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Abstract 

Traffic routing is vital for the proper functioning of the Internet. As users and network traffic 

increase, researchers try to develop adaptive and intelligent routing algorithms that can fulfill 

various QoS requirements. Reinforcement Learning (RL) based routing algorithms have shown 

better performance than traditional approaches. We developed a QoS-aware, reusable RL 

routing algorithm, RLSR-Routing over SDN. During the learning process, our algorithm 

ensures loop-free path exploration. While finding the path for one traffic demand (a source 

destination pair with certain amount of traffic), RLSR-Routing learns the overall network QoS 

status, which can be used to speed up algorithm convergence when finding the path for other 

traffic demands. By adapting Segment Routing, our algorithm can achieve flow-based, source 

packet routing, and reduce communications required between SDN controller and network 

plane. Our algorithm shows better performance in terms of load balancing than the traditional 

approaches. It also has faster convergence than the non-reusable RL approach when finding 

paths for multiple traffic demands.  

Keywords 

Reinforcement Learning (RL), Traffic Routing, Software Defined Networking (SDN), 

Segment Routing (SR), Quality of Service (QoS). 
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Summary for Lay Audience 

In the past decades, the number of the Internet users and the type of services that rely on the 

Internet have increased dramatically. Traffic routing, the process of sending data from the 

source to its specified destination, is vital for the proper function of the Internet. By combing 

novel network architecture and techniques, researchers hope to develop routing algorithms that 

provide better performance than traditional approaches. 

Based on Reinforcement Learning (RL) and Segment Routing (SR), we developed a routing 

protocol, RLSR-Routing, over Software Defined Networking (SDN). RLSR-Routing can self-

explore the network and find a path for a given traffic demand based on user-defined 

optimality. Compared with previous work, our approach adopted some modifications to RL 

algorithm, such that the cost of finding the path is minimized. In addition, our approach can 

reuse previously learned knowledge about network status, when it is working on new traffic 

demands. In experiment settings, RLSR-Routing outperforms non-RL based routing algorithm 

in terms of load-balancing among network links. Compared with the RL approach that does 

not reuse previous learning results, RLSR-Routing shows faster convergence speed.  
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Chapter 1  

1 Introduction  

Over the past decade, the number of people who have access to the Internet has been 

steadily increasing. CISCO’s report predicts that by 2023, there will be 5.3 billion Internet 

users, which is about two third of the World’s population [1]. Routing, which is the process 

of determining and forwarding packets from their source to destination, is vital for the 

transmission of data and information between network of networks, a.k.a., the Internet [2]. 

Traditionally, traffic routing relies on protocols like OSPF, which aims to find the shortest 

path between source and destination [3], or Routing Information Protocol (RIP), which is 

a distance-vector based algorithm that mainly considers hop count [4]. OSPF is one of the 

most widely used Interior Gateway Protocol, and the shortest paths between source and 

destination pairs are calculated based on assigned weights to every link of a network [5]. 

To obtain good network performance instead of only considering number of hops along a 

routing path, the links weights should be optimized [5]. However, a previous study has 

proved that optimizing OSPF weights is a NP-complete problem [6]. 

To provide better network performance for increasing demands over a variety of 

applications, new network architectures and traffic routing methods have been proposed. 

Software Defined Networking (SDN) is an architecture that decouples the control plane 

and data plane of a router [7, 8, 9]. Traditional network routers have their own control and 

data plane [8], and in a protocol like OSPF, each router maintains its own forwarding table 

[3]. For SDN, the control plane is in a logically central controller which has a global view 

of the network; and the SDN controller enables better interaction with applications, Quality 

of Service (QoS) provisioning, network monitoring and so on [7, 8]. SDN can also be 

applied to the wireless network in addition to traditional Wide Area Network [9]. Segment 

Routing (SR) [10] is a source packet routing architecture in that each packet encodes a list 

of Segments in its header to guide the packet travel through the specified path [10, 11]. As 

stated in [12], SR’s ability to control packet forwarding can provide better network 

programmability, fast reroute, load balancing etc. In addition to the new routing 
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architecture, researchers also try to apply Reinforcement Learning (RL) in traffic routing 

[13]. One recent implementation of RL in SDN can also be found in [14]. 

1.1 Motivation and Objectives 

Reinforcement Learning has been studied to develop adaptive, intelligent routing 

algorithms over the past three decades [13]. It has shown extraordinary flexibility to 

combine with other techniques for traffic routing over a variety of network types, with 

different QoS requirements [13, 15]. Compared with traditional routing methods which are 

based on assumptions about network conditions, applying RL allows routing algorithms to 

automatically learn the dynamic of the network, such as traffic flows, link quality and so 

on [15]. Therefore, based on RL’s self-learning ability, some of the previous research’s 

objectives are to improve service quality to end users, while optimizing network resources 

[15]. However, many previously proposed algorithms do not fully exploit the global view 

of SDN controller, or the ability to control the whole forwarding path (i.e., flow-based 

routing) by combining with technique like SR [15]. In addition, many previous works only 

focus on one traffic demand at a time, and some require pre-defined algorithms (like OSPF) 

or initial paths as input [15].  

Our objective is to develop a RL-based routing algorithm for SDN, such that it can address 

previous work’s limitations. Our algorithm should be light-weighted, efficient, and allow 

users to customize their QoS requirements for definition of users’ preferred routing paths. 

While the algorithm aiming to minimize costs during the path finding process, the final 

routing path from the algorithm should be as good as possible in terms of satisfying user 

defined QoS requirements.    

1.2 Contribution 

We developed a RL-based, SR-based, QoS-aware routing algorithm for SDN, RLSR-

Routing. The algorithm considers various QoS factors, which can be customized by users, 

to find a user preferred path for traffic demands. The main contributions of this thesis are 

listed below: 
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• We modified State-Action-Reward-State-Action (SARSA), an on-policy RL 

method [13], so that our routing algorithm aggregates action selections first. Such 

modification can further reduce the number of message exchanges (e.g., sending 

packets, receiving QoS info) required between SDN controller and network 

switches.  

 

• In addition, during the learning process, our algorithm ensures that no packet will 

be stuck in a loop, which means that packets either reach the destination or stop 

being forwarded if all next-hop nodes have been visited by themselves. In other 

words, a packet will be sent to any node in the network at most once.  

 

• We divided an action’s reward into local and global rewards. Local rewards are 

used for finding a path for one traffic demand, whereas global rewards are purely 

based on network status like link utilizations. Global rewards can be used to 

initialize local Q-table to speed up algorithm convergence. 

 

• RLSR-Routing does not require prior knowledge of the network. In addition, it does 

not require pre-defined paths or initial link weights as a starting point. The 

algorithm can self-learn network status and assign a list of traffic demands over the 

network in sequence.  

We compared our RLSR-Routing with a routing algorithm currently used by one of the 

major telecom solutions providers. A mesh topology network is setup with randomly 

generated traffic to be placed over the network. We compared the quality of selected paths 

for generated traffic, in terms of maximum link utilization. Our experiment result shows 

that the proposed RLSR-Routing approach contributes to minimizing link utilization in the 

network. In addition, when tested on a sequence of traffic demands, the proposed RLSR-

Routing approach speeds up the algorithm convergence by applying knowledge of the 

network from its previous learning processes.  
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1.3 Thesis Structure  

We divide our thesis into the following chapters. Chapter 2 presents a review of related 

concepts, such as RL and DRL. In chapter 3, we define our problem, network environment, 

and introduce previous researchers that use RL approach to solve traffic routing problems. 

Chapter 4 presents our methodology, including overall architecture, pseudocode of RLSR-

Routing, and rationale behind our algorithm designs. In chapter 5, we summarize our 

experiment results, including a comparative study with a non-RL routing algorithm. In 

chapter 6, we conclude our study and propose potential updates and objectives for future 

work. 
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Chapter 2  

2 Review of Related Concepts  

An intelligent, adaptive routing algorithm can bring better performance in terms of QoS. It 

can also be designed to work under specific network conditions or exploit certain network 

architecture characteristics. In this chapter, we present a brief review about legacy routing 

schemes and the Software Defined Networking (SDN) architecture and Segment Routing 

(SR). We also discuss Reinforcement Learning (RL) vs Deep Reinforcement Learning 

(DRL), and some early work of RL-based routing. 

2.1 Legacy Routing Algorithms 

In general, a network router that resides on the network layer consists of a control plane 

and data plane: the data plane stores a forwarding table and uses it to decide next-hop router 

of a packet; the control plane executes routing algorithms to update forwarding table [2]. 

In this section, we mainly focus on two Interior Gateway Protocol (IGP): OSPF and RIP. 

2.1.1 Routing Information Protocol (RIP) 

RIP is specified in [4], it is a distance-vector (DV) algorithm which also referred as the 

Bellman-Ford algorithm. RIP is a distributed algorithm that each router runs in an 

asynchronous manner: routers exchange routing information, and an optimal path is 

calculated based on the cost for sending the packet to the next-hop neighbor and distance 

towards the destination [2]. In terms of RIP implementation, the distance between routers 

can be expressed as a number of hops, such that an optimal path is the one with the lowest 

hop-count from source to destination [4]. 

2.1.2 Open Shortest Path First (OSPF) 

The second version of OSPF is defined in [3], similar to RIP, each router inside a network 

runs OSPF in a distributed manner. Each router maintains a database that provides a 

complete view of the network topology [3]. OSPF uses the Dijkstra algorithm to construct 

a shortest-path tree, with the router running the algorithm as root and other network routers 

as child nodes. Unlike RIP that is based on distance or hop-count, OSPF’s shortest path is 
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based on link weights [3] which can be manually assigned by a network administer [2]. 

When multiple paths have same lowest weights for one source-destination pair, traffic will 

be equally split among these paths [3]. In practice, setting different link weights will alter 

routing paths and thus affect network performance [5]. However, optimization of OSPF 

weights is proven to be NP-complete [6].  

2.2 Software Defined Networking (SDN) 

For traditional network architecture, both the control and data planes are deployed within 

every network device. SDN architecture decouples the control plane and data plane, by 

placing the control plane on a logically centralized SDN controller [5, 7, 8]. The logically 

centralized controller has a global view of the network, and it may be viewed externally as 

a single controller but consists of one or more physical devices [7]. Communications 

between network devices and controllers are through the controller-data plane interface, 

such as OpenFlow protocol [7], so that controllers can access link-state information [2, 7]. 

In addition, the control plane provides an interface (such as REST API) for interacting with 

the application plane, which consists of multiple network applications [7, 8]. Based on 

interaction with the control plane, network applications provide a variety of support, such 

as routing, access control, and load balance, to utilize network performance [2, 7]. 

Compared with traditional architecture, SDN provides better programmability and 

simplified network management via a logically centralized control plane [7, 8]. As a result, 

SDN supports flow-based routing with the potential of QoS provisioning and network 

monitoring [7]. SDN architecture can be combined with OSPF, and the previous study has 

shown better performance for SDN/OSPF hybrid networks [5]. In addition, SDN 

architecture can not only be deployed to traditional wired network, but also other network 

types such as wireless network [9]. 
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Figure 2.1: SDN architecture. Cited from [7]   

 

2.3 Segment Routing (SR) 

As standardized in RFC 8402, Segment Routing (SR) is a routing technique that 

leverages the source routing paradigm [10]. In this section, we first review the 

specifications of source packet routing, then we briefly discuss SR architecture.   

