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Abstract 

Background: Atrial fibrillation (AF) is a prevalent cardiac disease which has been 

associated with increased risk of dementia and cognitive decline. We hypothesize that atrial 

fibrillation leads to regional transient hypoperfusion events in the brain, and that geometric 

variations in the arterial structure called the Circle of Willis (CoW) play a role in these 

events.  

Methods: A computational model was developed to simulate cerebral blood flow in six 

common variations of the CoW. Risk was assessed based on frequency of beat-wise 

regional hypoperfusion events during AF, and sensitivity analysis was performed with 

respect to this model output. 

Results: A key artery in the CoW, called the A1 segment, was found to play the most 

important role in cerebral perfusion. Intrinsic heart rate was also found to influence the 

frequency of hypoperfusion events. 

Conclusions: Our results suggest that heart rate and CoW geometry play important roles 

influencing cerebral hemodynamics during AF. 
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Summary for Lay Audience 

Atrial fibrillation is a common cardiac illness characterized by irregular and dysfunctional 

beating of the heart. We know that patients suffering from atrial fibrillation often have an 

increased risk of early cognitive decline; however, the mechanism underlying this risk is 

not well understood. We hypothesize that atrial fibrillation reduces blood supply to the 

brain, which means the brain receives less than normal amounts of food and oxygen. To 

help our future experiments and clinical trials, this study developed a computer model that 

could test our hypothesis. It is designed to help us better understand how atrial fibrillation 

affects blood supply to the brain. The model can also help the study of varying shapes and 

sizes of large arteries in the brain. The results of these simulations show that atrial 

fibrillation leads to adverse low blood flow events in the brain. Moreover, it was found that 

the heart rate has a large impact on how often these events occur. A lower heart rate resulted 

in fewer harmful events. Finally, it was found that geometric configuration of cerebral 

arteries plays an important role in the severity of low blood flow events caused by atrial 

fibrillation, and patients with a “missing A1” configuration are at highest risk for these 

adverse events. 
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Chapter 1. General 
Introduction 
The brain is the most intriguing organ in the human body. With its 100 billion neurons, 

trillions of glial cells, it is what many say sets us apart from the rest of the animal kingdom. 

The neurons, glial cells, and other tissues are kept alive by blood vessels traversing the 

brain. You are constantly using your brain, engaging your motor cortex to pick up a cup of 

coffee, or your language centers to process a thesis dissertation. Your brain plays a role in 

nearly every aspect of your life, which is why it is critical to maintain its health.  

1.1. Physiological Background 

1.1.1. Blood Flow in the Brain 

The brain consumes an average of 20% of the total body’s energy, despite accounting for 

only 2% if its mass [1]. The brain receives approximately 15% of cardiac output, with 

average cerebral blood flow levels as high as 50 mL/100 g/min [2,3]. Gray matter has an 

even higher average demand at 80 mL/100 g/min, while white matter requires around 20 

mL/100 g/min. Glucose is the main energy substrate used by the brain except during 

extreme periods of starvation or hyperglycemia where ketones are used as an alternative 

energy source. The brain has very little capacity for storage of energy substrates, and 

therefore it requires a continuous blood supply. Oxygen (aerobic metabolism) and glucose 

(glycolysis) are both supplied to the brain via the blood through the cardiovascular system. 

The energy requirements for the brain can be compartmentalized to basal and functional 

needs. Basal energy is required for maintenance of cell integrity with electrochemical 

gradients; cellular transport of molecules; synthesis of proteins, lipids, and carbohydrates; 

and the production, storage, release, and reuptake of transmitters. Functional energy is 

expended in neuronal functioning including generation of electrical activity by the 

pyramidal cells. About 40% of the energy is used for basal needs, while functional activity 

consumes about 60%. 
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The cardiovascular system supplies nutrients to all tissues in the body by a combination of 

two transport mechanisms. The first mechanism is convective transport. This is where 

blood is transported through arteries along a pressure gradient from high to low. High 

pressures are generated via the pumping action of the heart, and valves within the heart 

cause the blood to flow out in the direction of the arteries. Blood flows along the pressure 

gradient through the network of arteries, to arterioles, capillaries, then venules, veins and 

eventually back to the heart. Blood is also circulated between the pulmonary system, where 

it becomes enriched in oxygen. The heart then pumps the oxygen enriched blood into the 

systemic circulation, where it deposits the oxygen and circulates other nutrients. The 

network of blood vessels is crucial to allow blood to perfuse the tissues, flowing in 

capillaries within microns from any point in the body which brings us to the second 

mechanism of diffusive transport. This small distance is necessary to allow diffusive 

transport between the blood and tissues. Diffusive transport is the movement of particles 

through a medium down a concentration gradient. In the case of nutrient delivery, this 

means oxygen and glucose diffusing out of the blood in the capillaries into the cells which 

consume them.  

In addition to the brain having relatively high metabolic demands, it is also very sensitive 

to ischemic damage. Cessations or alterations to cerebral blood flow (CBF) can have 

devastating consequences for cognitive functioning [4], therefore there are several 

mechanisms in place to maintain CBF at healthy levels. The first of these mechanisms is 

collateral vessels. Blood flow in the brain is highly collateralized, meaning that blood to 

one region may be supplied by several vessels (Figure 1). The two common carotid arteries 

(anterior circulation) and the two vertebral arteries (posterior circulation) supply blood to 

the anterior and posterior parts of the brain respectively. The internal carotid arteries (ICA) 

supply the brain and eyes. In general, the size of the area supplied by the artery determines 

the diameter of the cerebral artery [5]. The ophthalmic, posterior communicating (PCoA), 

anterior choroidal, anterior cerebral (ACA), and middle cerebral (MCA) arteries are all 

branches of the ICA, and the majority of blood flow to the cerebrum comes from these 

branches. All the areas supplied by these vessels generally have adequate collateral vessels 

to protect against occlusions, except the middle cerebral artery, and as a result the MCA 

territory is at higher risk of ischemia than other regions of the brain. 
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Figure 1. The Circle of Willis is shown as red tubes that are surrounded by cerebral 

white and grey matter. Individual Circle of Willis arteries are labelled. This thesis 

investigated the role of each artery in the Circle of Willis in the presence of cardiac 

atrial fibrillation. 

The posterior circulation is fed from two vertebral arteries, which conjoin into the basilar 

artery. Branches from these arteries supply blood to the cerebellum and brainstem, before 

bifurcating into the posterior cerebral arteries, which supply the posterior cerebrum. The 

posterior communicating arteries (PCoA) connect posterior cerebral arteries to the carotid 

circulation. 

The Circle of Willis (CoW) represents an anastomosis of the basal cerebral arteries and the 

potential collateral circulation. This ring-shaped structure allows collateral flow to any of 

the major cerebral arteries. It is composed of the anterior communicating segments (ACoA) 

which connect the left and right ACAs; and the two PCoAs, which connect each posterior 

cerebral artery to the ipsilateral MCA. However, the complete CoW pattern is found in less 

than 50% of people; the ACoA and PCoA are frequently missing congenitally, or 
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hypoplastic. While the main function of the CoW structure is to supply collateral blood 

flow to areas of the brain which may be receiving decreased perfusion, missing or 

hypoplastic vessels may restrict this function.  

CBF is also maintained by a system of regulatory mechanisms that ensure sufficient 

nutrients are delivered to all regions of the brain. This is achieved in the cerebral circulation 

by modulating the vascular resistance in order to maintain adequate perfusion in response 

to changing perfusion pressures and metabolic demands. Vascular resistance is dependent 

only on hematocrit, vessel length, and vessel radius, and because the first two of these 

remain effectively constant over short periods of time, blood flow is controlled by altering 

the vessel radius, also called vascular tone. According to Poiseuille’s law vascular 

resistance (R) is inversely proportional to vessel radius (r) to the fourth power, 

R =
P

Q
= 8

μL

πr4
 Equation 1 

Where P is pressure difference across a vessel segment, Q is flow rate, μ is fluid viscosity, 

and L is vessel length. Therefore, even small changes to the vessel radius result in large 

changes to vascular resistance. Passively, vessel radius will decrease when blood pressure 

decreases due to lower forces on the vessel wall. This results in higher resistance in addition 

to lower perfusion pressures, and a large drop off in blood flow. To combat this passive 

effect, vessel tone is actively modulated in response to blood flow levels, acting in contrast 

to the passive effect.  

Vascular tone is modulated by several physiological signals, leading to precise and 

localized control of blood flow levels in the brain [6]. Vascular tone may be decreased (i.e., 

dilation) in response to hypoxia or increased metabolic demand. This signal is thought to 

be in response to increased adenosine levels, which occur both in tissues experiencing low 

oxygenation, and tissues experiencing increased metabolic activity. The response to this 

signal would result in increased blood flow to tissues for which there is a local metabolic 

demand. Nitric oxide levels are another important physiological signal involved in the 

regulation of CBF.  

Nitric oxide is a known vasodilator, and its production in endothelial cells is increased in 

response to shear stress. This means that vessels experiencing high shear stress, which is 
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related to blood velocity, will have decreased vascular tone, and therefore higher blood 

flow. Blood CO2 levels also play a strong role in the regulation of nutrient delivery in the 

brain. CO2 acts as a strong vasodilator in the brain, decreasing tone to increase blood flow 

to any regions with increased CO2 levels.  

Finally, sympathetic nervous activity also plays a role in CBF regulation. The sympathetic 

nervous system works to maintain arterial blood pressure in the entire body by adjusting 

total peripheral resistance. Norepinephrine, a vasoconstrictor, is released from sympathetic 

nerve fibers in response to low systemic blood pressures and acts on systemic arteries and 

arterioles, including in the brain. The effects of metabolic, shear stress, CO2, and 

sympathetic pathways in regulating CBF levels are the most widely accepted and best 

understood mechanism currently, however our understanding is constantly evolving, and 

new mechanisms and pathways may be discovered as research and methods develop. 

1.1.2. Pathophysiology 

Cardiac atrial fibrillation (AF) affects the upper chambers of the heart called the atria 

(Figure 2). During AF, the atrial contractions become erratic which manifests in the 

electrocardiogram as irregular R-R intervals. AF is a known comorbidity that is 

simultaneous to dysfunction in other organs including the brain [7]. The bidirectional 

interactions between the heart and brain (called the heart-brain axis) have been widely 

recognized. In one direction, for example, the brain can have an impact on cardiac 

contractility via sympathetic and parasympathetic nervous system [7]. In the alternate 

direction, reductions, alterations, or irregularities in cardiac output led to adverse effects 

towards tissue in the brain if regulation mechanisms are unable to maintain CBF. AF has 

been implicated in increased risk of early onset dementia and cognitive decline [8]. AF is 

also associated with a fivefold increased risk for thromboembolic transient ischemic attack 

and stroke [9]. It has also been associated with lower total white and grey brain matter 

volumes [10]. The association between AF and decreased brain volume is stronger with 

increased arrhythmia burden and a longer duration of persistent AF [9]. It has been recently 

observed that AF is independently associated with cognitive decline through a range of 

different potential mechanisms including micro and macro embolic events [9]. Whereas 

the links between cardiac diseases such as AF and deleterious brain disorders are well 
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established, the mechanisms remain elusive. One of the main postulated mechanisms is 

reduced CBF due to the RR interval variability characteristic of AF, and reduction or loss 

of atrial systole, which leads to a reduction in stroke volume [11]. Attempts to normalize 

cardiac output by increasing heart rate are inefficient as tachycardia shortens the ventricular 

filling time, contributing to further decrease in cardiac output, and CBF. Cardioversion 

patients were found to have significant improvements in CBF 30 days after treatment if 

sinus rhythm was preserved [12,13]. Pharmaceutical rate control has been a widely used 

method for AF treatment, and recent computational modelling suggests that strict rate 

control (< 80 bpm) can reduce deleterious effects associated with RR variability in AF [11]. 

Patients experiencing paroxysmal AF were found to exhibit similar CBF values as those 

without a history of arrhythmia if measured during sinus rhythm, supporting the fact that 

the presence of arrhythmia at the time of imaging is of key importance [9].  
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Figure 2. Diagram of two hearts comparing normal sinus rhythm to atrial fibrillation. 

A) On the left is a healthy heart under normal sinus rhythm with organized 

propagation of electrical signals (depicted as yellow arrows), and a rhythmic 

electrocardiogram to the right. B) On the left is a heart under atrial fibrillation with 

disorganized and spontaneous electrical impulses, and on the right is a corresponding 

electrocardiogram with an unsteady and erratic signal. Figure inspired by 

(https://www.mayoclinic.org/diseases-conditions/atrial-fibrillation/symptoms-

causes/syc-20350624). 

A reduction of CBF is known to be related to debilitating chronic diseases such as 

Alzheimer’s disease [8]. Over the course of time, loss of biomechanical strength of blood 

vessels promotes cerebral aneurysms, vasospasm, and fatal hemorrhage. The vast clinical 

literature is witness to the prime relevance of cerebral blood flow’s role in health and 

disease. However, current treatment strategies for most conditions remain suboptimal due 
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to poorly understood mechanisms. Basic scientific research is targeted towards 

understanding the mechanisms in the hope to control these diseases. One such basic science 

approach is of mathematical modelling which is becoming increasingly deployed in both 

the clinical and experimental sciences, in addition to being a field in its own merit. We 

believe that uncovering the relationship between cerebral anatomy (e.g., Circle of Willis) 

and function (cerebral perfusion, autoregulation) will permit development of novel 

diagnostic biomarkers that can be generated using existing imaging and clinical testing 

technology. The models presented in this study are expected to be deployed in ongoing 

clinical research.  

1.2. Modelling Background 

1.2.1. Clinical Significance of Mathematical 
Modelling 

The research community’s response to the ongoing pandemic has brought to light the 

extensive applicability of mathematical modelling to help understand disease mechanisms 

and to make decisions. Modelling of cerebral neurons is already an advanced field 

demonstrating the necessity of mathematical data interpretation and data driven prediction 

[14]. Similarly, the modelling-based study of cerebral blood flow is expected to generate 

clinically relevant knowledge and help in the research process. Cerebral disease 

mechanisms are heterogeneous and remain unclear, which is a severe limitation for 

effective and predictable patient treatment. Therefore, intense worldwide investigations 

into mechanisms behind diseases such as AF are being performed in a multidisciplinary 

multifaceted manner [15]. Finding strategies for better individualized treatment has 

therefore become an important goal in treatment strategy planning. In silico clinical trials 

are now rapidly becoming routine and offer the hope of saving volunteers, expenditure, 

and accelerating translation [8]. The advances in engineering and material sciences are 

supplemented and streamlined using modelling of treatment devices such as drug eluding 

stents and wire meshing [9]. However, the use of modelling is yet nascent and requires 

further development to enable its standardization in the clinical research environment. 

