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PROGRESSIONS
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Abstract. First proved by German mathematician Dirichlet in 1837,
this important theorem states that for coprime integers a,m, there are
an infinite number of primes p such that p = a (mod m). This is one
of many extensions of Euclid’s theorem that there are infinitely many
prime numbers. In this paper, we will formulate a rather elegant proof of
Dirichlet’s theorem using ideas from complex analysis and group theory.
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1. Introduction of Dirichlet’s Theorem

Dirichlet’s Theorem is particularly noteworthy because, despite the com-
plex analysis and group theory required to prove his statement, it can be
written in very simple terms.

Theorem 1.1 (Dirichlet’s Theorem). Let a,m ∈ Z+ be relatively prime.
There exist infinitely many prime numbers p such that p ≡ a (mod m).

The proof that there are infinitely many primes is, as many real analysis
students will recall, surprisingly simple. We suppose thatA = {p1, p2, · · · , pk}
is the ordered set of all prime numbers and let q = p1p2 · · · pk + 1. If q is
prime, then it is missing from our set A and we are done. If q is not prime,
then it is divisible by some prime pj ∈ A. We also know pj divides q − 1 by
the definition of q, so it must divide the difference q− (q−1) = 1. But there
is no prime which divides 1, so we have a contradiction, which concludes the
proof.
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However, attempting to prove Dirichlet’s stronger statement will require
more work, so we proceed by exploring the idea of Dirichlet series.

2. Dirichlet Series

We begin this section with some useful lemmas.

Lemma 2.1. Let U be an open subset of the complex plane and let (fn)
be a sequence of analytic functions on U that converges uniformly on every
compact subset to a function f . Then, f is analytic on U and the derivatives
f ′n of the fn converge uniformly on all compacrt subsets to the derivative f ′

of f .

Proof. Let D be a closed disk contained in U with boundary ∂D. By the
Cauchy formula, we have

fn(z) =
1

2πi

∫
∂D

fn(w)

w − z
dw

for all z interior to D. By the uniform convergence of (fn), we have that

f(z) =
1

2πi

∫
∂D

f(w)

w − z
dw,

which shows that f is analytic on D. It follows that f is analytic on U as
well. To show that (f ′n) uniformly converges to the derivative f ′, fix z ∈ D
and let (εn) be such that |fn(z) − f(z)| ≤ εn for all z, n, with εn → 0.
Observe,

|f ′n(z)− f ′(z)| =
∣∣∣∣ 1

2πi

∫
∂D

fn(w)

(w − z)2
dw − 1

2πi

∫
∂D

f(w)

(w − z)2
dw

∣∣∣∣
=

∣∣∣∣ 1

2πi

∫
∂D

fn(w)− f(w)

(w − z)2
dw

∣∣∣∣
≤ 1

2πi

∫
∂D

|fn(w)− f(w)|
(w − z)2

dw

≤ 1

2πi

∫
∂D

εn
(w − z)2

dw

=
εn
2πi

∫
∂D

1

(w − z)2
dw.

If we let

γn =
εn
2πi

∫
∂D

1

(w − z)2
dw,

it is clear that |f ′n(z)− f ′(z)| ≤ γn for each n, with γn → 0, thus completing
the proof of uniform convergence. □

Lemma 2.2 (Abel’s Lemma). Let (an) and (bn) be two sequences. Put

Am,p =

n=p∑
n=m

an and Sm,m′ =

n=m′∑
n=m

anbn.
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Then one has:

Sm,m′ = Am,m′bm′ +
n=m′−1∑
n=m

Am,n(bn − bn+1).

Proof. Observe that

Am,n −Am,n−1 =

n∑
m

ak −
n−1∑
m

ak = an.

So, by making this substitution for an and expanding the sum we have:

Sm,m′ =
m′∑
m

anbn

=

m′∑
m

(Am,n −Am,n−1)bn

=
m′∑
m

(Am,nbn −Am,n−1bn)

= (Am,mbm −Am,m−1bm) + (Am,m+1bm+1 −Am,mbm+1)+

(Am,m+2bm+2 −Am,m+1bm+2) + · · ·+
(Am,m′−1bm′−1 −Am,m′−2bm′−1) + (Am,m′bm′ −Am,m′−1bm′)

Note that Am,m−1 = 0, and we can regroup these terms to get

Sm,m′ = Am,m(bm − bm+1) +Am,m+1(bm+1 − bm+2)+

· · ·+Am,m′−1(bm′−1 − bm′) +Am,m′bm′

= Am,m′bm′ +
m′−1∑
m

Am,n(bn − bn+1),

as required. □

Lemma 2.3. Let α, β ∈ R with 0 < α < β, and let z = x+ iy with x, y ∈ R
and x > 0. Then,

|e−αz − e−βz| ≤
∣∣∣∣ zx

∣∣∣∣(e−αx − e−βx).

