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Abstract 

 
The objective of my research project is to explore the relationship between variables related to 

wildland fire and to model distributions of epochs in wildland fire lifetimes. Several distributional 

families are considered for modeling these epochs, including the exponential distribution, gamma 

distribution, Weibull distribution and continuous phase-type distribution. I explain each of these 

distributions in short terms and illustrate how they are fit. Visual results of my exploratory data 

analysis are illustrated in two parts, data visualization and data modeling, along with my 

interpretation of each. Since this work is preliminary, I conclude the report with a discussion on 

what I have learned from the overall research experience.  
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1. Introduction 

1.1 Understanding Wildland Fire Science 

The operational fire season in Ontario is defined to be the period from April 1st to October 31st 

(Government of Ontario, 1990). From 1997 to 2022, approximately 7,300 forest fires have ignited 

each year in Canada, consuming about 2.5 million hectares of total area burned on average 

(Government of Canada, 2022). Most fires are caused by lightning or as an unintended result of 

human activities, while others could be set intentionally for the purpose of renewing and 

maintaining a healthy ecosystem. It is also notable that not every fire needs to be suppressed, as 

many are just left to burn themselves out naturally if they are remote from valuable assets like 

human settlements and infrastructures (Government of Canada, 2020). In Ontario, the Ministry of 

Natural Resources and Forestry (MNRF) is responsible for fire management decision making 

through the evaluation of various factors with the support of the Canadian Forest Fire Danger 

Rating System (Stocks et al., 1989). Wildland fire science is essential for people to understand the 

causes, risks, and potential benefits of wildland fires and helps inform decision making by fire 

managers concerning prevention and mitigation. 

 

1.2 Research Objectives 

The objective of my research project was to explore statistical methods to model the distributions 

of several epochs (i.e., periods of time) in wildland fire lifetimes. I investigated the relationships 

between several variables of interest and distributions of time lags (response lag, report lag, etc.) 

for wildland fires ignited in a district of Ontario, Canada. Through this investigation, I was able to 

see how different variables impacted the variation of multiple time lags. 
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1.3 Outline 

The rest of my report is structured as follows. In Section 2, I discuss the data set, who has provided 

us with this data (and our data sharing agreement), as well as how it’s adjusted for use within this 

report for the sake of confidentiality. Section 3 introduces different distributions that I used to fit 

the data, including common distributions and more flexible approaches. Then, Section 4 shows the 

results and graphs from my exploratory data analysis, which are separated into two subsections, 

data visualization and fitted distributions. Finally, I conclude with some comments on my work, 

discuss some avenues for future work, and end with my acknowledgments. 

 

2. Data 

The data used for my USRI research is copyright. It was provided by the Ontario Ministry of 

Natural Resources and Forestry and is used under the terms of their Electronic Intellectual Property 

Licence facilitated through a Collaborative Research Agreement between that MNRF and the 

University of Western Ontario. I also signed a data sharing agreement to gain access to this data. 

For the purposes of this report, pseudo data was used to protect the confidential nature of the data 

provided by the MNRF. Such pseudo data was generated in such a way that the results of this 

report are representative of what was found over the course of our research without revealing 

specifics of the actual raw data provided by the MNRF. 
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3. Methods 

3.1 Considered Continuous Distributions 

To start, several common continuous distributions were considered for modeling distributions of 

fire lifetime epochs, including exponential, gamma, and Weibull distributions. Following these, I 

investigated a more flexible approach to better fit to the data, which was the continuous phase-

type distribution. In this section, some basic notations of these distributions are presented. 

 

3.1.1 Gamma Distribution 

The gamma distribution is a continuous probability distribution that can be used to model variables 

that have distributions that are positive and skewed (Sengupta, 2020). It is specified by two 

parameters, the shape parameter 𝛼 > 0  and the rate parameter 𝛽 > 0 . The corresponding 

probability density function (pdf) is  

𝑓(𝑥; 𝛼, 𝛽) =
𝑥𝛼−1𝑒−𝛽𝑥𝛽𝛼

Γ(𝛼)
 ,    𝑓𝑜𝑟 𝑥 > 0,   

where Γ(𝛼) is the gamma function satisfying 

Γ(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑥𝑑𝑥
∞

0

 . 

Moreover, if the shape parameter is a positive integer, the gamma distribution becomes an Erlang 

distribution, where the shape parameter represents the number of sequential events we are waiting 

to complete, each having independent and identically distributed exponential distribution with rate 

𝛽. The Erlang distribution can be used to model the waiting time in the process, and was used to 

assist in estimating the components of continuous phase-type distributions introduced later in the 

report. 
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I used the “fit distribution” function in the “MASS” package of RStudio and the maximum 

likelihood estimation (MLE) method to estimate the shape and the rate parameters. Then, using 

these values, it was possible to calculate the theoretical density for each data value if the data was 

assumed to follow gamma distribution.  

