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Abstract 

Capturing the relation between excess returns and volatility can help making better decisions in the stock 

market in terms of portfolio allocation and assets risk management. This paper takes the data of a minute-

by-minute series of S&P500 from January 2009 to January 2021 as the research object and explores the 

best structural representation for the excess return as a function of the volatility, for a well-known index. 

This is implemented via regression models for volatility and excess returns. The results reveal that there’s 

a structural break in the relationship between the excess return and volatility based on the sign of the excess 

return, the functional connection could be either linear, logarithmic or quadratic. 

1. Introduction 

Businesses, investors and consumers are mostly likely reluctant to make spending and investment decisions 

in a market with high uncertainty. The tradeoff between risk and return has long been an important topic in 

asset valuation research. There is widespread agreement that, over a given time period, investors demand a 

higher expected return from a riskier security, but this desire might not be supported by the performance of 

stocks as indicated by data. Moreover, there is no agreement about the relation between risk and return 

across time.  

The empirical literature on this topic has attempted to characterize the nature of the linear relation between 

the excess return and volatility. However, the reported findings are conflicting. For example, Campbell and 

Hentschel (1992) and French, Schwert, and Stambaugh (1987) conclude that the data are consistent with a 

positive relation between conditional expected excess return and conditional variance, whereas Fama and 

Schwert (1977), Campbell (1987), Pagan and Hong (1991), Breen, Glosten, and Jagannathan (1989), Turner, 

Startz, and Nelson (1989), and Nelson (1991) find a negative relation in several datasets. Chan, Karolyi, 

and Stulz (1992) find no significant variance effect for the United States, but implicitly find one on the 

world market portfolio. Harvey (1989) provides empirical evidence suggesting that there may be some time 

variation in the relation between risk and return over time. 

In order to find the best structural representation for the volatility and the excess return of a well-known 

index, we selected the data of S&P500 from January 9, 2009, to January 22, 2021, for experiments and 

comparisons, and do analysis of regression models for excess return as the dependent variable and volatility 

as the independent variable.  During the calculation, we noticed that the free rate of interest is very small, 

resulting in little difference between excess return and expected return, so that we can directly explore the 

relationship between the expected return and volatility. Based on the experimental results, we found that:  

When we do regressions including the whole period under analysis, no matter how we transform the 

variables, there is no significant relationship between the expected return and volatility. However, if we do 

linear regressions by splitting the data into two parts according to the positive and negative sign of the 

expected returns, there is a logarithmic (linear and quadratic are also acceptable) relationship between the 

expected return and volatility.  

The remainder of this report proceeds as follows. The second section is dedicated to the methodology of 

data calculation and regression analysis used in the experiment. This is then followed by the numerical 

results of two types of regression analysis. Section 4 presents the results and discusses the main findings of 

our study, and a conclusion then brings the paper to an end. 
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2. Methodology  

In this section, we explain how the functional data analysis methodology can be applied to our problem.  

Notation 

𝑆𝑡,𝑚 – Stock price of day t. m is time in minutes. We assume, for convenience, M minutes per day 

(usually less than 480, and different in different days), m=1, …, M. 

𝑟𝑓,𝑦 – Risk-free rate, y is time in years, y=1, …, Y. 

𝑟𝑚 – Rate of return per minute,m is time in minutes. 

𝜇𝑑 – Daily expected return, d is time in days, d = 1, …, D. 

𝜎𝑑 – Daily volatility, d is time in days. 

𝑟𝑑 – Daily return, d is time in days. 

𝜇𝑦 – Annualized expected return, y is time in years. 

𝜎𝑦 – Annualized volatility, y is time in years. 

𝑝𝑦 – Excess return, y is time in years. 

Data Sources:  

(1) S&P500 intraday price from 2009-01-09 to 2021-01-22 (minute by minute) 

 
(2) United States 10-year bond yield from 2009-01-09 to 2021-01-22 
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2.1 Data Cleaning and Calculation 

Suppose the excess return of stock k is known as the expected return minus the risk-free rate, where we use 

the U.S. 10-year bond yield rate as 𝑟𝑓,𝑦.  

