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Abstract

Mark-recapture methods have played a key role in ecological studies monitoring popula-
tions of wild animals, including those threatened by human disturbance. One consideration in
the analysis of mark-recapture data is individual variations in the rate of detecting individu-
als. Failure to account for a variation can lead to biased inference, but classical methods for
modelling heterogeneity require numerical integration and can be computationally intensive or
numerically unstable. This thesis develops a novel approach based on the h-likelihood, which
can remedy such difficulties by avoiding any numerical integration.

In the first project, I present my h-likelihood for fitting the fundamental model describing
individual heterogeneity in mark-recapture studies. The conditional likelihood approach allows
the model to be considered as a generalized linear mixed model (GLMM), and building on this
connection, I construct the h-likelihood for the model in the context of the GLMM. In addition,
I derive a bias correction for the model parameters and develop inference for the population
size via the Horvitz-Thompson estimator.

My second project extends my approach to fit advanced models accounting for individual
heterogeneity in which the capture probability may also depend on time and individuals’ trap
responses. The conditional likelihood approach enables these models to be treated as vector
GLMMs. The h-likelihood approach from the first project is then extended to fit these models
by allowing the response variables to be multi-dimensional. Bias correction is again consid-
ered, and the Horvitz-Thompson estimator is employed for estimating the population size as
before.

Finally, I develop my h-likelihood approach to fit more flexible models describing individ-
ual heterogeneity. Standard models assume a linear relationship on some scale of the detection
rate. The model I consider relaxes this assumption by applying the structure of generalized
additive models via penalized spline, which can be regarded as a GLMM when the conditional
likelihood is penalized for roughness. I apply the h-likelihood approach to fit this model and
again estimate the population size using the Horvitz-Thompson estimator.

Keywords: Ecological statistics, Generalized additive models, Generalized linear mixed
models, H-likelihood, Horvitz-Thompson estimator, Mark-recapture
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Lay Summary

Mark-recapture methods play a key role in ecological studies monitoring wild animal pop-
ulations. One consideration in analyzing mark-recapture data is individual variation in the
detection rate. Classical methods for modelling heterogeneity require numerical integration
and may be computationally intensive. This thesis presents a novel approach based on the
h-likelihood to remedy such difficulties by avoiding numerical integration.

First, I present the h-likelihood approach for fitting the fundamental model describing in-
dividual heterogeneity in mark-recapture studies. The conditional likelihood approach allows
the model to be regarded as a generalized linear mixed model (GLMM). I construct the h-
likelihood for the model in the context of this GLMM. The population size is estimated via the
Horvitz-Thompson estimator.

Second, I extend my approach to fit advanced models accounting for individual heterogene-
ity along with variation over time and individuals’ trap responses. The conditional likelihood
approach enables these models to be treated as vector GLMMs. The approach from the first
project is adapted to fit these models with multi-dimensional response variables. The Horvitz-
Thompson estimator is again employed to estimate the population size.

Finally, I develop the h-likelihood approach to fit more flexible models describing individ-
ual heterogeneity. As standard models assume a linear relationship, I apply the structure of
generalized additive models through B-spline, which can be considered as a GLMM with the
conditional likelihood penalized for roughness. Again, I apply the h-likelihood to fit this model
and to estimate the population size using the Horvitz-Thompson estimator.
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Chapter 1

Introduction

Understanding the dynamic forces of a population and the factors that affect these forces is a
key step to developing conservation policies and management plans. In biological science, the
study of population dynamics has aimed to preserve many endangered species distinguished
by the Red List of the International Union for Conservation of Nature (IUCN). According
to the IUCN, over 40,000 species are threatened with extinction, and their number is about
28% of all assessed species worldwide (see https://www.iucnredlist.org/). Considering specific
taxa, Hoffmann et al. (2011) presented combined results for 5487 species of mammals under
a conservation status and found that one-fifth are threatened with extinction with a higher risk
for large-bodied mammals than for other species. Similarly, Dulvy et al. (2014) reported that
one-quarter of sharks and ray species are in danger, while large-bodied and shallow-water
species are at the highest risk of extinction. For amphibians, which comprise the second-
largest proportion of the Red-listed species next to cycads (a relatively small group of plants
containing only 300 species), Trull et al. (2018) found that the worldwide decline of amphibians
is strongly related to climate changes, human disturbance, the presence of invasive species,
nature-system modification, and pollution, with these factors compounding each other where
they appear together. The endangered birds on the Red List are also significantly affected by
climates change, along with the above factors influencing amphibians, as shown by Langham
et al. (2015).

Another practice where understanding the dynamic forces of a population is important is
the study of bird migration. Migration of birds species including storks and swallows has been
observed since 4th century, BC, and over 4000 bird species, 40% of all birds species in the
world, are known to migrate according to the Royal Society for the Protection of Birds (RSPB)
(see https://www.rspb.org.uk/). As one main cause that birds migrate is to move from areas with
a low or decreasing resources to other areas with high or increasing resources, studying their
movement has frequently informed about the ecosystem and resource availability in an area.
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2 Chapter 1. Introduction

This information is further applied to the control of the ecosystem artificially by managing
bird migration; for example, Karp et al. (2013) prevented the consumption of US$192 ha-year
on average for pest-removal in Costa Rica by providing habitats for borer-consuming birds.
Since early 2000s, however, the climate change has significantly changed bird migration be-
haviours, including the timing of migration, as shown by Jenni and Kery (2003). To restore the
behaviours and manage bird migrations better, potential factors that influence bird behaviour,
including the climate change, have been actively studied. To avoid misleading analysis, it has
been essential to choose appropriate experimental methods to obtain data and develop different
statistical models to analyze data, depending on experimental conditions.

Mark-recapture (MR) experiments are one common method used to collect data to study
the dynamics of many different populations. As an example, Pilliod et al. (2010) performed a
MR experiment to collect data for the Eungella torrent frog (Taudactylus eungellensis) on the
Red List, for which the exact number cannot be counted as they have habitats worldwide. In
practice, animals are difficult to follow in the wild, and it is often the case that only a portion
of individuals of interest can be observed throughout a study period. The MR method is conve-
nient for such a case in that data are collected through a repeated process of capturing, marking,
and recapturing a subset of individuals in a study area. Assuming that the individuals in the
sample are representative of the entire population, the pattern of recaptures of the marked indi-
viduals provides information that can be used to make inferences about the entire population,
including the individuals never captured (e.g., to estimate the total population size).

One common challenge in analyzing data from MR studies is accounting for individual
heterogeneity. Individual variation is almost inevitable in the MR method as individuals never
behave in exact same manner. For example, individuals with different characteristics, such as
body mass, can have different detection rates. Many previous authors have considered the use
of methods to account for individual heterogeneity when modelling data from MR studies. The
study of Otis et al. (1978) conducted to estimate the population size for snowshoe hares (Le-

pus americanus) is a typical example that shows that modelling heterogeneity provides a more
reliable estimate of the population size than the estimate without modelling it. Generally, the
models with individual heterogeneity account for two forms of individual variation: that due
to measurable characteristics (i.e., observed heterogeneity) or that due to unmeasured charac-
teristics (i.e., unobserved heterogeneity). Some works have clearly shown that ignoring either
type of individual heterogeneity causes biased estimates, which may lead to incorrect answers
to ecological questions that researchers investigate (Hwang and Huggins, 2005; Pledger and
Efford, 1998).

The three projects in this thesis consider multiple MR models accounting for both observed
and unobserved heterogeneity, modelled by individual covariates and random effects. Each



1.1. CommonMethodology 3

project develops a novel method for fitting different MR models based on a statistical approach
using the h-likelihood, originally proposed by Lee and Nelder (1996). All previous methods
for fitting the same MR models have been based on either frequentist or Bayesian approaches,
which require quadrature or sampling methods to integrate out random effects and to compute
the likelihood function. The h-likelihood, on the contrary, eliminates the need for numerical
integration and allows for fitting algorithms for the MR models that are simple to implement in
modern software. The remainder of this chapter provides background information, including
an introduction to MR models and the h-likelihood, and a summary of the three projects.

1.1 Common Methodology

1.1.1 MR models for heterogeneity

In a typical MR experiment, subsets of individuals from a population are repeatedly captured
(or in some way detected), marked (or otherwise identified), and released back into the popu-
lation for a fixed number of times. The aim of the experiment is to understand characteristics
of the population, such as an unknown population size, through information provided by the
recapture of individuals. To describe MR data in this chapter, the following assumptions and
mathematical notations are applied. Suppose that the experiment is conducted over T distinct
sampling occasions, indexed by t = 1, ...,T . From the population, whose unknown size is de-
noted by N, n ≤ N individuals are captured in total. These individuals captured at least once are
indexed by i = 1, ..., n, and similarly, those never captured are indexed by i = n + 1, ...,N. I ad-
ditionally assume that the population is closed, which means that no birth, death, immigration,
or emigration of individuals can occur during the experiment.

Statistical models describing MR data (i.e., MR models) are based on the observed vari-
ables

yit = I(individual i is captured on occasion t) ,

where I(·) is the indicator function that returns 1 if the condition given in the argument is
satisfied, and 0 otherwise. Each yit is assumed to be an observation independently drawn
from the Bernoulli distribution with the success probability, pit = P(yit = 1). The success
probability is called the capture probability in many areas of MR literature. Depending on
the assumptions about the capture probability, pit, may be simplified into pi, pt or p, where
the subscript reduction indicates that pit are equal over the index or indices disregarded. For
example, if individual i has the same capture probability across the T sampling occasions, then
pi = pi1 = ... = piT . If this is the case, then it is sufficient to model the response variables as
the total number of times an individual is captured, which is observed as yi. =

∑T
t=1 yit. Such
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response variables are independent of each other, and each follows the binomial distribution
with T trials and success probability pi.

Given that the capture probability is unknown, the likelihood function is written by

L(N,p; y) =
N∏

i=1

T∏
t=1

pyit
it (1 − pit)1−yit ,

using the Bernoulli response variables, where p and y are the vectors including all pit and yit

across i and t, respectively. For clarity, the semicolon in L(·) divides arguments into two types
of quantities: unknown quantities on the left of semicolon, and known quantities, such as data,
on the right. Huggins (1989) derived that this likelihood can be split into two functions as the
following,

L(N,p; y) =
N∏

i=1

T∏
t=1

pyit
it (1 − pit)1−yit

=

[ n∏
i=1

∏T
t=1 pyit

it (1 − pit)1−yit

1 −
∏T

t=1(1 − pit)

]
× (1.1)

{ n∏
j=1

[
1 −

T∏
t=1

(1 − p jt)
] N∏

k=n+1

T∏
t=1

pykt
kt (1 − pkt)1−ykt

}
,

and maximized the first term, related to captured individuals only, to obtain the estimates of the
capture probabilities, but not the population size, N. His method was shown to be valid as the
first term corresponds to the conditional likelihood (Kalbfleisch and Sprott, 1973) taking N as
a nuisance parameter. To estimate unknown population size, N, Huggins (1989) subsequently
obtained the Horvitz-Thompson (HT) estimator (Horvitz and Thompson, 1952), which is

N̂(p) =
N∑

i=1

I
( T∑

i=1

yit ≥ 1
) 1
P(

∑T
i=1 yit ≥ 1)

=

n∑
i=1

1
1 −

∏T
t=1(1 − pit)

,

(1.2)

a function of the true values of pit. In practice, the values are unknown, so that the estimates of
the capture probabilities, p̂it, are obtained from the conditional likelihood, and then substituted
in place of pit in the HT estimator.

The MR models build a mathematical relationship between data observed during the MR
experiment and parameters characterizing a population. In general, the relationship is ex-
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pressed by
pit = g(ηit) ,

where
ηit = f (xit) .

Here xit is a vector of covariates observed for individual i on occasion t, f (·) is a known func-
tion, ηit is called the linear predictor, and g(·) is the link function. The link function is often
set as the logit (i.e., logit(a) = log(a/(1 − a))) or log function. Otis et al. (1978) and Huggins
(1989) defined ηit as a linear combination of the components in xit and parameters associated
with them; for example, ηit = β0 + β1x1 + β2x2 if xit = (x1, x2)′, and β0, β1 and β2 are the
parameters to be estimated. The types of covariates can be any information quantified, such as
individual and environmental, and depending on its properties, the index i or t may be dropped
from xit. The structure of the MR models through the linear combination linked to pit mimics
that of generalized linear models (GLMs) as described below.

1.1.2 GLM, GLMMs and GAMs

GLMs (Nelder and Wedderburn, 1972) are applied for analyzing a wide variety of research
outcomes. They generalize linear regression models, so that the response variables are related
to factors and covariates via a specific link function and follow distributions other than a normal
distribution. The class of GLMs covers many well-known statistical models, including logistic
regression models for binary data and also Poisson log-linear regression models for count data.

The structure of a GLM consists of three components: a random component, a systematic
component, and a link function. The random component specifies the distribution of the re-
sponse variables, n random variables, denoted by Y1, ...,Yn, whose observations are given by
y1, ..., yn. It is assumed that the response variables are independent of each other conditional on
the explanatory variables (i.e., factors and covariates) and have the density function of form,

f (yi; θi, ϕ) = exp
(
θit(yi) − b(θi)

ϕ
+ c(yi, ϕ)

)
(1.3)

for i = 1, ..., n, where θi is the natural parameter, ϕ is the dispersion parameter, and t(·), b(·) and
c(·, ·) are some known functions. The family of distributions with the density function written
as above is called the exponential family. The systematic component includes the explanatory
variables that combine to form the linear predictor

ηi = x′iβ , (1.4)
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where β is the vector of intercepts and fixed effects associated with the factors and covariates
composing the vector, xi. The last component, the link function, then connects ηi to θi through
the mean of t(Yi), denoted by µi = E(t(Yi)), such that

ηi = g(µi) .

This function is said to be the canonical link if g(·) is chosen to provide the identity ηi = θi.
More generally, the linkage between ηi and θi is established by the property of the exponential
family that

κ j(t(Yi)) =
∂ jb(θi)

∂θ
j
i

,

where κ j(t(Yi)) is the j-th cumulant of the random variable t(Yi), and thus the mean is given
by µi = κ1(t(Yi)) = ∂b(θi)/∂θi, depending on θi. The property also provides a formula for the
variance, Var(t(Yi)) = κ2(t(Yi)) = ∂µi/∂θi.

In some cases, it is necessary to extend the linear predictor to include random effects which
describe extra variation in the response variable that may, for example, be caused by a hier-
archical structure in the population due to sampling design. Generalized linear mixed models
(GLMMs) are the extended case of GLMs with such a linear predictor, where it is nearly al-
ways assumed that the random effects follow a multivariate normal distribution with mean zero
vector and unknown variance–covariance matrix. Specifically, GLMMs have the general form
of the linear predictor,

ηi = x′iβ + z′iv , (1.5)

extending equation (1.4) by adding the extra term, z′iv, where zi is a known covariate vector as-
sociated with v = (v1, ..., vm), v j is a random effect, and v ∼ N(0,Σ). The variance–covariance
matrix Σ is positive semidefinite, symmetric and has m(m + 1)/2 unique elements. To simplify
computation of parameter estimates by removing redundant elements when Σ has a specific
correlation structure (e.g., Σ = λA, where A is a known matrix such a priori), it is often decom-
posed by the Cholesky factorization Σ = LDL′ for some triangular matrix, L, and a diagonal
matrix, D. Hence, the linear predictor in equation (1.5) can be replaced by

ηi = x′iβ + z∗
′

i v∗ ,

where z∗′i = z′iL, v∗ = (v∗1, ...v
∗
m)′, and v∗ ∼ N(0,D). In this way, statistical methods pro-

vide more stable parameter estimates than considering the model with parameterization, as in
equation (1.5).

Another class of the models that extend GLMs in a different way is the class of generalized
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additive models (GAMs) which relax the assumption of linearity. In the framework of GAMs,
the linear predictor is defined by

ηi = f1(xi1) + · · · + fp(xip) ,

given that the dimension of covariates is p, and f1(·), ..., fp(·) are smooth functions such as
splines or polynomial functions with a fixed degree. I shall consider the smooth functions
expanded by the B-spline, which implies that

fl(xil) =
Kl∑

k=1

βlkblk(xil) (1.6)

for l = 1, ..., p, where blk(·) are the basis functions as determined in the work of de Boor (1971).
The computation of these functions is based on knots (i.e., pre-set points in the range of xil)
and can be readily obtained by recursive algorithms implemented in most modern software
packages. The model in equation (1.6) is a parametric form as it is a linear combination of
parameters and known covariates, so that it can be regarded as being in the class of GLMs.

One challenge with the above model is that its flexibility can lead to overfitting if it is fitted
as a GLM. To prevent this issue, a penalty term controlling roughness of the function fl(·) is
incorporated into the likelihood, resulting in what is called the penalized likelihood (Green,
1987). The penalized likelihood on the log scale is

M(β∗, ρ; y) = ℓ(β∗; y) −
p∑

l=1

1
2
ρlJl , (1.7)

where β∗ is the vector of all regression parameters, βlk, ℓ(β∗; y) is the log-likelihood function
of the original model, Jl is roughness penalties depending on the basis functions, and ρl are
tuning parameters that control the roughness penalty. The increase of Jl or ρl results in more
smooth, and vice versa. In my project, Jl is specified by the L2-norm,

Jl =

∫
| f (d)

l (xl)|2dx

= β∗
′

l Plβ
∗
l ,

where the (a, b)-th element of Pl is
∫

b(d)
la (xl)b

(d)
lb (xl)dxl, and the superscript (d) denotes the

d-order derivative of the basis functions. The second term in equation (1.7) is then replaced by

−

p∑
l=1

1
2
ρlβ

∗′

l Plβ
∗
l , (1.8)
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which can be regarded as the function proportional to the log of the density of multivariate
normal distribution for β∗l with mean vector, 0, and the variance–covariance matrix, (ρlPl)−1.
Therefore, the penalized likelihood in equation (1.7) is equivalent to the joint density of y,
whose distribution belongs to the exponential family, and β∗, which shows that GAMs belong
to the class of GLMMs with p groups of random effects sharing the p separate dispersion
parameters, ρ1,...,ρp.

1.1.3 H-likelihood

In this dissertation, I focus on the estimation procedure based on the h-likelihood as the primary
method for fitting MR models framed as either GLMMs or GAMs. The h-likelihood method
was first introduced by Lee and Nelder (1996) as an alternative to the standard Bayesian and
frequentist approaches for fitting GLMMs.

The h-likelihood is defined by the joint density of data and random effects, regarded as
the function of all unknown quantities that include parameters and the random effects. For
example, suppose that the models for data are GLMMs, as described in the previous section,
in which the random effects v j are assumed to be independent of each other and followN(0, λ)
for simplicity. The h-likelihood for GLMMs is given by

H(β, v, ϕ, λ; y, v) =
n∏

i=1

f (yi|v;β, ϕ)
m∏

j=1

f (v j|λ) , (1.9)

while the marginal likelihood for GLMMs, employed by classical and Bayesian approaches, is

L(β, ϕ, λ; y) =
∫
Rm
H dv . (1.10)

Maximum likelihood estimates (MLEs) of parameters are obtained by maximizing equation
(1.10) with respect to all parameters, β, ϕ and λ; meanwhile, in the h-likelihood estimation
procedure, estimates of all unknown quantities are obtained by maximizing H in equation
(1.9), or equivalently h = log(H), with respect to all parameters, β, ϕ and λ but also the ran-
dom effects, v, simultaneously. In consequence, the resulting estimates from the h-likelihood,
β̂, v̂, ϕ̂ and λ̂, are the so-called maximum h-likelihood estimates (MHLEs). For clarity of no-
tation, the semicolon in H(·; ·) divides arguments into unknown quantities on the left of the
semicolon and quantities whose distribution is considered in constructing the joint density on
the right. The random effects, v, appear on both sides of the semicolon as the h-likelihood is
constructed in part from the density of v, but v is a vector of unknown quantities to be estimated
by maximizing the h-likelihood.
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Table 1.1: Examples of distributions of v j and their canonical scales.

Distribution of v j Canonical Scale

Normal τ(v j) = v j

Gamma τ(v j) = log(v j)

Beta τ(v j) = logit(v j) = log
( v j

1 − v j

)
Inverse-Gamma τ(v j) = −v−1

j

It is noted that not all extended likelihoods (i.e., any joint density of data and random ef-
fects) can be considered as h-likelihoods within the framework developed by Lee and Nelder
(1996). The reason for this is that unless certain restrictions are applied, maximizing the ex-
tended likelihood may produce nonsense estimates (e.g., −∞; see example in Lee et al. (2017,
p.111)) while maximizing the marginal likelihood for the same model produces valid MLEs
that obey the usual asymptotic properties. To avoid this problem, it was shown by Lee and
Nelder (1996, 2001) and Lee et al. (2017) that the random effects must be transformed accord-
ing to a function determined by their distribution. That is, for GLMMs, the linear predictor
must be specified by

ηi = x′iβ + z′iτ(v),

where τ(·) is a specific function depending on the distribution of v. The function, τ(v), is known
as the canonical scale and shown to be unique up to linear transformation (Lee et al., 2017).
Some examples of canonical scales are provided in Table 1.1 for the case in which v j can follow
a common distribution other than the normal and are independent of each other. The canonical
scale for the normal random effects v j in GLMMs is the identity function, τ(v) = v, so that the
extended likelihood in equation (1.9) is a valid h-likelihood.

A key result of the estimation procedure based on a valid h-likelihood is that MHLEs also
satisfy the usual asymptotic properties of the MLEs (Lee and Nelder, 1996). For example,
given a large sample size, n, the MHLE, θ̂ = (β̂

′
, v̂′, ϕ̂, λ̂)′, approximately follows a normal

distribution such that
θ̂ − θ

·
∼ N(0,Var(θ̂ − θ)) ,

where
Var(θ̂ − θ) ≈

(
−

∂2h
∂θ∂θ′

)−1

. (1.11)
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Dividing θ into δ = (β′, v′)′ and ρ = (ϕ, λ)′, the variance–covariance matrix is rewritten by

∂2h
∂θ∂θ′

=


∂2h
∂δ∂δ′

∂2h
∂δ∂ρ′

∂2h
∂ρ∂δ′

∂2h
∂ρ∂ρ′

 , (1.12)

and Lee and Nelder (1996) showed that the off-diagonal blocks are matrices of all 0s if the
link function, g(·), and the canonical scale, τ(·), are identical. In fact, it was derived by Lee and
Nelder (1996) that the off-diagonal blocks are approximately matrices of all 0s even though g(·)
and τ(·) are different. This implies that the estimations of δ and ρ are approximately separable
and so leads to the fitting procedure that recursively performs two separate estimation steps
until convergence: one for estimating δ from the h-likelihood while fixing ρ = ρ̂ and the other
for estimating ρ from the h-likelihood while fixing δ = δ̂. Once δ̂ and ρ̂ are obtained by the
fitting procedure, equation (1.11) can be further approximated by

Var(θ̂ − θ) ≈


(
−

∂2h
∂δ∂δ′

)−1

0

0
(
−

∂2h
∂ρ∂ρ′

)−1


∣∣∣∣∣∣∣∣∣∣∣θ=θ̂

. (1.13)

Wald-type inferences can be obtained from this approximated variance–covariance matrix; for
example, the standard error of the i-th element in δ̂ is approximately the i-th diagonal of the
upper-left block matrix in equation (1.13), (−∂2h/∂δ∂δ′)−1|θ=θ̂.

1.2 Summary of Projects

The first project of my thesis (Chapter 2) involved developing the h-likelihood approach for
fitting the simplest MR model accounting for individual heterogeneity. This model depends on
individual covariates and random effects to model individual heterogeneity but no other covari-
ates to explore population dynamics. To fit the model, I construct the h-likelihood based on
MR data conditional on the individuals captured at least once, and show that the h-likelihood
is equivalent to the h-likelihood of a GLMM in which the response variables follow a positive-
binomial distribution of Patil (1962). Building on this connection, I employ the fitting proce-
dure of Lee and Nelder (1996, 2001), developed for fitting the class of GLMMs, for estimating
all parameters in the model, except for unknown population size. The unknown population
size is sequentially estimated by the HT estimator, given both parameters and random effects
estimated from the h-likelihood.

The second project (Chapter 3) is an extension of the first project to the case where the cap-
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ture probability changes during the experiment either due to time or behavioural effects. The
idea of this extension originated from the MR models of Otis et al. (1978), where the additional
parameters can relax the strong assumption that the capture probability is equal over all sam-
pling occasions. In particular, the time effect discretizes the capture probability by the number
of sampling occasions, and the behavioural effect divides the capture probability into the proba-
bility of initially capturing an individual and that of recapturing the individual. The connection
between these extended MR models and a general algebraic-advantageous form of statisti-
cal models is available by extending the class of GLMMs to vector GLMMs (VGLMMs). The
framework of VGLMMs allow the response variables to be multi-dimensional, such as the vec-
tor of indicators that if an individual is captured or not for every sampling occasion. I construct
the h-likelihood of these extended MR models based on MR data conditional on individuals
captured at least once and show that the h-likelihood is a special case of the h-likelihood of
VGLMMs. I propose the fitting algorithm for the models regarded as VGLMMs, similar to
that of the simplest model in the previous chapter. The estimation of unknown population size
is again based on the HT estimator, given the parameters and random effects estimated from
the h-likelihood.

The third project (Chapter 4) considers MR models that I use a GAM formulation to al-
low for the capture probability to depend on a non-linear function of individual covariates for
modelling observed heterogeneity. This project is motivated by the potential that the rela-
tionship between observed capture history and the individual covariates is more complicated
than simply a relationship explained by a linear combination of individual covariates. To al-
ter the linear relationship, an arbitrary function is defined and applied to each covariate in the
model, which mimics the structure of GAMs. Specifically, I convert each function into a sum
of known functions, called basis functions, using B-spline, and assign a regression parameter
to each basis function to regard the MR model as the model depending only on fixed effects
within the capture probability. Because the basis dimension can be high, overfitting this type
of MR model can be a severe issue, and therefore I construct the conditional likelihood of the
MR models with a penalized term, which indicates that the MR models belong to the class of
GLMMs. Hence, I directly apply the fitting algorithm based on the h-likelihood approach for
fitting GLMMs, as shown by Lee and Nelder (1996, 2001). The estimation of the unknown
population size is subsequently obtained by the HT estimator by substituting parameter esti-
mates from the h-likelihood.



Chapter 2

H-likelihood Approach to Basic MR
Models with Heterogeneity

2.1 Introduction

Modelling individual variation (i.e., differences among individuals) is a vital issue in analyzing
MR data, as is the case in other areas of statistical modelling. In biological science, individual
variation often refers to individual differences in physiological, morphological or behavioural
traits, including fitness components effecting reproduction and survival (Clutton-Brock, 1988;
Newton, 1989). Individual variation is commonly described under the umbrella term hetero-
geneity, and for many years, has been studied along with different statistical models to under-
stand phenomena arising in biological evolution.

In many cases, heterogeneity has been modelled by data observable from individuals (i.e.,
individual covariates) obtained during the process of a MR experiment. Individual covariates
are classified as discrete (i.e., categorical), such as strata, where each individual belongs to a
sub-population having the same defined feature, and continuous (i.e., numeric), such as physi-
cal measurements, describing a characteristic of individuals using numerical values. To model
MR data by individual covariates, the sequence of observations, data on when individuals are
captured in a study (e.g., capture history), has been linked to parameters characterizing the ef-
fect of the individual covariates on these observations. The form of the linkage is often mimics
the structure of generalized linear models (GLMs), which particularly connects the probabil-
ity of capturing an individual (i.e., capture probability) to a linear combination of individual
covariates.

One key drawback of modelling heterogeneity only based on individual covariates is that
it is never possible to model all sources of between-individual variation. Examples are factors

12
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that are not observed due to some experimental issues (e.g., lack of measurement resources) as
well as any unobservable factors that affect heterogeneity; however, the existence of unobserv-
able factors cannot be clearly determined. This component of variation is commonly referred
to as unobserved heterogeneity (Gimenez et al., 2018). To allow for unobserved heterogeneity,
early works proposed MR models that assumed the capture probability to be a random variable
for each individual following a distribution with support between 0 and 1. Some main works
that contributed to such MR models were provided by Burnham and Overton (1979), who
employed a beta distribution, Pledger et al. (2003), whose models assign a finite mixture dis-
tribution to the capture probability as well as to the survival probability, and Coull and Agresti
(1999), who used a log-normal distribution alternative to the beta distribution of Burnham and
Overton (1979). The MR models from the latter work is the model most similar to the structure
of GLMMs and thus has drawn most interest from researchers when applying various statistical
methods widely used for fitting GLMMs.

