
 1

Functional structure of excess return and volatility

Author: Chenxi Zhao

Advisor: Marcos Escobar-Anel

Abstract

Capturing the relation between excess returns and volatility can help making better decisions in the stock

market in terms of portfolio allocation and assets risk management. This paper takes the data of a minute-

by-minute series of S&P500 from January 2009 to January 2021 as the research object and explores the

best structural representation for the excess return as a function of the volatility, for a well-known index.

This is implemented via regression models for volatility and excess returns. The results reveal that there’s

a structural break in the relationship between the excess return and volatility based on the sign of the excess

return, the functional connection could be either linear, logarithmic or quadratic.

1. Introduction

Businesses, investors and consumers are mostly likely reluctant to make spending and investment decisions

in a market with high uncertainty. The tradeoff between risk and return has long been an important topic in

asset valuation research. There is widespread agreement that, over a given time period, investors demand a

higher expected return from a riskier security, but this desire might not be supported by the performance of

stocks as indicated by data. Moreover, there is no agreement about the relation between risk and return

across time.

The empirical literature on this topic has attempted to characterize the nature of the linear relation between

the excess return and volatility. However, the reported findings are conflicting. For example, Campbell and

Hentschel (1992) and French, Schwert, and Stambaugh (1987) conclude that the data are consistent with a

positive relation between conditional expected excess return and conditional variance, whereas Fama and

Schwert (1977), Campbell (1987), Pagan and Hong (1991), Breen, Glosten, and Jagannathan (1989), Turner,

Startz, and Nelson (1989), and Nelson (1991) find a negative relation in several datasets. Chan, Karolyi,

and Stulz (1992) find no significant variance effect for the United States, but implicitly find one on the

world market portfolio. Harvey (1989) provides empirical evidence suggesting that there may be some time

variation in the relation between risk and return over time.

In order to find the best structural representation for the volatility and the excess return of a well-known

index, we selected the data of S&P500 from January 9, 2009, to January 22, 2021, for experiments and

comparisons, and do analysis of regression models for excess return as the dependent variable and volatility

as the independent variable. During the calculation, we noticed that the free rate of interest is very small,

resulting in little difference between excess return and expected return, so that we can directly explore the

relationship between the expected return and volatility. Based on the experimental results, we found that:

When we do regressions including the whole period under analysis, no matter how we transform the

variables, there is no significant relationship between the expected return and volatility. However, if we do

linear regressions by splitting the data into two parts according to the positive and negative sign of the

expected returns, there is a logarithmic (linear and quadratic are also acceptable) relationship between the

expected return and volatility.

The remainder of this report proceeds as follows. The second section is dedicated to the methodology of

data calculation and regression analysis used in the experiment. This is then followed by the numerical

results of two types of regression analysis. Section 4 presents the results and discusses the main findings of

our study, and a conclusion then brings the paper to an end.

 2

2. Methodology

In this section, we explain how the functional data analysis methodology can be applied to our problem.

Notation

𝑆𝑡,𝑚 – Stock price of day t. m is time in minutes. We assume, for convenience, M minutes per day

(usually less than 480, and different in different days), m=1, …, M.

𝑟𝑓,𝑦 – Risk-free rate, y is time in years, y=1, …, Y.

𝑟𝑚 – Rate of return per minute,m is time in minutes.

𝜇𝑑 – Daily expected return, d is time in days, d = 1, …, D.

𝜎𝑑 – Daily volatility, d is time in days.

𝑟𝑑 – Daily return, d is time in days.

𝜇𝑦 – Annualized expected return, y is time in years.

𝜎𝑦 – Annualized volatility, y is time in years.

𝑝𝑦 – Excess return, y is time in years.

Data Sources:

(1) S&P500 intraday price from 2009-01-09 to 2021-01-22 (minute by minute)

(2) United States 10-year bond yield from 2009-01-09 to 2021-01-22

 3

2.1 Data Cleaning and Calculation

Suppose the excess return of stock k is known as the expected return minus the risk-free rate, where we use

the U.S. 10-year bond yield rate as 𝑟𝑓,𝑦.

