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Abstract 

The present study examined whether the temporal distribution of procedural 

category learning experiences would impact learning outcomes. Participants 

completed the remote category learning study on a smartphone in one of two 

learning conditions: Massed (control) or distributed. Consistent with expectations, 

distributed learners reached higher accuracy levels. This effect disappeared after 

accounting for reaction time differences, suggesting that it was driven by 

attentional mechanisms. Distribution may have made participants more likely to 

discover the optimal categorization strategy and more robust to sensory 

habituation. Counter to previous findings, participants favored distributed 

learning. These results suggest that adult category learning is facilitated by 

temporal spacing. Future work may further explore the effects of temporal and 

contextual distinctiveness of learning experiences on category learning 

outcomes.  

 Keywords: Category learning, spacing effect, COVIS theory, 

metacognition 
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Summary for Lay Audience 

Throughout life, people learn to sort items into categories to help them 

make sense of the world. People rarely spend long periods of time studying new 

categories; instead, categories are usually learned in short experiences spaced 

out over time. For example, children don’t study the differences between cats 

and dogs, they slowly learn to distinguish between them through experience. The 

goal of this study was to see if spacing out learning experiences over time would 

improve a person’s ability to sort imaginary items into abstract categories. 

Participants learned to sort items on a smartphone either all at once (massed) or 

in short sessions spaced out over several days (distributed). Distributed learners 

were better at sorting the items. Massed learners became less sensitive to the 

differences between items and paid less attention over time. Distributed learners 

were more satisfied and keener to learn again. Both types of learners indicated a 

preference for distributed learning if trained again in the future. Future research 

should see if this learning method is effective for real-world categories such as 

skin lesions, mushrooms, or animal groups.  
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Introduction 

Categorization is the act of sorting stimuli into discrete equivalence 

classes using a many-to-one stimulus-response mapping (Kéri, 2003). There is 

evidence that many categories, such as colors and phonemes, have evolutionary 

roots (Harnad, 2003), but many categories that humans use are learned. 

Experimental research has led to the development of several theoretical models 

of category learning. Prototype theories assume that while learning a category, 

humans develop a sense of its central tendencies. These central tendencies are 

stored in memory as prototypes and category judgments for newly encountered 

stimuli are made based on their similarity to these prototypes. There is wide 

support for these models of category learning (Posner & Keele, 1968; Smith & 

Minda, 1998), but prototype theory alone cannot explain category learning. 

Exemplar theories suppose that humans store in memory individual instances of 

a category. During learning, they compare newly encountered stimuli to their 

memories of previously encountered stimuli. These new stimuli are assigned to 

the category with which all pairwise similarities are the highest (Medin & 

Schaffer, 1978; Nosofsky, 1986). Both prototype and exemplar models rely on 

the assumption that humans compute similarity between newly encountered 

stimuli and some internal memory representation(s). 

Decision bound theories assume that category learning is the process of 

learning to partition a stimulus space (Ashby & Townsend, 1986). One influential 

decision bound theory is COVIS (COmpetition between Verbal and Implicit 

Systems) theory, which assumes that there are two competing neural systems 
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controlling category learning (Ashby et al., 1998). The verbal, or explicit, system 

tests verbalizable hypotheses related to the category space, adjusting until a 

successful rule has been discovered. For a task to be learned by this system, the 

category structure must be defined by some verbalizable rule; such structures 

are called rule-based. The implicit, or procedural, system learns stimulus-

response pairings through feedback-based associative learning. This system is 

necessary for learning difficult-to-verbalize, or information-integration, category 

structures (Ashby & Valentin, 2017). Information-integration structures require 

simultaneous attention to at least two dimensions of variability. Participants tend 

to employ linear, deterministic decision boundaries. General linear classifiers can 

be used to compute the most likely strategy a participant is employing (Ashby & 

Gott, 1988). 

Learning Schedule and the Spacing Effect 

Natural categories differ markedly from artificial categories in the way that 

they are learned. Natural category learning typically occurs in short, temporally 

distinct learning experiences while artificial category learning typically involves 

one or few long training sessions. These differences in the arrangement of 

learning experiences are differences in learning schedules (Simon, 2008). The 

temporal distance between two adjacent learning experiences is a spacing gap. 

When experiences have a spacing gap of 0, the learning schedule is said to be 

massed. Otherwise, it is distributed (or, equivalently, spaced). In addition to being 

a better reflection of naturalistic learning processes, spacing tends to yield 

stronger learning outcomes than massing. This trend, called the spacing effect, 
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was first documented by Herman Ebbinghaus and has since been replicated for 

a number of tasks (Simon, 2008). 

In one procedural learning study using a 2x2 design, humans learned to 

type and experienced equal amounts of training in 1 or 2 sessions per day, each 

1 or 2 hours long. It was found that shorter and less frequent training sessions 

resulted in more accurate keystrokes per minute while longer and more frequent 

training resulted in a higher percentage of uncorrected errors (Baddeley & 

Longman, 1978). Learners with 2 2-hour sessions per day (2x2h learners) 

learned least effectively while 1x1h learners learned most effectively. Spacing is 

also positively impactful for children’s learning novel grammatical constructions 

(Ambridge et al., 2006) and for students learning to interpret electrocardiogram 

readings (Monteiro et al., 2017). Though spacing is clearly beneficial for these 

and other procedural learning tasks, it is unclear whether spacing will be more 

effective than massing for procedural category learning. 

Educational psychologist Ernst Rothkopf wrote in 1977 that “spacing is the 

friend of recall, but the enemy of induction” (as cited in Kornell & Bjork, 2008), 

induction being the application of an existing categorization strategy to a novel 

stimulus. Kornell and Bjork (2008) tested this assertion by conducting two 

experiments in which participants observationally learned to categorize 72 

paintings according to their artist (of which there were 12), later taking an 

induction test featuring 48 new paintings. Participants in the massed learning 

condition learned paintings one artist at a time and those in the distributed 

condition learned in an interleaved sequence such that paintings by the same 
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artist were presented far apart in time. Participants in experiment 1a received 

both conditions and those in 1b experienced only one condition. Counter to 

expectations, distributed learning was more effective than massed learning 

across all test blocks in both experiments. They claimed this to be an example of 

the spacing effect and similar results have been produced by similar studies 

(e.g., Guzman-Munoz, 2017; Kornell et al., 2010; Wahlheim et al., 2011). 

However, participants in this study never truly took any breaks from learning. 

Both learning conditions had identical spacing gaps; only stimulus presentation 

order differed. This study did not make it clear whether the observed effect was 

truly a spacing effect or if it was a distinct interleaving effect. 

A later study by Kang & Pashler (2012) directly addressed this limitation. 

They conducted a category induction task with a category structure similar to that 

of Kornell & Bjork (2008). This study had four between-participant conditions: 

massed, interleaved, temporal spaced, and simultaneous massed. The former 

two conditions are identical to those used by Kornell & Bjork (2008). Temporal 

spaced learners had long periods of nothingness between painting presentations. 

Simultaneous massed learners viewed 4 paintings by the same artist at one time. 

Interleaving and simultaneous massed presentation led to stronger performances 

than the other groups, suggesting that the benefit of interleaving arises from the 

juxtaposition of different categories, which emphasizes inter-category 

differences, rather than temporal spacing (Kang & Pashler, 2012). 

Following Kornell and Bjork’s publication on the interleaving effect, Vlach, 

Sandhofer, and Kornell (2008) produced research that explored the potential for 
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a spacing effect in children’s category induction. In a mixed 2x2 design, 

participants completed either a memory task or a category induction task and 

underwent both spaced and massed training. Spaced training involved a 30-

second inter-stimulus interval during which participants were given a toy to play 

with. Spacing yielded better learning in both tasks and the magnitude of this 

effect was equal for both tasks. In a later study, Vlach, Ankowski, and Sandhofer 

(2012) compared immediate and 15-minute delay category induction test 

performance on a sample of 2 year-olds in either simultaneous, massed, or 

spaced learning conditions. Performance on the immediate induction test was 

highest for the simultaneous presentation condition but performance on the 

delayed induction test was highest for the spaced condition. Coupled with a later 

finding that spaced learners perform worse on retrieval tests conducted during 

learning (Vlach et al., 2021), this suggests that the benefits of temporal spacing 

only emerge after some delay. 

Given the temporal distinctiveness of natural category learning 

experiences, it is possible that the spacing effect is at play during natural 

category learning. The studies by Vlach and colleagues demonstrate that this is a 

possibility in children, but it is unclear if these results would replicate in adults. 

