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Introduction 

 

One aspect of Wildland Fire Science concerns predicting forest fire occurrence. In 

detail, it investigates factors that can contribute to heightened wildland fire danger to 

predict when they are more likely to ignite. Wildland fire ignition sources can be 

separated into two groups, human-caused (e.g., campfires, industry fires, railway fires, 

etc.) and natural-caused (e.g., lighting). In this research, we investigated human-caused 

fire ignitions in a region of Ontario. Our study included exploratory data analysis of 

historical wildland fire records and developing fire occurrence prediction models. 

Some important fire attributes in our data set include variables from the Canadian 

Forest Fire Weather Index (FWI) System (Van Wagner, 1987). Natural Resources 

Canada (2022) explains the FWI System as having “six components that account for 

the effects of fuel moisture and weather conditions on fire behavior.” In this study, we 

mainly focus on the Fine Fuel Moisture Code (FFMC), which is defined as “a numeric 

rating of the moisture content of litter and other cured fine fuels.” (Natural Resources 

Canada, 2022) It is an indicator of surface-level fuel flammability and relative ease of 

ignition. 

 

Data 

 

 The data sets we used in our study are historical fire records and weather station 

data that were observed over a 30-year period for a region of within the Province of 

Ontario. These data were provided by the Ontario Ministry of Natural Resources and 

Forestry (MNRF). These data are copyright and are used under the terms of their 

Electronic Intellectual Property Licence facilitated through a Collective Research 

Agreement between the MNRF and the University of Western Ontario. 

In the historical fire archive, several attributes describing fires were available 

including the date and time of a fire’s ignition, the location of its ignition, what fuel 

type was the fire ignited in, and which type of human-caused action resulted in the fire. 

FWI System variables for an ignition’s time and location are also included. The weather 

station data set combines once daily observations collected from different weather 

stations at 1 pm local time, including the weather variables of relative humidity, 

temperature, wind speed, and rain, which are accompanied by the FWI System variables. 

 Due to the confidential nature of those data, I am unable to freely share the data or 

my exact results in this report. Therefore, pseudo data was generated in such a way that 

the displayed results are representative of the results discovered throughout the course 

of our research during this program without revealing specifics of the raw data provided 

by the MNRF. 
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Methods 

 

 For modeling fire occurrence, we employ Generalized Linear Models (GLMs) (e.g., 

Hosmer et al., 2013). These models are an extension to linear regression models, which 

allow for the response variables to operate under different distributional assumptions 

(e.g., Logistic, Poisson, Negative Binomial). Within these models, we also test the 

importance and influence of other predictor covariates (e.g., in which month a fire 

ignites). 

 This analysis is restricted to one specific district in Ontario which a high frequency 

of human-caused fire ignitions over the course of the study period (we refer to this 

region as “District A”). The main predictor of daily fire danger used in occurrence 

modeling is the average FFMC value across weather stations in this district. If on a 

given day, there is no recorded FFMC value at any of these weather stations, then we 

omit it from this analysis, regardless of whether one or more fires ignited on that day. 

 Another covariate used in our model is “month”, which can be extracted from a 

fire’s time of ignition. In our models, because weather station data tends to have no 

records for months outside of the fire seasons (operationally defined by the Forest Fires 

Prevention Act to be April 1 through October 31 in Ontario, Government of Ontario, 

1990), we restrict the data only includes fire season months, from April to October. 

 The response variable of interest is daily fire counts which are calculated using the 

historical fire archive. After filtering, only human-caused fires ignited in District A are 

kept. Then, after extracting the ignition dates from each fire, we compute how many 

fires were ignited on each date which become the counts on those days. Days without 

any fire ignitions are assigned counts of 0. 

 

 

Results 

Visualizations 

 

 In the interest of preserving data confidentiality, we limit our focus to two of the 

most important results we found in our exploratory data analysis related to modeling. 

They mainly investigate the following two questions: When (in which month) do 

different types of human-caused fire ignitions happen, and at which levels of FFMC do 

different types of human-caused fires tend to ignite? 
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Figure 1 Histograms of monthly frequencies of human-caused fires grouped by type 

of cause. 