First, given daily time series of SP500, we use the minute-by-minute index data to calculate the rate of 

return per minute 𝑟𝑚, which can be expressed as 

𝑟𝑚 =
𝑆𝑡,𝑚+1

𝑆𝑡,𝑚
− 1 

Because the time available consists of irregular time intervals, we exclude the first minute in the calculations.  

Second, we calculate the daily expected return and daily volatility. Assume the average return (per minute) 

is 0.01%, if we compound $1 per minute, then the investor should have $(1 + 0.0001)𝑀 by the end of the 

day. By the Taylor expansion,  

(1 + 0.0001)𝑀 = 1 + ln(1.0001) 𝑀 + 𝑂2 ≈ 1 + 0.0001𝑀 + 𝑂2 

Due to the average return per minute is small, the remainder 𝑂2  would be super small, we could 

approximate (1 + 0.0001)𝑀 by 1 + 0.0001𝑀. Therefore, we are calculating the daily expected return by 

multiplying M, where M equals 480 as we assume an eight-hour working day system. For the volatility, we 

multiply by the square root of the time scaling factor. The formulas can be expressed as 

𝜇𝑑 = 480 ∗ 𝐸(𝑟𝑚) 

𝜎𝑑 = √480 ∗ 𝑉𝑎𝑟(𝑟𝑚) 

For the purpose of precision, we discuss another way of calculating the rate of return. We use the open price 

of day t+1 and day t to calculate the daily return 𝑟𝑑, which can be expresses as 

𝑟𝑑 =
𝑆𝑡+1,1

𝑆𝑡,1
− 1 

This might be a good proxy for the daily expected return 𝜇𝑘,𝑑. 

For consistency, we convert the rates from daily to annually, where we could carry out the assumption we 

made when converting from minutes to days. We make the definition that the annual expected return equals 

the number of workdays in a year multiplies the daily expected return. To convert daily volatility to annual 

volatility, multiply by the square root of the number days in a year, which can be expressed as 

𝜇𝑦 = 250 ∗ 𝜇𝑑  

𝜎𝑦 = √250 ∗ 𝜎𝑑 

where we assume a year has 250 workdays.  

Now we get the annual excess return as 𝑝𝑦 = 𝜇𝑦 − 𝑟𝑦 . 

Note: Issues might arise here when converting from daily to annually.  
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1. The approximation of multiplication instead of compounding is not precise for large daily expected 

return 𝜇𝑑. The large returns make the remainder 𝑂2 large as well, causing large calculation errors. 

For example, assume the daily expected return is 1%, if we compound per day, then annual 

expected return should be (1 + 0.01)250 − 1  , which is 1103.22%. If we calculate by 

multiplication, the return would be 250%. As you can see, there is a huge difference. The 

multiplication underestimates the rate of return.  

2. We use the square-root rule for the time-scaling of volatility. This method of scaling volatility is 

only appropriate if returns are independently and identically distributed. However, daily (or high 

frequency) stock prices are generally not independently and identically distributed. In this case 

Diebold et al. (1997) shows that scaling volatility to a longer time horizon can amplify fluctuations 

in the data; scaled volatilities are often overestimated. 

2.2 Visualization of calculation results 

By using pandas, NumPy and other tools within Python (See Appendix – Codes), we calculated our target 

data and visualized them as follows:  

 

 

Our goal is to explore the best structural representation for the volatility and excess return. The above data 

calculation shows that the interest rate is so small that it could be ignored for now, so we could directly 

explore the relationship between the volatility and expected return using linear regressions. 
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2.3 Regressions 

As the scatter plot shows above, the points are crowded due to the large amount of data. To facilitate our 

exploration of the relationship between the expected return and volatility, we first select one of the years of 

data for regression analysis (i.e. whenever possible we use linear regression, in some cases we simply do a 

least squares minimization in the spirit of non-linear regression). Here we choose the year 2014 to start with 

as the market is more stable.  

