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Abstract
Image registration is the process o f spatially aligning two or more images of a 

scene into a common coordinate system. Research in image registration has yielded a 

number o f rigid and non-rigid image registration methods capable o f registering images 

o f a scene between modalities. In addition, techniques of information visualization have 

been applied to medical image registration research to produce an atlas based image 

registration method. This method is capable o f registration medical images of a same 

modality between subjects for comparative studies.

This thesis aims to extend research in image registration by adding to it the visual 

encoding of time. The visual encoding o f time furthers image registration research by 

enabling the simultaneous analysis o f the spatial and temporal relationships that exist 

between images. The benefit o f registering images with respect to both space and time is 

shown through the development o f a software application capable o f presenting a time

space narrative o f x-ray images representing a patient’s medical history. This time-space 

narrative is assembled by performing rigid atlas based image registration on a set of x-ray 

images and by visually encoding their timestamps to form of an interactive timeline. The 

atlas based image registration method was selected to ensure that images can be 

registered to a common coordinate system in cases where images do not overlap. Rigid 

image registration was assumed to be sufficient to provide the desired visual result.

Subsequent to its implementation, an analysis of the measured uncertainty of the 

image registration method was performed. The error in manual point pair correspondence 

selection was measured at more than +/- 1.08 pixels under ideal conditions and a method 

to calculate the unique standard error o f each image registration was presented.
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Chapter 1 

Introduction
Scientists and researchers are often asked to analyse data and to derive from it 

some form of insight or understanding. This task can be difficult since the cognitive 

reasoning process is easily overwhelmed by large quantities o f data [26]. Consequently, a 

popular approach to improve data analysis is to represent the data visually. Visual 

representations augment the cognitive reasoning process with perceptual reasoning which 

permits the analytical reasoning process to become faster and more focused [5]. This 

principle applies both to the broad scope o f information visualization as well as to the 

specific scope of scientific visualization, which is generally concerned with the visual 

representation o f physical things or scientific phenomenon [26]. To this end, visualization 

methods are continuously being developed to analyse scientific data, ranging from brain 

structure [22] to site surveys [1], in new and innovative ways.

One of today’s most popular visualization techniques is that o f image registration. 

Image registration, also known as image stitching, is the process of spatially aligning two 

or more images o f a scene into a common coordinate system by geometrically 

transforming a target image to become spatially aligned with an unaltered source image 

[11], It is often desirable to relate sets o f images to a common coordinate system to 

provide high-level visualizations, to put detailed data into context, and to derive insight 

or understanding from multiple sets o f data. Figure 1.1 shows a common image 

registration example, that o f spatially relating two overlapping aerial photos.
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In Figure 1 .la , an unaltered source image is chosen to represent the desired coordinate 

system. The target image in Figure 1 .lb  is then geometrically transformed to fit within 

the source image’s coordinate system. The resulting image registration, shown in Figure 

1.1c, depicts the now spatially related information. While this method has been used to 

increase the resolution of digital maps and satellite photos for decades [20], it can also be 

used to reduce the cognitive effort required to analyse multiple sets of data. For instance, 

in Figure 1.1c, the analyst can now understand the geometric relationship that exists 

between the two original images using minimal cognitive effort. That is to say, the 

information contained within separate images can be combined to provide additional 

useful information. This thesis will take advantage of this same phenomenon to reduce 

the cognitive effort required to obtain insight on a patient’s medical history based on 

spatially and temporally related x-ray images.

1.1 Motivation

As our technology improves, so too does the quantity o f data that we have at our 

disposal. We see the evidence o f this in every aspect o f our lives; the availability of 

online papers, social networks, media, the exponential growth and demand of the storage
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capacities o f our servers and hard drives, and the increasing resolution o f our imaging 

devices. However, our ability to collect data is growing much faster than our ability to 

analyse it [5]. As such, it becomes necessary to design new systems that augment our 

ability to navigate expanding information spaces and to derive from them the insights and 

understanding that we seek.