 

Figure 1 above shows the relationship between month and ignition counts for 

different types of human-caused fires. The causes of ignition are censored, along with 

the scale of counts. To enable direct comparisons, a consistent y-axis scale is used for 

all plots. From this figure, Cause 4, Cause 6, Cause 7, and Cause 8 has their peak value 

in May but Cause 5 reaches its peak in July and August. So, these peak values happen 

most in summer seasons, but there is some variability depending on the types of human 

activities that result in these ignitions. This is a justification for us to consider month as 

a covariate in our models. 

 

Figure 2 Histograms of frequencies of type of human-caused fires grouped by level of 

FFMC and cause. 
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Figure 2 compares the different types of human-caused fires with FFMC 

operational risk classifications. Here, FFMC values are classified into 4 levels: Low, 

Moderate, High, and Extreme, with numeric ranges as defined by Stocks (1971, 1974). 

The frequencies in these plots are only approximate values, as the FFMC values have 

been jittered through the addition of random noise. However, this approximation still 

roughly shows the relationships observed in the raw data. The recorded fires mostly 

happen when FFMC is at the High level. When the values of FFMC are increasing in 

level, the frequency of fires igniting also increases. Although the Extreme level has 

fewer counts than High level, this does not mean that the probability of a fire igniting 

when FFMC is at its Extreme level is less than at High. It just shows that in the fire 

records, we have fewer fires happen under Extreme FFMC conditions (e.g., since 

Extreme fire weather conditions are less common). When the FFMC values are in 

Extreme classification, there are still very high levels of fire danger. 

 

Modeling Fire Occurrence 

 

In our modeling, we began with a Poisson mode which is a commonly used 

framework for modelling counts. When the response variable we want to study is a 

count number, we may model the random process using the Poisson distribution. More 

details defining Poisson regression models can be found in the book “Extending the 

Linear Model with R. Generalized Linear, Mixed Effects and Nonparametric 

Regression Models” written by Faraway in 2016. A similar modeling process by using 

a Poisson model to fit the average number of fires happening on each day depend on 

FFMC value can be found in Cunningham and Martell (1973).  

After fitting the Poisson model, we obtain a linear function representing 

relationship between daily fire counts and average FFMC value. That is, 

ŷ =  exp (�̂�0 + �̂�1𝑥1) = exp (−8.424 + 0.098 𝑥𝐹𝐹𝑀𝐶_𝐴𝑉𝐺) .  

The table below showing the summary of the Poisson model we fit. 

 

 Beta Coefficient Standard Error z value p-value 

Intercept -8.424 0.203 -41.411 < 2 × 10−16 

 𝑥𝐹𝐹𝑀𝐶_𝐴𝑉𝐺 0.098 0.002 41.651 < 2 × 10−16 

Table 1 Summary of the fitted Poisson model. 

 

After fitting the Poisson model, we detect overdispersion, with a dispersion ratio 

equal to 2.073. Saputro et al. (2021) explained that overdispersion occurs because “the 

presence greater variance of response variable caused by other variables unobserved 

heterogeneity”. A Poisson model, which has only one parameter may be restrictive for 

empirical fitting purpose, can easily result in overdispersion.  
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When overdispersion occurs, it will influence the dependency of covariates to the 

response variable and may result in fitting a wrong model. To better deal with 

overdispersion, we consider the use of a more flexible Negative Binomial model.  

In a Poisson model, the mean is equal to variance, E(Y) = Var(Y) = µ. This 

assumption places a strict restriction on the variance that may not be true in practice. In 

a Negative Binomial model, the mean is still equal to µ (i.e., E(Y) = µ), but variance is 

allowed to differ. Here, Var(Y) = µ + kµ2, where k ≥ 0 is usually referred as the 

dispersion parameter. This assumption gives more freedom to the model’s fitted 

variance and can help deal with overdispersion. Therefore, we fit the Negative Binomial 

model and compare it against the Poisson model. 

