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ABSTRACT

Since Longstaff and Schwartz [2001] brought the amazing Regression-based Monte

Carlo (LSMC) method in pricing American options, it has received heated discussion.

Based on the research done by Fabozzi et al. [2017] that applies the heteroscedasticity

correction method to LSMC, we further extend the study by introducing the methods

from Park [1966] and Harvey [1976]. Our work shows that for a single stock American

Call option modelled by GBM with two exercise opportunities, WLSMC or IRLSMC

provides better estimates in continuation value than LSMC. However, they do not

lead to better exercise decisions and hence have little to no effect on option price

estimates. Our work finally indicates that in terms of real-life options pricing modelled

by univariate GBM, bivariate GBM, and univariate GARCH, WLSMC or IRLSMC are

not effective at producing more efficient price estimates .

Key Words: [LSMC, Regression, Heteroscedasticity Correction].
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Summary for Lay Audience

As financial derivatives commonly trade in the market, options and their pricing

have a long history. Back in the time when the computational power is weak, people

do replicate portfolios to treat the price of an option as a combination of risk-free

and risky assets. However, after the development of computational techniques and

the study on continuous-time stochastic process, pricing options with certain formulas

become possible.

However, there are many types of options trading in the market. The most famous

two are the European option and the American option. The major difference between

the two options is the European option allows option holders to exercise the option

only on the maturity date while option holders can exercise the American option on

any dates before maturity.

Obviously, pricing American options is tricky as the decision made by option holders

to hold or exercise before maturity is unclear, and thus it has no closed-form solution.

However, researchers have put a lot of effort into American options valuation techniques

and come up with many fabulous ideas. The method introduced by Longstaff and

Schwartz [2001] that uses regressions (denoted as LSMC) to estimate the continuation

value of American options has shown great success. As one of the most commonly used

regression, ordinary least-squares requires errors to be homoscedastic. The study by

Fabozzi et al. [2017] showed heteroscedasticity exists in LSMC and suggested a method

for correcting this, indicating a marginal improvement in price estimator efficiency. Here

we investigate other methods to correct the heteroscedasticity in LSMC and find out to

what extent the correction affects the option prices. Our work is a critical assessment

of the work by Fabozzi et al. [2017].
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Chapter 1

Introduction

1.1 Background

Unlike the traditional European options that only exercise on the expiration date and

can be priced using Black & Scholes formula, pricing American options is challenging,

as it allows option holders to exercise the option at any time before expiration. Due to

the uncertainty in pricing American options, there is been no closed-form solution for

all but a few special cases.

Assuming time can be discretized into small sub-intervals, several approaches were

invented. Brennan and Schwartz [1977] first introduced the finite difference method

based on the Black & Scholes differential equation, where this method can provide

standard benchmark prices for American options. Then, Cox et al. [1979] used a

binomial tree to price American options, which is very easy to implement in practice.

Due to technical constraints, it took many years for simulation approaches to appear.

Broadie and Glasserman [1997] proposed the stochastic tree simulation approach that

produces biased high and biased low estimators, both converging to the true price as the

sample size increases. Longstaff and Schwartz [2001] proposed the Regression-based

Monte Carlo method (denoted as LSMC) which quickly become popular, and Stentoft

[2004] furthermore proved its convergence in probability.
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However, LSMC is not a perfect method with many problems that need to be

solved, and many improvements have been proposed. For example, Longstaff and

Schwartz [2001] raised the concern of choosing the most suitable basis function. For

the bias associated with estimators in LSMC, Kan and Reesor [2012] constructed a bias-

corrected estimator by subtracting estimated bias from the uncorrected estimator at

each exercise opportunity. Stentoft [2019] showed that the pricing of the American Call

option could be improved significantly by using Put-Call Symmetry. Boire et al. [2021]

used Importance Sampling as a variance reduction technique to reduce the variance in

the estimates and also correct the bias.

1.2 Previous Study

The LSMC method is based on a regression at each time step to find estimates for

continuation values of each path. However, there are not many works focused on the

regression assumptions and Fabozzi et al. [2017] is an exception that first discussed

the heteroscedasticity in LSMC. By deriving a heuristic proof, their work demonstrated

that heteroscedasticity exists in LSMC regression and proved that error terms in the

LSMC American Put option are heteroscedastic. Their results showed that pricing

American basket put option in multiple stocks can be improved using Weighted Least

Squares Monte Carlo (WLSMC) with less heteroscedasticity.

1.3 Our work

This paper continues the study on WLSMC by introducing two other methods from

Park [1966] and Harvey [1976], and furthermore applying Iteratively Reweighted Least

Squares Monte Carlo (IRLSMC) to reduce heteroscedasticity in the regressions. The

models we consider for underlying assets in the thesis are Geometric Brownian Motion

(denoted as GBM), two dimensional GBM, GARCH and its extension, the NGARCH

model.
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This thesis is constructed as follows: Section 2 reviews some mathematical ma-

terials that are highly correlated to this thesis. Section 3 shows the detailed LSMC,

WLSMC and IRLSMC algorithms, respectively. Section 4 provides our preliminary

simulation results with two exercise opportunities that mainly compare the estimated

continuation values to true continuation values. Section 5 includes our results of in-

sample American options’ pricing with multiple exercise opportunities by applying

LSMC/WLSMC/IRLSMC. Finally Section 6 gives our conclusion and suggestions for

future works. In Appendix A, we will discuss the pros and cons of the WLS methods

with some makeup data.
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Chapter 2

Mathematical Background

In this section, we will review the two commonly used processes in stock path genera-

tion, GBM and GARCH, European/American options with their pricing, Monte Carlo

method, OLS, homoscedasticity and heteroscedasticity and WLS. 1

2.1 GBM and GARCH Models

2.1.1 GBM Model

Since 1827 the first time Brownian Motion, BM, was used to describe irregular moves

of particles in water by Robert Brown, it has been applied to many different areas in

science. In Mathematics, assuming a probability space (Ω,F ,P), a BM is a random

Process {Wt : t ∈ [0,∞)} with following properties

• W0 = 0 almost surely.

• Wt has independent increments.

• Wt has stationary Gaussian increments. That is, let s ≤ t, Wt - Ws ∼ N(0, t− s).

1Skip this section if you are familiar with every concepts.
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• Wt has continuous paths.

Based on BM, a stochastic process, St, is a GBM having dynamics given by the

following SDE

dSt = (r − q)Stdt+ σStdWt, (2.1.1)

where St is a stock price, r indicates the continuous risk-free rate, q is the continuous

dividend yield, Wt represents BM, and σ is the volatility.

For stock paths generation, assume t ∈ [0, T ] and [0, T ] can be divided into n

uniform sub-intervals, ∆t = T
n
, for each path at time t+∆t

St+∆t − St = (r − q)St∆t+ σSt

√
∆tZt, (2.1.2)

where Zt
i.i.d∼ N(0, 1) is a random sample chosen from standard normal distribution.

This method is known as an Euler discretization. However, it is an approximation of

equation 2.1.1 and loops are required to generate a full path in software, leading to

slightly inaccurate results and high computational cost. To solve both problems, a

numerical solution is needed.

To give a numerical solution of this SDE, knowledge of Itô’s lemma is necessary. Let

f(t, St) represents a function with two variables t and St, and St satisfies the following

SDE

dSt = µ(t, St)dt+ σ(t, St)dWt, (2.1.3)

where µ and σ are the drift and diffusion functions respectively.

Thus, Itô’s lemma is defined as

df(t, St) =
∂f(t, St)

∂t
dt+

∂f(t, St)

∂St

dSt +
1

2

∂2f(t, St)

∂S2
t

(dSt)
2. (2.1.4)

Let f(t, St) = lnSt with S0 ∈ [0,∞), the dynamics of f(t, St) by equation 2.1.4 is

d lnSt =
1

St

dSt −
1

2S2
t

(dSt)
2, (2.1.5)

combining equation 2.1.5 with equation 2.1.1, and after some simple elimination and

calculation, it is easy to derive

St = S0e
(r−q− 1

2
σ2)t+σWt . (2.1.6)
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Based on equation 2.1.6 and same setting in equation 2.1.2, let k be an integer such

that 1 ≤ k ≤ n. Now for each path at time k∆t

Sk∆t = S0e
(r−q− 1

2
σ2)k∆t+σ

√
k∆t

∑k
i=1 Zi , (2.1.7)

Zi
i.i.d∼ N(0,1) are random samples chosen from Standard Normal Distribution.

To generate multiple stock paths using GBM, let S1, ..., Sm represent the simulated

correlated stocks. The correlation matrix Σ =


ρ11 ρ12 . . . ρ1m

ρ21 ρ22 . . . ρ2m
...

...
. . .

...

ρm1 ρm2 . . . ρmm


with ρii = 1

and ∀i ̸= j, ρij = ρji. The algorithm is given by, as stated in Goudenège et al. [2019]:

1. Set t = 0 with S1
0 , ..., S

k
0 to be the initial value.

2. For each stock Si, 1 ≤ i ≤ m, simulate k Zi random samples from N(0,Σ) where

0 is a m×m null matrix and Σ is defined above. Use Equation 2.1.7 as the stock

price for Si at time k∆t.

2.1.2 GARCH Model

As a Generalized ARCH model that was firstly introduced by Engle [1982], the idea

of GARCH(p,q) model was suggested by Bollerslev [1986]. In comparison to the GBM

model, GARCH models have their own advantage, as the volatility terms are based

on past volatilities and some random terms instead of a fixed number. Thus, GARCH

models reproduce features of financial time series, such as volatility clustering, and

typically provide a better fit to option prices than GBM. Duan [1995] provided the

method of using the GARCH(1,1) model in option pricing and followed by Stentoft

[2005], who combined the GARCH(1,1) option pricing model with LSMC in pricing

the American Put option. In this thesis, we are interested in whether WLSMC or

IRWLSMC can help to remove heteroscedasticity effectively with data from GARCH

models and improve their pricing. This thesis implemented two models: the ordinary

GARCH model and the NGARCH model from Engle and Ng [1993].
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The stock price process for the ordinary GARCH and NGARCH models shares

the same formula. Let St represent a stochastic process (underlying asset) with the

following equations, listed in Stentoft [2011]

St = St−1e
r− 1

2
ht+

√
htZ∗

t , (2.1.8)

where Z∗
t

i.i.d∼ N(0,1) and ht is the volatility term. ht is a slightly different term for the

ordinary GARCH and NGARCH models. For the ordinary GARCH model

ht = ω + βGht−1 + αGht−1(Z̃
∗
t−1)

2, (2.1.9)

and for NGARCH model

ht = ω + βNGht−1 + αNGht−1(Z̃
∗
t−1 + γ)2, (2.1.10)

where Z̃∗
t−1 = Z∗

t−1 − ζ, αG, αNG, βG, βNG, ω, γ, ζ are parameters to be specified1.

Thus, for stock path generation, we assume hGt and hNG
t represent the volatility

terms for ordinary GARCH and NGARCH models, respectively. The initial values hG0

and hNG
0 are set to the unconditional level of variance, specifically.

To generate GARCH paths, the following steps are used.

1. Set t = 0 with hG0 = ω
1−βG−αG

to be the initial value.

2. Simulate ZG
t+∆t

i.i.d∼ N(0, 1).

3. Compute hGt+∆t = ω + βGh
G
t + αGh

G
t (Z

G
t − ζ)2, where ZG

t is simulated in the

previous time step.

4. Compute SG
t+∆t = Ste

r− 1
2
hG
t+∆t+

√
hG
t+∆tZ

G
t+∆t .

5. Set t = t+∆t.

6. Repeat step 2 to 5 until t = T , the time horizon of interest.

To generate stock paths for the NGARCH model, straightforward modifications to

the above algorithm apply, specifically.

1As stated in Stentoft [2011], these parameters need to be empirically plausible, here ζ = λ
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1. Set t = 0 with hNG
0 = ω

1−βNG−αNG(1+γ)2
to be the initial value.