The spacing effect does not facilitate word or grammar acquisition in adults as it 

does in children (Smith & Scarf, 2017) and the magnitude of the spacing effect, in 

general, may decrease as adults age (Simone et al., 2013). Additionally, all of the 

aforementioned studies of spacing in category induction have used spacing gaps 

on the order of seconds. These small spacing gaps were likely used for 
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convenience, but this limits the generalizability of these results, as the magnitude 

of the spacing effect is dependent upon the size of the spacing gap (Cepeda et 

al., 2009) and spacing gaps of this magnitude do not reflect learning in 

naturalistic settings, wherein several hours may pass between adjacent learning 

experiences. The impact of larger spacing gaps in category induction has not 

been explored.  

Prior results also ignore the fact that, in nature, temporal spacing often 

leads to contextual variety. Procedural category learning is negatively impacted 

by minute contextual changes. Crossley, Ashby, and Maddox (2014) showed this 

using a three-stage learning-unlearning-relearning study. They found that task-

irrelevant changes in background color could impact participants’ relearning of a 

procedural category structure. It was harmful for background colors during 

learning and unlearning to match while it was beneficial for background colors 

during learning and relearning to match. Social context may also be of 

importance; participants in one study learned more effectively in the presence of 

another human than alone with a computer (Stephens et al., 2010). Changing the 

motor responses associated with category judgments generally has a negative 

impact on performance (Hughes & Thomas, 2021). Whitehead, Zamary, and 

Marsh (2021) examined transfer of category knowledge from ideal contexts, in 

which stimulus perception is unobstructed, to impoverished contexts, in which 

some stimulus features are missing or obstructed. They did not directly compare 

performance between contexts (as this was not their concern in the study), but 

participants in the impoverished context appeared to perform worse. 
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Attentional Mechanisms 

The attention attenuation hypothesis holds that the spacing effect occurs 

as a result of diminished attention over the course of massed study (Kornell et 

al., 2010). Attention may diminish because participants begin to feel that they are 

getting diminishing returns from continued practice. In two experiments 

employing a category structure similar to that used by Kornell & Bjork (2008), 

Wahlheim, Dunlosky, and Jacoby (2011) found strong support for the attention 

attenuation hypothesis. In their first experiment, they found that performance 

decreased across learning blocks when stimuli were presented in a massed, 

rather than an interleaved, fashion. In a second experiment, participants were 

given control over the duration of stimulus presentations. It was found that 

participants experiencing massed presentations spent less time studying than 

those experiencing interleaved presentations. Moreover, when study time was 

included as a covariate in a comparison of categorization performance between 

massed and interleaved presentations, the main effect of presentation style 

disappeared. Although this study analysed the interleaving effect, rather than the 

spacing effect, it is reasonable to expect that this same effect would hold for 

massed and distributed learning schedules; distributed learning may be superior 

to massed learning because participants gradually pay less attention over the 

course of long training sessions. 

Deficient processing theory holds that the depth of stimulus processing 

decreases over the course of learning due to sensory habituation, a decreased 

response to frequent stimulus repetitions (Hintzman, 1974). Sensory habituation 
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is closely linked to repetition suppression (Nordt et al., 2016), the phenomenon in 

which neurons show dampened responses to repeated presentations of 

information to which they are sensitive (Barron et al., 2016). In populations of 

neurons, dampened responses could indicate representational overlap or 

similarity. Sensory habituation may reasonably be expected to occur with 

repeated presentations of nonidentical, highly similar stimuli, such as those often 

used in category learning tasks. Kenney (2009) argued against this possibility, 

finding that the discriminability of stimuli does not impact the magnitude of the 

spacing effect as deficient processing theory would predict. Like previous 

studies, however, this study conflates the spacing effect with the interleaving 

effect. Distributed learning may be superior to massed learning because 

repeated stimulus presentations are processed less deeply during massed 

learning. 

Memory-Based Mechanisms 

Large spacing gaps between adjacent learning experiences may cause 

forgetting. The forgetting-as-abstraction hypothesis holds that forgetting may aid 

abstraction because irrelevant information is forgotten sooner than relevant 

information and cause the retrieval of learnt experiences becomes more effortful, 

creating a desirable difficulty in the learning process (Vlach, 2014). This 

hypothesis builds upon study-phase retrieval theory, holding that memory is 

ameliorated by the recall of past learning events (Thios & D’Agostino, 1976). The 

encoding variability hypothesis also builds upon study-phase retrieval theory, 

supposing that learning is more effective when more distinct retrieval cues are 
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stored in memory. Though one might expect contextual variety to negatively 

impact category induction (e.g., Crossley et al., 2014), the effect of natural 

contextual variety on category learning outcomes has not been explored. 

Contextual variety may support memory by acting as a retrieval cue. Additionally, 

contextual variability causes context and stimulus features to become less 

correlated (Melton, 1970), making it easier to ignore decision-irrelevant 

information during subsequent category learning experiences. The forgetting of 

irrelevant information, more effortful retrieval, and contextual retrieval cues may 

be partially responsible for the spacing effect. 

Categorical Perception 

Learned categories confer many benefits, one being cognitive economy, 

the reduction of variability among stimuli to levels relevant for some purpose at 

hand (Rosch, 1975).  Category judgments are guided by perceptual 

representations of stimuli, which can be optimized for categorization behavior by 

minimizing between-category similarity and maximizing within-category similarity 

(Hughes & Thomas, 2021). In a seminal study by Liberman, Harris, Hoffman, and 

Griffith, participants listened to plosives along a /b-d-g/ spectrum and classified 

them as b, d, or g. Then, participants completed an ABX discrimination 

procedure in which two stimuli (A and B) from different parts of the morph space 

were presented and participants needed to judge whether a third stimulus, X, 

was in the same category as A or the same category as B. There were clear 

locations along the phoneme spectrum at which participants’ probability of 
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making a phoneme classification jumped sharply. Around these locations, called 

category boundaries, discriminability was the highest (Liberman et al., 1957). 

This phenomenon, categorical perception, has been defined many ways. 

Repp (1984) argued that, for stimuli varying along a continuum, categorical 

perception may be empirically observed when the probability of making a given 

category judgment changes dramatically at some point along the continuum (the 

category boundary). Goldstone (1994) later defined categorical perception as 

perception of the stimulus space such that relevant cues are emphasized 

(acquired distinctiveness) and irrelevant cues are de-emphasized (acquired 

equivalence). For stimuli defined along continuously varying dimensions, this 

would involve enhanced sensitivity to relevant directions of variation and less of 

sensitivity to irrelevant directions of variation. Harnad (2003) defined categorical 

perception more broadly as the compression of within-category differences 

and/or expansion of between-category differences. Categorical perception 

reduces the unnecessary variability among and enhances the relevant features 

of to-be-categorized stimuli. 

Categorical perception can be induced for novel stimulus sets using 

artificial category learning procedures. Goldstone (1994) demonstrated this in a 

series of experiments. In the first two experiments, stimuli were 16 squares 

arranged in a 4x4 grid varying in size and brightness. Experiment 1 was used to 

adjust the stimuli such that adjacent stimuli at all points in the grid were equally 

discriminable. In experiment 2, there were three experimental groups in which 

participants categorized stimuli according to brightness, size, or both brightness 
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and size. Experimental groups completed a feedback-based category learning 

procedure followed by a perceptual discrimination task; controls only completed 

the perceptual discrimination task. Discriminability in categorizers was compared 

against controls to seek evidence of acquired distinctiveness and acquired 

equivalence. Strong evidence of acquired distinctiveness was found for all 

dimensions in each experimental group. Acquired equivalence was found for size 

but not brightness. Experiments 3 and 4 were identical to 1 and 2 except that 

saturation was used instead of size. Acquired distinctiveness was again found for 

all stimulus dimensions, with effects appearing larger around category 

boundaries. No evidence was found for acquired equivalence, however, with 

irrelevant stimulus dimensions sometimes becoming enhanced. Despite 

inconsistent evidence for acquired equivalence, within-category compression can 

be elicited by learning (Livingston et al., 1998). Folstein, Palmeri, and Gauthier 

(2013) also found evidence for acquired distinctiveness, finding that stimulus 

pairs varying in the direction relevant to categorization were more discriminable 

and showed less repetition suppression than those varying in the irrelevant 

direction. In summary, categorical perception can be elicited by artificial category 

learning, with strong evidence supporting sensitization to relevant information 

and occasional evidence of desensitization to irrelevant information. 

Although categorical perception can arise for artificially learned categories, 

there are certain stimuli that humans seem predisposed to perceive categorically. 