2.3.1 Source Packet Routing 

Traditionally, packet routing is done through a series of IP lookup through a bunch of 

routers from the source to the destination of a packet: when each router receives the 

packet, it examines the packet’s destination IP address, and forwards the packet to the 

next-hop routers based on its forwarding table. Even with SDN architecture, routing is 

still determined by local forwarding tables among network devices. In contrast, the 

source packet routing technique allows the implementation of Traffic Engineering, which 

enables control of specific traffic flow within the network. For example, the source node 

of a traffic flow can alter paths for some packets instead of their shortest paths [12].  
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2.3.2 Segment Routing Architecture  

In a network that deploys SR, the set of nodes that are participated in source-based 

routing forms an SR domain [10]. By definition, a segment can be viewed as an 

instruction for a node to execute on the incoming packet, such as steering the packet 

through the given path, or delivering the packet to a specified service [11, 10]. Each 

segment has its identifier as Segment ID (SID), and based on participation over different 

SR domains, a node can have one global segment and multiple local segments [10]. 

When combined with IGP, a segment can represent an IGP prefix as IGP-prefix segment, 

or an anycast group as IGP-anycast segment that is advertised by a set of nodes. A 

segment can also be assigned to a specific router as a node segment. When executing a 

node segment, it usually means forwarding the packet to the node identified by the node 

SID using the shortest path [11]. 

For packets that apply SR, a list of segments is encoded in their packets head. In general, 

SR can adopt MPLS which use label stack to encode segments. SR can also apply IPv6, 

such that each segment is expressed as an IPv6 address [11]. By modifying a number of 

segments placed in a packet’s header, SR can achieve strict traffic engineering that each 

hop along the path is specified; or a loose option that only a few hops are specified, as 

described in source packet routing [12].  

2.4 Reinforcement Learning (RL) & Deep Reinforcement 
Learning (DRL) 

Reinforcement Learning is a type of machine learning that generally does not require using 

labeled or unlabeled datasets to create models that make prediction or classification [13]. 

The concept of reinforcement is adapted from study animal behaviors in which they 

respond to stimuli from surroundings [16].  In general, a RL algorithm consists of the 

following main components: an agent, which executes a RL algorithm, explores the 

environment in a trial-and-error manner; an environment, consists of a set of states; the 

agent can take an action at each step, which leads the agent to a new state; after taking an 

action, the reward is sent back from the environment to the agent, to evaluate the quality 

of action selection policy [15, 16, 17]. Since 1990s, dozens of published papers have 
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applied RL in traffic routing. They address different QoS considerations over a variety of 

network topology, and RL can be directly or indirectly used in the path finding process [13, 

15]. Based on survey paper [15], the two most used RL algorithms are Q-learning and 

State-Action-Reward-State-Action (SARSA). Both algorithms have similar workflow: an 

agent selects an action from Q-table, based on the current state and defined action selection 

policy (e.g., greedy), performs an action, observes reward, and updates Q-table for 

previously involved state-action pair [13, 15]. In Q-learning, updating an action’s Q-value 

depends on the maximum reward (Q-value) the agent can get in the next state; whereas in 

SARSA, such update depends on the action performed in the next state [13]. 

 

Figure 2.2: RL workflow, from [15] 

2.4.1 Deep Reinforcement Learning (DRL) 

Deep Reinforcement Learning (DRL) is the combination of Neural Network and RL to 

improve the scalability of RL algorithms to solve complex problems [16, 15]. For RL 

algorithms like Q-learning and SARSA, action selection usually involves looking up an 

action in a table, that stores every possible combination of state-action pairs’ estimated 

cumulative reward [13].  In policy-based DRL, a Neural Network replaces Q-table: when 

the agent inputs the current state, the network outputs an action [16]. In value-based DRL, 

both state and action are sent into the network, which outputs an approximated Q-value of 

the state-action pair [16]. 
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2.4.2 RL Based Routing: Early Work 

One of the earliest works was Q-routing proposed by Boyan and Littman in 1993 [18], 

which is a direct application of Q-learning. In Q-routing, every network node is a learning 

agent and state x is a packet currently held by node x. An action A(d, y) is sending a packet 

to the next-hop node y to reach the packet’s destination d. Action’s reward is measured by 

the estimated latency for a packet to reach the destination through node y, which is sent 

back to the previous packet-holding node x from y [18]. The authors compared Q-routing 

with the shortest paths-based algorithm, and the result showed that on a 6*6 grid topology 

with high traffic load, Q-routing achieved a lower average delivery time due to its ability 

to detour some traffic to longer paths to mitigate congestions [18]. 

Since the publication of Q-routing, several research efforts were aimed to improve the 

performance of Q-learning based routing. In 1996, Samuel et al. proposed a memory-based 

RL routing algorithm, predictive Q-routing (PQ-routing), as an extension of original Q-

routing [19]. PQ-routing also uses latency as the main QoS parameter to calculate actions’ 

rewards. Under low traffic load, PQ-routing performs like the shortest paths algorithm. 

Under high traffic load, PQ-routing’s learning agent periodically explores previously 

congested paths [19]. Shailesh and Risto developed a Dual Reinforcement Q-routing 

algorithm in 1997 with both forward and backward exploration [20]. In addition to the 

packet sender, the receiver of a packet also updates its Q-table based on feedback from the 

source [20]. Both [19, 20] papers’ algorithms showed better performance than Q-learning 

under experiment conditions. A Modified Q-routing algorithm introduced in [21] also has 

distributed learning agents, and each agent exchanges an immediate reward after a packet 

is sent through a link. The notable feature of this algorithm also includes using link cost-

based reward, and a forgetting factor that gradually devalues Q-table to improve 

performance [21]. 

In addition to the traditional wired network, some research focused on RL-based routing 

in other network types. Both [22, 23] applied RL approach on mobile Ad-hoc networks 

(MANETs). Both papers address the dynamic feature of MANETs and describe how RL-

based algorithm handles node joining or leaving the network [22, 23]. For example, [23]’s 

adaptation of Q-routing encourages a node to send packets to its neighbours that are newly 
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discovered [23]. Ping and Ting presented an adaptive routing algorithm, AdaR, over a 

Wireless Sensor Network (WSN) [24]. Three notable features of AdaR are: 1) It is one of 

the earliest works that consider multiple QoS factors, such as node’s residual energy and 

link reliability for an action’s reward [15, 24]. 2) It uses LSPI (Least Squares Policy 

Iteration), which has a faster convergence speed and does not require tuning of initial 

parameters such as learning rate [24]. 3) The base station, instead of every node of the 

network, is the learning agent. 

2.5 Quality of Service (QoS) 

As mentioned in [25], Quality of Service (QoS) can be specific to applications or users; it 

can also refer to the overall, end-to-end QoS of the network. Some QoS parameters that 

are commonly used are delay, packet loss, jitter, throughput, and available bandwidth (link 

utilization) [25, 26, 27]. These parameters are often correlated with the others. For 

example, high jitter causes delay variance; such variation would affect queuing delay as 

routers may receive higher traffic in a certain time period and decrease overall throughput 

[26]. Higher link utilization means more available bandwidth is consumed by traffic flow; 

thus, it is an important performance measurement in flow-based network [27].  

In addition, some networks may have special QoS requirements due to the physical 

deployment of the network or overall network architecture. For example, in Wireless 

Sensor Network, each sensor node may be powered by a battery; therefore, energy 

conservation is important to enabling proper function of WSN under resource-constraint 

conditions [25]. 
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Chapter 3  

3 Problem Statement and Related Work 

In this chapter, we formally define our research problem and present a literature review of 

recent work related to our problem and existing solutions. This chapter also highlights 

current research gap and sets transitions to introducing our proposed methodology. 

3.1 Problem Statement 

We focused on traffic routing in SDN; therefore, we define our network as a set of SDN 

switches with a SDN controller that has a global view of the network, such that a controller 

knows the topology of the network, including every node and link. The controller has 

dedicated links to communicate with network nodes, but neither the controller nor these 

links are used for routing packets between the network’s end users. Our routing algorithm 

interacts with the SDN controller to perform path calculation and installs defined routing 

paths into the network. From the routing algorithm’s point of view, a network can be 

abstracted as a directed graph, G (V, E). V is the set of nodes that each corresponds to a 

physical device (SDN switch), and E is the set of links that connects nodes. li,j denotes the 

unidirectional link from node i to j where i,j ∈ V.   We define a traffic demand as a flow of 

data transmitted from a source node to a destination node. One source and destination pair 

can have multiple traffic demands, each with a specified amount of data as demand traffic 

(expressed in bits/second). However, each traffic demand can only be assigned one routing 

path, which is defined as a list of nodes that connects from source to destination.   

Each link and node of a network has maximum capacity. For a link, we use the term 

“maximum bandwidth” (in bits/second) to represent maximum traffic that can travel 

through the link, and “used bandwidth” (in bits/second) to represent the current amount of 

data on the link. A node’s processing rate (in bits/second) is the maximum amount of 

incoming data it can handle. In addition, all links have a field called “link reliability”, which 

varies from 0% to 100%. The higher the link reliability, the lower chances of link failure 

will occur. 
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Based on the above settings, our research objective is to give a network with SDN 

architecture with all nodes supporting SR and develop a RL-based routing algorithm that 

can find user preferred paths for traffic demands. Our definition of ‘user preferred’ paths 

are those paths found by our routing algorithm based on weights of one or more QoS 

parameters, which are adjusted by our algorithm’s users.  

The following assumptions are made: 

• Communications between SDN controllers and network switches are through 

dedicated links, in a reliable transfer manner. 

• SDN controllers are not involved in routing packets that originated from the 

network’s end users. For better visibility, sometimes we do not draw the controllers 

and those dedicated links on network topology diagrams in this thesis. 

• All SDN switches of the networks considered in this thesis support SR. i.e., they 

can handle packet’s SR header and execute segments properly. 

• All nodes are reliable, and if total incoming traffic does not exceed a node’s 

processing rate; no packets will be dropped by nodes. 

• For each pair of adjacent nodes i-j that connects with each other, at most two links 

exist: link i->j and link j->i, that directly connect i and j.  

• If a link’s used bandwidth does not exceed its maximum bandwidth, and link failure 

does not happen, no packet will be lost when traveling on that link. 

3.2 Related Work 

3.2.1 RL on Non-SDN Types of Networks 

Similar to [24], several recent research focused on RL approach for routing in WSNs [28, 

29, 30]. One character of WSNs is network devices are often powered by battery, therefore, 

energy consumption or energy conservation is an important factor to be optimized when 

designing RL-based routing algorithm [28, 29, 30]. Both [28, 29]’s work involves 

exchanging information related to energy conservation, which is accomplished by adding 

extra fields in data packets. In [28], the sender node’s current Q-value is sent to a packet’s 

next hop node, along with information about previous nodes energy level. In [30], the 
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authors combine Q-learning and transmission gradient for optimizing energy consumption 

over the WSNs.  For transmission gradient, each node maintains an estimated number of 

transmissions for sending a packet from the node to the base station [30]. Estimating the 

number of transmissions and energy level are used for calculating rewards; and nodes use 

status packets to send their Q-value and estimated number of transmissions to other nodes 

[30].  

Another type of network which many studies focused on is Ad-hoc Networks (ANETs). In 

general, ANETs do not have a centralized controller, nodes are wirelessly connected, and 

network topology is dynamic [15]. Mobile Ad-hoc Networks (ANETs) is a subtype of 

ANETs that nodes have mobility; common types of MANETs include VANETs for 

vehicles moving in certain area like a city [15]. In this review, all 6 recent papers which 

focus on ANETs used packet loss/retransmission rate/delivery ratio as one of metric for 

performance evaluation [31, 32, 33, 34, 35, 36]. Unlike early work that is only based on 

RL, many of these ANETs related papers combine RL with other techniques or have 

additional steps in addition to RL algorithm. Authors in [31] proposed QLMAODV, a 

combination of Q-learning and AODV protocol. AODV is defined in RFC3561, it is a 

routing protocol for MANETs, and one notable feature is that AODV ensures loop free 

routing [37]. QLMAODV considers stability when Q-learning evaluates a path to achieve 

a stable route [31]. In [32], the authors proposed PFQ-AODV, an extension of their 

previous work in [38]. PFQ-AODV also combines AODV with Q-learning. In addition, it 

considers bandwidth, node’s movement, and link quality in route selection by fuzzy logic 

[32]. Compared with their previous work, PFQ-AODV can use neighbor information, in 

addition to position information, to calculate vehicle movements [32]. QGeo proposed in 

[33] also considers nodes mobility: each node exchanges their location information 

periodically through HEELO packets [33].  