2. Simulate ZNG
t+∆t

i.i.d∼ N(0, 1).

3. Compute hNG
t+∆t = ω+βNGh

NG
t +αNGh

NG
t (ZNG

t −ζ+γ)2, where ZNG
t is simulated

in the previous time step.

4. Compute SNG
t+∆t = Ste

r− 1
2
hNG
t+∆t+

√
hNG
t+∆tZ

NG
t+∆t .

5. Set t = t+∆t.

6. Repeat step 2 to 5 until t = T , the time horizon of interest.

2.2 Options and Their Pricing

2.2.1 European Option

A European option gives the option holder the right to exercise the option at the

expiration date. In mathematics, assume a European option with expiration time T ,

stock price St with t ≤ T , strike K, and payoff function f(T, ST ) is defined as

European Call option : fC(T, ST ) = max(ST −K, 0), and (2.2.1)

European Put option : fP (T, ST ) = max(K − ST , 0). (2.2.2)

Pricing of a European option using risk-neutral valuation is given by

V = EQ[e−rTf(T, ST )], (2.2.3)

where V is the price of the European option and the expectation is done under a risk-

neutral probability measure Q.

Black and Scholes [1973] first derived the closed-form solutions to the European

option, where

V EU
C = S0e

−qtN(d1 )−Ke−rtN(d2 ), and (2.2.4)

V EU
P = Ke−rt(1−N(d2 ))− S0e

−qt(1−N(d1 )), (2.2.5)
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V EU
C and V EU

P are the prices of European Call and European Put respectively. N(.)

calculates the c.d.f of N(0, 1). d1 and d2 are calculated as

d1 =
1

σ
√
t

ln(St

K

)
+ t

(
r − q +

σ2

2

) , and (2.2.6)

d2 = d1 − σ
√
t, (2.2.7)

where r is the interest rate, q is the dividend yield and σ is the volatility.

2.2.2 American Option

An American option gives the option holder the right to exercise the option any time

before expiration date. In mathematics, an American option with expiration time T ,

stock price St with t ≤ T , strike K, payoff function f(t, St) is defined as

American Call option : fC(t, St) = max(St −K, 0), and (2.2.8)

American Put option : fP (t, St) = max(K − St, 0). (2.2.9)

As stated in Myneni [1992] in section 3, the price process V (t, St) of a American

style option under risk-neutral evaluation is given by

V (t, St) = sup
τ∈[t,T ]

EQ
t [e

−rτf(τ, Sτ )], (2.2.10)

where τ is a stopping time and EQ
t denotes the risk-neutral expectation conditional on

information known at time t.

The American option value, V (t, St) satisfies the property V (t, St) ≥ f(t, St), other-

wise there is arbitrage opportunity. Also Myneni [1992] outlined in section 4 that before

expiration date T , V (t, St) satisfies the following Black-Scholes Differential Equation.

Let S = St, V (t, S) = V (t, St), we have

∂V (t, S)

∂t
+

1

2
σ2S2∂

2V (t, S)

∂S2
+ (r − q)S

∂V (t, S)

∂S
= (r − q)V (t, S), (2.2.11)

with boundary conditions

V (T, ST ) = f(T, ST ). (2.2.12)
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Specifically, for an American put option, we have

lim
S→∞

V (T, S) = 0, and (2.2.13)

lim
S→0

V (T, S) = K. (2.2.14)

2.2.3 Monte Carlo Method

As stated in James [1980], let U be a continuous random variable with support on

(a, b) and probability density function fU(u) = y(u). Assume g(U) to be some function

of U . Now suppose we are interested in calculating

V = E(g(U)) =

∫ b

a

g(u)y(u)du. (2.2.15)

Suppose that g(u)y(u) are complicated functions such that the antiderivative is

not derivable. In this case, an estimate V̂ is required to replace V . One approach to

estimate V is the Monte Carlo Estimator ṼMC .

Assume U1, ..., Un have the same i.i.d distribution with U and V ar(g(U)) = σ2.

The Monte Carlo Estimator ṼMC is defined as

ṼMC =
1

n

n∑
i=1

g(Ui). (2.2.16)

It is easy to show that E(ṼMC) = V and V ar(ṼMC) =
σ2

n
. Based on Equation 3.3.2,

let u1, ..., un be i.i.d random samples generated from y(u), we have the MC estimates

to be

V̂MC =
1

n

n∑
i=1

g(ui) with σ̂ =

√∑n
i=1(g(ui)− V̂MC)2

n− 1
. (2.2.17)

The Law of Large number tells us V̂MC → V as n → ∞ and the Central Limit

Theorem allows for easy construction of a 95% confidence interval for V by

[V̂MC − 1.96 ∗ σ̂√
n
, V̂MC + 1.96 ∗ σ̂√

n
]. (2.2.18)
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2.3 OLS and WLR

2.3.1 Ordinary Least Squares

As stated in Greene [2012], consider the following equation

Y = Xβ + ϵ with E(ϵ) = 0, V ar(ϵ) = σ2I. (2.3.1)

Y = (y1, y2, ..., yn)
T is a n × 1 vector that represents the response variable. 1 is

the n× 1 vector (1, ..., 1)T , X = (1, x1, x2, ..., xp), where xi = (xi1, xi1, ..., xin)
T with

1 ≤ i ≤ p, is defined to be a n× (p+ 1) matrix. β = (β0, β1, β2, ..., βp)
T is a (p+ 1)× 1

vector of regression coefficients, ϵ = (ϵ0, ϵ1, ϵ2, ..., ϵn)
T is a n×1 vector as the error term.

σ is a constant and I is a n × n identity matrix. With the notation listed above, for

each yi in Y , there is a vector (1, xi1, ..., xip) where

yi = β0 +

p∑
k=1

βkxik + ϵi, (2.3.2)

and Ordinary Least Squares gives estimates of β̂, Ŷ and e as 1

β̂ = (XTX)−1XTY , (2.3.3)

Ŷ = Xβ̂ and e = Y − Ŷ . (2.3.4)

2.3.2 Homoscedasticity and Heteroscedasticity

By equation 2.3.1, ϵ should have mean 0 and covariance matrix σ2I where σ is a

constant. As one of the assumptions for Ordinary Least Squares, homoscedasticity

requires sigma to be a constant. However, there are some cases where σ is not a

constant with σ = σi. This is known as heteroscedasicity and violates the assumption

of linear regression.

There are two ways to detect evidence of heteroscedasticity graphical and statis-

tical. Graphical evidence comes with observing the residual plots. If all residuals are

1Note that under the assumptions given above, β̂ is the BLUE of β.
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uniformly distributed with no apparent pattern, we consider this as no evidence of het-

eroscedasticity. Statistical evidence is provided via the Breusch-Pagan test (BPtest)

first introduced by Breusch and Pagan [1979]. The test is conducted with null hy-

potheses H0 = heteroscedasicity does not exist, and alternative hypotheses Ha = het-

eroscedasicity exists. Typically a p.value of 0.05 is used for the significance level. If the

p.value is greater than 0.05 we do not reject H0 and otherwise we reject H0 in favour

of Ha and conclude the existence of heteroscedasticity 1.

2.3.3 Weighted Linear Regression

As stated in section 2.3.2, once a residual plot/BPtest shows there is graphical/statistical

evidence of heteroscedasicity in regression, we should consider applying Weighted Lin-

ear Regression (WLR). If the source of heteroscedasicity is known, suppose for some

positive function f(xik,yi), where 1 ≤ k ≤ p, and assume σ2
i = σ2f(xik,yi). Let P

= diag( 1

σ
√

f(x1k,y1)
, ..., 1

σ
√

f(xnk,yn)
), W = P TP , where now we transform the original

model by multiplying both sides of Equation 3.4.1 by P given

PY = PXβ + Pϵ with E(Pϵ) = 0, V ar(Pϵ) = I. (2.3.5)

this results in the weighted least squares estimator and fitted value

β̂W = (XTWX)−1XTWY , and (2.3.6)

Ŷ W = Xβ̂W , (2.3.7)

respectively.

However, in the real world, sources of heteroscedasicity are unknown for most of the

cases. As stated in Greene [2012], let W = diag( 1
σ2
1
, ..., 1

σ2
n
), then a consistent estimator

β̃W is

β̃W = (XTWX)−1XTWY . (2.3.8)

The weight matrix is estimated by Ŵ = diag( 1

σ̂2
1

, ..., 1

σ̂2
n

). This gives estimates of the

1For more technical details, see Breusch and Pagan [1979].
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regression coefficients, fitted values and residuals

ˆ̃
βW = (XTŴX)−1XTŴY , (2.3.9)

ˆ̃Y W = X
ˆ̃
βW , and (2.3.10)

eW = Y − ˆ̃Y W , (2.3.11)

respectively.

What remains is how to specify Ŵ or equivalently σ̂2
i , i = 1, ..., n. Here we provide

three methods to solve this problem.

Method 1: Park [1966] has proposed a model that assumes σ2
i is proportional to an

unknown power of one or more predictors in the regression. Suppose σ2
i is proportional

to the kth predictor xk. Let σ2 = (σ2
1, ..., σ

2
n)

T , we assume the following equation for

the ith entry

σ2
i = σ2(xik)

λ, (2.3.12)

where λ is an unknown parameter that needs to be estimated.

Furthermore, let e2 = (e21, ..., e
2
n)

T and ϵ2 = (ϵ21, ..., ϵ
2
n)

T . Heuristically since β̂
p→

β, e2 is approximately equal to ϵ2 and as E(ϵ2) = σ2, we have approximately

e2i = σ2(xik)
λev1 , (2.3.13)

where v1 is the error term for method 1, and by taking natural logarithm on both sides,

it is easy to get

ln e2i = lnσ2 + λlnxik + v1. (2.3.14)

Therefore, let ψ0 = lnσ2 and ψ1 = λ, an OLS is constructed with predictor variable

lnxik, response variable ln e2i and error term v1. By taking exponential on ln e2i , using

ê2i as an estimate of σ2
i and constructing Ŵ = diag( 1

ê21
,..., 1

ê2n
), we obtain the estimated

ˆ̃
βW from equation 3.7.5.

Method 2: This method is outlined in Greene [2012]. Let Z = (1, z1, ..., zh) be a

set of variables that may or may not be a subset of X, and α = (α0, α1, ..., αh) be the
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coefficient vector that corresponds to Z. With the same notation in method 1, we can

assume the following structure

σ2 = Zα. (2.3.15)

Therefore, we can obtain the following OLS regression

e2 = Zα + v2, (2.3.16)

where v2 is the error term for method 2.

Similar to method 1, let ê2 be the fitted value and Ŵ = diag( 1

ê21
, ..., 1

ê2n
), we are

able to get the updated ˆ̃
βW .

Method 3: This model is introduced by Harvey [1976]. Instead of modelling σ2 by

equation 3.7.11, now suppose we have the following structure:

σ2 = eZα or lnσ2 = Zα, (2.3.17)

and σ2 = eα0 .

Similarly,

e2 = eZα+v3 or ln e2 = Zα + v3, (2.3.18)

where v3 is the error term for method 3.