We obtain a new linear function after fitting the Negative Binomial model,  

ŷ =  exp (�̂�0 + �̂�1𝑥1) = exp (−8.506 + 0.099 𝑥𝐹𝐹𝑀𝐶_𝐴𝑉𝐺)  . 

Table 2 shows a summary of this model. Both the beta coefficients and standard 

errors are changed relative to the Poisson model. 

 

 Beta Coefficient Standard Error z value p-value 

Intercept -8.506 0.258 -32.98 < 2 × 10−16 

 𝑥𝐹𝐹𝑀𝐶_𝐴𝑉𝐺 0.099 0.003 32.39 < 2 × 10−16 

Table 2 Summary of the fitted Negative Binomial model. 

 

 In Figure 3, we plot the differences between observed values and predicted values 

for each model. The red color represents differences between the real data and predicted 

value from a Negative Binomial model, while the blue color show difference between 

the observed value and predicted value from a Poisson model. 

 

 

Figure 3 Scatter plot comparing differences between observed and predicted values 

for the fitted Poisson and Negative Binomial models. 
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By plotting a standardized residual plot, we find that the Negative Binomial model 

resulted in more condensed plots than the Poisson model. 

 

 

Figure 4 Standardized residual plot comparing Poisson and Negative Binomial 

models. 

 

In order to compare predictive capabilities of both types of models, we perform a 

k-fold Cross Validation. The process of Cross Validation is defined as when we 

randomly separate the data into a training set and a validation set, with m and n-m 

observations respectively, then we fit our model to the training test and use the result 

to predict the response variable in validation set (Matloff, 2017). We use this to 

approximate the predictive ability of that model. In k-fold Cross Validation, we separate 

data into k groups and systematically alternate letting one group at a time be the training 

set while using the other k-1 groups as the validation set. In our data, we let 𝑘 = 10 

and randomly split 30 years of data into 10 groups of three years each. 

Our metric of prediction error is Root Mean Square Error (RMSE), which is 

defined as  

RMSE =  √
∑ [yi − ŷi]2N

i=1

N
  , 

 

where N is the number of observations, yi  is the i-th measurement, and ŷi  is its 

corresponding prediction (C3.ai, 2021). Table 3 shows the resulting means and standard 

deviations RMSE values from the 10-fold Cross Validation.  
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10-Fold Cross Validation RMSE Poisson Model NB Model 

Mean 1.2379 1.2380 

Standard Deviation 0.3598 0.3597 

Table 3 10-fold Cross Validation results contrasting Poisson and Negative Binomial 

models. 

 

In addition to average FFMC, we consider models with and without the additional 

covariate “month”. Month is considered as a categorical variable, treating April as the 

baseline. A new function is obtained after we fit the Poisson model, 

 

�̂� = exp(�̂�0 + �̂�1𝑥1 + �̂�2𝑥2) 

= exp (−7.644 + 0.089 𝑥𝐹𝐹𝑀𝐶_𝐴𝑉𝐺 − 0.050 𝐼𝑀𝑜𝑛𝑡ℎ_𝑀𝑎𝑦 − 0.603 𝐼𝑀𝑜𝑛𝑡ℎ_𝐽𝑢𝑛  

+ 0.454 𝐼𝑀𝑜𝑛𝑡ℎ_𝐽𝑢𝑙 + 0.189 𝐼𝑀𝑜𝑛𝑡ℎ_𝐴𝑢𝑔 − 0.788 𝐼𝑀𝑜𝑛𝑡ℎ_𝑆𝑒𝑝

− 1.345 𝐼𝑀𝑜𝑛𝑡ℎ_𝑂𝑐𝑡  ) , 

 

where the letter I represent the indicator function, such that 𝐼𝑀𝑜𝑛𝑡ℎ_𝐽𝑢𝑛 will equal to 1 

if the fire ignites in June and equals 0 otherwise. Table 4 shows the summary of this 

expanded model. 