Proof. First observe that

z

∫ β

α
e−ztdt = z

(
−1

z
e−βz +

1

z
e−αz

)
= e−αz − e−βz.
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Thus,

|e−αz − e−βz| =
∣∣∣∣z ∫ β

α
e−ztdt

∣∣∣∣
≤ |z|

∫ β

α
e−xtdt

=
|z|
x
(e−αx − e−βx),

completing the proof. □

We will now introduce Dirichlet series and use the previous lemmas to
deduce some important results.

Definition 2.4. Let (λn) be an increasing sequence of real numbers tending
to +∞. A Dirichlet Series with exponents (λn) is a series with the form

∞∑
n=1

ane
−λnz,

where an ∈ C, z ∈ C.

Remark. It is important to note that we will assume that λn ≥ 0 for all
n, although this is not strictly required as we can always supress a finite
number of terms to achieve this property.

Proposition 2.5. If the series f(z) =
∑
ane

−λnz converges for z = z0, it
comverges uniformly on the domain ℜ(z − z0) > 0.

Proof. Without loss of generality we can assume that f(z) =
∑
ane

−λnz

converges at z0 = 0. So, f(0) =
∑
an is a convergent series, and we must

now show that there is uniform convergence in the domain D = {z ∈ C :
ℜ(z) > 0}.

Fix a point z ∈ D, and observe that we must have that |z|
ℜ(z) ≤ k for some

k ∈ R+. Now fix ε > 0 and choose N ∈ N so that if m,m′ > N , then∣∣∣∣n=m′∑
n=m

an

∣∣∣∣ < ε,

or equivalently (using notation from Lemma 2.2),

|Am,m′ | < ε.

Let (bn) be the sequence with entries given by bn = e−λnz. Then

Sm,m′ =

n=m′∑
n=m

anbn =
n=m′∑
n=m

ane
−λnz,

and thus to show uniform convergence, we will prove that |Sm,m′ | is bounded.
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We apply Lemma 2.2 to get

Sm,m′ =
m′−1∑
m

Am,n(e
−λnz − e−λn+1z) +Am,m′e−λm′z,

and putting z = x+ iy and applying lemma 2.3 we get:

|Sm,m′ | =
∣∣∣∣m′−1∑

m

Am,n(e
−λnz − e−λn+1z) +Am,m′e−λm′z

∣∣∣∣
≤

∣∣∣∣m′−1∑
m

Am,n(e
−λnz − e−λn+1z)

∣∣∣∣+ ∣∣∣∣Am,m′e−λm′z

∣∣∣∣
≤

m′−1∑
m

∣∣∣∣Am,n(e
−λnz − e−λn+1z)

∣∣∣∣+ ∣∣∣∣Am,m′

∣∣∣∣e−λm′z

≤
m′−1∑
m

∣∣∣∣Am,n

∣∣∣∣∣∣∣∣e−λnz − e−λn+1z

∣∣∣∣+ εe−λm′z

≤
m′−1∑
m

ε

∣∣∣∣ zx
∣∣∣∣(e−λnx − eλn+1x) + ε

= ε

(∣∣∣∣ zx
∣∣∣∣m′−1∑

m

(e−λnx − eλn+1x) + 1

)

≤ ε

(
k

m′−1∑
m

(e−λnx − eλn+1x) + 1

)
.

Observe that
∑m′−1

m (e−λnx−e−λn+1x) is a telescoping series, and thus we
conclude that

|Sm,m′ | ≤ ε[k(e−λmx − e−λm′x) + 1] ≤ ε(k + 1),

which completes the proof. □

Corollary 2.6. If f converges for z = z0, then f is analytic on the domain
ℜ(z − z0) > 0.