With zi to be predictors and ln e2 to be response variable, we obtain α̂. However,

Harvey [1976] stated that the calculated α̂0 is not a consistent estimator, and could be

corrected by adding a constant 1.2704. In this case, with α̂ = (α̂0 + 1.2704, α̂1, ..., α̂h)

and Ŵ = diag( 1

ê21
, ..., 1

ê2n
), we obtain ˆ̃

βW .
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Chapter 3

LSMC and Its Extensions

3.1 Least Squares Monte Carlo

Longstaff and Schwartz [2001] introduced LSMC by showing a short but intuitive

example. In general, by applying backward dynamic programming, the algorithm to

price an American put option with paths simulated from univariate GBM model using

LSMC is described as

1. Discretize time [0, T ] into N time steps, generate a set of stock paths with a

total number n from equation 2.1.7 and record them as Sj
i , where i represents a

simulated path and j is the time index. 1

2. Calculate payoffs PN
i at T (time index N) by equation 2.2.9.

3. Discount PN
i back to time step N − 1 as PN−1

i . Since only the stock paths that

are below the strike would be considered to exercise, thus, record all ITM paths

with a set L and other paths with a set L̄. Suppose for an ITM path l ∈ L, use

SN−1
l as predictors and corresponding PN−1

l as response variable. Construct a

1For example, S10
10 means the 10th path at time index 10.
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regression with polynomial of degree M , where

PN−1
l =

M∑
i=0

βN−1
i (SN−1

l )i + ϵN−1
l . (3.1.1)

4. Calculate β̂N−1
i , fitted values ĈN−1

l using equation 3.4.2 and 3.4.3 and their cor-

responding payoff HN−1
l . Let ĈN−1

l be continuation value and HN−1
l be exercise

value. Here, a decision P̂N−1
l is made by

P̂N−1
l =


HN−1

l , HN−1
l ≥ ĈN−1

l

PN−1
l , HN−1

l < ĈN−1
l .

(3.1.2)

5. If the path i ∈ L, substitute PN−1
i with P̂N−1

i . Do nothing to PN−1
i if i ∈ L̄.

Discount PN−1
i to time step N − 2 to be PN−2

i , repeat step 3 and 5 until time

step 1. The final estimated price V̂ is given by, let ∆t = 1
N

V̂ =
e−r∆t

n

n∑
i=1

P 1
i . (3.1.3)

Similarly, for an American Call option, we change the payoff function in steps 2

and 4. The selected paths used for regression are above the strike price.

However, the LSMC algorithm can be slightly improved at time step N−1. Instead

of using fitted values from regression as continuation values for all ITM paths, we use

their Black & Scholes European prices stated in section 2.2.1. This technique removes

possible errors from analyzing regression coefficients.

For the LSMC algorithm of an American put option with paths simulated from

univariate GARCH/NGARCH model, we first generate n stock paths and record their

volatility terms using the algorithms listed in section 2.1.2, denoting as Sj
i and hji . For

the regression construction in step 3, unlike the GBM model with constant volatility

σ, GARCH models’ volatility terms change with time; thus they should be considered

predictors. In this case, with PN−1
l as response variable, (SN−1

l , hN−1
l ) and their cross-

sectional interaction terms as predictors, we construct a regression with a full basis M1

to substitute equation 4.1.1 and proceed analogously as before.

1For example, a basis of 3 includes (1, Sl, S
2
l , S

3
l , hl, h

2
l , h

3
l , Sl ∗ hl, S

2
l ∗ hl, Sl ∗ h2

l ) as predictors.
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For the LSMC algorithm of an American option with paths simulated from mul-

tivariate GBM model, we generate n sets of stocks, where each set contains m paths

simulated with the correlation matrix Σ. Record each path as Sj
i(k), 1 ≤ k ≤ m. A

regression with full basis M is constructed to estimate the continuation values, similar

to the case of GARCH model.

3.2 WLSMC in GBM Model

Fabozzi et al. [2017] proved the existence of heteroscedasticity in the regressions of

LSMC for the American Put option. This violates the assumption of OLS and thus, may

cause the estimated coefficients from OLS to be non-BLUE and lead to poor estimates

of the continuation value. To correct the heteroscedasticity brought by the underlying

assets, they implemented method 2 with quadratic mean function in predictors. Here

we extend another two models stated in the second part of section 3.7, which are method

1 and method 3, respectively.

Suppose at a time step between 1 and N − 2 to price an American put option,

we use equation 3.5.1 as the initial unweighted regression and can describe all three

methods with a two-step algorithm.

For Method 1 step 1, by equation 3.7.9, since stock prices are positive, we assume

the following structure:

(el)
2 = σ2eul

n∏
i=1

(Sl)
iλi n ≤M (3.2.1)

, and

ln (el)
2 = lnσ2 +

n∑
i=1

(iλi) lnSl + vl, (3.2.2)

where M is the polynomial order used to fit the continuation value.

There is only one predictor in equation 4.2.2, thus we can drop those terms with

orders more than 1. Then followed by the instruction listed in Section 3.7 Method one

as step 2 to conduct WLS. Since all entries in the diagonal matrix Ŵ are positive, it
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factors into two diagonal matrices P̂ and P̂ T such that Ŵ = P̂ T P̂ and use equation

3.6.5 to calculate ˆ̃βW . To prevent possible numerical issues brought by substantial

values from predictors, we use Sl

K
instead of Sl for both LSMC and WLSMC, where K

is the strike price.

For Method 2 step 1, by equation 3.6.11, we can assume the following structure

(el)
2 = α0 + α1Sl + vl. (3.2.3)

As stated above, Fabozzi et al. [2017] also suggests using this method. However, we

find some numerical issues relating to this method by observing that the fitted values

for estimated error terms are not always positive. Intuitively, as (̂el)2 is treated as

a proxy of (σl)
2, it should not be negative. Furthermore, consider the Least Square

Method in estimating β is calculated by minimizing S(β) where

S(β) = (Y − Xβ)T (Y − Xβ), (3.2.4)

The solution, β̂, satisfies
∂S(β)

∂β
= 0, (3.2.5)

with the partial derivative calculated as

∂2S(β)

∂β∂βT
= 2XTX. (3.2.6)

In order for β̂ to minimize S(β), XTX needs to be positive definite. However,

suppose W is a diagonal matrix with some negative elements, XTWX may no longer

be a positive definite matrix and thus, the Least Squares Method breaks down.

Therefore, we choose to run a log-transform regression by taking the natural log-

arithm on the response variable instead. Observing that the log-transform regression

has the same format as Method 3, we combine Method 2 and Method 3, where

ln (el)
2 = α0 + α1Sl + vl. (3.2.7)

Let α̂ = (α̂0+1.2704, α̂1) be the estimated coefficients, method 2 step 2 is the same

as Method 1 step 2. We use the same predictor Sl

K
to prevent numerical issues.
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Finally, the new estimated continuation values are calculated as Ĉl =
∑M

i=0
ˆ̃βw
i (Sl)

i,

which are used in place of Cl in LSMC step 4.

In terms of multivariate GBM model, for method 1, assume that

ln (el)
2 = lnσ2 +

m∑
k=1

λk lnSl(k) + vl, (3.2.8)

where m represents the the number of stock paths used in LSMC.

And for method 2

ln (el)
2 = α0 +

m∑
k=1

αkSl(k) + vl, (3.2.9)

with α̂ = (α̂0 + 1.2704, α̂1, ..., α̂n).

3.3 WLSMC in GARCH single stock model

By construction, stock prices generated using the GARCH model are heteroscedastic.

It is natural to consider whether this translates into additional heteroscedasticity in

LSMC and to investigate effect of LSMC. Thus, we consider applying WLSMC with

the two-step algorithms stated in section 5.1. For Method 1, similar to equation 5.1.2,

we have

ln (el)
2 = lnσ2 + λ1lnSl + λ2lnhl + vl. (3.3.1)

And for Method 2

ln (el)
2 = α0 + α1Sl + α2hl + vl, (3.3.2)

with α̂ = (α̂0 + 1.2704, α̂1, α̂2).

3.4 IRLSMC

As stated in Greene [2012], the procedure of IRLS is described as recomputing the

residual from equation 3.7.7 and reentering the computation. It has the same asymp-
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totic properties with WLS estimators. Although he also states that IRLS may provide

little additional benefit, we wonder to what extent IRLS will affect the results compared

to WLS.

The algorithm of IRLS is: From equation 3.7.7, starting at eW , let eW
i , ˆ̃βW

i rep-

resent the residuals and coefficients in ith iteration. We further recompute eW
i until

|| ˆ̃βW
i+1 −

ˆ̃
βW
i || is less than a tolerant value or a maximum iteration number is reached,

the second criterion is for those that do not converge.

Note that the algorithm listed above does not provide maximum likelihood estimates

for method 2. The reason we did not use the algorithm suggested by Harvey [1976] for

maximum likelihood estimation is due to non-convergence in some cases.
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Chapter 4

Results with Two Exercise

Opportunities

OLS regressions in LSMC are heteroscedastic as shown by Fabozzi et al. [2017] and

results in Chapter 6 show that the problem of heteroscedasticity can lead to more biased

regression coefficient estimates. Thus in this Chapter, by applying WLSMC/IRLSMC

with two methods to correct for heteroscedasticity, we investigate the effect of these

corrections on the estimated continuation values, the options pricing, and the problem

of heteroscedasticity. The model we consider is univariate GBM for underlying assets.

Since in the context of option pricing, WLSMC/IRLSMC modifies the estimated

continuation values at each exercise opportunity before maturity, we wonder whether

WLSMC or IRLSMC gives more accurate estimated continuation values compare to the

true continuation values. However, there is no formula to calculate the true continuation

values except when there are only two exercise opportunities, where the maturity time

is at time step 2. The true continuation values at the intermediate time step can be

calculated by the Black and Scholes formula, as stated in section 2.2.1.

To compare the difference between the estimated continuation values from LSMC to

WLSMC or IRLSMC, we set up three criteria. Take an example of American put option,

first, we generate Q samples and for the ith sample such that 1 ≤ i ≤ Q, it contains
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ni simulated ITM paths. This gives
∑Q

i=1 ni ITM paths in total and we put them in

a set L . Since for each ITM path there will be a true continuation value obtained by

the B-S formula and a continuation value estimated from LSMC/WLSMC/IRLSMC.

We then calculate the RMSE and MRE of them, and plot the error against stock price.

For the jth ITM paths in L , let Cj represents the true continuation value and Ĉj is

the estimated continuation value, the RMSE and MRE can be calculated as

RMSE =

√∑|L |
j=1(Cj − Ĉj)2

|L |
, and (4.0.1)

MRE =

∑|L |
j=1

∣∣∣Cj−Ĉj

Cj

∣∣∣
|L |

. (4.0.2)

The error Ej between the true continuation value and estimated continuation value at

the jth ITM path is obtained by

Ej = Cj − Ĉj. (4.0.3)

Additionally, the true continuation values lead to the correct exercise/hold decision

at time step 1. We construct 2×2 frequency tables detailing the frequency of correct

and incorrect decisions. This criterion is more important than the previous one as in

term of option pricing, the improvement depends on better decision making. Since

there are Q samples in total, the tables displayed below are the average frequencies

over the Q samples.

Moreover, we split all ITM paths in L into 100 bins and plot the RMSE of the

estimated continuation values to the true values against mean stock price in each bin.

The calculation of RMSE is similar the one that introduced in criteria 1. To compare

the decision made by LSMC, WLSMC and IRLSMC, using the same bins as above,

we also make some 2× 2 plots where each graph plots the percentage of same decision

made by two methods1 against mean stock price in each bin.

Besides these analysis, we also include the prices of the American options used

above with the price estimates, standard errors, RMSE and MRE2 compare to the true

1LSMC vs WLSMC, LSMC vs IRLSMC.
2See chapter 5.1 for the calculation of RMSE and MRE.
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Figure 4.1: Plots of errors between true continuation values and estimated continuation

values using LSMC(black), Method 1 WLSMC(red) and Method 1 IRLSMC(green)

with 1000 simulated paths and 1000 repetitions in pricing American call option, same

parameters used in Table 4.3 with N = 2. Left and right panels correspond to 3rd and

5th order polynomials. Red line is the true exercise boundary.

price calculated by the explicit finite difference method. Residual plots are used to

determine whether WLSMC/IRLSMC works on correcting heteroscedasticity.

Stopping creteria for IRLSMC is a maximum number of iterations of 10 and a

tolerant value of 0.01. We fit all LSMC, WLSMC and IRLSMC with 3rd and 5th order

polynomials. In the tables and figures listed below, we denote them with the polynomial

order attached to LSMC, WLSMC or IRLSMC1.