Older infants only stay attuned to phonemes used in their ambient language(s) 

(Kuhl et al., 2006; Werker & Tees, 1984), but infants below 6 months in age can 
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discriminate amongst phonemes from many languages (Perszyk & Waxman, 

2016), suggesting that humans have a natural propensity to categorically 

perceive speech. Humans likely have a similar predisposition for color 

perception, as nonhuman primates and pre-linguistic infants show signs of 

categorical perception of color (Ozturk et al., 2013; Zhang et al., 2021). Humans 

have a special predisposition to categorically perceive faces  (Etcoff & Magee, 

1992; Kanwisher et al., 1997; Kotsoni et al., 2001). Levin and Beale (2000) 

demonstrated that categorical perception could be induced for stimuli on an 

artificial face morph spectrum, but that that it was elicited more strongly for 

upright rather than inverted faces, reflecting humans’ natural propensity for 

categorically perceiving faces. It is not clear how temporal spacing impacts the 

development of categorical perception. However, naturalistic learning 

experiences, defined by temporal distinctiveness, may be more effective than 

artificial category learning at inducing categorical perception. 

Metacognition 

As humans choose when and how they learn, a learning strategy cannot 

be effective if it is not desirable. It is important to assess learners’ beliefs about 

and attitudes toward different learning strategies. These beliefs and attitudes, 

metacognitive beliefs, arise from learners’ ability to monitor and evaluate their 

own learning processes (Mitsea & Drigas, 2019). Metacognitive beliefs guide 

learners toward learning strategies that they feel are optimal (Metcalfe, 2009; 

Morehead et al., 2017). Flavell (1979) argued that metacognitive belief consists 

of three primary subcomponents: Knowledge of person, knowledge of task, and 
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knowledge of strategy. A learner’s knowledge of person consists of their 

perceptions of self and others engaging in a learning process, including 

intraindividual differences, interindividual differences, and cognitive universals. A 

learner’s knowledge of task includes task demands, or what the learner will need 

to do, as well as the available information during the task. Knowledge of strategy, 

most relevant to the current study, concerns the effectiveness of different 

strategies for a given undertaking. Metacognitive beliefs, especially knowledge of 

strategy, impact a learner’s choice of learning schedule. 

In their study of how training schedule impacts keyboarding skill 

acquisition, Baddeley and Longman (1978) followed participant’s final training 

sessions with a 3-question multiple choice survey asking how satisfactory they 

found their training schedule, which schedule they would prefer if they were 

trained again, and how keen they would be to undergo training again on the 

same schedule. Despite having the best rate of learning, 1x1h learners indicated 

lower satisfaction and lower keenness. 2x2h learners indicated the highest levels 

of satisfaction and keenness despite showing the poorest performance. This 

misalignment between participants’ performance and their metacognitive beliefs, 

metacognitive incongruence, has been observed in a number of other studies. In 

their seminal paper on the interleaving effect, Kornell and Bjork (2008) conducted 

a within-subjects comparison of interleaved and massed study in a category 

induction task. The majority of participants performed better on the interleaved 

presentation schedule but tended to believe that they did better on the massed 

presentation schedule. Prior to this, Simon and Bjork (2001) identified a similar 



14 
 

 

bias in a study of motor learning; participants learning on a massed schedule 

performed worse and greatly overestimated their performance on a delayed test. 

These metacognitive incongruences do not necessarily improve with experience 

(Tauber & Dunlosky, 2015). A learner’s knowledge of strategy often fails to reflect 

the effectiveness of optimal learning strategies, with suboptimal strategies often 

being evaluated as more effective or favorable. 

This pattern of results may arise from the challenges associated with 

implementing optimal study techniques or from participants’ pre-existing beliefs. 

Challenges associated with implementing optimal study techniques, termed 

desirable difficulties, enhance long-term learning but inspire a sense of challenge 

that may deter participants from using them (Bjork et al., 2013). The accessibility 

bias inherent in repetition tasks may inspire a sense of processing fluency, 

making learners feel that they are learning most effectively when they engage in 

long training sessions (Doyle & Hourihan, 2016; Wahlheim et al., 2012). Spaced 

learning is challenging in that participants must, during each learning session, 

readjust to the learning process. Pre-existing beliefs about massed and 

distributed learning also play a role. Vlach, Bredemann, and Kraft (2019) found 

that preschool-aged children believe massed and distributed learning to be equal 

in effectiveness, but that 6-10 year-olds showed a bias toward massed learning. 

They argue that this bias may be learned from the adults around them; teachers 

and parents most likely encourage massed learning, as it makes them appear 

more studious. Wang and Xing (2019) found in a study comparing interleaved 

and massed learning that participants’ metacognitive illusion disappeared when 
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they were given a description of why their performance was stronger in the 

interleaved study condition. Since learners choose how and when they learn, 

learning strategies should be implemented in a way that minimizes the potential 

for metacognitive incongruence. 

The Current Study 

The goal of the current study was to test the effectiveness of an 

ecologically valid category learning paradigm and to determine the role of 

learning schedule in that paradigm’s outcomes. Participants were assigned to 

either a massed or a distributed learning schedule. They completed the study 

remotely on their smartphones, allowing for ease of use and, for distributed 

learners, contextual variety. An information-integration category structure was 

used to mimic the difficult-to-verbalize nature of many natural categories.  

Several studies have found support for a spacing effect in category induction 

(Vlach et al., 2012, 2021, 2008), but these studies use observational learning, 

30-second spacing gaps, and child participants. In the present study, I sought 

evidence for the spacing effect in feedback-based category induction in an adult 

sample with more substantial spacing gaps. Additionally, rather than an inter-

stimulus interval, spacing gap here is defined as the time between adjacent study 

sessions. The primary outcomes of interest were task performance (accuracy), 

categorical perception, and metacognition. I hypothesized that participants’ 

accuracy in the information-integration category learning task would increase 

over the course of training but that distributed learners would reach higher overall 
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accuracy levels compared with those who underwent massed learning. This 

finding would reflect a spacing effect. 

Participants’ perceptions of the stimulus space were captured before and 

after learning using a similarity judgment task. It was hypothesized that both 

groups would show within-category compression, between-category expansion, 

acquired distinctiveness, and acquired equivalence after learning, as these 

outcomes have been found in previous artificial category learning paradigms 

(Folstein et al., 2013; Goldstone, 1994; Livingston et al., 1998). The impact of 

temporal spacing on the development of categorical perception has not yet been 

explored. Building upon the forgetting-as-abstraction hypothesis, I expected the 

magnitude of categorical perception effects to be larger in the distributed 

learners, as the forgetting between learning experiences in this group may have 

assisted in de-emphasizing category-irrelevant information. The final outcome of 

interest was metacognition. Participants’ attitudes towards their learning 

paradigms were assessed using an adaptation of Baddeley and Longman’s 

(1978) 3-question post-study survey. It was hypothesized that participants would 

be biased toward the suboptimal massed learning schedule, reflecting the 

metacognitive incongruence found in past studies (Baddeley & Longman, 1978; 

Kornell & Bjork, 2008; Simon & Bjork, 2001).  

Methods 

Participants 

Participants in this study were recruited from Prolific between the 13th of 

April and the 16th of May 2022. A total of 104 participants consented to 
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participate in the final version of this study. After consenting, participants were 

randomly assigned to either the massed or distributed learning condition. 

Participants were paid a total of 11.97 GBP for their participation. Participants 

spoke fluent English, owned a smartphone with internet access, and had normal 

or corrected-to-normal vision. All experimental procedures and materials were 

approved by the Western Research Ethics Board (see Appendices). After 

excluding participants who did not complete the entire experiment or who 

completed different components out of order, a final sample size of 96 was 

obtained. Participants had a median age of 23 (IQR: [21, 26]). Age did not differ 

significantly between learning conditions. 

Stimuli 

Stimuli were generated using the GRT package (Matsuki, 2017) in R 

version 4.1.1 (R Core Team, 2021). Stimuli were grayscale Gabor patches with 

varying spatial frequencies (𝑓) and orientation angles (𝜃). For category learning, 

these parameters were sampled from two multivariate Gaussian distributions with 

equal covariance matrices (such that the Pearson correlation between 𝑓 and 𝜃 

was 𝑟 = .78 in both groups) to generate 128 unique stimuli (See Figure 1 for 

examples). There were 64 stimuli in each category, arbitrarily labelled as A and 

B. The mean 𝑓 for each group was (𝜇𝐴,  𝜇𝐵) = (11, 17). The mean 𝜃 (in degrees 

relative to vertical) was (𝜇𝐴,  𝜇𝐵) = (81, 64). We chose these distributions such 

that a deterministic information-integration category boundary could be drawn. 

This type of category structure is difficult to verbalize and is resilient to taxes on 

working memory, stress, and sleep deprivation (Hughes & Thomas, 2021). The 
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deterministic nature of the boundary makes it possible (albeit unlikely) for 

participants to derive a general, 100% accurate categorization strategy. The 

linear category boundary is given by the equation 𝜃 = 30.89𝑓 + 2.54. This line 

intersects the x-axis (𝑓) at an angle of 68.54°. The maximum possible accuracy 

attainable using single-dimensional rule-based strategies was 73.44% using an 

𝑓-based strategy or 69.53% using a 𝜃-based strategy. 

