established as the rough boundary for species [19], 10 species clusters could be

found in all samples. The majority of species clustered by dRep could be found in more than one

of the samples, highlighting the shared features of these communities. Given the shared number

of species in these communities, a pooled assembly might also increase the yield of high-quality

or completed sequences at the cost of chimeric assemblies [39]. dRep clustering of the large con-

tigs and bins also highlighted the extraordinary complexity of the communities with a total of 532

unique species-level clusters forming from the assemblies. The success of long read sequenc-
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ing and the secondary assembly strategy in circularizing chromosomal and extra-chromosomal

sequences from such complex communities speaks to their usefulness for metagenomic studies.

5.5 Conclusion

Secondary assembly of metagenomic bins is a successful computational strategy to maximize the

number of complete, circular sequences generated from metagenomic assemblies with long reads.

There is still much work to optimize the algorithm to improve the overall performance for general

use cases. In Jorg, a similar approach for short-read assemblies, there are checks in place to eval-

uate in real-time whether the secondary assembly of the bin circularized the sequence, improved

the assembly, or decreased the quality of the assembly. For many of the bins in this study, the

secondary assembly did not improve general assembly quality statistics or circularize sequences,

and the original bin would have been more suitable for analysis. Furthermore, some bins may

have benefited from a tertiary assembly. For these cases, the extra quality checks and recursive

assembly featured in Jorg may serve as an improvement over the presented workflow. However,

the additional circularized genetic elements for these likely hydrocarbon-degrading communities

will serve as quality sca↵olds for future metatranscriptomic and community dynamic research to

help elucidate their potential in bioremediation.
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Chapter 6

General Discussion

The resolution of the structure of DNA [1] and the establishment of the central dogma of biology

[2] spurred a technological arms race to sequence genomes to unravel the mysteries of nature.

First-generation sequencing technology permitted the curation of the first genomic sequence of the

RNA bacteriophage MS2 in 1976 [3] and in 1977 the first DNA genome of the bacteriophage phi

X174 [4], which is still used as a sequencing control to this day. Technological and computational

advances continued throughout the era of first-generation sequencing, which allowed for larger

and larger genomes to be assembled, eventually culminating in the assembly of the human genome

by the International Human Genome Sequencing Consortium [5]. Second-generation sequencing

technologies vastly increased the information capacity of genome sequencing, which enabled an

increased complexity of sequencing experiments. One such avenue of research that was enabled by

second-generation sequencing was shotgun metagenomic sequencing, which is capable of recon-

structing the structure and metabolic capacity of complex bacterial communities [6, 7]. Recently,

third-generation sequencing has been developed which enabled the telomere-to-telomere resolu-

tion of the human genome [8], completion of other eukaryotic genomes, and the circularization of

bacterial genome assemblies from complex metagenomes [9, 10, 11]. In the interceding years be-

tween the generational leaps in sequencing technology, iterative improvements in algorithms and

bioinformatic workflows optimize the information that can be obtained from the data.
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6.1 Exclusion of conjugative elements from metagenomic anal-

yses

In previous research, it has been shown that plasmids and genetic islands are excluded from

metagenomic bins. Maguire and colleagues [12] found that only 38-44% of genomic island se-

quences and 1-29% of plasmid sequences were retained within MAGs and that nearly all plasmid-

borne sequences for antimicrobial resistance were omitted from MAGs. In Chapter 2, I indepen-

dently confirmed these findings in the subset of plasmids and genomic islands that are conjugative

from 101 human gut microbiome samples (Figures 2.4 and 2.5). The rate of exclusion from MAGs

for these conjugative elements falls within the range that Maguire and colleagues observed gener-

ally for plasmids, which suggests that conjugative elements are an area of weakness for metage-

nomic analyses that needs to be improved.

Conjugation mediated by type IV secretion systems is one of the ways that bacteria are able to

exchange DNA with one another. This genetic information exchange is critical for bacterial adap-

tation to their environment [13], which makes their identification critical for understanding the

dynamics of communities of bacteria. Antimicrobial resistance genes are commonly genetic cargo

carried on conjugative plasmids or integrative and conjugative elements that are maintained by

positive selection [14, 15]. Antimicrobial resistance is of major societal concern and being able to

properly capture it in metagenomic sequencing analyses, particularly those involving human or an-

imal sampling, is important for public health surveillance. For instance, reducing antibiotic use in

livestock feed is a major focus to stop the spread of antimicrobial resistance due to the proliferation

of antimicrobial-resistant bacteria in the gut of livestock [16]. However, if surveillance involves

using metagenomic binning to find the bacterial genetic elements responsible, the investigator will

miss the vast majority of the sequences of interest. Beyond antimicrobial resistance and virulence

factors, conjugative elements are host to a wide array of other pathways such as bile salt detoxifi-

cation, metal resistance, and polysaccharide usage [17]. Given this diversity of metabolic potential

known to be carried on these elements, and likely a large unrecognized diversity of metabolism due
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to their exclusion from MAGs, conjugative elements could be a missing link in many microbiome

studies and will be missed or misunderstood in a MAG-focused approach to analysis.