Proof. From Proposition 2.5 we know that f converges uniformly on the
domain ℜ(z − z0) > 0. Now define a sequence of functions (fj), where

fj(z) =
∑n=j

n=1 ane
−λnz. It is obvious that fj converges uniformly to f , and

thus f is analytic by Lemma 2.1. □

Proposition 2.7. Let f =
∑
ane

−λnz be a Dirichlet series with an ≥ 0 real
for each n. Suppose that f converges for ℜ(z) > ρ, with ρ ∈ R, and that f
can be extended analytically to a function analytic in a neighborhood of the
point z = ρ. Then there exists a number ε > 0 such that f converges for
ℜ(z) > ρ− ε.
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Proof. Without loss of generality we can assume that ρ = 0. By Corollary
2.6 we have that f is analytic for ℜ(z) > 0. Additionally, we know that f
can be extended analytically in a neighborhood of 0, and thus we get that
f is analytic on a disk |z| ≤ ε for some ε > 0. In particular, f converges at
z = −ε, and by Proposition 2.5, it converges for ℜ(z) > −ε also, completing
the proof. □

In the case where λn = lnn, the corresponding Dirichlet series is known
as an ordinary Dirichlet series and is given by

F (s) =
∞∑
n=1

an
ns

.

Proposition 2.8. If the an are bounded, then F absolutely converges for
ℜ(s) > 1.

Proof. Assume the an are bounded above by A. Then,

F (s) =
∞∑
n=1

an
ns

≤ A

∞∑
n=1

1

ns
.

But for ℜ(s) > 1, we have that |s| > 1, for which the series
∑

1/ns converges
absolutely. So F (s) converges absolutely as well. □

Proposition 2.9. If the partial sums Ap,q =
∑q

p an are bounded, then F

converges for R(s) > 0.

Proof. Suppose |Ap,q| ≤ B for any p, q ∈ N+. Fix s ∈ C such that ℜ(s) > 0,
and let bn = 1/ns. We have

Sm,m′ =

m′∑
m

anbn =

m′∑
m

an
ns
.

Applying Lemma 2.2 yields

|Sm,m′ | =
∣∣∣∣Am,m′bm′ +

m′−1∑
m

Am,n(bn − bn+1)

∣∣∣∣
=

∣∣∣∣Am,m′
1

m′s +
m′−1∑
m

Am,n

(
1

ns
− 1

(n+ 1)s

)∣∣∣∣
≤ B

∣∣∣∣ 1

m′s

∣∣∣∣+B
m′−1∑
m

∣∣∣∣ 1ns − 1

(n+ 1)s

∣∣∣∣
= B

(∣∣∣∣ 1

m′s

∣∣∣∣+ m′−1∑
m

∣∣∣∣ 1ns − 1

(n+ 1)s

∣∣∣∣)
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We can suppose that s is real (since F (s) converges if and only if F (ℜ(s))
converges). Thus,

|Sm,m′ | ≤ B

(
1

m′s +
m′−1∑
m

(
1

ns
− 1

(n+ 1)s

))
= B

(
1

m′s +

(
1

ms
− 1

m′s

))
=

B

ms
,

which completes the proof that F converges uniformly for ℜ(s) > 0. □

3. The Zeta Function

Made famous by mathematician Bernhard Riemann, the zeta function is
in fact a Dirichlet series, as we will see soon.

Definition 3.1. We say a function f : N → C is multiplicative if f(1) = 1
and

f(mn) = f(m)f(n)

whenever m,n are relatively prime. We say f is strictly multiplicative if
f(1) = 1 and

f(mn) = f(m)f(n)

for any two positive integers m,n.

For the remainder of this paper, we write P to be the set of all prime
numbers.

Lemma 3.2. Let g : N → C be a bounded, multiplicative function. Then,
the Dirichlet series

∑∞
n=1 g(n)/n

s converges absolutely for ℜ(s) > 1, and

∞∑
n=1

g(n)

ns
=

∏
p∈P

( ∞∑
m=0

g(pm)

pms

)
.

when ℜ(s) > 1.

Proof. Since g is bounded, Proposition 2.8 implies that
∑
g(n)/ns is abso-

lutely convergent for ℜ(s) > 1.
Now, let S = {p1, p2, · · · , pk} ⊆ P be a finite collection of primes, and let

N(S) be the set of positive integers whose prime factors belong to S. By
induction, we will first prove that∑

n∈N(S)

g(n)

ns
=

∏
p∈S

( ∞∑
m=0

g(pm)

pms

)
.

Suppose S has one element, call it p1. Then

N(S) = {1, p1, p21, · · · } = {pa1 : a ∈ N},
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and we have: ∏
p∈S

( ∞∑
m=0

g(pm)

pms

)
=

∞∑
m=0

g(pm1 )

pms
1

= 1 +
g(p1)

ps1
+
g(p21)

(p21)
s
+ · · ·

=
∑

n∈N(S)

g(n)

ns
.

Now, assume that for all finite collections of primes S with cardinality
1, 2, . . . , k − 1, we have that

∑
n∈N(S)

g(n)

ns
=

∏
p∈S

( ∞∑
m=0

g(pm)

pms

)
.