Additionally, some modelling techniques used in clinical research such as multi-scale 
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computational fluid dynamics (CFD) currently have large requirements in terms of time, 

computational resources, and user experience. Therefore, there is a need for computational 

models that can be used for clinical insight, with the capability to be run in the hospital or 

at the patient bedside. This thesis provides a few straightforward solutions that can be used 

in our London Ontario Hospitals immediately, using lumped parameter modelling. 

1.2.2. Theory and Mathematics Behind Lumped 
Parameter Modelling 

The model presented in this work is made up of a system of ordinary differential equations 

(ODEs) and delay differential equations (DDEs). A differential equation is an equation 

which relates a function of an independent variable, y, to its derivative, ẏ. An ODE is a 

special case of differential equation in which the function y only depends on one 

independent variable, such as time (t). This property means that ODEs can be used to show 

how the value of y will evolve over time given an initial value for y, without having to 

know the function that describes it. Complex systems may also be modelled by a system 

of coupled ODEs. In this case y is a vector of states, where each derivative ẏ may depend 

on one or many (inhomogeneous ODE), or none (homogeneous ODE), of the values in y. 

In the model developed in this thesis, the heart was considered as external pumps consisting 

of four chambers. In the presence of forcing terms such as the heart the system is called an 

inhomogeneous ODE where the system behavior is dictated by both the function of y as 

well as the forcing terms. The key ODEs that are used in the model are described in section 

1.2.2.1, while the numerical methods used to solve ODEs are described in section 1.2.2.2. 

1.2.2.1. Key Equations 

Equations describing forces and mechanisms are called mechanistic models. Such 

equations are usually based in physical forces and mechanics. An example of mechanistic 

modelling is the use of the resistor-capacitor-resistor (RCR) Windkessel unit. The major 

benefit of this approach to modelling is its ability to predict and discover emergent behavior 

in a system. This is because mechanistic models depend on well understood and accepted 

laws of physics, and therefore model predictions are understood to be reliable. The 

downside to this modelling approach is that it requires a precise understanding of the 
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system, including any forces and mechanisms that might affect it. Practically, this means 

that assumptions and approximations must be made in order to fully encapsulate the 

behavior of the system.  

Equations that calculate an expected output based on an input are called statistical or 

phenomenological models. Statistical models are built based on previous measurements of 

a system. There is no attempt in statistical modelling to describe the mechanisms occurring 

within a system, only to accurately describe the external behavior of the system. The benefit 

of this approach to modelling is that it does not require an intimate understanding or 

representation of the inner workings of a system. This can be very helpful when one wishes 

to describe a system in which all the mechanisms are not fully understood, or which would 

be too expensive to compute. The downside to statistical models is that they cannot predict 

behavior outside of the expected threshold. This is because statistical models are calibrated 

specifically using input and output data for a system, and therefore cannot reliably predict 

behavior outside the normal range. 

            First order filters are used in mathematical modelling to describe phenomena with 

damping behavior. As an ODE, a first order filter can be expressed as: 

dy1

dt
= f(y1, y2, τ, p, t) Equation 2 

where y1 is the state variable, y2 is the input to the filter i.e., some other state value, and τ 

is the time constant of the filter. Using an appropriate function f, the role of τ is illustrated 

in Figure 3. The first is a damping behavior. Depending on the time constant and the 

frequency of the input, oscillations in the input will be decreased in amplitude. The second 

behavior is a phase shift. Depending only on the time constant, input signal to the filter will 

be shifted in phase. ODEs of this form are used extensively in phenomenological and 

mechanistic models. In the presented model, ODEs such as Equation 2 are used extensively 

to describe the dynamics of the baroreceptor mechanism, as well as the cerebral 

autoregulation mechanism, using blood pressures and flows to determine some 

physiological blood pressure and flow signals.  
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Figure 3. Illustration of the effects of a first-order filter (e.g., the basic Windkessel 

model) on a periodic (sinusoidal) signal and a step function signal. The top panels 

represent the input function to the first order filter. The bottom panels illustrate the 

output of first order filters with varying time constants. The time constant is 

represented by tau in seconds. The left panels show the effect on a sinusoidal function, 

and the right panels show the effect on a step function. 

Electrical analogs based upon the Windkessel effect are used extensively in lumped 

parameter modelling of the cardiovascular system (Figure 4). The Windkessel effect refers 

to the similarities between a blood vessel or network, and an elastic reservoir [16]. The 

walls of blood vessels (excluding capillaries) contain elastin making them elastic. Blood 
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vessel walls expand and recoil when blood pressure in the lumen increases or decreases 

respectively. The expansion and recoil of the walls occur over characteristic time scales, 

represented by tau in Eq. 2, that allows the vessels to store some volume of blood over each 

heartbeat. Additionally, as blood flows through the vessels, it is subject to viscous forces, 

which decreases its pressure proportionally to its velocity. In the electrical analogy, the 

flow of blood through a vessel is likened to the flow of electrons through a wire, i.e., 

current, and the blood pressure is likened to the potential electric energy, i.e., voltage. In 

this analogy, a resistor element represents the viscous resistance to blood flow through a 

vessel, and a capacitor represents the compliance of the vessel. The 2-element Windkessel 

unit was formulated by Frank [17] as a circuit with a single capacitor and a single resistor. 

In this formulation, the resistance R was equal to the total peripheral resistance of the 

systemic circulation, given by: 

R =
(Pao,mean − Pven,mean)

CO
 Equation 3 

With Pao,mean and Pven,mean being mean aortic and venous pressure respectively, and CO 

being cardiac output. The value for the capacitance C is given as the ratio of the change in 

volume ∆V over the corresponding change in blood pressure ∆P: 

C =
∆V

∆P
 Equation 4 

The 2-element model provides a reasonable description of the arterial pressure in systole 

and diastole, as well as cardiac output, however over time it was found that the model 

provided inaccurate pressure-flow relation during systole [18–20].  
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Figure 4. Illustration of a Windkessel electrical analogue representation of a blood 

vessel. Blood flows from left to right. Sawtooth lines represent resistances, the two 

parallel lines represent a capacitor and circles represent pressure nodes. The left-

hand side resistance represents the proximal viscous resistance. The capacitance 

represents the ability of the blood vessels to store blood due to its tone. The right-hand 

side distal resistance represents the distal viscous resistance. Pn-1, Pn, and 

Pn+1 represent the upstream (proximal), inside Windkessel element, and downstream 

(distal) pressures that drive flow through the element.   

This shortcoming was overcome by adding a characteristic impedance element to the unit 

as shown in Figure 4, which represents a link to pulse wave dynamics in the aorta [21,22]. 

The characteristic impedance Zc has the same units as resistance, and is given by: 

Zc = PWV ∙
ρ

A
 Equation 5 

where PWV is the pulse wave velocity, ρ is the blood density, and A is the cross-sectional 

area of the proximal aorta [23]. The 3-element formulation of the Windkessel unit was 

found to provide accurate pressure and flow predictions in the aorta throughout the entire 

cardiac cycle. Therefore the 3-element model suffices to describe global pressure and flow 

for most studies [24]. The use of a resistor element for the characteristic impedance also 

causes small errors in the low frequency range of the impedance, which has led to the 

introduction of a 4-element Windkessel unit [25–27] The value for L is often estimated 

based on measured data because there is no simple measurable phenomena from which to 

derive it, and even so it has been found difficult to estimate [23]. 
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As an extension of the principles of the Windkessel model, it has become common to model 

the cardiovascular system as a network of connected Windkessel units. This is done so that 

pressure and flow waveforms may be studied in local regions of the circulation, rather than 

only the global arterial pressure. The network model also allows for additional mechanisms 

to be applied to local regions of the circulation, such as resistance and compliance 

modulation from the baroreceptor mechanism or cerebral autoregulation. Models of this 

form frequently utilize the 3-element Windkessel units, with the formulation for flow as 

follows:  

q =
Pn−1 − Pn

R
 Equation 6 

With Pn−1 and Pn being pressure at adjacent nodes. Pressure at each node is described by 

the following: 

dP

dt
=

qin − qout

C
 Equation 7 

Where qin and qout are the sums of flows into and out of the pressure node respectively. 

The inductor element is neglected in the present work as it is primarily interested in the 

beat-to-beat characteristics of the pressure and velocity waveforms. In a network model, 

the contribution of inductors to pressures and flows is greatest in during large changes in 

flow, however it has been estimated that inertial effects account for less than 1% of stroke 

volume and mean arterial pressure [28]. Therefore, inclusion of inertial effects would serve 

only as cosmetic improvement to the pressure and flow waveforms, while nearly doubling 

the computational cost due to an additional ODE per inductor.  

1.2.2.2. Numerical Methods 

A system of ODEs shows how a system will progress in time from a set of initial conditions. 

The problem of deriving this solution is aptly called the initial value problem (IVP). These 

problems are solved by a variety of numerical strategies which can be executed using a 

computer, thus extending their value from theoretical research to clinical applications by 

the patient bedside. The numerical methods to be discussed below are the explicit forward 

Euler method, the implicit backward Euler method, and finally a family of implicit methods 
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called the backwards differentiation formula (BDF) of which the backward Euler method 

is a member. 

The forward Euler method is the simplest and the most intuitive of the numerical methods. 

It is explicit, meaning that it calculates the state of the system at a later time, based on the 

state of the system at the current time. The solution for y(t) is therefore calculated in steps, 

iterating over values of t with a suitably small time step size of ∆t. The size of ∆t determines 

the accuracy of the solution, with smaller sizes being more accurate. Conversely, smaller 

∆t leads to more computations over the span of t and a more expensive computation in 

total. The solution using the forwards Euler method is as follows. Let us consider an IVP 

for the generic ODE 

ẏ(t) = f(t, y), y(t0) = y0 Equation 8 

and let ti, i = 0, 1, 2, … be a sequence in time for which ti+1 = ti + ∆t. Let Yi be the 

approximate solution to y(ti). The differential equation (Equation 8) is used to obtain Yi+1. 

The slope at the point (ti, Yi) is given by f(ti, Yi). The forward Euler method determines 

the successive point (ti+1, Yi+1) by assuming it lies on the line through (ti, Yi) with slope 

of f(ti, Yi), given by the equation: 

Yi+1 − Yi

∆t
= f(ti, Yi) Equation 9 

which, when rearranged, gives 

Yi+1 =  Yi + f(ti, Yi) ∙ ∆t Equation 10 

Iterating this formula through ti, starting with the known initial value y0, therefore yields 

the approximate solution to y(t). However, physiological models of the brain and heart are 

often stiff involving multiple timescales. The explicit Euler method is often unstable and 

leads to erroneous numerical solutions [29]. In addition, methods such as Eq. 10 must obey 

a restrictive Courant-Frederich-Levy condition which restricts the choice of ∆t  severely. 

Therefore, stable, and accurate methods are a necessity for the model developed in this 

thesis. 

The backwards Euler method is an implicit method, meaning the unknown point 

(ti+1, Yi+1) is computed using the slope f(ti+1, Yi+1), contrary to the explicit method which 
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used the slope at f(ti, Yi). The backward Euler method computes the successive point by 

assuming that the current point (ti, Yi) lies on the line through (ti+1, Yi+1) with slope 

f(ti+1, Yi+1), given by the equation: 

Yi+1 − Yi

∆t
= f(ti+1, Yi+1) Equation 11 

Which, when rearranged, gives: 

Yi+1 = Yi + f(ti+1, Yi+1) ∙ ∆t Equation 12 

The solution is therefore a value for Yi+1 which satisfies the above equation, which may be 

computed using any root-finding algorithm [30]. The implicit method requires additional 

iterative computation relative to the forward Euler method but comes at the advantage of 

increased stability. However, a single step implicit Euler method is restrictive to the 

integration timestep. The timestep restrictions cause the simulations to consume significant 

compute time thus limiting the user’s ability to perform meaningful computer experiments, 

especially when solutions are sought in real time. The current numerical methods 

technology provides significantly more accurate and stable routes to perform the large 

simulations efficiently. Current methods also provide the key practical option of adaptive 

time stepping that permits users to perform large to very large (many) simulations. These 

current methods use the backwards difference formula. 

The backwards difference formula (BDF) is a family of methods for determining the 

solution to a system of ODEs. The BDF uses information from previously computed values 

of Yi to determine the next value. The general formula for a BDF is [31]: 

∑ akYi+k = βf(ti+1, Yi+1) ∙ ∆t

s

k=0

 Equation 13 

Where the coefficients ak and β are derived using the Lagrange polynomial pn,s(t) for the 

points (ti, Yi), … , (ti+s, Yi+s), which is beyond the scope of this work. It can be seen that 

the backward Euler method is a member of the BDF family with s = 1. The advantage of 

using higher order, i.e., higher values for s, is that using more information for the 

integration of the slope yields higher accuracy, as well as increased stability for the 
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solution. The BDF used to integrate the system of ODEs in the present work had s = 6; 

with coefficients found in Table 1.  

𝐚𝟎 10/147 

a1 -72/147 

a2 225/147 

a3 -400/147 

a4 450/147 

a5 -360/147 

a6 1 

β 60 

Table 1. Coefficients for the 6th order BDF formula. 

1.2.3. Current Landscape of Computational 
Modelling 

Mathematical modelling has been a key aspect of cardiovascular research since before 

widespread use of computers. Key works that still hold great weight in the present research 

landscape include Krogh’s description of oxygen delivery in microvasculature [32] and 

Franks formulation of the Windkessel effect and contribution to the Frank-Starling 

mechanism [17, 33], among others.  

The introduction of computers has allowed for the expansion of this theoretical foundation, 

as well as the development of broad new experimental and clinical applications. Guyton 

[34] presented a model of human circulation which encompassed a vast number of 

mechanisms (354 “blocks”) and was based on a systems analysis and experimental data on 

the human cardiovascular system. Suga et al. developed a mathematical description of the 

beating heart which is still used widely to this day [35]. Many of the extensions of to the 

Windkessel model described in Section 1.2.2.1 were made possible by increasing 

accessibility of computers [23].  

Increasingly useful and applicable models continue to be developed, reaffirming that 

lumped parameter modelling continues to hold an important place in medical research. An 
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accurate and highly performant model of blood flow in the systemic circulation was 

developed by Heldt [36]. Cardiac valve dynamics have been described mechanistically 

with broad clinical applications. Cerebral circulation has been modelled by Ursino et al. 