Authors in [34] proposed a routing algorithm based on fuzzy logic, game theory and RL. 

Fuzzy logic groups vehicles (as nodes) into clusters and selects cluster heads, and game 

theory coordinates commutations between nodes and their cluster heads [34]. Nodes are 

enforced to use cluster heads for multi-hop transmission and RL is used for path evaluation 

[34]. Similarly, Q2-R proposed in [35] has additional bootstrapping steps before RL 
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routing. Q-learning starts with initial paths that discovered from bootstrapping steps, and 

agent gradually improves paths’ Q-value during learning process [35]. A hierarchical 

routing scheme is proposed in [36], which first divides geological area into grids without 

the selection of cluster heads. Q-learning is used for selecting next grid and can be used to 

select the next hop (vehicle) inside the optimal grid [36]. 

[39, 40] focused on Wireless Mesh Networks (WMNs), in which nodes with multiple 

interfaces serve as a gateway that connects other nodes to the Internet [15, 40]. In [39]’s 

framework, each node predefined a set of routing algorithms, and Q-learning is used for 

adaptively selecting routing algorithms to execute. In [40], gateway nodes periodically 

broadcast their traffic load, each node first selects the gateway router, then uses RL to select 

next-hop node to send packets to the selected gateway [40]. Authors in [41] focused on 

multi-hop wireless networks, particularly for video streaming. The proposed RLOR 

algorithm combines RL and Opportunistic Routing, which exploit the broadcast nature of 

the wireless network and determines packets’ next-hop on the fly [41]. 

3.2.2 RL on SDN 

As illustrated in [14], when acting as an RL agent, SDN controller(s) can find optimal path 

from source to destination, in addition to next-hop node. To address the scalability issue of 

a single controller, the authors of [42] proposed QAR, a QoS-aware routing algorithm on 

hierarchical SDN. Nodes are divided into subnets, and each subnet has a domain controller, 

assisted by one or more “slave” controllers [42]. When a routing request’s source and 

destination are at different subnets, the main controller with a global view calculates a 

subnet path that connects the source and destination’s subnets [42]. Then each subnet along 

the path runs RL on their domain controller to travel packets within subnets, and such path 

finding can be done in parallel [42]. Another notable feature of QAR is that it uses SARSA, 

an on-policy RL algorithm that compared with Q-learning, updates of a state-action pair’s 

Q-value depends on action performed on the next state [42]. [43, 44] is also based on 

SARSA, but on a non-hierarchical SDN. VS-routing in [43] applies a variable ε-greedy for 

action selection, such that the probability of randomly selecting an action instead of a 

greedy approach varies with hop count and a dynamic factor [43]. In addition, VS-routing 

has no immediate rewards, Q-value updates are based on the next state’s associated Q-
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values and ε [43]. A multiple controllers SDN is considered in [44], and its objective is 

load-balancing for communication between nodes and controllers. [44] also improved ε-

greedy action selection, by using the Bayesian method: during exploration, agent tends to 

select frequently selected actions [44].   

For Q-learning based routing algorithms in SDN, we also observed diversity in terms of 

network architecture and algorithms’ workflows. Authors of [45] focused on congestion 

control in SDN. Learning is not based on selected actions and immediate rewards but 

update all edges reward in each episode of the routing algorithm [45]. Congestion 

identification is based on the current bandwidth of potential bandwidth, same for updating 

each edge’s corresponding reward [45]. In [46], Q-learning based routing is used for load-

balancing in Wireless SDN. In general, a Wireless SDN still has a central controller and 

set of SDN switches, in addition, SDN base stations are used to connect with SDN mobile 

devices [46]. States are assigned to users and depend on whether users’ demands are 

satisfied, actions are connecting every user’s traffic flow to a base station, and rewards are 

calculated based on available resource and a fairness function [46]. QR-SDN in [47] also 

adapts flow-based routing. A flow is defined as data transmission between a given source 

and destination pair, and each flow is assigned one path for routing traffic [47]. QR-SDN 

will not compute the path for a given flow, instead, it selects a path from a set of pre-

calculated possible paths. During the learning process, QR-SDN can take a list of flows, 

change path assignment for one or more flows in each episode, and gradually learns optimal 

path assignments [47]. 

[48, 49] use Q-learning, but on a “distributed” SDN. In [48], the authors implemented a 

“distributed” SDN over several computers (PC), with each PC containing a part of SDN 

network with one controller. Links are initially assigned weights, and the objective of Q-

learning is to optimize link weights assignments [48]. SDCIV proposed in [49] aims to 

achieve adaptive routing in SDN based Internet of Vehicles (IoV). The logical central 

controller is made up with a SDN controller cluster, and thus we classify it as a 

“distributed” operation mode [49]. SDCIV defines states as average vehicle speeds and 

densities, and the learning agent gradually learns the best routing protocol to execute for 
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different states [49]. Similar to [39], RL is not used for routing or path finding directly, but 

to find an appropriate protocol to execute from pre-defined routing algorithms [49]. 

3.2.3 DRL based Routing 

 Using RL in traffic routing started in 1990s, in contrast, DRL based approach is a relatively 

emerging field. Figure 3 shows a number of published papers related to DRL and routing 

between 2017 and 2021, from Web of Science database. Since this literature review focuses 

on traffic routing, we do not cover how neural network is trained in different DRL based 

routing algorithms. 

 

Figure 3.1: Papers related to DRL and Routing between 2017-2021 

In [50], the authors proposed DROM, a routing optimization algorithm for SDN. DROM 

takes a traffic matrix of current network load as input, during the learning process, the DRL 

agent changes some links’ weight so that some traffics alters their routing path [50]. WA-

SRTE in [51] works on a partially deployed Segment Routing IPv6 network, and it has two 

phases. In offline network design phases, WA-SRTE uses DRL to optimize OSPF link 

weights and SR-enabling nodes’ deployment based on historical traffic data. Once the 

offline phase is complete, link weights and SR nodes deployment is fixed [51]. In the online 

routing optimization phase, WA-SRTE uses other techniques like linear programming to 

optimize routing paths [51]. ENERO proposed in [52] also combines Segment Routing and 
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its objective is also to minimize maximum link utilization. Taking initial OSPF weights 

and a set of traffic demands as input, ENERO uses DRL to assign each traffic demand to 

an intermediate SR node to optimize links utilizations [52]. To further improve the result, 

local search (LS) is applied to DRL’s output in ENERO [52]. 

In [53], the authors applied Deep Q-learning for routing in data center SDN. The authors 

classified different traffic flows into two types: the mice-flows and the elephant-flows 

based on the amount of data and duration of traffic. [53] thus builds two Deep Q-networks 

to assign paths for two traffic flows, respectively, and each flow type has a different QoS 

objective. [54] proposed a hierarchical deep double Q-routing algorithm, which groups 

nodes into different clusters at different hierarchal levels, each cluster with a group leader. 

During the recursive route-finding process, the source’s routing request is sent to the 

highest level’s cluster leader, such that the source and destination nodes are at two different 

sub-clusters [54]. The cluster leader uses DRL to select one link that connects two sub-

clusters, and the process is repeated until a whole path is built [54]. The double Q-learning 

technique is adapted from [55]; when combined with deep learning, two Deep Q-networks 

are interchangeably used for action selection and evolution [54]. 

3.2.4 Analysis and Current Research Gap 

Most of our reviewed papers proposed an RL-based routing algorithm (21 of 26), although 

the DRL approach has attracted researchers’ interest dramatically in the past 5 years. 

Among studies that focus on non-SDN networks, 85.7% (12 out of 14) are on kind of 

wireless network and/or Ad-hoc network. In addition to latency-related factors (like delay 

or hop-count), RL-based approaches can consider a variety of factors that affect network 

performance. However, when working on a non-SDN network like WSNs or ANETs, 

applying RL-based routing may generate additional commutations overhead. For example, 

[28-30] routing algorithms require exchanging energy consumption or device residual 

energy information among network nodes. With SDN controllers’ global view of their 

networks, or a hierarchical network with some nodes being cluster heads (like [34, 54]) 

could reduce commutations overhead placed by RL-based routing over a network. 
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61.5% (16 out of 26) of reviewed papers proposed a composite routing protocol, where RL 

or DRL is part of the whole routing protocol. Common reasons of combining RL with other 

techniques are: 1. To speed up the algorithm’s convergence (like QAR in [42]); 2. To 

provide additional control, such as loop free routing [31, 32] or source packet routing [52, 

51].  It should be noticed that for some studies on SDN, like QAR, their routing algorithm 

does not guarantee loop-free routing during the learning phase, even though SDN 

controller(s) are RL agents [42]. The usage of RL is not limited to finding the best next-

hop node to forward a packet. RL agents can learn the whole path from a source to a 

destination or assign a path to traffic flows from a set of possible paths. In addition, several 

studies focus on OSPF optimization by using RL approach, which we define as the indirect 

usage of RL in traffic routing. Most papers’ framework only focuses on forwarding one-

packet, or one source-destination pair’s traffic. None of our reviewed literature, which is 

based on RL over SDN, use RL to directly find the path for a set of traffic flows in parallel. 

In summary, RL has been studied to develop adaptive, intelligent routing algorithms over 

the past three decades. It has shown extradentary flexibility to combine with other 

techniques for traffic routing over a variety of network types, with different QoS 

requirements. However, currently proposed algorithms do not fully exploit the global view 

of the SDN controller, or the ability to control the whole forwarding path (i.e., flow-based 

routing) by combining with a technique like SR. Additional work needs to be done in order 

to develop a RL-based, QoS aware flow-based routing over SDN, such that RL agent can 

find path for multiple traffic demands in parallel. Alternatively, while RL agent still focuses 

on one traffic demand at a time, the agent can reuse the network status knowledge it has 

learned previously to speed up algorithm convergence.  
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Chapter 4  

4 Methodology 

As the number of Internet users and types of services that relies on networking increases, 

traditional distance vector or shortest path based algorithms may not be able to provide 

optimal network performance. Previous studies demonstrate the potential of using RL or 

DRL to develop an intelligent routing algorithm that is adaptive to a dynamic network 

topology and fulfills a variety of QoS requirements. To the best of our knowledge, existing 

approaches do not fully exploit SDN architecture combined with flow-based source packet 

routing paradigm. In this study, we propose RLSR-Routing, a RL-based routing algorithm 

over SR enabled SDN architecture to address the current research gap. RLSR-Routing 

reduces network operation costs during path finding process and can have faster 

convergence than the previous RL-based approach. This chapter described the RLSR-

Routing framework and the rationale behind RLSR-Routing’s design.  

4.1 RLSR-Routing Architecture 

Figure 4.1 presents an abstract view of our approach’s framework. RL routing algorithm is 

one component of the SDN controller, and it relies on the SDN control plane to provide 

network topology and link state information. Although different literature may categorize 

routing as an application plane or control plane’s function [2, 7], such difference does not 

affect RLSR-Routing’s framework. Because in either case RLSR-Routing does not directly 

interact with network devices. Figure 4.2 describes RLSR-Routing’s components in greater 

detail. These components can be classified into three categories. 1) Storage of information: 

such as Global Q-table which represents previously learned network status, Default 

parameters and Network topology. 2) RL algorithm: this is the central part of RLSR-

Routing, it finds paths for specified traffic demands, as well as learns network status during 

execution. 3) Communication: these components interact with SDN controller to help other 

components send instructions to SDN controller, and to collect network information like 

QoS data, and topology information from SDN controller. 