First, given daily time series of SP500, we use the minute-by-minute index data to calculate the rate of

return per minute 𝑟𝑚, which can be expressed as

𝑟𝑚 =
𝑆𝑡,𝑚+1

𝑆𝑡,𝑚
− 1

Because the time available consists of irregular time intervals, we exclude the first minute in the calculations.

Second, we calculate the daily expected return and daily volatility. Assume the average return (per minute)

is 0.01%, if we compound $1 per minute, then the investor should have $(1 + 0.0001)𝑀 by the end of the

day. By the Taylor expansion,

(1 + 0.0001)𝑀 = 1 + ln(1.0001) 𝑀 + 𝑂2 ≈ 1 + 0.0001𝑀 + 𝑂2

Due to the average return per minute is small, the remainder 𝑂2 would be super small, we could

approximate (1 + 0.0001)𝑀 by 1 + 0.0001𝑀. Therefore, we are calculating the daily expected return by

multiplying M, where M equals 480 as we assume an eight-hour working day system. For the volatility, we

multiply by the square root of the time scaling factor. The formulas can be expressed as

𝜇𝑑 = 480 ∗ 𝐸(𝑟𝑚)

𝜎𝑑 = √480 ∗ 𝑉𝑎𝑟(𝑟𝑚)

For the purpose of precision, we discuss another way of calculating the rate of return. We use the open price

of day t+1 and day t to calculate the daily return 𝑟𝑑, which can be expresses as

𝑟𝑑 =
𝑆𝑡+1,1

𝑆𝑡,1
− 1

This might be a good proxy for the daily expected return 𝜇𝑘,𝑑.

For consistency, we convert the rates from daily to annually, where we could carry out the assumption we

made when converting from minutes to days. We make the definition that the annual expected return equals

the number of workdays in a year multiplies the daily expected return. To convert daily volatility to annual

volatility, multiply by the square root of the number days in a year, which can be expressed as

𝜇𝑦 = 250 ∗ 𝜇𝑑

𝜎𝑦 = √250 ∗ 𝜎𝑑

where we assume a year has 250 workdays.

Now we get the annual excess return as 𝑝𝑦 = 𝜇𝑦 − 𝑟𝑦 .

Note: Issues might arise here when converting from daily to annually.

 4

1. The approximation of multiplication instead of compounding is not precise for large daily expected

return 𝜇𝑑. The large returns make the remainder 𝑂2 large as well, causing large calculation errors.

For example, assume the daily expected return is 1%, if we compound per day, then annual

expected return should be (1 + 0.01)250 − 1 , which is 1103.22%. If we calculate by

multiplication, the return would be 250%. As you can see, there is a huge difference. The

multiplication underestimates the rate of return.

2. We use the square-root rule for the time-scaling of volatility. This method of scaling volatility is

only appropriate if returns are independently and identically distributed. However, daily (or high

frequency) stock prices are generally not independently and identically distributed. In this case

Diebold et al. (1997) shows that scaling volatility to a longer time horizon can amplify fluctuations

in the data; scaled volatilities are often overestimated.

2.2 Visualization of calculation results

By using pandas, NumPy and other tools within Python (See Appendix – Codes), we calculated our target

data and visualized them as follows:

Our goal is to explore the best structural representation for the volatility and excess return. The above data

calculation shows that the interest rate is so small that it could be ignored for now, so we could directly

explore the relationship between the volatility and expected return using linear regressions.

 5

2.3 Regressions

As the scatter plot shows above, the points are crowded due to the large amount of data. To facilitate our

exploration of the relationship between the expected return and volatility, we first select one of the years of

data for regression analysis (i.e. whenever possible we use linear regression, in some cases we simply do a

least squares minimization in the spirit of non-linear regression). Here we choose the year 2014 to start with

as the market is more stable.

When assessing the regression models, we use mean squared error (MSE) as a way to measure the amount

of error, which can be calculated as:

𝑀𝑆𝐸 =
Σ(𝑦

𝑡
− 𝑦

𝑡̂
)

2

𝑇

where:

𝑦𝑡 is the annualized expected return on day 𝑡

𝑦𝑡̂ is the corresponding predicted value on day 𝑡

𝑇 is the number of observation days

A model with a smaller MSE is preferred when deciding the best structural representation.