Figure 1 

Sample Category Learning Stimuli 

 

Note. On the left is an exemplar from category A with 𝑓 = 3.24 and 𝜃 = 61.87°. 

On the right is an exemplar from category B with 𝑓 = 10.23 and 𝜃 = 18.89°. 

These category A and B exemplars represent, respectively, the minimum spatial 

frequency and orientation angle in the stimulus set. 

16 unique stimuli were generated for the similarity judgment task. A 4x4 

grid was generated by creating all possible ordered pairs (𝑥, 𝑦) such that 𝑥 ∈

{±18, ±6} and 𝑦 ∈ {±4.5, ±1.5}. These values were chosen such that the grid 

would be centered at the origin. Adjacent pairs at a given y value were separated 
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by a distance of 12 while adjacent pairs at a given x value were separated by a 

distance of 3. The grid was represented as a 16x2 matrix and then rotated 68.54° 

relative to the x-axis using a rotation matrix. The 68.54° angle of rotation set the 

former horizontal axis of the grid parallel to the category boundary. This rotated 

grid was then recentered at the point (𝑓, 𝜃)  = (14.48,74.94), a point which lies on 

the category boundary. This spatial frequency is the mean of the most optimal 𝑓-

based boundary (𝑓 = 14.48) and the 𝑓 value associated with the intersection of 

the category boundary and the most optimal 𝜃-based boundary (𝜃 = 74.03). The 

chosen orientation angle was that orientation angle on the category boundary 

associated with the chosen spatial frequency. Figure 2 shows the entire stimulus 

space for the study. Images used in both tasks were 352 x 352 pixels in size. The 

task was programmed such that the size of the stimuli would scale according to 

the size of each participant’s smartphone screen. Testing was primarily done on 

a Google Pixel 6 and with Google Chrome’s developer tools, which allow 

webpages to be viewed in a variety of screen dimensions. 
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Figure 2 

Stimulus Space 

 

Note. The dashed line indicates the optimal decision boundary. Category A and 

B exemplars are colored red and blue, respectively. 

Procedure 

Participants were recruited via Prolific. They first completed a Qualtrics 

form indicating their consent to participate. Then, they were then randomly 

assigned to a study condition and invited, via Prolific, to complete study 

components corresponding to their assigned condition. The experiment consisted 

of two similarity judgment tasks, six blocks of category learning tasks, and a 3-
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question multiple-choice survey. Massed learners (controls) completed each 

study component in one session. Distributed learners completed one study 

component per session, resulting in eight sessions. They were instructed to leave 

6-18 hours between each study component. The first and last study components 

were expected to be 15 minutes in duration and the remaining components were 

expected to be 10 minutes in duration, resulting in a total expected time 

commitment identical to that of the massed learners. See Figure 3 for a flowchart 

depicting each participant’s progression through the study. Each experimental 

task was programmed in jsPsych 6.0.0 (de Leeuw, 2015) and hosted on 

Pavlovia.org.  

Figure 3 

Study Progression Flowchart 

 

Note. Massed learners had a spacing gap of 0; no breaks were given between 

adjacent tasks. Distributed learners were instructed to take breaks (spacing 

gaps) of 6-18 hours between adjacent tasks. In both conditions, there was no 

break between the post-learning similarity judgment task and post-study survey. 
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Pre-Learning Similarity Judgment 

Participants first completed a similarity judgment task. Participants saw 

two stimuli appear side-by-side (in a randomized order) in the center of their 

phone screen and were asked to evaluate how similar they appeared to be. 

Images were programmed to each take 45% of the width of their container; this 

made the images scale to each participant’s screen size. Participants used a 1-8 

Likert scale to provide their responses and a 10-second time limit was imposed 

for each trial. There were constant on-screen instructions stating that 8 should 

refer to pairs that are “identical or nearly identical” and 1 to pairs that are 

“extremely dissimilar.” Participants were shown all 136 possible pairs of similarity 

judgment stimuli. Of these pairs, 16 were identical, 64 were between-category, 

and 56 were within-category. In the distributed condition, this task alone was the 

first study component. 

Category Learning 

Participants were asked to complete 6 blocks of category learning with 

128 trials per block. In the distributed condition, one block constituted one study 

component. Participants were instructed to sort stimuli into category A or 

category B by pressing the corresponding A and B buttons at the button of the 

screen. Each trial of learning began with 500ms of fixation. The stimulus would 

then appear until the participant made a judgment or until 10s had passed. This 

was followed immediately by 700ms of corrective feedback. If participants failed 

to provide a response in time, they were asked to respond more quickly next 
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time. Figure 4 shows the interfaces for the category learning and similarity 

judgment tasks. 

Figure 4 

Experimental Task Interfaces 

 

Note. On the left (A) is a screenshot of one category learning trial. On the right 

(B) is a screenshot of one similarity judgment trial. Whitespace above and below 

the task interfaces has been cropped for simplicity. Screenshots were captured 

on a Google Pixel 6; interfaces may have scaled differently on different screens. 

Post-Learning Similarity Judgment 

The procedure for this task is identical to that used in the pre-learning 

similarity judgment task. In the distributed condition, this task (alongside the post-

learning survey) comprised the eighth and final study component. 

Post-Learning Survey 

After completing the post-learning similarity judgment task, participants 

were given the following description of the study conditions: 

A.    B. 



24 
 

 

In this study, you experienced one of two possible training schedules. 

Schedule A involved back-to-back completion of the category learning 

sessions. 

Schedule B involved completion of one session at a time over the course 

of several days. 

Please answer 3 questions about your experience and press "Submit." 

The questions asked participants about how satisfactory they found their learning 

schedule (satisfaction), which schedule they would choose if they were to 

participate again (preference), and how keen they would be to undergo training 

again in the same schedule (keenness). Preference was a dichotomous choice 

between Schedule A and Schedule B. Satisfaction and keenness were assessed 

on a 5-point Likert scale. These questions are adaptations of those used by 

Baddeley and Longman (1978). 

Data Analysis 

All analyses were conducted in R version 4.1.1 (R Core Team, 2021). 

Category Learning 

For each block of category learning, participants’ accuracy (proportion of 

learning trials that were answered correctly) and mean reaction time (RT) were 

recorded. Null trials (trials that were skipped) were ignored in both of these 

computations. A 6x2 (block x condition) mixed factorial analysis of variance 

(ANOVA) was conducted to determine whether accuracy changed significantly 

across the various blocks of learning, whether accuracy differed between the two 

conditions, and whether these two factors interacted. A similar analysis was 

conducted with RT as the dependent variable. We recorded for each block of 

learning whether a participant had surpassed the maximum reasonable accuracy 
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attainable with a random guessing strategy (60.13%) and whether they had 

surpassed the maximum possible accuracy attainable under a unidimensional 

rule-based learning strategy (73.44%). The maximum reasonable accuracy 

attainable with a random guessing strategy was determined by taking the 99th 

percentile of 10,000 Monte Carlo simulations. Fisher’s exact test was used to see 

if these classifications differed according to learning condition during the first and 

last blocks of learning. 

A general linear classifier was fit for a single dimensional 𝜃-based model, 

single dimensional 𝑓-based model, and an information-integration model for each 

participant at each block of learning. Akaike’s information criterion (AIC) was 

computed for each model fit to determine which of the three models best 

explained participants’ categorization strategy during each block of learning. For 

the first and final blocks of learning, Fisher’s exact test was conducted with 

categorization strategy and learning condition as the grouping variables. 

Similarity Judgment 

Similarity judgments were converted into dissimilarities. We did this 

conversion using the following mapping: 𝐷𝑖,𝑗
2 = 𝑆𝑖,𝑖 + 𝑆𝑗,𝑗 − 2𝑆𝑖,𝑗, where 𝑆𝑖,𝑗 and 

𝐷𝑖,𝑗 respectively denote the similarity judgment for and dissimilarity between 

stimuli i and j. This mapping has the property that the dissimilarity between any 

stimulus and itself is zero (Buja et al., 2008). This mapping relies on the 

assumption that identical stimulus pairs will receive maximal similarity judgments. 

Any trials for which 𝐷𝑖,𝑗
2 < 0 were considered invalid and excluded from analysis. 
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Multidimensional Scaling (MDS) was used to visualize and qualitatively 

assess the perceptual space. An MDS solution was computed using average 

pairwise dissimilarities before and after learning for each learning condition, 

resulting in 4 unique MDS solutions. It was expected that some categorical 

clustering would emerge after learning for both learning conditions. Consistent 

with prior research on categorical perception, it was expected that this clustering 

would emerge due to an within-category compression and expansion in the 

categorization-relevant direction of variability (Folstein et al., 2013; Goldstone, 

1994; Livingston et al., 1998). The magnitude of these effects was expected to 

be greater in the distributed learners.  