Suppose that S has k elements (i.e. S = {p1, p2, · · · , pk}) and let T =
S \ {pk}. Then,

N(T ) = {pa11 p
a2
2 · · · pak−1

k−1 : a1, a2, · · · , ak−1 ∈ N},

and

N(S) = {pa11 p
a2
2 · · · pakk : a1, a2, · · · , ak ∈ N}

= {qpak : a ∈ N, q ∈ N(T )}.

We have:∏
p∈S

( ∞∑
m=0

g(pm)

pms

)
=

[ ∏
p∈T

( ∞∑
m=0

g(pm)

pms

)]( ∞∑
m=0

g(pmk )

pms
k

)

=

( ∑
n∈N(T )

g(n)

ns

)( ∞∑
m=0

g(pmk )

pms
k

)

=

( ∑
n∈N(T )

g(n)

ns

)(
1 +

g(pk)

psk
+
g(p2k)

p2sk
+ · · ·

)

=
∑

n∈N(T )

g(n)

ns
+

∑
n∈N(T )

g(npk)

(npk)s
+

∑
n∈N(T )

g(np2k)

(np2k)
s
+ · · ·

=
∑

n∈N(S)

g(n)

ns
.

Now that this identity has been proven, we let Sj denote the set of the
first j primes. It is obvious that as j → ∞, both Sj → P and N(Sj) → N.
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Thus
∞∑
n=1

g(n)

ns
= lim

j→∞

[ ∑
n∈N(Sj)

g(n)

ns

]

= lim
j→∞

[ ∏
p∈Sj

( ∞∑
m=0

g(pm)

pms

)]

=
∏
p∈P

( ∞∑
m=0

g(pm)

pms

)
,

as required. □

Lemma 3.3. If g is bounded and strictly multiplicative, one has
∞∑
n=1

g(n)

ns
=

∏
p∈P

1

1− g(p)
ps

.

Proof. We apply the previous lemma and see that a strictly multiplicative
function yields a geometric series:

∞∑
n=1

g(n)

ns
=

∏
p∈P

( ∞∑
m=0

g(pm)

pms

)

=
∏
p∈P

( ∞∑
m=0

g(p)m

pms

)

=
∏
p∈P

( ∞∑
m=0

(
g(p)

ps

)m)
=

∏
p∈P

1

1− g(p)
ps

.

□

We now introduce the zeta function by letting g = 1:

ζ(s) =
∞∑
n=1

1

ns
=

∏
p∈P

1

1− 1
ps
.

Proposition 3.4. The zeta function is analytic and non-zero in the open
half plane ℜ(s) > 1.

Proof. Let s0 be a point in the half plane ℜ(s) > 1. Then by Proposition
2.8, ζ absolutely converges at s = s0, and furthermore, Corollary 2.6 implies
that ζ is analytic on the domain ℜ(s) > s0. Since s0 was chosen arbitrarily,
we conclude that ζ is analytic on all half planes ℜ(s) > s0 with s0 > 1. This
is equivalent to stating ζ is analytic on the domain ℜ(s) > 1. The fact that
the zeta function is nonzero is clear. □
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Proposition 3.5. One has:

ζ(s) =
1

s− 1
+ σ(s),

where σ is analytic for ℜ(s) > 0.

Proof. First observe that

1

s− 1
=

∫ ∞

1
t−sdt =

∞∑
n=1

∫ n+1

n
t−sdt.

We write

ζ(s) =

∞∑
n=1

1

ns
+

1

s− 1
−

∞∑
n=1

∫ n+1

n
t−sdt

=
1

s− 1
+

∞∑
n=1

(
1

ns
−
∫ n+1

n
t−sdt

)

=
1

s− 1
+

∞∑
n=1

∫ n+1

n
(n−s − t−s)dt

Now set:

σn(s) =

∫ n+1

n
(n−s − t−s)dt

and

σ(s) =
∞∑
n=1

σn(s).

We must first show that the σn are analytic; it is sufficient to show the
existence of the first derivative σ′n. Since each σn is continuous for ℜ(s) > 0,
we differentiate under the integral sign:

σ′n(s) =

∫ n+1

n

∂

∂s
(n−s − t−s) dt

=

∫ n+1

n
s

(
t−(s+1) − n−(s+1)

)
dt

= s

(∫ n+1

n
t−(s+1) dt− n−(s+1)

∫ n+1

n
dt

)
= s

(
−(n+ 1)−s

s
+
n−s

s
− n−(s+1)

)
= n−s − (n+ 1)−s − sn−(s+1).