[37] for the study of lumped cerebral hemodynamics in the CoW. A geometrically limited, 

but more functionally encompassing description of CBF with regulation mechanisms has 

also been proposed by Spronck et al. [38]. There is a wealth of mathematics and theory that 

can be applied and expanded for experimental and clinical use in a wide variety of areas. 

Additionally, brain blood flow has been modelled extensively in 3D by multiple research 

groups in Canada and worldwide. Using an advanced software [39], the Marsden group 

investigate multiple blood flow phenomena including those in the brain. Their 

computational fluid dynamics simulations (CFD) are primarily imaging driven and in 3D, 

which makes them informative and detailed in nature. Steinman et al. [40] routinely 

investigate cerebral flow dynamics under pathophysiological conditions. Their work is 

often driven by medical images and thus promises to be of diagnostic utility [41]. It has 

been shown that there is a close link between cerebral vessel geometry (anatomy) and the 

blood flow hemodynamics in it [42]. The importance of computer modelling to predict 

outcomes of medical treatments has been demonstrated by Taylor et al. [43]. In particular, 

Taylor et al. have been instrumental in establishing the CFD methods in relation to human 

blood flow modelling [44,45]. Another robust library called CRIMSON has been 

developed by Figueroa et al. [46] and used extensively to study cerebral CFD driven by 

clinical imaging [47]. Spatially extended 3D modelling is resource intensive with 

simulations requiring over 2 days on several processors. The information gain from 3D 

modelling is uncertain in the early stages of any study. In addition, 3D models have several 

parameters that cannot be informed by measurements introducing an inherent uncertainty 

in the workflow. To rectify the issues to a certain extent, this thesis focuses of reduced 

order modelling i.e., lumped parameter modelling. 
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1.3. Motivation and Thesis Aims 

1.3.1. Current Gap in Knowledge 

Previous modelling studies form the basis for the present work, however the role of cerebral 

vascular structural variants, i.e., CoW variants, in AF-cerebral perfusion relationship 

remains underexplored. As the CoW is known to play an important role in the distribution 

of blood flow to the brain, variants which are present in a large portion of the population 

should be considered while studying the interplay between AF and cerebral 

hemodynamics.  

1.3.2. Hypothesis and Aims 

The hypothesis of this thesis was:  

a) specific blood vessels in the brain affect overall cerebral blood flow; and  

b) feedback mechanisms such as autoregulation may explain recent clinical observation. 

The aims of this thesis were to: 

a) develop an open-source lumped parameter model of cerebral blood flow 

pathophysiology to permit experimentally-clinically relevant investigations; and 

b) apply the model to uncover the role of Circle of Willis anatomy variants on cerebral 

blood flow in the presence of atrial fibrillation (Chapter 2). 

1.3.3. Overview of What Was Achieved 

In this work, a composite 0D model of human circulation, including a detailed cerebral 

vasculature and functional baroreceptor feedback mechanism, was developed to discover 

the effects of AF on cerebral perfusion in cases with common CoW variants. Composition 

of the model is described briefly in section 2.2.2, and further in the appendix. The model 

is used to assess cerebral hemodynamics during AF in six common CoW variants. The 

methods and results for this assessment are given in detail in section 2.2.4 and 2.3 

respectively. The model itself is also assessed using sensitivity analysis as described in 
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section 2.2.5, which details the parameter values which are correlated to model outcomes, 

and 2.3 which details the results of said analysis. 

Additionally, a comprehensive pipeline for the CFD analysis of patient specific aneurysm 

geometries is presented in appendix 5. This pipeline uses only the free, open-source 

software packages SimVascular and Paraview.  
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Chapter 2. Computational 
Modelling of Cerebral 
Hemodynamics During Atrial 
Fibrillation: A Lumped 
Parameter Approach 
This chapter is based upon the following publication: Hunter, T. J.; Joseph, J.J.; Anazodo, 

U.; Kharche, S.R.; McIntyre, C.W.; Goldman, D. Computational Modelling of the Role of 

Atrial Fibrillation on Cerebral Blood Perfusion. Appl. Sci. 2022, 12(3), 

1750. https://doi.org/10.3390/app12031750. [1] 

2.1. Introduction 

Atrial fibrillation (AF) currently affects a large part of the population. In addition to 

commonly known risks such as strokes and transient ischemic attacks, AF has been 

associated with increased cognitive decline and early dementia [2]. AF is known to reduce 

cerebral perfusion [3], and silent cerebral ischemia is thought to be a key mechanism in the 

increased cognitive risk [2,4]. Ongoing imaging research strongly suggests that a disrupted 

cerebral blood flow promotes debilitating early dementia [5]. The effects of AF on cerebral 

perfusion may be modulated by cerebral vascular geometry, and specifically by common 

congenital Circle of Willis (CoW) variants [6,7]. The function of a complete CoW is to 

ensure consistent distribution of blood flow to all regions of the brain. In cases with missing 

segments in the CoW, regions of the brain may be more susceptible to harmful altered 

hemodynamics. The aim of this work is to investigate whether structural variants of the 

CoW behave differently with respect to cerebral perfusion in AF conditions. 

Multi-scale hemodynamic modelling has been used to study cerebral circulation and gain 

insight into patient-specific hemodynamics [8]. 3D modelling is a useful tool, which 

provides realistic and accurate patient-specific insight into patient hemodynamics. It has 

increasingly been used as the gold standard in computational hemodynamic studies as 



 25 

computational fluid dynamics platforms become more accessible [9]. However, current 3D 

methods remain computationally resource intensive, require super high-definition vascular 

imaging, and are therefore unsuitable for applications studying large population 

hemodynamics. 

In contrast to 3D hemodynamic models, lumped parameter (0D) models are known to 

provide clinically relevant information using significantly less time and computational 

resources [8]. 0D models are particularly useful in studies where there are poorly 

understood outcomes of diseases with well understood mechanisms because of their ability 

to assess the impact of a range of parameters or cases on a particular outcome. This lab has 

previously used 0D models to gain insight into the causes of pediatric hypertension [10] 

and investigate therapeutic hypothermia [11]. Anselmino et al. [4] used 0D modelling to 

investigate the interplay between AF and cerebral hemodynamics. They determined that 

AF does indeed expose the brain to the risk of ischemia via low blood flow, or so-called 

hypoperfusion events. Saglietto et al. [12] also used 0D modelling to predict that the 

optimal goal for a heart rate control strategy should be around 60 bpm, considered strict 

rate control. 

The findings by Saglietto et al. [12] contrast with the common practice of lenient rate 

control (<110 bpm), which is based on findings from the RACE II trial, a large, randomized 

control trial [13]. The RACE II trial was a consequential study, which found that, compared 

to lenient rate control (<110 bpm), strict rate control (<80 bpm) was not more effective in 

reducing mortality in persistent AF patients. These findings have informed treatment 

strategies for persistent AF patients; however, they do not consider the increased risk for 

dementia, later confirmed by de Brujin et al. [2] in a longitudinal study. Modelling studies 

following de Brujin et al. [2] have aimed at elucidating the mechanism behind the increased 

risk and finding potential treatment strategies that mitigate it. 

Previous modelling studies form the basis for the present work. However, the role of 

cerebral vascular structural variants, (CoW variants) in the context of AF-cerebral 

perfusion relationship remains underexplored. As the CoW is known to play an important 

role in the distribution of blood flow to the brain, common variants should be considered 

while studying the interplay between AF and cerebral hemodynamics. In this study, a 
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composite 0D model of human circulation with detailed cerebral vasculature was 

developed to discover the effects of AF on cerebral perfusion in cases with common CoW 

variants. Model composition is described in Section 2.1. The model is used to assess 

cerebral hemodynamics during AF in all six common CoW variants, the strategy for which 

is described in Section 2.4. Finally, the model itself is also assessed using sensitivity 

analysis as described in Section 2.5, which details the parameter values that are correlated 

to model outcomes. 

2.2.  Methods 

This study is a modelling study that examines the role of varying blood vessel geometries 

in AF-related cerebral hypoperfusion. A previously developed composite 0D model [1] 

(Figure 5) was used to simulate cerebral hemodynamics under control and AF conditions. 

Six common variants of CoW geometry were modelled as separate cases, and the results 

for each are presented. Sensitivity analysis was also performed on the model to assess 

model parameters that had the greatest impact on simulated outcomes. 

2.2.1. Model Components 

The 0D model is a composite model that consists of whole-body circulation, a blood-

pressure modulated baroreflex control mechanism, and detailed cerebral circulation with 

an autoregulation function. All model parameters were inherited from the literature values, 

unless otherwise stated. 

The whole-body circulation model was adapted from the model published by Heldt [14]. 

It consists of a network of blood containing elastic Windkessel compartments, which 

represent individual, or networks of, blood vessels. The time-dependent change in pressure 

within each compartment is a function of the change in volume (i.e., flow in or out) divided 

by the compliance of the compartment shown by the equation: 

dP

dt
=

(qin − qout)

C
 Equation 14 

where P is the compartment pressure, t is time, q denotes flow rate, and C denotes 

compliance. Flow between connected compartments is calculated using the equation:  
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q =
(Pp − Pd)

R
 Equation 15 

where Pp and Pd denote proximal and distal pressure respectively, and R denotes resistance. 

 

Figure 5. Electrical analogue of whole-body blood flow model. The green shaded area 

(top) represents the cerebral circulation, including the complete Circle of Willis, distal 

circulation, and cerebral spinal fluid compartment, which are further detailed in 

Figure 6. The red shaded region (middle) represents the heart, including the four 

pumping chambers of the heart and valves, as well as an aortic compartment. The 

blue shaded region (bottom) represents the systemic circulation, including 

splanchnic, kidney, legs, upper body, lungs, and venous circulation. The symbols 

represent electrical elements shown in the figure legend. 
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The pumping heart is represented as four compartments with variable elastance (inverse of 

compliance), representing the four chambers of the heart. The time-dependent elastances 

of ventricles and atria were calculated using activation terms. The equation for atrial 

activation is:  

acta = {

1 − cos(π ∙ tloc ta,sys⁄ )

1 − cos(2 ∙ π ∙ (tloc − ta,sys) ta,sys⁄ )

0

    

if 0 < tloc ≤ ta,sys

if ta,sys < tloc ≤ 1.5 ∙ ta,sys

 otherwise

 Equation 16 

in which acta is the activation term, tloc is the time since the initiation of the cardiac cycle, 

ta,sys is a contraction timing parameter. Similarly ventricular activation is calculated using: 

actv = {
1 − cos(π ∙ tloc − tav ts⁄ )

1 − cos(2 ∙ π ∙ (tloc − tav − ts) ts⁄ )
0

    
if tav < tloc ≤ tav + ts

if tav + ts < tloc ≤ tav + 1.5 ∙ ts

 otherwise

 Equation 17 

where tav is the atrioventricular time delay, ts is a contraction timing parameter. The 

activation constants are applied to each heart compartment using the equation:  

E = Edias + 0.5 ∙ (Esys − Edias) ∙ act Equation 18 

where Esys and Edias are systolic and diastolic elastances respectively. 

Additionally, backflow is prevented in the heart and systemic veins by setting flow between 

compartments equal to 0 if distal pressure is greater than proximal pressure. A simplified 

caricature of the circulation model is presented in Figure 5, in which systemic 

compartments are represented by boxes, and connections are indicated by straight lines.  

The baroreflex is a feedback mechanism works to maintain hemodynamic homeostasis. It 

modulates peripheral vascular resistance, heart rate, and heart contractility to maintain 

systemic blood pressure and flow at healthy levels. The baroreceptor mechanism is 

implemented according to the model proposed by Lin et al. [15]. The model dynamically 

calculates sympathetic nervous activity (SNA) and parasympathetic nervous activity 

(PNA) based on the mean arterial pressure, as well as arterial carbon dioxide partial 

pressure (PCO2), which is assigned a constant value of 40 mmHg. Values for sympathetic 

nervous activity and parasympathetic nervous activity are then used to dynamically 

modulate peripheral vascular resistance, the intrinsic heart rate, as well as heart contractility 

via modulation terms [15]. 
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Figure 6. Electrical analog diagram of the cerebral circulation module. All resistances 

and capacitances are labeled, values and descriptions for which are given in Appendix 

A1. PA is the inlet, given as the arterial pressure value from the systemic model. PV is 

the outlet, given as superior vena cava pressure from the systemic model. 

The cerebral circulation model is comprised of a network of elastic vessel compartments 

detailed in Figure 6. Pressure and flow are governed by similar equations as the systemic 

model (Ursino and Gianessi [16]). The model implements cerebral autoregulation, which 

is a physiological mechanism that alters vascular resistance and compliance in order to 

maintain cerebral blood flow within healthy ranges in the case of widely varying pressure. 

Each downstream region (Figure 6, RA, LA, RM, LM, RP, LP) is regulated by an 

autoregulation function comprised of two integrated signals which are given as ODEs. The 

first is blood flow rate in the region, which is calculated dynamically. The ODE for this 

signal is given as, 



 30 

𝑑𝑥𝑎𝑢𝑡,𝑗

𝑑𝑡
= −

𝑥𝑎𝑢𝑡,𝑗 + 𝐺𝑎𝑢𝑡,𝑗 (
𝑞𝑗 − 𝑞𝑛,𝑗

𝑞𝑛,𝑗
)

𝜏𝑎𝑢𝑡,𝑗
 

𝑗 = 𝑟𝑎, 𝑙𝑎, 𝑟𝑚, 𝑙𝑚, 𝑟𝑝, 𝑙𝑝; 

Equation 19 

where 𝑥𝑎𝑢𝑡,𝑗 is the autoregulation signal, 𝐺𝑎𝑢𝑡,𝑗 is a gain value, 𝑞𝑗 is the volumetric flow 

rate in the region j, 𝑞𝑛,𝑗  is the normal value for volumetric flow rate in the region j, and 

𝜏𝑎𝑢𝑡,𝑗is the time constant for the filter function. The second signal is from arterial PCO2, 

which is assigned a value of 40 mmHg. The signal is calculated with a similar equation, 

with the addition of an activation function. These are not detailed here because the present 

study does not investigate the effect of varying arterial PCO2, however the interested reader 

may find the equations in the code or Ursino et al. [16]. Distal compliances are dynamically 

calculated by passing these two signals through a sigmoidal relationship with upper and 

lower saturation levels, given by the equation 

𝐶𝑑,𝑗 =
𝐶𝑑0,𝑗 ∙ {(1 − ∆𝐶𝑑,𝑗/2) + (1 + ∆𝐶𝑑,𝑗/2) ∙ 𝑒𝑥𝑝[(𝑥𝑎𝑢𝑡,𝑗 − 𝑥𝑎𝑢𝑡,𝑗)/𝑘𝐶𝑑,𝑗]}

1 + 𝑒𝑥𝑝[(𝑥𝑎𝑢𝑡,𝑗 − 𝑥𝑎𝑢𝑡,𝑗)/𝑘𝐶𝑑,𝑗]
 Equation 20 

where 𝑘𝐶𝑑,𝑗 is a constant parameter, inversely proportional to the central slope of the 

sigmoidal curve, and 𝐶𝑑0,𝑗 and ∆𝐶𝑑,𝑗 are the central values and the amplitude of the 

sigmoidal curves in the different distal regions. Blood flow from the whole-body model to 

the cerebral model was allowed by connecting the basilar and internal carotid arteries to 

the aortic compartment, and by connecting the cerebral outlet vein to the superior vena 

cava compartment. 