In general, the methods applied for fitting such MR models have been based on either fre-
quentist or Bayesian approaches. The common idea is that parameters are estimated from the
marginal likelihood, the function that integrates out the capture probability for each individual
from the joint density of MR data and the capture probabilities (i.e., complete data likelihood).
As the marginal likelihood has no analytic form, the methods have mainly relied on quadrature
or sampling to approximate the integrals, in addition to EM algorithm and Laplace approxi-
mation, as shown by Van Deusen (2002) and Herliansyah et al. (2022), respectively. For the
frequentist approach using quadrature, the methods are used to obtain MLEs, in which the
marginal likelihood is typically approximated by the Gaussian quadrature (Coull and Agresti,
1999; Gimenez and Choquet, 2010; White and Cooch, 2017). Within this approach, the meth-
ods are again classified by two ways of defining the MR likelihood, one computed from the
capture histories of all individuals including those never captured (Coull and Agresti, 1999;
Gimenez and Choquet, 2010), and the other computed conditional on the individuals that are
captured at least once (White and Cooch, 2017). It has been shown that both forms of the
likelihood result in almost identical parameter estimates, governing the capture probability,
but provide different estimates of the population size, for which the methods with a full like-
lihood estimate the population size at the same time as the other parameters, while for those
with the conditional likelihood estimate the population size in a separate step, such as using
the Horvitz-Thompson (HT) estimator. For the Bayesian approach, most methods are based
on approximating the integral through Markov chain Monte Carlo (MCMC) sampling, and pa-
rameters are estimated through the properties of the posterior density approximated by MCMC
(Bonner and Schofield, 2014; Durban and Elston, 2005; King and Brooks, 2008; King et al.,
2016a; Royle et al., 2007). Related works differ based on the techniques used to implement
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MCMC; for example, data augmentation completes the data by adding a large number of hypo-
thetical unobserved individuals which enables the MR models to be fitted by pre-implemented
MCMC in modern software (Royle et al., 2007). This technique particularly presets the su-
per population of pseudo-individuals with the potential to be in the real population with an
unknown probability, and thus the dimension of parameters to be estimated is fixed.

The objective of my work in this chapter is to develop a novel approach for fitting MR mod-
els including unobserved heterogeneity based on the h-likelihood of Lee and Nelder (1996). To
my knowledge, this project represents the first attempt to apply the methods of h-likelihood to
MR data. The MR models I consider have been widely used for exploring closed populations
in which individuals do not migrate throughout a study area, and no birth or death of indi-
viduals occur during the experiment. For simplicity, I focus initially on models that assume
that the capture probability is constant over time but do allow for individual effects as the re-
sult of covariates. I define the h-likelihood based on the MR data restricted to the individuals
captured at least once, and the population size is subsequently estimated by the HT estimator.
One main advantage of my approach is the availability of a simple fitting algorithm, which is
similar to the iterative re-weighted least square (IRLS) that has been generally used for fitting
ordinary GLMs. Moreover, another key advantage is that the h-likelihood is constructed from
the complete-data likelihood itself, which avoids any integration by quadrature or sampling, as
required for all previous methods. In addition to the fitting algorithm, the bias correction for
parameter estimates from the h-likelihood is provided by following the technique introduced
by Yun and Lee (2004), so the population size depending on these parameters is estimated
more accurately.

The format of this chapter is as follows. Section 2.2 describes the framework of the MR
models and the development of my approach based on the h-likelihood. Section 2.3 provides
a simulation study with multiple scenarios, and in Section 2.4, I apply my approach to a well-
known MR data set collected for snowshoe hares (Lepus americanus). Section 2.5 discusses
the results obtained in Sections 2.3 and 2.4.

2.2 Methods

2.2.1 Description of MR model: Mh

I consider a particular type of MR model which depends on two main components: individual
covariates and random effects for modelling observed and unobserved heterogeneity, respec-
tively. The models are specified in terms of the capture probability for each individual, assumed
to follow a logit-normal distribution and be linked to a linear combination of the covariates and
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Table 2.1: Summary of notation used in Chapter 2.

Notation Definition

N Unknown population size

n Number of individuals captured

T Number of sampling occasions

yi. Number of sampling occasions that individual i is captured

pi Capture probability for individual i

α Intercept parameter

β Vector of all fixed effects including α

xi Covariate vector associated with β for individual i

X Design matrix with the i-th row xi

vi Random effect for individual i

σv Unknown standard deviation of vi

θ Vector of all unknown quantities; (β′, v′, σv)′

δ Vector of all fixed and random effects; (β′, v′)′

Ia a × a identity matrix

0a Vector of 0s with dimension of a

0a×b a × b matrix of 0s

1a Vector of 1s with dimension of a

a Vectorized form of elements ai for i = 1, ..., n; e.g., v = (v1, ..., vn)′

dim(a) Dimension of vector a
diag(a, b, c) Diagonal matrix consisting of the elements a, b and c in the diagonal

a ⊙ b Element-wise multiplication of vectors a and b; e.g., (2, 4)′ ⊙ (1, 2)′ = (2, 8)′

a ⊘ b Element-wise division of vectors a and b; e.g., (2, 4)′ ⊙ (1, 2)′ = (2, 2)′

random effects, following a normal distribution. These assumptions were introduced by Coull
and Agresti (1999) who also considered the same model I consider in their work. In addition,
I apply the condition that the individual covariates are constant over time, and other types of
covariates, such as environmental factors, are not studied for the simplicity of the models. The
models also extend one of eight MR models proposed by Otis et al. (1978), which assumes
that the capture probability for each individual is sampled from identical beta distributions,
instead of the logit-normal distribution, and does not allow individual covariates for modelling
observed heterogeneity. I shall follow the notation used by Otis et al. (1978) and denote the
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model I consider byMh throughout this chapter for convenience.
Key mathematical notations are summarized in Table 2.1. Based on these notations, the

framework of Mh is defined as follows. The values, yi. =
∑T

t=1 yit for i = 1, ..., n, are the
observations of the response variables forMh. If the capture probability is constant over time,
then the i-th response variable follows the binomial distribution with the number of trials set as
T and the success probability, pi. The density function of the response variable is given by

f (yi.|vi; pi) =
(
T
yi.

)
pyi.

i (1 − pi)T−yi. , (2.1)

where pi depends on the vector of observed covariates, xi, and the random effect, vi. Specifi-
cally, I model pi as

logit(pi) = x′iβ + vi , (2.2)

where vi ∼ N(0, σv), and v1, ..., vn are independent of each other. When no individual covariates
are observed, pi is alternatively modelled by

logit(pi) = α + vi . (2.3)

Modelling pi by equation (2.2) and (2.3) indicates that logit(pi) ∼ N(x′iβ, σv) and logit(pi) ∼
N(α, σv). Therefore, the framework of Mh correctly assumes that the capture probabilities
follow a logit-normal distribution. Except as noted otherwise, I use Mh to refer to the more
general model for pi in equation (2.2).

2.2.2 Conditional h-likelihood

Conditioning on the individuals captured at least once, I first define the complete-data likeli-
hood ofMh, which is

L(β, σv; y., v) =
n∏

i=1

f (yi.|yi. > 0; pi) × f (vi;σv)

=

n∏
i=1


(

T
yi.

)
pyi.

i (1 − pi)T−yi.

πi

 ×
[

1

σv
√

2π
exp

(
−

v2
i

2σ2
v

)]
,

(2.4)

where πi = 1 − (1 − pi)T is the probability that individual i is captured at least once. The
previous methods for obtaining parameter estimates are based on the marginal likelihood

L(β, σv; y.) =
∫
Rn
L(β, σv; y., v)dv , (2.5)
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in which quadrature or sampling methods are necessary for the integration. In the h-likelihood
approach, β, σv and v are estimated by maximizing equation (2.4), which satisfies the definition
of the h-likelihood with the canonical scale, described in Chapter 1. According to Yee et al.
(2015), the first term of the product in equation (2.4) is identical to the conditional likelihood
in equation (1.1) for Mh and can be regarded as the likelihood of a GLM with the following
components: the observed response variables, yi. for i = 1, ..., n, that are greater than 0, the
linear predictor, ηi = logit(pi), and the density of yi. in form of equation (1.3) with letting

yi = yi.

θi = ηi

t(yi) = yi.

b(θi) = −T log(1 − pi) + log(πi)

ϕ = 1

and

c(yi, ϕ) = log
(
T
yi.

)
(the notations in the left-hand sides of the equations are described in Chapter 1). In conse-
quence, the complete-data likelihood ofMh corresponds to the h-likelihood of a GLMM that
extends this GLM to the random effects v through ηi. I call the h-likelihood built on the con-
ditional likelihood as the conditional h-likelihood and denote it by Hc(·; ·). The conditional
h-likelihood ofMh is then given by

Hc(θ; y., v) = L(β, σv; y., v) , (2.6)

where θ is the vector including all unknown quantities. Additionally, the log of the conditional
h-likelihood is denoted by hc.

2.2.3 Bias correction for MHLEs

According to Lee (2001) and Lee et al. (2017), MHLEs (i.e., estimates obtained by directly
maximizing the h-likelihood) can be severely biased. This bias occurs particularly when the
sample space of the response variable is very restricted, including the case forMh having the
sample space {1, . . . ,T }. Specifically, when the sample space has a few discrete components,
then the range of MHLEs, depending on data, will have a restricted range of possible values
or a discrete space including only a few distinct points in the worst case. The restricted or
discrete range of the MHLEs for random effects affects MHLEs for all unknown quantities
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if the distributions of the random effects have supports on a continuous space, such as IR. I
explain the bias in the MHLE for θ by the following rationales:

1. First, the MHLEs for vi are biased due to the restricted range of possible estimates, which
is not enough to cover the continuous support IR.

2. As a result, the MHLEs for β and σv will be biased as they are computed conditional on
the MHLEs for vi fromHc.

My rationale in Step 1 is supported by the normal equation, where the MHLE for v is computed
by solving

∂hc

∂v
= y. − (T1n ⊙ p) ⊘ π −

1
σ2

v
v = 0n ,

in which y and xi, determining p and π, are only the variables. Hence, if xi has a narrow range
or is discrete, or T is small, the range of the solution for every vi is restricted to fall in a small
number of narrow intervals in IR or discrete, which cannot cover the support of the distribution
of vi, IR, sufficiently.

To come up with a solution to correct the bias, I apply the bias correction proposed by Yun
and Lee (2004), based on maximizing the adjusted profile h-likelihood (APHL), introduced by
Lee and Nelder (1996). The method corrects the bias through the following estimation steps
separated:

Step 1 (fixed effects estimation) Given v̂ and σ̂v, β is estimated by maximizing the APHL.

Step 2 (random effects estimation) Given β̂ from Step 1 and σ̂v, v is estimated by maxi-
mizing the conditional h-likelihood.

Step 3 (dispersion parameters estimation) Given β̂ from Step 1 and v̂ from Step 2, σv is
estimated by maximizing the APHL.

Step 4 Iterate Steps 1 - 3 until convergence.

In detail, following Lee and Nelder (1996), I define the APHLs in Steps 1 and 3 by

hA
c (β; y., v̂, σ̂v) = hc −

1
2

log
[
det

(
−

1
2π

∂2hc

∂v∂v′
)]∣∣∣∣∣

v=v̂,σv=σ̂v

(2.7)

and
hA

c (σv; y., v̂, β̂) = hc −
1
2

log
[
det

(
−

1
2π

∂2hc

∂v∂v′
)]∣∣∣∣∣δ=δ̂ , (2.8)

where equation (2.7) is regarded as a function of β, and equation (2.8) is regarded as that of σv.
It was shown by Lee and Nelder (1996) that the APHL is equal to the marginal likelihood in



2.2. Methods 19

Algorithm 1 Fitting algorithm forMh.

1: Set initial value θ̂
(0)
= (δ̂

′(0)
, σ̂(0)

v )′

2: Let r = 0
3: while convergence criterion θ̂

(r)
≈ θ̂

(r+1)
not met do

4: Let δ̂
(r,0)
= δ̂

(r)
;

5: Let t = 0;
6: while convergence criterion δ̂

(r,t)
≈ δ̂

(r,t+1)
not met do

7: (Step 1) Given σ̂(r)
v , solve equation (2.9) for δ̂

(r,t)
;

8: t ← t + 1
9: end while

10: Let δ̂
(r+1)
= δ̂

(r,t)

11: (Step 2) Given δ̂
(r+1)

, obtain σ̂(r+1)
v by fitting the gamma GLM with

• observed response variables: v̂(r+1) = (v̂(r+1)
1 , ..., v̂(r+1)

n )′

• prior weight: qi in equation (2.10) for v̂(r+1)
i , given δ̂

(r+1)
and σ̂(r)

v

• linear predictor: τ = log(σ2
v)

12: end while

which the integral in equation (2.5) is approximated by the first-order Laplace’s method, and
the estimation of dispersion parameter in GLMMs is separable from that of fixed effects (e.g.,
∂hA

c /∂β∂σv ≈ 0). Hence, the parameters estimated from equations (2.7) and (2.8) are expected
to be close to those obtained from the marginal likelihood in equation (2.5). These APHLs do
not estimate vi along with β and σv, and so the bias in the raw MHLEs for β and σv, caused by
the first rationale, can be reduced considerably by replacing them with β̂ and σ̂v obtained from
the APHLs.

2.2.4 Fitting algorithm

I derive a fitting algorithm for obtaining bias-corrected estimates of parameters and random
effects, θ̂, based on the three main steps using the APHLs and the conditional h-likelihood.
The fitting algorithm is extended from the algorithm provided by Noh and Lee (2007), who
considered the same bias correction and the framework of GLMMs with binary data, but not
the framework of any MR models such asMh. The algorithm performs the three main steps
by the iterative re-weighted least squares (IRLS), while combining Steps 1 and 2 to reduce
computation time.

In Algorithm 1, I illustrate the details of the algorithm for fittingMh. Step 1 of the algo-
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rithm solves two normal equations,

∂hA
c

∂β
= X′(y. − µ − s) = 0dim(β)

with respect to β, and
∂hc

∂v
= (y. − µ) −

1
σ2

v
v = 0n

with respect to v, of which the equation for the IRLS,

T′W(t−1)Tδ̂(t)
= T′W(t−1)z∗(t−1) , (2.9)

is derived after some re-arrangements. In this equation, δ(t) = δ̂ at the t-th iteration,

T =

 X In

0n×dim(β) In


is the the design matrix such that (η′, v′)′ = Tδ with η = (η1, ..., ηn)′ = (logit(p1), ..., logit(pn)),

W(t) =


diag

(
∂µ1

∂η1
, ...,

∂µn

∂ηn

)
0n×n

0n×n
1
σ2

v
In


∣∣∣∣∣∣∣∣∣∣
δ=δ̂

(t)
,σv=σ̂v

is the t-th weight matrix, and

z∗(t) =

 η + diag
(
∂µ1

∂η1
, ...,

∂µn

∂ηn

)
(y. − µ − s)

s


∣∣∣∣∣∣∣∣∣δ=δ̂(t)

,σv=σ̂v

is the t-th adjusted response variable of the IRLS equation. For the terms within T, W(t) and
z∗(t), I write

µ = E(y) = (µ1, ..., µn)′

and
s = (s′1, ..., s

′
n)′ ,

and have derived that

µi =
T pi

πi
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and

si =
1
2

(
−
∂2hc

∂v2
i

)−1(∂2µi

∂η2
i

+
∂2µi

∂ηi∂vi

∣∣∣∣∣
vi=v̂i

∂v̂i(β, σv)
∂ηi

)
,

where v̂i(β, σv) is the MHLE for vi given fixed values of β and σv,

∂µi

∂ηi
=

T pi(1 − pi)
πi

−
T 2 p2

i (1 − πi)
π2

i

,

∂2µi

∂η2
i

=
∂2µi

∂ηi∂vi
=

T pi(1 − pi)
πi

−
T 2 p2

i (1 − πi)
π2

i

−
2T p2

i (1 − pi)
πi

+
T 2 p3

i (1 − πi)
π2

i

−
2T 2 p2

i (1 − pi)
π2

i

+
2T 3 p3

i (1 − πi)

π3
i

+
2T 2 p2

i (1 − pi)
πi

−
T 3 p3

i (1 − πi)
π2

i

,

and
∂v̂i(β, σv)

∂ηi
=

(
−
∂2hc

∂v2
i

)−1 ∂2hc

∂vi∂ηi

in which

−
∂2hc

∂v2
i

=
∂µi

∂ηi
+

1
σ2

v

and
∂2hc

∂vi∂ηi
= −

∂µi

∂ηi
.

The IRLS algorithm repeatedly solves equation (2.9) about δ̂
(t)

until convergence is achieved
for the solution of equation (2.9). In Step 2 of the algorithm, the normal equation

∂hA
c

∂τ
=

n∑
i=1

∂σ2
v

∂τ

vi − (1 − qi)σ2
v

2σ4
v

= 0

is solved as a function of τ = log(σ2
v), where

qi =

(
−
∂2hc

∂v2
i

)−1( ∂2µi

∂ηi∂vi

∣∣∣∣∣
vi=v̂i

∂v̂i(β, σv)
∂τ

+
∂2hc

∂vi∂τ

)
(2.10)

in which
∂v̂i(β, σv)

∂τ
=

(
−
∂2hc

∂v2
i

)−1 ∂2hc

∂vi∂τ

and
∂2hc

∂vi∂τ
=

1
σ2

v
.
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The normal equation is equivalent to that of a gamma GLM (i.e., an ordinary GLM with the
response variable following a gamma distribution) such that the response variables are observed
as vi, each of which has the prior weight, qi, and linear predictor, τ = log(σ2

v). This model can
be fit easily by using existing routines in most modern software, and the estimate τ̂ can then be
backtransformed to σ̂v = exp(τ̂). The general IRLS formula for ordinary GLMs can be found
in the work of McCullagh and Nelder (2019).

To compute the variance–covariance matrix for θ̂ − θ, I apply the ML-like properties of the
h-likelihood, as described in Chapter 1. According to equation (1.13), the covariance-variance
matrix for θ̂ − θ is given by

Var(θ̂ − θ) =

 Var(δ̂ − δ) 0dim(δ)

0′dim(δ)
Var(σ̂v)

 ,
where I have derived that

Var(δ̂ − δ) ≈ (T′W∗T)−1|θ=θ̂ .

I have computed Var(σ̂v) by applying the delta method, such that Var(σ̂v) ≈ σ2
v/4 × Var(τ̂),

and obtained Var(τ̂) directly from the IRLS algorithm for fitting the gamma GLM as described
above. When the population size is estimated (Section 2.2.5), I have need of the variance of
v̂(β, σv) and approximated it by

Var(v̂(β, σv) − v) ≈
(
−

∂2hc

∂v∂v′
)−1

≈

[
diag

(
∂µ1

∂η1
, ...,

∂µn

∂ηn

)
+

1
σ2

v
In×n

]−1∣∣∣∣∣θ=θ̂ .
These covariance matrices can be used to draw Wald-typed inference through the asymptotic
properties of the h-likelihood,

δ̂ − δ
·
∼ N(0dim(δ),Var(δ̂ − δ)) (2.11)

and
v|y.

·
∼ N(v̂(β, σv),Var(v̂(β, σv) − v)) , (2.12)

as shown by Lee and Nelder (1996), if the sample size, n, is large enough. I shall use these
asymptotic properties to make inference for the population size, N.
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2.2.5 Estimation of population size

The method I propose to estimate N is based on the HT estimator in equation (1.2). Given δ, I
rewrite the HT estimator as

N̂(δ) =
N∑

i=1

ci

πi
=

n∑
i=1

1
πi
,

where ci = I(yi. > 0). If v is not considered in the model (i.e., unobserved heterogeneity is
not modelled), then as β is unknown in practice, Huggins (1989) suggested the idea that the
HT estimator is approximated by substituting β̂. My method extends this idea to δ and initially
considers the estimator

N̂(δ̂) =
n∑

i=1

1
π̂i
,

where δ̂ is obtained by maximizing equation (2.6) as in Algorithm 1.
Practically, I have found that N̂(δ̂) underestimates the true value of N, typically when the

values of pi are close to 0. To show the bias in N̂(δ̂) and derive an unbiased estimator by
correcting this bias, I expand N̂(δ̂) about δ by the first-order Taylor series, which results in

N̂(δ̂) ≈ N̂(δ) +
∂N̂(δ)
∂δ′

(δ̂ − δ) , (2.13)

and expand N̂(δ) and ∂N̂(δ)

∂δ′
about δ̃ = (β, v̂(δ, σv)) by the same method as well, which brings

about

N̂(δ) ≈ N̂(δ̃) +
∂N̂(δ̃)

∂δ̃
′ (δ − δ̃) (2.14)

and
∂N̂(δ)
∂δ′

≈
∂N̂(δ̃)

∂δ̃
′ + (δ − δ̃)′

∂2N̂(δ̃)

∂δ̃
′
∂δ̃

. (2.15)

Applying the expectation to the above equations, conditioning on ci for i = 1, ...,N and δ only
for equation (2.13), I obtain

E(N̂(δ̂)|c, δ) ≈ N̂(δ) +
∂N̂(δ)
∂δ′

(δ̃ − δ) (2.16)

E(N̂(δ)|c) ≈ N̂(δ̃) (2.17)

and

E
(
∂N̂(δ)
∂δ′

∣∣∣∣∣c) ≈ ∂N̂(δ̃)

∂δ̃
′ , (2.18)

in which the properties that E(δ̂|δ) ≈ δ̃ and E(δ) ≈ δ̃ from equations (2.11) and (2.12) are
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applied. Additionally, I obtain the following expectation from equation (2.15),

E
(
∂N̂(δ)
∂δ′
δ

∣∣∣∣∣c) ≈ ∂N̂(δ̃)
∂δ̃
δ̃ + E

(
δ′
∂2N̂(δ̃)

∂δ̃
′
∂δ̃
δ

∣∣∣∣∣c) − δ̃′∂2N̂(δ̃)

∂δ̃
′
∂δ̃
δ̃

=
∂N̂(δ̃)
∂δ̃
δ̃ + tr

(
∂2N̂(δ̃)

∂δ̃
′
∂δ̃

Var(δ)
)
,

(2.19)

required in the expectation in equation (2.21). Note that the final manipulation depends on the
identity

E(ϵ′Λϵ) = tr(ΛVar(ϵ)) + E(ϵ)′ΛE(ϵ) (2.20)

for a random vector ϵ and a known matrix Λ, as shown by Mathai and Provost (1992, pg.50).
The application of the expectation about δ to equations (2.16) and substitution of equations
(2.17), (2.18) and (2.19) into this expectation leads to

Eδ(E(N̂(δ̂)|c, δ)) = E(N̂(δ̂)|c)

≈ E(N̂(δ)|c) + E
(
∂N̂(δ)
∂δ′
δ̃

∣∣∣∣∣c) − E
(
∂N̂(δ)
∂δ′
δ

∣∣∣∣∣c)
= N̂(δ̃) − tr

(
∂2N̂(δ̃)

∂δ̃
′
∂δ̃

Var(δ)
)
.

(2.21)

As Huggins (1989) showed that E(N̂(δ̃)) ≈ N in equation (2.21), it is true that

E(E(N̂(δ̂)|c)) = E(N̂(δ̂))

≈ N − tr
(
∂2N̂(δ̃)

∂δ̃
′
∂δ̃

Var(δ)
)
,

and this result implies that N̂(δ̂) has negative bias tr
(
∂2N̂(δ̃)

∂δ̃
′

∂δ̃
Var(δ)

)
. Hence, I propose the new,

approximately unbiased estimator

N̂⋆(δ̂) =
n∑

i=1

1
π̂i
+ tr

(
∂2N̂(δ̃)

∂δ̃
′
∂δ̃

Var(δ)
)∣∣∣∣∣δ=δ̂ ,

where
∂2N̂(δ̃)

∂δ̃
′
∂δ̃
= −

n∑
i=1

T pi(1 − πi)
[ (1 − pi)

π2
i

+ T pi

( 1
π2

i

−
2
π3

)]
xix′i

and

Var(δ) =

 0dim(β)×dim(β) 0dim(β)×n

0n×dim(β) Var(v̂(β, σv))

 .
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I found in my simulation study that this unbiased estimator, N⋆(δ̂), more accurately estimates
N than the naive estimator, N̂(δ̂), in general.

To compute the variance of N̂⋆(δ̂), and so construct a confidence interval (CI) for N, I
employ the law of iterated expectations, which indicates that

Var(N̂⋆(δ̂)) = E(Var(N̂⋆(δ̂)|c)) + Var(E(N̂⋆(δ̂)|c))

= Ec[Eδ(Var(N̂⋆(δ̂)|c, δ)))] + Ec[Varδ(E(N̂⋆(δ̂)|c, δ)))]

+ Var(E(N̂⋆(δ̂)|c)) .

In this equation, I substitute

1) Ec[Eδ(Var(N̂⋆(δ̂)|c, δ)))] ≈ Ec

[
Eδ

(
∂N̂(δ)
∂δ′

Var(δ̂ − δ)
∂N̂(δ)
∂δ

)]
≈
∂N̂(δ̃)

∂δ̃
′ Var(δ̂ − δ)

∂N̂(δ̃)
∂δ̃

+ tr
(
∂2N̂(δ̃)

∂δ̃
′
∂δ̃

Var(δ̂ − δ)
∂2N̂(δ̃)

∂δ̃
′
∂δ̃

Var(δ)
)
,

(2.22)

obtained by computing the variance of the expression in equation (2.13), applying the expecta-
tion in equation (2.15) and the formula in equation (2.20);

2) Ec[Varδ(E(N̂⋆(δ̂)|c, δ)))] ≈ Ec

[
Varδ(N̂(δ)) + δ̃

′
Varδ

(
∂N̂(δ)
∂δ′

)
δ̃ + Varδ

(
∂N̂(δ)
∂δ′
δ

)]
= Ec[Var(N̂(δ)|c)] + Ec

[
δ̃
′
Var

(
∂N̂(δ)
∂δ′

∣∣∣∣∣c) δ̃] + Ec

[
Var

(
∂N̂(δ)
∂δ′
δ

∣∣∣∣∣c)] ,
(2.23)

derived by computing the variance of the expression in equation (2.13), where

Ec[Var(N̂(δ)|c)] ≈
∂N̂(δ̃)

∂δ̃
′ Var(δ)

∂N̂(δ̃)
∂δ̃

Ec

[
δ̃
′
Var

(
∂N̂(δ)
∂δ′

∣∣∣∣∣c) δ̃] ≈ δ̃′∂2N̂(δ̃)

∂δ̃
′
∂δ̃

Var(δ)
∂2N̂(δ̃)

∂δ̃
′
∂δ̃
δ̃
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and

Ec

[
Var

(
∂N̂(δ)
∂δ′
δ

∣∣∣∣∣c)] ≈ ∂N̂(δ̃)

∂δ̃
′ Var(δ)

∂N̂(δ̃)
∂δ̃

+ Var
(
δ′
∂2N̂(δ̃)

∂δ̃
′
∂δ̃
δ
)
+ δ̃

′∂2N̂(δ)

∂δ̃
′
∂δ̃

Var(δ)
∂2N̂(δ)

∂δ̃
′
∂δ̃
δ̃

=
∂N̂(δ̃)

∂δ̃
′ Var(δ)

∂N̂(δ̃)
∂δ̃

+ 2tr
(
∂2N̂(δ̃)

∂δ̃
′
∂δ̃

Var(δ)
∂2N̂(δ̃)

∂δ̃
′
∂δ̃

Var(δ)
)
+ 5δ̃

′∂2N̂(δ)

∂δ̃
′
∂δ̃

Var(δ)
∂2N̂(δ)

∂δ̃
′
∂δ̃
δ̃ ,

obtained by computing the variance of the expressions in equations (2.14) and (2.15), and
applying the formula,

Var(ϵ′Λϵ) = 2tr(ΛVar(ϵ)ΛVar(ϵ)) + 4E(ϵ)′ΛVar(ϵ)ΛE(ϵ) ,

as given by Mathai and Provost (1992, p.76); and

3) Var(E(N̂⋆(δ̂)|c)) ≈ Var(N̂(δ̃))

≈

n∑
i=1

π̂−2
i − π̂

−1
i ,

(2.24)

as shown by Huggins (1989). In consequence, the final form of Var(N̂⋆(δ̂)) is

Var(N̂⋆(δ̂)) ≈
∂N̂(δ̃)

∂δ̃
′ Var(δ̂ − δ)

∂N̂(δ̃)
∂δ̃

+ 2
∂N̂(δ̃)

∂δ̃
′ Var(δ)

∂N̂(δ̃)
∂δ̃

+ 6δ̃
′∂2N̂(δ̃)

∂δ̃
′
∂δ̃

Var(δ)
∂2N̂(δ̃)

∂δ̃
′
∂δ̃
δ̃ + 2tr

(
∂2N̂(δ̃)

∂δ̃
′
∂δ̃

Var(δ)
∂2N̂(δ̃)

∂δ̃
′
∂δ̃

Var(δ)
)

+ tr
(
∂2N̂(δ̃)

∂δ̃
′
∂δ̃

Var(δ̂ − δ)
∂2N̂(δ̃)

∂δ̃
′
∂δ̃

Var(δ)
)
+

n∑
i=1

1
π2

i

−
1
πi
,

where
∂N̂(δ̃)
∂δ̃

= −

n∑
i=1

T pi

( 1
π2

i

−
1
πi

)
xi

and I approximate the variance by substituting δ̂ into δ in the final form. The variance is used
to compute CIs for N, as described below.

I consider two methods of constructing a CI for N, based either on the assumption that N

follows a normal distribution or that N − n follows a log-normal distribution. The assumption
of the normal distribution is available by the asymptotic property of the HT estimator (i.e.,
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N̂⋆(δ̂) ·∼ N(N,Var(N̂⋆(δ̂))) ), shown by Huggins (1989), and provides Wald CI,

N̂⋆(δ̂) ± 1.96
√

Var(N̂⋆(δ̂)) ,

when the confidence level is 95%. As an alternative to the Wald CI, Burnham et al. (1987) and
Chao (1987) derived a second CI with the assumption of the log-normal distribution for N − n,

(n + f̂0/C, n + f̂0 ×C) ,

where

C = exp
{

1.96
[

log
(
1 +

Var(N̂⋆(δ̂))

f̂ 2
0

)]1/2}
and f̂0 = N̂⋆(δ̂) − n. The log-normal CI has been recommended to solve the issue that the
sample distribution of N is often right-skewed rather than symmetric (i.e., fails to hold the
asymptotic normality of N̂⋆(δ̂)). In my simulation study, I found that the Wald CI generally
provides good reliability compared to the log-normal CI.