This need for new systems to analyse large quantities o f data is especially true in 

the medical field. The modernization o f our hospitals and health care systems requires the 

digital collection and availability of our medical records. With this new digital system in 

place, the available information space containing the medical records of each patient is 

available and is expanding. Doctors will soon be equipped with a complete digital history 

of the medical data collected for each patient. The analytical task becomes to derive from 

all this data some form o f insight or understanding into the patient’s medical history and 

to use it to contribute to the current diagnostic process. The method described in this 

thesis is designed to improve this analytical task by augmenting the analysts’ cognitive 

reasoning process with perceptual reasoning about spatially and temporally encoded 

medical data. This is be accomplished by visually encoding spatial and temporal data and 

allowing the user to navigate the information space by playing back the sequence of 

available and registered images.

1.2 Thesis Goals and Scope

The primary goal o f this thesis is to expand upon research in medical image 

registration by injecting concepts, principles, and techniques borrowed from the fields of 

information visualization, scientific visualization, and visual analytics. This will be 

accomplished through the development o f a method capable o f presenting a scientific 

visualization, based on principles o f information visualization, to enable the visual
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analysis o f a patient’s medical records over time. To this end, two methods borrowed 

from research literature will be combined; one to geometrically align images to a 

common coordinates system, and another to visually encode their relationships with 

respect to time. Consequently, a mechanism to embed medical images into a common 

time-space coordinate system will be devised. A secondary goal o f this thesis is to design 

an intuitive user interface to navigate the information space with specific focus on 

augmenting visual analysis. Both o f these goals will be described in detail in this thesis 

and, following their implementation, the quantifiable components o f the system will be 

analysed.

1.4 The Organization of the Thesis

This chapter has provided an introduction to visual analytics through the method of 

image registration, discussed its implications, and defined the broad scope o f the thesis.

• Chapter 2 provides and introduction to information visualization, scientific 

visualization, and visual analytics through the use o f software tools. Its key 

concepts, components and techniques for representing space and time are 

discussed in order to better understand what is required when designing the visual 

analytic tool presented in this thesis.

• Chapter 3 includes a literature review o f the methods developed to solve image 

registration problems. A look at image registration methods in academia with 

specific focus on medical applications are explored. An area o f research literature 

that can benefit from further exploration is identified, and a visual analytic tool is 

briefly presented outlining how it can extend current research efforts.



Chapter 4 will describe the essential use cases and requirements for the software 

application and introduces the image registration problem as it applies to this 

thesis.

Chapter 5 presents an algebraic solution to the image registration problem and 

discusses its essential components with respect to the thesis implementation. 

Chapter 6 provides a statistical analysis o f the measured accuracy of the 

algorithms implemented in this thesis.

Chapter 7 presents the conclusions to the thesis and the potential for future work.
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Chapter 2

Introduction to Visual Analytics
This chapter serves as an introduction to visual analytics by examining its 

principles, its components, and its challenges. An overview o f information visualization, 

scientific visualization, and their relationship to visual analysis is presented. The 

principles examined in this section are exposed in order to better understand what 

requirements must be solicited to design a visual analytic tool.

2.1 Information Visualization

Information visualization is the use of computer-supported, interactive, visual 

representations o f information to enhance human thinking [26]. This field has emerged 

from research in human-computer interaction, computer science, computer graphics, and 

psychology. Today, information visualization is being applied as a critical component of 

scientific research. Information visualization focuses on the creation of approaches for 

conveying abstract information in intuitive ways through the use o f visual representations 

and interaction techniques.

2.1.1 Visual Representations

In order to understand how to design and use meaningful visual representations, 

we must first understand what is meant by the term visualize. To visualize something is a 

purely cognitive activity. It means to form a mental image or a mental model of 

something [26], This cognitive activity is not performed by software or by a computer. 

However, the use o f software and computers can help humans perform this activity 

immensely by providing a tool to present a visual representation of information sets. It is
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essential to make the distinction between the term presentation, and the term 

representation. In information visualization, the term presentation refers to the act of 

displaying something while the term representation refers to the encoding o f a set of 

information. Therefore, a visual representation refers to the visual encoding o f data in 

such a way that its presentation assists the human cognitive activity o f forming a mental 

model or mental image o f something. An example of a visual representation is shown in 

Figure 2.1.