When assessing the regression models, we use mean squared error (MSE) as a way to measure the amount 

of error, which can be calculated as: 

𝑀𝑆𝐸 =
Σ(𝑦

𝑡
− 𝑦

𝑡̂
)

2

𝑇
 

where: 

𝑦𝑡 is the annualized expected return on day 𝑡 

𝑦𝑡̂ is the corresponding predicted value on day 𝑡 

𝑇 is the number of observation days 

A model with a smaller MSE is preferred when deciding the best structural representation. 

Our analysis is performed with outliers removed. We use Cook's Distance for regression outlier detection. 

Cook’s distance, often denoted 𝐷𝑖 , is used in regression analysis to identify influential data points that may 

negatively affect the regression model. The formula for Cook’s distance is: 

𝐷𝑖 = (
𝑟𝑖

2

𝑝
∗ 𝑀𝑆𝐸) ∗

ℎ𝑖𝑖

(1 − ℎ𝑖𝑖)2 

where: 

𝑟𝑖 is the 𝑖th residual 

p is the number of coefficients in the regression model 

MSE is the mean squared error 

ℎ𝑖𝑖  is the 𝑖th leverage value 

We follow the general rule that any point with a Cook’s Distance over 4/n (where n is the total number of 

data points) is considered to be an outlier. (See Appendix – Codes) 
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3. Numerical Results 

Here we conduct two types of analyses, one works with the whole data set, fitting a model accordingly 

(type 1), the second analysis (type 2) splits the data in two parts, positive and negative returns, fitting the 

two pieces accordingly.  

3.1 Analysis of type 1 

Linear regression model 

- 𝑦𝑡: annualized expected return on day 𝑡 

- 𝑥𝑡: annualized standard deviation on day 𝑡 

MSE Graphs 

Outliers 

included 
𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + 𝑒 13.20523 

 

Outliers 

removed 

𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + 𝑒 9.540857 

 

𝑦𝑡 = 𝛼 + 𝛽1𝑥𝑡 + 𝛽2𝑥𝑡
2 + 𝑒 9.531777 

𝑦𝑡 = 𝛼 + 𝛽1𝑥𝑡 + 𝛽2𝑥𝑡
2 + 𝛽3𝑥𝑡

3 + 𝑒 9.49771 

√𝑦𝑡
3 = 𝛼 + 𝛽𝑥𝑡 + 𝑒 9.878104 

 

√𝑦𝑡
3 = 𝛼 + 𝛽 √𝑥𝑡

3 + 𝑒 9.866972 / 

𝑦𝑡 = 𝛼 + 𝛽log (𝑥𝑡) + 𝑒 9.539443 / 

exp (𝑦𝑡) = 𝛼 + 𝛽𝑥𝑡 + 𝑒 29.3166 / 

𝑦𝑡 = 𝛼 + 𝛽
1

𝑥𝑡
+ 𝑒 9.559679 / 

𝑦𝑡 = 𝛼 + 𝛽arcsin (√𝑥𝑡) + 𝑒 9.539842 / 

sech(𝑦𝑡) = 𝛼 + 𝛽𝑥𝑡 + 𝑒 11.9276 / 

arcsinh(𝑦𝑡) = 𝛼 + 𝛽arcsinh (𝑥𝑡) + 𝑒 9.620362 / 

tanh(𝑦𝑡) = 𝛼 + 𝛽tanh (𝑥𝑡) + 𝑒 9.72895 / 
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We perform transformations on the variables with the expectation that the linear regression model 

could work for that transformed data. However, our attempts didn’t bring significant improvements on the 

MSE compared with the simple linear regression. Surprisingly, when performing a cubic root 

transformation on 𝑦𝑡, we noticed two linear patterns on the graph, which brings up the idea that we could 

do two linear regressions by splitting the expected return into positive and negative. 