4.1 Compare LSMC/WLSMC/IRLSMC with Cri-

teria I

Table 4.1 shows that compared to LSMC, WLSMC using method 1 provides a lower

RMSE and MRE hence providing a more accurate estimation of the continuation values,

particularly for samples with a small number of simulated paths. Focusing on LSMC,

1For example, WLSMC3 means a third order polynomial is used in the WLSMC method.
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Table 4.1: American Call option continuation values comparison using LSMC, WLSMC

and IRLSMC with true values

Type Method npath MRE RMSE

LSMC3 - 1000 0.072(0.001) 1.878(0.024)

LSMC5 - 1000 0.083(0.001) 2.361(0.026)

WLSMC3 1 1000 0.069(0.001) 1.834(0.024)

WLSMC5 1 1000 0.081(0.001) 2.342(0.026)

IRLSMC3 1 1000 0.069(0.001) 1.838(0.024)

IRLSMC5 1 1000 0.081(0.001) 2.343(0.026)

WLSMC3 2 1000 0.069(0.001) 1.852(0.024)

WLSMC5 2 1000 0.081(0.001) 2.349(0.026)

IRLSMC3 2 1000 0.069(0.001) 1.861(0.024)

IRLSMC5 2 1000 0.081(0.001) 2.353(0.026)

LSMC3 - 10000 0.024(0.001) 0.629(0.023)

LSMC5 - 10000 0.025(0.001) 0.800(0.026)

WLSMC3 1 10000 0.022(0.001) 0.607(0.023)

WLSMC5 1 10000 0.024(0.001) 0.788(0.025)

IRLSMC3 1 10000 0.022(0.001) 0.607(0.023)

IRLSMC5 1 10000 0.024(0.001) 0.788(0.025)

WLSMC3 2 10000 0.022(0.001) 0.621(0.024)

WLSMC5 2 10000 0.024(0.001) 0.794(0.025)

IRLSMC3 2 10000 0.022(0.001) 0.621(0.024)

IRLSMC5 2 10000 0.024(0.001) 0.795(0.025)

Note: Numbers in Type represents the polynomial orders for regression, the parameters used for

stock paths generation and option are S0 = 100, K = 100, r = q = 0.06, T = 1, N = 2, σ = 0.25,

The total computational cost is set to be 1,000,000 (For example, when paths is 1000, we run 1000

different simulations), numbers in the bracket are the standard error.
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Figure 4.2: Plots of errors between true continuation values and estimated continuation

values using LSMC(black), Method 2 WLSMC(red) and Method 2 IRLSMC(green)

with 1000 simulated paths and 1000 repetitions in pricing American call option, same

parameters used in Table 4.3 with N = 2. Left and right panels correspond to 3rd and

5th order polynomials. Red line is the true exercise boundary.

Figure 4.3: Plots of errors between true continuation values and estimated continuation

values using LSMC(black), Method 1 WLSMC(red) and Method 1 IRLSMC(green)

with 1000 simulated paths and 1000 repetitions in pricing American put option. Same

parameters used in Table 4.1 with N = 2. Left and right panels correspond to 3rd and

5th order polynomials. Red line is the true exercise boundary.
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Figure 4.4: Plots of errors between true continuation values and estimated continuation

values using LSMC(black), Method 2 WLSMC(red) and Method 2 IRLSMC(green)

with 1000 simulated paths and 1000 repetitions in pricing American put option. Same

parameters used in Table 4.1 with N = 2. Left and right panels correspond to 3rd and

5th order polynomials. Red line is the true exercise boundary.

WLSMC with third order polynomials and a thousand simulated paths, the RMSE

drops from 1.878 to 1.834 and MRE drops from 0.072 to 0.069. IRLSMC however, does

not give additional benefit in any of the cases. We do not observe too much difference

in the standard error of these estimates among LSMC, WLSMC and IRLSMC.

WLSMC using method 2 also gives closer estimates to the true value compared to

LSMC, but not as good as method 1 when using the RMSE as a criteria. With the

same example described in the previous paragraph, RMSE using method 2 is 1.852,

that is slightly higher than the RMSE using method 1. Data from MRE is relatively

the same using both methods. Similar to method 1, IRLSMC does not furthermore

improve the results.

Results from Figure 4.1 and Figure 4.2 are consistent with Table 4.3, if we focus

on the stock range from [100, 150], estimated continuation values from WLSMC and

IRLSMC with both methods perform better than LSMC. Smaller errors are observed

from the plots. For large stock prices, WLSMC or IRLSMC does not seem to make

further improvement.
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Table 4.2: American Put continuation values comparison using LSMC, WLSMC and

IRLSMC with true values using RMSE and MRE

Type method npath MRE RMSE

LSMC3 - 1000 0.051(0.001) 0.879(0.010)

LSMC5 - 1000 0.060(0.001) 1.097(0.011)

WLSMC3 1 1000 0.051(0.001) 0.880(0.010)

WLSMC5 1 1000 0.060(0.001) 1.098(0.011)

IRLSMC3 1 1000 0.051(0.001) 0.880(0.010)

IRLSMC5 1 1000 0.060(0.001) 1.098(0.011)

WLSMC3 2 1000 0.051(0.001) 0.880(0.010)

WLSMC5 2 1000 0.060(0.001) 1.098(0.011)

IRLSMC3 2 1000 0.051(0.001) 0.880(0.010)

IRLSMC5 2 1000 0.060(0.001) 1.098(0.011)

LSMC3 - 10000 0.017(0.001) 0.287(0.010)

LSMC5 - 10000 0.019(0.001) 0.342(0.010)

WLSMC3 1 10000 0.017(0.001) 0.287(0.010)

WLSMC5 1 10000 0.019(0.001) 0.342(0.010)

IRLSMC3 1 10000 0.017(0.001) 0.287(0.010)

IRLSMC5 1 10000 0.019(0.001) 0.342(0.010)

WLSMC3 2 10000 0.017(0.001) 0.287(0.010)

WLSMC5 2 10000 0.019(0.001) 0.342(0.010)

IRLSMC3 2 10000 0.017(0.001) 0.287(0.010)

IRLSMC5 2 10000 0.019(0.001) 0.342(0.010)

Note: Same parameters as in Table 4.1
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Turning to the ATM American Put option, RMSE and MRE listed in Table 4.2

does not indicate that WLSMC or IRLSMC is a better approach compared to LSMC.

Both estimates and standard error using WLSMC are close to those from LSMC. No

improvement observed from IRLSMC. Similar results are obtained from Figure 4.3 and

Figure 4.4, we do not see much difference in errors among LSMC, WLSMC and IRLSMC

in both methods. Thus, we conclude that WLSMC or IRLSMC does not provide more

accurate estimated continuation values compared to LSMC.

4.2 Compare LSMC/WLSMC/IRLSMC with Cri-

teria II

Results from the previous section show that WLSMC applied to an ATM American call

option leads to more accurate estimated continuation values. In this section, Table 4.3

and Table 4.4 show the results of comparing the decisions made by true continuation

values and estimated continuation values from LSMC, WLSMC and IRLSMC, respec-

tively. Focus on Table 4.3, around 93.9% of the time that LSMC3 can make correct

decisions. WLSMC3 and IRLSMC3 with both methods do not make better decisions.

Turning to LSMC5, 93.2% of the estimates make decisions consistent with the true

continuation value. The data increased to 93.3% using WLSMC5 in both methods.

In the second table when there are ten thousand paths in a sample. It still turns out

that WLSMC5 makes more consistent decisions with the true continuation value. The

accuracy increases from 96.5% to 96.7% in both methods, IRLSMC does not make any

further improvement.
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Table 4.3: American Call 2× 2 contingency table of Exercise decided by True Contin-

uation Value and Estimated Continuation Value. Average frequency per 1000 paths.

Exercise by

Estimated Cont.Value
Type

Exercise by

True Cont.Value Yes No

LSMC3 Yes 45.4 29.2

No 32.1 893.3

WLSMC3 Method 1 Yes 45.1 29.5

No 31.7 893.7

IRLSMC3 Method 1 Yes 45.1 29.4

No 31.8 893.7

WLSMC3 Method 2 Yes 45.0 29.6

No 31.6 893.7

IRLSMC3 Method 2 Yes 45.0 29.6

No 31.6 893.8

LSMC5 Yes 43.3 31.2

No 36.7 888.8

WLSMC5 Method 1 Yes 43.4 31.2

No 35.9 889.5

IRLSMC5 Method 1 Yes 43.4 31.2

No 36.0 889.4

WLSMC5 Method 2 Yes 43.3 31.2

No 36.0 889.5

IRLSMC5 Method 2 Yes 43.3 31.3

No 35.9 889.5

Note: Same parameters as in Table 4.1 and run 1000 different simulations.
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Table 4.4: American Call 2× 2 contingency table of Exercise decided by True Contin-

uation Value and Estimated Continuation Value. Average frequency per 10000 paths.

Exercise by

Estimated Cont.Value
Type

Exercise by

True Cont.Value Yes No

LSMC3 Yes 602.4 150.5

No 134.9 9112.2

WLSMC3 Method 1 Yes 590.2 162.8

No 133.4 9113.6

IRLSMC3 Method 1 Yes 590.3 162.7

No 133.5 9113.5

WLSMC3 Method 2 Yes 587.0 165.9

No 132.5 9114.6

IRLSMC3 Method 2 Yes 587.3 165.7

No 132.5 9114.5

LSMC5 Yes 552.7 200.3

No 151.3 9095.7

WLSMC5 Method 1 Yes 557.0 196.0

No 138.9 9108.1

IRLSMC5 Method 1 Yes 557.0 196.0

No 139.0 9108.0

WLSMC5 Method 2 Yes 557.8 195.1

No 139.5 9107.6

IRLSMC5 Method 2 Yes 558.1 194.8

No 139.7 9107.4

Note: Same parameters as in Table 4.1 and run 100 different simulations.
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4.3 Compare LSMC/WLSMC/IRLSMC with Cri-

teria III

Figure 4.5 ,Figure 4.7, Figure 4.9, and Figure 4.11 display the results of RMSE in each

bin for ATM American call option and put option, method 1 and 2, respectively. They

behave similarly to those error plots. For call option, smaller RMSE are obtained for

stock price less than 120 and for put option, RMSE are relatively the same every-

where. Moreover, we do not see improvement in RMSE around the exercise boundary

for all plots. Thus we think that WLSMC/IRLSMC may not help in making better

decision than LSMC. Figure 4.6 ,Figure 4.8, Figure 4.10, and Figure 4.12 confirm our

thought. By plotting the percentage of same decisions made by two methods in each

bin, we find that: For call option at any stock price, over 90% of the time LSMC and

WLSMC/IRLSMC make the same decision, this data goes to 95% when the stock price

approaches the early exercise boundary. For put option, over 98% of the time LSMC

and WLSMC/IRLSMC make the same decision. In this case, we conclude that the

improvement in RMSE by WLSMC/IRLSMC does not translate into making better

decisions.
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Figure 4.5: Plots of RMSE between true continuation values and estimated continuation

values using LSMC3, Method 1 WLSMC3 and Method 1 IRLSMC3 on the left and 5th

order polynomial on the right against mean stock price in each bin. 1000 simulated

paths with 1000 repetitions are used in pricing American call option. Same parameters

used in Table 4.1, red line is the early exercise boundary.

Figure 4.6: Plots of percentage of same decisions made by LSMC3 vs WLSMC3(top

left), LSMC3 vs IRLSMC3(top right), LSMC5 vs WLSMC5(bottom left), LSMC5 vs

IRLSMC5(bottom right), same bins and same method of WLSMC/IRLSMC as in Fig-

ure 4.5. 1000 simulated paths with 1000 repetitions were used in pricing ATM American

Call option, same parameters used in Table 4.1, red line is the early exercise boundary.
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Figure 4.7: Plots of RMSE between true continuation values and estimated continuation

values using LSMC3, Method 1 WLSMC3 and Method 1 IRLSMC3 on the left and 5th

order polynomial on the right against mean stock price in each bin. 1000 simulated

paths with 1000 repetitions are used in pricing American put option. Same parameters

used in Table 4.1, red line is the early exercise boundary.