A representational dissimilarity matrix (RDM) was constructed for each 

participant at each time point. These RDMs were tested against a categorical 

model RDM and a physical distance model RDM computed using the 𝐿1 metric 

(Manhattan distance). The 𝐿1 metric was chosen due to the separable nature of 

the stimulus features (Soto & Wasserman, 2010). We conducted a Spearman 

correlation between each participant’s vectorized RDMs and each vectorized 

model RDM. We compared fits for both of these models between both groups at 

both time points in a 2 x 2 (time point x condition) mixed factorial ANOVA. Based 

on the results of this ANOVA, model fits were compared against 0 and against 

each other. It was expected that 𝐿1 model fits would decrease after learning and 

that categorical model fits would increase after learning. It was also expected that 

distributed learners would have stronger categorical model fits and weaker 𝐿1 

model fits after learning. 
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Similarity judgments were classified as either identical, within-category, or 

between-category. As their dissimilarities were set to 0, identical pairs were 

excluded from analysis. A 2x2x2 (learning condition x time point x pair type) 

ANOVA was conducted with dissimilarity as the dependent variable. It was 

expected that there would be no main effect of learning condition or time point, 

but that between-category pairs would be more dissimilar than within-category 

pairs. Additionally, an interaction between pair type and time point was expected 

such that between-category pairs became more dissimilar after learning and 

within-category pairs became less dissimilar. 

A subset of 24 adjacent stimulus pairs were classified according to 

direction of variation and location within the stimulus space. Direction of variation 

was either relevant, varying in the direction perpendicular to the category 

boundary, or irrelevant, varying in parallel with the category boundary. Location 

was either outer, not crossing the center of the stimulus set, or inner, crossing 

the center of the stimulus set. Relevant-inner pairs crossed the true category 

boundary. This classification system is similar to that used by Folstein, Palmeri, 

and Gauthier (2013). Change in dissimilarity was computed for each pair. A 

2x2x2 (learning condition x direction of variation x location) mixed factorial 

ANOVA was conducted with change in dissimilarity as the dependent variable. It 

was expected that change would be larger for pairs varying in the relevant 

direction of variation but that there would be no effect of learning condition or 

location. 
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Post-Learning Survey 

Question 1 (satisfaction) was analyzed using an independent samples t-

test with condition as the grouping variable. Responses were coded on a Likert 

scale with scores ranging from 0 to 4 (inclusive). This test was used to determine 

whether satisfaction differed between the two groups. The same analysis was 

conducted for question 3 (keenness). Question 2 (preference) was first analyzed 

used a Chi-Square goodness-of-fit test with preference as the grouping variable. 

Then, it analyzed using a Chi-Square test of independence with learning 

condition and preference as the grouping variables. This test was used to 

determine if participants preferred one schedule over another and whether this 

preference is affected by their assigned learning condition. It was expected that 

satisfaction and keenness would be higher in the massed condition and that all 

learners would tend to prefer massed learning. 

Results 

Participants who did not complete all category learning blocks or who 

completed blocks out of order were removed from all analyses. The final sample 

size was 𝑁 = 96 (𝑛𝑚𝑎𝑠𝑠𝑒𝑑 = 49, 𝑛𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 = 47). All statistical analyses were 

conducted using a significance threshold of 𝛼 = .05 unless otherwise stated. 

There was some variability in distributed learners’ spacing gaps. A one-way 

within-participants ANOVA was conducted to determine if distributed learners’ 

spacing gaps varied over the course of training. Spacing gaps did not change 

significantly over the course of training, 𝐹(4, 184) = 1.272, 𝑝 = .282. The mean 
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spacing gap for distributed learners was 13.40 hours (𝑆𝐸 =

0.04, 95% 𝐶𝐼: [0.13, 27.78]). 

Category Learning 

A 6x2 (block x learning condition) mixed factorial ANOVA was conducted 

with accuracy as the dependent variable (see Figure 5). The main effect of block 

on accuracy was significant, 𝐹(5, 470) = 25.255, 𝑝 < .001, 𝜂𝑝
2 = .212. Accuracy 

increased from block to block. The main effect of learning condition on accuracy 

was significant, 𝐹(1, 94) = 4.857, 𝑝 = 0.03, 𝜂𝑝
2 = .049. Participant accuracy was 

higher in the distributed condition (𝑀 = .76, 𝑆𝐸 = .01, 95% CI: [.56, .91]) than in the 

massed condition (𝑀 = .72, 𝑆𝐸 = .01, 95% CI: [.48, .89]). The interaction between 

condition and block was not significant, 𝐹(5, 470)  =  2.162, 𝑝 = .057, 𝜂𝑝
2 = .022. 

There was no effect of learning condition on accuracy during the first block of 

learning, 𝑡(93.093) = .581, 𝑝 = .563, 𝑑 = .119. 
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Figure 5 

Accuracy over Time 

 

Note. Vertical bars represent standard errors. The dashed line represents the 

maximum accuracy attainable using a single-dimensional rule-based 

categorization strategy (73.44%). 

A 6x2 (block x learning condition) mixed factorial ANOVA was conducted 

with mean reaction time (in milliseconds) as the dependent variable (see Figure 

6). The main effect of block on reaction time was significant, 𝐹(5, 470) =

5.523, 𝑝 < .001, 𝜂𝑝
2 = .055. Reaction times decreased from block to block. The 

main effect of learning condition on reaction time was significant, 𝐹(1, 94) =

10.255, 𝑝 = .002, 𝜂𝑝
2 = .098. Reaction time was higher in the distributed condition 

(𝑀 = 1576, 𝑆𝐸 = 23, 95% CI: [961, 2411]) than in the massed condition (𝑀 =

1366, 𝑆𝐸 = 22, 95% CI: [834, 2132]). The interaction between condition and block 

was not significant, 𝐹(5, 470) = 1.635, 𝑝 = .149, 𝜂𝑝
2 = .017. There was no effect of 
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learning condition on reaction time during the first block of learning, 𝑡(93.298)  =

 1.033, 𝑝 =  0.304, 𝑑 =  0.21. 

Figure 6 

Reaction Times over Time 

 

Note. Vertical bars represent standard errors. 

Within each condition, an exploratory Pearson correlation between overall 

accuracy and mean reaction time was computed. There was a significant positive 

correlation in the massed condition, 𝑟(47) = .328, 𝑝 = .021. There was no 

significant correlation in the distributed condition, 𝑟(45) = .199, 𝑝 = .179. After 

controlling for the correlation between accuracy and reaction time, the main 

effect of condition disappeared, 𝑡(92.484) = 1.271, 𝑝 = .207. 
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Figure 7 

Accuracy as a Function of Reaction Time 

 

 Fisher’s exact test was used to determine if there was a relationship 

between learning condition and strategy use in the first and final blocks of 

learning. There was no significant association between learning condition and 

above-chance performance during the first learning block, 𝑝 = .606. 81.3% of 

participants performed above chance levels during the first learning block. There 

was no significant association between learning condition and above-chance 

performance during the final learning block, 𝑝 = .269. 91.7% of participants 

performed above chance levels during the final learning block. There was a 

marginally significant association between learning condition and above-criterion 

performance during the first learning block, 𝑝 = .06. Above-criterion performance 

was more likely for distributed learners (34%) than for massed learners (16.3%). 
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There was a significant association between learning condition and above-

criterion performance during the final learning block, 𝑝 = .042. Above-criterion 

performance was more likely for distributed learners (68.1%) than for massed 

learners (47%). There was no significant association between learning condition 

and strategy use during the first learning block, 𝑝 = .675. There was no 

significant association between learning condition and strategy use during the 

final learning block, 𝑝 = .296. Figure 8 shows participants’ strategies over the 

course of learning. 

Figure 8 

Categorization Strategies across Learning 

 

Data were subset to only include participants who were best fit by an 

information-integration model (the optimal model) during the final block of 

learning. This subset corresponds to the proportion of participants shown in pink 
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in Figure 8. A 6x2 (block x learning condition) mixed factorial ANOVA was 

conducted with accuracy as the dependent variable. The main effect of block on 

accuracy was significant, 𝐹(5, 365) = 35.098, 𝑝 < .001, 𝜂𝑝
2 = .325. Participants’ 

accuracy increased over the course of learning. The main effect of learning 

condition on accuracy was not significant, 𝐹(1, 73) = 1.744, 𝑝 = .191, 𝜂𝑝
2 = .023. 

The interaction between block and learning condition was not significant, 

𝐹(5, 365) = 1.582, 𝑝 = .164, 𝜂𝑝
2 = .021. 

A 6x2 (block x learning condition) mixed factorial ANOVA was conducted 

with Akaike’s Information Criterion (AIC) as the dependent variable. The main 

effect of block on AIC was significant, 𝐹(5, 365) = 36.018, 𝑝 < .001, 𝜂𝑝
2 = .33. 