This work considers the six common variants of the Circle of Willis found in the cerebral 

vasculature, represented in Figure 7 [7]. All variants, aside from the complete variant, are 

characterized by one or multiple missing segments of the CoW (Figure 8). To model the 

absence of the relevant cerebral vessel, its inlet and outlet flow was assigned a nil value. 
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Figure 7. Caricature of the complete Circle of Willis. Blood flows into the Circle of 

Willis through the internal carotid arteries (ICA) and the basilar artery (BA). RA: 

Right anterior artery; LA: left anterior artery; RM: right middle artery; LM: left 

middle artery; RP: right posterior artery; LP:  left posterior artery; ACA1: pre-

communicating anterior cerebral artery; PCoA: posterior communicating artery; 

and PCA1: pre-communicating posterior cerebral artery. 
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Figure 8. Caricature representations of all the common CoW variants. Variant 1 has 

all CoW vessels. Variant 2 has a missing posterior communicating artery (PCoA). 

Variant 3 has both missing PCoAs. Variant 4 has a missing precommunicating 

anterior cerebral artery, ACA1, segment. Variant 5 has a missing precommunicating 

posterior cerebral artery, PCA1, segment. Variant 6 has a missing PCoA and 

contralateral PCA1 segment. 

2.2.2. Atrial Fibrillation 

Each instance was simulated under AF and control conditions. The control was defined as 

having normal sinus rhythm (NSR) with stochastic RR intervals sampled from a normally 

distributed pink noise generator [17]. AF was modelled by assigning stochastic RR 

intervals sampled from an exponentially modified Gaussian distribution around a mean 

heart rate as shown in Figure 9, modifying ventricular elastances (contractility), and 
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assigning nil atrial contractility [4,17–19]. Pink noise and exponential samples were 

generated using in-house MATLAB scripts. 

2.2.3. Numerical Methods 

The model used in this study has 57 coupled stiff ordinary differential equations (ODEs) 

and was implemented in the C programming language. The SUNDIALS library [20] with 

in-house modifications was deployed to generate stable and accurate numerical solutions. 

The maximum integration timestep in the adaptive and implicit solver was 0.001 s, which 

was found to provide the same solution when the timestep was halved. The solutions were 

obtained using a relative tolerance of 10−6, with an accuracy of O(dt6). Each instance of the 

simulation could be processed by available computing resources running Red Hat Linux 

within 60 s. Instances were trivially parallelized using GNU Parallel [21] in order to run a 

large number of instances (104) on multi-core compute nodes. 
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Figure 9. Stochastic RR interval assignment. Top row: Probability distribution 

functions for sampled RR intervals in normal sinus rhythm (A), and AF (B) at shown 

heart rates. C: Sampled RR intervals with mean of 70 bpm over the span of 5000 beats 

under NSR (blue line) and AF (red line) conditions. 

2.2.4. Hemodynamic Differences in CoW Variants 

Blood flow was simulated in each variant at nine different intrinsic heart rates (50 to 130 

bpm in steps of 10 bpm) in accordance with clinical practice [22]. The probability 

distribution functions underlying the RR intervals and the representative RR interval time 

series are illustrated in Figure 9. In each simulation, the number of hypoperfusion events 

was recorded to represent cerebral perfusion deficit. Derived measurements were the 

number of hypoperfusion events in each vascular bed over the 5000 beats of the simulation. 

A hypoperfusion event in any vascular bed was defined as a heartbeat in which the mean 

blood flow through the vascular bed fell below the 5th percentile of blood flow in the 

corresponding NSR experiment. 
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2.2.5. Sensitivity Analysis 

Sensitivity analysis is a tool that provides a comprehensive understanding of the workings 

of a computational model with respect to its parameters and a specified modelling outcome 

[23]. The model has 95 parameters, which include all resistances, compliances, vessel 

geometry attributes, time constants, and scaling factors. Parameters’ descriptions and 

acronyms, as well as their control values relevant to this work, are provided in Table 2. 

Model behavior was defined as the total number of hypoperfusion events in the distal 

cerebral circulation over a 5000-heartbeat simulation. 

To permit sensitivity analysis, a control model population of 104 instances was constructed. 

To generate the population, 95 modelling parameters were each randomly sampled 

simultaneously from uniform distributions using a non-repetitive Mersenne Twister 

random number generator [24]. The sampling was constrained using Latin Hypercube 

Sampling [25]. The lower and upper limits adopted for each parameter’s uniform 

distribution were obtained by multiplying the literature value by 0.5. for the lower limit, 

and by 2.0 for the upper limit. The adopted limits provided a large range sampling for each 

parameter. The model parameters and model outputs were stored for further analysis. 

Sensitivity analysis, which ranked parameters according to their impact on model behavior, 

was performed using partial rank correlation coefficients (PRCC) [26].  
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Parameter Description Baseline Value 

  Systemic circulation   

HR0 Intrinsic heart rate 75 bpm 

Edias,rv Right ventricular diastolic elastance. 0.07 (mmHg ml−1) 

Esys,rv Right ventricular systolic elastance. 1.3 (mmHg ml−1) 

Esys,ra Right atrial systolic elastance. 0.74 (mmHg ml−1) 

Edias,ra Right atrial diastolic elastance. 0.3 (mmHg ml−1) 

Edias,lv Left ventricular diastolic elastance. 0.13 (mmHg ml−1) 

Rpv Pulmonary venous resistance. 0.01 (mmHg s ml−1) 

  Cerebral circulation   

Gaut Autoregulation function gain. 0.9 (unitless) 

tauaut Autoregulation function time constant. 20 (s) 

Cd Distal cerebral arterial compliance. 200 (ml mmHg−1) 

kR Distal cerebral resistance scaling term. 13,100 (mmHg−3 s ml−1) 

Table 2. Model parameters relevant to PRCC analysis. 

To compute PRCC, first the normally distributed parameters (xi) as well as the observed 

outputs (yj) were rank transformed. Then, the linear effects of other additional variables 

are accounted for by expressing each as a linear regression of the inputs, 

x̂j = a0 + ∑ akxk

N

k=1
k≠j

, and ŷj = b0 + ∑ bkxk

N

k=1
k≠j

 Equation 21 

using residuals defined as rxi = xj − x̂j and ryi = yj − ŷj, PRCC is defined as the 

correlation among these residuals normalized using their respective variances, i.e. 

PRCC(xi, yj) =
Cov(rxi, ryj)

Var(rxi)Var(ryj)
 Equation 22 
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As evident in the above equation, PRCC assumes an underlying statistical model that is 

linear (regression), and assumption of monotonicity provides the strength of the linear 

relationship between a given pair of parameter and output [26, 27]. The PRCC indices 

range from −1 to +1. 

2.3. Results 

Model output statistics are presented from a single simulation instance with CoW variant 

1 (complete CoW) at 80 bpm in Table 3. The statistics from the AF case are shown to be 

similar to those in the NSR case. Median systemic blood pressures of 117.44/77.81 mmHg 

(systolic/diastolic) for NSR and 119.51/78.95 mmHg for AF are shown to be similar to 

physiological levels. Additionally, total cerebral blood flow is 12.54 mL s−1 for the NSR 

case and 12.31 mL s−1 for the AF case. 

Output Name Output Values 

  NSR AF 

Pa,sys (mmHg) 117.44  21.35 119.51  17.45 

Pa,dias (mmHg) 77.81  15.85 78.95  16.64 

QACA (ml s−1) 0.99  0.37 0.95  0.45 

QMCA (ml s−1) 3.68  1.21 3.64  1.37 

QPCA (ml s−1) 1.47  0.52 1.44  0.59 

CBF (ml s−1) 12.54  4.24 12.31  4.78 

Table 3. Model output statistics under NSR conditions. 

Model output statistics for a simulation run with CoW variant 1 (complete CoW), at an HR 

of 80 bpm under AF and NSR conditions are shown in Table 3. Systemic pressure and 

cerebral blood flow statistics are shown to be similar in both NSR and AF cases. Values 

are shown as median standard deviation. Pa,sys: Arterial systolic pressure; Pa,dias: Arterial 

diastolic pressure; QACA: Anterior cerebral artery flow rate; QMCA: Middle cerebral artery 

flow rate; QPCA: Posterior cerebral artery flow rate; CBF: Cerebral blood flow. 
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The model has demonstrated that large variations in blood pressure are propagated through 

the large arterial circulation and have a high impact on small vessels in the distal cerebral 

circulation, annotated as RA, LA, RM, LM, RP, and LP in Figure 7. This effect is 

demonstrated in Figure 10 where a drop in aortic blood pressure due to a long RR interval 

is associated with two consecutive hypoperfusion events. The example shows aortic blood 

pressure and simultaneous blood flow into the LM in a control and AF case, colored in blue 

and red, respectively. On panel A, the dip in blood pressure can be seen in the AF case 

between seconds 1 and 3. Corresponding with this dip, two hypoperfusion events are 

annotated with black in panel B, with horizontal lines indicating the mean blood flow value 

during the heartbeat to show that it is indeed below the fifth percentile of normal blood 

flow. 

 

Figure 10. Hemodynamic outputs of a simulation of AF (red) and NSR (blue) at 70 

bpm in the normal CoW. A: Aortic blood pressures. Under NSR the heart rate is 

stable giving rise to periodic aortic blood pressure. In contrast, under AF the heart 

rate is erratic that may promote a disproportionate loss of aortic blood pressure. B: 

Blood flow through the left middle distal artery with hypoperfusion events shown in 

black. A typical hypoperfusion event is shown with horizontal black lines overlayed 

on the AF related flow (red lines) whenever perfusion was below the 5th percentile 

threshold that was considered as a hypoperfusion event. 

The heart rate and vascular geometry dependence of hypoperfusion events is illustrated in 

Figure 11. For each of the six common variants of the CoW, total hypoperfusion event 

counts are shown for simulations at imposed heart rates ranging from 50 to 130 bpm. 
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Counts include hypoperfusion events at each of the six distal regions of the brain over the 

entire 5000 heartbeat simulation, therefore the maximum possible count is 30000. 

 

Figure 11. A grid of bar charts, in which each panel shows the number of 

hypoperfusion events found at a range of heart rates in a particular CoW variant. 

Each Cow variant was simulated for 5000 heart beats at each heart rate from 50 to 

130 bpm.  

All variants displayed similar behavior within the range of heart rates examined, with some 

differences in the number of counts, as well as the point at which they have the highest 
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hypoperfusion count. Variant 1, with a complete CoW, is represented in Figure 11 (top 

right). This variant had a minimum count occurring at a heart rate of 50 bpm with 178 total 

events, and a maximum count at 120 bpm with 2048 total events. Variant two, with a 

missing PCoA, is represented in Figure 11 (top left). This variant had a minimum count at 

50 bpm with 264 events, and a maximum count at 120 bpm with 2248 events. Variant 

number three, with both PCoAs missing, is shown in Figure 11 (middle left). It had a 

minimum count at 50 bpm with 268 events, and a maximum count at 130 bpm with 2120 

events. Variant four, with a missing ACA1, is represented in Figure 11 (middle right). This 

variant had a minimum count at 50 bpm with 675 events, and a maximum count at 110 

bpm with 2861 events. Variant five, with a missing PCA1, is represented in Figure 11 

(bottom left). This variant had a minimum count at 50 bpm with 211 events, and a 

maximum count at 120 bpm with 2458 events. Variant six, with a missing PCoA and 

contralateral PCA1, is represented in Figure 11 (bottom right). This variant had a minimum 

count at 50 bpm with 97 events, and a maximum count at 110 bpm with 2386 events. All 

variants had minimum counts at a 50 bpm heart rate. Maximum points varied between 

different variants, although all were within 110 to 130 bpm. Variant 3 is notable in that 

there is no count drop off at 130 bpm as there is in all other variants. Overall, all variants 

exhibit similar behavior, increasing count with bpm, up to a maximum around 120 bpm. 

An example of beat-wise mean flow distributions for a set of simulation instances at 120 

bpm are shown in Figure 12. Beat-wise mean flow is defined as the mean blood flow level 

during a cardiac cycle to a specified region of the brain. The data shown are beat-wise mean 

flow to the left medial (LM) region of the brain at 120 bpm, in variants 1, 4, and 5. These 

variants were chosen as they represent the complete CoW, and both cases with a major 

arterial segment missing. For the NSR case, the flow distributions (mean  std. dev., ml s-

1) are 3.49  0.23 for variant 1 (complete CoW), 3.47  0.25 for variant 4 (missing A1), 

and 3.46  0.25 for variant 5 (missing P1). For the AF case, the flow distributions (mean  

std. dev., ml s-1) are 3.60  0.38 for variant 1 (complete CoW), 3.58  0.40 for variant 4 

(missing A1), and 3.60  0.37 for variant 5 (missing P1). Comparing the distributions from 

Figure 12A to those in Figure 12B shows that the primary reason for the occurrence of 

hypoperfusion events is a wider distribution of flow levels in the AF cases, as opposed to 

lower mean flow levels. 
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Figure 12. Histograms of beat-wise mean flow distributions in NSR and AF. Flow 

distributions are taken from flow to the left medial region. The top panel shows 

distributions for the NSR case, and the bottom shows distributions for the AF case. 