Figure 4.8: Plots of percentage of same decision made by LSMC3 vs WLSMC3(top

left), LSMC3 vs IRLSMC3(top right), LSMC5 vs WLSMC5(bottom left), LSMC5 vs

IRLSMC5(bottom right), same bins and same method of WLSMC/IRLSMC as in Fig-

ure 4.7. 1000 simulated paths with 1000 repetitions were used in pricing ATM American

put option, same parameters used in Table 4.1, red line is the early exercise boundary.
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Figure 4.9: Plots of RMSE between true continuation values and estimated continuation

values using LSMC3, Method 2 WLSMC3 and Method 2 IRLSMC3 on the left and 5th

order polynomial on the right against mean stock price in each bin. 1000 simulated

paths with 1000 repetitions are used in pricing American call option. Same parameters

used in Table 4.1, red line is the early exercise boundary.

Figure 4.10: Plots of percentage of same decision made by LSMC3 vs WLSMC3(top

left), LSMC3 vs IRLSMC3(top right), LSMC5 vs WLSMC5(bottom left), LSMC5 vs

IRLSMC5(bottom right), same bins and same method of WLSMC/IRLSMC as in Fig-

ure 4.9. 1000 simulated paths with 1000 repetitions were used in pricing ATM American

call option, same parameters used in Table 4.1, red line is the early exercise boundary.
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Figure 4.11: Plots of RMSE between true continuation values and estimated continua-

tion values using LSMC3, Method 2 WLSMC3 and Method 2 IRLSMC3 on the left and

5th order polynomial on the right against mean stock price in each bin. 1000 simulated

paths with 1000 repetitions are used in pricing American put option. Same parameters

used in Table 4.1, red line is the early exercise boundary.

Figure 4.12: Plots of percentage of same decision made by LSMC3 vs WLSMC3(top

left), LSMC3 vs IRLSMC3(top right), LSMC5 vs WLSMC5(bottom left), LSMC5 vs

IRLSMC5(bottom right), same bins and same method of WLSMC/IRLSMC as in Fig-

ure 4.11. 1000 simulated paths with 1000 repetitions were used in pricing ATM Ameri-

can put option, same parameters used in Table 4.1, red line is the early exercise bound-

ary. 35
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Figure 4.13: Standardized residual plots of LSMC(left), Method 1 WLSMC(middle)

and Method 1 IRLSMC(right) with 1000 simulated paths in pricing ATM American

Call option, top and bottom rows correspond to polynomial orders 3 and 5 used in

regressions, same parameters used in Table 4.1

4.4 Compare LSMC/WLSMC/IRLSMC with Price

and Heteroscedasticity Correction

Figure 4.13 and Figure 4.14 include the standardized residual plots of LSMC, WLSMC

and IRLSMC in two methods under polynomial of 3 and 5 in pricing ATM American

Call option. Figure 4.15 and Figure 4.16 are the correspond residuals plots in pricing

ATM American Put option. Red points in the graphs are those with 0 in the response

variables, which means for these particular stock paths at this time step, they have not

been exercised. This leads to a particular trend formed in the residual plots, which is

apparent in every plots. In this case, we think using BPtest may not be a good idea to

36



−2

−1

0

1

2

3

60 70 80 90 100
Stock price

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

−2

−1

0

1

2

3

60 70 80 90 100
Stock price

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

−2

−1

0

1

2

3

60 70 80 90 100
Stock price

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

−2

−1

0

1

2

3

60 70 80 90 100
Stock price

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

−2

−1

0

1

2

3

60 70 80 90 100
Stock price

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

−2

−1

0

1

2

3

60 70 80 90 100
Stock price

S
ta

nd
ar

di
ze

d 
R

es
id

ua
ls

Figure 4.14: Standardized residual plots of LSMC(left), Method 1 WLSMC(middle)

and Method 1 IRLSMC(right) with 1000 simulated paths in pricing ATM American

Put option, top and bottom rows correspond to polynomial orders 3 and 5 used in

regressions, same parameters used in Table 4.1
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Figure 4.15: Standardized residual plots of LSMC(left), Method 2 WLSMC(middle)

and Method 2 IRLSMC(right) with 1000 simulated paths in pricing ATM American

Call option, top and bottom rows correspond to polynomial orders 3 and 5 used in

regressions, same parameters used in Table 4.1
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Figure 4.16: Standardized residual plots of LSMC(left), Method 2 WLSMC(middle)

and Method 2 IRLSMC(right) with 1000 simulated paths in pricing ATM American

Put option, top and bottom rows correspond to polynomial orders 3 and 5 used in

regressions, same parameters used in Table 4.1
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test for heteroscedasticity as this trend has already violated the assumption of errors

being homoscedastic in OLS.

Focused on the standardized residual plots, we find WLSMC cannot remove the

trend as described in the previous paragraph and do not observe too much improvement

over WLSMC made by IRLSMC. In this case, we consider that WLSMC/IRLSMC does

not help with heteroscedasticity correction.

Table 4.5 and Table 5.1 display the prices of the American options using LSMC,

WLSMC, and IRLSMC, respectively. We hardly see any improvement made by applying

WLSMC compare to LSMC in both methods, especially for American put option.
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Table 4.5: Pricing performance of ATM American Call with 2 exercise opportunities

using LSMC, WLSMC and IRLSMC.

Type Path Method Price se MRE RMSE

LSMC3 1000 - 9.5281 0.0153 0.0416 0.4941

LSMC5 1000 - 9.5601 0.0151 0.0419 0.4975

WLSMC3 1000 1 9.5272 0.0151 0.0415 0.4903

WLSMC5 1000 1 9.5606 0.0151 0.0419 0.4958

IRLSMC3 1000 1 9.5276 0.0152 0.0414 0.4904

IRLSMC5 1000 1 9.5611 0.0151 0.0419 0.4960

WLSMC3 1000 2 9.5287 0.0151 0.0414 0.4898

WLSMC5 1000 2 9.5606 0.0151 0.0420 0.4963

IRLSMC3 1000 2 9.5288 0.0151 0.0413 0.4890

IRLSMC5 1000 2 9.5608 0.0151 0.0419 0.4962

LSMC3 10000 - 9.4347 0.0135 0.0117 0.1347

LSMC5 10000 - 9.4424 0.0133 0.0114 0.1335

WLSMC3 10000 1 9.4343 0.0133 0.0114 0.1328

WLSMC5 10000 1 9.4385 0.0132 0.0114 0.1326

IRLSMC3 10000 1 9.4345 0.0133 0.0114 0.1325

IRLSMC5 10000 1 9.4386 0.0132 0.0115 0.1327

WLSMC3 10000 2 9.4338 0.0133 0.0113 0.1324

WLSMC5 10000 2 9.4390 0.0132 0.0114 0.1326

IRLSMC3 10000 2 9.4340 0.0133 0.0113 0.1327

IRLSMC5 10000 2 9.4394 0.0132 0.0114 0.1329

Note: Same parameters used for stock generations and option as in Table 4.1 with N = 2, exercise

once every 126 days, the true price is calculated from explicit finite difference method to be 9.422.
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Table 4.6: Pricing performance of ATM American Put with 2 exercise opportunities

using LSMC, WLSMC and IRLSMC.

Type Path Method Price se MRE RMSE

LSMC3 1000 - 9.4548 0.0112 0.0302 0.3555

LSMC5 1000 - 9.4692 0.0111 0.0300 0.3524

WLSMC3 1000 1 9.4546 0.0112 0.0301 0.3544

WLSMC5 1000 1 9.4693 0.0110 0.0299 0.3521

IRLSMC3 1000 1 9.4546 0.0112 0.0301 0.3546

IRLSMC5 1000 1 9.4692 0.0110 0.0299 0.3522

WLSMC3 1000 2 9.4545 0.0112 0.0301 0.3550

WLSMC5 1000 2 9.4691 0.0110 0.0300 0.3522

IRLSMC3 1000 2 9.4544 0.0112 0.0301 0.3548

IRLSMC5 1000 2 9.4690 0.0110 0.0300 0.3524

LSMC3 10000 - 9.4169 0.0112 0.0094 0.1119

LSMC5 10000 - 9.4205 0.0113 0.0093 0.1127

WLSMC3 10000 1 9.4171 0.0112 0.0094 0.1120

WLSMC5 10000 1 9.4205 0.0113 0.0093 0.1125

IRLSMC3 10000 1 9.4171 0.0112 0.0094 0.1120

IRLSMC5 10000 1 9.4205 0.0113 0.0093 0.1125

WLSMC3 10000 2 9.4170 0.0112 0.0094 0.1120

WLSMC5 10000 2 9.4205 0.0113 0.0093 0.1125

IRLSMC3 10000 2 9.4170 0.0112 0.0094 0.1120

IRLSMC5 10000 2 9.4204 0.0113 0.0093 0.1125

Note: Same parameters used for stock generations and option as in Table 4.1 with N = 2, exercise

once every 126 days, the true price is calculated from explicit finite difference method to be 9.422.
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Chapter 5

General Results

In this section, we extend the exercise opportunities from two to many. The models we

consider are univariate GBM, univaraite GARCH and bivariate GBM, respectively, for

underlying assets. The criteria we set to compare the performance of LSMC, WLSMC

and IRLSMC are the estimated option values compared with the true value, standard

error, RMSE and MRE. The true option value is calculated from the Explicit Finite

Difference method brought by Brennan and Schwartz [1977]. Recall we generate q

samples stated in section 6.1, thus, suppose V represents the true price and V̂i represents

the estimated price from the ith sample such that 1 ≤ i ≤ Q, RMSE and MRE are

calculated as

RMSE =

√∑Q
i=1(V̂i − V )2

Q
, and (5.0.1)

MRE =

∑Q
i=1

∣∣∣ V̂i−V
V

∣∣∣
Q

. (5.0.2)

5.1 Univariate GBM

Table 5.1 and Table 5.2 display the prices of ATM American Call and Put options with

50 exercise opportunities using LSMC, two methods WLSMC and IRLSMC respectively.

Since we set the interest rate equal to the dividend rate in our examples, the true price
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Table 5.1: Pricing performance of ATM American Call with 50 exercise opportunities

using LSMC, WLSMC and IRLSMC.

Type Paths Method Price se MRE RMSE

LSMC3 1000 - 9.884 0.014 0.050 0.595

LSMC5 1000 - 10.055 0.014 0.063 0.715

WLSMC3 1000 1 9.861 0.015 0.050 0.592

WLSMC5 1000 1 10.035 0.014 0.061 0.702

IRLSMC3 1000 1 9.866 0.014 0.050 0.587

IRLSMC5 1000 1 10.042 0.014 0.062 0.709

WLSMC3 1000 2 9.853 0.015 0.050 0.595

WLSMC5 1000 2 10.037 0.014 0.062 0.705

IRLSMC3 1000 2 9.857 0.015 0.050 0.586

IRLSMC5 1000 2 10.037 0.014 0.062 0.707

LSMC3 10000 - 9.539 0.013 0.011 0.138

LSMC5 10000 - 9.582 0.014 0.013 0.161

WLSMC3 10000 1 9.530 0.014 0.011 0.140

WLSMC5 10000 1 9.576 0.014 0.013 0.161

IRLSMC3 10000 1 9.531 0.014 0.011 0.141

IRLSMC5 10000 1 9.573 0.014 0.013 0.159

WLSMC3 10000 2 9.517 0.015 0.012 0.150

WLSMC5 10000 2 9.569 0.014 0.013 0.154

IRLSMC3 10000 2 9.518 0.015 0.012 0.146

IRLSMC5 10000 2 9.568 0.014 0.013 0.161

Note: Same parameters used for stock generations and option as in Table 4.1 with N = 50, exercise

once every 5 days, the true price is calculated from explicit finite difference method to be 9.497.
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Table 5.2: Pricing performance of ATM American Put with 50 exercise opportunities

using LSMC, WLSMC and IRLSMC.