Our analysis is performed with outliers removed. We use Cook's Distance for regression outlier detection.

Cook’s distance, often denoted 𝐷𝑖 , is used in regression analysis to identify influential data points that may

negatively affect the regression model. The formula for Cook’s distance is:

𝐷𝑖 = (
𝑟𝑖

2

𝑝
∗ 𝑀𝑆𝐸) ∗

ℎ𝑖𝑖

(1 − ℎ𝑖𝑖)2

where:

𝑟𝑖 is the 𝑖th residual

p is the number of coefficients in the regression model

MSE is the mean squared error

ℎ𝑖𝑖 is the 𝑖th leverage value

We follow the general rule that any point with a Cook’s Distance over 4/n (where n is the total number of

data points) is considered to be an outlier. (See Appendix – Codes)

 6

3. Numerical Results

Here we conduct two types of analyses, one works with the whole data set, fitting a model accordingly

(type 1), the second analysis (type 2) splits the data in two parts, positive and negative returns, fitting the

two pieces accordingly.

3.1 Analysis of type 1

Linear regression model

- 𝑦𝑡: annualized expected return on day 𝑡

- 𝑥𝑡: annualized standard deviation on day 𝑡

MSE Graphs

Outliers

included
𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + 𝑒 13.20523

Outliers

removed

𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + 𝑒 9.540857

𝑦𝑡 = 𝛼 + 𝛽1𝑥𝑡 + 𝛽2𝑥𝑡
2 + 𝑒 9.531777

𝑦𝑡 = 𝛼 + 𝛽1𝑥𝑡 + 𝛽2𝑥𝑡
2 + 𝛽3𝑥𝑡

3 + 𝑒 9.49771

√𝑦𝑡
3 = 𝛼 + 𝛽𝑥𝑡 + 𝑒 9.878104

√𝑦𝑡
3 = 𝛼 + 𝛽 √𝑥𝑡

3 + 𝑒 9.866972 /

𝑦𝑡 = 𝛼 + 𝛽log (𝑥𝑡) + 𝑒 9.539443 /

exp (𝑦𝑡) = 𝛼 + 𝛽𝑥𝑡 + 𝑒 29.3166 /

𝑦𝑡 = 𝛼 + 𝛽
1

𝑥𝑡
+ 𝑒 9.559679 /

𝑦𝑡 = 𝛼 + 𝛽arcsin (√𝑥𝑡) + 𝑒 9.539842 /

sech(𝑦𝑡) = 𝛼 + 𝛽𝑥𝑡 + 𝑒 11.9276 /

arcsinh(𝑦𝑡) = 𝛼 + 𝛽arcsinh (𝑥𝑡) + 𝑒 9.620362 /

tanh(𝑦𝑡) = 𝛼 + 𝛽tanh (𝑥𝑡) + 𝑒 9.72895 /

 7

We perform transformations on the variables with the expectation that the linear regression model

could work for that transformed data. However, our attempts didn’t bring significant improvements on the

MSE compared with the simple linear regression. Surprisingly, when performing a cubic root

transformation on 𝑦𝑡, we noticed two linear patterns on the graph, which brings up the idea that we could

do two linear regressions by splitting the expected return into positive and negative.