Participants’ AIC decreased over the course of learning. The main effect of 

learning condition on AIC was not significant, 𝐹(1, 73) = .001, 𝑝 = .973, 𝜂𝑝
2 < .001. 

The interaction between block and learning condition was not significant, 

𝐹(5, 365) = .82, 𝑝 = .536, 𝜂𝑝
2 = .011. 

Similarity Judgment 

Figure 9 shows the multidimensional scaling solutions for each time point 

and learning condition. It appears that there are no substantial qualitative 

differences among the four plots. 
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Figure 9 

Multidimensional Scaling Solutions 

 

Note. Scales are in arbitrary units and are fixed across all four plots.  

Each participant’s dissimilarity data at each time point were correlated with 

an 𝐿1 physical distance model and a categorical model. The resulting Spearman 

correlation coefficients were normalized using Fisher’s Z-Transformation prior to 

analysis. 

A 2x2 (learning condition x time point) mixed factorial ANOVA was 

conducted with the 𝐿1 RSA model fit (Z-Transformed Spearman’s r) as the 

dependent variable. The main effect of learning condition was not significant, 

𝐹(1, 94) = 0.537, 𝑝 = .465, 𝜂𝑝
2 = .006. The main effect of time point was not 

significant, 𝐹(1, 94) < .001, 𝑝 = .983, 𝜂𝑝
2 < .001. The interaction between condition 

and time point was significant, 𝐹(1, 94) = 6.382, 𝑝 = .013, 𝜂𝑝
2 = .064. Bonferroni-
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corrected post-hoc testing revealed no significant pairwise differences, all 𝑝′𝑠 >

.0125. 

A 2x2 (learning condition x time point) mixed factorial ANOVA was 

conducted with the categorical RSA model fit (Z-Transformed Spearman’s r) as 

the dependent variable. The main effect of learning condition was not significant, 

𝐹(1, 94) = .157, 𝑝 = .692, 𝜂𝑝
2 = .002. The main effect of time point was not 

significant, 𝐹(1, 94) = .054, 𝑝 = .817, 𝜂𝑝
2 = .001. The interaction between condition 

and time point was not significant, 𝐹(1, 94) = 2.904, 𝑝 = .092, 𝜂𝑝
2 = .03. 

Both model fits were compared to 0 using a one-sample t-test. 𝐿1 model 

fits were significantly greater than 0, 𝑡(191) = 68.268, 𝑝 < .001, 𝑑 = 4.927. 

Categorical model fits were significantly greater than 0, 𝑡(191) = 58.984, 𝑝 <

.001, 𝑑 = 4.257. These model fits were compared to each other using a Welch 

two-sample t-test. 𝐿1 model fits (𝑀 = .671, 𝑆𝐸 = .0005, 95% CI: [.481, .817]) were 

significantly stronger than categorical model fits (𝑀 = .221, 𝑆𝐸 =

.0003, 95% CI: [.124, .304]), 𝑡(228.11) = 47.52, 𝑝 < .001, 𝑑 = 4.85. 

A 2x2x2 (learning condition x pair type x time point) mixed factorial 

ANOVA was conducted with dissimilarity as the dependent variable. Since the 

dissimilarities for all identical stimulus pairs were set to 0, identical pairs were 

excluded from this analysis. Arithmetic means within subjects, pair types, and 

time points were taken and used for this analysis. Trials that resulted in a 

negative squared dissimilarity (see Methods) were considered invalid and 

excluded from these arithmetic means. After means were taken, a Box-Cox 

transformation with 𝜆 = 1.706 was used to normalize the data before analysis. 
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Summary data were computed using the transformed dataset. An inverse 

transformation was performed on the summary data before reporting. The main 

effect of learning condition of dissimilarity was not significant, 𝐹(1, 94) = .82, 𝑝 =

.367, 𝜂𝑝
2 = .009. The main effect of pair type on dissimilarity was significant, 

𝐹(1, 282) = 24.387, 𝑝 < .001, 𝜂𝑝
2 = .08. Dissimilarity was higher for between-

category pairs (𝑀 = 2.51, 𝑆𝐸 = .002, 95% CI: [1.707, 3.151]) than for within-

category pairs (𝑀 = 2.422, 𝑆𝐸 = .002, 95% CI: [1.617, 3.036]). The main effect of 

time point on dissimilarity was significant, 𝐹(1, 282) = 68.155, 𝑝 < .001, 𝜂𝑝
2 = .195. 

Dissimilarity was higher before learning (𝑀 = 2.539, 𝑆𝐸 =

.002, 95% CI: [1.71, 3.184]) than after learning (𝑀 = 2.391, 𝑆𝐸 =

.002, 95% CI: [1.656, 3.015]). The interaction between condition and time point 

was significant, 𝐹(1, 282) = 7.872, 𝑝 = .005, 𝜂𝑝
2 = .027. Four post-hoc t-tests with 

Bonferroni correction were performed. Within the massed learning condition, 

dissimilarity was significantly higher before learning (𝑀 = 2.537, 𝑆𝐸 =

.004, 95% CI: [1.645, 3.225]) than after learning (𝑀 = 2.339, 𝑆𝐸 =

.004, 95% CI: [1.571, 3.012]), 𝑝 < .001. Distributed learners’ dissimilarity did not 

change significantly after learning, 𝑝 = .037. Pre-learning, dissimilarity did not 

differ significantly between learning conditions, 𝑝 = .855. Post-learning, 

dissimilarity was marginally higher for distributed learners (𝑀 = 2.446, 𝑆𝐸 =

.003, 95% CI: [1.807, 3.003]) than for massed learners (𝑀 = 2.339, 𝑆𝐸 =

.004, 95% CI: [1.571, 3.012]), 𝑝 = .019. All other interactions were not significant, 

𝑝′𝑠 > .05. These results are visualized in Figure 10. 
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Figure 10 

Between- and Within-Category Dissimilarity before and after Learning 

 

Similarity data were filtered such that only similarity judgments for 

adjacent pairs would remain in the next analysis. Change in dissimilarity from 

pre-learning to post-learning was calculated and averaged within each participant 

and level of learning condition, direction of variation, and location. One 

participant’s data were excluded because they had one datum that varied by 

more than 3 standard deviations from the mean. A 2x2x2 (learning condition x 

direction of variation x location) mixed factorial ANOVA was conducted with 

change in dissimilarity as the dependent variable (i.b. Folstein et al., 2013). The 

main effect of learning condition was not significant, 𝐹(1, 93) = .803, 𝑝 =

.372, 𝜂𝑝
2 = .009. The main effect of direction of variation was not significant, 

𝐹(1, 279) = .155, 𝑝 = .694, 𝜂𝑝
2 = .001. The main effect of location was not 
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significant, 𝐹(1, 279) = .15, 𝑝 = .699, 𝜂𝑝
2 = .001. All interaction effects were not 

significant, 𝑝’s > .05. 

Metacognition 

A Welch two sample t-test was used to compare satisfaction and 

keenness between learning conditions. Distributed participants showed a higher 

level of satisfaction (𝑀 = 3, 𝑆𝐷 = .9, 95% CI: [1.2, 4]) than did the massed 

participants (𝑀 = 2, 𝑆𝐷 = .9, 95% CI: [0.2, 3.8]), 𝑡(93.904) = 5.462, 𝑝 < .001, 𝑑 =

1.113. Distributed participants showed a higher level of keenness (𝑀 = 3.5, 𝑆𝐷 =

.6, 95% CI: [3, 4]) than did the massed participants (𝑀 = 2.8, 𝑆𝐷 =

1.1, 95% CI: [1, 4]), 𝑡(72.001) = 4.504, 𝑝 < .001, 𝑑 = .908. See Figure 11. 

Figure 11 

Keenness and Satisfaction between Learning Conditions 
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A Chi-Square goodness of fit test was used to determine if participants 

tended to prefer distributed or massed training in survey item 2. Participants 

tended to prefer distributed training, 𝛸2(1, 96) = 9.375, 𝑝 = .002. A Chi-Square 

test of independence was used to determine if participant preferences differed by 

learning condition. Participant preferences did not differ according to learning 

condition, 𝛸2(1, 96) = .507, 𝑝 = .476. See Figure 12. 

Figure 12 

Proportion of Participants Preferring Distributed Learning 

 

Exploratory analyses were conducted to determine whether participants’ 

accuracy could predict survey responses. There was no significant correlation 

between accuracy and satisfaction, 𝑟(94) = .187. There was no significant 

correlation between accuracy and keenness, 𝑟(94) = .268. A logistic regression 

was conducted to determine whether preference for distributed training could be 
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predicted from a participant’s overall accuracy. This regression was not 

significant, 𝑝 = .956. 