Type Paths Method Price se MRE RMSE

LSMC3 1000 - 9.733 0.0110 0.036 0.419

LSMC5 1000 - 9.822 0.0107 0.040 0.469

WLSMC3 1000 1 9.723 0.0114 0.036 0.424

WLSMC5 1000 1 9.822 0.0107 0.040 0.470

IRLSMC3 1000 1 9.728 0.0111 0.036 0.420

IRLSMC5 1000 1 9.825 0.0108 0.041 0.473

WLSMC3 1000 2 9.737 0.0110 0.036 0.422

WLSMC5 1000 2 9.832 0.0107 0.041 0.476

IRLSMC3 1000 2 9.736 0.0109 0.036 0.420

IRLSMC5 1000 2 9.831 0.0108 0.041 0.477

LSMC3 10000 - 9.547 0.0104 0.010 0.115

LSMC5 10000 - 9.570 0.0102 0.011 0.125

WLSMC3 10000 1 9.542 0.0106 0.010 0.114

WLSMC5 10000 1 9.564 0.0102 0.010 0.121

IRLSMC3 10000 1 9.542 0.0105 0.010 0.114

IRLSMC5 10000 1 9.566 0.0101 0.011 0.122

WLSMC3 10000 2 9.547 0.0105 0.010 0.116

WLSMC5 10000 2 9.571 0.0100 0.011 0.124

IRLSMC3 10000 2 9.545 0.0105 0.010 0.115

IRLSMC5 10000 2 9.571 0.0100 0.011 0.123

Note: Same parameters used for stock generations and option as in Table 4.1 with N = 50, exercise

once every 5 days, the true price is calculated from explicit finite difference method to be 9.497.
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of ATM American Call option is the same as ATM American Put option, and the

true price is 9.497. Using the true price as the standard, for method 1 in pricing Call

option, compared with LSMC, WLSMC brings low biased estimates across all samples

with 1000 or 10000 paths. However, the standard error from WLSMC is slightly higher

than LSMC. In terms of the MRE and RMSE calculated by equation 7.2.1 and 7.2.2,

with a sample size of 1000 WLSMC method 1 makes lower or relatively the same

results compared to LSMC. With a sample size of 10000, WLSMC method 1 using

third-order polynomial achieves higher RMSE. Although IRLSMC gets higher biased

prices compared to WLSMC for most cases, the standard error decreases or keeps the

same across all samples. It leads to lower RMSE for a polynomial of order 3 and 1000

paths and order 5 with 10000 paths. In terms of method 1 when pricing the put option,

we could hardly see any benefit from using WLSMC or IRLSMC.

Focused on method 2 WLSMC and use the true price 9.497 as the standard, it

provides lower biased estimates compared to LSMC and method 1 WLSMC for most

of the time in Table 5.1. However, the major disadvantage of using method 2 WLSMC

comes from its high standard error in pricing ATM American Call options across all

cases listed in the table. Method 2 IRLSMC helps to reduce the standard error when

the sample size is 1000. Method 2 WLSMC or IRLSMC does not perform better than

LSMC in pricing ATM American Put option.

Table 5.3 shows the prices when there are 126 exercise opportunities for ATM

American Call options. As the number of exercise opportunities increases to 126, the

true price rises as well to 9.499. Using the new benchmark price 9.499 as the standard,

method 1 WLSMC exerts more effect on the prices of the option, especially for third-

order polynomial. The difference in estimates is 23 cents when the sample size is 1000,

much larger than the difference of 2.3 cents in the previous table. However, it also

brings much more volatility across all samples. Due to the high standard error brought

by Method 1 WLSMC, higher RMSE and MRE were observed. Method 1 IRLSMC

helps to cut down the standard error compared to WLSMC, reflecting on the RMSE

and MRE calculation with lower results.

Turning to method 2WLSMC with the same benchmark price 9.499 as the standard.

46



Table 5.3: Pricing performance of ATM American Call with 126 exercise opportunities

using LSMC, WLSMC and IRLSMC .

Type Paths Method Price se MRE RMSE

LSMC3 1000 - 9.915 0.014 0.052 0.609

LSMC5 1000 - 10.110 0.014 0.067 0.753

WLSMC3 1000 1 9.686 0.024 0.062 0.768

WLSMC5 1000 1 10.031 0.016 0.065 0.736

IRLSMC3 1000 1 9.823 0.016 0.052 0.602

IRLSMC5 1000 1 10.048 0.015 0.065 0.727

WLSMC3 1000 2 9.602 0.027 0.066 0.859

WLSMC5 1000 2 10.014 0.017 0.066 0.737

IRLSMC3 1000 2 9.791 0.017 0.051 0.603

IRLSMC5 1000 2 10.031 0.015 0.064 0.719

LSMC3 10000 - 9.530 0.013 0.012 0.137

LSMC5 10000 - 9.596 0.013 0.013 0.159

WLSMC3 10000 1 9.492 0.016 0.012 0.161

WLSMC5 10000 1 9.529 0.023 0.015 0.232

IRLSMC3 10000 1 9.501 0.014 0.012 0.142

IRLSMC5 10000 1 9.559 0.014 0.012 0.152

WLSMC3 10000 2 9.365 0.036 0.024 0.378

WLSMC5 10000 2 9.452 0.038 0.021 0.380

IRLSMC3 10000 2 9.456 0.017 0.014 0.176

IRLSMC5 10000 2 9.505 0.019 0.014 0.191

Note: Same parameters used for stock generations and option as in Table 4.1 with N = 126, exercise

once every 2 days. The true price is 9.499.
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It behaves similarly to Method 1 WLSMC. Although Method 2 WLSMC reduces the

bias in the price estimates when the sample size is 1000, the standard error increases

dramatically. When the sample size is 10000, Method 2 WLSMC gives poor estimates

with high standard error. Method 2 IRLSMC lessens the standard error to a large

extent.

5.2 Univariate GARCH

In this section, we focus on GARCH models including the ordinary GARCH and

NGARCH models discussed in section 2. Similar to the previous section, we test the

performance of LSMC, WLSMC and IRLSMC via option price compare with true price,

standard error, RMSE and MRE. The option type is ATM American put option in one

dimension.

Table 5.4 exhibits the pricing estimates of American put option under GARCH

model using LSMC, WLSMC and IRLSMC in both methods. The true price is selected

from Stentoft [2011]. Obviously except the case of Method 2 WLSMC5 when the num-

ber of paths is 1000, WLSMC provides lower biased estimates compared to LSMC and

higher standard error, similar to the GBM American call option as described in the pre-

vious section. Checking the results from IRLSMC, it appears that method 1 IRLSMC

makes extra contribution to WLSMC by reducing the standard error effectively, leading

to smaller MRE and RMSE. However, method 2 IRLSMC produces relatively the same

results with WLSMC. Turn to the NGARCH model, results from Table 5.5 is pretty

consistent with Table 5.4.

5.3 Bivariate GBM

In this section, the option type we discussed is the two dimensional ATM American

basket put option. Suppose the option is expired at T . Let S1 and S2 represent the

two correlated stock paths generated from section 2.1, the payoff function at t ≤ T is
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Table 5.4: Pricing performance of ATM American Put with 63 exercise opportunities

using LSMC, WLSMC and IRLSMC in GARCH model.

Type Paths Method Price se MRE RMSE

LSMC3 1000 - 4.547 0.0056 0.067 0.331

LSMC5 1000 - 4.735 0.0056 0.109 0.500

WLSMC3 1000 1 4.520 0.0064 0.065 0.324

WLSMC5 1000 1 4.728 0.0058 0.108 0.495

IRLSMC3 1000 1 4.513 0.0064 0.063 0.317

IRLSMC5 1000 1 4.719 0.0059 0.106 0.488

WLSMC3 1000 2 4.518 0.0062 0.063 0.318

WLSMC5 1000 2 4.738 0.0059 0.110 0.506

IRLSMC3 1000 2 4.526 0.0061 0.064 0.322

IRLSMC5 1000 2 4.713 0.0063 0.105 0.487

LSMC3 10000 - 4.324 0.0054 0.016 0.078

LSMC5 10000 - 4.363 0.0055 0.023 0.110

WLSMC3 10000 1 4.282 0.0076 0.014 0.076

WLSMC5 10000 1 4.343 0.0064 0.020 0.099

IRLSMC3 10000 1 4.288 0.0066 0.013 0.069

IRLSMC5 10000 1 4.341 0.0062 0.019 0.095

WLSMC3 10000 2 4.304 0.0062 0.014 0.071

WLSMC5 10000 2 4.352 0.0059 0.022 0.103

IRLSMC3 10000 2 4.305 0.0061 0.014 0.071

IRLSMC5 10000 2 4.351 0.0059 0.021 0.102

Note: We use the GARCH parameters outlined in Stentoft [2011] on page 889 with N = 63, exercise

once every day. The benchmark price is 4.268.
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Table 5.5: Pricing performance of ATM American Put with 63 exercise opportunities

using LSMC, WLSMC and IRLSMC in NGARCH model.

Type npaths Method Price se MRE RMSE

LSMC3 1000 - 4.715 0.0063 0.075 0.379

LSMC5 1000 - 4.925 0.0062 0.121 0.568

WLSMC3 1000 1 4.672 0.0072 0.070 0.360

WLSMC5 1000 1 4.912 0.0064 0.118 0.558

IRLSMC3 1000 1 4.672 0.0071 0.070 0.358

IRLSMC5 1000 1 4.899 0.0067 0.116 0.549

WLSMC3 1000 2 4.679 0.0070 0.070 0.362

WLSMC5 1000 2 4.922 0.0064 0.121 0.567

IRLSMC3 1000 2 4.688 0.0070 0.072 0.369

IRLSMC5 1000 2 4.896 0.0066 0.115 0.546

LSMC3 10000 - 4.454 0.0060 0.017 0.086

LSMC5 10000 - 4.503 0.0060 0.026 0.126

WLSMC3 10000 1 4.395 0.0089 0.015 0.089

WLSMC5 10000 1 4.473 0.0069 0.021 0.106

IRLSMC3 10000 1 4.403 0.0075 0.014 0.076

IRLSMC5 10000 1 4.472 0.0066 0.020 0.103

WLSMC3 10000 2 4.431 0.0064 0.014 0.075

WLSMC5 10000 2 4.491 0.0063 0.024 0.117

IRLSMC3 10000 2 4.432 0.0064 0.014 0.075

IRLSMC5 10000 2 4.490 0.0063 0.023 0.116

Note: We use the NGARCH parameters outlined in Stentoft [2011] on page 889 with N = 63,

exercise once every day. The benchmark price is 4.392.
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given by

fBP = max(K − S1
t + S2

t

2
, 0) (5.3.1)

where BP denotes for American basket put option.

Table 5.5 displays the pricing estimates using LSMC, WLSMC and IRLSMC in

both methods. The correlation between two stocks is 0.5. The results from the table

behave similarly to Table 5.3, There is no benefit in using WLSMC or IRLSMC for

pricing this 2-dimensional American style option.
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Table 5.6: Pricing performance of ATM American Basket Put with 13 exercise oppor-

tunities using LSMC, WLSMC and IRLSMC in GBM Two Stocks Model.