3.2 Analysis of type 2

Linear regression model (based on 𝒚𝒕) MSE Graphs

√𝑦𝑡
𝑝

= {
𝛼+ + 𝛽+𝑥𝑡 + 𝑒+ , 𝑦𝑡 ≥ 0
𝛼− + 𝛽−𝑥𝑡 + 𝑒− , 𝑦𝑡 < 0

𝑝 = 1 3.62911

𝑝 = 3 4.00278

𝑝 = 9 4.31824

𝑦𝑡 = {
𝛼+ + 𝛽1

+𝑥𝑡 + 𝛽2
+𝑥𝑡

2 + 𝑒+ , 𝑦𝑡 ≥ 0

𝛼− + 𝛽1
−𝑥𝑡 + 𝛽2

−𝑥𝑡
2 + 𝑒− , 𝑦𝑡 < 0

 3.47818

𝑦𝑡 = {
𝛼+ + 𝛽1

+𝑥𝑡 + 𝛽2
+𝑥𝑡

2 + 𝛽3
+𝑥𝑡

3 + 𝑒+, 𝑦𝑡 ≥ 0

𝛼− + 𝛽1
−𝑥𝑡 + 𝛽2

−𝑥𝑡
2 + 𝛽3

−𝑥𝑡
3 + 𝑒−, 𝑦𝑡 < 0

 3.43619

 8

𝑦𝑡 = {
𝛼+ + 𝛽+log (𝑥𝑡) + 𝑒+, 𝑦𝑡 ≥ 0
𝛼− + 𝛽−log (𝑥𝑡) + 𝑒−, 𝑦𝑡 < 0

 3.56642

4. Results

Doing two linear regressions based on the discussion of classifying the expected return led to a significant

reduction in MSE, which made the model fit our data much better. Considering the financial standpoint, we

choose 𝑦𝑡 = {
𝛼+ + 𝛽+log (𝑥𝑡) + 𝑒+, 𝑦𝑡 ≥ 0

𝛼− + 𝛽−log (𝑥𝑡) + 𝑒−, 𝑦𝑡 < 0
 with MSE equals 3.56642 as our best structural representation

for the volatility and expected return, which indicates a logarithmic relationship between the expected return

and volatility.

Then, we repeat this structure to all years, as well as a model with all years at once.

MSE of all years (Using 𝑦𝑡 = {
𝛼+ + 𝛽+log (𝑥𝑡) + 𝑒+, 𝑦𝑡 ≥ 0
𝛼− + 𝛽−log (𝑥𝑡) + 𝑒−, 𝑦𝑡 < 0

)

 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

MSE 19.05943 8.83983 8.92778 4.52497 3.2786 3.56642 3.9409 3.0367 1.04024 4.7549 3.9474 8.69023

𝜶+ 5.8190 5.7657 5.5013 3.5255 4.1187 4.2203 2.8044 4.0038 2.5975 3.9663 5.0886 5.1511

𝜷+ 1.1713 2.6809 1.7990 0.6548 1.2780 1.3849 0.4387 1.2323 0.6756 1.3537 1.9590 1.9633

𝜶− -7.1393 -8.4895 -6.1769 -6.9150 -4.5799 -6.2574 -7.5638 -4.8907 -5.3249 -6.2119 -5.4877 -8.2834

𝜷− -4.2120 -6.4191 -3.1190 -3.9759 -1.8483 -3.1376 -4.1805 -2.1111 -2.4549 -3.2274 -2.5284 -5.3642

𝑦𝑡 = {
4.6942 + 1.6904log (𝑥𝑡) + 𝑒+, 𝑦𝑡 ≥ 0

−5.3327 − 2.4102log (𝑥𝑡) + 𝑒−, 𝑦𝑡 < 0

 9

MSE of all years (Using the model of 2014 : 𝑦𝑡 = {
4.2203 + 1.3849log (𝑥𝑡) + 𝑒+, 𝑦𝑡 ≥ 0

−6.2574 − 3.1376log (𝑥𝑡) + 𝑒−, 𝑦𝑡 < 0
)

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

20.73622 9.54769 9.41422 4.58464 3.3269 3.56642 4.1349 3.11657 1.1819 4.79027 4.0027 9.41198

𝑦𝑡 = {
4.2203 + 1.3849log (𝑥𝑡) + 𝑒+, 𝑦𝑡 ≥ 0

−6.2574 − 3.1376log (𝑥𝑡) + 𝑒−, 𝑦𝑡 < 0

From the tables above, we observed that directly fitting the other years data into the model of 2014 only

brings a slightly higher MSE compared with applying the logarithmic structure to all years, which suggests

that the model of 2014 is a good indicator to reality.

There are four relatively high MSE in table. Considering that 2009-2011 was affected by the aftermath of

the 2008 financial crisis and 2020 was influenced by the Coronavirus pandemic, we inferred that these

abnormal MSEs are reasonable as the financial market is volatile.

According to the regression analysis, we tend to conclude that, in the case of classifying the expected return

into positive and negative, there is a logarithmic relationship between the expected return and volatility.

Future Research

Our work can be continued and improved in many directions. For instance, we would have explored the

statistical differences in parameters between the various years as a way of confirming the model’s

parameters could change in time, requiring further analysis. We could also explore other indexes and stocks

to see if our findings of a fitting split between positive and negative returns is supported across the market.

