

The Use of the ¹²⁹Xe MRI Ventilatory ADC Approach for the Evaluation of Emphysema Progression

Keeirah Raguram¹, Alexei Ouriadov¹⁻³

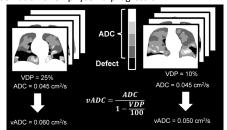
¹Department of Physics and Astronomy, The University of Western Ontario, London, Canada

²Lawson Health Research Institute, London, ON, Canada

³School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, Ontario, Canada

INTRODUCTION

- 129Xe is a stable, non-radioactive isotope that has the capacity to be imaged with Magnetic Resonance Imaging (MRI).
- Hyperpolarized ¹²⁹Xe lung MRI, an efficient technique, is utilized in various fields of medical physics and MRI research to assess as well as investigate pulmonary diseases.
- In fact, hyperpolarized gas pulmonary MRI provides the identification of biomarkers of various obstructive lung diseases such as emphysema and bronchopulmonary dysplasia.
- However, emphysema progression is able to cause increasing unventilated lung areas which likely excludes the estimates of the largest apparent diffusion coefficient (ADC).
- As such, longitudinal observations of the progression of emphysema using hyperpolarized gas MRI-based ADC can be problematic, masking the severity of emphysema.
- A solution to this problem is combining staticventilation (SV) and ADC measurements following the idea of ventilatory ADC (vADC).
 - SV measurements providing the gasdistribution should remain to portray an increase in the ventilation defects reflecting the progression of emphysema.


OBJECTIVE & HYPOTHESIS

Objective: To show that emphysema progression can be accurately quantified using the vADC approach by utilizing pulmonary static-ventilation and diffusion-weighted images of ¹²⁹Xe.

Hypothesis: It is hypothesized that the vADC method adapted for ¹²⁹Xe MRI should aid to provide an accurate assessment of the emphysema-progression.

METHODS

For this work, we utilized the SV and ADC data acquired using ¹²⁹Xe MRI in a small group of study subjects to showcase the feasibility of the xenon vADC approach as a possible clinical tool for the longitudinal evaluation and observation of emphysema-progression.

Figure 1. Figure depicting the ventilatory ADC (vADC) approach which requires the combining of ADC measurements and static-ventilation. ADC=apparent diffusion coefficient; VDP=ventilation defect percent.

RESULTS

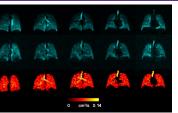


Figure 2. Representative ¹²⁹Xe MRI static-ventilation images (top-panel), matched voxel-size unweighted (b=0,) images (middle-panel) and correspondent ADC maps (bottom-panel) in coronal view obtained for Patient 2. Images are demonstrating a good match between static-ventilation and key-hole-based unweighted slices.

	Global Mean VDP %	Global Mean ADC (SD), s/cm ²	Global Mean vADC, s/cm ²	
Patient 1	25	0.032 (0.017)	0.047	
Patient 2	11	0.040 (0.018)	0.044	
Patient 3	3.0	0.036 (0.015)	0.039	
Patient 4	10	0.037 (0.016)	0.042	
Patient 5	8.0	0.045 (0.018)	0.050	

Table 1. 129Xe MRI results for 5 patients.

DISCUSSION AND CONCLUSION

- The results of the study show that the diffusion data reconstructed with the key-holetechnique had sufficient signal to noise ratio to generate reliable ADC maps and reasonable matching (visual image similarity) with the SV data.
- The feasibility of the vADC ¹²⁹Xe MRI-based approach was demonstrated, so this method can potentially be used to evaluate emphysema progression.
- To prove this concept further, we plan to re-scan the study participants in 12 months to demonstrate the emphysema progression over the year using the vADC approach.

ACKNOWLEDGMENTS

Thank you to Dr. Alexei Ouriadov for his continued support and guidance on this project.