Three CoW variants are represented: variant 1 (complete CoW) in blue, variant 4 

(missing A1) in orange, and variant 5 (missing P1) in green. 
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Figure 13 illustrates alterations in cerebral blood flow heterogeneity between the six 

variants. Under AF conditions, the left middle, left anterior, and left posterior regions 

experience a balanced outflow in variants 1 through 4 (Figure 13 variants 1-4), indicating 

virtually uniform cerebral perfusion. Alternatively, variants 5 and 6 show flow patterns that 

are more irregular. Both these variants also have either out-of-phase or negative-flow 

amplitude in the LP region relative to the other two regions shown. Additionally, flow 

oscillations in the LP region for these two variants have much larger amplitudes than flow 

to the other regions and compared to all flow in the other variants. 
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Figure 13. Perfusion to various parts of the brain, represented by outflow at three 

distinct vessel terminals. In all panels, black lines show blood flow rate in the left 

posterior (LP) region, blue lines show blood flow rate in the left anterior (LA) region, 

and red lines show blood flow rate in the left medial (LM) region. Blood flow rate was 

normalized by the mean flow rate for the respective regions. A: complete CoW. B: 

missing PCoA. C: Missing both PCoAs. D: Missing A1. E: missing P1. F: missing 

PCoA and P1. 
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As illustrated in Figure 14, the maximal PRCC values regarding hypoperfusion count are 

the intrinsic heart rate (HR0), Edias,rv, Esys,rv, Gaut, and Edias,ra. Notably, HR0 ranked the 

highest for each variant, with varying amplitudes across the variants. Additionally, 

mechanical characteristics of the right ventricle and atria have high PRCC values, i.e., 

Edias,rv, Esys,rv, Edias,ra, and Esys,ra. Gaut, which plays a role in the cerebral autoregulation 

mechanism, also has a high PRCC value for all variants. 

 

Figure 14. PRCC values for hypoperfusion count for each of the 6 considered CoW 

variants. The 5 PRCC values with the greatest magnitude are shown for each case 

and are ordered from greatest to least magnitude. Symbols are described in Table 2. 

2.4. Discussion 

While current treatment methods for AF, such as heart rate control and atrial ablation, are 

assessed based on treatment mortality, there is growing evidence that other factors, such as 

the impact on cognitive function, should be considered [2]. As research continues in this 
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field, the results of the present study suggest that the cerebrovascular structure should be 

considered in treatment planning to ensure better clinical outcomes. 

The present model is a composite of previously published models. It is based on established 

biophysical modelling techniques, i.e., lumped-parameter modelling using Windkessel 

compartments. The components have been used previously to model a variety of disease 

cases, including AF. While direct model validation with in vivo data was not within the 

scope of the study, model outputs were presented for comparison with published values. 

Median arterial blood pressures (systolic/diastolic) were 117.44/77.81 mmHg and 

119.51/78.95 mmHg for NSR and AF, respectively, which are considered to be within 

healthy ranges. Additionally, blood flow in major cerebral arteries is presented for 

comparison with measured values published by Zarrinkoob et al. [28]. Zarrinkoob reports 

blood flow in the ACA, MCA, and PCA to be 12%, 21%, and 8% of total CBF, 

respectively. The model shows corresponding values of 8%, 29%, and 12% for the NSR 

case, and 8%, 30%, and 12% for the AF case. Therefore, the model reflects clinically 

measured blood flow distribution, with predominant blood flow occurring in the MCA. 

Variations from regular blood pressure in large arteries due to AF were shown to be 

associated with large changes in blood flow in the distal circulation of the brain (Figure 

10). These changes lead to occurrences of critical hypoperfusion events in the brain, which 

may lead to silent cerebral ischemia, damaging brain tissue over time. The present 

modelling of this phenomenon is in agreement with previous works [1,4,12], and is the 

primary motivation for further investigation into the impacts of AF with respect to the 

cerebral circulation. Additionally, in Figure 10, it can be observed that the initial 

hypoperfusion seen at 2–4 s is followed by hyperperfusion from 4–7 s. This is to be 

expected because of the reflexive nature of the autoregulation mechanism. The 

autoregulatory function modulates the resistance and compliance of the downstream 

cerebral vessels within which the blood flow is being observed. The autoregulation 

function acts on a time scale of approximately 20 s, therefore there is a small delay between 

the drop in blood flow and the response of decreased resistance and increased compliance. 

This small delay in autoregulation function is thought to be the reason spontaneous drops 

in arterial pressure due to irregular heartbeats can cause transient hypoperfusion in the 

brain. 
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The result illustrated in Figure 11 shows that all considered CoW variants follow largely 

the same pattern with respect to the effect of heart rate on hypoperfusion frequency. All 

variants had a minimum hypoperfusion count at 50 bpm (in the heart rates considered), 

with the maximum occurring around 120 bpm. The most consequential result from this 

section is the result from variant 4, shown in Figure 11D. Variant 4 has a minimum 

hypoperfusion count of 675 at 50 bpm, which is over 2.5 times higher than variant 3, which 

has the next highest minimum. This demonstrates that although patients with CoW variant 

4 may respond to a heart rate control strategy, it may not be sufficient to protect against 

hypoperfusion in the distal circulation of the brain. Based on this result, it is recommended 

that for patients with variant 4 of the CoW, alternative treatment methods be used in 

addition to, or instead of, heart rate control, in order to avoid ischemic cerebral damage.  

It should be noted that this finding, along with previous modelling results [12], contradicts 

the recommendation made based on the RACE II trial [13]. The study found that relative 

to strict rate control, lenient rate control was as effective in preventing mortality and other 

outcomes and was easier to achieve. This finding has informed clinicians on rate control 

strategies in relation to preventing mortality in recent years. However, cognitive 

impairment/dementia was not considered to be outcomes of this study, and heart rate had 

not yet been linked to hypoperfusion events associated with AF. Therefore, there is now 

growing evidence supporting strict rate control for preventing deleterious cognitive 

outcomes. 

It was shown that certain variants could lead to increased heterogeneity in cerebral blood 

flow, with increased blood flow in some regions, and decreased in others (Figure 13). In 

particular, both variants with a missing PCA1 segment (variants 5 and 6) displayed 

heterogeneous flow patterns, as well as having larger amplitudes of the oscillatory flow 

rate than the other variants. This indicates that the PCA1 segment plays a key role in the 

distribution of blood flow with respect to homogeneity among the distal cerebral vessels. 

Although the large oscillations in blood flow to the left posterior circulation present in these 

variants are not considered harmful by the metric of hypoperfusion events, which is the 

primary focus of this study, they may lead to detrimental outcomes via other mechanisms, 

such as abnormal wall shear stress or acute hypertension. These phenomena will be further 

investigated in future work. 
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Sensitivity analysis, as shown in Figure 14, shows the model parameters that have the 

largest impact on modelling outcomes, namely the hypoperfusion event frequency. It was 

shown that in all cases of variant CoWs, HR0 had the highest PRCC value, meaning that it 

is the parameter that most influences the hypoperfusion event frequency. This was 

expected, as heart rate control has been shown to be an effective method for decreasing 

hypoperfusion events [12,22]. In all variants, elastance values for the right heart were 

among the parameters with the largest PRCC values. This is an indication that the function 

of the right heart is strongly related to cerebral hypoperfusion outcomes and warrants 

further study. 

The present work is an investigation into the impact of AF on cerebral circulation 

considering common cases of congenital variations to the CoW. The presented model 

considers AF in the absence of other common cardiovascular conditions such as 

hypertension or atherosclerosis and represents simple cases of missing arterial segments, 

for the purposes of direct comparison. The model components have previously been used 

to study such conditions as hypertension, atherosclerotic lesions, and arterial occlusions. 

Additionally, small variations in cerebrovascular structure can be trivially modelled by 

assigning modified resistances to blood vessels. Future work will focus on incorporating 

these common conditions into our modelling, to further understand the impact of AF on 

cerebral circulation. Previously used techniques for representing populations using 0D 

models will be employed to elucidate the impacts of varied cerebrovascular structures [11]. 

In a clinical environment, it is critical for computational models to be applicable on a 

patient-specific basis. Methods for the incorporation of imaging data into 0D blood flow 

models are currently under development and will be used to further assess the impact of 

variant vascular structures using patient-specific data [8,29]. Such methods will also be 

effective in the clinic, opening up the possibility of patient-specific assessments for 

persistent AF patients. The presented model is extensible and personalizable, which will 

permit patient-specific risk stratification [30]. Further investigation will be conducted using 

spatially resolved 1D modelling to investigate the impacts of these phenomena on the blood 

vessels as well as the surrounding tissue in greater detail.  
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Chapter 3. General 
Discussion and Conclusions 
The results presented in chapter 2 of this thesis are novel and have important implications 

given the present landscape of research surrounding AF and dementia. The results are 

especially relevant considering current accepted practices in the treatment planning for 

AF.  

3.1. Discussion of Chapter 2 Results 

3.1.1. Hypoperfusion Events 

AF has consistently been independently associated with early cognitive decline and a 

higher risk of dementia [1–12] For instance, the UK Whitehall II study showed that in 

people aged 45–69 years, AF is significantly associated with higher risk of incident 

dementia (HR = 1.87, 95% CI 1.37–2.55) and that longer exposure to AF is associated with 

faster cognitive decline compared with AF-free adults [5]. In the Atherosclerosis Risk in 

Communities (ARIC) Study, data were available from 12,515 participants (mean age 56.9 

years) who were followed up for over 20 years. This study reported that incident AF was 

associated with faster global cognitive decline and higher risk of dementia after adjusting 

for cardiovascular diseases including ischemic stroke [2]. The US Cardiovascular Health 

Study demonstrated that, in the absence of clinical stroke, the cognitive function declined 

faster in patients experiencing incident AF compared to people with no prior AF [13]. In 

the Rotterdam study, AF is associated with an elevated risk of incident dementia only 

among people younger than 67 years (HR = 1.81, 95% CI 1.11–2.94) [6]. Similarly, the US 

Intermountain Heart Collaborative Study showed that the highest risk of dementia 

associated with AF was seen in people younger than 70 years [12]. Among the elderly (e.g., 

age ≥ 80 years), there is still a lack of evidence from epidemiologic studies to support an 

association of AF with cognitive decline and dementia, and more data from population-

based studies are needed to fully elucidate this association in the elderly population, as 

reported by a review of studies pertaining to subjects ≥ 80 years [14].  
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While there is a large basis of evidence showing the independent association of AF with 

cognitive decline and dementia, the underlying mechanism(s) of this relationship remains 

unknown. Several mechanisms have been suggested, including microbleeds, micro emboli, 

systemic inflammation, and cerebral hypoperfusion. Potential mechanisms have been 

widely studied in clinical and epidemiological literature [2,15–19]. Despite this, it is still 

unclear which of these mechanisms, if any, are the driving factor behind cognitive decline 

and dementia in AF patients. 

Cerebral hypoperfusion is the least studied mechanism which has been proposed, due to 

the difficult nature of monitoring blood flow and cerebral perfusion in vivo. These 

difficulties can be overcome through computational studies, which have been important in 

investigating this mechanism. 

Hypoperfusion events are defined as the average blood flow rate during one heartbeat 

dropping below a baseline level. The 6 distal cerebral circulation regions were monitored, 

using the 5th percentile flow rates from an equivalent control simulation as baseline values. 

It was found that in all tested cases, AF caused hypoperfusion events to occur, as shown 

in Figure 11. It has been found previously that hypoperfusion events may be the result of 

hemodynamic instability caused by AF [20] which is confirmed by the present modelling. 

There is a lack of information on the extent to which transient hypoperfusion events cause 

ischemic damage to the brain tissue, however it is suggested that any instantaneous drop 

below 90-93% of oxygen delivery can have negative consequences [21].  

3.1.2. Subclinical Cerebral Ischemia 

In this work, frequency of hypoperfusion events in the distal cerebral circulation were taken 

to be an indicator of subclinical ischemia, which is an important driver of cognitive decline. 

Figure 11 shows the frequency of hypoperfusion events in the distal cerebral circulation 

per 5000 heart beats. Data are shown for each heart rate from 50 bpm to 130 bpm in 

intervals of 10. Additionally, this data is presented for each CoW variant that was modelled. 

It can be observed qualitatively that each variant has a unique behavior concerning 

hypoperfusion at varying heart rates. The heart rate which produces the highest frequency 

varies between the different variants, but is always in the range of 110-130 bpm, except in 

the case with both missing PCoAs, for which the maximum appears to be above the tested 
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range. The trend shared among all variants is that the hypoperfusion event frequency 

decreases from the maximum point as heart rate decreases (Figure 11). One variant to note 

is the missing A1 variant. This variant exhibited higher mean frequencies than all other 

variants, with the minimum frequency at 50 bpm being 2-4x higher than all other variants. 

The finding that ischemia increases with heart rate is consistent with previous 

computational modelling in the field [22]. This finding by itself would suggest that a strict 

rate control strategy of less than 70 bpm is ideal. Interpretation from the RACE II trial 

suggests that a lenient control strategy of less than 120 bpm is as beneficial as a strict 

regimen, with fewer negative outcomes [23]. While this analysis is important in 

understanding the impacts of rate control strategies on patients, it did not consider cognitive 

impacts of AF. The findings from the present work shows that a constant low heart rate 

(strict rate control) result in virtually eliminating hypoperfusion events. While the findings 

from the present work are theoretical, they suggest that the impact of lenient versus strict 

rate control should be investigated in a clinical setting. The variant with a missing A1 has 

been shown to be most vulnerable to hypoperfusion [24,25]. This supports the finding that 

the missing A1 variant is at particular risk of subclinical ischemia. This variant is present 

in only 6% of the population [26], however the risk of dementia or cognitive decline may 

be high in AF patients with this variant, as well as other risk factors such as long durations 

of AF and younger patients. Therefore, it is recommended that CoW geometry be taken 

into account in treatment planning for patients who are already at high risk for cognitive 

decline or dementia.  

3.1.3. Hemodynamic Variability Between CoW 
Variants 

Blood flow to the distal circulation regions was assessed qualitatively for each of the CoW 

variants at 90 bpm. An interesting observation is that in the variants with a missing P1 

segment, i.e., variant 5 and variant 6, flow waveforms in the ipsilateral posterior circulation 

is phase shifted relative to flow in the other regions (Figure 13). This is an unexpected 

finding and has not been published in the literature. The present model is a lumped 

parameter model, and therefore has no spatial element. Additionally, it neglects inertial 

effects which would be described by inductors in the electrical model. Therefore, it should 
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not be assumed that the wave propagation behaviour of the model is accurate. However, 

this result warrants further investigation. A 1-dimensional model of the aorta and cerebral 

vasculature is being developed in our lab and will yield detailed data on blood flow through 

the CoW. While the hemodynamic differences in variants 5 and 6 are qualitatively notable, 

they were not associated with a marked increase in subclinical ischemia as measured in this 

study.  

3.1.4. Sensitivity Analysis 

Sensitivity analysis allows the identification of the model parameter or set of model 

parameters that have the greatest influence on the model output (model behaviour). 