2.3 Simulation Study

I conducted a simulation study to assess the performance of my approach based on the h-
likelihood for fittingMh and estimating the population size. In particular, I generated nsim =

1000 data sets from Mh, in which the linear predictor is defined as equation (2.2), where
β = (α, βh), and βh is the effect of a single individual covariate xi. I considered 32 different
scenarios in total by setting α at one of the four values, −2.2, −1.39, −0.85 and −0.41, and σv

to be one of 0.1, 0.4, 0.7 and 1.0, T , while the combination, (T,N), is set as either (5, 100)
and (8, 250), expected to generate two different ranges of sample sizes (low and moderate),
respectively. In all scenarios, xi is generated from U(−1, 1) for each i, and the fixed effect βh is
always set as 0.7. The four divisions of α indicated four different levels of the median capture
probability, p̄i ≈ 0.1, 0.2, 0.3 and 0.4, corresponding to α = −2.2, −1.39, −0.85 and −0.41,
respectively.

My expectation for the simulation was that parameters would be more accurately estimated
as α increases, which raises pi values, while the CI based on the log-normal distribution would
outperform the Wald CI particularly under the setting of a lower value of α. My reasoning was
that the sample size would be affected by the values of α since the values in increasing order
provide the medians of πi, π̄i ≈ 0.57, 0.83, 0.94 and 0.98, and so a larger number of individuals
are captured at least once when α gets larger. If the sample size is large enough, for which
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scenarios with α = −0.41 are the optimal cases, the asymptotic property should hold so that
Wald CI should be reliable in general, while the asymptotic property is likely violated when
α is small and the Wald CI may not cover the true value of the population size very often.
The four values of σv will also affect the sample size generated, and I was also interested in
observing the influence of increasing of σv on the estimation of the remaining parameters.

The performance was assessed by three quantities: relative bias (RB), relative root mean
square error (RRMSE), and coverage probability (CP). The RB is computed by

RB =
nsim∑
s=1

θ̂s − θ

|θ|
, (2.25)

where θ̂s is the s-th estimate of a parameter θ. The RRMSE is computed by

RRMS E =

√√
1

nsim

nsim∑
s=1

(
θ̂s − θ

θ

)2

. (2.26)

The CP was computed for Wald CIs of all parameters estimated from the h-likelihood property
as well as the log-normal CI for N. The CP is defined as the proportion of coverage of θ,
defined by

CP = 100 ×
1

nsim

nsim∑
s=1

I(Ls < θs < Us) , (2.27)

where Ls and Us are the lower and upper bounds of the s-th 95% CI of interest obtained. I
computed all CIs with the confidence level set at 95%, and so their CP should be close to 95%
if the CIs were adequately reliable.

The results of the RB and RRMSE for each parameter estimate when (T,N) = (5, 100) are
illustrated in Figures 2.1 and 2.2, and those when (T,N) = (8, 250) are illustrated in Figures 2.3
and 2.4. Under both settings of (T,N), RB and RRMSE of all parameters have shown similar
patterns, but their values are larger in magnitude when (T,N) = (5, 100). As expected, all
parameter estimates, except for α̂, are estimated more accurately as α increases because their
RB and RRMSE get closer to 0 as α increases in general. However, the RB of α̂ seems not to
depend on α, and even more surprising, the RRMSE of it seems to be larger as α increases.
When α is fixed at a value, and σv increases, the RB and RRMSE of all parameter estimates,
except for σ̂v, get farther from 0. Meanwhile, the RB and RRMSE of σ̂v appear to be extremely
large if α = −2.2 and σv = 0.1. Although these results about α̂ and σ̂v are unexpected, the
most important estimator, N̂, has negligible bias when α > −2.2 and the RRMSE is less than
10% when α > −2.2, regardless of (T,N) setting.

The results of the CP for log-normal and Wald CIs for N are provided in Table 2.2. Con-



2.3. Simulation Study 29

Figure 2.1: Relative Bias (RB) for N̂ (upper left), α̂ (upper right), β̂h (lower left) and σ̂v (lower
right), when T = 5, and N = 100. The legend describing the linetypes for denoting the four
values of σv in the upper left plot is also applied to the other three plots. The scales of the
y-axis of some plots were changed to accommodate some extreme values.

trary to my hypothesis, I observed that the Wald CI outperforms the log-normal CI under all
scenarios. Specifically, the log-normal CI provided CPs comparable to the Wald CI only when
σv = 1.0 but fails to cover N too often when σv is set at the other three values. Meanwhile, the
CPs of the Wald CI seem to be unaffected by any changes in α or σv when (T,N) = (8, 250) and
even always close to 95%; however, when (T,N) = (5, 100), as α get lower, the CP gets less
than 95% for all settings of σv, except the value 0.1. In general, it can be concluded that Wald
CI is highly reliable when (T,N) = (8, 250), while underperforming when (T,N) = (5, 100),
but is more reliable when compared to the log-normal CI. It is surprising that log-normal CI
resulted in low CPs when α is low, which suggests that the distribution of the HT estimator is
almost symmetric even though pi is low.
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Figure 2.2: Relative root mean square error (RRMSE) for N̂ (upper left), α̂ (upper right), β̂h

(lower left) and σ̂v (lower right), when T = 5, and N = 100. The legend describing the
linetypes for denoting the four values of σv in the upper left plot is also applied to the other
three plots. The scales of the y-axis of some plots were changed to accommodate some extreme
values.

2.4 Application

The data I have applied my approach to comes from a well-known CR data set for snowshoe
hares (Lepus americanus), originally collected by Burnham and Cushwa and initially analyzed
by Otis et al. (1978). Several previous works, including Coull and Agresti (1999), Royle et al.
(2007) and King et al. (2016b), have used the same data to illustrate different methods for
fittingMh with the same linear predictor defined in equation (2.3). The data includes records
for n = 68 individuals captured on 9 successive days in the winter of 1972, although only the
last T = 6 days were considered since no captures were reported in the first three days.

For the purpose of comparing different approaches for fittingMh and estimating the popu-
lation size, I have applied three different methods:
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Figure 2.3: Relative Bias (RB) for N̂ (upper left), α̂ (upper right), β̂h (lower left) and σ̂v (lower
right), when T = 8, and N = 250. The legend describing the linetypes for denoting the four
values of σv in the upper left plot is also applied to the other three plots. The scales of the
y-axis of some plots were changed to accommodate some extreme values.

1. h-likelihood: I implemented Algorithm 1 in software R (R Core Team, 2020) and ob-
tained my bias-corrected HT estimator with log-normal and Wald CIs proposed in sec-
tion 2.2.5. The initial values used in the algorithm are: a value of α, generated by using
R package VGAM, which fits Mh without vi, vi = 0 for all i, and σv = 0.01. I found
that changes in any component of the initial values did not affect the results of parameter
estimates. R code for my method is included in Appendix A.

2. frequentist (numerical integration): the method I applied was proposed by White and
Cooch (2017). It uses Gauss-Hermite quadrature (GHQ) for maximizing the marginal
likelihood, constructed by data only for individuals captured at least once, and computes
the HT estimator with p̂i, obtained by MLEs, while integrating out vi from the estimator.
The log-normal and Wald CIs are also used in this method. To implement the method, I
used program MARK (White and Burnham, 1999), which fittedMh automatically when
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Figure 2.4: Relative root mean square error (RRMSE) for N̂ (upper left), α̂ (upper right), β̂h

(lower left) and σ̂v (lower right), when T = 8, and N = 250. The legend describing the
linetypes for denoting the four values of σv in the upper left plot is also applied to the other
three plots. The scales of the y-axis of some plots were changed to accommodate some extreme
values.

I input the data into the program. The number of integration nodes for GHQ was set as
101 (default), and the initial values were −0.1 (default) for all parameters, in which σv

was on log scale.

3. Bayesian: I applied the method illustrated by Royle et al. (2007), who proposed the
technique called data augmentation, for fitting Mh via MCMC sampling. The method
presets a super-population, M >> N, of pseudo-individuals with the potential to be in
the real population with probability ψ, and uses MCMC to sample posterior densities of
parameters, including ψ, from the marginal likelihood constructed from the data of all
M pseudo-individuals. Setting M = 1000, I implemented MCMC in JAGS (Plummer,
2003) run through the R package rjags, and fitted the following model: for i = 1, ...,M
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Table 2.2: Percent coverage for N based on both the log-normal CI and Wald CI as a function
of σv and α which in turn defines the median capture probability, p̄i.

α (p̄i)

(T , N) CI type σv −2.2 (0.1) −1.39 (0.2) −0.85 (0.3) −0.41 (0.4)

(5, 100) log-normal 0.1 82.0 84.8 86.7 86.3

0.4 78.7 87.3 84.5 85.8

0.7 79.3 85.1 85.5 82.6

1.0 75.0 81.7 89.1 88.2

Wald 0.1 96.4 97.2 97.6 96.4

0.4 95.4 94.3 95.8 89.3

0.7 88.5 88.5 87.3 88.1

1.0 79.9 86.3 89.3 86.2

(8, 250) log-normal 0.1 86.1 90.4 91.5 90.3

0.4 85.2 88.7 88.5 88.8

0.7 85.3 92.9 91.6 88.8

1.0 93.1 94.9 92.7 92.5

Wald 0.1 97.7 96.4 93.9 96.1

0.4 92.9 92.3 93.5 93.1

0.7 92.3 96.9 95.7 93.8

1.0 96.0 96.9 97.8 96.9

and t = 1, ...,T ,

yit ∼ Bernoulli(zi pi)

logit(pi) = µ + α∗ + vi

and

zi ∼ Bernoulli(ψ) ,

where zi indicates whether or not pseudo-individual i exists within the population, and
the population size is treated as a derived parameter, N =

∑M
i=1 zi. The linear predictor

in the second line is an alternative form of equation (2.3) such that µ + α∗ = α. Prior
distributions were chosen to be identical to those given by King et al. (2009, pg. 347-
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Table 2.3: Results of estimating the population size of snowshoe hares. Three methods based
on the h-likelihood, numerical integration via program MARK and the Bayesian method using
MCMC implemented via JAGS are applied to fitMh and estimate the population size. For the
methods based on the h-likelihood and numerical integration, two CIs are reported: log-normal
CI (left) and Wald CI (right). Only one CI is reported for the Bayesian estimate.

Method N̂
95% CIs for N

σ̂v
Interval

log-normal Wald estimate of σ̂v

h-likelihood 94.0 [80, 124] [73, 115] 0.78 [0.63, 0.92]

numerical
91.7 [76, 137] [64, 119] 0.92 [0.48, 1.76]

integration

Bayesian (MCMC) 94.4 [77, 126] 0.95 [0.63, 1.42]

350):

µ ∼ N(0, 10)

α ∼ N(0, σ2
α)

vi ∼ N(0, σ2
v)

σ2
α, σ

2
v ∼ Γ

−1(4, 3)

and

ψ ∼ Beta(0.001, 1) .

The initial values used for MCMC were: µ = 1.0, α∗ = 0.5, σα, σv = 1, and ψ = 0.1, and
a single chain was sampled with 2e6 iterations with thinning interval of 20. I obtained
the point estimate for N and σv by the means of their posterior densities, and the credible
intervals by their highest posterior density intervals (HPDIs).

Table 2.3 illustrates the results of estimating the population size by applying the three meth-
ods. I found that the point estimates, but also the interval estimates, of the population size were
similar for all the methods. It is observed that the h-likelihood method identified less het-
erogeneity in the capture probability (i.e. smaller σ̂v and narrower interval estimate for σv)
than the other two methods; however, as the sample size, n = 68, is small, the estimation of
σv might not be reliable regardless of the method used. Nonetheless, it is clearly shown that
the h-likelihood method provided the results for the population size, comparable to the other
methods classically based on Bayesian and frequentist approaches.
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2.5 Discussion

The results in Sections 2.3 and 2.4 show that the h-likelihood approach provides a valid method
to fit basic MR models for modelling individual heterogeneity and estimating the size of a
closed population, which performs as well or better than the existing methods of frequentist
and Bayesian approaches. For my method, I construct the conditional h-likelihood from the
joint density of data for individuals captured at least once and random effects for modelling un-
observed heterogeneity. I then compute the estimates of the parameters and the random effects
jointly by maximizing the conditional h-likelihood while correcting the bias in the resulting
estimates by using the APHL. I subsequently estimate the population size by using the HT
estimator with a bias correction and by substituting the estimates of all unknown quantities ob-
tained from the h-likelihood. The whole process of estimating parameters is free of integration
in the h-likelihood approach, whereas numerical integration through quadrature or sampling
has been essential for estimating parameters if frequentist or Bayesian frameworks are applied.

The models I have examined in this chapter only consider individual variables as covariates,
but it is simple to include other forms of covariates that do not change over time as well. For
example, environmental factors, such as forest class and average temperature during the time
a MR experiment is performed, can considerably affect the capture probability of individuals.
By extending the basic MR modelMh to these covariates through the linear predictor defined
in equation (2.2), the fitting algorithm remains the same, except for the design matrix T in the
IRLS formula in equation (2.9), which is updated with the addition of these covariates. One
may be concerned that the assumption of constant covariates over time is too strict to model
the capture probability adequately, and thus I relax this assumption in the next chapter.

One unexpected result of applying my approach was that the estimation of the standard
deviation, σv, of random effects was unsuccessful when the true value of σv was extremely
small. Such a result was prominently featured in my simulation study under the scenario that
assigns σv and α to their lowest values, 0.1 and −2.2. According to the results observed from
Figures 2.3 and 2.4, this scenario provided the largest RB over 1.0 among all scenarios as well
as the largest RRMSE observed at an extreme value over 3.0. This unsatisfactory performance
might occur due to the narrow range of the distribution of the capture probability generated by
the value of σv, while the median capture probability is very low, which causes a small value
of the expected sample size. The RB and RRMSE could be improved by increasing either α or
σv; hence, when σv is unknown in practice, a large sample size is suggested to avoid a large
bias in σ̂v.

One concern that arises when modelling unobserved heterogeneity from MR data is that the
distribution of the capture probability may not be strictly identifiable if multiple distributions
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are considered, andMh is no exception. If the model assigns a single family of distributions
to the capture probability (e.g., normal random effects are defined as the logit of the capture
probabilities for individuals), then the model will be identifiable; however, Link (2003) and
Holzmann et al. (2006) showed that if the model of the capture probability contains distribu-
tions from multiple families (e.g., the random effects may either be normal on the logit scale
or beta on the identity scale), then the model is no longer identifiable. Distributions from the
different families may provide an almost identical fit to the observed capture histories, regard-
less of the number of individuals captured, but may present very different estimates of the
population size. As in most models that account for heterogeneity in the capture probability,
I have ignored this issue by assuming that the random effects come from a single distribution
(specifically, normal on the logit scale). I plan to explore the issue of the non-identifiability of
Mh, which is associated with the h-likelihood estimation, in further research.



Chapter 3

H-likelihood Approach to MR Models
with Heterogeneity, Time Variation and
Behavioural Response

3.1 Introduction

Allowing the capture probability to be time-varying (i.e., different capture probabilities for
different time occasions) has been an important issue in modelling MR data as the assumption
of the constant capture probability regardless of time may be too strict to adequately model
data. In a traditional way, the time-varying capture probability has been studied by estimating
a set of capture probabilities, of which each is assigned to a time when individuals are captured
(i.e., sampling occasions) and possibly modelled by a function of covariates, such as individual
covariates, to account for the effects of the covariates on the capture probability. As an example,
Otis et al. (1978) and Chao et al. (1992) analyzed MR data about cottontail rabbits, corrected
through 18 successive days, and they found that the MR models with the time-varying capture
probability better explained the observed data than those with the constant capture probability.

Another common source of variation in the capture probability is the behavioural effect
that alters the capture probability for each individual in response to being previously caught
(Pollock, 1982). Two main behavioural tendencies occur based on the experience of trapping:
a trap-shy response occurs if individuals are less likely to be captured after being trapped once,
and a trap-happy response occurs if individuals are more likely to be captured after being
trapped once. These tendencies cause the capture probability in MR models to be split into
two probabilities, where one stands for the probability of capturing an individual initially (i.e.,
initial capture probability) and the other stands for the probability of re-capturing an individ-

37
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ual given that it has been captured once or more before the current occasion (i.e., recapture
probability). An example of such MR models is in the study of Wegge et al. (2004), who were
interested in estimating tiger abundance and showed that the behavioural effect was significant
as the tigers became afraid of the flash from cameras used to detect them.

The same approaches for fitting the basic MR model from the previous chapter with indi-
vidual heterogeneity have also been applied to the models, also accounting for the time and
behavioural effects on the capture probability. This extension generated a total of eight sep-
arate models, as proposed by Otis et al. (1978), which describe all possible combinations of
the different sources of variation in the capture probability: individual heterogeneity, time,
and behavioural effects. As discussed in Chapter 2, individual heterogeneity may be modelled
by individual covariates or random effects, representing observed and unobserved individual
variation, respectively, while the time and behavioural effects are usually modelled by fixed
effects (intercepts) that differ based on sampling occasions and the trapping experience of each
individual at each occasion. In frequentist approaches, the fixed effects can be estimated by
MLEs obtained from the classical likelihood function, relying only on fixed effects if no ran-
dom effects are included (Huggins, 1989; Otis et al., 1978), or from the marginal likelihood
integrating out the random effects otherwise (Coull and Agresti, 1999; Gimenez and Choquet,
2010; Otis et al., 1978; White and Cooch, 2017). For Bayesian approaches, the integration
in the marginal likelihood is usually approximated by MCMC sampling if unobserved hetero-
geneity is described by the random effects and the time and behavioural effects are estimated
from the properties of their posterior densities (King and Brooks, 2008; Royle et al., 2007).
The estimation of the population size of some frequentist methods are separated from that of
other parameters, and achieved by such as the HT estimator, for example, depending on the
time and behavioural effects estimated.

This chapter extends my approach using the h-likelihood for fitting MR models accounting
for individual heterogeneity, as in the previous project, to the models that also describe the
time and behavioural effects. There are three different types of the models wherein the capture
probability is modelled by a function of parameters for either time or behavioural effects or
both along with individual covariates and random effects modelling individual heterogeneity.
I construct the h-likelihood based on the conditional likelihood for these models and provide
the fitting algorithm with applying the bias correction technique, as shown in the previous
chapter. Estimating the population size is based on the HT estimator as before, for which I
substitute parameter estimates obtained from the h-likelihood and correct the potential bias. To
demonstrate my approach, I provide a simulation study with the most general model among
the three models as well as a further analysis of MR data related to snowshoe hares considered
in the previous chapter.
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Table 3.1: Summary of notation used in Chapter 3.

Notation Definition

yit Indicator if individual i is captured on occasion t

Ait Indicator if individual i is captured before occasion t

pit Capture probability for individual i on occasion t

p†it Capture probability for individual i on occasion t when Ait = 0

p‡it Capture probability for individual i on occasion t when Ait = 1

αt Intercept parameter associated with occasion t

γ Behavioural effect

xit Covariate vector associated with β for individual i on occasion t

Xi Design matrix with the i-th row xit

κ Vector of all fixed and random effects without γ

ai Vectorized form of elements ait for t = 1, ...,T ; e.g., yi = (yi1, ..., yiT )′

ai,t=b:c Vectorized form of elements ait for t = b, ..., c

a Vectorized form of elements ai for i = 1, ..., n; e.g., y = (y′1, ..., y
′
n)

at=b:c Vectorized form of elements ai,t=b:c

bdiag(A,B,C) Block-diagonal matrix consisting of the diagonal blocks A, B and C
A ⊗ B Kronecker product of matrices A and B

3.2 Method

3.2.1 Description of extended MR models: Mth,Mbh andMtbh

Considering the basic MR model described in Chapter 2, I extend this model to the capture
probability depending on sampling occasions and the trap-responses of individuals. It was
noted that the basic MR model in Chapter 2 was extended from one of Otis et al. (1978)
models, namely Mh, which allows only for individual heterogeneity. Here I consider three
other models extended from the models of Otis et al. (1978), namely Mth, Mbh and Mtbh,
in which the additional subscripts t and b stand for the effect of time-variation and the trap-
response on the capture probability, respectively. The choice of the subscripts in the model
notation implies the factors determining the capture probability; specifically,Mth is the model
that allows the capture probability to vary by individuals and sampling occasions, but does not
include the behavioural effect,Mbh is the model that allows the capture probability to vary by
individuals and behavioural effect, but be constant over time, andMtbh is the model that differs
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by all three factors, individuals, sampling occasions and behavioural effects. For convenience,
I follow the same model notations of Otis et al. (1978) throughout this chapter for denoting the
extended MR models I consider.

To describe the extended MR models and my approach for fitting them, I re-use the notation
in Table 2.1, provided previously, and also use additional notation, where some are updated
from Table 2.1, illustrated in Table 3.1. Given these notations, the structures of the extended
MR models are explained as follows. Let yit denote the indicator that individual i is captured
on occasion t, and pit = P(yit = 1). The challenge with these more complicated models is that
pit may now vary by sampling occasions as well as by individuals. This means that

∑T
t=1 yit

is no longer the realization of the response variable that follows a binomial distribution, as in
Chapter 2. Instead, we must consider the response variable for each individual to be a vector,
observed as yi = (yi1, . . . , yiT ), whose density is

f (yi|vi; pi) =
T∏

t=1

pyit
it (1 − pit)1−yit , (3.1)

where pit are functions of fixed effects, β, and random effects, vi. As in Mh in Chapter 2,
vi ∼ N(0, σ2

v) for all i, and they are independent of each other, to continue the assumption of the
logit-normal distribution for the capture probability. The linear models previously constructed
on pi in equations (2.2) and (2.3) are extended to pit, which provides the general form,

logit(pit) = x′itβ + vi , (3.2)

where xit is a general vector of covariates that may include the time-varying intercepts, the
behavioural effect, and other observed individual covariates. If no individual covariates are
observed, then it is obtained that

logit(pit) =


αt + vi forMth

α + γAit + vi forMbh

αt + γAit + vi forMtbh

.

Except as noted otherwise, I use Mth, Mbh, and Mtbh to refer the general model for pit in
equation (3.2).
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3.2.2 Conditional h-likelihood

To estimate parameters in the extended MR models, the conditional h-likelihood for each model
is built in the same way as the conditional h-likelihood forMh in Chapter 2. Using the density
function in equation (3.1), I construct the conditional h-likelihoods for the models by

Hc(θ; y, v) =
n∏

i=1

f (yi|yi > 0, vi; pi) × f (vi;σv)

=

n∏
i=1

∏T
t=1 pyit

it (1 − pit)1−yit

πi

 × [
1

σv
√

2π
exp

(
−

v2
i

2σ2
v

)] (3.3)

in general form, conditioning data on the individuals captured at least once. Equation (3.3)
differs between the MR models through πi, the probability that individual i is captured at least
one time, defined as

πi =

1 −
∏T

t=1(1 − pit) forMth

1 −
∏T

t=1(1 − p†it) forMbh andMtbh

. (3.4)

The sign † on the capture probability indicates the probability that an individual is captured on
an occasion given that it has not been captured previously. In contrast, the sign ‡ will indicate
the probability of capturing an individual given that the individual has been captured at least
once before; see Table 3.1 for the details.

Similarly with the linkage between the conditional h-likelihood ofMh and the h-likelihood
of GLMMs in Chapter 2, the conditional h-likelihood in equation (3.3) provides the viewpoint
that the extended MR models are vector GLMMs (VGLMMs), which allow the response vari-
ables to be multi-dimensional. The general framework of VGLMMs assumes that the response
variables, yi, follows a distribution that falls into the vector exponential family with the density
function

f (yi|v;β, ϕ) = exp
(θ′it(yi) − b(θi)

ϕ
+ c(yi, ϕ)

)
, (3.5)

where θi is the vector of the natural parameters, linked to the vector of linear predictors ηi such
that ηi = g(E(t(yi))) with a link function g(·), ϕ is the dispersion parameter, and t(·), b(·) and
c(·, ·) are some known functions. Following Yee et al. (2015), who converted the conditional
likelihood, the first term in equation (3.3), to the likelihood of GLMs, I derived that the first
term in equation (3.3) corresponds to the density function in equation (3.5) by supposing that
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yi for i = 1, ..., n are observed random variables such that yi. > 0 with

θi = ηi =

logit(pi) forMth

logit((p†
′

i ,p
‡′

i,t=2:T )′) forMbh andMtbh

t(yi) =

yi forMth

(1 − A′i ,A
′
i,t=2:T )′ ⊙ (y′i , y

′
i,t=2:T )′ forMbh andMtbh

b(θi) = log(πi) +
T∑

t=1

log(1 − pit)

ϕ = 1

and

c(yi, ϕ) = 0 .

It is noted that many properties of the ordinary exponential family described in Chapter 1 ex-
tend to the vector exponential family with the density function in equation (3.5). For example,
one key property useful in maximizing the conditional h-likelihood is that E(t(yi)) = ∂b(θi)/∂θi

which extends the usual property that E(yi) = ∂b(θi)/∂θi, where yi and θi are scalar natural pa-
rameter and observed response variable of the ordinary exponential family with the density
function in equation (1.3). The conditional h-likelihood can be then maximized to obtain the
MHLE for θ based on these extended properties. The fitting algorithm described in Chapter 2
can be also extended for the maximization of the h-likelihood, along with the bias correction
for the MHLE, originally developed for fitting GLMMs with a scalar response variable yi. I
describe the bias correction for the MHLE for θ inMth, Mbh andMtbh first as below so that
the fitting algorithm including the bias correction, for these models, regarded as VGLMMs, are
derived.

3.2.3 Bias correction for MHLEs

For the same reason in Chapter 2 that the MHLEs computed directly from the conditional h-
likelihood for Mh can be severely biased, I perform the bias correction for the MHLE for θ
from the conditional h-likelihoods of the extended MR models. The bias correction is achieved
through the multi-dimensional analogue of the four steps of the bias correction, as described in
Section 2.2.3, where I define the APHLs

hA
c (β; y, v̂, σ̂v) = hc −

1
2

log
[
det

(
−

1
2π

∂2hc

∂v∂v′
)]∣∣∣∣∣

v=v̂,σv=σ̂v

(3.6)
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Algorithm 2 Fitting algorithm forMth,Mbh andMtbh

1: Set initial value θ̂
(0)
= (δ̂

′(0)
, σ̂(0)

v )′ (components of δ depend on the model)
2: Let r = 0
3: while convergence criterion θ̂

(r)
≈ θ̂

(r+1)
not met do

4: Let δ̂
(r,0)
= δ̂

(r)
;

5: Let t = 0;
6: while convergence criterion δ̂

(r,t)
≈ δ̂

(r,t+1)
not met do

7: (Step 1) Given σ̂(r)
v , solve equation (3.8) for δ̂

(r,t)
;

8: t ← t + 1
9: end while

10: Let δ̂
(r+1)
= δ̂

(r,t)

11: (Step 2) Given δ̂
(r+1)

, obtain σ̂(r+1)
v by fitting the gamma GLM with

• observed response variables: v̂(r+1) = (v̂(r+1)
1 , ..., v̂(r+1)

n )′

• prior weight: qi in equation (3.10) for v̂(r+1)
i , given δ̂

(r+1)
and σ̂(r)

v

• linear predictor: τ = log(σ2
v)

12: end while

and
hA

c (σv; y, v̂, β̂) = hc −
1
2

log
[
det

(
−

1
2π

∂2hc

∂v∂v′
)]∣∣∣∣∣δ=δ̂ (3.7)

in Steps 1 and 3, respectively. Although these APHLs are functionally equivalent to the AHPLs
in equations (2.7) and (2.8), they have different arguments (e.g., the components of β) depend-
ing on the models. Performing the four steps until convergence, I obtain β̂ and σ̂v from the
APHLs of Steps 1 and 3 while obtaining v̂ from the conditional h-likelihood of Step 2, given β̂
and σ̂v updated from the other steps.