Since the derivative is defined for all s with ℜ(s) > 0, we conclude that
the σn are analytic on this domain.
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Now, from Lemma 2.1, it is clear that the convergence
∑
σn → σ will

complete the proof. Put f(t) = n−s − t−s and note that

|σn(s)| ≤
∫ n+1

n
|f(t)| dt ≤ sup

n≤t≤n+1
|f(t)|.

Since f(n) = 0, we get that for any t ∈ [n, n+ 1],

|f(t)| = |f(t)− f(n)|

=

∣∣∣∣∫ t

n
f ′(z)dz

∣∣∣∣
≤

∫ t

n
|f ′(z)|dz

≤
∫ n+1

n
|f ′(z)|dz

≤ sup
n≤z≤n+1

|f ′(z)|

= sup
n≤z≤n+1

∣∣∣∣ s

zs+1

∣∣∣∣
=

|s|
|ns+1|

≤ |s|
nℜ(s)+1

So, we have shown that |σn(s)| ≤ |s|
nx+1 where x = ℜ(s). It is clear that

the series
∑
σn converges normally for ℜ(s) ≥ ε, for all ε > 0. □

Corollary 3.6. The zeta function has a simple pole at s = 1 (that is,
(s− 1)ζ(s) is analytic in a neighborhood of s = 1).

Proof. This immediately follows from the proposition above. □

4. Asymptotic Equivalence

Definition 4.1. Let f, g be non-zero complex-valued functions and let c ∈
C ∪ {−∞,∞}. We say that f and g are aysmptotically equivalent as z
tends to c provided:

lim
z→c

f(z)

g(z)
= 1.

We denote asymptotic equivalence by f ∼c g. This relation is one of the
keys to the final proof, and has some important properties which we must
prove.

Proposition 4.2. Let Fc be the set of all complex-valued with a nonzero
limit at c ∈ C ∪ {−∞,∞}. Then, ∼c is an equivalence relation on Fc.
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Proof. Pick any c ∈ C ∪ {−∞,∞} and let f, g, h ∈ Fc. It is clear that ∼c is
reflexive:

lim
z→c

f(z)

f(z)
= lim

z→c
1 = 1.

To show that ∼c is symmetric, suppose that f ∼c g. Then we have

lim
z→c

g(z)

f(z)
=

1

limz→c
f(z)
g(z)

= 1.

Lastly, to show that ∼c is transitive, suppose that f ∼c g and g ∼c h. Then,

lim
z→c

f(z)

h(z)
=

limz→c
f(z)
g(z)

limz→c
h(z)
g(z)

=
1

1
= 1,

which completes the proof. □

Proposition 4.3. Suppose f, g ∈ Fc such that

lim
z→c

f(z) = lim
z→c

g(z) = ±∞.

Then if limz→c(f(z)− g(z)) = γ ∈ C, we have f ∼c g.

Proof. This is clear:

lim
z→c

f(z)

g(z)
= lim

z→c

f(z)− g(z) + g(z)

g(z)
= lim

z→c

f(z)− g(z)

g(z)
+ 1 = 1.

□

Lemma 4.4. We have
1

s− 1
∼1 ζ(s).

Proof. Using the formula from Proposition 3.5, we have:

lim
s→1

1
s−1

ζ(s)
= lim

s→1

1

1 + (s− 1)σ(s)
= 1.

□

Proposition 4.5. We have

ln
1

s− 1
∼1 ln ζ(s).

Proof. Using Proposition 4.3, it suffices to show that

lim
s→1

(
ln

1

s− 1
− ln ζ(s)

)
= γ, γ ∈ C.

We can assume that s tends to 1 along the real axis (from the right, of
course) and we proceed by contradiction. If the above equality does not
hold, then there are two possible cases (since the limit clearly must exist).
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If lims→1(ln
1

s−1 − ln ζ(s)) = ∞, then we must have

lim
s→1

eln
1

s−1
−ln ζ(s) = lim

s→1

1
s−1

ζ(s)
= ∞.

This contradicts the previous lemma. If lims→1(ln
1

s−1 − ln ζ(s)) = −∞,
then we must have

lim
s→1

eln
1

s−1
−ln ζ(s) = lim

s→1

1
s−1

ζ(s)
= 0.

Once again, this contradicts the previous lemma, so we have completed the
proof. □

Lemma 4.6. The sum ∑
p∈P,k≥2

1

kpks

remains bounded for ℜ(s) > 1.