Figure 2.1 : London Underground also known as Harry Beck's map [26]

Figure 2.1 depicts a classical example o f a visual representation. This 

representation is in fact so effective at transmitting spatial information to the human 

conceptual system that it has been installed in almost every underground transit systems 

in the world. The representation uses colors to encode five different interconnected
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subway lines. It uses circular icons to encode platforms where passengers may embark 

and disembark, and it encodes spatial information by the relative locations and 

orientations o f the colored lines to each other. When a human user is confronted with this 

representation, his/her cognitive system is able to quickly analyse it to extract his/her 

current location, his/her desired destination, and the number o f stops until he/she reaches 

it. O f further interest is the fact that the map is not to scale. In fact, the map has been 

purposefully distorted in both the x and y direction to represent spatial information only 

in terms of platform stops between relative positions rather than in some quantifiable 

coordinate system. This information visualization technique is called xy-distortion and 

can be used to represent relative spatial information without being constrained by the 

limitations o f a standard quantifiable coordinate system.

A second example o f a visual representation is presented in Figure 2.2.

Figure 2.2: Napoleon's advance on Moscow, also known as Minard's map [26]

Figure 2.2 shows a second classical example of a visual representation, that of Minard's 

map. Charles Joseph Minard, Napoleon’s map maker, successfully encoded multimodal
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information into a single visual representation. Minard used color to encode the tactical 

modality o f the army, beige for advancing and black for retreating. He used xy-distortion 

to encode the geographical information relating the relative position o f the army to 

Moscow, Russia. Furthermore, he used the size o f the colored bands representing the 

army to encode the number o f living soldiers at the time annotated on x-axis of the 

temperature graph below. His map is a time-space narrative o f Napoleon’s advance and 

retreat from Russia relative to the measured temperature shown on the graph beneath it. 

Minard’s map is an example o f encoding time and space simultaneously. This 

information presentation technique is often called a time-space narrative and is 

frequently used in modern visual representations.

2.1.2 Interaction

Information visualization has been defined as the use of computer-supported. 

interactive, visual representations o f information to enhance human thinking. As such, 

information visualization encompasses both the concepts of visual representation and the 

principles o f human-information interaction.

The advent o f computer aided visual representation sets the stage for novel 

approaches towards human-information interaction. Static visual representations such as 

the ones described in Section 2.1.1 simply present a visual encoding of information. It 

takes the transformative process o f reasoning to transform a visual representation into a 

well constructed mental model from which we may derive insight or understanding. 

However, deriving well constructed mental models from static representations can 

require large cognitive efforts. One way to reduce the amount o f effort required to 

transform a visual representation into an effective mental model is to allow the user to 

interact with the representation through an interactive visual interface. Visual interfaces
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allow the user to explore their data in order to understand trends and anomalies, isolate 

and recognize information as pertinent, and to engage in the analytical reasoning process. 

The principles governing augmenting analytical reasoning through visual representations 

and the use o f their visual interfaces will next be discussed.

2.2 Scientific Visualization

Contrary to the field of information visualization, which is primarily concerned with 

the representation of abstract data, the field o f scientific visualization focuses on representing 

sets of data that possess a natural geometric structure. An example of a scientific visualization 

is Brown et al.’s [3] panoramic image registration research, shown in Figure 2.3.

Figure 2.3: Brown et al.’s panoramic image registration results without blending [3]

In Figure 2.3, several unique images are stitched together to form an overall visual 

representation o f a panoramic scene. The resulting visualization can be classified as a 

scientific visualization because the data possesses a natural geometric structure. This 

visualization shows how image registration can help put detailed data, the individual images, 

into context. While the boundaries between the fields of scientific visualizations and 

information visualizations are not usually clear, the objective in scientific visualization is 

always to model real-world objects or phenomenon as naturally and as accurately as possible.