Type npaths Method Price se MRE RMSE

LSMC3 1000 - 3.267 0.0042 0.048 0.185

LSMC5 1000 - 3.355 0.0041 0.071 0.255

WLSMC3 1000 1 3.267 0.0041 0.048 0.184

WLSMC5 1000 1 3.356 0.0042 0.071 0.255

IRLSMC3 1000 1 3.266 0.0042 0.048 0.185

IRLSMC5 1000 1 3.355 0.0042 0.071 0.255

WLSMC3 1000 2 3.267 0.0042 0.048 0.185

WLSMC5 1000 2 3.356 0.0042 0.071 0.256

IRLSMC3 1000 2 3.267 0.0042 0.048 0.185

IRLSMC5 1000 2 3.355 0.0042 0.071 0.255

LSMC3 10000 - 3.162 0.0034 0.011 0.042

LSMC5 10000 - 3.179 0.0033 0.014 0.054

WLSMC3 10000 1 3.162 0.0034 0.011 0.042

WLSMC5 10000 1 3.180 0.0033 0.015 0.055

IRLSMC3 10000 1 3.163 0.0035 0.011 0.043

IRLSMC5 10000 1 3.180 0.0034 0.014 0.054

WLSMC3 10000 2 3.164 0.0034 0.011 0.044

WLSMC5 10000 2 3.180 0.0034 0.015 0.055

IRLSMC3 10000 2 3.164 0.0035 0.011 0.044

IRLSMC5 10000 2 3.180 0.0034 0.014 0.055

Note: We use the parameters outlined in Fabozzi et al. [2017] on

page 702 with N = 13, approximately exercise once every 5 days.

The benchmark price is 3.137.
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Chapter 6

Conclusion

In this thesis, based on the work from Fabozzi et al. [2017], we introduce two methods of

heteroscedasticity correction in the regression part of LSMC, which are Method 1 and 2

WLSMC from Park [1966] and Harvey [1976]. Moreover, by recomputing the residuals

fromWLSMC and running several iterations, we take IRLSMC into account. To test the

performance of the two methods, we create some corresponding make-up heteroscedastic

data and apply two methods separately. By varying the polynomial order used for the

mean function, we find that WLS provide better coefficient estimates but is sometimes

insufficient for heteroscedasticity correction, and IRLS can help to further correct the

heteroscedasticity. In the results part, we first do an analysis when there are only two

exercise opportunities. Comparing true continuation values to estimated continuation

values from LSMC, WLSMC and IRLSMC respectively, we find that WLSMC and

IRLSMC are able to give more accurate continuation values than LSMC when pricing

ATM American call options. However, this increased in accuracy does not translate

into better exercise decisions and hence there is no effect on option prices. Finally,

by comparing their residual plots, the general pattern of the residuals in LSMC is

not changed by applying WLSMC/IRLSMC. IRLSMC does not perform better than

WLSMC.

Next we apply LSMC, WLSMC and IRLSMC with more realistic number of exercise

opportunities in both methods in pricing ATM American call and put option under
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GBM model. As expected, WLSMC works better with call option and IRLSMC helps

to reduce the standard error. However, as the standard errors from WLSMC and

IRLSMC are higher than LSMC, we conclude that they are not effective at improving

price estimator efficiency in realistic settings. Last but not least, we test WLSMC

and IRLSMC on GARCH, NGARCH and the bivariate GBM models to price ATM

American put option1, the conclusion is the same with the GBM single stock case.

6.1 Suggestions on Future Work

Based on our analysis, we think some interesting problems could be worked on in the

future. Here we list some of these.

1. The reason we abandon the method from Greene [2012] is due to negative

weights, is there a way to avoid them?

2. Recall we mention that Harvey [1976] suggested using Maximum Likelihood

Estimation 2 in the iterative process for method 2. However in our test, it fails in a lot

of cases due to non-convergence. Is the problem solvable?

3. We set up the maximum number of iterations for IRLSMC to be 10, should it

be higher to ensure convergence or lower to save computational costs?

4. Notice that we only test our WLSMC and IRLSMC algorithms on one and two

dimensional underlying assets American options, future work may consider in increasing

the number of underlying assets.

1American basket put for GBM two stocks model.
2For more details, see Harvey [1976].
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Appendix A

Tests with Makeup Data

In this chapter, we introduce some simple makeup data to test the pros and cons

of the methods described in section 4. By conducting OLS, WLS and IRLS with

the same, less or higher order polynomial as that used to fit the mean function, we

investigate whether the estimated coefficients are close to the makeup values and use

the standardized residual plots to determine whether WLS and IRLS help correct for

heteroscedasticity.

A.1 Method 1 Test

Let x be a k×1 column vector that uniformly discretizes the interval [0, 1] with k points

and xM be a k× 1 vector such that each element in xM is to the M th polynomial order

of the corresponding element in x1. Then we construct the matrix X = (1,x, ...,xM)

as predictors with β as coefficients to be determined. The noise term ϵ is constructed

to be a k × 1 column vector. For the jth entry in ϵ, we have

ϵj = Zj

√
(xj)λ, (A.1.1)

where xj is the j
th entry of x, Zj is a random sample generated from N(0, 1) and λ is

a parameter to be specified.

1In this case, x = x1
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Table A.1: Estimated β and λ of cubic mean function in predictors, method 1.

k Type β0 β1 β2 β3 2-norm λ

500 OLS 1.04(**) 1.39(**) 4.69(**) 2.84(**) 2.14 0

500 WLS 1.00(**) 1.98(**) 3.08(**) 3.98(**) 0.08 2.08(*-)

500 IRLS 1.00(**) 2.00(**) 2.97(**) 4.08(**) 0.09 3.95(**)

5000 OLS 1.00(**) 1.92(**) 3.31(**) 3.73(**) 0.42 0

5000 WLS 1.00(**) 2.00(**) 3.06(**) 3.93(**) 0.09 3.06(*-)

5000 IRLS 1.00(**) 2.00(**) 3.03(**) 3.97(**) 0.04 3.98(**)

50000 OLS 1.00(**) 1.94(**) 3.19(**) 3.87(**) 0.24 0

50000 WLS 1.00(**) 2.00(**) 3.00(**) 4.01(**) 0.01 3.11(*-)

50000 IRLS 1.00(**) 2.00(**) 3.00(**) 4.01(**) 0.01 4.00(**)

Note: β0 to β3 are the estimated coefficients, 2-norm computes the second

norm between estimated coefficients and true values. λ represents the esti-

mated value according to equation 5.1.2. The symbols in brackets are the

hypothesis testings on estimated coefficients at a significance level of 0.05,

with (**: different from 0 but not true value, *-: different from 0 and true

value, -*: not different from both 0 and true value, –: not different from 0

and different from true value).

Finally the response variable Y is computed as

Y = Xβ + ϵ. (A.1.2)

The parameters we select for k = {500, 5000, 50000}, M = 3, β = (1, 2, 3, 4), λ = 4.

In the IRLS algorithm, the stopping rule uses a tolerant value of 0.01 and a maximum

number of iterations 10. We first consider applying a cubic mean function to predictors,

which is the same polynomial orders with X.

Table A.1 shows the results of estimating parameters. It is clear that WLS gives

better coefficient estimates compared to OLS, especially for k = 500, the value of the

second norm drops from 2.14 to 0.09. For λ estimates, although for all k WLS gives

estimates significantly different from 0, they are different from the true value. However,

IRLS can provide more accurate coefficient estimates than OLS and generates better
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Figure A.1: Standardized residual plots of OLS(left), WLS(middle) and IRLS(right)

for k = 500, 5000 and 50000 top, middle and bottom rows with cubic mean function

on predictors.

estimates in λ compared to WLS. Furthermore, IRLS algorithm converges before 10

iterations for every k. Thus IRLS produces better results in this case.

Figure A.1 are the residual plots correspond to OLS, WLS and IRLS. For OLS, since

the variance of residuals increases with x, and p.values from BPtest are less than 0.05,

we conclude that heteroscedasticity exists. In contrast with OLS, a trend with smaller

variance change in residuals is observed after using WLS. However, the p.values from

BPtest are still less than 0.05. Thus, there is statistical evidence of heteroscedasticity

in residuals of WLS. IRLS gives the best residual plots where residuals are uniformly

distributed with p.values greater than 0.05, no evidence of heteroscedasticity. This

result is convincing since IRLS provides the best λ estimates.

Next, we consider the case of applying the linear mean function to predictors. That

is, we use a lower polynomial order and misspecified mean function when the true mean
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Table A.2: Estimated β and λ for linear mean function on predictors, method 1

k Type β0 β1 λ

500 OLS -0.31(+) 8.65(+) 0

500 WLS -0.36(+) 8.73(+) -0.04(–)

500 IRLS -1.50(+) 10.43(+) -0.99(*-)

5000 OLS -0.30(+) 8.59(+) 0

5000 WLS -0.40(+) 8.75(+) -0.08(*-)

5000 IRLS -1.41(+) 10.27(+) -0.94(*-)

50000 OLS -0.31(+) 8.61(+) 0

50000 WLS -0.39(+) 8.75(+) -0.07(*-)

50000 IRLS -1.41(+) 10.27(+) -0.91(*-)

Note: (+) means the result is statistically different from

0 and (-) is the opposite, other symbols in brackets are

consistent with Table A.1.

function is cubic.

Table A.2 presents that all estimating coefficients are significantly different from 0.

Unlike the cubic mean function, WLS and IRLS have trouble estimating the true λ,

and IRLS does not converge before 10 iterations for all k. Thus when the fitted mean

function is significantly misspecified, WLS and IRLS are not effective.

As expected, we do not find any improvement from WLS and IRLS compared to

OLS in Figure A.2. Since they all have p.values smaller than 0.05 from Bptest, we

conclude that statistical evidence of heteroscedasticity exists in all 9 cases.

Finally, we want to check the performance of the quartic mean function on predic-

tors, with the expected coefficient value on the quartic term to be 0, since the data is

generated using a cubic mean function.

Similar to Table A.1, Table A.3 shows that WLS gives better coefficient estimates

than OLS, and lambda is different from the true value. The quartic term is not differ-

ent from 0, as expected. IRLS is able to achieve both goals and converges before 10

58



Figure A.2: Standardized residual plots of OLS(left), WLS(middle) and IRLS(right)

for k = 500, 5000 and 50000 top, medium and bottom rows with linear mean function

on predictors.

Table A.3: Estimated β and λ with quartic mean function on predictors, method 1

k Type β0 β1 β2 β3 β4 λ

500 OLS 0.94(**) 3.37(**) -4.23(-*) 16.71(**) -6.93(-) 0

500 WLS 1.00(**) 2.06(**) 2.20(**) 6.12(**) -1.42(-) 1.98(*-)

500 IRLS 1.00(**) 2.00(**) 2.97(**) 4.07(**) 0.01(-) 3.96(**)

5000 OLS 1.00(**) 2.02(**) 2.85(-*) 4.45(-*) -0.36(-) 0

5000 WLS 1.00(**) 2.00(**) 2.99(**) 4.17(**) -0.02(-) 3.79(*-)

5000 IRLS 1.00(**) 2.00(**) 2.99(**) 4.17(**) -0.02(-) 3.98(**)

50000 OLS 1.00(**) 2.06(**) 2.63(**) 4.73(**) -0.43(-) 0

50000 WLS 1.00(**) 2.00(**) 2.98(**) 4.07(**) -0.05(-) 3.34(*-)

50000 IRLS 1.00(**) 2.00(**) 3.01(**) 3.98(**) 0.02(-) 4.00(**)

Note: Same symbols in the brackets with Table A.1
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Figure A.3: Standardized residual plots of OLS(left), WLS(middle) and IRWLS(right)

for k = 500, 5000 and 50000 top, medium and bottom rows with quartic mean function

on predictors.

iterations. We have the same results with the case of cubic mean function.

Figure A.3 also looks similar to Figure A.1. The most significant difference comes

with the case of WLS, k = 5000. We could hardly see variance change in residuals with

x. However, results from Bptest demonstrate that statistical evidence of heteroscedas-

ticity exists in OLS and WLS, but IRLS corrects the heteroscedasticity pretty well.

A.2 Method 2 Test

With the same setting as in method 1, we make some modifications to the noise term ϵ.

Let Z = (1,x, ...,xM ) be a k×(M + 1) matrix where M ≤M and α be a (M + 1)×1

vector corresponds to Z. For the jth row of Z, we have Zj = (1, xj, ..., x
M
j ). Thus, the
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jth entry of ϵ is computed as

ϵj = Zj

√
eZjα, (A.2.1)

where Zj is a random sample generated from N(0, 1).