Sensitivity analysis (SA) of dynamical models can be broadly classified into local 

sensitivity analysis and global sensitivity analysis. As can be seen in Chapter 2, sensitivity 

analysis was successfully used to demonstrate the prime role of intrinsic heart rate (model 

parameter) on hypoperfusion event frequency (model behaviour).  

3.1.4.1. Local Sensitivity Analysis 

Local sensitivity analysis evaluates changes in the model outputs with respect to variations 

in a single parameter input. The input parameters are typically changed one at a time in 

relatively small increments (e.g., 0.5 to 1.5-fold), and the effect of this individual parameter 

perturbation on the model output is calculated using local sensitivity indices. Local 

sensitivity analysis is suited to a deeper understanding of differential equation dynamics 

during system evolution. Traditionally local sensitivity analysis is performed as a 

derivative-based index [27,28]. For simplicity, we consider a system of ODEs defined by  

dy

dt
(t) = f(t, y, p),    y(t0) = y0 Equation 23 

where p represents the vector of model parameters, p = [p1, p2, p3, …, pn]. The derivative-

based index is defined as  

Sij =
pj

yi,0

dyi

dpj
 Equation 24 
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where yi,0 ≠ 0. In this manner Sij represents the alterations in yi effected by a small change, 

dpj in the given parameter. Sij in general, is a function of time. Derivative based sensitivity 

analysis has been used to analyze lumped parameter hemodynamic models [22]. 

3.1.4.2. Global Sensitivity Analysis 

Global sensitivity analysis ranks the model parameters according to the degree to which 

they influence the model output. This type of global sensitivity analysis is commonly 

performed in a probabilistic manner by evaluating the model for multiple sets of randomly 

and independently selected input values drawn, for instance, from uniform distributions 

over suitable intervals. The output, being a function of the randomized inputs, thus also 

becomes a random variable. If the inputs are sampled independently, the variance of the 

output distribution can be decomposed into contributions by individual inputs, pairs, 

triplets and so forth. This procedure is well known in statistics as ‘analysis of variance’ 

[30], and several authors have contributed to improve its computational efficiency for 

sensitivity analysis [31]. 

In a global sensitivity analysis, all parameters are varied simultaneously over the entire 

parameter space, which allows for simultaneous evaluation of the relative contributions of 

each individual parameter as well as the interactions between parameters to the model 

output variance. Given that model inputs can span a wide range (e.g., the intrinsic heart 

rate, cardiac elastances, vascular compliances and resistances) for hemodynamic models 

such as considered in this thesis, global sensitivity analysis is an innovative approach for 

determining which reactions and processes contribute most to the behavior of the overall 

system. In this work, multiple global sensitivity analysis methods were used.  

Another set of traditional sensitivity indices are Sobol’s parameters. Sobol’s method is a 

variance-based method where model parameters are perturbed, and the variance of the 

model behaviour is computed to provide Sobol indices [32]. Sobol sensitivity analysis 

determines the contribution of each input parameter, and its interactions, to the overall 

model output variance. Sobol sensitivity analysis is intended to determine how much of the 

variability in model output is dependent upon each of the input parameters, either a single 

parameter or multiple independent parameters. The decomposition of the output variance 

in a Sobol sensitivity analysis employs the same principal as the classical analysis of 
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variance in a factorial design. It should be noted that Sobol sensitivity analysis is not 

intended to identify the cause of the input variability. It indicates what impact is and the 

extent of the impact on the model output [31,33].  

Another global SA method is based on partial rank correlation coefficient (PRCC), as used 

in Chapter 2. To compute PRCC, first the normally distributed parameters (xi) as well as 

the observed outputs (yj) were rank transformed. Then, the linear effects of other additional 

variables were accounted for by expressing each as a linear regression of the inputs, 

x̂i = a0 + ∑ akxk

N

k=1
 k≠0

, and ŷj = b0 + ∑ bkxk

N

k=1
k≠0

 Equation 25 

which provides residuals defined as rxi
 = xi − x̂i, ryj

 = yj − ŷj. PRCC is defined as the 

correlation among these residuals normalized by their respective variances, i.e. 

PRCC(xi, yj) =
Cov (rxi

, ryj
)

Var(rxi
)Var (ryj

)
 Equation 26 

As evident in Equation 26, PRCC assumes an underlying statistical model that is linear 

(regression), and assumption of monotonicity provides the strength of the linear 

relationship between a given pair of parameter and output [34,35]. The range of PRCC 

indices is from −1 to +1 by its mathematical definition in Equation 26. This is the index 

that was used in the presented work.  

The global information-theoretic sensitivity index was developed in a previous study [27]. 

It constitutes deterministic quantification of the correlation between modelling parameters, 

which included initial conditions, to model responses. Through multiple evaluations of the 

model (more than 105) for randomly selected configurations of parameters including initial 

conditions, one obtains empirical samples of model responses, from which the underlying 

probability distributions of responses are computed. Thus, although the models under 

investigation are deterministic, parameters and responses are randomized. The sensitivity 

indexing consists of determining statistical relations between parameters and responses. 

The impact of individual parameters on a particular model response can be quantified in 

terms of the correlation between the sampling distributions of the parameters and the 
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resulting responses distributions. In the information-theoretic approach, a universally 

applicable correlation measure, the mutual information index (MIi), was chosen as the 

mutual information between an individual parameter Xi and a model response Y, and the 

total information, or response entropy, in the system as 

MIi =
I(Xi; Y)

H(Y)
 Equation 27 

where I(Xi; Y) is the mutual information and H(Y) is the response entropy. Further details 

for computing I(Xi; Y) and H(Y) are discussed elsewhere [27]. In brief, the entropy H(Y) 

quantifies the sampling-induced uncertainty of the response values (i.e., the "spread" of the 

distribution of Y), and the mutual information is the portion of this uncertainty that 

parameter Xi accounts for. Thus, every model response is associated with several MIi 

related to parameter i. This set of MIi for every model response can be further normalised 

to the maximal value in that set of MIi to uniformly reveal the relative influence of 

parameters on that particular response. It is important to inform developed models 

regarding information content in order to permit subject specific identification. 

In applying PRCC analysis, the model parameters were evaluated with respect to their 

correlation to model outputs. The model was evaluated six times, representing each of the 

common CoW variants. As has been suggested by previous modelling efforts [22], intrinsic 

heart rate was confirmed to be the primary factor influencing the frequency of 

hypoperfusion events. It was expected that intrinsic heart rate would have a high correlation 

with hypoperfusion frequency, both because it had been shown to be linked by previous 

modelling, and because it had been shown by the present work that changes in intrinsic 

heart rate lead to changes in hypoperfusion frequency. This hypothesis was confirmed by 

the PRCC analysis showing that intrinsic heart rate was the highest ranked model parameter 

for each of the CoW variants. Additionally, it was found that right ventricular diastolic and 

systolic elastance respectively were the highest ranked PRCC values after intrinsic heart 

rate. This result is likely explained by the fact that increased right ventricular contractility 

leads to increased preload in the left heart, and consequently increased cardiac output. 

There are several mechanisms by which increased cardiac output may increase cerebral 

blood flow [36], thereby reducing the frequency of cerebral hypoperfusion events. An 
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investigation into the dynamics of this phenomenon is worthwhile, however as treatment 

of AF via increased right ventricular contractility is not a promising treatment path due to 

the relation between sympathetic innervation and AF, a detailed investigation into this 

phenomenon is beyond the scope of this work. 

3.2. General Conclusions and 
Reflections 

The aims of this thesis were twofold. The first was to develop an open-source model of 

cerebral blood flow capable of simulating pathological conditions for experimentally and 

clinically relevant investigations. Second, was to use the model to investigate the impacts 

of AF on localized cerebral blood flow with respect to variations in cerebrovascular 

anatomy and model parameters. 

The first aim was achieved through the incremental development of a lumped parameter 

hemodynamic model for a research project within the laboratory [37]. This model 

contained mechanistic descriptions of the human whole-body circulation and four chamber 

heart and was therefore a suitable foundation on which to construct the atrial fibrillation 

model. The model was implemented using modular C code, which made it adaptable and 

extensible, therefore it was possible to extend the model to include the cerebral circulation. 

This extensibility is what made the model valuable for an investigation into cerebral blood 

flow dynamics. This workflow emphasized the importance for mathematical models to be 

modular and extensible, and therefore to be widely applicable to a range of research topics. 

Additionally, there was an emphasis on quality documentation of the model so that it could 

be understood, reproduced, and extended by peers. This principle was demonstrated by 

researchers such as Ursino [38] and Heldt [39], who documented the mechanistic equations 

used to a high level of detail, inspiring the same level of detail in the present work. 

The second aim was achieved by applying the model to explore the dynamics of the system 

under various experimental conditions, and to understand the dynamic mathematical 

behavior of the model. The model was first simulated with parameters representing a 

healthy individual and the results were compared to literature values of blood flow rates 

and pressures to ensure that the model and simulation method produced realistic 
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predictions. After this, the model was thoroughly investigated using sensitivity analysis 

techniques previously described to deepen our understanding of model dynamics and to 

show that the model behaves as expected. Sensitivity analysis entailed simulating the 

model for a total of 105 instances to sample the entire parameter space within and beyond 

physiological levels. Finally, the model was simulated under an array of physiological 

conditions, particularly varying intrinsic heart rate and CoW geometry. The primary 

findings of this investigation were that both intrinsic heart rate and cerebral vascular 

geometry have an impact on frequency of cerebral hypoperfusion during AF. Particularly, 

it was discovered that patients with a missing A1 segment of the CoW are at highest risk 

for cerebral hypoperfusion. It follows that cerebral vascular structure is an important 

consideration in the treatment of AF patients at high risk of early cognitive decline and 

dementia. 

3.3. Future Work 

Computational modelling is now an accepted research instrument. It is also increasingly 

being used in basic science, clinical research and clinical decision making. The future goal 

for this work is for further development and application of the mathematical model, as well 

as uptake and further investigation into modelling outcomes from experimental and clinical 

researchers. Further development of the presented model will be driven primarily by the 

author and the lab but remains open for any peers who wish to collaborate or to develop 

their own projects based on this open-source work. Planned future development involves 

investigation into alternative treatment methods for AF such as catheter ablation or external 

pacing control. Aside from investigation into AF, the model may also be extended to 

include a highly detailed autoregulation mechanism. This subsection describes the future 

applications and development of the model developed in this thesis.  

3.3.1. Application of Model in Basic Science 
Research 

In a recent study it was found that microvascular blood flow is highly organized at multiple 

spatial scales. This organization is disturbed by conditions such as hypoxia [40]. A future 

application of the model presented in this thesis will be to include such multiscale data by 
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further developing the model’s boundary conditions. A second recent study also found that 

changes in blood viscosity regulate the hyperemic response [41]. Since the presented model 

can be personalized using imaging data which must be obtained under hyperemic 

conditions (mimicking exercise), the boundary conditions can be further developed to 

incorporate the non-Newtonian behavior of blood in terms of vessel specific viscosity. The 

microvasculature plays a significant role in delivery of oxygen to skeletal muscle [42] and 

cerebral tissue which in turn may affect large vessel hemodynamics. Incorporation of such 

micro-macro vasculature feedback mechanisms into our cerebral model will provide 

further pathophysiological insights into blood flow in the Circle of Willis and the impacts 

of transient ischemia. In line with the oxygen supply research focus in our university, 

extending of the microvasculature responses to large vessels is essential, and may permit 

development of new biomarkers. One such effect is the control of cerebral blood flow by 

cerebral autoregulation [43]. A physiologically accurate cerebral autoregulation model has 

been described, which will be used in the future to extend our model [44]. It has been found 

that obesity has a deleterious impact on vascular reactivity, microvascular network and 

wall structure [45]. Our model will be extended based on experimental data to investigate 

the implications of these changes for cerebral blood flow. 

3.3.2. Applications of Model in Clinical Research 

Imaging data acquired by the McIntyre Group strongly suggest disease induced 

dysfunction of blood flow in organs. Our ongoing efforts aim to uncover the cause-effect 

relationships, thus reducing the gap between clinical research and treatment, in addition to 

generating novel biomarkers such as fractal dimension [46]. The efficacy of disruptive 

novel treatments such as therapeutic hypothermia was tested in our group using our in 

silico models [37,47]. This model is the latest in our suite of evidence generating 

computational descriptions of physiological processes. 

High dimensional models now provide the capability to undertake in silico clinical trials 

[48]. However, high dimensional models currently cannot provide recommendations in real 

time, whilst rapid decision-making is important in our hospitals. It is therefore essential to 

further develop the presented model, since it has the potential to provide a rapid scaffold 

on the clinician’s desktop. Multiscale in silico models are being used in clinical trials to 
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predict outcomes of deleterious cerebral conditions [49]. We believe that reduced order 

models may generate new knowledge as well as provide computational efficient research 

tools.  