21 

 

 

Figure 4.1: RLSR-Routing Architecture 

 

Figure 4.2: RLSR-Routing Components 
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4.2 RL: State, Action, Reward, and Modifications 

The RL algorithm used in RLSR-Routing can be viewed as an extension to previous work, 

particularly QAR from [42]. RLSR-Routing applies modified SARSA, an on-policy RL 

algorithm and a complete Markov Decision Process is included in RLSR-Routing. In this 

chapter, we define the state space, the action space, and rewards’ QoS considerations for 

RL algorithm used in RLSR-Routing. We also explain the rationale for two major 

modifications we made in our RL algorithms. 

4.2.1 State and Action Space 

RLSR-Routing focuses on routing for one traffic demand at a time: during each episode of 

algorithm execution, RLSR-Routing instructs the SDN controller to send one packet from 

the traffic demand’s source to its destination. Based on the above settings, our definition 

of state space and action space is as follows. 

• State space: let S denotes the set of all possible states of a network. |S| = |V| where 

V is set of nodes of the network. A state s ∈ S means node s is holding the packet. 

Notations st and st+1 are also used, which represent the state at time t and time t+1, 

respectively. 

• Action space: let A denotes the set of all possible actions that can be performed over 

a network. |A| = |E| where E is set of edges of the network. An action ai,j ∈ A 

represents sending the packet along link ai,j, from its source node i to its destination 

node j. Notations at and at+1 are also used, which represent selected action at time t 

and time t+1, respectively. 

 

Figure 4.3: Trivial Topology 1 (T1) 

Figure 4.3 shows a trivial topology T1 with 5 nodes, and 5 unidirectional links (followed 

the arrows). SDN controller and its connections with nodes are not shown in the figure. If 

a packet is sent from node 0 to node 5, at time t0, node 0 holds packet, the chosen action is 
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l0,1. At time t1, the packet reaches node 1, and therefore state at t1 is node 1 holding the 

packet.  

4.2.2 QoS Considerations for Actions’ Rewards 

Previous studies have demonstrated the flexibility of RL-based routing that multiple QoS 

metrics can be used to calculate an action’s reward. In RLSR-Routing, we considered five 

QoS parameters which can be categorized into three groups: latency; reliability; and load 

balancing. Assuming the performed action is sending one packet from node i to node j 

through link l, calculation of each QoS parameter’s reward is presented below.  

For latency related QoS metrics, we considered 1) number of hops, 2) transmission rate. 

Number of hops related reward (Rhop) is calculated as follow: 

            Rhop = 1 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑝𝑠⁄       (4.1) 

Transmission rate related reward (Rtransmission) reflects transmission delay of a node, and it 

is calculated as follows. The higher a node’s processing rate, the less time it requires to 

transmit all bits of a packet to the link. Therefore, the related action will receive higher 

reward. 

Rtransmission = 
2

𝜋
 × arctan(𝑛𝑜𝑑𝑒 𝑖 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑒)   (4.2) 

For reliability related QoS metric, we considered 1) link reliability. Since, in our 

assumption, all network switches and SDN controllers are 100% reliable, only the 

possibility of link failure is considered. Calculation of link reliability related reward 

(Rreliability) is: 

Rreliability = 𝑙𝑖𝑛𝑘 𝑙′𝑠 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒    (4.3) 

For load balance related QoS metrics, we considered 1) traffic intensity, 2) link utilization. 

For these two metrics, both current and estimated (i.e., estimated traffic intensity and link 

utilization after placing the traffic demand’s flow on the link) values are considered. The 
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calculation of current traffic intensity (Rinten) and estimated traffic intensity (Rinten-est) 

related reward are shown blow: 

Rinten = 1 −  
𝑁𝑜𝑑𝑒 𝑗 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

𝑁𝑜𝑑𝑒 𝑗 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑒
    (4.4) 

Rinten-est = 1 −  
𝑁𝑜𝑑𝑒 𝑗 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑡𝑟𝑎𝑓𝑓𝑖𝑐

𝑁𝑜𝑑𝑒 𝑗 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑒
   (4.5) 

Calculation of current link utilization (Rutil) and estimated link utilization (Rutil-est) related 

reward are shown below: 

Rutil = 1 − 
𝐿𝑖𝑛𝑘 𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑢𝑠𝑒𝑑 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

𝐿𝑖𝑛𝑘 𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
    (4.6) 

Rutil-est = 1 −  
𝐿𝑖𝑛𝑘 𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑢𝑠𝑒𝑑 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

𝐿𝑖𝑛𝑘 𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
    (4.7) 

Equations (4.1) – (4.7) ensure that all QoS related rewards values are no greater than 1. 

The closer a reward’s value is towards 1, the better quality of the performed action is in 

terms of the reward. Take T1 as an example; suppose a packet is sent from node 0 to 4 

follow the path 0->1->2->3->4. All links have 10Mb/s maximum bandwidth, 95% of time 

are working; all nodes have 50Mb/s processing rate. Currently, there is 5Mb/s traffic 

sending from node 3 to node 4, and the traffic demand from node 0 to 4 has 0.5Mb/s 

estimated traffic. If we evaluate the action of sending packet from node 3 to 4, the 

corresponding rewards are: 

Rhop = 1 4⁄  = 0.25 (Since link l3,4 is the fourth hop the packet has travelled). 

Rtransmission = 
2

𝜋
 × arctan(50𝑀𝑏/𝑠) = 0.9873 (Round to 4 decimals). 

Rreliability = 95% = 0.95. 

Rinten = 1 −  
5 𝑀𝑏/𝑠

50 𝑀𝑏/𝑠
 = 0.9 (Currently there is 5Mb/s traffic towards node 4). 

Rinten-est = 1 −  
5+0.5 𝑀𝑏/𝑠

50 𝑀𝑏/𝑠
 = 0.89 (After placed demand’s traffic, node 4 are expected 

to have 5.5 Mb/s total incoming traffic). 
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Rutil = 1 − 
5 𝑀𝑏/𝑠

10 𝑀𝑏/𝑠
 = 0.5.   

Rutil-est = 1 −  
5+0.5 𝑀𝑏/𝑠

10 𝑀𝑏/𝑠
 = 0.45.  

4.2.3 RL Modification: Aggregate Action Selection 

This section describes and explains one of the major modifications we made for SARSA 

used in RLSR-Routing – aggregate action selection of one episode. Based on our literature 

review, the two most commonly used RL algorithms in traffic routing are Q-learning and 

SARSA. Both Q-learning and SARSA follow a similar workflow during each episode of 

algorithm execution. 

1. At time t, from current state st, select an action at based on action selection policy. 

2. Perform action at. 

3. Observe and/or calculate action’s reward, and new state st+1 at time t+1.  

4. Update Q(st, at) 

5. Time t <− t + 1.  

Current state st <− st+1. 

The general workflow described above for Q-learning is similar to a “stop and wait” 

format: Until the reward is observed, and the state action pair’s Q-value has been updated, 

RL learning agent cannot choose another action to perform. In our modified RL with 

aggregation of action selection, the workflow in each episode is as follows: 

1. Let current state be s0, select an action a0,1 which leads to a never reached state s1, 

if the action is successfully performed.  

2. Add a0,1  to a list  {a0,1 , …}. 

3. Update the current state to be s1 and repeat step 1 and 2. Stop repeating when the 

selected action leads to traffic demand’s destination, or to avoid stuck in a loop.  

4. Perform the actions {a0,1, a1,2,  a2,3…} in order. 

5. Observe and calculate rewards and store them in an order list. 

6. Updated corresponding state-action pairs, follow the order of performed actions. 
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Compared with unmodified workflow, in RLSR-Routing’s approach, the RL agent first 

selects all actions that will be performed during one episode. Then the agent instructs the 

network to perform all the actions in order, and passively waits for returning QoS data 

which are used to calculate each action’s reward. The reason why we can aggregate action 

selection before update Q-values are based on the following observations. 

Observation I: update Q(st, at) does not affect action selection at state st+1, if selected 

action at+1 leads to a never-reached state during this episode.  

Observation II: update Q(st+1, at+1) does not affect updating Q(st, at), if Q-values are 

updated in order of performed actions, and path is non-cyclic. 

When RL agent tries to explore the environment, it usually randomly selects an action 

without considering Q-value of the state-action pair. When RL agent exploits knowledge 

which it learned previously about the environment, it usually applies a greedy selection 

policy to find the action with the maximum Q-value of the state-action pair. In either case, 

action selection at state st+1 does not consider Q(st, a). On the other hand, action selection 

does not alter any Q-value on the Q-table. Therefore, we may say that update Q(st, at) and 

action selection at state st+1 are two independent steps. 

When an SARSA’s learning agent updates a state-action pair’s Q-value, it uses the 

following equation. 

Qt+1(st, at) = (1 – α) × Qt(st, at) + α × (R +  γ × Qt(st+1, at+1)) (4.8) 

R stands for rewards, the Greek letter α represents the learning rate, and γ indicates the 

importance of long-term rewards. Update of (st, at)’s Q-value at time t+1 depends on its 

old Q-value at time t (i.e., Qt(st, at)) and old Q-value for state-action pair at the next state 

(i.e., Qt(st+1, at+1)). When the path a.k.a. the list of actions, is non-cyclic, each state will 

only be included at most once in the path. If the update of Q-values follows the same order 

as actions performed, previously updated state-action pairs’ Q-values will not be affected 

by updating the subsequent state-action pairs’ Q-values. 
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Take topology T1 as an example. Suppose now the aggregated selected actions are {a0,1, 

a1,2,  a2,3, a3,4}, which is a non-cyclic path from node 0 to node 4. Starting from time t, 

update of Q-values are as follows: 

1. Qt+1(s0, a0,1) = (1 – α) × Qt(s0, a0,1) + α × (R0,1 +  γ × Qt(s1, a1,2)) 

2. Qt+1(s1, a1,2) = (1 – α) × Qt(s1, a1,2) + α × (R1,2 +  γ × Qt(s2, a2,3)) 

3. Qt+1(s2, a2,3) = (1 – α) × Qt(s2, a2,3) + α × (R2,3 +  γ × Qt(s3, a3,4)) 

4. Qt+1(s3, a3,4) = (1 – α) × Qt(s3, a3,4) + α × (R2,3 +  γ × 1) 

Since action a3,4 is the last one performed, here we just use 1 to represent its next state-

action pair’s Q-value. As explained early, an update of any state-action pair’s Q-value does 

not affect previously updated state-action pairs. Based on the above observations, we think 

that our modification will not affect the accuracy of Q-values updates. On the other hand, 

aggregate action selection can reduce network costs during the learning process, 

particularly communication costs between network nodes and the SDN controller which is 

explained below. 

 

Figure 4.4: Comparing Number of Communications 

Using the same example, the left of Figure 4.4 shows communications between the 

controller (labelled as C) and nodes without action selection aggregation, whereas the right 

is with action selection aggregation. Without aggregation, the controller needs to send a 

new packet to the network for every new selected action. In previous RL-based routing like 

QAR in [42], RL agent only selects and performs one action during one episode. Even if 

the path between node 0 and 4 is trivial, when the current state is “node 0 holds the packet” 

for example, RL agent can only instruct node 0 sends the packet to node 1. After the action 

is performed and the packet reaches node 1 (current state becomes “node 1 holds the 
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packet”), the RL agent has to select and perform a new action, i.e., sends an instruction to 

node 1 about the next hop for the packet.   

