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    Fluid equations are generally quite difficult and computationally-
expensive to solve. However, if one is primarily interested in how the 
surface of the fluid deforms, we can re-formulate the governing 
equations purely in terms of free surface variables [1]. Reformulating 
the equations in such a way drastically cuts down on computational 
cost, and may be useful in areas such as modelling blood flow. Here, 
we study one such free-boundary formulation on a cylindrical 
geometry.

The free-boundary formulation by Blyth and Părău [1] considers an 
irrotational, inviscid, and incompressible, cylindrical jet of fluid. They 
use this to model axially-symmetric period waves on the surface of 
the jet. Here, we re-create and verify their results.  

In the travelling frame,                                          the governing equation 
at the free cylindrical surface is
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Our solutions agree with those achieved by Blyth and Părău, and 
therefore we have successfully re-produced their results. This work is 
now well-poised to be expanded upon. Future work includes�

� Stability analysis on this cylindrical jet formulation (on-going�

� Modifying the formulation by including a flexural term to model 
elastic blood-vessel walls 

We compute periodic travelling wave solutions in two different regimes 
by varying a combination of the magnetic bond number    and half-
domain length    .



Figures 2 and 3 show wave profiles without and with Wilton ripples 
(respectively) along with their bifurcation branches, where each point 
corresponds to a unique wave profile.

Define solution as truncated Fourier series:

The N+1 unknown Fourier coefficients, along with the unknown wave-
speed   results in a total of N+2 unknowns for each point on the 
bifurcation branch: 

The surface condition (1) gives us N equations, one for each value of          
                 and we define 2 more equations: ,
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where    is a parameter we set in order to step up the bifurcation 
branch and compute solutions of increasing amplitude. 

Figure 2: Solution branch (right) corresponding to B=1.5 and L=  , 
along with (left) three representive wave profiles

Figure 1: Periodic flow geomtery in the travelling frame

Figure 3: Solution branch (right) corresponding to B=30 and L=1.0305, 
along with (left) three representive wave profiles

        where                 and 

wave speed
surface displacement

unknowns

modified Bessel functions
magnetic bond number

central rod radius
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N+2 equations for

N+2 unknowns 

solved using Newton’s 
method in MATLAB⇒


