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Abstract

Fluid equations are generally quite difficult and computationally-
expensive to solve. However, if one is primarily interested in how the
surface of the fluid deforms, we can re-formulate the governing
equations purely in terms of free surface variables [1]. Reformulating
the equations in such a way drastically cuts down on computational
cost, and may be useful in areas such as modelling blood flow. Here,
we study one such free-boundary formulation on a cylindrical
geometry.

Introduction

The free-boundary formulation by Blyth and Parau [1] considers an
irrotational, inviscid, and incompressible, cylindrical jet of fluid. They
use this to model axially-symmetric period waves on the surface of
the jet. Here, we re-create and verify their results.
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Figure 1: Periodic flow geomtery in the travelling frame

In the travelling frame, (z,t) — (z = ¢ — ct,t) the governing equation
at the free cylindrical surface is
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X (K1 (kb)I;(kS) — I (kb) K1 (kS)) e**dz = 0

where k € Z™ and

S surface displacement
unknowns
C wave speed
B magnetic bond number
I; and K, modified Bessel functions
b central rod radius
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Numerical Method

Define solution as truncated Fourier series:
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The N+7 unknown Fourier coefficients, along with the unknown wave-
speed C results in a total of N+2 unknowns for each point on the
bifurcation branch:
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The surface condition (1) gives us N equations, one for each value of
k € [1, N| and we define 2 more equations:
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where ¢ is a parameter we set in order to step up the bifurcation
branch and compute solutions of increasing amplitude.

N+2 equations for
N+2 unknowns

solved using Newton’s
method in MATLAB

Results

We compute periodic travelling wave solutions in two different regimes
by varying a combination of the magnetic bond number B and half-
domain length L.

Figures 2 and 3 show wave profiles without and with Wilton ripples
(respectively) along with their bifurcation branches, where each point
corresponds to a unique wave profile.
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Figure 2: Solution branch (right) corresponding to B=1.5 and L=TT,
along with (left) three representive wave profiles
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Figure 3: Solution branch (right) corresponding to B=30 and L=1.0305,
along with (left) three representive wave profiles

Conclusions & Future Work

Our solutions agree with those achieved by Blyth and Parau, and
therefore we have successfully re-produced their results. This work is
now well-poised to be expanded upon. Future work includes:

o Stability analysis on this cylindrical jet formulation (on-going)

e Modifying the formulation by including a flexural term to model
elastic blood-vessel walls
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