Chapter 2 demonstrates that MAGs generated using current, well-established techniques are not

su�cient due to their exclusion of conjugative elements. Metagenomic bins were generated by

following the protocol used to produce the Unified Human Gastrointestinal Genome (UHGG) col-

lection [18, 19]. High-quality and well-accepted protocols have a blind spot for conjugative ele-

ments, and mobile genetic elements in general. To overcome these shortcomings, in chapter 2, I

developed a framework for recovering these sequences from raw metagenomic assemblies. Using

a database of profile hidden Markov models that contained models for relaxase, T4CPs, and T4SS

protein, I was able to recover a fraction of the conjugative elements present in the assemblies.

Predicted protein sequences from the assemblies were also aligned to the UniRef90 [20] database

using DIAMOND [21], which yielded a greater number of identified type IV conjugative systems

than using pHMMs at the cost of increased computational resources required. Implementation of

this framework is simple in practice: identify the conjugative systems prior to binning and treat

the conjugative systems not included in bins in the same manner as bins. Optimizations to this

protocol could be in the form of increasing the diversity of pHMMs in the database of type IV

conjugative proteins to increase the sensitivity or to parse the UniRef databases to only include the

proteins of interest to reduce computation time. Unfortunately, these methods are not capable of

discriminating between functional and non-functional conjugative elements. Checks for integrity

of the synteny of the conjugative genes and the presence of oriT sequence may allow for greater

confidence on the activity of the conjugative element. Additionally, transcriptomics could reveal

which conjugative elements are being actively transcribed in a community. Implementation of

third-generation sequencing technologies can also improve the analysis of conjugative elements.

For example, because of the ability to circularize genetic elements with long-read sequencing data

[9, 10, 11], the investigator can unambiguously place the genomic context (i.e. as a plasmid or

integrative element). Additionally, using methylation data it is possible to bin plasmid and cognate

chromosome together [22], which in this thesis was shown to be unobtainable with sequence com-
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position and coverage binning methods. In theory, the plasmid could be associated with the cognate

chromosome through taxonomy, but that is di�cult to accomplish in a complex community.

6.2 Separation of geographic cohorts by conjugative elements

Chapter 3 builds on a question raised by chapter 2: are conjugative systems di↵erential between

populations? The human gut microbiome has been broadly associated with various human health

concerns ranging from gastrointestinal to neurological [23]. The human gut microbiome has

also shown broad di↵erences between geographically-based cohorts [24]. If the di↵erences in

the broader microbiota are reflected in the composition of the conjugative elements, or perhaps

equally interesting if the di↵erences are not reflected, then it is imperative that conjugative systems

are properly assessed in microbiome analyses. Metabolic pathways carried on these plasmids or

integrative elements could indeed help to explain host phenotypes.

The data presented in chapter 3 demonstrates that conjugative elements identified by the methods

developed in chapter 2 are di↵erential between geographically-focused cohorts (Figure 3.3), re-

flecting what had been found in the broader microbiome. These finding again reinforce the need to

include conjugative elements separately in metagenomic analyses. In chapter 2, one of the two co-

horts used to develop the protocol for identifying conjugative elements, and proving their exclusion

from MAGs, was a cohort of North American pre-term infants. Given that in chapter 2 I was able

to identify 96 and 242 systems from this cohort using the pHMM and UniRef alignment methods,

respectively, it is clear that there are indeed conjugative systems present in these samples. How-

ever, figure 3.2 demonstrates little-to-no signal in these samples when mapped to the conjugative

elements that were identified from a human gut reference database, which is suggestive of a se-

vere under-representation of these sequences in the database. Pre-term infants are given a constant

dose of antibiotics from birth to stave o↵ infection, and an under-representation of the conjuga-

tive plasmids in databases that could be carrying antimicrobial resistance genes is problematic for

surveillance and patient care e↵orts. Conjugative plasmids with antimicrobial resistance genes
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carried by pathogenic Proteobacteria could pose a serious threat to the fragile health of pre-term