 

 Beta Coefficient Standard Error z value p-value 

Intercept -7.644 0.214 -35.656 < 2 × 10−16 

 𝑥𝐹𝐹𝑀𝐶_𝐴𝑉𝐺 0.089 0.002 37.118 < 2 × 10−16 

Month_May -0.050 0.059 -0.845 0.39835 

Month_Jun -0.603 0.069 -8.807 < 2 × 10−16 

Month_Jul 0.454 0.053 8.507 < 2 × 10−16 

Month_Aug 0.189 0.057 3.296 0.00098 

Month_Sep -0.788 0.083 -9.478 < 2 × 10−16 

Month_Oct -1.345 0.137 -9.856 < 2 × 10−16 

Table 4 Summary of the fitted Poisson model incorporating month as a predictor. 

  

Unfortunately, overdispersion is again discovered, now with a dispersion ratio 

equal to 1.969. Therefore, we again fit a Negative Binomial model to see if the model 

performance improves. The new function is  

 

�̂� = exp(�̂�0 + �̂�1𝑥1 + �̂�2𝑥2) 

    = exp (−7.747 + 0.090 𝑥𝐹𝐹𝑀𝐶_𝐴𝑉𝐺 − 0.024 𝐼𝑀𝑜𝑛𝑡ℎ_𝑀𝑎𝑦 − 0.593 𝐼𝑀𝑜𝑛𝑡ℎ_𝐽𝑢𝑛  

+ 0.463 𝐼𝑀𝑜𝑛𝑡ℎ_𝐽𝑢𝑙 + 0.225 𝐼𝑀𝑜𝑛𝑡ℎ_𝐴𝑢𝑔 − 0.775 𝐼𝑀𝑜𝑛𝑡ℎ_𝑆𝑒𝑝

− 1.299 𝐼𝑀𝑜𝑛𝑡ℎ_𝑂𝑐𝑡  ) . 

 

Table 5 presents the summary of this fitted Negative Binomial model. 
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 Beta Coefficient Standard Error z value p-value 

Intercept -7.747 0.267 -28.972 < 2 × 10−16 

 𝑥𝐹𝐹𝑀𝐶_𝐴𝑉𝐺 0.090 0.003 29.898 < 2 × 10−16 

Month_May -0.024 0.091 -0.258 0.7962 

Month_Jun -0.593 0.099 -6.000 1.98× 10−9 

Month_Jul 0.463 0.086 5.411 6.26× 10−8 

Month_Aug 0.225 0.089 2.522 0.0117 

Month_Sep -0.775 0.111 -6.978 3 × 10−12 

Month_Oct -1.299 0.159 -8.184 2.75 × 10−16 

Table 5 Summary of the fitted Negative Binomial model incorporating month as a 

predictor. 

 

In Figure 5, we again plot and compare the differences between the observed values 

and predicted values. The red color still represents differences between the real data 

and predicted value from a Negative Binomial model, while the blue color show 

difference between the observed value and predicted value from a Poisson model. 

 

 

Figure 5 Scatter plots comparing differences between observed and predicted values 

for the fitted Poisson and Negative Binomial models incorporating month as a 

predictor. 

 

Figure 6 is the standardized residual plot comparing Poisson and Negative 

Binomial model with month. Similarly, the Negative Binomial model resulted in more 

compacted plots than the Poisson model. 
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Figure 6 Standardized residual plot comparing Poisson and Negative Binomial models 

incorporating month as a predictor. 

  

Table 6 summarizes the results of 10-fold Cross Validation using both expanded 

models. Similar to Table 3, all these results will be used later in the discussion of these 

models. 

 

10-Fold Cross Validation RMSE Poisson Model NB Model 

Mean 1.2120 1.2112 

Standard Deviation 0.3326 0.3318 

Table 6 10-fold Cross Validation results contrasting Poisson and Negative Binomial 

models incorporating month as a predictor. 
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that the differences between the corresponding Negative Binomial and Poisson models 

are small. 

Based on Figure 4 and Figure 6, the residuals are the very similar in the Poisson 

and Negative Binomial models, but the standardized residuals are notably different. 