In research literature, medical researchers working in the field of scientific visualization have 

been applying concepts borrowed from the field of information visualization to further their



11

research efforts. An example o f this is Rueckert et al.’s [22] research presenting a method that 

uses anatomical atlases to stitch medical images of the brain taken from different patients into 

an artificial, distorted, coordinate system.

2.3 Visual Analytics

Visual analytics is an outgrowth of the fields of information visualization and 

scientific visualization that focuses on facilitating analytical reasoning through interactive 

visual interfaces [32], Section 2.1.1 explored how visual representations augment the 

cognitive reasoning process with perceptual reasoning which permits the analytical reasoning 

process to become faster and more focused [5], However, most analytic activities often require 

the ability to interact with data in order to search for patterns or anomalies. As such, visual 

analysis can be described as a dialog between an analyst and data using a visual representation 

simply as a view or interface into the data. During an analysis dialog, the analyst observes, 

understands, questions, and then decides which new factors should be considered. The 

challenge of designing appropriate user interactions can therefore be described as the problem 

of determining how the analyst will request different perspectives on the data and how he/she 

will filter out unwanted details.

To this end, cognitive, perceptual and graphical design principles for visual analysis 

have been a hot topic of research. In 2005, Thomas et al. [5] presented five widely accepted 

principles for designing visual representations and their interactions such as to facilitate visual 

analysis. These principles are defined as follows:

2.3.1 The Appropriateness Principle

The appropriateness principle states that the visual representation should provide 

neither more, nor less information than is required to perform the current analytical task. The
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presentation of any additional information will serve only as a distraction. Distractions will, in 

turn, make performing the desired analytical task more difficult.

2.3.2 The Naturalness Principle

Visual analysis is most effective when the properties of the visual representation 

closely resemble the information being presented. The naturalness principle supports the 

concept that visual metaphors are only useful when they match the users’ cognitive model of 

the information. As such, purely artificial visual metaphors may hinder analysis and obstruct 

understanding.

2.3.3 The Matching Principle

The matching principle states that representations should be suggestive to the user 

performing the appropriate analytical task. Effective visual representations should present 

aflfordances to suggest to the user which actions are appropriate when deriving insights and 

understanding.

2.3.4 The Principle of Congruence

The principle of congruence indicates that the structure of the visual representation 

should correspond to the structure of the desired mental visualization. Furthermore, visual 

representation should focus and present the important concepts in the domain of interest.

2.3.5 The Principle of Apprehension

The principle of apprehension underlies the importance of research in perception. It 

states that the structure and content of the visual representation should be readily perceived 

and easily comprehended. If a visual representation is too complex, it may obstruct the 

analysis dialog between the analyst and the data.
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The above mentioned principles for depicting information to facilitate visual analysis can be 

used to solicit the key requirements when designing an analytical tool.

2.4 Summary

In this chapter, an introduction to the concepts, principles and techniques o f 

information visualization, scientific visualization, and visual analysis were presented. The 

main concepts of presentation, representation, interaction and analysis were examined. 

The currently accepted principles for depicting information to facilitate visual analysis 

were examined to provide the foundation for the requirements that will be solicited when 

developing the method proposed in this thesis.
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Chapter 3

Literature Review
This chapter examines several approaches to solving the panoramic image 

registration problem as presented in research literature. Subsequently, some specific 

applications using image registration techniques to augment medical image analysis are 

discussed. Academic research efforts relating medical imagery to anatomical atlases are 

then examined. Finally, the open research questions that should be further explored are 

identified and become the main focus o f the rest o f this thesis.

3.1 Panoramic Image Registration

Panoramic image registration techniques have a sizable research literature. In this 

section, notable works and approaches to solving the image registration problem are 

examined.

In 1975, Milgram [19] introduced a technique that allowed overlapping images to 

be combined into a single panoramic image. The goal was to minimize the visual impact 

o f the seams resulting from overlapping images. The author geometrically registered 

images one scan line at a time by choosing a seam point for each line. This created an 

artificial edge at each seam point which was then locally smoothed. The images were 

matched by user interaction.