infants and if their sequences are missing in the databases, then antimicrobial resistance screening

may yield false negatives. Fortunately, Proteobacteria, and their resistance genes, are generally

well-studied in isolate experiments and tools for antimicrobial resistance are not necessarily tied

to metagenomic binning, so the impact of such a scenario is lessened. However, for the building of

near-complete and non-redundant databases, the omission of conjugative plasmids could create a

false sense of security for antimicrobial resistance. In figure 3.2 there is also a less diverse pattern

of abundance for the West African and South American cohorts, which represent cohorts that are

non-industrialized and likely have lower antibiotic use in the population. Whether this unique pat-

tern of abundance of conjugative elements is a result of a lack of exposure to antibiotics or rather

another bias in the database would require additional analysis. The human gut reference set of

genomes was built o↵ a comprehensive set of metagenomic samples, but there are few samples for

the African and South American regions indexed on databases such as Data Repository For Human

Gut Microbiota. Further research could illuminate the dynamics of conjugative systems and the

prevalence of antimicrobial resistance in these populations and whether there are metabolic path-

ways on their conjugative systems that have not been observed in Western cohorts. For instance,

with the divergent dietary tendencies between these cohorts and Western cohorts, there could be a

greater diversity of polysaccharide-scavenging genes that have been previously observed as cargo

on conjugative elements [17].

One weakness of the geographic cohort analysis in chapter 3 was the use of conjugative systems

found in a database of MAGs as a way of measuring the abundances of conjugative systems. Being

tied to the MAGs creates biases and gives an incomplete picture of the true abundances of conjuga-

tive elements due to the noted omission of the majority of conjugative elements found within these

samples. However, assembly and annotation of 785 metagenomic samples was not feasible with

the computational resources available, so the compromise was made to use the reference genome

database. To remedy this shortcoming, reads were also mapped to the conjugative elements identi-

fied by pHMMs and MAGs whose taxonomy was assigned using CAT [25] from chapter 2. These
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data showed broad concordance between the proportions of reads mapping to each phyla, with

some minute di↵erences in composition and a noticeable increase in proportion of reads mapping

to elements that could not have their taxonomy assigned (Figure 6.1). This is yet another reflec-

tion of the under-representation of these sequences in the databases as many have their cognate

genome’s taxonomy assigned, but were not published within the MAG to the database.
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Figure 6.1: Proportions of reads mapping the the conjugative elements and MAGs within the
general cohort samples assembled in chapter 2. Taxonomy of conjugative elements (CE) and
metagenome-assembled genomes (MAG) we assigned using the program CAT.

6.3 The microbiome of spina bifida

In chapter 3, I also sought to apply the methods I developed in chapter 2 to a novel health-focused

application. I looked to build on the earlier di↵erences found between cohorts to prove the potential

utility of including conjugative elements alongside a standard metagenomic bin analysis. For this, I

utilized data from a collaboration looking at the composition of the human gut microbiome and its

relation to spina bifida, which is a complex disease with a poorly understood pathogenesis. Some of

the development of the disorder can be attributed to genetics, but much of the risk is unexplained

by genetics alone [26]. Much of the variation in the pathogenesis has been also attributed to

environmental and nutritional sources. For instance, maternal plasma levels of folate [27], vitamin
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B12 [27, 28], methionine [29], choline [30], vitamin C [31], and zinc [32] are all associated with

the development of spina bifida in the fetus. Additionally, maternal infection and inflammation

are also risk factors for development. The bacteria that line the human gut are heavily involved in

the synthesis of many vitamins and nutrients [33], so it spurred us to test the hypothesis that the

composition of human gut microbiota may be associated with the development of spina bifida.

Indeed, the data presented in chapter 3 suggest that there is an association between the human

gut microbiome and the pathogenesis of spina bifida. From the analysis of the binned genomes,

Campylobacter hominis had the strongest enrichment in the mothers who gave birth to infants with

spina bifida. To date, this is the first association of Campylobacter hominis with disease as a re-

sult of its colonization of the human intestinal tract. Other species of the genus Campylobacter

are known pathogens of the intestinal tract of humans, so it is possible that the presence of these

bacteria are inducing a proinflammatory state. Inflammation in the human gut is known to increase

the ‘leakiness’ of the gut and impair nutrient uptake [34]. For a disease that is heavily associated

with a lower serum concentration of many key vitamins and nutrients, this impairment of nutrient

uptake could help explain the development of spina bifida following nutrient supplementation dur-

ing pregnancy. In addition to Campylobacter there was also an enrichment of a MAG belonging to

the genus Peptoniphilus and enrichments of genes belonging to MAGs in the genera Ruminococcus

and Porphyromonas. Peptoniphilus has been associated with blood infections [35] and Ruminococ-

cus and Porphyromonas are associated with the pro-inflammatory gut microbiome of individuals

with obesity. The enrichment of these taxa are all indicative that gut inflammation is a important

risk factor to consider as part of the pathogenesis of spina bifida in expectant mothers.