Proof. Observe:

∑
p∈P,k≥2

1

kpks
=

∑
p,k≥2

1

kpks

≤
∑
p,k≥2

1

pks

=
∑
p

1

ps(ps − 1)

≤
∑
p

1

p(p− 1)

≤
∞∑
n=2

1

n(n− 1)

= 1.

□

Proposition 4.7. We have

∑
p∈P

1

ps
∼1 ln

1

s− 1
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Proof. One has

ln ζ(s) = ln

(∏
p∈P

1

1− 1
ps

)

=
∑
p∈P

(
ln

1

1− 1
ps

)

=
∑
p∈P

(
− ln(1− p−s)

)

=
∑
p∈P

( ∞∑
k=1

p−ks

k

)
=

∑
p,k≥1

1

kpks

=
∑
p∈P

1

ps
+

∑
p∈P,k≥2

1

kpks

By the previous lemma we know the the second term is bounded as s→ 1,
and thus by Proposition 4.3 it is clear that ln ζ(s) ∼1

∑
p 1/p

s. Since ∼1 is
transitive, applying Proposition 4.5 completes the proof. □

5. Dirichlet Characters and L-Functions

Let G be a group.

Definition 5.1. A character of G is a homomorphism of G into the mul-
tiplicative group C∗ = (C \ {0}, ·) of complex numbers. The set of all

characters of G form a group, denoted Ĝ, called the dual of G.

Proposition 5.2. Let n = card(G) and χ ∈ Ĝ. Then,∑
x∈G

χ(x) =

{
n, χ = 1

0, χ ̸= 1.

Proof. In the case where χ = 1, we have∑
x∈G

1(x) = 1 + 1 + · · · = card(G) = n.

Now suppose that χ ̸= 1 and choose y ∈ G such that χ(y) ̸= 1. By the
properties of χ we have:

χ(y)
∑
x∈G

χ(x) =
∑
x∈G

χ(y)χ(x) =
∑
x∈G

χ(xy) =
∑
x∈G

χ(x).

So, (χ(y) − 1)
∑

x χ(x) = 0, and since χ(y) ̸= 0, it immediately follows
that

∑
x χ(x) = 0. □
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Corollary 5.3. Let x ∈ G. Then∑
χ∈Ĝ

χ(x) =

{
n, x = 1

0, x ̸= 1

Proof. Applying the previous proposition to Ĝ completes the proof. □

Let m be a positive integer. The multiplicative group of integers modulo
m, which we will denote with G(m), is the set of all positive integers ≤ m
which are coprime to m.

Definition 5.4. The Euler totient function is a map ϕ : N → N which
counts the positive integers up to an integer m which are coprime to m.

Remark. It is clear that |G(m)| = ϕ(m).

Definition 5.5. For a positive integer m, we say the map χ : Z → C is a
Dirichlet character of modulus m if for all a, b ∈ Z we have:

(1) χ(ab) = χ(a)χ(b);

(2) χ(a)

{
= 0, if (a,m) > 1,

̸= 0 if (a,m) = 1;

(3) χ(a+m) = χ(a).

Remark. Each element of Ĝ(m) can be extended to some Dirichlet character
of modulus m.

We will often refer to the unit character in the remaining sections. This
is the map 1 : Z → Z given by

1(a) =

{
0, if (a,m) > 1,

1 if (a,m) = 1.

Once again, fix a positive integer m and let χ be a Dirichlet charcter mod
m. The corresponding L function is a Dirichlet series given by

L(s, χ) =
∞∑
n=1

χ(n)

ns
.

Observe that the nth term of this sum is nonzero if and only if n is coprime
to m.

Proposition 5.6. For χ = 1, we have

L(s, 1) = ζ(s)H(s),

with
H(s) =

∏
p|m

(1− p−s).

In particular, L(s, 1) extends analytically for ℜ(s) > 0 and has a simple pole
at s = 1.
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Proof. We have

L(s, 1) =

∞∑
n=1

1(n)

ns

=
∏
p∈P

1

1− 1(p)
ps

=
∏
p ∤m

1

1− p−s

=

(∏
p∈P

1

1− p−s

)(∏
p|m

1− p−s

)
= ζ(s)H(s).

The remainder of the proof is clear, since ζ extends analytically for ℜ(s) > 0
and has a simple pole at s = 1. □

Proposition 5.7. For χ ̸= 1, the series L(s, χ) converges absolutely for
ℜ(s) > 1 and one has:

L(s, χ) =
∏
p∈P

1

1− χ(p)
ps

Proof. Since χ is strictly multiplicative, this follows directly from Lemma
3.3 □

Proposition 5.8. For χ ̸= 1, the series L(s, χ) converges for ℜ(s) > 0.