With aggregation and SR technique, the controller can encode all selected actions into a 

packet’s header, send the packet to start routing, and passively waits for QoS data returned 

from the network when packet loss has not happened. In general, if n actions will be 

performed during one RL learning episode, without action selection aggregation, there will 

be 2n number of communications between controller and nodes. With action selection 

aggregation, there will be n+1 number of communications. In addition, if the RL approach 

does not combine any technique to prevent infinite loop formation, the number n will have 

a greater possibility of being equal to the maximum time-to-live (TTL) a packet allowed 

inside the network. Whereas our modification prevents an infinite loop since RL agent 

knows what states have been included in a path during aggregated action selection process. 

The above summarization does not consider packet loss or being dropped, which will be 

covered in section 4.3; it does not consider details of how QoS monitoring is implemented 

either, which is beyond the research interest of this thesis.  

4.2.4 RL Modification: Local and Global Reward 

In addition to the aggregate action selection process, we also aimed to use what RL agent 

has learned during each episode more efficiently to speed up algorithm convergence. Take 

QAR proposed in [42] as an example, its RL algorithm workflow can be summarized as 

follows: 

1. Take source and destination node from a traffic demand. 

2. Initialized Q-table with all entries set to 0. 

3. In each episode, repeat Markov Decision Process. 

4. After RL converges, output routing path from updated Q-table. 

The Q-table is updated after the algorithm above converges, including but not limited to 

entries that together form a path with maximal rewards from source to destination. Since 

Q-values represent estimated cumulative rewards, we can view the updated Q-table 

containing knowledge about some of the network QoS status, if the reward function is 
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based on those QoS parameters. As the RL agent handles a new traffic demand and 

initializes Q-table’s entries to 0 again, the previously learned knowledge about network 

QoS status is lost and the RL agent needs to explore the network from scratch again.  

Inspired by previous work, which provides some starting point during RL agent’s 

initialization [35], we proposed a “dual rewards scheme” for our modified RL algorithm to 

improve the efficacy of using RL results. Instead of one reward for one action, our 

algorithm calculates two rewards for each action: local and global rewards. The concept of 

local reward is similar to action’s reward in traditional Q-learning or SARSA: RL agent 

uses local rewards to find actions that lead to maximum expected rewards (a.k.a. towards 

a preferred path defined by the user’s customized QoS requirements). On the other hand, 

global rewards preserve the knowledge RL agent learned about the network, which can be 

used in future learning processes.  

As a result of using two kinds of reward, RLSR-Routing needs to construct two Q-tables: 

local Q-table and global Q-table. At the initialization phase, users of RLSR-Routing decide 

whether to use a global Q-table to initialize local Q-table, instead of setting every entry to 

a random value like 0. During the learning process, the agent only uses a local Q-table to 

select actions, since the main objective is to find path for given traffic demands rather than 

learning overall network status. By adjusting weights of different QoS parameters, users of 

RLSR-Routing can customize the calculation of local rewards, and thus customize 

evaluation of a path’s quality for different traffic demands. Meanwhile, calculation of 

global rewards and updating the global Q-table are hidden from incoming traffic demands. 

To support potential future upgrades of RLSR-Routing that enables multi-threading, i.e., 

running multiple RL algorithm components to find a path for multiple traffic demands 

concurrently, we separated the global Q-table from RL algorithm and made it another 

component of RLSR-Routing, as illustrated in figure 4.2.  
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Figure 4.5: A Simple Topology (T2) 

Topology T2 in figure 4.5 is sufficient to demonstrate the advantage of using dual rewards 

scheme. All links represent the two unidirectional links between two end nodes. RL 

algorithm finds the best path between node 0 and 3 based on the number of hops and link 

reliability, and it has reached convergence. Assuming the final local and global Q-tables 

are as follows: 

Local table Node 0 Node 1 Node 2 Node 3 Node 4 

Node 0 X -1.5 -1.8 X X 

Node 1 0 X -1.1 -1.5 -1.2 

Node 2 0 -1.0 X -0.8 -1.3 

Node 3 X 0 0 X X 

Node 4 X -1.2 -1.1 X X 

Table 4.1: Local Q-table after Convergence (Hypothesized) 
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Global table Node 0 Node 1 Node 2 Node 3 Node 4 

Node 0 X -1.9 -1.7 X X 

Node 1 0 X -1.5 -1.4 -1.1 

Node 2 0 -0.2 X -0.9 -0.9 

Node 3 X 0 0 X X 

Node 4 X -0.4 -0.7 X X 

Table 4.2: Global Q-table after Convergence (Hypothesized) 

Each row represents a state for both tables, and each column represents an action. Letter 

“X” means the state-action pair does not exist, i.e., there is no direct link from the source 

to the destination of the node pair.  Value 0 indicates the agent did not explore the state-

action pair during the learning process. Based on local Q-table, a non-cyclic path with 

maximal reward from node 0 to 3 will be: 0 -> 1 -> 2 -> 3. While RL agent was exploring 

the best path of the traffic demand, it also updated the global Q-table based on link 

utilization, traffic intensity, and link reliability. Suppose now RL agent needs to find a path 

for a traffic demand from node 0 to node 4, focusing on link utilization and traffic intensity 

instead of the number of hops. If the agent initializes all entries of the local Q-table to 0, it 

has zero knowledge about network load-balancing status before the learning process 

begins. In contrast, if it uses global Q-table to initialize local Q-table, the agent will have 

some prior knowledge about the network, e.g., the first action should better choose to send 

packet from node 0 to 2. We believe that in some cases, a priori knowledge of network 

QoS status will speed up algorithm convergence.  

Discussions in sections 4.2.3 and 4.2.4 are mainly under ideal cases where packet loss does 

not happen. Packet loss indicates the action is not successfully performed, which results in 

an early termination of the performing actions process. In practice, RLSR-Routing needs 

to handle action failure. In addition, under the dual reward scheme, definition of “action 

failure” might be different, depending on whether RL agent is calculating local or global 
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reward. We will discuss how RLSR-Routing’s workflow in greater detail, including the 

calculation of local and global rewards, and handling action failure in section 4.3. 

4.3 RLSR-Routing Workflow 

In section 4.1 and 4.2 we demonstrated RLSR-Routing’s architecture and explained the 

rationale behind some of our modifications to RL algorithm. In this section, we describe 

RLSR-Routing’s workflow in pseudo-code, especially on how our RL routing takes traffic 

demand from input and produces a user preferred path for a given demand.  

4.3.1 RL Algorithm: Overall Workflow 

function RL_findRoute(TrafficDemand Demand, Boolean B, QoSWeights W,  

|      Hyperparameters H) 

| // * * * * * * * * Initialization Phase * * * * * * * * 

| get Graph G from RLSR-Routing; //network topology  

| get QTable GT from RLSR-Routing; //global Q-table 

| get QoSWeights Wd from RLSR-Routing; //default QoS weights  

| get Hyperparameters Hd from RLSR-Routing; //default hyperparameters 
| QTable localT = InitLTable(G, GT, B); //local Q-table 

| QoSWeights wl = (W == NULL) ? Wd : W; //QoS weights for local rewards 

| Hyperparameters hl = (H == NULL) ? Hd : H; //hyperparameters 
| // * * * * * * * * Learning Phase * * * * * * * * 

| int episodes = 0; 

| while (episodes < hl.E) 

| | // -------- each learning episode -------- 

| | // * * * * Actions Selection * * * * 
| | //selects a temporary path for traffic demand to explore network 

| | Path tempPath = FindTempPath(Demand, localT, hl); 

| | // * * * * Perform Actions, Observe QoS data * * * * 

| | Push_Path_for_Routing(tempPath); 

| | // count is number of actions performed 
| | QoSData[] qData, int count = Collect_QoS_Data(tempPath); 

| | // * * * * Rewards Calculation * * * * 

| | //local rewards for performed actions 

| | Reward[] lRewards = CalculateLRewards(qData, wl, count, Demand);  

| | //global rewards for performed actions 

| | Reward[] gRewards = CalculateGRewards(qData, Wd, count); 

| | // * * * * Tables Update * * * * 

| | UpdateTable(localT, lRewards, hl, count); 

| | UpdateTable(GT, gRewards, Hd, count); 

| | // end of current episode 

| | episodes += 1; 

| end 

| //* * * * * * * * Return final result * * * * * * * * 

| return FindFinalPath(Demand, localT, hl); 

end 
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RL_findRoute() describes the overall workflow of RL algorithm component: user of RLSR-

Routing initiates a routing request by providing traffic demand and optional customized 

factors. RL algorithm explores the network and gradually learns the user preferred path 

during the learning phase. Once the algorithm converges or finishes the learning process, 

the final path is retrieved from the local Q-table. In practice, RLSR-Routing will be 

implemented and deployed on the SDN controller. By using the controller’s API, RLSR-

Routing receives requests of finding path for given traffic demands. Similarly, RLSR-

Routing explores the network by using the controller’s API to send packets to SR-enabled 

network nodes. As network nodes route the packets based on their header defined 

segments, RLSR-Routing waits for link-state information from network nodes. The final 

routing path for a traffic demand will be sent to the source node in the network, in order to 

achieve flow-based routing.  
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4.3.2 RL Algorithm: Initialization 

Before RL agent starts learning process, it needs to extract information from user input as 

well as other RLSR-Routing components. This information is necessary to initialize local 

Q-table, QoS weights, hyperparameters and most importantly, the traffic demand to handle.  

function InitLTable (Graph G, QTable GT, Boolean B) 

| //check user’s provided option 

| if B is true 

| | //user wants to use global Q-table to initialize local Q-table 

| | QTable localT = DeepCopy(GT);  

| | return localT; 

| end 

| //user does not want to use global Q-table for initialization 

| QTable localT = new QTable(G.numberOfNodes) 

| Link[][] links = G.getLinkMatrix() 

| for i=0; i<links.length; i++: 

| | for j=0; j<links[0].length; j++: 

| | |  if link[i][j] == NULL 

| | | | localT[i][j] = -0x80000000; 

| | | end 

| | | else localT[i][j] = 0; 

| | end 

| end 

| return localT; 

end 

InitLTable() is a helper function for initializing local Q-table. Both global and local Q-table 

are implemented as a 2-dimensional array of doubles, which array entry [i][j] represents 

the Q-value for state-action pair “at node i, sends packet to node j”. If the user wants to 

apply global Q-table, the helper function creates a deep copy of global Q-table as starting 

point of local Q-table. We appreciate that in some cases, users of RLSR-Routing want to 

apply global Q-table, but not copy every entry from global to local Q-table exactly. We 
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may add more options for applying global Q-table for initialization in the future. On the 

other hand, users can initialize local Q-table from scratch: for every existed link, initializes 

the corresponding value to 0. For links that do not exist, initialize the corresponding state-

action pair’s value to a minimal integer value. 

During initialization steps, RL agent also determines whether to use default QoS weights 

and/or hyperparameters, based on user input. The structure of QoS weights and 

hyperparameters are presented as follows. 

Structure QoSWeights 

| double lConstant; //constant used when calculating global reward 

| double gConstant; //constant used when calculating local reward 

| double Wc; //hop-count reward’s weight 

| double Wt; //transmission rate reward’s weight 

| double Wr; //link reliability reward’s weight 

| double Wi; //traffic intensity reward’s weight 

| double Wu; //link utilization reward’s weight 

end 

Structure Hyperparameters 

| double ε; //for ε-greedy action selection 

| double α; //learning rate 

| double γ; //importance of long-term rewards 

| int TTL; //maximum number of hops a packet is allowed in the network 

| int E; //number of training episodes RL agent should perform 

end 

Users can provide customized weights to emphasize the importance of different factors, 

and variables gConstant and lConstant depends on these weights, as illustrated below. 