To tie in conjugative systems into this analysis, conjugative elements were predicted from the raw

assemblies using the pHMM approach proposed in chapter 2. The strongest enrichment in the

mothers who gave birth to infants with spina bifida was once again an element belonging to the

species Campylobacter hominis. However, this conjugative element had a much lower e↵ect size

than the MAG of Campylobacter hominis did. Perhaps the conjugative element is not involved in

the pathogenesis of the disease and rather just commonly carried by the bacteria that contribute
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to the disease. The conjugative element does not appear to have any cargo that would be related

to the development of spina bifida with the vast majority of genes being related to conjugation

and mobilization of the element. However, this conjugative plasmid or integrative and conjugative

element could be a vector to express genes of interest within Campylobacter hominis. Recently, it

has been shown that conjugative plasmids can be constructed de novo using one of the sequences

identified from the human gut reference database set of bacterial MAGs (Thomas A. Hamilton,

personal communication). This plasmid was able to conjugate with greater e�ciency into its host

species than to other species. Using a CRISPR killing array previously developed and tested [36],

it could be possible to selectively kill Campylobacter hominis in vivo in the intestinal tract of

expectant mothers to help prevent, or lessen, the inflammation that may be associated with the

pathogenesis of spina bifida.

The involvement of Campylobacter hominis in the pathogenesis of spina bifida needs to be con-

firmed with a larger-scale study that optimally utilized metatranscriptomics. The lower sample size

prevented the corrected p-values from falling below the accepted level of significance (despite a

robust e↵ect size), so a large sample could act as confirmation. Transcriptomics would add func-

tional information for the pathogenesis of Campylobacter hominis in spina bifida that could not

be obtained by metagenomics alone. For instance, which genes are being actively transcribed and

does the transcriptional activity of certain genes correlate with intestinal inflammation.

6.4 Complete genomes and conjugative plasmids of strains from

manganese-oxidizing genus

A recently described genus of bacteria expanded what was known to be metabolically possible in

nature by utilizing the oxidation of manganese to fuel the reverse tricarboxylic acid cycle [37].

Oxidation of manganese as a source of energy had been theorized to be possible in the past though

not previously observed in nature. The first genome of the genus Manganitrophus was published

in 2020 for the species Candidatus Manganitrophus noduliformans, which was enriched from tap
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water [37]. In 2021, a preprint was published with two new strains belonging to the species Can-

didatus Manganitrophus morganii, which were isolated from a rock surface in South Africa and a

rusted iron pipe in California [38]. In chapter 4, I uncovered the sequences from five novel strains

from another dissimilar environment. These novel strains are a member of an extremely complex

biofilm that grows on the charcoal filters in a wastewater treatment facility for the Suncor oil re-

finery in Sarnia, Canada. The presence of these species belonging to the genus Manganitrophus in

four dissimilar environments raises the question of ‘how prevalent are these bacteria globally?’ As

well, how many other contaminant metals are bacteria able to oxidize for energy beyond known

metals such as iron and now manganese?

Third-generation sequencing of the communities with the Oxford Nanopore MinION allowed for

circularization of the first Candidatus Manganitrophus strain from the first sample, but failed with

the following samples. As shown in the full community analysis in chapter 5, these are extremely

complex communities, which pose a challenge for metagenomic assemblies. The complexity in-

creases the probabilities that the assembly will not be completed due to repetitive sequences found

in multiple species within the community. I therefore needed to employ a more targeted approach

than a metagenomic assembly for the final 4 samples to yield high-quality or circularized genomes.

As a solution, I utilized a reference-guided assembly, which has show to improve assembly metrics

even for complex heterozygotic eukaryotic assemblies [39]. I mapped the reads to the circularized

assembly of GAC1 and filtered the mapped reads with GERENUQ [40] to retain only reads that

mapped end-to-end with the genome. Filtering of the reads was to ensure that the reads that were

likely to cause the assembly to fail or be contaminated (e.g. cross-mapping reads from other species

or chimeric reads produced by errors in the Nanopore sequencing) were omitted. Assembly with

this refined set of reads allowed for the circularized sequences of two additional genomes to be

assembled. For the other two samples, there was an apparent strain heterogeneity that prevented

the assembly from being high-quality and completed. In these samples, there are potentially two

or more strains of Manganitrophus existing simultaneously in the samples.