Proof. By Proposition 2.9, it is sufficient to show that the partial sums

Au,v =
n=v∑
n=u

χ(n)

are bounded for u ≤ v. Using the fact that χ is periodic with period m, we
apply Proposition 5.2 to get

u+m−1∑
u

χ(n) = 0,

so we only need to show that the partial sums Au,v with v − u < m are
bounded. By the cyclic nature of χ, this is simple. Fix

M = max{|χ(n)|, 1 ≤ n ≤ m},

and we get

|Au,v| ≤M · ϕ(m).

□
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With m still a fixed positive integer, we introduce some new notation. If
p ∈ P does not divide m, then we denote p by its image in G(m). Further-
more, we define f(p) to be the order of p, that is, f(p) is the smallest integer
f > 1 such that p f ≡ 1 (mod m). Lastly, we put g(p) = ϕ(p)/f(p).

Definition 5.9. For a fixed natural number n, the nth roots of unity are
the solutions to the equation xn = 1, and there are n solutions.

Lemma 5.10. If p ∤ m, we get the identity

∏
χ∈Ĝ(m)

(1− χ(p)T ) = (1− T f(p))g(p),

where ℜ(T ) > 0.

Proof. Let U be the set of the f(p)-th roots of unity. We have

∏
u∈U

(1− uT ) = 1− T f(p).

The lemma follows from this as well as the fact that for all u ∈ U there exist
g(p) characters χ of G(m) such that χ(p) = u. □

We now define a new function ψm as follows:

ψm(s) =
∏
χ

L(s, χ),

where the product extends over all characters of G(m).

Proposition 5.11. One has

ψm(s) =
∏
p∤m

1(
1− 1

pf(p)s

)g(p)
.

This is a Dirichlet series with positive integral coefficients, converging for
ℜ(s) > 1.
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Proof. We apply Proposition 5.7 and Lemma 5.10 with T = p−s to get:

ψm(s) =
∏
χ

L(s, χ)

=
∏
χ

(∏
p∈P

1

1− χ(p)p−s

)

=
∏
p∈P

(
1∏

χ(1− χ(p)p−s)

)

=
∏
p∤m

(
1∏

χ(1− χ(p)p−s)

)

=
∏
p∤m

(
1

(1− p−f(p)s)g(p)

)
=

∏
p∤m

1(
1− 1

pf(p)s

)g(p)
,

as required. □

Theorem 5.12. L(1, χ) ̸= 0 for all χ ̸= 1.

Proof. Proceeding by contradiction, suppose L(1, χ) = 0 for some χ ̸= 1.
Then the function ψm is analytic at s = 1. We know that L(s, 1) extends
analytically for ℜ(s) > 0 (Proposition 5.6) and for χ ̸= 1, we know that
L(s, χ) converges for ℜ(s) > 0 (Proposition 5.8), and thus ψm is analytic for
all s with ℜ(s) > 0. Since ψm is a Dirichlet series with positive coefficients,
this implies that ψm(s) converges for ℜ(s) > 0 as well. However, observe
that the pth factor of ψm is

1

(1− p−f(p)s)g(p)
,

which has the MacLauren series expansion( ∞∑
n=0

p−nf(p)s

)g(p)

= (1 + p−f(p)s + p−2f(p)s + · · · )g(p),

which dominates the series
∞∑
n=0

p−nϕ(m)s = 1 + p−ϕ(m)s + p−2ϕ(m)s + · · · .

So,

ψm(s) =
∏
p∤m

1

(1− p−f(p)s)g(p)
≥

∏
p∤m

( ∞∑
n=0

p−nϕ(m)s

)
.
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But at s = 1/ϕ(m), we get that

ψm(1/ϕ(m)) ≥
∏
p∤m

(
1 +

1

p
+

1

p2
+ · · ·

)
≥

∑
p∤m

1

p
,

which is a divergent series. Hence ψm is not analytic for ℜ(s) > 0, a con-
tradiction which completes the proof. □

6. Dirichlet Density

We now approach the final steps toward proving Dirichlet’s theorem.

Definition 6.1. Fix s ∈ R>1 and let A ⊆ P. We say A has density k if
the ratio (∑

p∈A

1

ps

)/(
ln

1

s− 1

)
tends to k as s→ 1.

Notice that k ∈ [0, 1] (Proposition 4.7). Fix a positive integer m and let
χ be a character of G(m). Put

fχ(s) =
∑
p∤m

χ(p)

ps
.