We could have also compared the three leading models, i.e. linear, quadratic and logarithmic, more closely

to see if there is a clear winner beyond the MSE measure. These all comments and many more non-disclosed

shall be part of future research.

 10

References

Campbell, John Y. and Ludger Hentschel (1992). No news is good news: An asymmetric model of changing

volatility in stock returns, Journal of Financial Economics 31, 281–318.

French, Kenneth R., G. William Schwert, and Robert F. Stambaugh (1987). Expected stock returns and

volatility, Journal of Financial Economics 19, 3–29.

Fama, Eugene F., and G. William Schwert (1977). Asset returns and inflation, Journal of Financial

Economics 5, 115–146.

Campbell, John Y. (1987). Stock returns and the term structure, Journal of Financial Economics 18, 373–

399.

Pagan, Adrian R., and Y. S. Hong (1991). Nonparametric estimation and the risk premium, in William

Barnett, James Powell, and George Tauchen, Eds.: Nonparametric and Semiparametric Methods in

Econometrics and Statistics (Cambridge University Press, Cambridge), pp. 51–75.

Breen, William, Lawrence R. Glosten, and Ravi Jagannathan (1989). Economic significance of predictable

variations in stock index returns, Journal of Finance 44, 1177–1189.

Nelson, Daniel B. (1991). Conditional heteroskedasticity in asset returns: A new approach, Econometrica

59, 347–370.

Chan, K. C., G. A. Karolyi, Rene M. Stulz (1992). Global financial markets and the risk premium on U.S.

equity, Journal of Financial Economics 32, 137–167.

Harvey, Campbell R., 1989, Time-varying conditional covariances in tests of asset pricing models, Journal

of Financial Economics 24, 289–317.

Christoffersen, P. F., & Diebold, F. X. (1997). How Relevant is Volatility Forecasting for Financial Risk

Management? Manuscript, Research Department, International Monetary Fund, and Department

of Economics, University of Pennsylvania.

 11

Appendix – Codes

Data Cleaning and Calculation (Python)

import time

import os

import pickle as pk

import pandas as pd

import numpy as np

DailyStd="Volatility"

DailyReturn="Daily Expected Return" # 480*mean(Minutely return)

ReturnPerMinute="Minute Return"

ExcessReturn="Excess Return"

def get_day_minutereturn(df):

 tic=time.time()

 row=df.shape[0]

 df.loc[:, "Minute Return"] = np.nan

 for i in range(row):

 # Minutely return

 ts = df.loc[i, "Date"] # Exclude the first minute type(ts):str

 if ts[-4:] == "9:30":

 continue

 sp500_cur = df.loc[i, "SP500"]

 sp500_pre = df.loc[i - 1, "SP500"]

 df.loc[i, "Minute Return"] = (sp500_cur / sp500_pre) - 1

 return df

def get_day_day_count(df):

 # Calculate how many days

 day, day_count = [], []

 count=1

 row=df.shape[0]

 day.append(df.loc[0, "Date"].split(" ")[0])

 for i in range(df.shape[0]):

 ts=df.loc[i,"Date"]

 ts2day=ts.split(" ")[0]

 if ts2day in day:

 count+=1

 else:

 day.append(ts2day)

 day_count.append(count)

 count=1

 if i==row-1:

 day_count.append(count)

 # for n in range(len(day)):

 # if n==0:

 # continue

 # day_count[n]=day_count[n]+1

 return day, day_count

def get_daily_return_volatility(df, day_count_dict):

 # daily_return=480*mean(minute_return)

 # daily_std=sqrt(480)*std(minute_return)

 tic=time.time()

 row=df.shape[0]

 i=0

 daily_return=[]

 daily_std=[]

 while i<row:

 sum_num_today=day_count_dict[df.loc[i, "Date"].split(" ")[0]]

 index=i+sum_num_today

 # print(np.nanmean(df.loc[i:index-1, "Minute Return"]))

 today_return=480*np.nanmean(df.loc[i:index-1, "Minute Return"])

 daily_return.append(today_return)

 today_std=np.sqrt(480)*np.nanstd(df.loc[i:index-1, "Minute Return"])

 daily_std.append(today_std)

 i+=sum_num_today

 time_used=time.time()-tic

 12

 return daily_return, daily_std

def get_excess_return(df):