I also applied the conjugative element identification protocol from chapter 2 to the raw metage-
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nomic assembly of sample GAC1. One of the circularized elements that were sub-chromosomal in

size had a full array of conjugative proteins and was also annotated as belonging to the same taxa

as the genome of GAC1. As previously discussed, there needs to be additional evidence to demon-

strate that indeed this large, conjugative plasmid does belong to Candidatus Manganitrophus sp.

GAC1 within this complex community. The initial evidence of the same assigned taxonomy and a

similar mapping coverage across the sequences are good initial indicators, but not su�cient with

how many bacteria grow on these biofilms. I aligned the assembled conjugative plasmid to the

published genome of Candidatus Manganitrophus noduliformans, which was sequenced as an iso-

late, and found that this novel plasmid aligns to multiple genomic fragments (Figure A.1). These

sequences were not previously identified as being a plasmid or conjugative system in the original

publication. In addition, this plasmid aligned to the published genome of Candidatus Manganitro-

phus morganii SA1. By utilizing third-generation sequencing and applying the methods developed

in chapter 2, I resolved the full genomic context of these species by showing that there is a con-

served conjugative mega-plasmid in multiple members of the genus. This plasmid carries genes

for the transport and binding of copper and cadmium, among other cations, which is are important

for its ability to survive in an environment that is heavily contaminated with heavy metals.

In the two poorer quality assemblies in chapter 4, strain resolution was possible, but di�cult.

Manual separation of the substrains in sample GAC5 allowed for the assembly of one of the strains

in the sample. I aligned and filtered the reads to both substrains and managed to produce one

assembly that had high completion, low redundancy, and no strain heterogeneity. Recently, it

has been shown that full strain resolution is possible with extraordinarily deep sequencing of a

single sample, but would be too expensive for regular applications [10]. Deeper sequencing of

the communities may have allowed for resolution of the strains in samples GAC3 and GAC5 and

provided more confidence in the genome sequences that were assembled. Because the genomes

were only sequenced using a Nanopore MinION, the overall sequence quality will be lower than a

genome polished using highly-accurate Illumina sequencing reads.

Annotations of these novel strains revealed that metabolic pathways for polyaromatic hydrocar-
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bons are conserved throughout the genus. Additionally, I found that there is a greater diversity of

genes related to heavy metal transport and binding in the GAC strains than there are in Candidatus

Manganitrophus morganii or Candidatus Manganitrophus noduliformans. These unique genes are

a reflection of the adaptation of these strains to their environment, which would be more highly

contaminated with heavy metals than the other two species. Transport and binding of these heavy

metals may help enable their survival in such a toxic environment. There is also evidence that

ammonia oxidation in the phylum Nitrospirota is inhibited by environmental heavy metal contam-

ination [41], so the transportation and binding machinery in these strains may be adaptations to

help rescue similar metabolic capabilities, such as hydrocarbon metabolism.

6.5 Secondary assembly to complete additional closed genomes

Knowing the value of closed, circular bacterial genomes for metagenomic analyses, particularly

for mobile genetic elements, I developed a framework that improved the yield of circular genetic

elements and applied it to complex bacterial communities. I took inspiration from the successful

reference-based assemblies in chapter 4 and Jorg [42], a similar framework that is designed for

short-read data, and applied it to long-read sequencing data generated by the Oxford Nanopore

Technologies MinION platform. By performing a secondary assembly on metagenomic bins gen-

erated by MetaBAT2 [43], there was more than a doubling of the number of contigs 1Mb or greater

that were circular. For contigs under 1Mb, the increase in circular elements was much more modest

with only about a 15% increase, which is to be expected given the data shown in Chapters 2 and

3. Because the secondary assembly was performed on bins generated by MetaBAT2, the exclusion

of conjugative systems and other mobile genetic elements [12] from would reduce the probability

of such elements being successfully circularized in a secondary assembly. Performing secondary

assemblies on the unbinned fraction of contigs may have yielded additional circular contigs, but I

omitted it from the analysis due to high computational burden that secondary assemblies require.

The primary measure of circularization of contigs is the reporting of the structure of the assembly
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by Flye. However, I also generated read tiling paths for each contig in the assembly (reads over

5kb that overlap by at least 500 bp and a read that maps to the start and end of the fasta entry)

to check for contig contiguity and circularity. By this metric, there were an additional 45 contigs

under 1Mb per sample in the unbinned that were considered circular, but not flagged as circular by

Flye, which indeed suggests that secondarily assembling those contigs would have been fruitful.