Cognitive decline and dementia have been recognized as potential outcomes of cardiac 

disease [6]. Clinical imaging studies by Dr. Udunna Anazodo suggest a close nexus 

between the imageable structure and cerebral dysfunction of relevance.  Our model will be 

used to generate evidence for this hypothesis [50]. A large number of biophysical factors 

involved in the development of Alzheimer’s disease can now be identified, and prevention 

strategies have been developed due to the availability of novel vasculature computational 

models [51]. Our model has contributed to enabling in silico computational trials in our 

university’s research groups. 
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Appendices 

A1. Model Parameter Table 
Symbol Description Value Ref. 

tresp Respiration frequency 0.2 Hz [1] 

Edias,lv Left ventricular diastolic elastance 0.13 ml mmHg-1 [1] 

Esys,lv Left ventricular systolic elastance 2.5 ml mmHg-1 [1] 

Edias,rv Right ventricular systolic elastance 0.07 ml mmHg-1 [1] 

Esys,rv Right ventricular systolic elastance 1.3 ml mmHg-1 [1] 

Edias,la Left atrial diastolic elastance 0.5 ml mmHg-1 [1] 

Esys,la Left atrial systolic elastance 0.61 ml mmHg-1 [1] 

Edias,ra Right atrial diastolic elastance 0.3 ml mmHg-1 [1] 

Esys,ra Right atrial systolic elastance 0.74 ml mmHg-1 [1] 

Rsup Superior vena cava resistance 0.06 mmHg s ml-1 [1] 

Rab Abdominal vena cava resistance 0.01 mmHg s ml-1 [1] 

Rinf Inferior vena cava resistance 0.015 mmHg s ml-1 [1] 

Rtri Tricuspid valve resistance 0.005 mmHg s ml-1 [1] 

Rro Right ventricular outlet resistance 0.003 mmHg s ml-1 [1] 

Rpa Pulmonary arterial resistance 0.08 mmHg s ml-1 [1] 

Rpv Pulmonary venous resistance 0.01 mmHg s ml-1 [1] 

Rmv Mitral valve resistance 0.01 mmHg s ml-1 [1] 

Rlo Left ventricular outlet resistance 0.006 mmHg s ml-1 [1] 

Rup,1 Upper body arterial resistance 8.1 mmHg s ml-1 Estimated 

Rup,2 Upper body venous resistance 0.5 mmHg s ml-1 Estimated 

Rsp,1 Splanchnic circulation arterial resistance 3.0 mmHg s ml-1 [1] 

Rsp,2 Splanchnic circulation venous resistance 0.18 mmHg s ml-1 [1] 
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Rkid,1 Kidney arterial resistance 4.1 mmHg s ml-1 [1] 

Rkid,2 Kidney venous resistance 0.3 mmHg s ml-1 [1] 

Rll,1 Lower body arterial resistance 3.6 mmHg s ml-1 [1] 

Rll,2 Lower body venous resistance 0.3 mmHg s ml-1 [1] 

Rf Cerebral spinal fluid formation resistance 2380 mmHg s ml-1 [2] 

Ro Cerebral spinal fluid outflow resistance 526.3 mmHg s ml-1 [2] 

Rcpv Cerebral proximal venous resistance 0.88 mmHg s ml-1 [2] 

Rc,pms Resistances of the collateral anastomoses from 

the posterior to the middle territories 

120 mmHg s ml-1 [2] 

Rc,ams Resistances of the collateral anastomoses from 

the anterior to the middle territories 

105 mmHg s ml-1 [2] 

Rc,pp Resistance of the collateral anastomoses between 

posterior territories 

75 mmHg s ml-1 [2] 

Rc,aa Resistance of the collateral anastomoses between 

anterior territories 

22.0 mmHg s ml-1 [2] 

RPCA1 Precommunicating posterior cerebral artery 

resistance 

0.764 mmHg s ml-1 [2] 

RPCA2 Postcommunicating posterior cerebral artery 

resistance 

3.6063 mmHg s ml-1 [2] 

RPCoA Posterior communicating artery resistance 90.98 mmHg s ml-1 [2] 

RACA1 Precommunicating anterior cerebral artery 

resistance 

3.7912 mmHg s ml-1 [2] 

RACA2 Postcommunicating anterior cerebral artery 

resistance 

1.6227 mmHg s ml-1 [2] 

RACoA Anterior communicating artery resistance 14.9228 mmHg s ml-1 [2] 

RICA Internal carotid artery resistance 0.5689 mmHg s ml-1 [2] 

RBA Basilar artery resistance 0.4501 mmHg s ml-1 [2] 

Csup Superior vena cava capacitance 15.0 ml mmHg-1 [1] 

Cab Abdominal vena cava capacitance 25.0 ml mmHg-1 [1] 
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Cinf Inferior vena cava capacitance 2.0 ml mmHg-1 [1] 

Cpa Pulmonary arterial capacitance 4.3 ml mmHg-1 [1] 

Cpv Pulmonary venous capacitance 8.4 ml mmHg-1 [1] 

Ca Aortic capacitance 2.0 ml mmHg-1 [1] 

Cup Upper body capacitance 7.0 ml mmHg-1 [1] 

Csp Splanchnic circulation capacitance 55.0 ml mmHg-1 [1] 

Ckid Kidney circulation capacitance 15.0 ml mmHg-1 [1] 

Cll Lower body circulation capacitance 19.0 ml mmHg-1 [1] 

CICA Internal carotid artery capacitance  0.0034 ml mmHg-1 [2] 

CBA Basilar artery capacitance 0.0017 ml mmHg-1 [2] 

Cdn Total distal cerebral capacitance 0.2 ml mmHg-1 [2] 

Table 4. All relevant baseline model parameters for the lumped parameter cerebral 

model detailed in Chapter 2. 
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A2. List of Hemodynamic Simulations 
Research Landscape 

# Purpose of 

study. 

Platform used. Reference. 

Lumped parameter. 

1 Personalization  In-house codes [3] 

  

2 Physiological 

investigation 

In-house code [4]  

3 Surgery Crimson [5] 

4 Surgery Crimson [6] 

 5 Cerebral blood 

flow 

pathophysiology 

In-house scripts [7] 

 6 Blood flow 

pathophysiology 

in-house scripts [8] 

 7 Novel 

modelling 

framework 

In-house scripts [9] 

1D modelling. 

 8 Cerebral blood 

flow 

pathophysiology 

In-house codes   

[10] 

  

 9 Physiological 

investigation 

In-house codes [11] 

 10 Physical/ 

numerical 

investigation 

in-house codes [12] 
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 11 Comparison of 

1D methods to 

3D and in-vivo 

SolidWorks (3D modelling), MeshSim (3D meshing), in-

house codes: Nektar1D (1D simulation), CRIMSON (3D 

simulation) 

[13] 

 12 Presentation of 

whole-body 

arterio-venous 

1D vascular 

model. 

In-house codes [14] 

3D modelling. 

 13 Physiological 

Investigation 

Mimics (meshing), Comsol Multiphysics (CFD) [15] 

 14 Physiological 

investigation 

SEPRAN [16] 

 15 Physiological 

investigation 

ANSYS CFX v. 10.0 [17] 

 16 Surgical device 

evaluation 

ICEM-ANSYS v12 (mesh), ANSYS-CFX v12 

(simulation) 

[18] 

 17 Validation of 

imaging 

methodology 

ANSYS FLUENT [19] 

 18 Comparison of 

CFD and PC-

MRI 

MeVisLab 2.3 and Blender 2.68a (segmentation), ANSYS 

ICEM-CFD 14.0 (meshing), ANSYS Fluent 14.0 

(simulation) 

[20] 

Table 5. A compiled list of studies focussing on hemodynamic simulation. Studies are 

divided by modelled dimensionality (i.e., 0D, 1D or 3D). The table includes the 

purpose of the study, and the platform used. 
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A3. Code Availability 

The open-source code is hosted at https://github.com/tmhntr/cerebral-0D-model and is 

available for free use under the GNU GPL V3.0 license. The code has been tested for use 

on Red Hat Linux and MacOS 11 and 12. 
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A4. Open-Source Intracranial 
Aneurysm CFD Modelling Workflow 

In this chapter, a working 3D model of cerebral arteries is provided. The model is designed 

to assist uptake by new users in experimental laboratories. The model provides: 

a) 18 geometries obtained from the Aneurisk repository provided by Emory 

University (http://ecm2.mathcs.emory.edu/aneuriskweb/index). 

b) Working finite element meshes of the geometries. 

c) Physiological boundary conditions. 

d) Steady state simulation models suitable for use on laptops and large clusters. 

e) Transient simulation models to extend the steady state results. 

A4.1. Intracranial Aneurysms 

Another pathology of the heart brain axis which can lead to devastating consequences is 

the progression of Intracranial Aneurysm (IA). An aneurysm is a pathological thinning of 

the arterial wall, which leads to ballooning of the artery and loss of structural integrity. 

There are three types of aneurysms, saccular, fusiform, and dissecting. The most common 

of these, around 90% [21], is the saccular aneurysm, and this will be the focus of this work. 

IAs are aneurysms that form on any of the cerebral arteries. IAs are relatively common, 

occurring in around 1-5% of the population [22] and while most are completely 

asymptomatic, in some cases they can rupture, causing blood to leak into the cerebrospinal 

fluid, which is called subarachnoid hemorrhage (SAH). SAH is a devastating event, with a 

mortality rate of 40-50% [23] and leaving surviving patients with lifelong complications. 

The vast majority of IAs are discovered incidentally, meaning they are found during 

screening for unrelated illness. Improvements in quality of medical imaging, as well as 

increased usage has led to increased number of detected unruptured IAs overall [24]. Risk 

of SAH for patients with no prior history is relatively low, around 1-2% per year, which 

leaves specialists with the difficult decision to treat, survey, or do nothing to patients with 

unruptured IA. The risk for treatment is not negligible, and since the vast majority of IAs 

will never rupture, the decision to treat or not is a difficult one. It requires knowledge of 
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which IAs are likely to rupture and which are not. Unfortunately, the mechanisms leading 

to rupture are not well understood, and these decisions are frequently based on crude 

metrics such as shape and size of the aneurysm. Thus, there is a need for improved methods 

for distinguishing unruptured IAs that will rupture, from ones that won’t. 

Many factors have been identified as being associated with increased risk for IA formation 

and rupture. These include physiological, genetic, and hemodynamic factors. The baseline 

risk for the average person to have an IA is about 1-5% [22]. This risk is twice as high for 

females [25]. Another risk factor is age; this is thought to be the case because the artery 

walls are slowly degraded over time, explaining the very low prevalence in young people 

[26,27]. The most significant risk factors identified are smoking, and hypertension, which 

are associated with an 8-fold increase in risk for aneurysm formation [28]. Both factors are 

thought to be the cause of increased hemodynamic stress, leading to the increased risk. The 

final risk factor is family history of IA. Individuals who have first degree relatives with IA 

are at 3-7 times the risk of the general population for having IA [29]. This factor lends to 

the theory that there is a genetic basis for the formation of IA. 

Although the process of IA rupture is still not fully understood, there are some 

characteristics which have been used to identify IAs at high risk for rupture. IA rupture risk 

is primarily assessed by observing the geometry of the aneurysm. This is done by means 

of high-resolution medical imaging. Such imaging techniques include X-ray angiography, 

magnetic resonance imaging and ultrasound. The primary feature used to assess IAs is the 

size, with sizes greater than 10mm being categorized as high risk. Another feature is the 

presence of blebs, small protrusions, or bumps on the surface of the aneurysm. Finally, 

aneurysm growth is taken to be a sign of extremely high rupture risk. 

Study of the aneurysm lifecycle can be broken down into 3 major phases, formation, 

growth, and rupture. The first two of these phases have been greatly elucidated by 

biological research, and the last of which is still somewhat poorly understood.  

Formation of IA is understood to be a result of the interaction of several genetic, 

mechanical, and hemodynamic mechanisms [30]. The structure of the arterial wall is highly 

specific and tuned to the particular forces that it experiences continually throughout an 

individual’s lifetime. There are three layers or ‘tunica’ to its structure, the tunica intima, 
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tunica media, and tunica adventitia. The Tunica intima is composed of endothelial cells, 

which cover the lumen of the vessel, and an internal elastic lamina, which is a layer of 

highly elastic connective tissue. The tunica media is comprised mainly of smooth muscle 

cells, which provide the vessel with tensile strength and allow it to contract or dilate in 

response to environmental stimuli. The tunica adventitia is made up mainly of connective 

tissue, and in most vessels an external elastic lamina which connects the vessel to 

surrounding tissue and maintains shape. IA initiation begins as pathological changes in the 

composition and structure of the arterial wall. These changes occur very slowly, over the 

course of an individual’s lifetime, which explains the low occurrence of IA in young people 

[31]. As mentioned previously, there is indication that genetic factors play a role in 

aneurysm formation. Some genome wide association studies have shown links between 

mutations to extracellular matrix and connective tissue encoding and increased risk for IA 

formation [32,33]. In addition to risk factors previously mentioned, arteries in the cerebral 

circulation, particularly in the Circle of Willis (Figure 1) are particularly prone to aneurysm 

formation [25,34]. This is due to several structural aspects unique to cerebral arteries, 

including: a thin tunica adventitia, absence of the external elastic lamina, decreased elastic 

fiber density in the tunica media, and being surrounded by cerebrospinal fluid, rather than 

connective tissue [35,36]. 

Currently treatment is recommended for patients with aneurysms larger than 10mm in size, 

with smaller aneurysms often being surveyed for growth, which is a sign of high risk for 

rupture, and aneurysms around 10mm being up to the discretion of the specialist. 

Additionally, low risk aneurysms may be left without surveillance if the patient is nearing 

the end of life or surveillance will cause significant disruption relative to the low rupture 

risk. There are several treatment options to be considered. Surgical techniques include 

clipping, endovascular coiling, and flow diverting stents. These options represent the more 

aggressive treatment methods. Clipping is a surgical technique in which a metal clip is 

placed around the exterior of the aneurysm, usually around the neck, to pinch and prevent 

blood flow into the aneurysm. Endovascular coiling is a procedure in which a long catheter 

is inserted into an artery, usually the femoral artery, and fed up to the location of the 

aneurysm. The catheter is then used to dispense a thin platinum wire into the aneurysm 

bulb, which then coils up and seals blood flow to the aneurysm. Flow diversion is a 
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technique in which a stent-like implant which diverts some blood flow away from the site 

of the aneurysm, allowing it to recover and heal from hemodynamic stress it may have been 

experiencing. Non-surgical treatment options include medications to manage high blood 

pressure or other cardiovascular risk factors, as well as lifestyle changes such as quitting 

smoking.  

A4.2. Aneurysm Structures 

The geometries were obtained from the Aneurisk repository 

(http://ecm2.mathcs.emory.edu/aneuriskweb/index). The repository provides data driven 

volume structures of human cerebral arteries suffering from a spectrum of aneurysms [37]. 

A number of geometries are provided to the users. The repository provides finite element 

meshes of the volumes which are illustrated in Figures 15 and 16 The geometries, 

hemodynamic models, and representative results, as well as documentation can be found 

at our github: github/mccsssk22. The interested user can access the underlying DICOM 

images from the original repository. 
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Figure 15. Basic visualization of 9 geometries selected from the Aneurisk dataset. All 

selected geometries contain at least one aneurysm on the MCA. 
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Figure 16. Basic visualization of 9 geometries selected from the Aneurisk dataset. All 

selected geometries contain at least one aneurysm on the MCA. 

A4.3. Boundary Conditions 

In the wider literature, either flow or pressure conditions are applied at the boundaries of 

hemodynamic models.  

A4.3.1. Inlet Boundary Conditions 

Inlet boundary conditions are commonly set as Neumann boundary conditions. This means 

that the value of a derivative state is enforced at the boundary nodes. In the case of fluid 
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dynamics, this derivative state value is fluid velocity. The reasons for using Neumann 

boundary conditions are because this method has been shown to yield stable simulation 

results, blood flow velocity can be measured in the clinic non-invasively with ultrasound 

Doppler or MRI [38], and in the absence of clinical measurements blood flow rates can be 

approximated based on vessel cross sectional area and scaling laws [39,40]. In the present 

work, flow rate waveforms are prescribed as the inlet boundary conditions. Average flow 

rates Q (cm3 s-1) were derived from an empirical relation between flow rate Q and ICA 

cross-sectional area [39]. The scaling law in steady state is as follows: 

Q = 48.21 × A1.84 Equation 28 

In steady-state simulations, a fully developed Poiseuille flow velocity profile (parabolic) 

was used to impose a constant flow rate of Q. 