Hyperparameters contain fields for RL’s action selection and Q-value updating (ε, α, γ) 

and for adjusting training duration (TTL, E).  Details about calculating global and local 

rewards will be illustrated in section 4.3.5. 
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lConstant = Wc + Wt + Wr + Wi + Wu + 0.1   (4.9) 

gConstant = Wr + Wi + Wu      (4.10) 

4.3.3 RL Algorithm: Actions Selection 

function FindTempPath(TrafficDemand D, QTable L, Hyperparameters H) 

| Link[][] links = get link matrix from Graph G, from RLSR-Routing; 

| //an array to record all nodes have been added to a path. 

| int[] visitedNodes = new int[G.numberOfNodes]; 

| initialize all visitedNodes entries to 0; 

| //current node’s id, start with traffic demand’s source node 

| int currentId = D.srcId; 

| //next hop node’s id 

| int nextId = -1;  

| Path tempPath; 

| //how many actions can still be selected 

| int remainTTL = H.TTL; 

| while (remainTTL > 0 && nextId != D.dstId) 

| | Node[] neighbors = get current node’s neighbors from Graph; 

| | //get neighbor nodes that have not been included in tempPath 

| | Node[] unvisited = neighbors ∩ (visitedNodes with entry = 0); 

| | if unvisited is empty: 

| | | //all current node’s neighbors have been included in the tempPath 

| | | break; 

| | end 

| | if Probability P < H. ε: 

| | | //randomly selects an action (exploration) 

| | | nextId = randomly selects one unvisited neighbor; 

| | end 

| | else: 

| | | //greedily selects an action (exploitation) 

| | | nextId = one with highest Q-value from L; 

| | end 

| | //add selected action(next hop) to tempPath, and updates related fields 

| | tempPath.add(links[currentId][nextId]); 

| | unvisited[nextId] = 1; //selected node now been included in tempPath 

| | currentId = nextId; //next time, find next hop for node with nextId 

| | remainTTL = remainTTL – 1; 

| end 

| return tempPath; 

end 

FindTempPath() describes how RL algorithm uses aggregate action selection to produce a 

non-cyclic path. The function keeps track of every node that has been added to the 
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temporary path, and because RLSR-Routing assigns each network node an integer ID that 

starts from 0, visitedNodes[i] is enough to express whether node i has been included. 

Starting from the traffic demand’s source node, FindTempPath()  builds a consecutive path 

by selecting from the current node’s unvisited neighbors. The path building process ends 

due to one of the following 1) a dead-end, i.e., all current node’s neighbors have been 

included in tempPath. 2) the path length reaches time-to-live a packet allows to travel in 

the network. 3) the path has reached traffic demand’s destination node.  

 

Figure 4.6: Edge Case Topology (T3) 

It should be noted that FindTempPath() follows an action selection policy throughout its 

running process, even if traffic demand’s destination node is one of the current node’s 

neighbors. Considering topology T3 in figure 4.6, all links are unidirectional and now there 

is a traffic demand from node 0 to node 2, with QoS consideration on link utilization. 

Suppose link l0,2 currently has 99% utilization rate, whereas link l0,1 and l1,2 has 0% 

utilization. Although node 2 is adjacent to node 0, the preferred path is 0->1->2 instead of 

0->2.  

4.3.4 RL Algorithm: Perform Actions & Observe QoS Data 

Push_Path_for_Routing() and Collect_QoS_Data() represent the process of generating a 

packet, encodes tempPath to packet’s header, sends packet to network via SDN controller 

for routing, and waiting for related link-state QoS data collected by SDN controller. In this 

study, we only focused on simulating the overall workflow. However, during actual 

deployment on SDN architecture, these functions will be implemented by other 

components of RLSR-Routing. We may also need to modify SR protocol, so that packets 
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generated by RLSR-Routing in the learning process are distinguished from other packets 

in the network. Therefore, network devices only send related QoS data to SDN controller 

when they process packets created by RLSR-Routing’s RL algorithm. Another way of 

modifying protocol can be adding a field called “SEND QoS DATA” on all packet’s 

header. Network switches only send QoS data to the controller for certain packets (such as 

those created by the RL algorithm during the learning process) that set “SEND QoS 

DATA” on. 

Although we assumed that communications between network devices and the controller 

are reliable, the returned QoS data may be out-of-order due to factors like the physical 

distance between a node and the controller. Collect_QoS_Data() will sort incoming data in 

order of tempPath’s added links. In addition, Collect_QoS_Data() should be able to detect 

packet loss by a mechanism like a timer. When packet loss happens, it means one 

performed action failed to complete (i.e., transform current state to next state), and the 

function will receive no QoS data of the failed action. The perform actions process will 

terminate and this failed action now becomes the last action performed. After that, 

Collect_QoS_Data() should actively send a request to the controller to explicitly require 

related link-state information. To distinguish failed action from the action without packet 

loss, we added a filed in QoSData structure, hasLost, to indicate whether packet loss 

happened when the action was performed.  

4.3.5 RL Algorithm: Rewards Calculation 

Rlocal = Wc × Rhop + Wt × Rtransmission + Wr × Rreliability  

+ Wi × Rinten-est + Wu × Rutil-est – lConstant   (4.11) 

Rglobal = Wr × Rreliability + Wi × Rinten + Wu × Rutil – gConstant  (4.12) 

Equation (4.11) and (4.12) are calculation of local reward and global reward, respectively. 

Each individual QoS factor’s reward is calculated based on equation (4.1) – (4.7), and two 

constant values calculations (lConstant and gConstant) are based on equations (4.9) and 

(4.10). In our traffic routing problem, local rewards can be viewed as a reflection of path 

quality for given traffic demand. Therefore, we used the estimated link destination node’s 
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traffic intensity (Rinten-est) and estimated link utilization if we place the demand’s traffic on 

that link, when considering local rewards. On the other hand, global rewards are used to 

learn current network status. Thus, the current traffic intensity (Rinten) and current link 

utilization (Rutil) are used to calculate global rewards. Equation (4.11) ensures all local 

rewards are no greater than -0.1, and (4.12) ensures all global rewards are no greater than 

0.  

function CalculateLRewards(QoSData D, QoSWeights W, int Count,              

   TtrafficDemand Demand) 

| Reward[] lRewards; //array to store local rewards 

| for int i = 0; i < Count–1 ; i++: 

| | lRewards[i].srcId = D.srcId; 

| | lRewards[i].dstId = D.dstId; 

| | lRewards[i].actionSuccess = True; 

| | lRewards[i].value = use (4.11), D, W to calculate;  

| end 

| //only the last performed action may has packet loss, handle separately 

| lRewards[Count-1].srcId = D.srcId; 

| lRewards[Count-1].dstId = D.dstId; 

| if D.hasLost OR D.dstId != Demand.dstId: 

| | // the last performed action either has packet loss, or final node is not  

| | // traffic demand’s destination node 

| | lRewards[Count-1].actionSuccess = False; 

| | lRewards[Count-1].value = -W.lConstant;  

| end 

| else: 

| | lRewards[Count-1].actionSuccess = True; 

| | lRewards[i].value = use Eq. (4.11), D, W to calculate; 

| end 

| return lRewards; 

End 
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function CalculateGRewards(QoSData D, QoSWeights W, int Count) 

| Reward[] gRewards; //array to store global rewards 

| for int i = 0; i < Count–1 ; i++: 

| | gRewards[i].srcId = D.srcId; 

| | gRewards[i].dstId = D.dstId; 

| | gRewards[i].actionSuccess = True; 

| | gRewards[i].value = use Eq. (4.12), D, W to calculate; 

| end 

| //only the last performed action may has packet loss, handle separately 

| lRewards[Count-1].srcId = D.srcId; 

| lRewards[Count-1].dstId = D.dstId; 

| if D.hasLost: 

| | // the last performed action has packet loss 

| | lRewards[Count-1].actionSuccess = False; 

| | lRewards[Count-1].value = -W.gConstant; 

| end 

| else: 

| | gRewards[Count-1].actionSuccess = True; 

| | gRewards[i].value = use Eq. (4.12), D, W to calculate; 

| end 

| return gRewards; 

end 

CalculateLRewards() and CalculateGRewards() show the pseudo code for calculating 

local and global rewards. Both functions have a similar workflow. For the first performed 

action till the second last, these actions are guaranteed not experienced packet loss, since 

RL algorithm passively received related QoS data from the controller. Therefore, two 

functions apply Eq. (4.11) and (4.12), respectively to calculate local/global rewards. For 

the last performed action, however, packet loss may happen as explained in section 4.3.4. 

We want to set punishment for unsuccessfully performed actions, so that RL agent learns 

to avoid select those actions in the future.  
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However, definition of “unsuccessfully performed last action” is different from the local 

or global reward’s perspective. For local rewards calculation, the last action is considered 

unsuccessful if it failed to deliver the packet to its traffic demand’s destination, even if no 

packet loss happened. For global rewards calculation, the last action is considered 

unsuccessful only when packet loss occurred. In addition to assigning punishment values 

for unsuccessful actions, RL algorithm adopted in RLSR-Routing has different ways to 

update related Q-values, which is illustrated in section 4.3.6.    

4.3.6 RL Algorithm: Tables Update 

function UpdateTable(QTable T, Rewards R, Hyperparameters H, int Count) 

| //update Q-values for the first till the second last performed actions 

| for int i=0; i<Count-1; i++: 

| | int state = R[i].srcId; 

| | int action = R[i].dstId; 

| | T[state][action] = use Eq. (4.8) to update Q-value; 

| end 

| //handle potential unsuccessfully performed last action 

| int state = R[Count-1].srcId; 

| int action = R[Count-1].dstId; 

| //next state Q-value for last state-action pair is set to 0 

| double nextQVal = 0;  

| if R[count-1].actionSuccess == False: 

| | T[state][action] += R[Count-1].value; 

| end 

| else: 

| | Table[state][action] = use Eq. (4.8) and nextQVal to update; 

| end 

end 

RL algorithm uses UpdateTable() for both local and global Q-table update. For performed 

actions that are guaranteed to be successful (first action till the second last), the function 

just apply SARSA’s typical function (Eq. (4.8)) to update corresponding Q-values. For the 
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last action that is classified as unsuccessfully performed, the associated Q-value 

accumulates the penalty by adding the reward’s value. The reason why UpdateTable() does 

not use Eq. (4.8) for unsuccessful actions’ Q-values update is as follows. 

 

Figure 4.7: Edge Case Topology (T4) 

Topology T4 illustrates an edge case which using Eq. (4.8) to update unsuccessful action’s 

Q-value may cause problem in RLSR-Routing. Suppose a traffic demand is to send packets 

from node 0 to node 4. Every successfully performed action has local reward value -2; 

whereas unsuccessfully performed ones have local reward value -3. RL agent uses α = γ 

=1, ε=0.5, TTL=16 for hyperparameters. No packet loss happened during the learning 

process. After running enough episodes that the local Q-table converges, the final local Q-

table should look like this: 

 

Table 4.3: Local Table after convergence in T4 (Hypothesized) 

Based on setting of RL algorithm, when node 0 chooses to send the packet to node 5, such 

action is regarded as unsuccessful by local rewards calculation. Because from node 5, RL 

agent cannot find a never visited next-hop node to deliver the packet to the traffic demand’s 
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destination. If we use Eq. (4.8) to update Q(s0, a0,5), the value will be converged at -3 based 

on our settings above. As a result, at node 0, choosing action a0,5 has a higher cumulative 

reward than choosing action a0,1 (-3 vs -8), even if sending a packet to node 1 is the only 

way to reach the final destination node 4. In contrast, the accumulative penalty mechanism 

in UpdateTable() ensures that the more times an action is performed unsuccessfully, the 

lower Q-value it will receive. For example, the first time agent chooses a0,5, Q(s0, a0,5) will 

become -3; the second time Q(s0, a0,5) will become -6; the third time Q(s0, a0,5) will become 

-9, and so on.  