 # df=data2

 tic=time.time()

 row=df.shape[0]

 df.loc[:,"Excess Return"]=0

 for i in range(row):

 # print(df.loc[i, "Adj Close"])

 if df.loc[i, "Adj Close"]==0:

 df.loc[i, "Excess Return"]=df.loc[i, DailyReturn]

 else:

 df.loc[i, "Excess Return"]=df.loc[i, DailyReturn]-((df.loc[i, "Adj

Close"]/100+1)**(1/365)-1)

 return df

Program start ##

Loading datas

if "data1.csv" in os.listdir("."):

 data1=pd.read_csv("data1.csv")

else:

 data1=pd.read_csv("EURUSD_DAX_SPX_final.csv")

print(list(data1.columns.values))

if "Minute Return" not in list(data1.columns.values):

 data1=get_day_minutereturn(df=data1)

 data1.to_csv("data1.csv", index=None, encoding="utf-8")

if "day.pk" not in os.listdir(".") or "day_count.pk" not in os.listdir("."):

 day, day_count = get_day_day_count(df=data1)

 day_save="day.pk"

 day_count_save="day_count.pk"

 with open(day_save, "wb") as f1:

 pk.dump(day, f1)

 f1.close()

 with open(day_count_save, "wb") as f2:

 pk.dump(day_count, f2)

 f2.close()

else:

 day_opened=open("day.pk", "rb")

 day_count_opened=open("day_count.pk", "rb")

 day=pk.load(day_opened)

 day_count=pk.load(day_count_opened)

 day_opened.close()

 day_count_opened.close()

 day_count[0]=day_count[0]-1

day_count_dict={}

for i in range(len(day)):

 day_count_dict[day[i]] = day_count[i]

#for key, value in day_count_dict.items():

 #if value<136:

 #print(key, value)

daily_return, daily_std=get_daily_return_volatility(df=data1, day_count_dict=day_count_dict)

if "data2.csv" in os.listdir("."):

 data2=pd.read_csv("data2.csv")

else:

 data2 = pd.read_excel("Interest_rate-10yBond.xls")

if ExcessReturn not in list(data2.columns.values):

 day_num=len(day)

 origin_data_num=data2.shape[0]

 data2.drop(columns="Date", inplace=True)

 tmp_df=pd.DataFrame(data=[0]*(day_num-origin_data_num), columns=["Adj Close"])

 data2=data2.append(tmp_df,ignore_index=True)

 data2.loc[:, "Date"] = day

 data2.loc[:, DailyReturn] = daily_return # Add the calculated daily expected return to data2

 data2.loc[:, DailyStd] = daily_std # Add the calculated volatility to data2

 data2_excess_return = get_excess_return(df=data2)

 data2.to_csv("data2.csv",index=None,encoding="utf-8")

 13

data2_excess_return = get_excess_return(df=data2) # Add the calculated excess return to data2

data2.to_csv("data2.csv",index=None,encoding="utf-8")

Calculate daily return

import pandas as pd

import datetime

df = pd.read_csv('EURUSD_DAX_SPX_final.csv')

df['date'] = df['Date'].astype(str).str[0:10]

df['Time'] = df['Date'].astype(str).str[11:19]

df['Date'] = pd.to_datetime(df['Date'], format='%Y-%m-%d %H:%M')

a = df.groupby('date').apply(lambda x: x.loc[x['Date'].idxmin(), 'SP500']).to_frame()

b = df.groupby('date').apply(lambda x: x.loc[x['Date'].idxmin(), 'SP500']).to_frame()

b.reset_index(inplace=True)

b.reset_index(inplace=True)

a['index'] = range(len(a))

a['index'] = a['index'] + 1

a.reset_index(inplace=True)

df_new = pd.merge(a, b, left_on='index', right_on='index', how='left')

df_new['value'] = df_new['0_y'] / df_new['0_x'] - 1

df_new[['date_x', 'value']].to_csv('a.csv')

Linear Regression (R)

 14

 15