3.2.4 Fitting Algorithm

I derive the general algorithm for fitting the extended MR models in the same way as the
algorithm for fitting Mh in Chapter 2, illustrated in Algorithm 1. Algorithm 2 describes the
details of the algorithm for fitting the extended MR models. Step 1 of the algorithm again
solves two normal equations,

∂hA
c

∂β
= X′(y − µ − s) = 0dim(β)

with respect to β, and
∂hc

∂v
= (y − µ) −

1
σ2

v
v = 0n
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with respect to v, and I have derived that the equation for the IRLS is

T′W(t−1)Tδ̂(t)
= T′W(t−1)z∗(t−1) , (3.8)

which remains the same form of equation (2.9) but contains updated components in T, W(t)

and z∗(t). Specifically,

T =

 X Z
0n×dim(β) In


is the design matrix such that (η′, v′)′ = Tδ, and Z = 1n×n ⊗ 1T forMth and 1n×n ⊗ 12T−1 for
Mbh andMtbh,

W(t) =


bdiag

(∂µ1

∂η1
, ...,

∂µn

∂ηn

)
0dim(η)×n

0n×dim(η))

1
σ2

v
In


∣∣∣∣∣∣∣∣∣∣∣δ=δ̂(t)

,σv=σ̂v

is the t-th weight matrix, and

z∗(t) =

 η + bdiag
(∂µ1

∂η1
, ...,

∂µn

∂ηn

)
(y − µ − s)

Z′s


∣∣∣∣∣∣∣∣∣δ=δ̂(t)

,σv=σ̂v

is the t-th adjusted response variable of the IRLS equation. In the updated components, I write

µ = E(y) = (µ′1, ...,µ
′
n)′

and
s = (s′1, ..., s

′
n)′

in general for all models, and have derived that

1) forMth,

µi = (µi1, ..., µiT )′

µit =
1 − πi

πi
pit

si = (si1, ..., siT )′

and

sit =
1
2

diagonal

(−∂2hc

∂v2
i

)−1

JT

( ∂2µi

∂ηi∂ηit
+

∂2µi

∂ηi∂vi

∣∣∣∣∣
vi=v̂i

∂v̂i(β, σv)
∂ηit

) ,
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where JT is the square matrix of 1s with dimension T ,

−
∂2hc

∂v2
i

= 1′T
∂µi

∂ηi
1T +

1
σ2

v
,

in which ∂µi/∂ηi has the (a, b)-th element

∂µia

∂ηib
=


pia

πi

(
1 −

pia

πi

)
if a = b

pia

πi

(
pib −

pib

πi

)
if a , b

,

∂2µi/∂ηi∂ηit has the (a, b)-th element

∂2µia

∂ηib∂ηit
=



(
1
πi
−

2pit

π2
i

)
pit(1 − pit) −

(
pit

π2
i

−
2p2

it

π3
i

)
pit(1 − πi) if a = b = t

−

(
pia

π2
i

−
2p2

ia

π3
i

)
pit(1 − πi) if a = b , t

pia pib(1 − pia)
(

1
πi
−

1
π2

i

)
+ pit pib(1 − πi)

(
pit

π2 −
2pit

π3

)
if a = t , b

pia pib(1 − pib)
(

1
πi
−

1
π2

i

)
+ pit pia(1 − πi)

(
pit

π2 −
2pit

π3

)
if a , b = t

pia pib(1 − πi)
(

pit

π2 −
2pit

π3

)
if a , b , t, a , t

,

∂2µi/∂ηi∂vi has the (a, b)-th element

∂2µia

∂ηib∂vi
=



(
1
πi
−

2pia

π2
i

)
pia(1 − pia) −

(
pia

π2
i

−
p2

ia

π3
i

)
(1 − πi)

T∑
r=1

pir if a = b

pia pib(2 − pia − pib)
(

1
πi
−

1
π2

i

)
− pia pib

(
1
π2

i

−
1
π3

i

)
(1 − πi)

T∑
r=1

pir if a , b

,

and

∂v̂i(β, σv)
∂ηit

=

(
−
∂2hc

∂η2
it

)−1
∂2hc

∂vi∂ηit
,

in which

−
∂2hc

∂η2
it

=

T∑
r=1

∂2µir

∂η2
it

+
1

Tσ2
v
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and
∂2hc

∂vi∂ηit
= −

T∑
r=1

∂2µir

∂η2
it

;

2) forMbh andMtbh,

µi = (µ†i1, ..., µ
†

iT , µ
‡

i2, ..., µ
‡

iT )′

µ†it =
1 − πi

πi
p†it + (1 − Ait)p†it

µ‡it = Ait p
‡

it

si = (s†i1, ..., s
†

iT , s
‡

i2, ..., s
‡

iT )′

s†(‡)it =
1
2

diagonal

(−∂2hc

∂v2
i

)−1

J2T−1

 ∂2µ†(‡)i

∂η†(‡)i ∂η†(‡)it

+
∂2µ†(‡)i

∂η†(‡)i ∂vi

∣∣∣∣∣
vi=v̂i

∂v̂i(β, σv)

∂η†(‡)it


ηi = (η†i1, ..., η

†

iT , η
‡

i2, ..., η
‡

iT )′

and

η†(‡)it = log(p†(‡)it ) ,

where J2T−1 is the square matrix of 1s with dimension 2T − 1,

−
∂2hc

∂v2
i

= 1′2T−1
∂µi

∂ηi
12T−1 +

1
σ2

v

with

∂µi

∂ηi
= bdiag

∂µ†i
∂η†i

,
∂µ‡i

∂η‡i

 ,
in which ∂µ†(‡)i /∂η†(‡)i has the (a, b)-th element

∂µ†ia

∂η†ib
=


p†ia
πi

1 − p†ia
πi

 + (1 − Aia)p†ia(1 − p†ia) if a = b

p†ia
πi

p†ib −
p†ib
πi

 if a , b
,
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and

∂µ‡ia

∂η‡ib
=

Ait p
‡

ia(1 − p‡ia) if a = b

0 if a , b
,

∂2µ†(‡)i /∂η†(‡)i ∂η†(‡)it has the (a, b)-th element

∂2µ†ia

∂η†ib∂η
†

it

=



 1
πi
−

2p†it
π2

i

 p†it(1 − p†it) −

 p†it
π2

i

−
2p†2it

π3
i

 p†it(1 − πi) if a = b = t

+(1 − Ait)(1 − 2p†it)p†it(1 − p†it)

−

 p†ia
π2

i

−
2p2†

ia

π3
i

 p†it(1 − πi) if a = b , t

p†ia p†ib(1 − p†ia)
(

1
πi
−

1
π2

i

)
+ p†it p

†

ib(1 − πi)

 p†it
π2 −

2p†it
π3

 if a = t , b

p†ia p†ib(1 − p†ib)
(

1
πi
−

1
π2

i

)
+ p†it p

†

ia(1 − πi)

 p†it
π2 −

2p†it
π3

 if a , b = t

p†ia p†ib(1 − πi)

 p†it
π2 −

2p†it
π3

 if a , b , t, a , t

and

∂2µ‡ia

∂η‡ib∂η
‡

it

=

Ait(1 − 2p‡it)p‡it(1 − p‡it) if a = b = t

0 otherwise
,

∂2µ†(‡)i /∂η†(‡)i ∂vi has the (a, b)-th element

∂2µ†ia

∂η†ib∂vi

=



 1
πi
−

2p†ia
π2

i

 p†ia(1 − p†ia) −

 p†ia
π2

i

−
p
†2
ia

π3
i

 (1 − πi)
T∑

r=1

p†ir if a = b

+(1 − Ait)(1 − 2p†it)p†it(1 − p†it)

p†ia p†ib(2 − p†ia − p†ib)
(

1
πi
−

1
π2

i

)
− p†ia p†ib

(
1
π2

i

−
1
π3

i

)
(1 − πi)

T∑
r=1

p†ir if a , b

and

∂2µ‡ia

∂η‡ib∂vi

=
∂2µ‡ia

∂η‡ib∂η
‡

it

,
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and
∂v̂i(β, σv)

∂η†(‡)it

=

− ∂2hc

∂η2†(‡)
it

−1
∂2hc

∂vi∂η
†(‡)
it

,

in which

−
∂2hc

∂η2†(‡)
it

=

T∑
r=1

∂2µ†(‡)ir

∂η2†(‡)
it

+
1

(2T − 1)σ2
v

and

∂2hc

∂vi∂η
†(‡)
it

= −

T∑
r=1

∂2µ†(‡)ir

∂η2†(‡)
it

.

The IRLS algorithm repeatedly solves equation (3.8) about δ̂ until convergence is achieved for
the solution of equation (3.8). n Step 2 of the algorithm, the normal equation

∂hA
c

∂τ
=

n∑
i=1

∂σ2
v

∂τ

vi − (1 − qi)σ2
v

2σ4
v

= 0 (3.9)

is again solved as a function of τ = log(σ2
v), where

qi =


(
−
∂2hc

∂v2
i

)−1( T∑
t=1

∂2µi

∂ηit∂vi

∣∣∣∣∣
vi=v̂i

∂v̂i(β, σv)
∂τ

+
∂2hc

∂vi∂τ

)
forMh(

−
∂2hc

∂v2
i

)−1[( T∑
t=1

∂2µi

∂η†it∂vi

+

T∑
t=2

∂2µi

∂η‡it∂vi

)∣∣∣∣∣
vi=v̂i

∂v̂i(β, σv)
∂τ

+
∂2hc

∂vi∂τ

]
forMbh andMtbh

(3.10)
in which

∂v̂i(β, σv)
∂τ

=

(
−
∂2hc

∂v2
i

)−1 ∂2hc

∂vi∂τ
.

and
∂2hc

∂vi∂τ
=

1
σ2

v
.

Equation (3.9) corresponds to the normal equation of the gamma GLM such that the response
variables are observed as vi, each of which has the prior weight, qi, and linear predictor, τ =
log(σ2

v). Hence, similarly with Step 2 of Algorithm 1, I fit the gamma GLM through the IRLS
algorithm, which can be implemented through existing routines in most modern software.

The covariance matrix of θ̂− θ is obtained in the same way as it obtained in Chapter 2. The
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covariance matrix of θ̂ − θ is given by

Var(θ̂ − θ) =

 Var(δ̂ − δ) 0dim(δ)

0′dim(δ)
Var(σ̂v)

 , (3.11)

according to the h-likelihood properties given in Chapter 1, in which I have derived that

Var(δ̂ − δ) ≈ (T′W∗T)−1|θ=θ̂ . (3.12)

I approximate Var(σ̂v) by the delta method, such that Var(σ̂v) ≈ σ2
v/4 × Var(τ̂), where Var(τ̂)

is obtained directly from the IRLS algorithm for fitting the gamma GLM. The variance–
covariance matrix of v̂(β, σv), required in the population size estimation (Section 3.2.5), is
approximated by

Var(v̂(β, σv) − v) ≈
(
−

∂2hc

∂v∂v′
)−1

≈



[
bdiag

(
1′T
∂µ1

∂η1
1T , ..., 1′T

∂µn

∂ηn
1T

)
+

1
σ2

v
In×n

]−1∣∣∣∣∣
v=v̂

forMth[
bdiag

(
1′2T−1

∂µ1

∂η1
12T−1, ..., 1′2T−1

∂µn

∂ηn
12T−1

)
forMbh andMtbh

+
1
σ2

v
In×n

]−1∣∣∣∣∣
v=v̂

.

(3.13)

These variance–covariance matrices can be used to draw Wald-typed inference through the
asymptotic properties of the h-likelihood,

δ̂ − δ
·
∼ N(0dim(θ),Var(θ̂ − θ)) (3.14)

and
v|y ·
∼ N(v̂(β, σv),Var(v̂(β, σv) − v)) , (3.15)

as shown by Lee and Nelder (1996), if the sample size, n, is large enough. I shall use these
asymptotic properties to make inference for the population size N.

3.2.5 Estimation of population size

The estimation of the population size for the modelsMth, Mbh andMtbh is based on the HT
estimator, as for the basic model,Mh, in the previous chapter. Denoting δ, but excluding the
behaviour effect, γ, as κ (remain δ forMth), I first rewrite the HT estimator in equation 1.2 as
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the general form,

N̂(κ) =
N∑

i=1

1
πi
=

n∑
i=1

ci

πi
,

where ci = I(yi. > 0), and πi is defined in equation (3.4) for each model. I use the notation, κ,
for indicating that the HT estimator does not depend on the behavioural effect, γ, since it is a
function of the probability that the individuals captured at least once, πi, which is free of γ. In
reality, as κ is unknown, my estimator for N builds on the idea of Huggins (1989), by which
any parameter estimates are substituted into the HT estimator, and so is initially considered as

N̂(κ̂) =
n∑

i=1

ci

π̂i
,

where κ̂ is obtained from by maximizing the likelihood as in Algorithm 2.
In my simulation study with Mtbh and N̂(κ̂) as the estimator of N, I observed that N̂(κ̂)

underestimates the true value of N, especially when the pit are small on average. To show the
bias in N̂(κ̂) and so derive an unbiased estimator by correcting the bias, I use the first-order
Taylor expansion to approximate the following three functions:

N̂(κ̂) ≈ N̂(κ) +
∂N̂(κ)
∂κ′

(κ̂ − κ) (3.16)

N̂(κ) ≈ N̂(κ̃) +
∂N̂(κ̃)
∂κ̃′

(κ − κ̃) (3.17)

and
∂N̂(κ)
∂κ′

≈
∂N̂(κ̃)
∂κ̃′

+ (κ − κ̃)′
∂2N̂(κ̃)
∂κ̃′∂κ̃

, (3.18)

where N̂(κ̂) is expanded about κ, and the other functions are expanded about κ̃, denoting κ with
the estimate v̂i(β, σv) in place of the true value vi. Following the same steps of derivations
through equations (2.16-2.21) and replacing the Taylor expansions in equations (2.13), (2.14)
and (2.15) with the above expressions, I derived the approximation for the mean of the sampling
distribution for N̂(κ̂),

E(N̂(κ̂)) ≈ N − tr
(
∂2N̂(κ̃)
∂κ̃′∂κ̃

Var(κ)
)
,

and so N̂(κ̂) is shown to have negative bias tr
(
∂2N̂(κ̃)
∂κ̃′∂κ̃Var(κ)

)
. Hence, I propose the new, approx-

imately unbiased estimator,

N̂⋆(κ̂) =
n∑

i=1

1
π̂i
+ tr

(
∂2N̂(κ̃)
∂κ̃′∂κ̃

Var(κ)
)∣∣∣∣∣κ=κ̂ ,
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where

∂2N̂(κ̃)
∂κ̃′∂κ̃

=


−

n∑
i=1

T∑
t=1

pit(1 − πi)
[ (1 − pit)

π2
i

+ pi.

( 1
π2

i

−
2
π3

)]
wiw′i forMth

−

n∑
i=1

T∑
t=1

pit(1 − πi)
[ (1 − pit)

π2
i

+ pi.

( 1
π2

i

−
2
π3

)]
wiw′i forMbh andMtbh

with p(†)
i. =

∑T
t=1 p(†)

it and wi being the covariate vector associated with κ, and

Var(κ) =

 0[dim(β)−1]×[dim(β)−1] 0[dim(β)−1]×n

0n×[dim(β)−1] Var(v̂(β, σv))

 .
I found in my simulation study that this estimator has much reduced bias when compared to
the naive estimator, N̂(κ̂).

The computation of Var(N̂⋆(κ̂)) can derived from the same logic I proposed to compute
variance of the estimator for N for modelMh in Chapter 2. It is based on the law of iterated
expectations as before, which implies that

Var(N̂⋆(κ̂)) = E(Var(N̂⋆(κ̂)|c)) + Var(E(N̂⋆(κ̂)|c))

= Ec[Eκ(Var(N̂⋆(κ̂)|c, κ)))] + Ec[Varκ(E(N̂⋆(κ̂)|c, κ)))]

+ Var(E(N̂⋆(κ̂)|c)) .

The three terms in the last line in the equation are derived identically as equations (2.22),
(2.23) and (2.24) with substitution of the new values of δ by κ. In consequence, the final form
of Var(N̂⋆(κ̂)) is given by

Var(N̂⋆(κ̂)) ≈
∂N̂(κ̃)
∂κ̃′

Var(κ̂ − κ)
∂N̂(κ̃)
∂κ̃

+ 2
∂N̂(κ̃)
∂κ̃′

Var(κ)
∂N̂(κ̃)
∂κ̃

+ 6κ̃′
∂2N̂(κ̃)
∂κ̃′∂κ̃

Var(κ)
∂2N̂(κ̃)
∂κ̃′∂κ̃

κ̃ + 2tr
(
∂2N̂(κ̃)
∂κ̃′∂κ̃

Var(κ)
∂2N̂(κ̃)
∂κ̃′∂κ̃

Var(κ)
)

+ tr
(
∂2N̂(κ̃)
∂κ̃′∂κ̃

Var(κ̂ − κ)
∂2N̂(κ̃)
∂κ̃′∂κ̃

Var(κ)
)
+

n∑
i=1

1
π2

i

−
1
πi
,

where Var(κ̂ − κ) is equal to Var(δ̂ − δ) after removing the row and column corresponding to
the behavioural effect, γ, which does not affect the HT estimator,

∂N̂(κ̃)
∂κ̃

= −

n∑
i=1

pi.

( 1
π2

i

−
1
πi

)
wi ,
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and I approximate the variance by substituting κ̂ for κ in the final form. The variance is used
to compute CIs for N, when the model of interest is any ofMth,Mbh andMtbh, as described
below.

The two assumptions, the normal distribution for N and the log-normal distribution for
N − n, as in Chapter 2, are the basis of computing CIs for N through the modelsMth,Mbh and
Mtbh. The assumption of the normal distribution is available by the asymptotic property of the
HT estimator, as shown by Huggins (1989), and provides Wald CI,

N̂⋆(δ̂) ± 1.96
√

Var(N̂⋆(δ̂)) ,

when the confidence level is 95%. As an alternative to the Wald CI, I again consider a second
CI based on the assumption of the log-normal distribution for N − n,

(n + f̂0/C, n + f̂0 ×C) ,

where

C = exp
{

1.96
[

log
(
1 +

Var(N̂⋆(κ̂))

f̂ 2
0

)]1/2}
,

and f̂0 = N̂⋆(κ̂) − n. The log-normal CI has been recommended for the cases that N is right-
skewed rather than symmetric, and in my simulation study, the log-normal CI outperforms the
Wald CI under some specific conditions.

3.3 Simulation Study

I conducted a simulation study to check the performance of my approach based on the h-
likelihood for fitting Mtbh, the most general model among the models I consider, and esti-
mating the population size. In this simulation study, I generated nsim = 1000 data sets from
Mtbh, in which the linear predictor is defined as in equation (3.2), where β = (α′, βh, γ)′, and
xit = (1t−1, 0, 1T−t, xi, Ait)′ with xi being a individual covariate whose effect is described by
βh. I considered 16 scenarios by setting (αt, γ) at one of the four combinations, (−2.2, 0.81),
(−1.39, 0.54), (−0.85, 0.44) and (−0.41, 0.41), and σv at one of the four values, 0.1, 0.4, 0.7 and
1.0. In all scenarios, xi is generated from U(−1, 1) for each i, and the fixed effect βh is always
set as 0.7. The number of sampling occasions was T = 8, and the true population size was
N = 250. The four parameter combinations (αt, γ) = (−2.2, 0.81), (−1.39, 0.54), (−0.85, 0.44)
and (−0.41, 0.41) are equivalent to setting the median of the initial capture and recapture prob-
abilities, (p̄†it, p̄‡it) as (0.1, 0.2), (0.2, 0.3), (0.3, 0.4) and (0.4, 0.5) respectively.
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Table 3.2: Percent coverage for N based on both the log-normal CI and Wald CI as a function
of σv and αt which in turn defines the median initial capture probability, p̄†it.

αt( p̄†it)

(T , N) CI type σv −2.2 (0.1) −1.39 (0.2) −0.85 (0.3) −0.41 (0.4)

(5, 100) log-normal 0.1 80.6 92.8 94.2 92.4

0.4 81.6 91.5 93.3 93.9

0.7 81.5 89.8 92.0 90.0

1.0 81.0 90.3 90.6 88.5

Wald 0.1 66.5 84.0 86.8 89.7

0.4 68.0 81.7 84.8 89.2

0.7 67.0 79.5 83.1 83.4

1.0 64.7 78.7 81.9 81.4

(8, 250) log-normal 0.1 95.5 95.5 92.2 89.4

0.4 93.2 96.4 90.9 83.9

0.7 93.9 96.1 86.9 81.8

1.0 94.0 95.6 91.1 85.2

Wald 0.1 90.1 93.1 93.7 93.4

0.4 87.3 93.3 94.4 92.0

0.7 87.4 92.8 93.6 92.9

1.0 85.6 93.3 95.0 94.9

The three quantities provided for assessing the performance of the simulation in Chapter 2,
RB, RRMSE and CP in equations (2.25), (2.26) and (2.27), are again computed in the simula-
tion study. As in Chapter 2, I compute both the Wald CI and the log-normal CI with confidence
level set at 95% for comparison.

The results of the RB and RRMSE for each parameter estimate are illustrated in Figures 3.1
and 3.2 when (T,N) = (5, 100), and Figures 3.3 and 3.4 when (T,N) = (8, 250). Regardless of
the setting of (T,N), any parameter estimate produces RB closer to 0 as αt increases. RRMSEs
for most parameter estimates also get closer to 0 as αt increases, though this pattern does not
apply to both γ̂ and α̂t if (T,N) = (8, 250), those with N̂ if (T,N) = (5, 100). It is surprising
that the RB for γ̂ does not depend on the change in σv, while it gets close to 0 as αt increases.
The pattern of RRMSE for α̂t seems not to be monotonic as a function of αt and is smallest
when αt = −1.39 and largest when αt = −0.41, the largest value tested in this simulation study.
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Figure 3.1: Relative Bias (RB) for N̂ (top left), α̂t (top right), β̂h (middle left), γ (middle right)
and σ̂v (lower right), when T = 5, and N = 100. The legend describing the linetypes for
denoting the four values of σv in the upper left plot is also applied to the other three plots. The
scales of the y-axis of some plots were changed to accommodate some extreme values.
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Figure 3.2: Relative root mean square error (RRMSE) for N̂ (top left), α̂t (top right), β̂h (middle
left), γ (middle right) and σ̂v (lower right), when T = 5, and N = 100. The legend describing
the linetypes for denoting the four values of σv in the upper left plot is also applied to the other
three plots. The scales of the y-axis of some plots were changed to accommodate some extreme
values.
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Figure 3.3: Relative Bias (RB) for N̂ (top left), α̂t (top right), β̂h (middle left), γ (middle right)
and σ̂v (lower right), when T = 8, and N = 250. The legend describing the linetypes for
denoting the four values of σv in the upper left plot is also applied to the other three plots. The
scales of the y-axis of some plots were changed to accommodate some extreme values.
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Figure 3.4: Relative root mean square error (RRMSE) for N̂ (top left), α̂t (top right), β̂h (middle
left), γ (middle right) and σ̂v (lower right), when T = 8, and N = 250. The legend describing
the linetypes for denoting the four values of σv in the upper left plot is also applied to the other
three plots. The scales of the y-axis of some plots were changed to accommodate some extreme
values.
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The RB for two parameters, β̂h and α̂t, approached 0 as σv decreased, while αt remains fixed,
and the RB for the remaining parameters either remained constant or increased in magnitude.
Nonetheless, the RB and RRMSE for the most important parameter estimate N̂ seem to be
small when αt > −2.2 with the exception that αt = −0.85 and (T,N) = (5, 100). They seem to
be high when αt = −2.2, and further be the worst when σv = 0.1.

The results of the CP for the log-normal and Wald CIs for N are provided in Table 3.2. I
observed that the log-normal CI outperforms the Wald CI under all scenarios when (T,N) =
(5, 100), and vice versa under all scenarios with (T,N) = (8, 250) except the cases that αt =

−2.2. The log-normal CI provided CPs close to the ideal value 95% in two cases: when
αt > −1.39 and σv < 0.7 along with (T,N) = (5, 100), and when αt <= 1.39 along with
(T,N) = (8, 250). Meanwhile, the Wald CI fails to cover N too often under all scenarios with
(T,N) = (5, 100) and all the scenarios when αt = −2.2 and (T,N) = (8, 250). This suggests
that the distribution of the HT estimator is almost symmetric when α ≥ −2.2 with a moderate
sample size n, and more likely right-skewed, otherwise.

3.4 Application

I have applied my approach to the same MR data for snowshoe hares (Lepus americanus) con-
sidered in Chapter 2 for fitting additional modelsMth,Mbh andMtbh. As described in Chapter
2, two additional methods including the frequentist approach fitting based on numerical inte-
gration and the Bayesian approach through MCMC sampling were also applied to fit these MR
models and estimate the population size. The software used for implementing all the methods
remained the same as before, and the settings were updated as the follows:

1. h-likelihood: Algorithm 2 was applied for fitting the three MR models. The initial values
for all fixed effects are again obtained from the VGAM package in R, and I initially set
vi = 0 for i = 1, ..., n, and σv = 0.01. I found that changes in any component of the
initial values did not affect the results of parameter estimates. R code for my method is
included in Appendix B.

2. frequentist (numerical integration): Program MARK is employed to fit all three MR
models with the same settings for GHQ. The initial values were set at −0.1 for all pa-
rameters including σv on log scale.

3. Bayesian: MCMC sampling with data augmentation was performed to obtain the poste-
rior densities of all parameters of the three MR models. When MCMC is implemented
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in JAGS, the models were re-parameterized so that for each i = 1, ...,M, and t = 1, ...,T ,

zi ∼ Bernoulli(ψ) ,

logit(pit) =


µ + α∗t + vi forMth

µ + α∗ + γ + vi forMbh

µ + α∗t + γ + vi forMtbh

and

yit|zi ∼ Bernoulli(zi pit)

where M is the super-population size and zi indicates whether or not pseudo-individual i

exists within the population. The true population size is treated as a derived parameter,
N =

∑M
i=1 zi. The linear predictors in the second line are alternative forms of the linear

predictors in equation (2.3) such that µ + α∗ = α forMbh, and µ + α∗t = αt forMth and
Mtbh. Prior distributions were chosen to be identical to those given by King et al. (2009,
pg. 347-350):

µ ∼ N(0, 10)

α or αt ∼ N(0, σ2
α)

γ ∼ N(0, σ2
γ)

vi ∼ N(0, σ2
v)

σ2
α, σ

2
γ, σ

2
v ∼ Γ

−1(4, 3)

and

ψ ∼ Beta(0.001, 1) .

The initial values used for MCMC were: µ = 1.0, α∗ or α∗t = 0.5, γ = 0, σα, σγ, σv = 1,
and ψ = 0.1, and a single chain was sampled with 2e6 iterations with thinning interval of
20.

As four different models, including Mh in Chapter 2, were fitted with the same data,
model comparison was performed within each method. Specifically, I computed the condi-
tional Akaike information criteria (cAIC) for the h-likelihood (Lee and Nelder, 1996), AIC
corrected (AICc) for the frequentist approach using numerical integration (Hurvich and Tsai,
1989), and Watanabe-AIC (WAIC) for the Bayesian method (Vehtari et al., 2017). These quan-
tities cannot be compared across the methods (e.g., comparing two fits ofMh by the methods
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based on h-likelihood and numerical integration) and so were only used to identify the best
model within each method.

Table 3.3 provides the results of estimating the population size by applying each of the
three methods. In general, I found that the point estimates of N were quite similar across the
methods, even though the values were more varied from Bayesian method than the other two
methods. The frequentist approach via numerical integration and the h-likelihood approach
provided almost identical point estimates of N for all models except forMtbh. Point estimates
of N were lower for the Bayesian approach than the other two methods for the three MR models
that extend from Mh: Mth, Mbh and Mtbh. The interval estimate of N is narrower for the
Bayesian approach than this for the other two approaches, except for the simplest modelMh.
Point estimates of the variance of the random effect of the capture probability were consistently
smaller for the h-likelihood method, but this seems not to influence the point and interval
estimates of N. When the MR models are compared within each method, Mbh was always
selected as the top model.

3.5 Discussion

In this chapter, I discuss my approach using the h-likelihood for fitting the MR models extended
from the previous chapter by allowing for the capture probability to be dependant on time and
behavioural effects as well as individual heterogeneity. I constructed the h-likelihood based
on data conditional on individuals captured at least once for each of the three new models,
Mth,Mbh andMtbh, in which the capture probability is either time-varying or differs between
individuals that have and have not been captured previously or both, and I provided the fitting
algorithm for these models based on the IRLS algorithm and the bias correction for the h-
likelihood estimates. The population size was subsequently estimated by the HT estimator,
substituting all estimates of parameters and random effects obtained from the fitting algorithm
in place of the true values. The results of the simulation study and the application to data for
snowshoe hares demonstrate that my approach is a valid method to fit the extended MR models
and that it provides results that are comparable with previous approaches based on integration
in the marginal likelihood by quadrature or sampling methods.

As in the previous chapter, one unexpected result I observed is the unsuccessful estimation
of σv, which tends to cause non-negligible bias when its true value is known to be very small.
In the simulation study with the modelMtbh, Figures 3.3 and 3.4 clearly show that the smallest
value of σv (= 0.1) provided the largest bias among all the scenarios, observed at almost 400%.
It is also surprising that the estimate of σv did not improve significantly even when the median
of the true capture probability increased so that more individuals would be captured, and so



3.5. Discussion 61

the sample size would be larger on average. This may imply that the cause of the bias may not
be due to the lack of information for σv from data, but due to the method used to estimate σv

through the h-likelihood. In fact, Noh and Lee (2007) observed similar issues when estimating
the dispersion parameters for standard GLMMs from the APHL and thus proposed the APHL
based on a higher-order Laplace approximation. I did not consider their method as complex
mathematical work (e.g., fourth-order derivatives of µi) is required to maximize the APHL and
because the other parameter estimates, most importantly the estimate of N, did not seem to be
severely affected by the bias of σ̂v.

Another important result is that the HT estimator may be highly variable and may pro-
vide estimates much larger than the true population size when the capture probability is low.
I noticed in my simulation study that when the time effect estimate was much lower than the
true value of α (e.g., α̂ = −4.0 while α = 2.2), the population size tended to be estimated
as an extremely large value. This occurs due to the expression of the HT estimator, to which
the inverse of the probability of being captured at least once for each individual contributes.
Specifically, when the capture probability for an individual is extremely low (≈ 0), the proba-
bility that this individual is captured at least once is overly small as well, while its inverse may
contribute to the HT estimator as an extremely large value (e.g., if pi = 1e−5 and T = 6, then
1/πi ≈ 166667). This is one main drawback of the HT estimator, and it is suggested that the
sample size is increased by adding extra sampling occasions if the original sampling size is
small; thus, the chance that an individual is captured at least once becomes higher.