As a framework to generate additional complete bacterial genetic sequences from a complex envi-

ronment, secondarily assembling metagenomic bins was successful. However, there is still much

work to be done to optimize the performance of such a framework. As mentioned, the computa-

tional resources and wall clock time required to run is prohibitive for regular use. For each sample,

the full secondary assembly run time was roughly one week while running with 30 threads on a

server with 128GB of memory. The primary assembly portion of the pipeline only takes a mat-

ter of hours, so the vast majority of the run time is dedicated entirely to the secondary assembly

process. If the research questions are not benefited by having complete chromosomal and extra-

chromosomal sequences, then the secondary assembly framework is an computationally expensive

and unnecessary process. However, if the algorithm can be tuned to minimize the run time, it

may become more reasonable for general metagenomic applications. In addition, quality checks

to determine whether the bin prior to reassembly is of higher quality and whether extra round of

reassembly beyond one would improve assembly quality would be other avenues to improve the

framework. As it stands, the current framework yielded minimal to no improvements on general

assembly metrics such as N50, completion, and contamination. Adding in extra checks for quality

could make the framework more useful for generally improving assembly quality and not just a

tool to obtain more complete genomes.
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6.6 The microbiota of an oil refinery wastewater treatment fa-

cility

As a proof of principle of the secondary assembly framework, it was applied to nine samples that

were derived from the wastewater treatment facility of an oil refinery wastewater treatment facility

to characterize their composition. Eight samples were from the biofilms that form on granular ac-

tivated charcoal filters and the final sample was of the flocculent of a collection basin, which were

collected over the time period of over two years. Despite the large number of complete chomoso-

mal sequences, there was a lack of specific taxonomies assigned within the communities. Many

taxonomies pointed to largely uncharacterized clades mostly within the phylum Proteobacteria.

Some of the taxa that were assigned within the communities were Rugosibacter, Ferruginibacter,

Terricaulis, Accumulibacter, Manganitrophus, Macondimonas, Methylotenera, Sphingobium and

Hyphomicrobium. Manganitrophus species within these communities and their potential for oxi-

dation of manganese as an energy source, bioremediation of other heavy metals, and the bioreme-

diation of hydrocarbons was explored in Chapter 4. A number of the other genera listed have been

shown in previous literature to metabolize hydrocarbons and sequester and biotransform heavy

metals [44, 45, 46, 47, 48, 49]. A current limitation is that the taxonomy of many of the assembled

MAGs could not be assigned due to the presumed novelty of the species in the community. Isola-

tion experiments are required to know the true functional capabilities of the individual species and

to properly assign a taxonomy. The composition of the communities is relatively stable over time

with the majority of species-level clusters being found in more than one samples. As such, the

completed genomic sequences assembled in Chapter 5 represent a set of quality sca↵olds to align

to in future community dynamics and metatranscriptomic studies of the involvement that member

species have in the metabolism of hydrocarbons and heavy metals.
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6.7 Future directions

This thesis has advanced the capability to comprehensively analyze both long- and short-read

metagenomic datasets (Figure 6.2). I have applied the techniques to a human health-focused cohort

with mothers who gave birth to infants with spina bifida, a broad comparison of geographically-

based cohorts, and to communities of bacteria growing on charcoal filters and in flocculent. How-

ever, there are still many unexplored applications of the techniques that I developed and room to

improve the usability and sensitivity of the tools.

Figure 6.2: Overview of methods developed within this thesis. On the left is a diagrammatic
depiction of the method for identifying conjugative elements from a raw metagenomic assembly
that highlights their exclusion from metagenomic bins. On the right is a schematic of the improved
contiguity and circularization of assemblies following a secondary assembly of binned contigs.
Created with BioRender

The scale of human metagenomic studies exploring the connections between human health and

disease is vast, but as I previously mentioned, conjugative systems are a substantial blind spot. The

creation of the UHGG has proven to be a worthwhile endeavour [18, 19], and the same principles

that led to its creation would be su�cient rationale to build a similar database for conjugative sys-
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tems. Prior to such an e↵ort, there would first have to be some improvements to the computational

methods proposed in this thesis. On the Data Repository For Human Gut Microbiota, there are

over 26,000 human gut metagenomic samples listed as being publicly available to analyze. On

this scale, improvements to the speed of the process to annotate the raw assembly need to made

to conserve computational resources. Curating a database solely of conjugative proteins from the

UniRef90 database should reduce the run time of annotating the assemblies, while maintaining the

sensitivity advantage that it demonstrated over the pHMM approach (Figure 2.3). Alternatively, the

already computationally e�cient pHMM approach could have its databases expanded to the point

where the gap in sensitivity would be outweighed the reduced burden on computational resources.