Discussion 

The large effect of learning block on accuracy indicates that participants 

were able to learn the task regardless of condition. Mean accuracy reached well 

above chance levels within the first block of learning. There was a small main 

effect of learning condition on accuracy. This supports my hypothesis that the 

spacing effect would be present in this study, as distributed learners showed 

higher overall accuracy levels. As both types of learners showed similar 

performance levels during the first block of learning, this difference emerged over 

the course of training due to the experimental manipulation. There was a small 

main effect of block on reaction time such that reaction times tended to decrease 

over the course of learning. Learning condition had a medium effect on reaction 

times such that massed learners had lower reaction times than distributed 

learners, but both types of learners had similar reaction times during the first 

block of learning, suggesting that this effect was also due to the experimental 

manipulation. This echoes the results of previous spacing effect studies in which 

massed learners spend less time on repetitions (Carpenter, 2020). 

Overall accuracy and mean reaction times had a medium positive 

correlation for the massed learners. This correlation was not significant among 

distributed learners and when controlling for this correlation, the main effect of 

learning condition on accuracy disappeared. This finding supports the attention 

attenuation hypothesis, which holds that the spacing effect is born from 
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decreased attention over time in massed learners. Studies by Vlach et al. (2008) 

and Kornell et al. (2010) claim to have found results inconsistent with the 

attention attenuation hypothesis, as spacing effects were present even though 

participants in both massed and spaced learning conditions experienced stimuli 

for equal durations of time. However, participants in these studies did not have 

control over their stimulus presentation times and it should not be assumed that 

they paid full attention for the duration of stimulus presentations. Participants in 

the current study could end a repetition at their own volition, making this a 

stronger assessment of attention attenuation. 

During the first and last blocks of learning, distributed learners were more 

likely to exceed the maximum accuracy attainable under a suboptimal 

categorization strategy. When data were subset to only include learners who 

used an information-integration strategy during the final block of learning, there 

was no main effect of learning condition on accuracy or on Akaike’s Information 

Criterion (model fits). Together, these results suggest that temporal spacing 

played a role in pushing participants away from suboptimal learning strategies. 

 Multidimensional scaling did not reveal any substantial qualitative 

differences in participants’ perceptions of the stimulus space in relation to 

learning condition or time point. In the model-based representational similarity 

analysis, model fits did not change substantially after learning and did not differ 

between learning conditions. Participants’ similarity judgment data were well fit 

by both the categorical and the physical distance model, but the physical 

distance model had significantly stronger model fits. There was no evidence of 
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between-category expansion, acquired distinctiveness, or acquired equivalence. 

Together, these results fail to support my hypotheses. This task did not produce 

categorical perception in participants. 

There was a large decrease in dissimilarity for both within- and between-

category pairs after learning. Although within-category compression is often a 

sign of categorical perception, here it seems more likely to indicate sensory 

habituation, a general loss of sensitivity to variations among stimuli after long 

series of repetitions. The small interaction between learning condition and time 

point revealed that dissimilarity decreased for massed learners but not for 

distributed learners. There was no main effect of learning condition on 

dissimilarity before learning. This suggests that massed learners were driving the 

main effect of time point on dissimilarity. Temporal spacing may have protected 

distributed learners from sensory habituation. These findings support deficient 

processing accounts of the spacing effect. Vlach et al. (2021) argued against this 

explanation for the spacing effect. They found that, despite performing better on 

a delayed induction test, spaced learners focused less visual attention on 

category-relevant stimulus features. However, this finding does not necessarily 

refute the deficient processing theory; massed learners may have spent more 

time focusing on task-relevant features to account for their deficient processing.  

Participants in the distributed learning condition were more satisfied with 

their learning and were keener to undergo distributed training again; these effects 

were both large. Participants in both learning conditions also tended to indicate a 

preference for distributed learning if trained again in the future. These results 
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reflect a metacognitive congruence; survey responses seemed favorable to the 

optimal learning condition. These findings fail to support my hypothesis that 

participants would respond more favorably toward massed learning. Exploratory 

analyses revealed that post-study survey results could not be predicted by 

participants’ overall accuracy levels. Some mechanism other than performance 

must be underlying these evaluations. 

Processing fluency and prior beliefs have been proposed as influences of 

metacognitive evaluations. Processing fluency is unlikely to play a role here. The 

massed group most likely had higher processing fluency, so metacognitive 

incongruence would have been found if processing fluency was driving these 

evaluations. The role of prior beliefs is unclear. If prior beliefs about spaced 

learning drove metacognitive incongruence in previous studies, then, if people’s 

general sentiment toward spaced learning has not changed, metacognitive 

incongruence should have been found in the current study. In recent years, 

however, educational activities have largely shifted to online, asynchronous 

formats due to the COVID-19 pandemic. This shift may have changed people’s 

attitudes towards distributed learning. However, convenience may serve as an 

alternate explanation for these metacognitive evaluations. Participants in the 

current study completed their learning sessions remotely from a smartphone; 

there was no inconvenience due to travel. Massed learners needed to dedicate 

substantial periods of time to the task, however, while distributed learners had 

nearly negligible training times. This difference may have made massed learners 

feel more inconvenienced than distributed learners. The opposite may be true of 
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in-person studies, however; distributed training for in-person studies could result 

in repeated journeys to and from a physical location and a still-substantial 

amount of time being dedicated to the task. In Baddeley and Longman’s (1978) 

study, for instance, the 1x1h learners travelled to the training center twice as 

often as 2x2h learners. Since total study time was kept constant between groups, 

1x1h learners had to endure this inconvenience for a longer span of time. In 

studies with shorter spacing gaps, spacing serves to lengthen the duration of the 

study, again making spacing inconvenient. The current results suggest that prior 

beliefs, alone, are not likely to be driving the metacognitive incongruence often 

found in studies of learning schedule. 

Practical Implications 

Artificially learned categories play a vital role in daily life. Radiologists use 

a visual search procedure, similar to categorization, to classify their findings 

(Waite et al., 2019). Cardiologists and pulmonologists make diagnostic 

judgments using electrocardiograms and chest x-rays, respectively (Rourke et 

al., 2016). Compared with traditional rule-based learning, category learning (or 

perceptual training) is a more effective paradigm for training participants to detect 

melanomas (Xu et al., 2016). Optimizing artificial category learning procedures 

could improve the degree to which these artificial categories are learned. The 

ecologically valid spaced learning paradigm presented here could be adapted to 

help students learn categories more effectively than with traditional methods. 
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Limitations and Future Directions 

Participants in this study were recruited from Prolific, a platform that allows 

the easy recruitment of a diverse, global sample for psychological research. 

Participants recruited from this platform may be more adept at performing 

psychological studies than the general population. In the current study, 

participants’ median number of previous study approvals, an index of 

psychological study experience, was 126 (IQR: [82, 188]). Experience did not 

differ significantly between learning conditions and the spacing effect was 

observed in a (presumably) less experienced SONA pilot sample, making it 

unlikely that the group differences seen here are explained by differences in prior 

study experience. Still, it should be noted that participants in the current study 

tended to have substantial experience participating in other psychological studies 

and this may have impacted the results. Participants in this study were also 

diverse. Results may have differed had the study been conducted on a more 

culturally homogenous sample (e.g., Unsworth et al., 2005), such as that which 

might be expected from an in-person replication. A study directly comparing the 

effects of spacing among different cultural groups may be of interest. 

In his paper finding evidence that acquired distinctiveness and 

equivalence could be evoked be artificial category learning, Goldstone (1994) 

preceded his category learning studies with perceptual discrimination studies. 

The results of these perceptual discrimination studies were used to choose 

stimulus parameters such that adjacent stimuli were equally discriminable across 

all points in the stimulus space. There stimulus space was a 4x4 grid, similar to 



47 
 

 

the similarity judgment stimuli used in the current study. Such consideration was 

not given to the design of stimuli in the current study. Future iterations of this 

study should tune the stimulus space in a similar manner, as discriminability may 

not be equal at all points in the current study’s stimulus space. 

Substantial consideration should also be given to what one considers a 

single learning experience. Studies of the spacing effect tend to treat each 

stimulus presentation as its own learning experience (e.g., Vlach et al., 2008). In 

the present study, one block of learning (128 stimulus presentations) was treated 

as one learning experience, instead. This is sensible because the goal of 

category learning is to learn to partition the stimulus space, not to commit 

exemplars to memory. The approach used in this study is also more analogous 

to classroom learning or studying, in which students review all the information in 

each lesson and then take a break before returning to study again. It would be 

impractical to ask students to apply a large spacing gap between the individual 

items that comprise a single lesson. This type of spacing may make category 

induction more difficult (see Kornell et al., 2010). The discriminative contrast 

between adjacent stimuli facilitates induction (Kang & Pashler, 2012; Kornell & 

Bjork, 2008) and temporal spacing makes this contrast more difficult to achieve. 