So far, all the MR models I have considered in the previous chapter and this chapter assume
a linear relationship between the capture probability and individual covariates. In the next
chapter, I consider extending my approach to MR models allowing for the capture probability
to be modelled as a non-linear function of individual covariates.
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Chapter 4

Penalized Spline Approach to MR models
with heterogeneity via H-likelihood

4.1 Introduction

In a MR experiment, the effect of individual variation on the capture probability may be quite
complicated. As an example, in a study that estimates the number of mountain pygmy possums
inhabiting in Mount Hotham, Australia (Heinze et al., 2004), the body weight of possums had a
non-linear relationship with the capture probability. In several studies analyzing data collected
from this study, the capture probability was estimated to be highest when the body weight (g)
was between 37 and 40. Its estimate exponentially dropped as the body mass separated from
this range. Fitting a MR model assuming a monotone relationship between the capture history
observed and the body weight would not capture this pattern, resulting in severe biases in the
parameter estimate for the effect of the body weight and the estimate of the population size.

One solution to this issue is to build non-linear relationships by introducing polynomial
terms to the MR models. Continuing with the example of the study regarding the mountain
pygmy possum, Huggins and Hwang (2007) fitted the MR model with heterogeneity, where
the capture probability was linked to multiple polynomial regression models, each of which
was defined for different ranges of body weight. The resulting fits of these local models formu-
lated the estimated capture probability much closer to a quadratic rather than linear function
of the body weight. A challenge of this approach is to choose the order of each local polyno-
mial, which was fixed at two in this study. However, in practice, it is unknown if this order is
adequate to describe the true relationship between the body weight and the underlying capture
probability. A common statistical method to choose the order of the local polynomial is com-
paring model assessment quantities (e.g., AIC) computed for a set of various models fitted with

63
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various values of the order. However, this can be time consuming either when data are large or
when the number of the models to be fitted is large.

My solution, as well as the solution of Stoklosa and Huggins (2012), is based on an ex-
tension of MR models to more complicated models whose structure mimics the framework
of GAMs. Instead of expanding the linear predictor of the MR models by adding polyno-
mial terms, employing the framework of GAMs allows the linear predictor to be modelled as
a sum of the flexible functions applied to each covariate. Hence, the expansion generalizes
the polynomial expression of the linear predictor to more complex functions. Each function
is often re-expressed as a sum of basis functions, fixed before the analysis, so that the linear
predictor remains as a linear combination of a new set of covariates generated by these basis
functions. Here, my focus is B-splines, though many other sets of basis functions can be con-
sidered. As discussed in Chapter 1, however, incorporating B-splines can cause overfitting, as
the dimension of parameters associated with the new covariates is often rather high. To solve
this problem, adding a penalized term to the likelihood function is essential. This results in
the MR models being regarded as a type of random effects models, where random effects are
defined as coefficients (parameters) attached to new covariates and following a multivariate
normal distribution with the variance–covariance matrix depending on smoothing parameters.
Consequently, some classical statistical methods for fitting random effects models, such as the
MLE by maximizing the marginal likelihood, can be applied to fit the GAM-like MR models
with the cross-validation method to determine smoothing parameters (Stoklosa et al., 2011;
Yee et al., 2015).

In this chapter, I present the h-likelihood approach to fit the basic MR model for modelling
individual heterogeneity, as in Chapter 2, where the linear predictor is extended to B-splince
functions, with the penalization of parameters. I first construct the likelihood function of the
MR model with a penalized term based on data conditional on individuals captured at least
once, which can be regarded as the h-likelihood of a model belonging to the class of GLMMs.
Hence, the fitting algorithm based on the h-likelihood for GLMMs proposed by Lee and Nelder
(1996, 2001) is directly applied to fit the MR model. The estimation of the population size is
subsequently obtained by the HT estimator by substituting parameters estimates obtained from
the h-likelihood. To demonstrate my approach, I provide a simulation study with multiple
scenarios and apply my approach to real MR data for mountain pygmy possums to estimate
their population size.
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Table 4.1: Summary of notations used in Chapter 4.

Notation Definition

N Unknown population size

n Number of individuals captured

T Number of sampling occasions

p Number of individual covariates

yi. Number of times that individual i is captured

pi Capture probability for individual i

α∗ Intercept parameter

v∗ Vector of parameters associated with basis functions

xi j the j-th individual covariate for individual i

z∗i Covariate vector generated by basis functions applied to xi j

Z∗ Design matrix with the i-th row z∗i
θ Vector of all unknown quantities in the h-likelihood

δ Vector of fixed and random effects in the h-likelihood

Ia a × a identity matrix

0a Vector of 0s with dimension of a

1a Vector of 1s with dimension of a

4.2 Method

4.2.1 Description of MR model: Ms with smoothing functions

I consider the basic MR model for modelling individual heterogeneity by some individual
covariates and allowing for non-linearity by applying a smoothing function to each of the in-
dividual covariates. The structure of the model originates from that ofMh, proposed by Otis
et al. (1978), where no individual covariates were initially included, and the capture probability
is treated as a random variable for each individual. Huggins (1989) extendedMh to the indi-
vidual covariates without randomizing the capture probability and describes the relationship
between the response variable, the capture history, and the individual covariates only through
a linear combination of them. Stoklosa and Huggins (2012) broadened this linear relationship
by using B-spline, smoother commonly applied to relax the assumption of linearity in many
statistical models. In this chapter, I consider the same model of Stoklosa and Huggins (2012)
and denote the model byMs, where the subscript s stands for spline, throughout this chapter.
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The framework of Ms is described as follow using the mathematical notations given in
Table 4.1. The observed response variables for the model are yi. for i = 1, ..., n and assumed
to follow the binomial distribution with the same density form in equation (2.1). The capture
probability, pi, is linked to a non-linear function for which I specify pi by

logit(pi) = α +
p∑

j=1

f j(xi j) , (4.1)

where f j(·) are smoothing functions. Specifically, I make use of B-splines (de Boor, 1971) so
that each function is written as the sum of pre-defined basis functions,

f j(xi j) =
q j∑

l=1

v jlb jl(xi j) ,

where b jl(·) are the so-called basis functions with coefficients v jl, l = 1, . . . , q j. Computation
of the basis functions can be readily provided by modern software package and is defined by
the recursive expression

b jlw(xi j) =
xi j − r jl

r j,l+w − r jl
b jl,w−1(xi j) +

r j,l+w+1 − xi j

r j,l+w+1 − r j,l+1
b j,l+1,w−1(xi j) , (4.2)

such that b jl(·) = b jl,w=d(·), when the degree of spline is set at d, and

b jl,w=0(xi j) =

1 if r jl ≤ xi j < r j,l+1

0 otherwise
.

The points, r j1, ..., r j,q j+1, are called the knots of the spline and are selected within the range of
xi j. Using basis functions brings about the re-expression of equation (4.1) by

logit(pi) = α + z′iv , (4.3)

in which v = (v1, ..., vp) with v j = (v j1, ..., v j,q j)
′, and zi is the transformed covariate vector

composed by the basis functions such that z′iv =
∑q j

l=1 v jlb jl(xi j). It is noted that the expression
in equation (4.2) provides the property that

∑q j

l v jl = 1, so it is necessary to remove one of
the coefficients and its basis function for avoiding non-identifiability of the model (i.e., two or
more sets of values for α and v result in the same value of pi). Hence, I re-write equation (4.3)
by

logit(pi) = α∗ + z∗
′

i v∗ , (4.4)

where α∗ = α+
∑p

j=1 v j,q j , v∗ = (v∗1, ..., v
∗
p)′ with v∗j = v j(−q j), and z∗′i is the transformed covariate
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vector for v∗. A vector with the subscript (−q j) denotes the vector with dropping the q j-th
element. In the above equation, the unknown quantities in v∗ can be treated as fixed effects
associated with new covariate vector, z∗i . Consequently, the right-hand side of equation (4.4)
can be regarded as a linear predictor linked to pi, which mimics the form of the linear predictor
for the class of GLMs. I shall estimate α∗ and v∗ with penalizing v∗ from the h-likelihood based
on this connection, as described below.

4.2.2 Connection between penalized likelihood and h-likelihood

To fitMs, I estimate the parameters, α∗ and v∗, in equation (4.4) by maximizing the penalized
likelihood defined in equation (1.7) with penalty term given by equation (1.8). Similarly with
the conditional h-likelihoods constructed in the previous chapters, I build the penalized likeli-
hood with MR data conditional on individuals captured at least once. As a result, the penalized
likelihood forMs is given by

M(α∗, v∗,Λ; y.) = log

 n∏
i=1

f (yi.|yi. > 0; pi)

 − p∑
j=1

1
2
λ jv∗

′

j P jv∗j , (4.5)

where Λ = (λ1, ..., λp) is the vector of tuning (or smoothing) parameters, and P j are known
matrices such that the (a, b)-th element is

[
P j

]
a,b
=

∫ max(k)

min(k)
b(d)

ja (k)b(d)
jb (k)dk ,

where the superscript (d) denotes the d-th order derivative. I assume that the knots are equally
spaced and so apply the formula

v∗
′

j P jv∗j =
∫ max(k)

min(k)
v jab(d)

ja (k)v jbb(d)
jb (k)dk

=

q j−d−1∑
l=1

(∆dv jl)2 = D jD′j

to compute P j, as shown by Eilers and Marx (1996). Here, ∆dv jl denotes the d-th order differ-
ence of v jl about the index l and D j is the q j×(q j−d−1) matrix with the l-th column as the coef-
ficients attached to v j1, ..., v j,l+d in the expression of ∆dv jl (e.g., ∆2v jl = v j,l+2−2v j,l+1+v jl and the
l-th column of D j is (1,−2, 1)′). For example, if d = 2 and p j = 4, then v∗′j P jv∗j = v j3−2v j2+v j1
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so that

P j = D jD′j =


1 −2 1
−2 4 2
1 −2 1

 ,
where D j = (1,−2, 1)′. In the penalized likelihood in equation (4.5), the first term within
the log function is the conditional likelihood of Huggins (1989), which is equivalent to the
likelihood function for a GLM with the components described in Section 2.2.2. The second
term in the penalized likelihood is the penalty term based on the L2-norm and multiplied by
the tuning parameter, λ j which controls the smoothness of the non-linear function of pi. Since
this term is also proportional to the log of the density of multivariate normal distribution for v j

with mean vector, 0q j , and the variance–covariance matrix, (λ jP j)−1, the penalized likelihood is
proportional to the log of the joint density of yi. and v, which is the log of the h-likelihood for a
GLMM. The response variables for this GLMM are observed as yi. that are greater than 0, and
v are normal random effects through the linear predictor defined in the same form of equation
(4.4). As this h-likelihood conditions on individuals captured at least once, the h-likelihood
corresponds to the conditional h-likelihood, and I denote its log as

hc(θ,Λ; y., v) = M(α∗, v∗,Λ; y.) ,

so that θ = (α∗, v∗′ ,Λ′)′ is estimated by maximizing hc about θ through the fitting algorithm
derived in the following section.

4.2.3 Fitting algorithm

By treating Ms as a GLMM, the fitting algorithm of Lee and Nelder (2001) can be applied
directly to fitMs. The algorithm is similar to the algorithm provided for fittingMh in Chapter
2, but simpler in that some of the bias correction steps are removed. Specifically, the bias
correction of MHLEs for fixed and random effects is not considered in this chapter as I found
in my simulation study that these MHLEs have negligible biases in general. The algorithm
then consists of iterating two main steps: one estimates all fixed and random effects from the
h-likelihood while fixing dispersion parameters at values obtained from the other step, and the
other step estimates all dispersion parameters from the APHL while fixing fixed and random
effects at values obtained from the previous step. The derivation of these two mains steps is
based on the h-likelihood property that ∂2h/∂θ∂Λ ≈ 0, as described by Lee and Nelder (2001).

The details of the algorithm for fitting Ms are provided in Algorithm 3. Step 1 of the
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Algorithm 3 Fitting algorithm forMs

1: Set initial value θ̂
(0)
= (δ̂

′(0)
, Λ̂′(0))′

2: Let r = 0
3: while convergence criterion θ̂

(r)
≈ θ̂

(r+1)
not met do

4: Let δ̂
(r,0)
= δ̂

(r)
;

5: Let t = 0;
6: while convergence criterion δ̂

(r,t)
≈ δ̂

(r,t+1)
not met do

7: (Step 1) Given Λ̂(r), solve equation (4.6) for δ̂
(r,t)

;
8: t ← t + 1
9: end while

10: Let δ̂
(r+1)
= δ̂

(r,t)

11: (Step 2) Given δ̂
(r+1)

, obtain Λ̂(r+1) = (λ(r+1)
1 , ..., λ(r+1)

p )′ by fitting j = 1, ..., p gamma
GLMs, where each model has

• response variables observed: d̂(r+1)
j = D jv∗(r+1)

j with v̂∗(r+1)
j = (v̂(r+1)

j1 , ..., v̂(r+1)
j,q j−1)′

• prior weight: the (l + dim(d j−1) + 1)-th diagonal element of equation (3.10) for v̂(r+1)
jl ,

given δ̂
(r+1)

and λ̂(r)
j

• linear predictor: τ j = log(1/λ j)

12: end while

algorithm solves the normal equation

∂hc

∂δ
=

 1′n(y. − µ)
Z∗′(y. − µ) − bdiag(λ1P1, ..., λpPp)v∗

 = 0dim(v)+1

with respect to δ = (α∗, v∗′)′ for which the IRLS equation for the solution is

T′W(t−1)Tδ̂(t)
= T′W(t−1)z∗(t−1) , (4.6)

as shown by Lee and Nelder (1996, 2001). Here,

T =
 1n Z∗

0dim(v∗)−pd D′


is the design matrix such that η = Tδ with η = (η1, ..., ηn)′ = (logit(p1), ..., logit(pn)) and
D = bdiag(D1, ...,Dp),

W(t) =

 diag
(
∂µ1

∂η1
, ...,

∂µn

∂ηn

)
0n×dim(v∗)−pd

0(dim(v∗)−pd)×n ddiag(λ1Iq1−d, ..., λpIqp−d)


∣∣∣∣∣∣∣∣∣δ=δ̂(t)

,Λ=Λ̂
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is the t-th weight matrix, and

z∗(t) =

 η + diag
(
∂µ1

∂η1
, ...,

∂µn

∂ηn

)
(y. − µ)

0dim(v∗)−pd


∣∣∣∣∣∣∣∣∣δ=δ̂(t)

,Λ=Λ̂

is the t-th adjusted response variable of the IRLS equation. For the terms within T, W(t) and
z∗(t), I write

µ = E(y) = (µ1, ..., µn)′

and have derived that

µi =
T pi

πi

and
∂µi

∂ηi
=

T pi(1 − pi)
πi

−
T 2 p2

i (1 − πi)
π2

i

.

The IRLS algorithm repeatedly solves equation (4.6) about δ̂
(t)

until convergence is achieved
for the solution of equation (4.6). In Step 2, the APHL

hA
c (Λ; y., δ̂) = hc −

1
2

log
[
det

(
−

1
2π

∂2hc

∂δ∂δ′

)]∣∣∣∣∣δ=δ̂ ,
is maximized as suggested by Lee and Nelder (2001), which provides the set of the normal
equations,

∂hA
c

∂τ j
=

q j−d−1∑
l=1

∂λ∗j

∂τ j

d2
jl − (1 − q jl)λ∗j

λ∗2j

for j = 1, .., p as functions of τ j = log(λ∗j). Here λ∗j = 1/λ j, d jl is the l-th element of d j = D jv∗j,
and q jl is the (l + dim(d j−1) + 1)-th diagonal element of

T
(
−
∂2hc

∂δ∂δ′

)−1

T′bdiag
(
∂2hc

∂d1∂λ1
, ...,

∂2hc

∂dp∂λp

)
(4.7)

(note that dim(d0) = 0). In equation (4.7), the derivatives of hc are given by

−
∂2hc

∂δ∂δ′
= T′WT

and
∂2hc

∂d j∂λ j
= λ jIdim(d j)

.
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Lee and Nelder (2001) showed that each normal equation can be viewed as the normal equation
for a gamma GLM such that the response variables are observed as d jl for l = 1, ..., q j −

d − 1, each of which has the prior weight, q jl, and the linear predictor is τ j = log(λ∗j). I fit
these gamma GLMs through the IRLS algorithm, which can be implemented through existing
routines in most modern software.

To compute the variance–covariance matrix of θ̂− θ, I apply the asymptotic property of the
h-likelihood described in Chapter 1. The variance–covariance matrix is given by

Var(θ̂ − θ) =

 Var(δ̂ − δ) 0dim(δ)

0′dim(δ)
Var(λ̂ j)

 ,
where I have derived that

Var(δ̂ − δ) ≈ (T′WT)−1|θ=θ̂ . (4.8)

I have computed Var(λ̂ j) by the delta method, such that Var(λ̂ j) ≈ λ2
j × Var(τ̂ j), and obtained

Var(τ̂ j) directly from the IRLS algorithm for fitting the gamma GLMs as described above. The
variance–covariance matrix can be used to draw Wald-typed inferences through the asymptotic
properties of the h-likelihood,

θ̂ − θ
·
∼ N(0dim(θ),Var(θ̂ − θ)) (4.9)

if the sample size, n, is large enough. This property shall be used to estimate N in the next
section.

4.2.4 Estimation of population size

As in the previous chapters, I estimate N based on the HT estimator, which depends on the
MHLE for δ obtained through Algorithm 3. Under the same idea of Huggins (1989), who
proposed the estimate for N as

N̂(δ) =
N∑

i=1

1
πi
=

n∑
i=1

1
πi
,

where ci = I(yi. > 0), if the parameters, δ, are known, my estimator for N is given by

N̂(δ̂) =
n∑

i=1

1
π̂i
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with the MHLE, δ̂. Even though v in δ is regarded as the vector of random effects when the
h-likelihood approach is applied, it is originally the parameters generated by B-spline, and so I
ignore the variance of v as the random effects in computing N̂, but account for the uncertainty
occurred when obtaining δ̂ in computing the variance of N̂. Huggins (1989) showed that the
expectation of the HT estimator itself is

E(N̂(δ)) = N ,

so that by the first-order Taylor expansion of N̂(δ̂) about δ, that is

N̂(δ̂) ≈ N̂(δ) +
∂N̂(δ)
∂δ′

(δ̂ − δ) , (4.10)

and the h-likelihood property in equation (4.9), the expectation of my estimator is given by

E(N̂(δ̂)) ≈ N .

Hence, given a large sample size n, my estimator is approximately unbiased. To compute the
variance of my estimator, I apply the variance on the expression in equation (4.10), which
provides that

Var(N̂(δ̂)) ≈ Var(N̂(δ)) +
∂N̂(δ)
∂δ′

Var(δ̂ − δ)
∂N̂(δ)
∂δ

, (4.11)

where Huggins (1989) showed that

Var(N̂(δ)) =
n∑

i=1

1
π2

i

−
1
πi
,

Var(δ̂ − δ) is provided in equation (4.8), and I derived that

∂N̂(δ)
∂δ

= −

n∑
i=1

T pi

( 1
π2

i

−
1
πi

)
(1, z∗

′

i )′ .

The variance is computed approximately by substituting δ̂ for δ in equation (4.11). The ap-
proximated variance is then used to obtain CIs of N, as described below.

In the same way that CIs for N are obtained in the previous chapters, I consider two types
of the CIs: Wald CI and log-normal CI. The Wald CI is based on the assumption that N asymp-
totically follows a normal distribution and defined as

N̂(δ̂) ± 1.96
√

Var(N̂(δ̂)) ,
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when the confidence level is 95%. Alternatively, the log-normal CI is based on the assumption
that N − n approximately follows a log-normal distribution and defined as

(n + f̂0/C, n + f̂0 ×C) ,

where

C = exp
{

1.96
[

log
(
1 +

Var(N̂(δ̂))

f̂ 2
0

)]1/2}
,

and f̂0 = N̂(δ̂) − n. The log-normal CI has been recommended for the cases that N is right-
skewed rather than symmetric. In my simulation study, both CIs are shown to perform well,
but the log-normal CI outperforms the Wald CI slightly in terms of the coverage probability.

4.3 Simulation Study

I conducted a simulation study to demonstrate my approach using the h-likelihood to fit Ms

with smoothing functions based on B-spline. In particular, I simulated nsim = 1000 data sets
fromMs, in which pi was modelled by a non-linear function as in equation (4.1), where a single
individual covariate xi (the index j is dropped for convenience) was generated from U(−1, 1),
and f (x) = 0.7sin(πxi). Each data set was analysed by fitting Ms with pi modelled as in
equation (4.4), fixing the degree of the B-spline at d = 3 and the number of knots at q = 11, for
which the space between any two sequential knots was equal. The true values of the parameters
in Ms were set at: α ∈ {−2.2,−1.39,−0..85,−0.41}, and (T,N) = {(5, 100), (8, 250)}, which
provided eight scenarios in total. The four divisions of α produce four different levels of the
capture probability, backtransformed from E(logit(pi)), p̄i = logit−1(E(logit(pi))) ≈ 0.1, 0.2,
0.3 and 0.4, corresponding to α = −2.2, −1.39, −0.85 and −0.41, respectively. The setting of
the combination (T,N) expects to generate low and moderate number of individuals captured,
n, for (5, 100) and (8, 250), respectively.

To assess the performance of my approach, I computed the RB, RRMSE and CP as provided
in equations (2.25), (2.26) and (2.27). As in Chapter 2 and 3, I computed both Wald CI and
log-normal CI with the confidence level set at 95%.

The results of the RB and RRMSE for N are illustrated in Figure 4.1. The RB and RRMSE
for α were not considered as α itself is not estimable due to the issue of non-identifiability
with the B-spline. In general, the population size N was estimated with negligible bias when
α > −2.2 under both settings of (T,N). The RB ranged between 0.15% and 0.53% for the
six scenarios such that α > −2.2, but it is the largest and observed at the value 9.21% when
α = −2.2 and (T,N) = (8, 250), and at the extreme value over 1.08%, when α = −2.2 and
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Figure 4.1: Relative bias (RB) (left) and relative root mean square error (RRMSE) (right) for
N̂ when (T,N) = (5, 100) (upper) and (T,N) = (8, 250) (lower). The scales of the y-axis of the
plots for RB and RRMSE were changed to accommodate some extreme values when α = −2.2.

(T,N) = (5, 100). The RRMSE ranged between 1.34% and 5.26% when α > −2.2, regardless
of (T,N) and had an extreme value of 107% and 1.5 × 109% when α = −2.2, and (T,N) =
(8, 250) and (5, 100), respectively. This indicates that N̂ is not accurate when α = −2.2 and
somewhat alarming, but not too surprising, given that the capture probability is very low and
so a larger data set would be required to recover accurate information about the relationship
between the capture probability and the covariate.

The results of the CP for log-normal and Wald CIs for N are provided in Table 4.2. All CPs
seem to be close to 95% regardless of the type of CI. The log-normal CI slightly outperforms
the Wald CI when α ≤ −1.39 and vice versa when α > 1.39. This suggests that the distribution
of the HT estimator is more likely right-skewed as α decreases; however, the shape of the
distribution seems to negligibly affect the difference in the reliability of the two CIs.
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Table 4.2: Percentage coverage for N based on log-normal CI and Wald CI as a function of α
which in turn defines the backtransformed capture probability p̄i.

α ( p̄i)

(T , N) CI type -2.2 (0.1) -1.39 (0.2) -0.85 (0.3) -0.41 (0.4)

(5, 100) log-normal 89.9 95.5 91.1 90.4

Wald 94.0 95.5 95.5 91.2

(8, 250) log-normal 94.2 94.2 92.8 93.6

Wald 93.3 92.7 95.7 94.2

4.4 Application

I have applied my approach to analyse MR data for mountain pygmy possum (Burramys

parvus) from the study of Heinze et al. (2004) conducted at Mount Hotham in the snowfields of
Victoria, Australia. The data were collected over T = 5 consecutive days of November, 2003.
When an individual was captured by traps set in the area that includes the home range of the
individual, the body mass was measured when the individual was captured at the first time. In
total of n = 43 possums captured, 22 of them were captured once, 10 captured twice, 3 three
times, 4 four times, and 4 were captured on every occasion. The body mass (g) measured from
the possums ranged between 31.0 and 49.0 and with mean and standard deviation 40.5 and 4.3,
respectively.

I fittedMs with data based on six different approaches for comparison:

1. GLM (no smoothing): I fitted Mh via the VGAM package in R which uses the IRLS
algorithm to maximize the conditional likelihood ofMh when no smoothing function is
applied to the body mass (i.e., pi = α + βxi, where β is a parameter of the body mass of
individual i, xi). This approach was proposed by Yee et al. (2015) who consideredMh

as a GLM and estimated the population size via the HT estimator of Huggins (1989), as
defined in equation (1.2).

2. Kernel smoothing: In equation (4.1), the approach of kernel smoothing is non-parametric
and estimates the value of f (xi) by the weighted average of neighboring observed data. I
applied this approach of Huggins and Hwang (2007) who particularly used the biweight
kernel, K(w) = (15/16)(1 − w2)2, to obtain f̂ (xi) based on the data conditional on in-
dividuals captured at least once. The population size was again estimated via the HT
estimator.

3. Backfitting (equivalent degree of freedom (edf) = 2): I applied the backfitting algorithm
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(Breiman and Friedman, 1985) to estimate f (xi), where f (·) was chosen to be a cubic
spline smoother, and Ms was regarded as a GAM through the conditional likelihood.
The edf is used as the smoothing parameter in backfitting algorithm and higher edfs
allows more flexibility in the relationship between the capture probability and the co-
variate. I set edf = 2, which seems to be often considered to provide moderate flexibility.
The estimates p̂i are computed with the fitted values f̂ (xi) and substituted into the HT
estimator. I implemented this approach through the VGAM package in R that carries out
the backfitting algorithm automatically.

4. Backfitting (edf = 12): As described above, the backfitting algorithm with edf = 12 is
used to fit Ms and estimate the population size by the HT estimator. This edf setting
allows the function f (·) to be more flexible.

5. P-spline generalized cross-validation (GCV): This approach uses B-spline to fitMs with
pi being modelled as in equation (4.3) and maximizes the penalized likelihood in equa-
tion (4.5). I applied this approach to fitMs with the number of knots set at q = 15 and the
degree of B-spline d = 3. I implemented this approach again using the VGAM package
in R that carries out the IRLS algorithm for estimating parameters in the model. This
approach selects the optimal value of the tuning parameter, λ, by minimizing the GCV.

6. P-spline h-likelihood: I implemented algorithm 3 in R to fitMs and estimate N by the
HT estimator, as described in the previous sections. I used the same number of knots and
degree of the B-spline in this approach as in the P-spline and GCV approaches. R code
for my approach is included in Appendix C.

Table 4.3 presents the results of estimating the population size based on the six approaches.
In general, the point estimates but also the interval estimates of the population size are similar
for all approaches except for the approach using backfitting with edf = 12. This result implies
that allowing for too much flexibility in the function, f (·), is not suitable for describing data as
the estimate of the population size is completely nonsensical. Even though I set a large number
of knots in the approaches based on the P-spline, by which the model is fitted through GCV or
the h-likelihood, the point and interval estimates of the population size are highly comparable
to those obtained based on the kernel smoothing and backfitting with edf = 2. This shows that
the approaches using the P-spline are able to adapt the flexibility of the curve to the data.
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Table 4.3: Results of estimating the population size of mountain pygmy possums. Six ap-
proaches for fitting Mh as: a GLM without a smoothing function on the body mass, a GAM
with kernel smoothing, that via backfitting with the equivalent degree of freedom being 2 and
12, that via GCV and my approach using the h-likelihood, where the model is parameterized
by basis functions (B-spline) with the degree being 3 and L2-norm for the penalization of co-
efficients of the basis functions. For all approaches, two CIs: log-normal CI (left) and Wald CI
(right), are reported.

Method N̂
95% CIs for N

log-Normal Wald
GLM (no smoothing) 49.0 [45, 60] [42, 56]

Kernel smoothing 55.5 [46, 90] [37, 74]

Backfitting (edf = 2) 50.9 [46, 65] [42, 60]

Backfitting (edf = 12) 2857.4 [532, 16250] [-3237, 8952]

P-spline GCV 58.6 [52, 69] [51, 67]

P-spline h-likeihood 52.9 [46, 76] [40, 66]

4.5 Discussion

This chapter considered the basic MR model from Chapter 2, in which individual heterogeneity
is modelled by individual covariates, and extended it through a GAM formulation, allowing the
capture probability to be described by a non-linear relationship with the individual covariates.
I employed B-splines to derive a parametric form that enabled the model to be considered
as a GLMM by penalizing the spline coefficients. In this framework, the tuning parameters
that control the roughness of the functions of the individual covariates were equivalent to the
dispersion parameters in the GLMM. The likelihood function of the model with the added
penalization term (i.e., the penalized likelihood) was shown to be equal to the h-likelihood of
the GLMM, so I applied the fitting algorithm of Lee and Nelder (2001) that maximizes the
h-likelihood of GLMMs via the IRLS algorithm. I demonstrated that my approach provides
valid estimates of parameters and population size computed by the HT estimator through the
simulation study and the application of my approach to real data for the mountain pygmy
possum.

In the simulation study, I found that the performance of my approach was poor when the
true capture probability was set as its lowest. This might occur due to a small sample size
obtained by the low true capture probability, as discussed in Chapter 2. In particular, the point
estimate of the population size has a high bias when the capture probability is low, even though
the interval estimates by both Wald and log-normal CIs are highly reliable. This typically
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indicates that the CIs might be very wide, due to the lack of information in data. Hence, it is
suggested to analyze data with a sample size large enough to avoid biased parameter estimates.