4.3.7 RL Algorithm: Return final result 

After all learning episodes are completed, the RL algorithm uses FindFinalPath() to 

retrieve the final routing path from the source node to the destination node of the input 

traffic demand. FindFinalPath() executes FindTempPath(), but with Hyperparameters’ ε 

value set to 0 – i.e., using greedy selection policy. With an adequate number of learning 

episodes, the final path should be non-cyclic and successfully reaches the destination node, 

with the highest estimated cumulative reward from local Q-table. However, the final path 

may not be the best solution based on the user’s QoS requirements, and one possible reason 

could be the action selection policy used during the learning process. 

4.4 Action Selection Policy and Final Path’s Quality 

In section 4.3 we introduced the overall workflow of RLSR-Routing’s RL algorithm 

component. Within the RL algorithm, each sub steps (e.g., action selections, rewards 

calculation) can also be designed and implemented independently, giving additional 

flexibility to fulfill various objectives. For actions selection, we designed it to apply the ε-

greedy policy which aims to balance exploration of the network and exploitation of agent’s 

learned knowledge. However, during the implementation of RLSR-Routing, we noticed 

the inconsistency of the final routing path caused by ε-greedy during RL agent’s learning 

process.  
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4.4.1 Drawback of ε-greedy for SARSA Based Routing 

 

Figure 4.8: 10 Nodes Topology (T5) 

Figure. 4.8 presents a 10 nodes network with mesh topology (T5). Each node has 10Mb/s 

processing rate, and each link has 10Mb/s maximum bandwidth. Each link on T5 represents 

two unidirectional links that connect two adjacent nodes, with link l0,1, l2,4, l3,5 and l6,8 

(marked as red, single arrow) currently having 9.9Mb/s traffic.  Suppose we want to find a 

path to send packets from node 0 to node 9, with link utilization and link destination node’s 

traffic intensity as QoS considerations. Based on settings above, the user preferred path 

from 0 to 9 should be 0 -> 2 -> 3 -> 6 -> 7 -> 9. When RL agent uses α = γ = 0.9 and a non-

zero ε value (e.g., 0.3), the final path produced by RL algorithm is inconsistent, for 

example: 

i. 0 -> 1 -> 4 -> 6 -> 7 -> 9; (A less preferred path) 

ii. 0 -> 2 -> 3 -> 6 -> 7 -> 9; (Same as the user preferred path) 

iii. 0 -> 2 -> 4 -> 5 -> 8 -> 9. (Another less preferred path) 

For unmodified ε-greedy action selection, the probability of randomly selecting an action 

is consistent throughout the learning process. For example, the agent in the above settings 

still has 0.3 probability of randomly selecting an action, even for the last few episodes of 

the learning process. Recall that for SARSA, update of the current state-action pair’s Q-

value depends on the action performed at the next state (Eq. (4.8)). Suppose at the 

beginning of episode 95 (out of 100), Q(s0, a0,2) is higher than Q(s0, a0,1),  a greedy selection 
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will add a0,2 as the first action. At node 2, if RL agent randomly selects a2,4 as the next 

action, the update of Q(s0, a0,2) will be: 

 Qt=96(s0, a0,2) = (1 - α)   Qt=95(s0, a0,2) + α  (R + γ  Qt=95(s2, a2,4)). 

Since link l2,4 currently has high traffic load, Qt=95(s2, a2,4) is probably going to make 

Qt=96(s0, a0,2) lower than Qt=96(s0, a0,1). At episode 96, RL agent may not have enough trials 

to learn that at node 0, choosing link l0,2 is better than link l0,1. As a result, we saw a less 

preferred path produced in the trail (i) has 0 -> 1 as the first link on the path.  

To sum up, the drawback of ε-greedy is that the probability of randomly selecting an action 

is constant throughout the learning process. And as noted in [42], all available actions have 

an equal chance to be chosen when using random selection. A better solution should be a 

kind of variable ε-greedy policy, such that at the beginning, the agent has a high probability 

of exploring the environment; whereas at the end the agent has a high probability or even 

completely using greedy policy to exploit the knowledge it learned.  

4.4.2 Greedy Approach: Temporary Solution to Local Optimality  

To our surprise, after we set ε value to 0 (i.e., all action selection are using greedy approach, 

so that the algorithm always selects the action which has the maximum Q-value among the 

current state’s available actions), RL algorithm can find the user preferred path for the 

experiment on topology T5, and the results are consistent through different trials. The 

rational greedy approach still able to find the preferred path is probably due to the value-

based nature of RL. In the beginning, we initialized all local Q-table’s entry to 0,  and no 

action’s reward can be greater then -0.1. As a result, the greedy approach still ensures the 

exploration of network during an early stage of the learning process. Moreover, after Q-

table’s values converged, the tempPath selected in each episode will be consistent, thus, 

randomly chosen bad action will not occur at the end of the learning process when applying 

the greedy approach. 
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Figure 4.9: Edge Case Topology (T6) 

However, the pure greedy approach may not guarantee that RL algorithm always produces 

the best solution. T6 illustrates a ring-like topology with two non-cyclic paths from node 0 

to node 9 (one starts with link l0,1 and the other starts with l0,2). We assumed that if RL 

algorithm sends packets through both paths with enough episodes, at node 0, choosing link 

l0,2 will have higher reward (e.g., Q(s0, a0,1) = -11, Q(s0, a0,2) = -10). During the initial 

episodes, RL agent has not fully explored the network. The selected temporary path may 

be 0->2->10, 0->2->4->11, 0->2->4->6->12… etc., since initially all entries have same Q-

value. As a result, Q-value for state-action pair s0, a0,2 may be lower than its converged 

value during the early training process, e.g., Q(s0, a0,2) = -12. Meanwhile, if the path starts 

with l0,1 converges, we now face the situation that Q(s0, a0,1) = -11 which is greater than 

Q(s0, a0,2) = -12. The final produced path will be 0->1->3->5->7->9  instead of 0->2->4-

>6->8->9. 

Throughout the rest of our implementation and experiment setup, we applied a greedy 

action selection policy since it is easy to achieve while still producing users preferred 

results. Since our main focus is to prove the ability of RLSR-Routing to satisfy various 

QoS demands and to validate two of our major modifications (described in section 4.2.3 

and 4.2.4) on SARSA. We will leave an upgrade of a better action selection policy as future 

work. 
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4.5 Network Simulation 

We provided two ways to create a network topology for performing experiments. First is 

to use our implemented methods to write code, which step by step creates a graph 

representation of a network, adds nodes and links, and possibly assigns the initial used 

bandwidth of certain links. Another way is to write a JSON file with a specified format, 

which can be parsed using an open-source JSON parser.  

4.6 General Settings for Hyperparameters 

Authors who proposed QAR in [42] conducted experiments to study the effects of learning 

rate and the importance of long-term rewards. We followed their guidelines and unless 

specified explicitly, the hyperparameters used in Chapter 5’s experiments are as follows: 

• ε = 0; 

• α = 0.9; 

• γ = 0.9; 

• TTL = 32; 

• E = 75. 
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Chapter 5  

5   Implementation and Results 

RLSR-Routing is a framework that directly addresses path finding issues in SDN, without 

requiring prior knowledge of the network (e.g., link weights) or external libraries to train a 

neural network. Deployment of RLSR-Routing should be flexible as long as it can interact 

with the SDN controller and parse JSON file. This study mainly focused on the RL 

algorithm component’s implementation, with additional code to support network 

simulation. All code is written in JAVA but transfer to other programming languages 

should not be a complicated task. This chapter presents our comparative study and 

validation experiments’ results with discussion.  

5.1 Comparative Study with Non-RL routing 

 

Figure 5.1: 16 Nodes Topology (T7) 

We performed a comparative study between RLSR-Routing and a non RL-based routing 

algorithm, NR-Routing, which is used by a telecom solutions provider. Similar to our 

proposed RLSR-Routing, NR-Routing is able to assign paths for given traffic flows 

between source and destination pairs; but it uses a non-RL based agent to explore the traffic 
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engineering space by placing traffic demands greedily (from largest to smallest) and/or 

randomly on the network capacity using multi-path segment routing based traffic 

engineering. Due to the confidentiality issue, we cannot provide additional information 

about NR-Routing’s implementation as well as other details. The overall objective is to 

compare two algorithms’ load balancing ability in terms of minimizing maximum link 

utilization over given network. The testing network topology T7 is shown in Fig. 5.1, with 

16 nodes and each pair of adjacent nodes has two unidirectional links connecting with each 

other. All links have 2.0Mb/s maximum bandwidth, 100% reliability rate, and all nodes 

have 20Mb/s processing rate. NR-Routing is an executable program embodying two main 

functions: 

• Generation of traffic engineering problems consisting network topologies and sets 

of traffic demands to place the network capacity 

• Optimization of traffic demand engineering by placing demands on paths in the 

network with segment routing based traffic steering techniques.   

We first randomly generate networks and demands and let NR-Routing assign one or more 

paths for each demand. These generated paths were saved as JSON file. We then removed 

unwanted demands, adjusted the amount of data for the remaining, and then used them as 

NR-Routing’s input for load balancing. This time the final output is saved at another JSON 

file and to be used for comparison. The traffic and paths assignments for selected tunnels 

that we used in NR-Routing program’s load balancing test are as follows: 

• From node   4 to 14: 400kb/s total traffic, 2 paths. 

• From node   1 to   5: 400kb/s total traffic, 2 paths. 

• From node   0 to   6: 1.0Mb/s total traffic, 5 paths. 

• From node 13 to 11: 600kb/s total traffic, 4 paths. 

• From node   3 to 13: 600kb/s total traffic, 3 paths. 

• From node   3 to   4: 1.2Mb/s total traffic, 6 paths. 

For RLSR-Routing, it interoperated each tunnel as n traffic demands, where n equals to 

number of paths been assigned to the tunnel by NR-Routing. Every traffic demand from 
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the same tunnel will split the tunnel’s total traffic. For example, for tunnels from node 3 to 

4, each of the six traffic demands will have 200kb/s traffic. RL algorithm only considered 

link utilization when calculating local rewards during the learning process. After the RL 

algorithm found a path for one traffic demand, the demand’s traffic was placed over the 

network along the path. The above steps were repeated until RL algorithm found path for 

all traffic demands and placed all demand traffic over the network.  

5.1.1 Experiment Result: Routing Paths by RLSR-Routing 

The paths generated for each tunnel (source and destination pair) by RLSR-Routing are 

listed below. 

Paths for two traffic demands from node   4 to 14: 

i. 4 -> 7 -> 15-> 14;  

ii. 4 -> 6 -> 15 -> 14. 

Paths for two traffic demands from node   1 to   5: 

i. 1 -> 13 -> 5; 

ii. 1 -> 13 -> 5. 

Paths for five traffic demands from node   0 to   6: 

i. 0 -> 3 -> 15 -> 6; 

ii. 0 -> 2 -> 14 -> 15 -> 6; 

iii. 0 ->12 -> 13 -> 4 -> 6; 

iv. 0 -> 3-> 15 -> 7 -> 6; 

v. 0 -> 1 -> 3 -> 15 -> 6. 

Paths for four traffic demands from node 13 to 11: 

i. 13 -> 1 -> 2 -> 14 -> 11; 

ii. 13 -> 1 -> 3 -> 14 -> 11; 

iii. 13 -> 4 -> 7 -> 15 -> 11; 

iv. 13 -> 5 -> 6 -> 15 -> 11. 

Paths from node   3 to 13: 
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i. 3 -> 1 -> 13; 

ii. 3 -> 0 -> 12 -> 13; 

iii. 3 -> 1 -> 13.  

Paths from node   3 to   4: 

i. 3 ->15 -> 7 -> 4; 

ii. 3 -> 2 -> 1 -> 12 -> 8 -> 13 -> 4; 

iii. 3 ->14 -> 15 -> 7 -> 4; 

iv. 3 -> 15 -> 6 -> 4; 

v. 3 ->1 -> 13 -> 4; 

vi. 3 -> 0 -> 12 -> 13 -> 4. 