The parameters we select for k = {500, 5000, 50000}, m = 3, β = (1, 2, 3, 4), α

= (0.01, 1, 1). For IRLS, We use the same tolerant value and maximum iteration of

iterations as used for method 1. Since the error term is quadratic exponential affine

heteroscedastic, thus besides quadratic heteroscedasticity correction1, we are also inter-

ested in the performance of linear heteroscedasticity correction2. In this case, we first

consider the case of cubic mean function on predictors.

Table A.4 presents the results of estimated coefficients for both linear and quadratic

heteroscedasticity correction. Starting at the linear case, it is evident that WLS1 gives

better coefficient estimates compared to OLS. Especially for k = 500, the second norm

decreases from 6.17 to 3.35. IRLS provides slight benefit in the case of k = 500, but

no significant improvement is found for k = 5000 or 50000. Compared to the linear

case and OLS, WLS2 has better performance in estimating coefficients for k = 500.

IRLS2 performs similarly to WLS2 in large k. Turn to α estimation, more accurate

and statistically significant results are obtained as k increases.

Look at Figure A.4, it is clear that OLS has the problem of heteroscedasticity. As x

increases, the variance of residuals increases with an exponential trend. WLS1 removes

the trend pretty well for k = 500. However, small concave curves were observed at

the higher and lower bound of the residual plots for k = 5000 and 50000. And BPtest

gives results with p.value less than 0.05. Therefore we conclude statistical evidence

of heteroscedasticity exists for k = 5000 and 50000 for all OLS/WLS/IRLS. IRLS1

provides little benefit above WLS1.

Turning to quadratic heteroscedasticity correction plotted in Figure A.5, it looks

very similar to Figure A.4. Compared to OLS and WLS1, the trend is removed com-

pletely for WLS2 and IRLS2. Since BPtest gives results with p.values greater than 0.05,

1Denoted as WLS2 and IRLS2 in the following tables and context.
2Denoted as WLS1 and IRLS1 in the following tables and context.
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Table A.4: Estimated β and α with cubic mean function in predictors, method 2 using

both linear (α2 = 0) and quadratic heteroscedasticity correction.

k Type β0 β1 β2 β3 2-norm α0 α1 α2

500 OLS 1.06(**) 0.35(-*) 7.88(-*) 0.61(-*) 6.17 0 0 0

500 WLS1 1.00(**) 1.20(-*) 5.67(-*) 2.13(-*) 3.35 0.15(+) 1.44(+) 0

500 WLS2 1.00(**) 1.22(-*) 5.58(-*) 2.21(-*) 3.24 0.21(-*) 1.07(-*) 0.36(-*)

500 IRLS1 1.00(**) 1.23(-*) 5.56(-*) 2.21(-*) 3.22 0.07(-) 1.52(+) 0

500 IRLS2 1.00(**) 1.26(-*) 5.45(-*) 2.31(-*) 3.06 0.19(-*) 0.91(-*) 0.60(-*)

5000 OLS 0.98(**) 2.12(**) 3.14(-*) 3.66(**) 0.38 0 0 0

5000 WLS1 0.97(**) 2.25(**) 2.78(-*) 3.91(**) 0.35 -0.12(-) 1.99(+) 0

5000 WLS2 0.97(**) 2.25(**) 2.78(-*) 3.92(**) 0.35 0.04(-*) 1.04(**) 0.95(**)

5000 IRLS1 0.97(**) 2.25(**) 2.78(-*) 3.91(**) 0.35 -0.12(-) 1.98(+) 0

5000 IRLS2 0.97(**) 2.25(**) 2.78(-*) 3.92(**) 0.35 0.02(-*) 1.15(**) 0.84(**)

50000 OLS 1.03(**) 1.64(**) 3.94(**) 3.38(**) 1.18 0 0 0

50000 WLS1 1.03(**) 1.72(**) 3.72(**) 3.54(**) 0.90 -0.16(+) 2.00(+) 0

50000 WLS2 1.03(**) 1.70(**) 3.76(**) 3.51(**) 0.95 0.03(**) 0.87(**) 1.13(**)

50000 IRLS1 1.03(**) 1.72(**) 3.72(**) 3.54(**) 0.90 -0.17(+) 2.01(+) 0

50000 IRLS2 1.03(**) 1.70(**) 3.76(**) 3.51(**) 0.95 0.02(**) 0.88(**) 1.12(**)

Note: WLS1 and IRLS1 represent linear heteroscedasticity correction and WLS2, IRLS2 are for quadratic het-

eroscedasticity correction, other forms and symbols in brackets follow Table A.1 and Table A.2.
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Figure A.4: Residual Plots of Method 2 with OLS(left), WLS(middle) and IR-

WLS(right) for k = 500, 5000 and 50000 top, medium and bottom rows with cubic

mean function on predictors, linear heteroscedasticity correction.
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Figure A.5: Standardized residual plots of Method 2 with OLS(left), WLS(middle) and

IRLS(right) for k = 500, 5000 and 50000 top, medium and bottom rows with cubic

mean function on predictors, quadratic heteroscedasticity correction.
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Table A.5: Estimated β and α of linear mean function on predictors, method 2 using

both linear (α2 = 0) and quadratic heteroscedasticity correction.

k Type β0 β1 α0 α1 α2

500 OLS -0.37(+) 8.78(+) 0 0 0

500 WLS1 -0.02(-) 7.99(+) 0.41(+) 1.34(+) 0

500 WLS2 -0.05(-) 7.98(+) 0.54(-*) 0.56(-*) 0.78(-*)

500 IRLS1 0.12(-) 7.62(+) 0.04(-) 1.98(+) 0

500 IRLS2 0.12(-) 7.42(+) 0.20(-*) 0.50(-*) 1.73(-*)

5000 OLS -0.27(+) 8.56(+) 0 0 0

5000 WLS1 0.13(+) 7.64(+) 0.22(+) 1.63(+) 0

5000 WLS2 0.05(-) 7.57(+) 0.64(*-) -0.92(*-) 2.54(*-)

5000 IRLS1 0.18(+) 7.50(+) 0.09(-) 1.87(+) 0

5000 IRLS2 0.12(+) 7.39(+) 0.44(*-) -0.52(*-) 2.47(*-)

50000 OLS -0.30(+) 8.62(+) 0 0 0

50000 WLS1 0.13(+) 7.61(+) 0.20(+) 1.70(+) 0

50000 WLS2 0.05(+) 7.55(+) 0.63(*-) -0.87(*-) 2.56(*-)

50000 IRLS1 0.23(+) 7.34(+) -0.06(+) 2.16(+) 0

50000 IRLS2 0.16(+) 7.25(+) 0.39(*-) -0.69(*-) 2.89(*-)

Note: Same format as in Table A.4.

no statistical evidence of heteroscedasticity exists for all cases in WLS2 and IRLS2.

Next, we focus on the case of linear mean function on predictors.

Most of the estimated coefficients in Table A.5 are statistically different from 0.

Since the makeup data is made with cubic polynomial order, comparing them with true

values is useless. Focus on α estimations for WLS and IRLS, unlike the previous case,

they have significant differences for different k. Thus we think they may affect the

results of heteroscedasticity correction.

In Figure A.6, as the variance of residuals increases with x in OLS, and BPtest gives

results of p.values less than 0.05. We conclude that heteroscedasticity exists in OLS.
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Figure A.6: Standardized residual plots of Method 2 with OLS(left), WLS(middle) and

IRLS(right) for k = 500, 5000 and 50000 top, medium and bottom rows with linear

mean function on predictors, linear heteroscedasticity correction.
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Figure A.7: Standardized residual plots of Method 2 with OLS(left), WLS(middle) and

IRLS(right) for k = 500, 5000 and 50000 top, medium and bottom rows with linear

mean function on predictors, quadratic heteroscedasticity correction.

There are two advantages in conducting WLS1. 1: Focus on the Y -axis, points with

high residuals are reduced, especially for the case of k = 50000. 2: Removed the trend

to some extent. However, statistical evidence of heteroscedasticity exists as BPtest

gives results of p.values less than 0.05. IRLS1 furthermore slightly fixes the trend and

for k = 500 and 5000, results from BPtest show no evidence of heteroscedasticity.

Residual plots in Figure A.7 looks similar to Figure A.6. For k = 50000, the upper

bound from WLS2 and IRLS2 plots seems to be less concave. Focused on IRLS2, since

BPtest provides results of p.values greater than 0.05 for all k, no statistical evidence of

heteroscedasticity.

Finally, we consider the case of quartic mean function in predictors.

In Table A.6, all estimated β4 are not statistically different from 0. This makes sense
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Figure A.8: Standardized residual plots of Method 2 with OLS(left), WLS(middle) and

IRLS(right) for k = 500, 5000 and 50000 top, medium and bottom rows with quadratic

mean function on predictors, linear heteroscedasticity correction.

as the makeup data is with cubic mean function. For α estimation, closer estimates

were obtained when k increases compared to Table A.4.

In terms of Figure A.8 and Figure A.9, they have the same results with Figure A.4

and Figure A.5. Thus we consider that heteroscedasticity correction with a higher mean

function makes no difference with the same mean function.

A.3 Findings from test examples

For method 1, in the cases of cubic mean function and quartic mean function in pre-

dictors, WLS can achieve better coefficient estimates, especially for small k but is

insufficient for heteroscedasticity correction. IRLS can fix both problems and thus, is
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Figure A.9: Standardized residual plots of Method 2 with OLS(left), WLS(middle) and

IRLS(right) for k = 500, 5000 and 50000 top, medium and bottom rows with quadratic

mean function on predictors, quadratic heteroscedasticity correction.
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considered the best approach. However, for linear mean function in predictors, WLS

and IRLS are unable to correct heteroscedasticity and cannot obtain the correct value

for lambda.

In terms of method 2, the significant difference compared to method 1 is that IRLS

performs better in both linear and quadratic heteroscedasticity correction under linear

mean function in predictors.

Since we do not know the actual parameters in LSMC for continuation values es-

timates, thus, when conducting WLSMC with two methods, we should not use linear

mean function in predictors. IRLSMC is necessary to implement. We also expect that

WLSMC or IRLSMC will have a larger effect on the option price when there are fewer

stock paths in the sample.

71



Bibliography

Francis A Longstaff and Eduardo S Schwartz. Valuing American options by simulation:

a simple least-squares approach. The Review of Financial Studies, 14(1):113–147,

2001.

Frank J Fabozzi, Tommaso Paletta, and Radu Tunaru. An improved least squares

Monte Carlo valuation method based on heteroscedasticity. European Journal of

Operational Research, 263(2):698–706, 2017.

Rolla E Park. Estimation with heteroscedastic error terms. Econometrica, 34(4):888,

1966.

Andrew C Harvey. Estimating regression models with multiplicative heteroscedasticity.

Econometrica, pages 461–465, 1976.

Michael J Brennan and Eduardo S Schwartz. Finite difference methods and jump

processes arising in the pricing of contingent claims: a synthesis. Journal of Financial

and Quantitative Analysis, 12:659, 1977.

John C Cox, Stephen A Ross, and Mark Rubinstein. Option pricing: A simplified

approach. Journal of Financial Economics, 7(3):229–263, 1979.

Mark Broadie and Paul Glasserman. Pricing American-style securities using simulation.

The Journal of Economic Dynamics and Control, 21(8-9):1323–1352, 1997.

Lars Stentoft. Convergence of the least squares Monte Carlo approach to American

option valuation. Management Science, 50(9):1193–1203, 2004.

Kin Hung Kan and R Mark Reesor. Bias reduction for pricing American options by

least-squares Monte Carlo. Applied Mathematical Finance, 19(3):195–217, 2012.

72



Lars Stentoft. Efficient numerical pricing of American call options using symmetry

arguments. Journal of Risk and Financial Management, 12(2):59, 2019.

Francois-Michel Boire, R Mark Reesor, and Lars Stentoft. American option pricing

with importance sampling and shifted regressions. Journal of Risk and Financial

Management, 14(8):340, 2021.
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