With the computational limitations resolved, the construction of a comprehensive conjugative el-

ement database could serve many purposes. For instance, it could be used for applications like

di↵erential abundance analyses for human health conditions or serve as reference for the synthesis

or conjugative systems.

With the number of samples publicly available for re-analysis, a case could be made for a large-

scale and high-quality meta-analysis of the association of conjugative elements and human health

outcomes. The data presented in chapter 3 hint at these associations being relevant in cohorts

beyond mothers who give birth to infants with spina bifida. Conjugative elements and their cargo

could, in some cases, be relevant to the pathogenesis of human diseases, and a meta-analysis would

have the ability to identify such patterns from the data. Care would need to be taken to ensure that

the functions carried as cargo are functionally relevant to the research question as di↵erences in

abundances of conjugative elements could oftentimes simply be a reflection of the abundances of

the bacteria that carry them. As mentioned in the case for spina bifida, conjugative elements can

serve as a vector to carry CRISPR systems that can modulate the microbiome by selectively killing

bacteria [36, 50] or to express other genes of interest [51]. With these applications of conjugative

elements, the conjugative elements do not need to be directly involved with pathogenesis to be of

interest in a meta-analysis. Conjugative systems that belong to the species mediating the negative

health outcomes would also be of interest, as with the Campylobacter hominis. Synthesis of these
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conjugative elements de novo and loaded with a CRISPR system would be selective antibiotic that

could ‘fix’ the microbiota with little overall disruption.

De novo assembly of conjugative plasmids from metagenomic samples will be di�cult with the

current data because assembly with short-read data, which the vast majority of samples are, will not

yield complete conjugative element sequences. If we hope to de novo build additional conjugative

plasmids, knowing that it is being built o↵ of the full sequence found in nature will eliminate the

possibility of building a plasmid that is missing critical elements needed for its propagation and

transfer. Additionally, human gut samples will need to be sequenced and assembled using third-

generation sequencing technologies in tandem with optimal bioinformatic workflows to yield a

greater number of complete genomes and plasmids for this application. Furthermore, there may

be instances where the conjugative element has been rendered non-function by recombination, so

additional checks may be required to ensure the core complement of genes needed for conjugation

are intact and not just present. Improvements to tools for detecting oriT sequences should also be

pursued as an oriT is necessary for conjugation, but at present these tools fall short at detecting

these di�cult-to-predict sequences.

Additionally, complete genomes and plasmids will allow for a greater understanding of community

dynamics and composition. As with the methods for the identification of conjugative elements,

there are improvements to be made with the secondary assembly workflow outlined in chapter 5.

A run time of over a week per sample is far too long to be used in regular analyses, so progress

would need to be made with the e�ciency the algorithm and how it works with all the programs

it interfaces with. Reducing the computation time needed for mapping should be possible by

removing reads that strongly align to a bin from future iterations of mapping in the loop. However,

the bulk of the computation time is spent on assembly, which would require much engineering on

multithreading of the assemblies to optimize the wall-clock time for this step. Additionally, with

the methylation data available, which can associate plasmid with chromosomal sequences [22],

with some third-generation sequencing data, studies should now be able to look at the dynamics of

conjugative elements in di↵erent environments. In theory, the researcher will be able to monitor
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their spread throughout the community and how they vary in abundance when compared to their

cognate genomes. Modelling of the dynamics of conjugative systems in the human gut could be

monitored in real time using a chemostat to mimic the human gut environment [52]. Phenomena,

such as the spread of antimicrobial resistance or CRISPR-carrying conjugative plasmids, could be

modeled and help inform in vivo experiments or public health monitoring e↵orts.

For the applications of the methods that I explored in this thesis, there is still much to be discovered.

For spina bifida, confirmational studies with larger sample sizes will need to confirm the roles of

Campylobacter and Peptoniphilus in the induction of intestinal inflammation and reduced nutrient

uptake in the expectant mothers. As well, transcriptomic, proteomic, and metabolomic experiments

should also be performed in parallel to identify which genes, proteins, and metabolic products of

the gut microbiome are significantly a↵ecting the pathogenesis of spina bifida.