 

3.1.2 Exponential Distribution 

The exponential distribution is a special case of a gamma distribution with the shape parameter  

being equal to 1. In that circumstance, exponential distribution only has one parameter, the rate 

parameter, denoted here by . The corresponding pdf is  

𝑓(𝑥; 𝜆) = 𝜆𝑒−𝜆𝑥 ,    𝑓𝑜𝑟 𝑥 ≥ 0. 

The rate parameter tells us how quickly decay of the exponential function occurs (Glen, 2016). 

Exponential distributions are often used to model the time intervals between independent events 

(Frost, 2021). 

 

To fit these distributions, I used the reciprocal of the data’s mean as the theoretical rate 

parameter since the MLE of the exponential distribution’s rate parameter is the inverse of the 

sample mean.  

 

3.1.3 Weibull Distribution 

The Weibull distribution is also a continuous probability distribution that can model both left and 

right skewed positive data with a variety of distribution shapes. In addition, it can approximate 

other distributions due to its flexibility and is frequently applied in life data, reliability analysis, 
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capability analysis and so on (Frost, 2021). The probability density function of Weibull distribution 

is  

𝑓(𝑥; 𝜆, 𝑘) =
𝑘

𝜆
(
𝑥

𝜆
)𝑘−1𝑒−(𝑥/𝜆)𝑘

  , 𝑓𝑜𝑟 𝑥 ≥ 0, 

which is composed of two parameters, the shape parameter 𝑘 > 0 and the scale parameter 𝜆 > 0. 

An alternative third parameter, the location parameter, may also be defined but can be omitted and 

set to zero. 

 

To fit Weibull distributions, I used the “eweibull” function in the “EnvStats” package of 

RStudio that can estimate the shape and scale parameters using a MLE approach. 

 

3.1.4 Continuous Phase-Type Distribution 

To fit more flexible parametric models to non-negative distributions, continuous phase-type 

distributions (CPH distributions) are often used in system evaluation and modeling (Reinecke et 

al., 2012). A CPH random variable represents the time until absorption in a continuous-time 

Markov chain (CTMC) having at least one absorbing state, with each transient state corresponding 

to one phase of the CPH distribution. In general, the distribution has two components, the initial 

probability vector and the transition rate matrix. Most importantly, it can be used to approximate 

any non-negative-valued distribution given a sufficiently high number of phases (Asmussen, 2000). 

More details about the definition of CTMCs and the properties of CPH distributions can be found 

in the book Fundamentals of Matrix-Analytic Methods by He (2014). 

 

I used the Expectation-Maximization (EM) algorithm to estimate the components of CPH 

distributions to observed data (Asmussen et al., 1996). The EM algorithm is an iterative method 
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that performs maximum likelihood estimation and concerns the presence of missing or latent data 

(Brownlee, 2019).  

 

4. Results 

4.1 Data Visualization 

Data visualization is a crucial part of the research process during which information in data is 

translated into visual elements like graphs. All the visualizations in this research are done with the 

application of ggplot2 found in the set of packages “tidyverse” in RStudio. 

 

There are several epochs of interest during the lifetime of a fire, such as durations between 

the ignition of fires and their discovery time, the report time and the attack time, the time fires 

were under control and the time they were declared out, and so on. My investigation started with 

one epoch of interest (Epoch A) and explored its relationship with independent variables of interest. 

As our fire data spanned the years from 1990 to 2019, it was convenient to group data into their 

respective decades to investigate changes in distribution over time. 
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Figure 1. Histograms of observed time epoch values from 1990 to 2019, grouped by decade. 

As the majority of the values are concentrated on the far left of the histograms, I used the 

“coord_cartesian” function in the package of ggplot2 in RStudio to adjust the range of the x-axis 

so that the left part was zoomed in for more precise visualization. 

 

Using information in the data concerning what month a fire was ignited in, months are 

grouped into quarters of a year and fires were grouped based on these quarters. In Figure 2, it can 

be noticed that there does not exist a first quarter, which corresponds to January, February, and 

March. This is due to the fact that I restrict my analysis to the operational fire season which is from 

the first of April to the end of October (Government of Ontario, 1990). Consequently, there are 

notably fewer fires in quarter four, due to the omission of November and December. In addition, 

during July and August, the frequency of fires is higher and responses tend to be slower than in 

quarter two, as the proportion of durations that are greater than 2 hours in quarter two is 28.2% 
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while in quarter three it is 36.6%, which could be the result of more fires competing for a limited 

number of suppression resources. 