When we have differences in standard errors, they are accompanied by differences in 

the estimates of prediction standard errors, impacting the standardized residuals. Plots 

for Negative Binomial models are more compact because these residuals are divided by 

larger values (bringing the standardized residuals closer to 0). These plots show clear 

differences between Poisson model and Negative Binomial model, but do not show 

which model is better in fitting the data. Cross Validation may help compare their 

performances. 

 The Cross Validation results are shown in Table 3 and Table 6. Table 3 shows that 

the mean RMSE values obtained are really close for both models, 1.2379 and 1.2380. 

Similarly, the standard deviation values of RMSE are also very close. In Table 6, mean 

values of RMSE are 1.2120 and 1.2112, and again, the standard deviation values are 

close to each other. In theory, the Negative Binomial model has an advantage in terms 

of accounting for overdispersion; however, there are no practical differences in RMSE 

observed here. This shows that by testing the ability of model prediction, Negative 

Binomial models do not show a very obvious advantage over the Poisson models. Based 

on the current test and visualization processes we have used, we cannot say that the 

Negative Binomial models perform better. 

 

No Month vs. Month model performance 

 

To compare the goodness of fit, I use the Akaike Information Criterion (AIC), 

which is a “fined technique based on in-sample fit to estimate the likelihood of a model 

to predict/estimate the future values” (Akaike, 1974). It is defined to equal  

 

𝐴𝐼𝐶 = −2 ln(𝐿) + 2 𝑝 , 

 

where L is the value of the likelihood and p is the number of estimated parameters. A 

smaller AIC value is generally understood to accompany a better model. 

After calculating AIC for the two Poisson models, we find that without month, AIC 

is equal to 14,046.61, and the model with month has an AIC of 13,226.11. This means 

that with respect to goodness-of-fit, the model with the month covariate is better. For 

Negative Binomial models, without month and with month have AIC values of 

12,237.25 and 11,866.19, respectively, supporting the same conclusion that the model 

with month is better. However, we also consider the results of our Cross Validations to 

measure differences in predictive capabilities between these models. 

By looking at Cross Validation results in Table 3 and Table 6, the mean of RMSE 

values when fitting a Poisson model without month and with month are 1.2379 and 

1.2120, and the standard deviations are 0.3598 and 0.3326, so we conclude that the 

Poisson model with month has a better ability to predicting this data. Similarly, for the 
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Negative Binomial models, the means of RMSE are equal to 1.2380 and 1.2112, with 

the model using month observing the lower error value. The standard deviation of 

RMSE for the Negative Binomial model with month is also smaller than the model 

without month. Hence, in terms of their ability of prediction, we find that the model 

with month will perform better. 

In summary, with better abilities in both fitting the data and in making predictions 

on validation sets, we can conclude that for both model families, including the month 

covariate is preferable.  

 

Conclusion  

 

In conclusion, based on the result and discussion, we found out that using a 

Negative Binomial model did not have a very obvious advantage over the Poisson 

model. Additionally, in the Negative Binomial models, we assumed that the response 

variable follows a Negative Binomial distribution, which models the number of trails 

until we get a specified number of successes. Unlike a Poisson distribution, this is not 

as directly interpretable in explaining wildland fire counts. Thus, we are inclined to 

think that a Poisson model is more appropriate to model these data.  

A Quasi-Poisson model has also been used to address the overdispersion problem. 

It directly incorporates a dispersion parameter when fitting models, so it is another 

approach for dealing with overdispersion (Faraway, 2016). However, it does not change 

the beta coefficients relative to the corresponding Poisson model, but rather only 

changes the standard errors. Therefore, its plot of difference values (between observed 

and predicted) are identical to the plot of the Poisson model. Also, Cross Validation 

gives identical results for both mean and standard deviation values of RMSE. So, while 

these results have been omitted, in order to deal with overdispersion a Quasi-Poisson 

model may be considered a preferrable alternative to using a Negative Binomial model.  

For future work, we plan to consider more modeling approaches, in addition to 

investigating more flexible modeling techniques to handle temporal effect (e.g., 

splines).  
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