In 1981, Fishier and Bolles [8] introduced the idea o f automating the image 

registration process. The authors presented a major breakthrough in the field by 

presenting an algorithm for model fitting that was ideally suited for the automation o f the 

image registration process. The algorithm was termed random sample consensus 

(RANSAC) and remains the backbone o f many o f the most modem image registration
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algorithms [3]. RANSAC is an algorithm used to fit a model to a set o f experimental data. 

It is essentially designed to smooth data that contains copious amounts o f error. In feature 

based alignment, the number of mismatched features between images often exceeds the 

number of accurately selected feature pairs. Since RANSAC is designed to robustly 

validate such data, it is ideally suited to select accurate features from the large sample of 

erroneous candidates. Today, the set o f algorithms that are used to locate common 

features between images remain prone to large quantities of error [3]. As such, the 

RANSAC algorithm is still used to filter their results.

Moving away from the feature based methods enabled by RANSAC, in 1995 

Szeliski and Kang [28] presented a technique that was concerned with the registration of 

multiple images into a projective mapping. Their technique did not rely on special 

features to form a projective model. Instead, they directly solved a least-squares 

approximation o f the motion parameters and the system of unknowns which lead to a 

statistically optimal estimation. Their method approximated a homography for each 

image that best mapped it to a common coordinate system. The authors were successful 

in their implementation but the solution was not suitable for situations where the data was 

collected by hand held cameras as their solution required carefully controlled camera 

motions.

Motivated by their aforementioned implementation, Szeliski and Shum [29] 

developed a novel approach to panoramic image registration which relied on a set of 

transforms that did not require carefully controlled camera motions. Instead of recovering 

the planar perspective transforms of each image, the authors’ algorithm directly 

recovered 3D rotations using a 3-parameter motion model [29]. As a result, the authors
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were able to stitch panoramic images without experiencing singularities at the poles of 

cylindrical and spherical maps.

Figure 3.1: Tessellated spherical panorama constructed from 54 images [29]

Figure 3.1 shows an example o f Szeliski and Shum’s solution o f a tessellated spherical 

panorama. Their method, however, required prior knowledge of the camera’s focal length 

[29],

Zoghlami et al. [35] noted that the problem of computing homographies to stitch 

images together falls mainly into two cases: the case where transformations are composed 

mainly o f translations and the case where transformations are composed of large scaling 

and rotational angles. Zoghlami et al. [35] capitalized on the efficient methods to solve 

the first case, and presented a method to remove the user interaction necessary to solve 

the second case. This work removed the requirement for special user interaction for any 

camera rotation around the optical axis with fairly large zooming factors.

Similarly to Zoghlami et al.’s implementation, Capel and Zisserman [4] described 

a technique for the automatic image registration of images acquired by a camera rotating 

about the viewpoint. It built on the idea that the maximum likelihood estimation of the 

homographies that relate each image to a common coordinate system could be computed.
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Their technique was novel in that it was automated, it did not accumulate errors over a 

sequence o f images, and it introduced new concepts such as enhanced resolution.

In 1999 Lowe [14] presented an automated method in of image registration by 

introducing an algorithm capable o f detecting a special class o f image features. The 

features were invariant to image scaling, translation and rotation, while also tolerant to 

changes in intensity and perspective projection. The scale invariant feature transform 

(SIFT) algorithm created by the authors could identify stable points in scale space. The 

algorithm would create image keys that allowed for local geometric deformations by 

using blurred image gradients in multiple orientation planes. These keys were used as 

inputs to a nearest-neighbor matching pass that identifies candidate matches. The 

verification for each match was achieved by finding the least squares approximation for 

the unknown model parameters. The results showed that robust object recognition could 

be achieved in cluttered and somewhat occluded images [14].

In 2000, Shum and Szeliski [24] presented a new system for the construction o f 

image registrations. Their system implemented patch based alignment algorithms to align 

pairs o f images and global alignment algorithms to refine the alignment of the overall 

panoramic. The authors claimed to be able to improve the quality o f their panoramic 

images significantly by combining global and local alignment methods.