All the paths produced by RLSR-Routing are valid routing paths: they are loop-free and 

consist of a consecutive set of nodes that connect the source and destination nodes of 

specified traffic demands. 

5.1.2 Experiment Result: Links Utilizations 

 

Figure 5.2: Screenshot for NR-Routing’s Links with Traffic 
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Figure 5.3: Screenshot for RLSR-Routing's Links with Traffic 

Figures 5.2 and 5.3 show the links that placed traffic on it by NR-Routing and RLSR-

Routing, respectively. For NR-Routing, traffic assigned on different links of the network 

was saved in the JSON output file. We extracted the information and saved in another text 

file. Although the same network topology was used in both NR-Routing and RLSR-

Routing, the labels for each node used in NR-Routing are different. Therefore, we included 

the translated node’s ID in brackets, for example, node with ID R3 in NR-Routing is node 

with ID (14) in RLSR-Routing. For NR-Routing, the maximum traffic assigned to one link 

is 1.433333Mb/s, thus the maximum link utilization in NR-Routing’s output is  1.433333 

/ 2.0 = 71.67%. For RLSR-Routing, the maximum traffic assigned to one link is 1.0Mb/s, 

thus the maximum link utilization in RLSR-Routing’s links assignment is 1.0 / 2.0 = 

50.0%. 
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5.2 Cost of Exploration During Learning Process 

 

Figure 5.4: 30 Nodes Topology (T8) 

We used a 30 nodes network as shown in figure 5.4 to test the efficacy of RLSR-Routing 

in learning process. In topology T8, each pair of adjacent nodes are connected by two 

unidirectional links to support bi-directional communications. All nodes have 100Mb/s 

processing rate, and all links have 10Mb/s maximum bandwidth. Before any traffic 

demand’s data been placed over the network, links used bandwidth are as follows: 

• Link l6,7, l7,6, l18,19, l19,18: 0Mb/s used bandwidth; 

• Link l1,3, l2,3: 5Mb/s used bandwidth; 

• Link l0,3, l4,8, l7,11, l10,13, l18,22: 9Mb/s used bandwidth; 

• The rest of links: 1Mb/s used bandwidth. 

In this experiment, we gave RLSR-Routing nine traffic demands, each with 0.1Mb/s 

estimated traffic. RL algorithm found one path for every given traffic demand, with traffic 

intensity and link utilization as considered QoS parameters (Wi = Wu = 1). Global Q-table 

was not used during this experiment since the experiment was not focused on convergence 
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speed. After one path was returned from RL algorithm, corresponding traffic demand data 

was placed over the network (i.e., all links on the path added 0.1Mb/s to their used 

bandwidth).  

5.2.1 Experiment Result: Final Paths 

 

Table 5.1: Final Path for Traffic Demands 

Table 5.1 summarizes the final routing path returned by RLSR-Routing for every traffic 

demand. All routing paths are valid: every node in a path is only included once, and every 

path reaches the specified destination. During the learning process, RLSR-Routing 

gradually explored the network, so that highly utilized links (like link l0,3, l4,8, l7,11, l10,13, 

l18,22) and nodes with relatively high traffic intensity (link node 3, 8, 11, 13, 22) are 

excluded in final paths. As a result, all the paths include the same set of nodes, node 4, 7, 

6, 10, 14, 18, 19, 23 as intermediate nodes between source and destination. Although these 

are not the shortest paths in terms of hop-count, they are the user preferred paths in terms 

of link utilization and traffic intensity. 
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5.2.2 Experiment Result: Path Length vs Episode Number 

 

Figure 5.5: TempPath length for Demand 0 -> 26 

 

Figure 5.6: TempPath length for Demand 1 -> 26 
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Figure 5.7: TempPath length for Demand 2 -> 26 

 

Figure 5.8: TempPath length for Demand 0 -> 27 
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Figure 5.9: TempPath length for Demand 1 -> 27 

 

Figure 5.10: TempPath length for Demand 2 -> 27 
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Figure 5.11: TempPath length for Demand 0 -> 28 

 

Figure 5.12: TempPath length for Demand 1 -> 28 
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Figure 5.13: TempPath length for Demand 2 -> 28 

Figure 5.5 to 5.13 demonstrated when RLSR-Routing was finding the path for each traffic 

demand, the length (i.e., number of hops) of temporary paths (denote as TempPath) 

generated in the first 50 episodes. None of the temporary paths would result in a packet 

inside a loop, and most of the paths have less than 20 nodes included. Although at the 

beginning of the learning process, especially during the first 20 episodes, some temporary 

paths failed to reach the desired destination, the agent quickly learned to avoid choosing 

actions that lead to a dead end. For most of the testing traffic demands, RLSR-Routing was 

able to converge around 30 episodes; after that, the temporary paths produced in each 

episode are the same as the final paths. 

5.3 Global Q-table and Effects of γ Value 

In this section, we present our study about whether using global Q-table speeds up 

algorithm convergence. We applied the same network topology (T8) and the same initial 

links used bandwidth as in section 5.2. The same set of traffic demands were given to 

RLSR-Routing and the user preferred path was defined by the same QoS weights. The only 

difference is that RLSR-Routing used global Q-table to initialize local Q-table. To study 

the effect of γ (importance of long term reward) on applying global Q-table, we set up five 

experiment groups. The control group from section 5.2 did not use global Q-table; test 
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groups I to IV applied γ value 0.3, 0.5, 0.7 and 0.9 to update global Q-table’s entries. The 

final paths for each traffic demand and the number of episodes RLSR-Routing used to 

converge were recorded for further analysis. 

5.3.1 Experiment Result: Final Paths for Traffic Demands 

 

Table 5.2: Final Paths by Test Group I (γ = 0.3) 
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Table 5.3: Final Paths by Test Group II (γ = 0.5) 

 

Table 5.4: Final Paths by Test Group III (γ = 0.7) 
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Table 5.5: Final Paths by Test Group IV (γ = 0.9) 

Table 5.2 to 5.5 illustrate different test groups’ final paths for given traffic demands. 

Sama as the control group in section 5.2, all test groups’ final paths are the best in terms 

of traffic intensity and link utilization.  

5.3.2 Experiment Result: RL Convergence Speed 

 

Table 5.6: Episode Number when RL Converged 
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Figure 5.14: Total Episode Numbers when RL Converged for All Demands 

Table 5.6 shows for each traffic demand, the number of episodes different experiment 

groups used to reach convergence. Compared with the control group, in most cases, test 

groups used fewer episodes to reach convergence for the same traffic demand. Figure 5.14 

summarizes total episode numbers for each group to reach convergence on 9 traffic 

demands. All test groups used fewer total episode numbers to find paths for all traffic 

demands than the control group. Test group IV which used γ value 0.9 has the fastest 

convergence speed: it took 192 episodes to find paths for all given traffic demands. 

5.4 Discussion 

The overall objectives of the experiments are to test RLSR-Routing’s ability to find user 

preferred paths, as well as its efficiency during path finding process. As suggested by the 

industry collaborator, we used the 16 nodes topology T7 and those traffic demands, which 

were both generated by our industry collaborator’s provided NR-Routing program. Due to 

the limit of time, we only conducted section 5.1’s experiment as the first stage of the 

comparative study. For the 30 nodes topology T8, we think the network is adequate to 

make the path finding less trivial and to provide good visualization, compared with 36 

nodes topology in [18] and 25 nodes network used in [42]. We used path length, i.e., 

number of hops a packet travelled in the network during one training episode, as a 

measurement of training cost. The longer the path length, the longer time a packet will be 
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in the network. We used to number of episodes RLSR-Routing took to converge as a 

measurement of the algorithm’s efficiency. The fewer the episodes RLSR-Routing took to 

reach convergence, the more efficient the algorithm is.     

In the comparative study (Section 5.1), we observed that RLSR-Routing achieved lower 

maximum link utilization than NR-Routing after placing the same amount of traffic over 

the same network topology. When we compared the two algorithms’ output, we noticed 

that RLSR-Routing used more links than NR-Routing. It seems that RLSR-Routing tried 

to balance network load by detouring some traffic through longer paths to their destination.  

On the 30 nodes topology T8, RLSR-Routing still able to find user preferred paths for 

given traffic demands. Although constraints from the non-cyclic path policy resulted in 

some packets not being sent to the destination during exploration, RLSR-Routing 

converged within a reasonable number of episodes. Combined with the observation that 

most temporary paths consist of less than 20 nodes, we conclude that RLSR-Routing does 

not require much network resource during the learning process. The cost of path finding 

can be further reduced by applying previously learned network status, as we observed in 

section 5.3’s experiment. The best test group uses 27% a smaller number of episodes to 

find paths than the control group (192 vs 263). Similar improvement can be found in all 

test groups that applied the global Q-table. We hypothesized that higher γ value used for 

updating global Q-table should have a better result, since RL agent will learn more about 

long term network QoS status. However, Test group II takes more episodes to reach 

convergence than test group I. This is perhaps due to a relatively small test size (9 traffic 

demands tested), or this reflects the sensitivity of RL on parameters, especially when using 

greedy action selection strategy.  
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Chapter 6  

6 Conclusion 

We developed a RL-based routing algorithm, RLSR-Routing, which works on SR-enabled 

SDN. We modified SARSA, an on-policy RL algorithm, by aggregating action selection 

and setting a dual rewards scheme. To handle potential packet loss or failure to reach the 

desired destination during the learning process, we added additional steps than the normal 

function to update Q-tables for failed actions. Experiment results indicate that RLSR-

Routing can find user preferred paths for given traffic demand, based on customized QoS 

considerations. Our research contribution is listed as follows: 

• RLSR-Routing directly applies RL in the path finding process, without a prior 

knowledge of the network. It does not rely on additional inputs such as pre-defined 

link weights; or a set of pre-calculated paths between a source and destination pair  

to find the user preferred path of a traffic demand. 

• We further reduced the number of communications required between SDN 

controller and network data planes by exploiting Segment Routing, compared with 

previous RL-based routing in SDN. 

• We ensured that no packet would be routed in a loop during the RLSR-Routing 

learning process.  

• We gave users the ability to customize QoS weights to define what is their 

preferred path. 

• Our proposed framework can reuse previously learned knowledge to speed up 

algorithm convergence. 

6.1 Limitations 

As we explained in section 4.4.2, action selection based on a greedy approach may not find 

the best path in some cases. Relative medium size networks and small number of traffic 

demands tested may be the reasons that we only observed user preferred final paths in 

experiment results. Another issue is that RLSR-Routing does not support finding paths for 

multiple paths in parallel. When working on a set of traffic demands, RLSR-Routing only 
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focuses on finding the best path for one traffic demand at a time, without considering the 

effect of placing traffic on the best path on other traffic demands that have not been 

assigned a path. To provide better demonstrations of paths assignments and links 

utilizations by RLSR-Routing and NR-Routing, we only used a subset of randomly 

generated demands during the comparative study. In practice, RLSR-Routing should assign 

paths for all traffic demands from the users of the network. 

6.2 Future Work 

As explained earlier, several upgrades can further improve RLSR-Routing’s performance. 

For example, a better action selection policy, and more flexibility for users to decide how 

to apply a global Q-table to initiate a local Q-table. For the comparative study, we plan to 

test our RLSR-Routing in a more practical setting of traffic engineering problem, such as 

a 1000 nodes networks with thousands of traffic demands. In addition, future experiment 

should test RLSR-Routing’s ability to find user preferred path in terms of other QoS 

parameters, such as link reliability, instead of just using link utilization and traffic intensity. 

Finally, we will modify the whole RL algorithm component so that it can compute the user 

preferred path for a traffic demand matrix in parallel. 
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