Transient simulations require time-dependent flow rate values (Q(t)).  Firstly, the lumped 

parameter model presented in Chapter 2 provides time dependent pressure and flow at all 

epicardial locations in the cerebral arterial network. Similarly, the whole body model [41] 

may also provide flow waveforms suitable for use as inlet boundary conditions. Open-

source repositories may provide ready to use pressure (as well as flow) waveforms suitable 

[42]. Finally, simple heart models [43] may also provide the information, especially since 

the shape and values of pressure within large vessels is virtually the same in the aorta, 

carotids, and other epicardial cerebral vessels. A representative pressure waveform is 

illustrated in Figure 19. 

In transient (pulsatile) simulations, velocity waveforms derived from an average patient 

dataset are scaled according to Q. These scaled waveforms are applied at the inlets as fully 

developed Womersley velocity profiles [44]. Upon estimating cross sectional areas (A) 

from the available geometries, inlet steady state flow rates (Q) were calculated according 

to equation 28, both of which are presented in Table 6. 
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Case # ICA cross-sectional area 

(cm2) 

Q (cm3 s-1) 

19 0.198183 2.453229 

20 0.160897 1.671803 

23 0.138690 1.272046 

28 0.147754 1.429189 

29 0.254833 3.896256 

30 0.190057 2.271346 

45 0.163667 1.725153 

49 0.173822 1.927212 

50 0.181510 2.086957 

51 0.137995 1.260334 

57 0.187826 2.222536 

69 0.117692 0.940397 

70 0.122983 1.019650 

71 0.198528 2.461105 

72 0.195509 2.392679 

73 0.145908 1.396502 

74 0.120298 0.979071 

77 0.163241 1.716900 

78 0.132925 1.176448 

92 0.159571 1.646536 

Table 6. Inlet cross sectional area and derived inlet flow rate. C: cerebral geometry 

from Aneurisk repository. ICA: Internal carotid artery. Q: blood flow rate (ml s-1). 

A4.3.2. Outlet Boundary Conditions 

Outlet boundary conditions are enforced using weakly applied pressure conditions [45]. To 

do so, first downstream resistance values (R) were obtained from the literature. We assume 
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that pressure in the downstream domain is constant over the cross-sectional area of the 

outlet boundary, note that it is not constant over time in transient simulations. This means 

that pressure values are not directly assigned to elements at the outlet surface, but rather 

using the pressure-flow relationship: 

𝑝 = 𝑝0 + 𝑅𝑄 Equation 29 

Where p is the mean lumen pressure at the outlet surface, 𝑝0 is the distal pressure 

(nominally set to 0 mmHg), 𝑅 is the network resistance of the outlet, and 𝑄 is the 

volumetric flow rate out of the outlet surface, i.e., the integration of velocity across the 

outlet surface. Rearranging equation 29, we derive the following relation: 

𝑅 =
𝑝

𝑄
 Equation 30 

Using this method, time dependent pressure values are not needed, and downstream 

vascular resistance values may be obtained from the literature. 

Because of the high variability in the imaged structures, a method for assigning a resistance 

value to each outlet surface was developed. First, outlet surfaces were grouped based on 

which major artery they were branching away from. The groups included middle cerebral 

artery (MCA), anterior cerebral artery (ACA) and other, which mainly branch from the 

ICA but do not contribute significantly to the flow volume. Literature values for network 

resistances of these groups were obtained and applied to the prescribed outlets. Resistances 

for individual outlets were calculated using a flow splitting principle derived from Murrays 

law [46] that asserts that flow distribution is scaled proportional to d3 where d is daughter 

vessel diameter. Therefore: 

𝑄1

𝑄0
= (

𝑑1

𝑑0
)

3

  Equation 31 

Where 𝑄0 and 𝑑0 are parent vessel flow rate and diameter respectively, and 𝑄1 and 𝑑1 are 

daughter vessel flow rate and diameter respectively. Parent vessel diameter was 

approximated as  

𝑑0 = √∑ 𝑑𝑛
33
 Equation 32 
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according to Murrays law. Values for dn are approximated by assuming the vessel cross 

section is circular, therefore: 

𝑑𝑛 = 2√
𝐴𝑛

𝜋
 Equation 33 

By combining equations 30-33 we get the following equation for outlet resistance: 

𝑅1 =  
𝑝

𝑄0 (
(

𝐴1
𝜋 )

3/2

∑ (
𝐴𝑛
𝜋 )

3/2)

 

Equation 34 

We can once again substitute 𝑝 = 𝑅𝑄 with 𝑝0 = 0 , 𝑅 = 𝑅𝑡𝑜𝑡𝑎𝑙, and 𝑄 = 𝑄0 to get: 

𝑅1 =  
𝑅total

(
(

𝐴1
𝜋 )

3/2

∑ (
𝐴𝑛
𝜋 )

3/2)

 

Equation 35 

Where 𝑄0 is the total flow rate to a group of outlets, and 𝐴𝑛, is the cross-sectional area of 

outlet n in the group. 

Cas

e # 

M2_1 M2_2 M2_3 M2_4 M2_

5 

ACA AChA ACoA PCoA OpthA 

19 0.0119

3 

0.0123

4 

0.0172

4 

0.0103

4 

- 0.01937 0.01748 - - - 

20 0.0330

8 

0.0148

7 

- - - 0.01776 - - 0.01419 - 

23 0.0080

7 

0.0100

0 

0.0145

0 

- - 0.02665 0.00590 - - 0.00586 

28 0.0056

5 

0.0117

9 

0.0044

3 

- - 0.01955 0.01291 0.0206

7 

- - 

29 0.0313

8 

0.0132

4 

0.0086

3 

0.0120

1 

- 0.04850 - - - - 
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30 0.0336

4 

0.0181

4 

- - - 0.03390 0.00323 - - 0.00536 

45 0.0132

3 

0.0089

8 

0.0231

3 

0.0068

1 

- 0.01784 - - - 0.01351 

49 0.0225

2 

0.0106

8 

0.0251

1 

0.0089

6 

- 0.04205

2 

0.01268

4 

- 0.00388

0 

0.01117

8 

50 0.0091

2 

0.0105

4 

0.0057

0 

0.0076

6 

0.006

1 

0.02363 0.00318 - 0.00528 0.00343 

51 0.0180

8 

0.0170

7 

- - - 0.03463 - - - 0.00655 

57 0.0107

6 

0.0187

8 

0.0142

1 

- - 0.01323 - 0.0184

4 

- 0.00833 

69 0.0247

7 

0.0194

5 

- - - 0.02506 - - 0.01636 - 

70 0.0238

1 

0.0089

7 

0.0085

5 

- - 0.02126 0.01160 - - 0.00757 

71 0.0214

2 

0.0240

8 

- - - 0.02900 - - - - 

72 0.0264

3 

0.0241

7 

0.0279

2 

- - 0.03855 - - - 0.00880 

73 0.0154

0 

0.0105

2 

0.0264

1 

- - 0.02961 - - - 0.01381 

74 0.0402

7 

0.0167

7 

- - - 0.01691 0.00827 - - 0.01054 

77 0.0417

6 

0.0149

4 

- - - 0.01631 - 0.0226

5 

- - 

78 0.0188

7 

0.0268

6 

- - - 0.01876 - - - 0.00768 

92 0.0194

4 

0.0279

9 

- - - 0.03997 - - - 0.00924 
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Table 7. Outlet boundary condition data for each aneurysm geometry. All values are 

shown are in (x104 dynes s cm-5). M2: second segment of middle cerebral artery. ACA: 

Anterior cerebral artery. AChA: Anterior choroidal artery. ACoA: Anterior 

communicating artery. PCoA: Posterior communicating artery. OpthA: Opthalmic 

artery. 

A4.3.3. Wall Boundary Conditions 

The boundary condition at the vessel wall is implemented as a no-slip condition which is a 

special type of Neumann condition in which the velocity is explicitly set to 0. 

A4.4. Finite Element Meshing 

The repository provides finite element (FE) meshes of the geometries as illustrated in 

Figures 15 and 16 above. However, each hemodynamic simulator deploys its own unique 

data format. De novo meshing of any 3D geometry is therefore recommended. Briefly, the 

3D images of the geometries are processed using the hemodynamic simulator’s graphical 

user interface (GUI) to generate a centerline and volume representation within the 

simulator’s data structures. The GUI then uses an open-source finite element meshing tool 

called TetGen to generate a tetrahedral finite element mesh suitable for numerical solutions 

of the 3D Navier-Stokes equations. The number of finite elements, number of edges, 

number of nodes, size of largest edge, for each of the 18 geometries are provided in Table 

8. The FE meshes suitable for our hemodynamic simulator are provided on our github. 
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Figure 17. Visualization of FE mesh of an aneurysm geometry. The aneurysm is 

enlarged for increased visibility of the tetrahedral mesh elements on the aneurysm 

surface. 
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 Case # Global max 

edge size 

(mm) 

Number of 

Nodes 

Number of 

Elements 

Number of 

Edges 

Number of 

Faces 

19 0.300 190122 1074480 128076 85384 

20 0.240 177531 1023028 103482 68988 

23 0.220 204067 1177776 117195 78130 

28 0.240 204467 1177552 119442 79628 

29 0.250 193090 1124246 103473 68982 

30 0.220 193996 1125845 106350 70900 

45 0.300 183472 1048673 113988 75992 

49 0.240 206135 1188989 119040 79360 

50 0.220 196058 1134126 110499 73666 

51 0.230 178922 1039546 97344 64896 

57 0.310 189464 1092500 109338 72892 

69 0.220 186998 1080388 107100 71400 

70 0.210 190402 1086333 120060 80040 

71 0.280 190007 1093111 112431 74954 

72 0.360 189673 1085353 116544 77696 

73 0.225 178237 1010974 117654 78436 

74 0.260 179437 1024860 111693 74462 

77 0.260 197784 1145452 110370 73580 

78 0.220 179851 1033878 107304 71536 

92 0.265 181288 1039422 110127 73418 

Table 8. Mesh properties of all 20 analyzed cases. 

A4.5. Steady State and Transient Simulations 

The free and open-source CFD platform SimVascular was used along with the boundary 

conditions detailed in A5.4 to simulate both steady-state and transient (pulsatile) blood 
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flow through each of the selected geometries. The SimVascular platform also provides an 

executable binary which postprocesses the output files of the simulation into both 

structured and unstructured VTK format geometric data. These data files can then be 

visualized and further processed using the free and open-source data visualization platform 

Paraview [47] as detailed in A.6. This platform can be used to visualize a variety of 

important indices for assessment of IA including WSS (Figure 17 and Figure 19), blood 

velocity fields (Figure 20), and oscillatory shear index (OSI) (Figure 21). 

 

Figure 18. Wall shear stress magnitudes mapped on to an intracranial aneurysm 

geometry. Wall shear stress values are derived from velocity vectors which are 

outputs of the CFD simulation. The results shown are from a steady state simulation 

with constant flow rate imposed at the inlet. 
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Figure 19. Plot of the volumetric flow rate (Q) versus time (t) at the inlet boundary. 

Four key timepoints are marked for reference by following figures. This flow profile 

has been scaled to the surface area of the inlet of case C0019 according to previously 

mentioned scaling laws. The waveform spans 0.86 seconds, which was taken as the 

length of a heartbeat. In practice, the waveform repeats periodically. A-B are 

respectively diastolic flow rate, systolic flow rate, trough of the dicrotic notch, peak 

of the dicrotic notch. 
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Figure 20. Wall shear stress is shown on aneurysm geometry at four key timepoints 

during a transient simulation. Wall shear stress magnitude is indicated both by arrow 

size and by colour. A-D reference key timepoints in the cardiac cycle which are shown 

in Figure 19. 
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Figure 21. Blood velocity fields are shown within aneurysm geometry at four key 

timepoints during a transient simulation. Velocity vector direction is indicated by 

arrow direction. Velocity magnitude is indicated both by arrow size and by colour. A-

D reference key timepoints in the cardiac cycle which are shown in Figure 19. 
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Figure 22. Oscillatory shear stress (OSI) mapped on to an intracranial aneurysm 

geometry. OSI values are derived from transient velocity vectors over the course of a 

single cardiac cycle which are outputs of the CFD simulation.  

A4.6. Postprocessing 

The simulator provides outputs encoded into binary VTK files. As seen in section 3.4, the 

user is able to visualize the output using the VTK GUI called ParaView [47]. Either by 

means of ParaView or otherwise, the data provided in the binary output can be manipulated 

to generate composite measurements. 

A4.7. Applications 

The presented modelling has multiple applications. Due to the intricate nature of cerebral 

vasculature, physical modelling provides insights into flow patterns. Computer modelling 

can be used to interpret experimental-clinical data to enhance its information content. [48]. 
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Computer modelling can inform the physical modelling by providing expected boundary 

conditions and velocity profiles [49]. As image processing is an integral part of the 

computer modelling, it may be used to generate physical model geometries suitable for 3D 

printing. As our modest simulations show, flow patterns are complex in the vicinity of 

aneurysms. Prior to physical modelling (which is resource intensive), the computer models 

can be used to explore the relationships between aneurysm geometry and flow [50,51]. In 

addition to geometry, the relationships between aneurysm wall biomechanical properties 

(Young’s modulus) and clinical observations of waveforms can be studies using the 

computer models [52,53]. Imaging is a key part in clinical assessment. Using routine 

images, the computer model can be personalized using established workflows [54]. A 

knowledge of the underlying fluid dynamics is known to assist in reducing repeat patient 

examination and reduce radiation exposure [54,56]. Further validation and verification of 

the computer model will advance its use in a clinical-experimental environment [56]. Due 

to their delicate biomechanical attributes, aneurysms are primed to rupture causing mortal 

cerebral hemorrhage. The presented computer modelling can be deployed to rapidly assess 

the rupture risk [48]. 

Whereas the technology has been presented, its customization for specific studies and 

deployment in itself requires significant effort  [57]. As such, the model is prepared for 

larger data science studies for inclusion into in silico clinical trials  [58]. In summary, a 

working model of 3D cerebral blood flow has been presented in the hope that it will find 

meaningful applications in the near future. 
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