Isolation and study of the Manganitrophus species from chapter 4 would be beneficial to better

understand the organism. While I speculate that it retains the capacity to oxidize manganese, this

would need to be tested following isolation. Using a manganese-laden media to isolate could allow

for a symbiont to be identified as well as demonstrated in the original Manganitrophus nodulifor-

mans publications [37, 38]. Further exploration of the heavy metal resistance and polyaromatic

hydrocarbon metabolism is also warranted for this organism because it was not explored in the

other two publications of the genus.

Metatranscriptomics and metaproteomics of carbon-degrading communities growing on the carbon

filters and in the flocculent would allow the ability to understand how the communities interface

with their environment. Metagenomic analyses only can provide information on what the commu-

nities might be capable of metabolically, but not with certainty. Observing which genes are being

highly expressed when concentrations of hydrocarbons or heavy metals are higher, or in conditions

of ‘upset’ within the reactor system, would highlight what pathways and operons are most impor-

tant for the survival and proliferation of bacteria in these complex communities. Quantification of

the detoxification capabilities of these bacteria in culture could also help clarify the potential of

these communities, or certain important members of the communities, in bioremediation e↵orts.
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Heavy metal and hydrocarbon contamination is a global concern, and a better understanding of

these bacteria that can thrive within these environments could prove to be a missing piece of the

puzzle for solving the issues we face. To help supplement this, additional communities at the

wastewater treatment facilities, such as the flocculent which was sequenced once in chapter 5,

should be further studied. The filtrate that passes through the GAC filters is a combination of the

water that comes with the oil in the pipe, water that is in contact with the oil during refining and

water that is the result of standard waste practices at the refinery. As a result, the source of the oil

may have an e↵ect on the composition of the communities and deserves further investigation.

The broad goal of the thesis was to continue the step-wise improvement of bioinformatic analyses

for microbiome studies. By outlining and applying protocols for the identification of conjugative

elements and the circularization of additional chromosomal and extra-chromosomal elements from

third-generation metagenomic sequencing experiments, I believe I achieved this goal. Continued

application of these protocols, and progress in the improvement of them, will further optimize the

ability to analyze the data generated from microbiome studies.
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Figure A.1: Alignment graphic produced by FastANI demonstrating the alignment of the con-
jugative plasmid identified in sample GAC1 (top) to the published Manganitrophus noduliformans
genome (bottom). The published Manganitrophus noduliformans genome is split into 22 fragments
and the GAC1 plasmid aligns to four.
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Figure A.2: Assembly graph of GAC3 following reference-based assembly. Colouring of edges is
arbitrary.



Appendix B

Supplemental table for Chapter 3

Table B.1: ALDEx2 output for spina bifida microbiome Pfam annotations with e↵ect sizes of an
absolute value greater than 0.8. E↵ect sizes with a negative value have a greater relative abundance
of reads aligning to their open reading frames in the mother who gave birth to infant with spina
bifida. For positive e↵ect size values, it suggest an relative enrichment in the control samples.

Pfam ID Pfam name Benjamini-Hochberg corrected p-value E↵ect size
PF05057 Putative serine esterase (DUF676) 0.174765003 -1.155696146
PF05538 Campylobacter major outer membrane protein 0.432899815 -0.949042263
PF16730 DnaG-primase C-terminal, helicase-binding domain 0.397986629 -0.91006937
PF18644 Phage integrase SAM-like domain 0.46082165 -0.893867793
PF14790 Tetrahydrodipicolinate N-succinyltransferase N-terminal 0.480360128 -0.879814532
PF18527 STT3/PglB C-terminal beta-barrel domain 0.421510122 -0.878682462
PF02516 Oligosaccharyl transferase STT3 subunit 0.429277359 -0.868898852
PF11874 Domain of unknown function (DUF3394) 0.442497833 -0.866719687
PF02433 Cytochrome C oxidase, mono-heme subunit/FixO 0.437774994 -0.862846335
PF08376 Nitrate and nitrite sensing 0.444199746 -0.861641416
PF07655 Secretin N-terminal domain 0.445006513 -0.855857978
PF15436 Plasminogen-binding protein pgbA N-terminal 0.500849144 -0.854846005
PF18472 HP1451 C-terminal domain 0.469412759 -0.832981966
PF04366 Las17-binding protein actin regulator 0.450683565 -0.830455458
PF05573 NosL 0.467580738 -0.817239347
PF04028 Domain of unknown function (DUF374) 0.380245105 -0.816951698
PF10108 Predicted 3’-5’ exonuclease related to the exonuclease domain of PolB 0.490982418 -0.808548941
PF13563 2’-5’ RNA ligase superfamily 0.348532907 0.867253049
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