3.2 Analysis of type 2 

Linear regression model (based on 𝒚𝒕) MSE Graphs 

√𝑦𝑡
𝑝

= {
𝛼+ + 𝛽+𝑥𝑡 + 𝑒+ , 𝑦𝑡 ≥ 0
𝛼− + 𝛽−𝑥𝑡 + 𝑒− , 𝑦𝑡 < 0

 

𝑝 = 1 3.62911 

 

𝑝 = 3 4.00278 

 

𝑝 = 9 4.31824 

 

𝑦𝑡 = {
𝛼+ + 𝛽1

+𝑥𝑡 + 𝛽2
+𝑥𝑡

2 + 𝑒+ , 𝑦𝑡 ≥ 0

𝛼− + 𝛽1
−𝑥𝑡 + 𝛽2

−𝑥𝑡
2 + 𝑒− , 𝑦𝑡 < 0

 3.47818 

 

𝑦𝑡 = {
𝛼+ + 𝛽1

+𝑥𝑡 + 𝛽2
+𝑥𝑡

2 + 𝛽3
+𝑥𝑡

3 + 𝑒+, 𝑦𝑡 ≥ 0

𝛼− + 𝛽1
−𝑥𝑡 + 𝛽2

−𝑥𝑡
2 + 𝛽3

−𝑥𝑡
3 + 𝑒−, 𝑦𝑡 < 0

 3.43619 
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𝑦𝑡 = {
𝛼+ + 𝛽+log (𝑥𝑡) + 𝑒+, 𝑦𝑡 ≥ 0
𝛼− + 𝛽−log (𝑥𝑡) + 𝑒−, 𝑦𝑡 < 0

 3.56642 

 
 

4. Results  

Doing two linear regressions based on the discussion of classifying the expected return led to a significant 

reduction in MSE, which made the model fit our data much better. Considering the financial standpoint, we 

choose 𝑦𝑡 = {
𝛼+ + 𝛽+log (𝑥𝑡) + 𝑒+, 𝑦𝑡 ≥ 0

𝛼− + 𝛽−log (𝑥𝑡) + 𝑒−, 𝑦𝑡 < 0
 with MSE equals 3.56642 as our best structural representation 

for the volatility and expected return, which indicates a logarithmic relationship between the expected return 

and volatility. 

Then, we repeat this structure to all years, as well as a model with all years at once.  

MSE of all years (Using 𝑦𝑡 = {
𝛼+ + 𝛽+log (𝑥𝑡) + 𝑒+, 𝑦𝑡 ≥ 0
𝛼− + 𝛽−log (𝑥𝑡) + 𝑒−, 𝑦𝑡 < 0

 ) 

 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

MSE 19.05943 8.83983 8.92778 4.52497 3.2786 3.56642 3.9409 3.0367 1.04024 4.7549 3.9474 8.69023 

𝜶+ 5.8190         5.7657         5.5013         3.5255        4.1187         4.2203       2.8044       4.0038       2.5975      3.9663       5.0886        5.1511         

𝜷+ 1.1713 2.6809 1.7990 0.6548 1.2780 1.3849 0.4387 1.2323 0.6756 1.3537 1.9590 1.9633 

𝜶− -7.1393        -8.4895        -6.1769        -6.9150        -4.5799        -6.2574       -7.5638      -4.8907        -5.3249      -6.2119       -5.4877       -8.2834        

𝜷− -4.2120 -6.4191 -3.1190 -3.9759 -1.8483 -3.1376 -4.1805 -2.1111 -2.4549 -3.2274 -2.5284 -5.3642 

 

 

 

𝑦𝑡 = {
4.6942 + 1.6904log (𝑥𝑡) + 𝑒+, 𝑦𝑡 ≥ 0

−5.3327 − 2.4102log (𝑥𝑡) + 𝑒−, 𝑦𝑡 < 0
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MSE of all years (Using the model of 2014 : 𝑦𝑡 = {
4.2203 + 1.3849log (𝑥𝑡) + 𝑒+, 𝑦𝑡 ≥ 0

−6.2574 − 3.1376log (𝑥𝑡) + 𝑒−, 𝑦𝑡 < 0
 ) 

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

20.73622 9.54769 9.41422 4.58464 3.3269 3.56642 4.1349 3.11657 1.1819 4.79027 4.0027 9.41198 

 

 

 

𝑦𝑡 = {
4.2203 + 1.3849log (𝑥𝑡) + 𝑒+, 𝑦𝑡 ≥ 0

−6.2574 − 3.1376log (𝑥𝑡) + 𝑒−, 𝑦𝑡 < 0
 

 

 

 

 

From the tables above, we observed that directly fitting the other years data into the model of 2014 only 

brings a slightly higher MSE compared with applying the logarithmic structure to all years, which suggests 

that the model of 2014 is a good indicator to reality. 