My approach has specifically been applied to the basic MR model with GAM formulation
but can be easily extended to fit other types of MR models for individual heterogeneity and
GAM formulation together. For example, environmental covariates can be included in the ex-
pression in equation (4.1) and fit with B-splines to provide flexible and parametric functions
that can be regarded as the linear predictor of a GLMM and fitted by the h-likelihood. More-
over, the MR models that include the time and behavioural effects, as in Chapter 3, can be
extended to model individual heterogeneity with the GAM structure and fitted fitted by my
approach by regarding the MR models as VGLMMs for which I derived the fitting algorithm
based on the h-likelihood. For future works, I plan to perform a simulation study for fitting the
extended MR models from Chapter 3 with the GAM structure and investigate the performance
of my approach.



Chapter 5

Conclusion

The three projects in this thesis all consider problems in modelling individual heterogeneity in
the capture probability of models for MR data. In Chapter 2, the capture probability is mod-
elled by random effect describing individual variation, possibly in combination with observed
covariates that do not vary by time. This means that the capture probability for each individual
is constant, and so the number of times each marked individual is captured is sufficient. This
allows me to write the model as an extension of a GLMM that can be fitted by maximizing the
conditional h-likelihood. I derive a fitting algorithm based on IRLS, apply the bias correction
for the parameter estimates, and then estimate the population size by the HT estimator with es-
timates obtained from the conditional h-likelihood substituted for the true parameter values. In
Chapter 3, I develop my approach using the h-likelihood to fit the extended MR models, which
allows additional variation in the capture probability by time-dependant or by individual trap
responses. In this case, the capture history for an individual cannot be summarized by a single
value; so, it is necessary to consider extensions of VGLMMs. The conditional h-likelihoods
for these models are built and maximized to obtain parameter estimates, where the same bias
correction method of Chapter 2 is applied. As before, the fitting algorithm for these models
is based on the IRLS. In Chapter 4, my objective was to relax the assumption of linearity in
the basic model in Chapter 2 by incorporating penalized splines to describe a non-linear rela-
tionships between the covariates and the capture probability. The conditional likelihood with
a penalizing term of parameters is considered as the h-likelihood of a GLMM and maximized
by the fitting algorithm based on the h-likelihood, shown by some authors who considered the
general form of GLMMs but not the MR models.

Overall, I conclude that the h-likelihood approach to analyze MR data with individual het-
erogeneity provides comparable parameter estimates to all the previous methods based on ei-
ther frequentist or Bayesian approaches. In the analysis of the snowshoe hares and mountain
pygmy possum data for the three projects, I found that the h-likelihood approach not only re-
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sulted in point estimates and CIs for the population size that were close to those from either of
the other approaches, but also computationally efficient. Fitting all types of MR models took
time no more than 2.3 minutes, while the frequentist and Bayesian approaches required 1.3
minutes and > 1h, respectively, under the same conditions. This suggests that the h-likelihood
approach is computationally more efficient than the Bayesian approach but less efficient than
frequentist approach. However, this comparison cannot be interpreted strictly considering that
program MARK is written in compiled Fortran code, which will accelerate the computation
speed, while the h-likelihood was implemented in R only. The h-likelihood might deliver the
same computation efficiency as much as the frequentist approach does if it were rewritten in
compiled code. I expect that when the sample sizes are larger, the computation time for pro-
gram MARK would increase exponentially as the dimension of integral required to compute
the likelihood increases with the number of individuals captured. In comparison, my experi-
ences from the simulation studies I performed for all three projects suggest that the runtime of
the h-likelihood increases only slightly when the sample size increases. As a result, in practice,
I recommend to apply the frequentist approach when a sample size is small and the h-likelihood
otherwise to avoid computational issues that might arise from the application of the frequentist
approach.

In all the three projects, the MR models assume a closed population, which is often suitable
for analyzing data collected over a short study period but may be unrealistic when the time
length between sampling occasions is fairly long or the study is conducted over a long period of
time. It is possible that individuals migrate throughout a study area, but there could also be birth
or death of individuals during a MR experiment. The standard model for open populations is
the Jolly–Seber model for analyzing MR data from open populations (see Chapter 5 summary
in Seber, 1982, for an overview), which accounts for the survival of individuals over time.
This model has been extended in many ways to account for individual differences in both
survival and capture probability, as is akin to Pledger et al. (2003) who accounts for both
individual covariates and random effects for modelling individual heterogeneity. The use of
the h-likelihood is possible for such models, as long as the models depend on any random
effects.

When MR models are extended to account for random effects, following distributions an-
other than normal, one challenge would be in identifying the canonical scales required in defin-
ing the h-likelihood, as described in Chapter 1. Lee and Nelder (1996, 2001) and Lee et al.
(2017) have identified the canonical scales for common distributions of random effects, such
as normal, gamma, inverse-gamma and beta distributions; however, the canonical scales for
other distributions are still unknown but should be ascertained to avoid any nonsensical esti-
mates from the improperly defined h-likelihood. Lee et al. (2017) have developed the method
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to find out the canonical scales through a reparameterization of a model into a specific form,
which mimics the model with the response variables following distributions in the exponential
family. Yet, some distributions assumed on the random effects (e.g., uniform distribution) do
not allow the model to be in the family of models that can be written in this specific form, and
so the use of the h-likelihood may not be currently available for such cases.

Another problem to consider in the future is that the capture probability may be described
by flexible functions of multiple covariates. If the capture probability is assumed to be a linear
function of the covariates on some scale (e.g., the logit scale) as in Chapters 2 and 3, then it
is simple to incorporate the interaction terms. However, this is not straightforward when the
models are combined with a GAM structure as in Chapter 4. In this case, it may be possi-
ble to apply the method of thin-plate splines as shown by Wood (2003) to model the capture
probability as a flexible and non-additive function of two or more covariates simultaneously.
Even in higher dimensions, this method can provide parametric forms of the MR models; so,
again, its conditional likelihood with the penalized term can be regarded as the h-likelihood for
a GLMM, which can be directly fitted by the algorithm of Lee and Nelder (2001).

There are other diverse types of MR models wherein the h-likelihood can be used to analyze
MR data. Examples include the MR models that account for variation due to measurement
errors, spatial variation and missing covariates. The three projects in this thesis make the first
step toward a novel approach for analyzing MR data, which may come up with solutions for
statistical issues that have been encountered in the frequentist and Bayesian approaches. In
the end, the three projects may be a significant key to obtaining information from a population
more accurately than before, particularly for endangered animals worldwide, and thus lead to
more proper management and plans for conserving such animals.
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Appendix A

R Code for analyzing Snowshoe Hare
Data via the H-likelihood in Chapter 2

# ########### REQUIRED LIBRARY ############
l i b r a r y ( Ma t r i x )
l i b r a r y (VGAM)
l i b r a r y ( wisp )
# #########################################

# ######## PART 1 . FUNCTIONS FOR FITTING ALGORITMS #########

#### f u n c t i o n f o r f i n d i n g i n i t i v a l v a l u e s ####
i n i t v a l <− f u n c t i o n ( df , T ) {

# b i n o m i a l r e s p o n s e s
binom y <− apply ( df , 1 , sum )
df <− cbind ( binom y , T − binom y )

# GLM f i t w i t h o u t random e f f e c t s
f i t <− vglm ( as . matrix ( df ) ˜ 1 , p o s b i n o m i a l ( omit . c o n s t a n t = FALSE ) , e p s i l = 1e−10 ,

max i t = 150)

# e x t r a c t c o e f f i c i e n t s
r e s u l t <− as . numeric ( c o e f ( f i t ) )

re turn ( r e s u l t )
}

#### f u n c t i o n f o r comput ing d e s i g n m a t r i x and a d j u s t e d r e s p o n s e v a r i a b l e s ####
aug data <− f u n c t i o n ( n , y , d e s i g n mat obs ) {

aug y <− c ( y , rep ( 0 , n ) ) # y a
aug d e s i g n mat <− rbind ( d e s i g n mat obs ,

cbind ( Ma t r i x ( matrix ( 0 , nrow = n , nco l = nco l ( d e s i g n mat obs ) − n ) ) ,
diag ( n ) ) ) # T

re turn ( l i s t ( aug y = aug y , aug d e s i g n mat = aug d e s i g n mat ) )
}
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#### f u n c t i o n f o r r u n n i n g IRLS i n STEP 1 ####
VIRLS a d j <− f u n c t i o n ( aug y , aug d e s i g n mat ,

n , T ,
cur d e l t a , cur lambda ,
max i t e r , t o l , s t e p s i z e ) {

p r e e r r o r = 1 e10 # i n i t i a l e r r o r v a l u e ( must be l a r g e t o run t h e n e x t i t e r a t i o n )
o r i d e l t a = cur d e l t a # save t h e i n i t i a l v a l u e o f d e l t a
f o r ( i t e r i n seq l e n ( max i t e r ) ) {

p r i n t ( i t e r )
i f ( i t e r != 1) {

e r r o r = sum ( ( cur e t a − new e t a ) ˆ 2 ) # e r r o r c a l c u l a t i o n
p r i n t ( e r r o r )
p r i n t ( t o l * sum ( new e t a ˆ 2 ) )
i f ( ( e r r o r < t o l * sum ( new e t a ˆ 2 ) ) | ( i t e r == max i t e r ) ) { # i f e r r o r i s s m a l l enough

h <− diag ( I v i n v ) / cur lambda
h [ h >= 1] = 0 .9999 # p r e v e n t t h a t h i s over 1 ( p o s s i b l y by s m a l l n u m e r i c a l e r r o r )

v gamma <− as . v e c t o r ( I v i n v %*% ( as . v e c t o r ( t a i l ( cur d e l t a , n ) ) ) / cur lambda )

a d j u s t te rm = ( diag ( aug d e s i g n mat [ 1 : n , 2 : nco l ( aug d e s i g n mat ) ] %*% I v i n v %*%
t ( aug d e s i g n mat [ 1 : n , 2 : nco l ( aug d e s i g n mat ) ] ) ) ) * diagW v * v gamma

q = h − a d j u s t te rm
q [ q >= 1] = 0 .9999 # p r e v e n t t h a t q i s over 1 ( p o s s i b l y by s m a l l n u m e r i c a l e r r o r )

# d c a l c u l a t i o n
d <− as . v e c t o r ( t a i l ( cur d e l t a , n ) )

break

} e l s e {

# i f d i v e r g e n c e happens i n d e l t a e s t i m a t i o n , run VIRLS aga in
# w i t h s m a l l e r s t e p s i z e o f Newton ’ s method
i f ( p r e e r r o r < e r r o r ) {

s t e p s i z e = s t e p s i z e / 2
cur d e l t a = o r i d e l t a

} e l s e {

cur d e l t a = new d e l t a
p r e e r r o r = e r r o r

}

}

}

# e t a c o m p u t a t i o n
cur d e l t a <− matrix ( cur d e l t a , nco l = 1)
cur e t a <− as . v e c t o r ( aug d e s i g n mat %*% cur d e l t a )

# p r o b a b i l i t y c o m p u t a t i o n
cur p <− exp ( cur e t a [ 1 : ( l e n g t h ( cur e t a ) − n ) ] ) /

(1 + exp ( cur e t a [ 1 : ( l e n g t h ( cur e t a ) − n ) ] ) )
cur p i <− 1 − sapply (1 − cur p , f u n c t i o n ( x ) x ˆ T )
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# mean c o m p u t a t i o n
cur mu p o s b i n <− T * ( cur p / cur p i )
cur mu <− c ( cur mu posb in , t a i l ( as . v e c t o r ( cur e t a ) , n ) )

# second d e r i v a t e c o m p u t a t i o n
s igma i n v diag v a l s <− ( T * ( cur p − cur p ˆ 2 ) * ( cur p i ˆ ( − 1 ) ) ) −

( ( T * cur p * ( cur p i ˆ ( − 2 ) ) ) * T * cur p * (1 − cur p i ) )
s igma i n v diag v a l s <− c ( s igma i n v diag v a l s , rep ( ( 1 / cur lambda ) , n ) )

# ############## a d j u s t m e n t s t e p ###############
# f i s h e r i n f o f o r random e f f e c t s
I v <− t ( aug d e s i g n mat [ , 2 : nco l ( aug d e s i g n mat ) ] ) %*% diag ( s igma i n v diag v a l s ) %*%

( aug d e s i g n mat [ , 2 : nco l ( aug d e s i g n mat ) ] )

I v i n v <− s o l v e ( I v )

# c a p t u r e probs d e r i v a t i v e abou t e t a
p e t a <− cur p − cur p ˆ2

# a p t u r e probs d e r i v a t i v e abou t random e f f e c t s
p v <− p e t a

# p i ( prob . o f c a p t u r i n g a t l e a s t once ) d e r i v a t i v e abou t e t a
p i e t a <− T * cur p * (1 − cur p i )

# p i ( prob . o f c a p t u r i n g a t l e a s t once ) d e r i v a t i v e abou t random e f f e c t s
p i v <− p i e t a

# d iag (W) d e r i v a t i v e abou t e t a
diagW e t a <− ( T * p e t a * ( cur p i ˆ ( − 1 ) ) ) − ( T * cur p * ( cur p i ˆ ( −2 ) ) * p i e t a ) −

2 * ( T * cur p * p e t a * ( cur p i ˆ ( − 1 ) ) ) +
( T * ( cur p ˆ 2 ) * ( cur p i ˆ ( −2 ) ) * p i e t a ) −
2 * ( ( T ˆ 2 ) * cur p * p e t a * ( cur p i ˆ ( − 2 ) ) ) +
2 * ( ( T ˆ 2 ) * ( cur p ˆ 2 ) * ( cur p i ˆ ( −3 ) ) * p i e t a ) +
2 * ( ( T ˆ 2 ) * cur p * p e t a * ( cur p i ˆ ( − 1 ) ) ) −
( ( T ˆ 2 ) * ( cur p ˆ 2 ) * ( cur p i ˆ ( −2 ) ) * p i e t a )

# d iag (W) d e r i v a t i v e abou t random e f f e c t s
diagW v <− diagW e t a

# S c o m p u t a t i o n
t e rm1 <− diag ( I v i n v ) * diagW e t a
te rm2 <− diag ( I v i n v ) * diagW v * diag ( I v i n v ) * (−1 * s igma i n v diag v a l s [ 1 : n ] )

S <− ( te rm1 + t e rm2 ) / 2

# ##############################################

# s c o r e f u n c t i o n INCLUDING t h e s t e p o f u p d a t i n g random e f f e c t s t h r o u g h h− l i k e l i h o o d
temp = aug y − cur mu − c ( S , −1 * cur lambda * S )
temp [ ( l e n g t h ( temp ) − n + 1 ) : ( l e n g t h ( temp ) ) ] = t a i l ( temp , n ) / cur lambda
s = t ( aug d e s i g n mat ) %*% temp

# f i s h e r i n f o
I <− t ( aug d e s i g n mat ) %*% diag ( s igma i n v diag v a l s ) %*% aug d e s i g n mat
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I i n v <− s o l v e ( I )

# new d e l t a
new d e l t a <− cur d e l t a + ( s t e p s i z e * I i n v %*% s )

# new and o l d e t a v a l u e s
cur e t a = aug d e s i g n mat %*% cur d e l t a
new e t a = aug d e s i g n mat %*% new d e l t a

i f ( sum ( i s . na ( new e t a ) ) > 0) {
s top ( ” Dive rged . ” )

}

} # end o f f o r ( i t e r i n seq l e n ( max i t e r ) )

re turn ( l i s t ( new d e l t a = cur d e l t a , new e t a = cur e t a ,
p i = cur pi , p = cur p ,
I = I , I i n v = I inv ,
h = h , q = q , d = d , s t e p s i z e = s t e p s i z e ) )

}

#### f u n c t i o n f o r f i t t i n g gamma GLM i n STEP 2 ####
vhglm <− f u n c t i o n ( aug y , aug d e s i g n mat ,

n , T ,
cur d e l t a , cur lambda ,
max i t e r 1 , max i t e r 2 , t o l 1 , t o l 2 ) {

cur e t a = 0 # i n i t i a l v a l u e f o r l i n e a r p r e d i c t o r ( s e t as 0 t o compute e r r o r )
p r e e r r o r = 1 e10 # i n i t i a l e r r o r v a l u e ( must be l a r g e t o run t h e n e x t i t e r a t i o n )
s t e p s i z e = 1 . 0
f o r ( i t e r i n seq l e n ( max i t e r 1 ) ) {

# STEP 1: e s t i m a t e p a r a m e t e r s and random− e f f e c t s
new v i r l s r e s u l t <− t r y ( VIRLS a d j ( aug y , aug d e s i g n mat ,

n , T ,
cur d e l t a , cur lambda ,
max i t e r = max i t e r 2 , t o l = t o l 2 , s t e p s i z e ) , TRUE)

i f ( c l a s s ( new v i r l s r e s u l t ) == ” t r y − e r r o r ” ) {
s top ( ” Dive rged i n VIRLS . ” )

}

# STEP 2: e s t i m a t e lambda ( v a r i a n c e o f random− e f f e c t s )
y d = ( ( new v i r l s r e s u l t $d ) ˆ 2 ) / (1 − new v i r l s r e s u l t $q )
f i t <− t r y C a t c h ( glm ( y d ˜ 1 , f a mi ly = Gamma( l i n k = ” l o g ” ) ,

weight s = (1 − new v i r l s r e s u l t $q ) ,
max i t = 1 5 0 ) ,

warning = f u n c t i o n (w) w)

i f ( i n h e r i t s ( f i t , ” warn ing ” ) ) {
s top ( ” Dive rged i n VIRLS −− d i v e r g e d sigma v ” )

}

new lambda <− exp ( c o e f ( f i t ) ) # upda ted lambda
p r i n t ( s q r t ( new lambda ) )
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# e r r o r c a l c u l a t i o n
e r r o r = sum ( ( cur e t a − new v i r l s r e s u l t $new e t a ) ˆ 2 )
p r i n t ( e r r o r )
p r i n t ( ( t o l 1 ) * sum ( ( new v i r l s r e s u l t $new e t a ) ˆ 2 ) )

i f ( e r r o r < ( t o l 1 * sum ( ( new v i r l s r e s u l t $new e t a ) ˆ 2 ) ) ) {

cur d e l t a = new v i r l s r e s u l t $new d e l t a
break

}

cur e t a = new v i r l s r e s u l t $new e t a
cur d e l t a = new v i r l s r e s u l t $new d e l t a
s t e p s i z e = new v i r l s r e s u l t $ s t e p s i z e
cur lambda = new lambda
p r e e r r o r = e r r o r

p r i n t ( cur d e l t a [ 1 , ] )
}

re turn ( l i s t ( new e t a = new v i r l s r e s u l t $new e t a ,
new d e l t a = new v i r l s r e s u l t $new d e l t a , new lambda = cur lambda ,
var i n f o = diag ( as . matrix ( new v i r l s r e s u l t $ I i n v ) ) ,
p i = new v i r l s r e s u l t $ pi ,
p = new v i r l s r e s u l t $p ,
I = new v i r l s r e s u l t $I ,
I i n v = new v i r l s r e s u l t $ I inv ,
l o g lambda s t d = summary ( f i t ) $ c o e f f i c i e n t s [ 2 ] ) )

}

#### f u n c t i o n f o r e s t i m a t i n g p o p u l a t i o n s i z e ####
e s t N <− f u n c t i o n ( p i , p ,

I , I inv ,
T , n , new d e l t a ) {

# a c t u a l var ( d e l t a )
a c t u a l I i n v <− I i n v
# var ( v )
random I i n v <− b d i a g ( 0 , s o l v e ( I [ 2 : nrow ( I ) , 2 : nrow ( I ) ] ) )

# v a r i a n c e o f h a t N
t e rm1 <− sum ( ( p i ˆ ( −2 ) ) * (1 − p i ) ) # v a r i a n c e o f HT− e s t i m a t o r i t s e l f

# f i r s t d e r i v a t i v e abou t i n t e r c e p t
d <− c (−sum ( ( p i ˆ ( −2 ) ) * (1 − p i ) * T * p ) )

# f i r s t d e r i v a t i v e abou t random e f f e c t s
f o r ( i i n 1 : n ) {

d <− c ( d , −( ( p i [ i ] ˆ ( − 2 ) ) * (1 − p i [ i ] ) * T * p [ i ] ) )
}

t e rm2 <− as . v e c t o r ( t ( d ) %*% a c t u a l I i n v %*% d )
te rm3 <− 2 * as . v e c t o r ( t ( d ) %*% random I i n v %*% d )

# second d e r i v a t i v e abou t i n t e r c e p t and i n t e r c e p t
d e r i v p i i n t c <−(1 − p i ) * T * p
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d e r i v i n t c i n t c <− sum ( ( ( 2 / p i ˆ 3 ) * d e r i v p i i n t c −
(1 / ( p i ˆ 2 ) ) * d e r i v p i i n t c ) * T * p +

( ( 1 / p i ) − ( p i ˆ ( − 2 ) ) ) * T * ( p − p ˆ 2 ) )

# second d e r i v a t i v e abou t i n t e r c e p t and random e f f e c t s
d e r i v i n t c r <− ( ( 2 / ( p i ˆ 3 ) ) * d e r i v p i i n t c − (1 / ( p i ˆ 2 ) ) * d e r i v p i i n t c ) * T * p +

( ( 1 / p i ) − ( p i ˆ ( − 2 ) ) ) * T * ( p − p ˆ 2 )
d e r i v i n t c r <− as . matrix ( d e r i v i n t c r , nco l = 1)

# second d e r i v a t i v e abou t random e f f e c t s and random e f f e c t s
d e r i v p i v <− (1 − p i ) * T * p
d e r i v r r <− matrix ( 0 , nrow = n , nco l = n )
f o r ( i i n 1 : n ) {

d e r i v r r [ i , i ] <− ( ( 2 / ( p i [ i ] ˆ 3 ) ) * d e r i v p i v [ i ] −
(1 / ( p i [ i ] ˆ 2 ) ) * d e r i v p i v [ i ] ) * T * p [ i ] +

( ( − (1 − p i [ i ] ) / ( p i [ i ] ˆ 2 ) ) * T * ( p [ i ] − p [ i ] ˆ 2 ) )
}

# second d e r i v a t i v e m a t r i x
second d <− rbind ( cbind ( d e r i v i n t c i n t c , t ( d e r i v i n t c r ) ) ,

cbind ( d e r i v i n t c r , d e r i v r r ) )

te rm4 <− sum ( diag ( second d %*% a c t u a l I i n v %*% second d %*% random I i n v ) )
te rm5 <− 2 * sum ( diag ( second d %*% random I i n v %*% second d %*% random I i n v ) )

te rm6 <− 6 * as . v e c t o r ( t ( new d e l t a ) %*% second d %*% random I i n v %*%
second d %*% new d e l t a )

var N <− t e rm1 + t e rm2 + t e rm3 + t e rm4 + t e rm5 + t e rm6

# p o p u l a t i o n s i z e e s t i m a t o r
a d j <− sum ( diag ( second d %*% random I i n v ) ) # term f o r b i a s c o r r e c t i o n i n N e s t i m a t i o n
N e s t <− sum (1 / p i ) + a d j

# log −normal c o n f i d e n c e i n t e r v a l f o r N
c = exp ( 1 . 9 6 * s q r t ( l o g (1 + ( s q r t ( var N) / (N e s t − n ) ) ˆ 2 ) ) )
N upper = n + c * (N e s t − n )
N lower = n + (N e s t − n ) / c

# Wald c o n f i d e n c e i n t e r v a l f o r N
N upper2 = N e s t + 1 . 9 6 * s q r t ( var N)
N lower2 = N e s t − 1 . 9 6 * s q r t ( var N)

re turn ( l i s t (N e s t = N e s t , N lower = N lower , N upper = N upper ,
N lower2 = N lower2 , N upper2 = N upper2 , var N = var N) )

}

# ###########################################################

# ######## PART 2 . SNOWSHOE HARE DATA ANALYSIS #########
# c a l l t h e da ta s e t
data ( h a r e . samp . c r )

# b a s i c s e t t i n g s
snow <− h a r e . samp . c r $ c a p t u r e # o b s e r v e d c a p t u r e h i s t o r y
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n = nrow ( snow )
T = nco l ( snow )

# r e s p o n s e v a r i a b l e s
y <− apply ( snow , 1 , sum ) # b i n o m i a l da ta

# o b s e r v e d d e s i g n m a t r i x
Z <− diag ( n ) # f o r random− e f f e c t s
d e s i g n mat obs <− cbind ( 1 , Z ) # f o r f i x e d and random e f f e c t s

# f i n d i n i t i a l v a l u e s
o p t i o n s ( warn = −1)
cur d e l t a <− c ( i n i t v a l ( snow , T ) , rnorm ( n , 0 , 0 ) )

# augmented d e s i g n m a t r i x and r e s p o n s e v a r i a b l e s
data aug <− aug data ( n , y , d e s i g n mat obs )

# run f i t t i n g a l g o r i t h m
max i t e r 1 = 150
max i t e r 2 = 150
t o l 1 = 1e−13
t o l 2 = 1e−13
lambda t r i a l = c (1 e−3)
f i t <− vhglm ( data aug $ aug y , data aug $ aug d e s i g n mat ,

n , T ,
cur d e l t a , lambda t r i a l ,
max i t e r 1 , max i t e r 2 , t o l 1 , t o l 2 )

# e s t i m a t e t h e p o p u l a t i o n s i z e
N e s t <− e s t N( f i t $ pi , f i t $p ,

f i t $I , f i t $ I inv , T , n , f i t $new d e l t a )
p r i n t (N e s t )

#cAIC c o m p u t a t i o n
cAIC h <− 2* (1 + 1 + n ) −2 * ( sum ( ( as . v e c t o r ( f i t $new e t a [ 1 : n , ] ) * y ) −

l o g ( f i t $ p i ) + T * l o g (1 − f i t $p ) ) +
sum ( pnorm ( as . v e c t o r ( t a i l ( f i t $new d e l t a , n ) ) ,

mean = 0 , sd = s q r t ( f i t $new lambda ) ) ) )
p r i n t ( cAIC h )
# ######################################################



Appendix B

R Code for analyzing Snowshoe Hare
Data via the H-likelihood in Chapter 3

# ########### REQUIRED LIBRARY ############
l i b r a r y ( Ma t r i x )
l i b r a r y (VGAM)
l i b r a r y ( wisp )
# #########################################

# ######## PART 1 . FUNCTIONS FOR FITTING ALGORITMS #########

#### f u n c t i o n f o r f i n d i n g i n i t i v a l v a l u e s ####
i n i t v a l <− f u n c t i o n ( df , t y p e ) {

# GLM f i t w i t h o u t random e f f e c t s
i f ( t y p e == ”M. h ” ) {

f i t <− vglm ( as . matrix ( df ) ˜ 1 , p o s b e r n o u l l i . t ( p a r a l l e l . t = TRUE ˜ 1 ) ,
e p s i l = 1e−10 , max i t = 150)

} e l s e i f ( t y p e == ”M. bh ” ) {
f i t <− vglm ( as . matrix ( df ) ˜ 1 , p o s b e r n o u l l i . b , e p s i l = 1e−10 , max i t = 150)

} e l s e i f ( t y p e == ”M. t h ” ) {
f i t <− vglm ( as . matrix ( df ) ˜ 1 , p o s b e r n o u l l i . t , e p s i l = 1e−10 , max i t = 150)

} e l s e {

f i t <− vglm ( as . matrix ( df ) ˜ 1 , p o s b e r n o u l l i . tb , e p s i l = 1e−10 , max i t = 150)
}

# e x t r a c t c o e f f i c i e n t s
r e s u l t <− as . numeric ( c o e f ( f i t ) )
i f ( t y p e == ”M. b ” | t y p e == ”M. t b h ” ) {

r e s u l t <− c ( r e s u l t [ 2 : l e n g t h ( r e s u l t ) ] , r e s u l t [ 1 ] )
}

re turn ( r e s u l t )
}

#### f u n c t i o n f o r comput ing d e s i g n m a t r i x and a d j u s t e d r e s p o n s e v a r i a b l e s ####
aug data <− f u n c t i o n ( n , y , d e s i g n mat obs , y l i s t , d e s i g n mat obs l i s t ) {

95
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aug y <− c ( y , rep ( 0 , n ) ) # y a
aug d e s i g n mat <− rbind ( d e s i g n mat obs , cbind ( Ma t r i x ( matrix ( 0 , nrow = n ,

nco l = nco l ( d e s i g n mat obs ) − n ) ) ,
diag ( n ) ) ) # T

aug y l i s t <− y l i s t # r e s p o n s e v a r i a b l e ( i n v e c t o r form ) f o r each i
aug y l i s t [ [ n + 1 ] ] <− rep ( 0 , n ) # and t h e augmented p a r t o f t h e r e s p o n s e v a r i a b l e
aug d e s i g n mat l i s t <− d e s i g n mat obs l i s t # d e s i g n m a t r i x f o r each i
aug d e s i g n mat l i s t [ [ n + 1 ] ] <− cbind ( Ma t r i x ( matrix ( 0 , nrow = n ,

nco l = nco l ( d e s i g n mat obs ) − n ) ) ,
diag ( n ) ) # and t h e aumented p a r t o f t h e d e s i g n m a t r i x

re turn ( l i s t ( aug y = aug y , aug d e s i g n mat = aug d e s i g n mat ,
aug y l i s t = aug y l i s t , aug d e s i g n mat l i s t = aug d e s i g n mat l i s t ) )