Note that fχ converges for ℜ(s) > 1.

Lemma 6.2. If χ = 1, then

fχ(s) ∼1 ln
1

s− 1
.

Proof. Observe that f1(s) differs from
∑

p 1/p
s by a finite number of terms:

f1(s) =
∑
p∤m

1(p)

ps
=

∑
p∈G(m)

1

ps
+

∑
p>m

1

ps
.

So by Proposition 4.3 f1(s) ∼1
∑

p 1/p
s and by Proposition 4.5 and the

transitivity of ∼1, we have f1(s) ∼1 ln
1

s−1 , completing the proof. □

Lemma 6.3. If χ ̸= 1, then fχ remains bounded when s→ 1.
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Proof. Let Fχ(s) =
∑

p∈P(
∑∞

n=2
χ(p)n

npns ) and observe:

lnL(s, χ) = ln

(∏
p∈P

1

1− χ(p)p−s

)
=

∑
p∈P

ln
1

1− χ(p)p−s

=
∑
p∈P

( ∞∑
n=1

χ(p)n

npns

)

=
∑
p∈P

χ(p)

ps
+
∑
p∈P

( ∞∑
n=2

χ(p)n

npns

)
= fχ(s) + Fχ(s).

From Theorem 5.12, we know that L(s, χ) ̸= 0 at s = 1, so lnL(s, χ) must
be bounded as s → 1. Furthermore, from Lemma 4.6 it is clear that Fχ(s)
also remains bounded as s→ 1. Hence fχ(s) must share the same property,
completing the proof. □

Theorem 6.4. Let m be a positive integer and let a ∈ Z such that (a,m) =
1. Let Pa be the set of primes such that p ≡ a (mod m). Then the set Pa

has density 1/ϕ(m).

Proof. We begin by defining a function

ga(s) =
∑
p∈Pa

1

ps
.

Put

T =
∑
χ

χ(a)−1fχ(s),

with the sum extending over all characters of G(m), and observe that

T =
∑
χ

χ(a)−1fχ(s)

=
∑
χ

χ(a)−1

(∑
p∤m

χ(p)

ps

)

=
∑
p∤m

( ∑
χ χ(a)

−1χ(p)

ps

)

=
∑
p∤m

( ∑
χ χ(a

−1p)

ps

)
.
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By Corollary 5.3, we have∑
χ

χ(a−1p) =

{
ϕ(m) if a−1p ≡ 1 (mod m),

0 otherwise.

However, a−1p ≡ 1 (mod m) if and only if p ≡ a (mod m), and thus:

T =
∑
χ

χ(a)−1fχ(s) =
∑
p∤m

( ∑
χ χ(a

−1p)

ps

)
=

∑
p∈Pa

ϕ(m)

ps
,

that is,

ga(s) =
1

ϕ(m)

∑
χ

χ(a)−1fχ(s).

=
1

ϕ(m)

(
1(a)−1f1(s) +

∑
χ ̸=1

χ(a)−1fχ(s)

)

=
1

ϕ(m)

(
f1(s) +

∑
χ ̸=1

χ(a)−1fχ(s)

)
.

Lemma 6.3 tells us that the fχ with χ ̸= 1 are bounded near s = 1, and
hence,

lim
s→1

∑
χ ̸=1

χ(a)−1fχ(s) = K, K ∈ C.

So,

lim
s→1

[
ϕ(m)ga(s)− f1(s)

]
= K,

and by Proposition 4.3, it follows that ϕ(m)ga(s) ∼1 f1(s). Furthermore, it
follows that ϕ(m)ga(s) ∼1 ln

1
s−1 by Lemma 6.2. So,

lim
s→1

ϕ(m)ga(s)

ln 1
s−1

= 1,

and equivalently,

lim
s→1

ga(s)

ln 1
s−1

= lim
s→1

∑
p∈Pa

1/ps

ln 1
s−1

=
1

ϕ(m)
,

completing the proof. □

Corollary 6.5. The set Pa is infinite.

Proof. This is clear. Let A ⊆ P be a finite set. Then, lims→1
∑

p∈A 1/ps can
be evaluated at s = 1. So

lim
s→1

∑
p∈A 1/ps

ln 1
s−1

= 0,

and it follows that any set with nonzero density must be infinite. □
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This simple corollary is indeed equivalent to Dirichlet’s Theorem, and we
are finished. The intersection between complex analysis and number theory
is much larger and more important than one may think, and is one of the
many beautiful aspects of studying mathematics.
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