There are four relatively high MSE in table. Considering that 2009-2011 was affected by the aftermath of 

the 2008 financial crisis and 2020 was influenced by the Coronavirus pandemic, we inferred that these 

abnormal MSEs are reasonable as the financial market is volatile. 

According to the regression analysis, we tend to conclude that, in the case of classifying the expected return 

into positive and negative, there is a logarithmic relationship between the expected return and volatility.  

Future Research 

Our work can be continued and improved in many directions. For instance, we would have explored the 

statistical differences in parameters between the various years as a way of confirming the model’s 

parameters could change in time, requiring further analysis. We could also explore other indexes and stocks 

to see if our findings of a fitting split between positive and negative returns is supported across the market. 

We could have also compared the three leading models, i.e. linear, quadratic and logarithmic, more closely 

to see if there is a clear winner beyond the MSE measure. These all comments and many more non-disclosed 

shall be part of future research. 
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Appendix – Codes 

Data Cleaning and Calculation (Python) 

import time 

import os 

import pickle as pk 

import pandas as pd 

import numpy as np 

 

DailyStd="Volatility" 

DailyReturn="Daily Expected Return"  # 480*mean(Minutely return) 

ReturnPerMinute="Minute Return" 

ExcessReturn="Excess Return" 

 

def get_day_minutereturn(df): 

    tic=time.time() 

    row=df.shape[0] 

    df.loc[:, "Minute Return"] = np.nan 

    for i in range(row): 

        # Minutely return 

        ts = df.loc[i, "Date"]  # Exclude the first minute   type(ts):str 

        if ts[-4:] == "9:30": 

            continue 

        sp500_cur = df.loc[i, "SP500"] 

        sp500_pre = df.loc[i - 1, "SP500"] 

        df.loc[i, "Minute Return"] = (sp500_cur / sp500_pre) - 1 

    return df 

 

def get_day_day_count(df): 

    # Calculate how many days 

    day, day_count = [], [] 

    count=1 

    row=df.shape[0] 

    day.append(df.loc[0, "Date"].split(" ")[0]) 

 

    for i in range(df.shape[0]): 

        ts=df.loc[i,"Date"] 

        ts2day=ts.split(" ")[0] 

        if ts2day in day: 

            count+=1 

        else: 

            day.append(ts2day) 

            day_count.append(count) 

            count=1 

        if i==row-1: 

            day_count.append(count) 

    # for n in range(len(day)): 

    #     if n==0: 

    #         continue 

    #     day_count[n]=day_count[n]+1 

    return day, day_count 

 

def get_daily_return_volatility(df, day_count_dict): 

    # daily_return=480*mean(minute_return) 

    # daily_std=sqrt(480)*std(minute_return) 

    tic=time.time() 

    row=df.shape[0] 

    i=0 

    daily_return=[] 

    daily_std=[] 

    while i<row: 

        sum_num_today=day_count_dict[df.loc[i, "Date"].split(" ")[0]] 

        index=i+sum_num_today 

        # print(np.nanmean(df.loc[i:index-1, "Minute Return"])) 

        today_return=480*np.nanmean(df.loc[i:index-1, "Minute Return"]) 

        daily_return.append(today_return) 

        today_std=np.sqrt(480)*np.nanstd(df.loc[i:index-1, "Minute Return"]) 

        daily_std.append(today_std) 

        i+=sum_num_today 

    time_used=time.time()-tic 
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    return daily_return, daily_std 

 

def get_excess_return(df): 

    # df=data2 

    tic=time.time() 

    row=df.shape[0] 

    df.loc[:,"Excess Return"]=0 

    for i in range(row): 