}

#### f u n c t i o n f o r r u n n i n g IRLS i n STEP 1 ####
VIRLS a d j <− f u n c t i o n ( aug y , aug d e s i g n mat , aug d e s i g n mat l i s t ,

n , T , z mat = NULL,
cur d e l t a , cur lambda ,
max i t e r , t o l , type , s t e p s i z e ) {

i f ( ( t y p e != ”M. t b h ” ) & ( t y p e != ”M. bh ” ) & ( ! i s . n u l l ( z mat ) ) ) {

s top ( ” have any Z i n f o r m a t i o n which must n o t e x i s t ” )
}

# random e f f e c t s s t a r t column i n d e x i n t h e d e s i g n m a t r i x
i f ( t y p e == ”M. h ” ) {

r and s t a r t i d x <− 2
}

i f ( t y p e == ”M. t h ” ) {
r and s t a r t i d x <− T + 1

}

i f ( t y p e == ”M. bh ” ) {
r and s t a r t i d x <− 3

}

i f ( t y p e == ”M. t b h ” ) {
r and s t a r t i d x <− T + 2

}

p r e e r r o r = 1 e10 # i n i t i a l e r r o r v a l u e ( must be l a r g e t o run t h e n e x t i t e r a t i o n )
o r i d e l t a = cur d e l t a # save t h e i n i t i a l v a l u e o f d e l t a
f o r ( i t e r i n seq l e n ( max i t e r ) ) {

p r i n t ( i t e r )
i f ( i t e r != 1) {

e r r o r = sum ( ( cur e t a − new e t a ) ˆ 2 ) # e r r o r c a l c u l a t i o n
p r i n t ( e r r o r )
p r i n t ( t o l * sum ( new e t a ˆ 2 ) )
i f ( ( e r r o r < t o l * sum ( new e t a ˆ 2 ) ) | ( i t e r == max i t e r ) ) {

h <− diag ( I v i n v ) / cur lambda
h [ h >= 1] = 0 .9999 # p r e v e n t t h a t h i s over 1 ( due t o s m a l l n u m e r i c a l e r r o r )

v gamma <− as . v e c t o r ( I v i n v %*% ( as . v e c t o r ( t a i l ( cur d e l t a , n ) ) ) / cur lambda )
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a d j u s t te rm <− t r a c e v * v gamma # d e r i v a t i v e f o r v h a t i n a d j u s t e d term

q = h − a d j u s t te rm
q [ q >= 1] = 0 .9999

# d c a l c u l a t i o n
d <− as . v e c t o r ( t a i l ( cur d e l t a , n ) )

break

} e l s e {

# i f d i v e r g e n c e happens i n d e l t a e s t i m a t i o n ,
# run VIRLS aga in w i t h s m a l l e r s t e p s i z e o f Newton ’ s method
i f ( ( p r e e r r o r < e r r o r ) ) {

s t e p s i z e = s t e p s i z e / 2
cur d e l t a = o r i d e l t a

} e l s e {

cur d e l t a = new d e l t a
p r e e r r o r = e r r o r

}

}

}

# e t a c o m p u t a t i o n
cur d e l t a <− matrix ( cur d e l t a , nco l = 1)
cur e t a <− as . v e c t o r ( aug d e s i g n mat %*% cur d e l t a )

# p r o b a b i l i t y c o m p u t a t i o n
cur p <− exp ( cur e t a [ 1 : ( l e n g t h ( cur e t a ) − n ) ] ) /

(1 + exp ( cur e t a [ 1 : ( l e n g t h ( cur e t a ) − n ) ] ) )
cur p mat <− matrix ( cur p , nrow = n , byrow = TRUE)
cur p i <− 1 − apply (1 − cur p mat [ , 1 : T ] , 1 , prod ) # prob . c a p t u r e d a t l e a s t once

# mean c o m p u t a t i o n
i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {

cur minus p i p i <− (1 − cur p i ) / cur p i
cur minus p i p i mat <− matrix ( rep ( cur minus p i pi , T ) , nrow = n )
cur minus p i p i mat <− Ma t r ix ( cbind ( cur minus p i p i mat ,

matrix ( 0 , nrow = n , nco l = T − 1 ) ) )
cur minus p i p i <− as . v e c t o r ( t ( cur minus p i p i mat ) )

cur mu p o s b i n <− as . v e c t o r ( t ( cbind ( ( 1 − z mat ) , z mat [ , 2 : T ] ) ) ) *
cur p + cur p * cur minus p i p i

}

i f ( t y p e == ”M. t h ” | t y p e == ”M. h ” ) {
cur mu p o s b i n <− cur p / rep ( cur pi , each = T )
cur mu p o s b i n mat <− matrix ( cur mu posb in , nrow = n , byrow = TRUE)

}

cur mu <− c ( cur mu posb in , t a i l ( as . v e c t o r ( cur e t a ) , n ) )

# second d e r i v a t i v e c o m p u t a t i o n
s igma i n v s p l i t <− l i s t ( )
i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {

f o r ( i i n 1 : n ) {
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cur pc <− cur p mat [ i , 1 : T ]
cur pr <− cur p mat [ i , ( T + 1 ) : ( 2 *T − 1 ) ]

d e r i c c <− apply ( as . matrix ( cur pc / cur p i [ i ] , nco l = 1 ) , 1 ,
f u n c t i o n ( x ) x * ( cur pc − cur pc / cur p i [ i ] ) )

diag e l e m e n t s <− (1 − cur pc / cur p i [ i ] ) * ( cur pc / cur p i [ i ] )
diag ( d e r i c c ) <− diag e l e m e n t s
d e r i c c <− d e r i c c + diag ( ( ( 1 − z mat ) [ i , ] * ( cur pc − cur pc ˆ 2 ) ) −

( cur pc − cur pc ˆ 2 ) )
d e r i c r <− diag ( z mat [ i , 2 : T ] * ( cur pr − cur pr ˆ 2 ) )

s igma i n v s p l i t [ [ i ] ] <− b d i a g ( d e r i c c , d e r i c r )
}

}

i f ( t y p e == ”M. t h ” | t y p e == ”M. h ” ) {
f o r ( i i n 1 : n ) {

cur d e r i v mu e t a <− t ( ( cur p mat [ i , ] − cur mu p o s b i n mat [ i , ] ) %*%
t ( cur mu p o s b i n mat [ i , ] ) )

new diag e l e m e n t s <− cur mu p o s b i n mat [ i , ] * (1 − cur mu p o s b i n mat [ i , ] )
diag ( cur d e r i v mu e t a ) <− new diag e l e m e n t s
s igma i n v s p l i t [ [ i ] ] <− cur d e r i v mu e t a

}

}

s igma i n v s p l i t [ [ n + 1 ] ] <− (1 / cur lambda ) * diag ( n )

# ############## a d j u s t m e n t s t e p ###############
# f i s h e r i n f o f o r random e f f e c t s
I v <− 0
f o r ( i i i n seq l e n ( n + 1 ) ) {

cur f i s h e r <− t ( aug d e s i g n mat l i s t [ [ i i ] ] [ , r and s t a r t i d x : nco l ( aug d e s i g n mat ) ] ) %*%
s igma i n v s p l i t [ [ i i ] ] %*%
( aug d e s i g n mat l i s t [ [ i i ] ] [ , r and s t a r t i d x : nco l ( aug d e s i g n mat ) ] )

I v <− I v + cur f i s h e r
}

I v i n v <− s o l v e ( I v )

# i n i t i a l c a p t u r e probs d e r i v a t i v e abou t e t a
pc e t a <− cur p mat [ , 1 : T ] − ( cur p mat [ , 1 : T ] ) ˆ 2
i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {

pr e t a <− cur p mat [ , ( T + 1 ) : ( 2 *T − 1 ) ] − ( cur p mat [ , ( T + 1 ) : ( 2 *T − 1 ) ] ) ˆ 2
}

# i n i t i a l c a p t u r e probs d e r i v a t i v e abou t random e f f e c t s
pc v <− cur p mat [ , 1 : T ] − ( cur p mat [ , 1 : T ] ) ˆ 2
i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {

pr v <− cur p mat [ , ( T + 1 ) : ( 2 *T − 1 ) ] − ( cur p mat [ , ( T + 1 ) : ( 2 *T − 1 ) ] ) ˆ 2
}

# p i ( prob . o f c a p t u r i n g a t l e a s t once ) d e r i v a t i v e abou t e t a
p i e t a <− (1 − cur p i ) * cur p mat [ , 1 : T ]

# p i ( prob . o f c a p t u r i n g a t l e a s t once ) d e r i v a t i v e abou t random e f f e c t s
p i v <− (1 − cur p i ) * apply ( cur p mat [ , 1 : T ] , 1 , sum )
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# d iag (W) d e r i v a t i v e abou t e t a
diagW e t a l i s t <− l i s t ( )
f o r ( t i n 1 : T ) {

i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {
n u l l mat <− matrix ( 0 , nco l = T , nrow = n )
n u l l mat [ , t ] <− pc e t a [ , t ]
tmp1 e t a <− ( n u l l mat / cur p i ) − ( cur p mat [ , 1 : T ] * ( p i e t a [ , t ] / cur p i ˆ 2 ) ) −

(2 * cur p mat [ , 1 : T ] * n u l l mat / cur p i ˆ 2 ) + (2 * ( ( cur p mat [ , 1 : T ] ) ˆ 2 ) *
( p i e t a [ , t ] / ( cur p i ˆ 3 ) ) ) −

( n u l l mat ) + (2 * cur p mat [ , 1 : T ] * n u l l mat ) + ( ( 1 − z mat ) * n u l l mat ) −
(2 * (1 − z mat ) * cur p mat [ , 1 : T ] * n u l l mat )

}

i f ( t y p e == ”M. t h ” | t y p e == ”M. h ” ) {
n u l l mat <− matrix ( 0 , nco l = T , nrow = n )
n u l l mat [ , t ] <− pc e t a [ , t ]
tmp1 e t a <− ( n u l l mat / cur p i ) − ( cur p mat [ , 1 : T ] * ( p i e t a [ , t ] / cur p i ˆ 2 ) ) −

(2 * cur p mat [ , 1 : T ] * n u l l mat / cur p i ˆ 2 ) +
(2 * ( ( cur p mat [ , 1 : T ] ) ˆ 2 ) * ( p i e t a [ , t ] / ( cur p i ˆ 3 ) ) )

}

diagW e t a l i s t [ [ t ] ] <− tmp1 e t a
}

# d iag (W) d e r i v a t i v e abou t random e f f e c t s
i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {

diagW v <− ( pc v / cur p i ) − ( cur p mat [ , 1 : T ] * ( p i v / cur p i ˆ 2 ) ) −
(2 * cur p mat [ , 1 : T ] * pc v / cur p i ˆ 2 ) +
(2 * ( ( cur p mat [ , 1 : T ] ) ˆ 2 ) * ( p i v / ( cur p i ˆ 3 ) ) ) −
( pc v ) + (2 * cur p mat [ , 1 : T ] * pc v ) + ( ( 1 − z mat ) * pc v ) −
(2 * (1 − z mat ) * cur p mat [ , 1 : T ] * pc v )

}

i f ( t y p e == ”M. t h ” | t y p e == ”M. h ” ) {
diagW v <− ( pc v / cur p i ) − ( cur p mat [ , 1 : T ] * ( p i v / cur p i ˆ 2 ) ) −

(2 * cur p mat [ , 1 : T ] * pc v / cur p i ˆ 2 ) +
(2 * ( ( cur p mat [ , 1 : T ] ) ˆ 2 ) * ( p i v / ( cur p i ˆ 3 ) ) )

}

# o f f −d iag and d iag (W) d e r i v a t i v e abou t e t a
W e t a l i s t <− l i s t ( )
f o r ( t i n 1 : T ) {

W e t a <− matrix (NA, nrow = n , nco l = T*T )
i d x = 0
f o r ( k i n 1 : T ) {

f o r ( l i n 1 : T ) {
i f ( l != k ) {

# nondiag (W) d e r i v a t i v e abou t e t a
i d x = i d x + 1
tmp2 <− ( ( k == t ) * pc e t a [ , k ] * cur p mat [ , l ] + ( l == t ) * pc e t a [ , l ] *

cur p mat [ , k ] ) * (1 / cur p i − (1 / cur p i ˆ 2 ) ) +
( cur p mat [ , k ] * cur p mat [ , l ] ) *
(−1 * p i e t a [ , t ] / ( cur p i ˆ 2 ) + 2 * p i e t a [ , t ] / ( cur p i ˆ 3 ) )

W e t a [ , i d x ] <− tmp2
}

i f ( l == k ) { # d iag (W) d e r i v a t i v e abou t e t a
i d x = i d x + 1

W e t a [ , i d x ] <− diagW e t a l i s t [ [ t ] ] [ , l ]



100 Chapter B. R Code for Snowshoe Hare Data via the H-likelihood in Chapter 3

}

}

}

W e t a l i s t [ [ t ] ] <− W e t a
}

# W d e r i v a t i v e abou t random e f f e c t s
W v <− matrix (NA, nrow = n , nco l = T*T )
i d x = 0
f o r ( k i n 1 : T ) {

f o r ( l i n 1 : T ) {
i f ( l != k ) {

# nondiag (W) d e r i v a t i v e abou t random e f f e c t s
i d x = i d x + 1
tmp2 <− ( pc v [ , k ] * cur p mat [ , l ] + pc v [ , l ] * cur p mat [ , k ] ) *

(1 / cur p i − (1 / cur p i ˆ 2 ) ) +
( cur p mat [ , k ] * cur p mat [ , l ] ) * (−1 * p i v / ( cur p i ˆ 2 ) + 2 *

p i v / ( cur p i ˆ 3 ) )
W v [ , i d x ] <− tmp2
}

i f ( l == k ) { # d iag (W) d e r i v a t i v e abou t random e f f e c t s
i d x = i d x + 1

W v [ , i d x ] <− diagW v [ , l ]
}

}

}

# d iag (U) d e r i v a t i v e abou t e t a
i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {

diagW e t a l i s t 2 <− l i s t ( )

f o r ( t i n 1 : ( T − 1 ) ) {
n u l l mat <− matrix ( 0 , nco l = T − 1 , nrow = n )
n u l l mat [ , t ] <− pr e t a [ , t ]
tmp3 e t a <− ( z mat [ , 2 : T ] * n u l l mat ) − (2 * z mat [ , 2 : T ] *

cur p mat [ , T + t ] * n u l l mat )
diagW e t a l i s t 2 [ [ t ] ] <− tmp3 e t a

}

}

# d iag (U) d e r i v a t i v e abou t random e f f e c t s
i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {

diagW v2 <− ( z mat [ , 2 : T ] * pr v ) − (2 * z mat [ , 2 : T ] *
cur p mat [ , ( T + 1 ) : ( 2 *T − 1 ) ] * pr v )

}

# S c o m p u t a t i o n
# ** below W eta , W eta2 , tmp cap and tmp recap
# are t h e t r i c k s t o compute
# t r a c e [ ( Z ’ I ’ ) ’ ( ( Z ’ I ’ ) W* ( Z ’ I ’ ) ’ ) ˆ −1 ( Z ’ I ’ ) \ p a r t i a l W* / \ p a r t i a l e t a ]
# f a s t e r **
W e t a <− as . v e c t o r ( t ( Reduce ( cbind , W e t a l i s t ) ) )
i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {

W e t a 2 <− as . v e c t o r ( t ( Reduce ( cbind , diagW e t a l i s t 2 ) ) )
}
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tmp cap <− c ( )
i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {

tmp r e c a p <− c ( )
}

# t r a c e [ ( Z ’ I ’ ) ’ ( ( Z ’ I ’ ) W* ( Z ’ I ’ ) ’ ) ˆ −1 ( Z ’ I ’ ) \ p a r t i a l W* / \ p a r t i a l v ]
t r a c e v <− c ( )
i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {

# p a r t i a l ˆ2 h / p a r t i a l v p a r t i a l e t a
h d e r i v v e t a <− matrix ( 0 , nrow = n , nco l = 2*T − 1)

}

i f ( t y p e == ”M. h ” | t y p e == ”M. t h ” ) {
h d e r i v v e t a <− matrix ( 0 , nrow = n , nco l = T )

}

f o r ( i i n 1 : n ) {

cur tmp <− as . matrix ( aug d e s i g n mat l i s t [ [ i ] ] [ , r and s t a r t i d x :
nco l ( aug d e s i g n mat ) ] %*%

I v i n v %*% t ( aug d e s i g n mat l i s t [ [ i ] ] [ , r and s t a r t i d x :
nco l ( aug d e s i g n mat ) ] ) )

tmp cap <− c ( tmp cap , rep ( as . v e c t o r ( cur tmp [ 1 : T , 1 : T ] ) , T ) )
i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {

tmp r e c a p <− c ( tmp recap , rep ( diag ( cur tmp ) [ ( T + 1 ) : ( 2 *T − 1 ) ] , T − 1 ) )
}

i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {
cur W b l o c k <− b d i a g ( matrix (W v [ i , ] , nrow = T , byrow = TRUE) ,

diag ( diagW v2 [ i , ] ) )
}

i f ( t y p e == ”M. t h ” | t y p e == ”M. h ” ) {
cur W b l o c k <− matrix (W v [ i , ] , nrow = T , byrow = TRUE)

}

i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {
tmpp <− −1 * colSums ( sigma i n v s p l i t [ [ i ] ] ) / ( colSums ( sigma i n v s p l i t [ [ i ] ] ) +

(1 / ( cur lambda * (2 *T − 1 ) ) ) ) ˆ ( − 1 )
}

i f ( t y p e == ”M. h ” | t y p e == ”M. t h ” ) {
tmpp <− −1 * colSums ( sigma i n v s p l i t [ [ i ] ] ) / ( colSums ( sigma i n v s p l i t [ [ i ] ] ) +

(1 / ( cur lambda * T ) ) ) ˆ ( − 1 )
}

h d e r i v v e t a [ i , ] <− tmpp
t r a c e v <− c ( t r a c e v , sum ( diag ( cur tmp %*% cur W b l o c k ) ) )

}

# s e e e q u a t i o n [ ? ] : t h i s i s t h e f i r s t t erm o f i t
# ( term1 and te r m1 r are b l o c k s o f t h e f i n a l m a t r i x )
t e rm1 <− rowSums ( matrix (W e t a * tmp cap , nco l = T*T , byrow = TRUE ) )
te rm1 <− matrix ( term1 , nco l = T , byrow = TRUE)

i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {
t e r m 1 r <− rowSums ( matrix ( tmp r e c a p * W eta2 , nco l = T − 1 , byrow = TRUE ) )
t e r m 1 r <− matrix ( t e rm1r , nco l = T − 1 , byrow = TRUE)
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# S v a l u e s i n m a t r i x form
S mat <− ( cbind ( term1 , t e r m 1 r ) + cbind ( term1 , t e r m 1 r ) * h d e r i v v e t a ) / 2

}

i f ( t y p e == ”M. t h ” | t y p e == ”M. h ” ) {
# S v a l u e s i n m a t r i x form
S mat <− ( te rm1 + t e rm1 * h d e r i v v e t a ) / 2

}

# S v a l u e s i n v e c t o r form
S <− as . v e c t o r ( t ( S mat ) )

# ##############################################

# s c o r e f u n c t i o n INCLUDING t h e s t e p o f u p d a t i n g random e f f e c t s t h r o u g h h− l i k e l i h o o d
temp = aug y − cur mu − c ( S , −1 * cur lambda *

as . v e c t o r ( t ( aug d e s i g n mat [ 1 : l e n g t h ( S ) ,
r and s t a r t i d x : nco l ( aug d e s i g n mat ) ] ) %*% S ) )

temp [ ( l e n g t h ( temp ) − n + 1 ) : ( l e n g t h ( temp ) ) ] = t a i l ( temp , n ) / cur lambda
s = t ( aug d e s i g n mat ) %*% temp

# f i s h e r i n f o
I <− 0
f o r ( i i i n seq l e n ( n + 1 ) ) {

cur f i s h e r <− t ( aug d e s i g n mat l i s t [ [ i i ] ] ) %*%
s igma i n v s p l i t [ [ i i ] ] %*% aug d e s i g n mat l i s t [ [ i i ] ]

I <− I + cur f i s h e r
}

I i n v <− s o l v e ( I )

# new d e l t a
new d e l t a <− cur d e l t a + ( s t e p s i z e * I i n v %*% s )

# new and o l d e t a v a l u e s
cur e t a = aug d e s i g n mat %*% cur d e l t a
new e t a = aug d e s i g n mat %*% new d e l t a

i f ( sum ( i s . na ( new e t a ) ) > 0) {
s top ( ” Dive rged . ” )

}

} # end o f f o r ( i t e r i n seq l e n ( max i t e r ) )

i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {
pr mat = cur p mat [ , ( T + 1 ) : ( 2 *T − 1 ) ]

} e l s e {

pr mat = NULL
}

re turn ( l i s t ( new d e l t a = cur d e l t a , new e t a = cur e t a ,
p i = cur pi , pc mat = cur p mat [ , 1 : T ] , p r mat = pr mat ,
I = I , I i n v = I inv ,
h = h , q = q , d = d , s t e p s i z e = s t e p s i z e ) )

}



103

#### f u n c t i o n f o r f i t t i n g gamma GLM i n STEP 2 ####
vhglm <− f u n c t i o n ( aug y , aug d e s i g n mat , aug d e s i g n mat l i s t ,

n , T , z mat ,
cur d e l t a , cur lambda ,
max i t e r 1 , max i t e r 2 , t o l 1 , t o l 2 , t y p e ) {

cur e t a = 0 # i n i t i a l v a l u e f o r l i n e a r p r e d i c t o r ( s e t as 0 t o compute e r r o r )
p r e e r r o r = 1 e10 # i n i t i a l e r r o r v a l u e ( must be l a r g e t o run t h e n e x t i t e r a t i o n )
s t e p s i z e = 1 . 0
f o r ( i t e r i n seq l e n ( max i t e r 1 ) ) {

# STEP 1: e s t i m a t e p a r a m e t e r s and random− e f f e c t s
i f ( t y p e == ”M. t h ” | t y p e == ”M. h ” ) {

new v i r l s r e s u l t <− t r y ( VIRLS a d j ( aug y , aug d e s i g n mat , aug d e s i g n mat l i s t ,
n , T , NULL,
cur d e l t a , cur lambda ,
max i t e r = max i t e r 2 , t o l = t o l 2 , type ,
s t e p s i z e ) , TRUE)

}

i f ( t y p e == ”M. t b h ” | t y p e == ”M. bh ” ) {
new v i r l s r e s u l t <− t r y ( VIRLS a d j ( aug y , aug d e s i g n mat , aug d e s i g n mat l i s t ,

n , T , z mat ,
cur d e l t a , cur lambda ,
max i t e r = max i t e r 2 , t o l = t o l 2 , type ,
s t e p s i z e ) , TRUE)

}

i f ( c l a s s ( new v i r l s r e s u l t ) == ” t r y − e r r o r ” ) {
s top ( ” Dive rged i n VIRLS . ” )

}

# STEP 2: e s t i m a t e lambda ( v a r i a n c e o f random− e f f e c t s )
y d = ( ( new v i r l s r e s u l t $d ) ˆ 2 ) / (1 − new v i r l s r e s u l t $q )
f i t <− t r y C a t c h ( glm ( y d ˜ 1 , f a mi ly = Gamma( l i n k = ” l o g ” ) ,

weight s = (1 − new v i r l s r e s u l t $q ) ,
max i t = 1 5 0 ) ,

warning = f u n c t i o n (w) w)

i f ( i n h e r i t s ( f i t , ” warn ing ” ) ) {
s top ( ” Dive rged i n VIRLS −− d i v e r g e d sigma v ” )

}

new lambda <− exp ( c o e f ( f i t ) ) # upda ted lambda
p r i n t ( s q r t ( new lambda ) )

# e r r o r c a l c u l a t i o n
e r r o r = sum ( ( cur e t a − new v i r l s r e s u l t $new e t a ) ˆ 2 )
p r i n t ( e r r o r )
p r i n t ( ( t o l 1 ) * sum ( ( new v i r l s r e s u l t $new e t a ) ˆ 2 ) )

i f ( e r r o r < ( t o l 1 * sum ( ( new v i r l s r e s u l t $new e t a ) ˆ 2 ) ) ) {

cur d e l t a = new v i r l s r e s u l t $new d e l t a
break

}
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cur e t a = new v i r l s r e s u l t $new e t a
cur d e l t a = new v i r l s r e s u l t $new d e l t a
s t e p s i z e = new v i r l s r e s u l t $ s t e p s i z e
cur lambda = new lambda
p r e e r r o r = e r r o r

i f ( t y p e == ”M. h ” ) {
p r i n t ( cur d e l t a [ ( 1 ) , ] )

}

i f ( t y p e == ”M. bh ” ) {
p r i n t ( cur d e l t a [ ( 1 : 2 ) , ] )

}

i f ( t y p e == ”M. t h ” ) {
p r i n t ( cur d e l t a [ ( 1 : T ) , ] )

}

i f ( t y p e == ”M. t b h ” ) {
p r i n t ( cur d e l t a [ ( 1 : ( T + 1 ) ) , ] )

}

}

re turn ( l i s t ( new e t a = new v i r l s r e s u l t $new e t a ,
new d e l t a = new v i r l s r e s u l t $new d e l t a , new lambda = cur lambda ,
var i n f o = diag ( as . matrix ( new v i r l s r e s u l t $ I i n v ) ) ,
p i = new v i r l s r e s u l t $ pi ,
pc mat = new v i r l s r e s u l t $ pc mat ,
p r mat = new v i r l s r e s u l t $ pr mat ,
I = new v i r l s r e s u l t $I ,
I i n v = new v i r l s r e s u l t $ I inv ,
l o g lambda s t d = summary ( f i t ) $ c o e f f i c i e n t s [ 2 ] ) )

}

#### f u n c t i o n f o r e s t i m a t i n g p o p u l a t i o n s i z e ####
e s t N <− f u n c t i o n ( p i , pc mat , I , I inv , T , n , type , new d e l t a ) {

# end i n d e x f o r f i x e d e f f e c t s i n d e s i g n m a t r i x ( i g n o r i n g b e h a v i o u r a l e f f e c t i n d e x )
i f ( t y p e == ”M. h ” | t y p e == ”M. bh ” ) {

f i x e d end i d x <− 1
}

i f ( t y p e == ”M. t h ” | t y p e == ”M. t b h ” ) {
f i x e d end i d x <− T

}

# var−cov
i f ( t y p e == ”M. h ” ) {

# a c t u a l var ( d e l t a )
a c t u a l I i n v <− I i n v
# var ( v )
random I i n v <− b d i a g ( 0 , s o l v e ( I [ ( f i x e d end i d x + 1 ) : nrow ( I ) ,

( f i x e d end i d x + 1 ) : nrow ( I ) ] ) )
}

i f ( t y p e == ”M. t h ” ) {
# a c t u a l var ( d e l t a )
a c t u a l I i n v <− I i n v
# var ( v )
random I i n v <− b d i a g ( diag ( rep ( 0 , f i x e d end i d x ) ) ,
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s o l v e ( I [ ( f i x e d end i d x + 1 ) : nrow ( I ) ,
( f i x e d end i d x + 1 ) : nrow ( I ) ] ) )

}

i f ( t y p e == ”M. bh ” ) {
# d e l t a e s t i m a t e w i t h o u t b e h a v i o u r a l e f f e c t
new d e l t a <− new d e l t a [ −( f i x e d end i d x + 1 ) ]
# a c t u a l var ( d e l t a )
a c t u a l I i n v <− I i n v [ −( f i x e d end i d x + 1 ) , −( f i x e d end i d x + 1 ) ]
# var ( v )
random I i n v <− b d i a g ( 0 , s o l v e ( I [ ( f i x e d end i d x + 2 ) : nrow ( I ) ,

( f i x e d end i d x + 2 ) : nrow ( I ) ] ) )
}

i f ( t y p e == ”M. t b h ” ) {
# d e l t a e s t i m a t e w i t h o u t b e h a v i o u r a l e f f e c t
new d e l t a <− new d e l t a [ −( f i x e d end i d x + 1 ) ]
# a c t u a l var ( d e l t a )
a c t u a l I i n v <− I i n v [ −( f i x e d end i d x + 1 ) , −( f i x e d end i d x + 1 ) ]
# var ( v )
random I i n v <− b d i a g ( diag ( rep ( 0 , f i x e d end i d x ) ) ,

s o l v e ( I [ ( f i x e d end i d x + 2 ) : nrow ( I ) ,
( f i x e d end i d x + 2 ) : nrow ( I ) ] ) )

}

# v a r i a n c e o f h a t N
t e rm1 <− sum ( ( p i ˆ ( −2 ) ) * (1 − p i ) ) # v a r i a n c e o f HT− e s t i m a t o r i t s e l f

# f i r s t d e r i v a t i v e abou t i n t e r c e p t
i f ( t y p e == ”M. h ” | t y p e == ”M. bh ” ) {

d <− c (−sum ( ( p i ˆ ( −2 ) ) * (1 − p i ) * apply ( pc mat , 1 , sum ) ) )
}

# f i r s t d e r i v a t i v e abou t t i m e e f f e c t s
i f ( t y p e == ”M. t h ” | t y p e == ”M. t b h ” ) {

d <− c ( )
f o r ( t i n 1 : T ) {

d <− c ( d , −sum ( ( p i ˆ ( −2 ) ) * (1 − p i ) * pc mat [ , t ] ) )
}

}

# f i r s t d e r i v a t i v e abou t random e f f e c t s
f o r ( i i n 1 : n ) {

d <− c ( d , −( ( p i [ i ] ˆ ( − 2 ) ) * (1 − p i [ i ] ) * sum ( pc mat [ i , ] ) ) )
}

t e rm2 <− as . v e c t o r ( t ( d ) %*% a c t u a l I i n v %*% d )
te rm3 <− 2 * as . v e c t o r ( t ( d ) %*% random I i n v %*% d )