A future replication of the current study could vary inter-stimulus interval 

between-participants to determine if inter-stimulus intervals interact with the 

between-block spacing gaps. 

The present study provided trial-by-trial feedback but did not inform 

participants about their performance on entire blocks. Block-level feedback may 
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have helped participants identify the optimal categorization strategy more easily. 

Distributed learners had ample time to independently reflect on their performance 

between training sessions, but massed learners did not. Block-level feedback for 

all learners may have reduced the spacing effect if it was, in part, driven by 

distributed learners’ ability to reflect on block-level performance. This is only 

speculation, however, as self-reflection in this type of task has not yet been 

examined. Future research should address whether additional feedback or 

reflection on performance play a role in the spacing effect. 

An information-integration category structure was used in this study as a 

person’s ability to learn these structures is robust to taxes on working memory, 

sleep deprivation, and stress (Hughes & Thomas, 2021), all of which might 

reasonably be expected when asking participants to complete this task remotely 

on their smartphones. These structures also do not require selective attention 

(Ashby & Valentin, 2017). Since learning categories that do not require selective 

attention may be a developmental default for children (Sloutsky & Sophia Deng, 

2019), the category learning task used here may well represent the way that 

humans naturally acquire many categories. Still, it would be valuable to replicate 

this study using different category structures. Information-integration structures 

are not robust to changes in context (e.g., Crossley et al., 2014). According to 

COVIS, humans learn rule-based category learning tasks using the declarative 

system, which relies on working memory and is robust to contextual changes. A 

rule-based task may therefore strengthen the spacing effect as it would minimize 

the negative impact of contextual variety on distributed learning and weaken 
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massed learning due to longer periods of maintaining working memory. An in-

person replication of this study would also be valuable for this reason; the fixed 

context may help further facilitate information-integration learning for distributed 

learners.  

Several aspects of the present study were uncontrollable and unknowable 

due to the study’s remote nature. There was most likely variety in participants’ 

phone sizes, viewing distance, and viewing angle during learning. These factors 

could have impacted the detail with which participants experienced the stimulus 

presentations. Participants’ internet connection strength most likely impacted 

image loading times, as well, and reaction time data do not account for this. 

There is value to the ecological validity afforded by this study’s design and there 

is no reason to believe that these factors differed substantially enough between 

learning conditions to alter the results, but these factors still provide some 

uncontrollable sources of variability. These considerations should be kept in mind 

when interpreting the results. 

In the present study, participants in the distributed condition were 

instructed to complete sessions 6-18 hours apart but were ultimately able to 

choose their spacing gaps. This enriched the data acquired from this task, as 

spacing gap could be treated as a continuous variable and adherence to the 

experimental manipulation could be assessed. This also adds ecological validity 

to the task, as humans typically guide their own learning in this way. Inter-block 

spacing gaps did not seem to be related to task performance in the distributed 

group and did not seem to vary significantly throughout learning. However, there 
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was a very large range of variability in spacing gaps, with some participants 

completing learning sessions within an hour of each other. As demonstrated by 

Cepeda, Coburn, Rohrer, Wixted, Mozer, and Pashler (2009), all spacing gaps 

do not yield the same benefit. Procedural category learning may be optimized by 

a different spacing gap than the one assessed in this study. Future research may 

employ tighter controls on participants’ spacing gaps and employ between-

participants designs to determine which spacing gaps may be most optimal. A 

wide pool of literature explores expanding and compressing spacing gaps; 

spacing gaps which, with each successive learning experience, become larger or 

smaller. Expanding learning schedules may produce stronger learning 

(Carpenter et al., 2012). A replication of the present study with added expanding 

and compressing spacing gap conditions may be of interest for future work. 

It should be noted that other explanations for the spacing effect have been 

proposed (Hintzman, 1974). According to the consolidation hypothesis, massed 

learning causes the consolidation of later learning experiences to interfere with 

the consolidation of previous learning experiences. Some experiments have 

supported this retroactive interference proposal, but it is unlikely to have played a 

role in this study, as each block of learning consisted of identical to-be-learned 

material. The rehearsal hypothesis asserts that participants voluntarily retrieve 

and reprocess learning experiences during spacing gaps. It is also unlikely that 

rehearsal played a role in this spacing effect, as the artificial stimuli used in the 

present study were uninteresting and highly confusable. It is difficult to imagine 

participants voluntarily reprocessing this task in enough detail to positively impact 
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future learning. Still, these explanations for the spacing effect have been 

proposed and should be considered. 

Deficient processing and attention attenuation are distinct but may 

reasonably be expected to interact. Habituation is intensified when stimulus 

repetitions are more frequent (Thompson, 2009). When participants spend less 

time studying an individual stimulus, the frequency with which they encounter 

new stimuli increases, enhancing sensory habituation. When participants 

experience habituation, they will likely feel diminishing returns on their time spent 

studying, causing them to spend less time. Thus, these two attentional 

mechanisms may work together in a positive feedback loop during long learning 

sessions. Future research should explore this possibility. 

With decreased attention (indexed by lower reaction times) being one 

possible mechanism for the spacing effect observed here, perhaps prompting 

participants to take their time when they provide a fast response would minimize 

the spacing effect by encouraging, but not forcing, participants to take more time 

when evaluating stimulus presentations. If attention attenuation and deficient 

processing do interact in a positive feedback loop, then this manipulation may 

reduce sensory habituation, as well. Conversely, it may be worthwhile to explore 

the effect of further decreasing attention. If attention attenuation and deficient 

processing interact in a positive feedback loop, then asking participants to 

provide faster responses may amplify the sensory habituation seen in the current 

study. Future research should address the relationship between attention 

attenuation and deficient processing. 
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While contextual variety is assumed to be present between and within 

distributed learners, the current study did not directly assess participants’ 

physical context at each block of learning. Variations in mental state, such as 

substance use or sleep, was also not addressed. Future iterations of this study 

may use some form of ecological momentary assessment to record participants’ 

physical context during each learning block as well as such variables as sleep 

and substance use to provide richer information on how long periods of spacing 

can impact category learning. 

The similarity judgment task required 136 trials to account for each 

possible pairwise comparison. Since one goal of the current study design was 

the minimize the time that distributed learners spent on individual task sessions, 

this may have been suboptimal. An alternative assessment of pairwise similarity 

could be obtained from a multi-arrangement procedure, a task in which 

participants move images in a two-dimensional space such that similar images 

are close and dissimilar images are distant. The results of multi-arrangement 

procedures are strongly correlated with those of traditional (dis)similarity 

judgment tasks, but they require less time to complete and allow participants to 

see the entire stimulus space at once (Kriegeskorte & Mur, 2012). It is unclear if 

this task would be sensitive to sensory habituation, as was the case with the 

similarity judgment task in the current study, but this method merits exploration. 

An alternative approach to this problem would be to find the just-noticeable 

difference (JND) for participants before and after learning. This could be done for 

each stimulus dimension individually or, in the case of an information-integration 
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task such as this one, for variations parallel or perpendicular to the category 

boundary. This procedure could yield more fine-grained results than a 

discrimination or similarity judgment task while still being sensitive to sensory 

habituation. The exploration of other assessments of participants’ perceptual 

space should be a highlight for future work. 

Whether convenience plays a role in these metacognitive evaluations 

could be tested by performing an in-lab replication of the present study. 

Distributed learners in such a replication would be more inconvenienced than 

massed learners, as they would need to physically travel to a fixed location 

multiple times per day for several days. If convenience drives metacognitive 

evaluations, metacognitive incongruence would be found in an in-person 

replication. Such a replication could also begin with a short survey on 

participants’ attitudes towards spaced learning, providing insight into participants’ 

prior beliefs. 

Satisfaction, preference, and keenness were not related to task 

performance. The current study did not ask participants to explicitly evaluate their 

learning, so it is unclear whether they were able to accurately assess their 

performance. Past studies have found that massed learners often over-estimate 

their performance; such depth would have been valuable in the current study. In 

addition to the attitudinal measures included in the current study, future research 

might ask participants to evaluate their learning.  

Conclusion 
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The present study found support for a spacing effect in adult information-

integration category learning. The spacing effect seen here appears to have 

been driven by attentional mechanisms, with massed participants paying less 

attention and losing sensitivity to variations in the stimulus space over the course 

of learning. Spacing seems to have protected against inattention and sensory 

habituation. Spacing may have facilitated the discovery of information-integration 

learning strategies, as the spacing effect was not present in the subset of 

participants who had discovered these strategies. Counter to expectations, 

metacognitive congruence was found, with survey responses tending to favor the 

optimal learning condition. These findings open opportunities for research into 

how COVIS theory’s predictions interact with the spacing effect as well as how 

participant experiences impact their metacognitive judgments. 
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