        # print(df.loc[i, "Adj Close"]) 

        if df.loc[i, "Adj Close"]==0: 

            df.loc[i, "Excess Return"]=df.loc[i, DailyReturn] 

        else: 

            df.loc[i, "Excess Return"]=df.loc[i, DailyReturn]-((df.loc[i, "Adj 

Close"]/100+1)**(1/365)-1) 

    return df 

 

## Program start ## 

# Loading datas 

if "data1.csv" in os.listdir("."): 

    data1=pd.read_csv("data1.csv") 

else: 

    data1=pd.read_csv("EURUSD_DAX_SPX_final.csv") 

 

print(list(data1.columns.values)) 

if "Minute Return" not in list(data1.columns.values): 

    data1=get_day_minutereturn(df=data1) 

    data1.to_csv("data1.csv", index=None, encoding="utf-8") 

if "day.pk" not in os.listdir(".") or "day_count.pk" not in os.listdir("."): 

    day, day_count = get_day_day_count(df=data1) 

    day_save="day.pk" 

    day_count_save="day_count.pk" 

    with open(day_save, "wb") as f1: 

        pk.dump(day, f1) 

        f1.close() 

    with open(day_count_save, "wb") as f2: 

        pk.dump(day_count, f2) 

        f2.close() 

else: 

    day_opened=open("day.pk", "rb") 

    day_count_opened=open("day_count.pk", "rb") 

    day=pk.load(day_opened) 

    day_count=pk.load(day_count_opened) 

    day_opened.close() 

    day_count_opened.close() 

    day_count[0]=day_count[0]-1 

 

day_count_dict={} 

for i in range(len(day)): 

    day_count_dict[day[i]] = day_count[i] 

#for key, value in day_count_dict.items(): 

    #if value<136: 

        #print(key, value) 

daily_return, daily_std=get_daily_return_volatility(df=data1, day_count_dict=day_count_dict) 

 

if "data2.csv" in os.listdir("."): 

    data2=pd.read_csv("data2.csv") 

else: 

    data2 = pd.read_excel("Interest_rate-10yBond.xls") 

 

if ExcessReturn not in list(data2.columns.values): 

    day_num=len(day) 

    origin_data_num=data2.shape[0] 

    data2.drop(columns="Date", inplace=True) 

    tmp_df=pd.DataFrame(data=[0]*(day_num-origin_data_num), columns=["Adj Close"]) 

    data2=data2.append(tmp_df,ignore_index=True) 

    data2.loc[:, "Date"] = day 

    data2.loc[:, DailyReturn] = daily_return  # Add the calculated daily expected return to data2 

    data2.loc[:, DailyStd] = daily_std  # Add the calculated volatility to data2 

    data2_excess_return = get_excess_return(df=data2) 

    data2.to_csv("data2.csv",index=None,encoding="utf-8") 
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data2_excess_return = get_excess_return(df=data2)  # Add the calculated excess return to data2 

data2.to_csv("data2.csv",index=None,encoding="utf-8") 

 

# Calculate daily return 

import pandas as pd 

import datetime 

df = pd.read_csv('EURUSD_DAX_SPX_final.csv') 

df['date'] = df['Date'].astype(str).str[0:10] 

df['Time'] = df['Date'].astype(str).str[11:19] 

df['Date'] = pd.to_datetime(df['Date'], format='%Y-%m-%d %H:%M') 

a = df.groupby('date').apply(lambda x: x.loc[x['Date'].idxmin(), 'SP500']).to_frame() 

b = df.groupby('date').apply(lambda x: x.loc[x['Date'].idxmin(), 'SP500']).to_frame() 

b.reset_index(inplace=True) 

b.reset_index(inplace=True) 

a['index'] = range(len(a)) 

a['index'] = a['index'] + 1 

a.reset_index(inplace=True) 

df_new = pd.merge(a, b, left_on='index', right_on='index', how='left') 

df_new['value'] = df_new['0_y'] / df_new['0_x'] - 1 

df_new[['date_x', 'value']].to_csv('a.csv') 

 

Linear Regression (R) 
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