 

 

Figure 2. Histograms of observed time epoch values from 1990 to 2019, grouped by quarter. 

 

4.2 Fitted Distributions 

4.2.1 Gamma Distribution 

In the perspective of spatial variables, I chose to investigate on the relationship between the epoch 

values and the distance from the ignition location to the nearest road (referred to as “distance from 

road”).  
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Figure 3. Histograms of observed epoch values grouped by quantiles of distances from road, with 

fitted Kernel and gamma distributions densities. The solid black lines correspond to Kernel 

density estimates and the blue dashed lines correspond to gamma distributions. 

 

For comparison, I stratified the epoch durations with respect to quantiles of distance from 

the road, meaning that the distances were arranged from the minimum to the maximum, so that 

“Quantile 1” corresponded to the first 25% of the distances and so on. For each group, I first used 

Kernel density estimation to model the distributions of response lag. Next, I fit gamma 

distributions to compare with the Kernel densities. It is noticeable that some of the black lines have 

a small bump after the decay of the highest peak, making the distribution bimodal, which cannot 

be replicated by the gamma distribution. 

 

4.2.2 Weibull and Exponential Distributions 

Other parametric distributional modeling approaches were also attempted. This time another epoch 

was investigated (Epoch B). Fine Fuel Moisture Code (FFMC) is one of the six components of the 
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Canadian Forest Fire Weather Index System that is useful to measure forest fire danger in Canada 

(Van Wagner, 1987). Here, the epoch was divided by four FFMC operational risk categories, 

ranging from “low” to “extreme”, and by two different causes of fire — human-caused and 

lightning-caused (i.e., “Natural”). Next, Weibull distributions were fit to human-caused fires while 

exponential distributions were fit to lightning fires. In this case, the Kernel density estimates and 

the fitted distributions roughly agreed with each other. 

 

 

Figure 4. Histograms of observed epoch values grouped by FFMC risk classifications and two 

causes of ignition, with either fitted Weibull or exponential distributions. The solid black lines 

correspond to Kernel density estimates and the blue dashed lines correspond to parametric 

distributions. 
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4.2.3 Continuous Phase-Type Distribution 

An important consideration when using the EM algorithm to fit CPH distributions is the choice of 

initial guesses for the distribution’s components. As observed in Section 4.2.1, we desire the ability 

to fit both the high peak and the little bump observed in the Kernel density. Therefore, I divided 

the density line into two parts: the first part with the high peak and the latter part consisting of the 

bump. Next, two continuous CPH distributions were chosen to roughly approximate each part with 

separate probability vectors and rate matrices. For the high peak, I estimated that it had one phase, 

which simplifies to an exponential distribution. For the small bump, I applied the knowledge of 

the Erlang distribution whose shape parameter represents the number of phases in the CPH 

distribution. Since adding more phases would increase the accuracy but lead to a longer runtime, 

I tried to use 12 phases. The mixture of two CPH distributions is also CPH so I was able to combine 

these into a single distribution whose components could be used as the initial guesses for the EM 

algorithm. Below is the result after thirty runs. 
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Figure 5. Plot of iteratively fit CPH distribution densities using the EM algorithm to values of 

Epoch B for human-caused fires. The Kernel density estimate is plotted in black. The red, 

yellow, green, and purple dashed lines correspond to the CPH density lines after 1, 5, 20, 30 

iterations, respectively. 

 

Based on the plot in Figure 5, I infer that it is possible that adding more phases and running 

more iterations of the EM algorithm would be needed to narrow the gap between the densities at 

the small bump. 

 

5.  Conclusion and Future Work 

As my research progressed, I got to know a lot of terms used in wildland fire science. Wildland 

fire science truly plays an important role in helping the MNRF to understand past fires and develop 

systems and tools to aid in managing future wildland fires. Through the exploratory data analysis, 

I was able to learn and apply both parametric (common distribution families) and non-parametric 

(Kernel density) models to different subsets of data. Although some of the parametric models 
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failed to capture certain features of the data (e.g., bimodality), I learned what variables could 

influence the MNRF’s response time, whether to attack by ground, by air or both, what specific 

attack tools the MNRF used, what could influence their decision making, and much more. In the 

future, I look forward to applying the modeling methods and research skills I learned to more 

social or environmental issues, including further research on wildland fire science. 
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