# second d e r i v a t i v e abou t i n t e r c e p t and i n t e r c e p t
i f ( t y p e == ”M. h ” | t y p e == ”M. bh ” ) {

d e r i v p i i n t c <−(1 − p i ) * apply ( pc mat , 1 , sum )
d e r i v i n t c i n t c <− sum ( ( ( 2 / p i ˆ 3 ) * d e r i v p i i n t c − (1 / ( p i ˆ 2 ) ) * d e r i v p i i n t c ) *

apply ( pc mat , 1 , sum ) +
( ( 1 / p i ) − ( p i ˆ ( − 2 ) ) ) * apply ( pc mat − pc mat ˆ 2 , 1 , sum ) )

}
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# second d e r i v a t i v e abou t t i m e e f f e c t s and t i m e e f f e c t s
i f ( t y p e == ”M. t h ” | t y p e == ”M. t b h ” ) {

# second d e r i v a t i v e o f N
d e r i v t t <− matrix (NA, nrow = T , nco l = T )
f o r ( t 1 i n 1 : T ) {

f o r ( t 2 i n 1 : T ) {
p prod <− pc mat [ , t 1 ] * pc mat [ , t 2 ]
p i terms <− (1 − p i ) * ( ( 2 / ( p i ˆ 3 ) ) − (1 / ( p i ˆ 2 ) ) )
i f ( t 1 != t 2 ) {

d e r i v t t [ t1 , t 2 ] <− sum ( p prod * p i terms )
} e l s e {

d e r i v t t [ t1 , t 2 ] <− sum ( p prod * p i terms ) +
sum ( ( − (1 − p i ) / ( p i ˆ 2 ) ) * ( pc mat [ , t 1 ] − pc mat [ , t 1 ] ˆ 2 ) )

}

}

}

}

# second d e r i v a t i v e abou t i n t e r c e p t and random e f f e c t s
i f ( t y p e == ”M. h ” | t y p e == ”M. bh ” ) {

d e r i v i n t c r <− ( ( 2 / ( p i ˆ 3 ) ) * d e r i v p i i n t c − (1 / ( p i ˆ 2 ) ) * d e r i v p i i n t c ) *
apply ( pc mat , 1 , sum ) +
( ( 1 / p i ) − ( p i ˆ ( − 2 ) ) ) * apply ( pc mat − pc mat ˆ 2 , 1 , sum )

d e r i v i n t c r <− as . matrix ( d e r i v i n t c r , nco l = 1)

}

# second d e r i v a t i v e abou t t i m e e f f e c t s and random e f f e c t s
i f ( t y p e == ”M. t h ” | t y p e == ”M. t b h ” ) {

d e r i v t r <− matrix (NA, nrow = T , nco l = n )
f o r ( t i n 1 : T ) {

f o r ( i i n 1 : n ) {
d e r i v t r [ t , i ] <− ( ( ( ( 2 ) * (1 − p i [ i ] ) ) / ( p i [ i ] ˆ 3 ) ) * sum ( pc mat [ i , ] ) −

( ( 1 − p i [ i ] ) * sum ( pc mat [ i , ] ) ) / ( p i [ i ] ˆ 2 ) ) * ( pc mat [ i , t ] ) +
( ( − (1 − p i [ i ] ) / ( p i [ i ] ˆ 2 ) ) * ( pc mat [ i , t ] − pc mat [ i , t ] ˆ 2 ) )

}

}

}

# second d e r i v a t i v e abou t random e f f e c t s and random e f f e c t s
d e r i v p i v <− (1 − p i ) * apply ( pc mat , 1 , sum )
d e r i v r r <− matrix ( 0 , nrow = n , nco l = n )
f o r ( i i n 1 : n ) {

d e r i v r r [ i , i ] <− ( ( 2 / ( p i [ i ] ˆ 3 ) ) * d e r i v p i v [ i ] − (1 / ( p i [ i ] ˆ 2 ) ) *
d e r i v p i v [ i ] ) * sum ( pc mat [ i , ] ) +

( ( − (1 − p i [ i ] ) / ( p i [ i ] ˆ 2 ) ) * sum ( pc mat [ i , ] − pc mat [ i , ] ˆ 2 ) )
}

# second d e r i v a t i v e m a t r i x
i f ( t y p e == ”M. h ” | t y p e == ”M. bh ” ) {

second d <− rbind ( cbind ( d e r i v i n t c i n t c , t ( d e r i v i n t c r ) ) ,
cbind ( d e r i v i n t c r , d e r i v r r ) )

}

i f ( t y p e == ”M. t h ” | t y p e == ”M. t b h ” ) {
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second d <− rbind ( cbind ( d e r i v t t , d e r i v t r ) ,
cbind ( t ( d e r i v t r ) , d e r i v r r ) )

}

t e rm4 <− sum ( diag ( second d %*% a c t u a l I i n v %*% second d %*% random I i n v ) )
te rm5 <− 2 * sum ( diag ( second d %*% random I i n v %*% second d %*% random I i n v ) )

te rm6 <− 6 * as . v e c t o r ( t ( new d e l t a ) %*% second d %*% random I i n v %*%
second d %*% new d e l t a )

var N <− t e rm1 + t e rm2 + t e rm3 + t e rm4 + t e rm5 + t e rm6

# p o p u l a t i o n s i z e e s t i m a t o r
a d j <− sum ( diag ( second d %*% random I i n v ) ) # term f o r b i a s c o r r e c t i o n i n N e s t i m a t i o n
N e s t <− sum (1 / p i ) + a d j

# log −normal c o n f i d e n c e i n t e r v a l f o r N
c = exp ( 1 . 9 6 * s q r t ( l o g (1 + ( s q r t ( var N) / (N e s t − n ) ) ˆ 2 ) ) )
N upper = n + c * (N e s t − n )
N lower = n + (N e s t − n ) / c

# Wald c o n f i d e n c e i n t e r v a l f o r N
N upper2 = N e s t + 1 . 9 6 * s q r t ( var N)
N lower2 = N e s t − 1 . 9 6 * s q r t ( var N)

re turn ( l i s t (N e s t = N e s t , N lower = N lower , N upper = N upper ,
N lower2 = N lower2 , N upper2 = N upper2 ) )

}

# ###########################################################

# ######## PART 2 . SNOWSHOE HARE DATA ANALYSIS #########

# c a l l t h e da ta s e t
data ( h a r e . samp . c r )

# b a s i c s e t t i n g s
snow <− h a r e . samp . c r $ c a p t u r e # o b s e r v e d c a p t u r e h i s t o r y
n = nrow ( snow )
T = nco l ( snow )

# i n i t i a l c a p t u r e o c c a s i o n
# i n d e x where t h e f i r s t c a p t u r e o c c u r s
f i r s t obs <− apply ( snow , 1 , f u n c t i o n ( x ) match ( 1 , x ) [ 1 ] )
# i n d i c a t o r t h a t an i n d i v i d u a l i s c a p t u r e d once b e f o r e each o c c a s i o n
A mat <− matrix ( 1 , nrow = n , nco l = T )
f o r ( i i i n 1 : n ) {

A mat [ i i , 1 : ( f i r s t obs [ i i ] ) ] <− 0
}

# r e s p o n s e v a r i a b l e s
# M t h
y mat <− as . matrix ( snow )
y <− as . v e c t o r ( t ( snow ) ) # v e c t o r form
y l i s t <− Map( f u n c t i o n ( u , v ) y [ u : v ] , seq ( 1 , l e n g t h ( y ) , T ) ,
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seq ( T , l e n g t h ( y ) , T ) ) # l i s t form

# f o r M bh and M t b h
y mat2 <− cbind ( ( 1 − A mat ) * y mat , (A mat * y mat ) [ , 2 : T ] )
y2 <− as . v e c t o r ( t ( y mat2 ) )
y2 l i s t <− Map ( f u n c t i o n ( u , v ) y2 [ u : v ] , seq ( 1 , l e n g t h ( y2 ) , 2*T − 1 ) ,

seq (2 *T − 1 , l e n g t h ( y2 ) , 2*T − 1 ) )

# o b s e r v e d d e s i g n m a t r i x
# random e f f e c t s d e s i g n m a t r i c e s
Z <− Ma t r ix ( diag ( n ) %x% rep ( 1 , T ) ) # f o r M h and M t h
Z2 <− Ma t r ix ( diag ( n ) %x% rep ( 1 , 2*T − 1 ) ) # f o r M bh and M t b h

# f o r M t h
X. t <− Ma t r ix ( do . c a l l ( rbind , r e p l i c a t e ( n , diag ( T ) ,

s i m p l i f y = FALSE ) ) ) # f o r t ime −v a r y i n g f i x e d e f f e c t s
X t h <− cbind (X. t , Z )
X t h l i s t <− Map ( f u n c t i o n ( u , v ) X t h [ u : v , ] , seq ( 1 , nrow (X t h ) , T ) ,

seq ( T , nrow (X t h ) , T ) )

# f o r M bh
X. b <− rep ( c ( rep ( 0 , T ) , rep ( 1 , T − 1 ) ) , n ) # f o r b e h a v i o u r a l
X bh <− cbind ( 1 , X. b , Z2 )
X bh l i s t <− Map ( f u n c t i o n ( u , v ) X bh [ u : v , ] , seq ( 1 , nrow (X bh ) , 2*T − 1 ) ,

seq (2 *T − 1 , nrow (X bh ) , 2*T − 1 ) )

# f o r M t b h
X. t <− Ma t r ix ( do . c a l l ( rbind , r e p l i c a t e ( n , rbind ( diag ( T ) , diag ( T ) [ 2 : T , ] ) ,

s i m p l i f y = FALSE ) ) ) # f o r t ime −v a r y i n g
X t b h <− cbind (X. t , X . b , Z2 )
X t b h l i s t <− Map( f u n c t i o n ( u , v ) X t b h [ u : v , ] , seq ( 1 , nrow (X t b h ) , 2*T − 1 ) ,

seq (2 *T − 1 , nrow (X t b h ) , 2*T − 1 ) )

# f i n d i n i t i a l v a l u e s
o p t i o n s ( warn = −1)
cur d e l t a t h <− c ( i n i t v a l ( snow , ”M. t h ” ) , rnorm ( n , 0 , 0 ) )
cur d e l t a bh <− c ( i n i t v a l ( snow , ”M. bh ” ) , rnorm ( n , 0 , 0 ) )
cur d e l t a t b h <− c ( i n i t v a l ( snow , ”M. t b h ” ) , rnorm ( n , 0 , 0 ) )

# augmented r e s p o n s e s and d e s i g n m a t r i c e s
data aug t h <− aug data ( n , y , X th , y l i s t , X t h l i s t )
data aug bh <− aug data ( n , y2 , X bh , y2 l i s t , X bh l i s t )
data aug t b h <− aug data ( n , y2 , X tbh , y2 l i s t , X t b h l i s t )

# run f i t t i n g a l g o r i t h m
max i t e r 1 = 150
max i t e r 2 = 150
t o l 1 = 1e−13
t o l 2 = 1e−13
lambda t r i a l = c (1 e−3)
f i t t h <− vhglm ( data aug t h $ aug y , data aug t h $ aug d e s i g n mat ,

data aug t h $ aug d e s i g n mat l i s t ,
n , T , z mat = NULL,
cur d e l t a th , lambda t r i a l ,
max i t e r 1 , max i t e r 2 , t o l 1 , t o l 2 , ”M. t h ” )
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f i t bh <− vhglm ( data aug bh$ aug y , data aug bh$ aug d e s i g n mat ,
data aug bh$ aug d e s i g n mat l i s t ,
n , T , z mat = A mat ,
cur d e l t a bh , lambda t r i a l ,
max i t e r 1 , max i t e r 2 , t o l 1 , t o l 2 , ”M. bh ” )

f i t t b h <− vhglm ( data aug t b h $ aug y , data aug t b h $ aug d e s i g n mat ,
data aug t b h $ aug d e s i g n mat l i s t ,
n , T , z mat = A mat ,
cur d e l t a tbh , lambda t r i a l ,
max i t e r 1 , max i t e r 2 , t o l 1 , t o l 2 , ”M. t b h ” )

# e s t i m a t e t h e p o p u l a t i o n s i z e
N e s t t h <− e s t N( f i t t h $ pi , f i t t h $ pc mat ,

f i t t h $I , f i t t h $ I inv , T , n , ”M. t h ” , f i t t h $new d e l t a )
p r i n t (N e s t t h )

N e s t bh <− e s t N( f i t bh$ pi , f i t bh$ pc mat ,
f i t bh$I , f i t bh$ I inv , T , n , ”M. bh ” , f i t bh$new d e l t a )

p r i n t (N e s t bh )

N e s t t b h <− e s t N( f i t t b h $ pi , f i t t b h $ pc mat ,
f i t t b h $I , f i t t b h $ I inv , T , n , ”M. t b h ” , f i t t b h $new d e l t a )

p r i n t (N e s t t b h )

#cAIC c o m p u t a t i o n
cAIC t h <− 2* ( T + 1 + n ) −2 * ( sum ( rowSums ( matrix ( f i t t h $new e t a , byrow = TRUE,

nco l = T ) [ 1 : n , ] * y mat ) −
l o g ( f i t t h $ p i ) + apply ( l o g (1 − f i t t h $ pc mat ) ,

1 , sum ) ) +
sum ( pnorm ( as . v e c t o r ( t a i l ( f i t t h $new d e l t a , n ) ) , mean = 0 ,

sd = s q r t ( f i t t h $new lambda ) ) ) )

p r i n t ( cAIC t h )

cAIC bh <− 2* (2 + 1 + n ) −2 * ( sum ( rowSums ( matrix ( f i t bh$new e t a , byrow = TRUE,
nco l = 2*T − 1 ) [ 1 : n , ] * y mat2 ) −

l o g ( f i t bh$ p i ) +
apply ( ( 1 − A mat ) * l o g (1 − f i t bh$ pc mat ) , 1 , sum ) +
apply ( (A mat [ , 2 : T ] ) * l o g (1 − f i t bh$ pr mat ) , 1 , sum ) ) +
sum ( pnorm ( as . v e c t o r ( t a i l ( f i t bh$new d e l t a , n ) ) , mean = 0 ,

sd = s q r t ( f i t bh$new lambda ) ) ) )

p r i n t ( cAIC bh )

cAIC t b h <− 2* ( T + 1 + 1 + n ) −2 * ( sum ( rowSums ( matrix ( f i t t b h $new e t a , byrow = TRUE,
nco l = 2*T − 1 ) [ 1 : n , ] * y mat2 ) −

l o g ( f i t t b h $ p i ) +
apply ( ( 1 − A mat ) * l o g (1 − f i t t b h $ pc mat ) , 1 , sum ) +
apply ( (A mat [ , 2 : T ] ) * l o g (1 − f i t t b h $ pr mat ) , 1 , sum ) ) +
sum ( pnorm ( as . v e c t o r ( t a i l ( f i t t b h $new d e l t a , n ) ) , mean = 0 ,

sd = s q r t ( f i t t b h $new lambda ) ) ) )

p r i n t ( cAIC t b h )
# ######################################################
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# ########### REQUIRED LIBRARY ############
l i b r a r y ( s p l i n e s )
# #########################################

# ######## PART 1 . FUNCTIONS FOR FITTING ALGORITMS #########

#### b− s p l i n e g e n e r a t i o n f u n c t i o n
b s p l i n e <− f u n c t i o n ( x , x l , xr , ndx , bdeg ) {

dx <− ( x r − x l ) / ndx
k n o t s <− seq ( x l − bdeg * dx , x r + bdeg * dx , by = dx )
B <− s p l i n e . des ( kno t s , x , bdeg + 1 , 0 * x , outer . ok = TRUE) $ d e s i g n
B

}

#### f u n c t i o n f o r r u n n i n g IRLS i n STEP 1 ####
VIRLS wxh a d j bs <− f u n c t i o n ( aug y , aug d e s i g n mat ,

n , T ,
cur d e l t a , cur lambda , D = D ,
max i t e r , t o l , s t e p s i z e ) {

p r e e r r o r = 1 e10 # i n i t i a l e r r o r v a l u e ( must be l a r g e t o run t h e n e x t i t e r a t i o n )
o r i d e l t a = cur d e l t a # save t h e i n i t i a l v a l u e o f d e l t a
f o r ( i t e r i n seq l e n ( max i t e r ) ) {

p r i n t ( i t e r )
i f ( i t e r != 1) {

e r r o r = sum ( ( cur e t a − new e t a ) ˆ 2 ) # e r r o r c a l c u l a t i o n
p r i n t ( e r r o r )
p r i n t ( t o l * sum ( new e t a ˆ 2 ) )
i f ( ( e r r o r < t o l * sum ( new e t a ˆ 2 ) ) | ( i t e r == max i t e r ) ) { # i f e r r o r i s s m a l l enough

I i n v sub <− I i n v [ 2 : nco l ( I i n v ) , 2 : nco l ( I i n v ) ]
v s t a r I i n v <− D %*% I i n v sub %*% t (D)

h <− diag ( v s t a r I i n v ) / cur lambda
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q = h
q [ q >= 1] = 0 .9999 # p r e v e n t t h a t q i s over 1 ( p o s s i b l y by s m a l l n u m e r i c a l e r r o r )

# d c a l c u l a t i o n
d <− as . v e c t o r ( t a i l ( cur e t a , nrow (D ) ) )

break

} e l s e {

# i f d i v e r g e n c e happens i n d e l t a e s t i m a t i o n , run VIRLS aga in
# w i t h s m a l l e r s t e p s i z e o f Newton ’ s method
i f ( p r e e r r o r < e r r o r ) {

s t e p s i z e = s t e p s i z e / 2
} e l s e {

cur d e l t a = new d e l t a
p r e e r r o r = e r r o r

}

}

}

# e t a c o m p u t a t i o n
cur d e l t a <− matrix ( cur d e l t a , nco l = 1)
cur e t a <− as . v e c t o r ( aug d e s i g n mat %*% cur d e l t a )

# p r o b a b i l i t y c o m p u t a t i o n
cur p <− exp ( cur e t a [ 1 : ( l e n g t h ( cur e t a ) − nrow (D ) ) ] ) /

(1 + exp ( cur e t a [ 1 : ( l e n g t h ( cur e t a ) − nrow (D ) ) ] ) )
cur p i <− 1 − sapply (1 − cur p , f u n c t i o n ( x ) x ˆ T ) # prob . c a p t u r e d a t l e a s t once

# mean c o m p u t a t i o n
cur mu p o s b i n <− T * ( cur p / cur p i )
cur mu <− c ( cur mu posb in , t a i l ( as . v e c t o r ( cur e t a ) , nrow (D ) ) )

# second d e r i v a t i v e c o m p u t a t i o n
s igma i n v diag v a l s <− ( T * ( cur p − cur p ˆ 2 ) * ( cur p i ˆ ( − 1 ) ) ) −

( ( T * cur p * ( cur p i ˆ ( − 2 ) ) ) * T * cur p * (1 − cur p i ) )
s igma i n v diag v a l s <− c ( s igma i n v diag v a l s , rep ( ( 1 / cur lambda ) , nrow (D ) ) )

# s c o r e f u n c t i o n INCLUDING t h e s t e p o f u p d a t i n g random e f f e c t s t h r o u g h h− l i k e l i h o o d
temp = aug y − cur mu
temp [ ( l e n g t h ( temp ) − nrow (D) + 1 ) : ( l e n g t h ( temp ) ) ] = t a i l ( temp , nrow (D ) ) / cur lambda
s = t ( aug d e s i g n mat ) %*% temp

# f i s h e r i n f o
I <− t ( aug d e s i g n mat ) %*% diag ( s igma i n v diag v a l s ) %*% aug d e s i g n mat
I i n v <− s o l v e ( I )

# f i s h e r i n f o ( no random c o n t a i n e d )
I2 <− t ( aug d e s i g n mat [ 1 : n , ] ) %*% diag ( s igma i n v diag v a l s [ 1 : n ] ) %*% aug d e s i g n mat [ 1 : n , ]
I i nv2 <− s o l v e ( I2 )

# new d e l t a
new d e l t a <− cur d e l t a + ( s t e p s i z e * I i n v %*% s )
p r i n t ( new d e l t a )
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# new and o l d e t a v a l u e s
cur e t a = aug d e s i g n mat %*% cur d e l t a
new e t a = aug d e s i g n mat %*% new d e l t a

i f ( sum ( i s . na ( new e t a ) ) > 0) {
s top ( ” Dive rged . ” )

}

} # end o f f o r ( i t e r i n seq l e n ( max i t e r ) )

re turn ( l i s t ( new d e l t a = cur d e l t a , new e t a = cur e t a ,
p i = cur pi , p = cur p ,
I = I , I i n v = I inv , I i nv2 = I inv2 ,
h = h , q = q , d = d , s t e p s i z e = s t e p s i z e ) )

}

#### f u n c t i o n f o r f i t t i n g gamma GLM i n STEP 2 ####
vhglm wxh bs <− f u n c t i o n ( aug y , aug d e s i g n mat ,

n , T ,
cur d e l t a , cur lambda , D = D ,
max i t e r 1 , max i t e r 2 , t o l 1 , t o l 2 ) {

cur e t a = 0 # i n i t i a l v a l u e f o r l i n e a r p r e d i c t o r ( s e t as 0 t o compute e r r o r )
p r e e r r o r = 1 e10 # i n i t i a l e r r o r v a l u e ( must be l a r g e t o run t h e n e x t i t e r a t i o n )
s t e p s i z e = 1 . 0
f o r ( i t e r i n seq l e n ( max i t e r 1 ) ) {

# STEP 1: e s t i m a t e p a r a m e t e r s and random− e f f e c t s
new v i r l s r e s u l t <− t r y ( VIRLS wxh a d j bs ( aug y , aug d e s i g n mat ,

n , T ,
cur d e l t a , cur lambda , D = D ,
max i t e r = max i t e r 2 , t o l = t o l 2 , s t e p s i z e ) , TRUE)

i f ( c l a s s ( new v i r l s r e s u l t ) == ” t r y − e r r o r ” ) {
s top ( ” Dive rged i n VIRLS . ” )

}

# STEP 2: e s t i m a t e lambda ( v a r i a n c e o f random− e f f e c t s )
y d = ( ( new v i r l s r e s u l t $d ) ˆ 2 ) / (1 − new v i r l s r e s u l t $q )
f i t <− t r y C a t c h ( glm ( y d ˜ 1 , f a mi ly = Gamma( l i n k = ” l o g ” ) ,
weight s = (1 − new v i r l s r e s u l t $q ) ,

max i t = 1 5 0 ) ,
warning = f u n c t i o n (w) w)

i f ( i n h e r i t s ( f i t , ” warn ing ” ) ) {
s top ( ” Dive rged i n VIRLS −− d i v e r g e d sigma v ” )

}

new lambda <− exp ( c o e f ( f i t ) ) # upda ted lambda
p r i n t ( s q r t ( new lambda ) )

# e r r o r c a l c u l a t i o n
e r r o r = sum ( ( cur e t a − new v i r l s r e s u l t $new e t a ) ˆ 2 )
p r i n t ( e r r o r )
p r i n t ( ( t o l 1 ) * sum ( ( new v i r l s r e s u l t $new e t a ) ˆ 2 ) )
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i f ( e r r o r < ( t o l 1 * sum ( ( new v i r l s r e s u l t $new e t a ) ˆ 2 ) ) ) {

cur d e l t a = new v i r l s r e s u l t $new d e l t a
break

}

cur e t a = new v i r l s r e s u l t $new e t a
cur d e l t a = new v i r l s r e s u l t $new d e l t a
s t e p s i z e = new v i r l s r e s u l t $ s t e p s i z e
cur lambda = new lambda
p r e e r r o r = e r r o r

p r i n t ( cur d e l t a [ ( 1 : nco l (D ) ) , ] )
}

re turn ( l i s t ( new e t a = new v i r l s r e s u l t $new e t a ,
new d e l t a = new v i r l s r e s u l t $new d e l t a , new lambda = cur lambda ,
var i n f o = diag ( as . matrix ( new v i r l s r e s u l t $ I i n v ) ) ,
p i = new v i r l s r e s u l t $ pi ,
p = new v i r l s r e s u l t $p ,
I = new v i r l s r e s u l t $I ,
I i n v = new v i r l s r e s u l t $ I inv ,
l o g lambda s t d = summary ( f i t ) $ c o e f f i c i e n t s [ 2 ] ) )

}

#### f u n c t i o n f o r e s t i m a t i n g p o p u l a t i o n s i z e ####
e s t N wxh bs <− f u n c t i o n ( p i , p , I inv ,

Z , T , n , new d e l t a ) {

# a c t u a l var ( d e l t a )
a c t u a l I i n v <− I i n v

# v a r i a n c e o f h a t N
t e rm1 <− sum ( ( p i ˆ ( −2 ) ) * (1 − p i ) ) # v a r i a n c e o f HT− e s t i m a t o r i t s e l f

# f i r s t d e r i v a t i v e abou t i n t e r c e p t
d <− c (−sum ( ( p i ˆ ( −2 ) ) * (1 − p i ) * T * p ) )

# f i r s t d e r i v a t i v e abou t s p l i n e t e r m s
d <− c ( d , −colSums ( ( p i ˆ ( −2 ) ) * (1 − p i ) * Z[ , − nco l ( Z ) ] * T * p ) )

te rm2 <− as . v e c t o r ( t ( d ) %*% a c t u a l I i n v %*% d )

var N <− t e rm1 + t e rm2

# p o p u l a t i o n s i z e e s t i m a t o r
N e s t <− sum (1 / p i )

# log −normal c o n f i d e n c e i n t e r v a l f o r N
c = exp ( 1 . 9 6 * s q r t ( l o g (1 + ( s q r t ( var N) / (N e s t − n ) ) ˆ 2 ) ) )
N upper = n + c * (N e s t − n )
N lower = n + (N e s t − n ) / c

# Wald c o n f i d e n c e i n t e r v a l f o r N
N upper2 = N e s t + 1 . 9 6 * s q r t ( var N)
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N lower2 = N e s t − 1 . 9 6 * s q r t ( var N)

re turn ( l i s t (N e s t = N e s t , se N = s q r t ( var N) , N lower = N lower , N upper = N upper ,
N lower2 = N lower2 , N upper2 = N upper2 ) )

}

# ###########################################################

# ######## PART 2 . SNOWSHOE HARE DATA ANALYSIS #########

# Mountain Pygmy Possum da ta
mouse <− matrix ( c ( 1 , 45 , 5 , 40 , 2 , 37 , 4 , 45 , 5 , 43 , 1 , 45 , 1 , 45 ,

5 , 37 , 3 , 38 , 4 , 42 , 4 , 38 , 5 , 36 , 1 , 41 , 3 , 38 ,
4 , 37 , 2 , 41 , 1 , 37 , 2 , 45 , 2 , 33 , 2 , 41 , 2 , 42 ,
2 , 46 , 1 , 47 , 1 , 36 , 1 , 43 , 1 , 36 , 1 , 40 , 1 , 42 ,
1 , 40 , 1 , 47 , 1 , 43 , 1 , 31 , 1 , 43 , 1 , 43 , 2 , 4 0 . 2 2 ,
2 , 33 , 1 , 47 , 3 , 37 , 1 , 36 , 2 , 44 , 1 , 35 , 1 , 38 ,
1 , 4 9 ) , nco l = 2 , byrow = TRUE)

y <− mouse [ , 1 ] # o b s e r v e d c o u n t
x . h obs <− mouse [ , 2 ] # body mass

# q u a d r a t i c s p l i n e m a t r i x ( random e f f e c t s m a t r i x )
Z <− b s p l i n e ( x . h obs , min ( x . h obs ) , max ( x . h obs ) , 12 , 3 )

# c r e a t e p e n a l t y m a t r i x
D <− diag ( nco l ( Z ) ) # d i f f e r e n c e o p e r a t o r
f o r ( k i n 1 : 2 ) D <− d i f f (D)
D <− D[ , − nco l (D ) ] # s e t t i n g t h e l a s t b a s i s as r e d u n d a n t
P <− t (D) %*% D

# d e s i g n m a t r i x f o r f i t t i n g model
d e s i g n mat obs <− cbind ( 1 , Z[ , − nco l ( Z ) ] )

# da ta a u g m e n t a t i o n
aug y <− c ( y , rep ( 0 , nrow (D ) ) ) # y a
aug d e s i g n mat <− rbind ( d e s i g n mat obs ,

cbind ( matrix ( 0 , nco l = 1 , nrow = nrow (D ) ) , D ) ) # T

# i n i t i a l v a l u e s and s e t u p s
n = nrow ( mouse )
T = 5
cur d e l t a = rep ( 0 , nco l ( aug d e s i g n mat ) )
cur lambda = 1e−3
max i t e r 1 = 150
max i t e r 2 = 150
t o l 1 = 1e−13
t o l 2 = 1e−13

# run f i t t i n g a l g o r i t h m
f i t h l i k e <− vhglm wxh bs ( aug y , aug d e s i g n mat , n , T , cur d e l t a ,

cur lambda , D = D ,
max i t e r 1 , max i t e r 2 , t o l 1 , t o l 2 )

# e s t i m a t e t h e p o p u l a t i o n s i z e
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e s t N wxh bs ( f i t h l i k e $ pi , f i t h l i k e $p , f i t h l i k e $ I inv , Z , T , n , f i t h l i k e $new d e l t a )
# ######################################################
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