Extending Shum and Szeliski’s research efforts, in 2002 McLauchlan and Jaenicke [18] 

presented a journal that demonstrated that accurate panoramic registrations o f planar 

scenes can be constructed by implementing photogrammetric bundle adjustment 

techniques. The author’s method enabled the use o f lines in camera self-calibration [18]. 

The technique allowed the computation o f radial and other non-linear distortions. The
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author concluded that implementing photogrammetric bundle adjustments could achieve 

better results than optimizations based on pairs of images.

In 2007, Brown and Lowe [3] presented a solution to the fully automated 

panoramic image registration problem. The solution used Lowe’s earlier work [14] on the 

SIFT algorithm to extract scale invariant features, filtered those features using RANSAC 

[8] selecting only inliers, found connected components using bundle adjustments [18], 

and then rendered the final registration using multi-band blending. Their algorithm is 

shown in Figure 3.2.

Algorithm: Automatic Panorama Stitching

Input: n unordered images

I. Extract SIFT features from all n images

II. Find /,■ nearest-ncighbours for each feature using a k-d 
tree

III. For each image:
(i) Select in candidate matching images that have 

the most feature matches to this image

(ii) Find geometrically consistent feature matches 
using RANSAC to solve for the homography be
tween pairs of images

(iii) Verify image matches using a probabilistic model 

IV'. Find connected components of image matches

V. For each connected component:
(i) Perform bundle adjustment to solve for the rota

tion 0 1. >>■>. 0;j and focal length /  of all cameras

(ii) Render panorama using multi-band blending 

Output: Panoramic image(s)

Figure 3.2: Modem automatic panoramic image registration algorithm [3]

The authors went further to introduce blending and gain compensating techniques, 

as well as automatic straightening methods. As a result, a fully automated panoramic
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image was assembled from a set o f unordered source images. Their results are shown in 

Figure 3.3.

Figure 3.3: Brown and Lowe's automatic panorama image registration results [3]

Figure 3.3 shows an example of Brown and Lowe’s image registration algorithm applied 

to a set o f uncalibrated and unordered images. Their implementation is currently 

considered state o f the art.

This section o f the literature review has examined a subset o f the extensive 

research and development effort in panoramic image registration. The next section o f the 

literature review will examine how panoramic image registration must face new 

challenges in order to be applied within non-photographic imaging applications.

3.2 Medical Image Registration

The ever expanding domain of medical imaging provides researchers and 

clinicians with an increasingly multi-faceted view of human anatomy. Maurer et al. [17] 

remarked that the information provided by various image modalities is often both 

complimentary and synergetic. That is to say that the information collected using 

different techniques provides separate but useful information and that the combination of 

such information can provide additional useful information. Consequently, advances in 

image registration methods have contributed to medical image analysis by proving 

insight into the techniques required to register various image modalities to a common
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coordinate space. In this section, recent works and novel approaches to medical image 

analysis using image registration are examined.

In 2001, Hill et al. [13] noted that radiological images from different sensing 

modalities are being used together with increasing frequency in medical research. The 

authors focused on the problem of accurately relating information from different images 

to each other for diagnosis, treatment and research. They reviewed the techniques used to 

solve image registration problems in the medical field and described their implications. 

The applications o f image registration methods that the authors examined were those of 

combining images o f a same subject from different modalities, aligning sequences of 

images to compensate for movements in the subject between scans, and aligning images 

from multiple subjects for cohort studies. The authors concluded that current registration 

algorithms can automatically register images that are related by affine transformations 

and that there has been substantial progress in non-rigid registration algorithms as well. 

They also noted that there remain a number o f image registration problems such as 

automatic non-rigid image registration for deformable organs that are unsolved and that 

as a result image registration for medical applications will likely continue to be an active 

field o f research.

In keeping with Hill et al.’s predictions, many researchers have been developing 

techniques to stitch together multimodal medical imagery. Woo et al. [33] for example, 

developed an automated method for the registration of cardiac computed tomography 

(CT) and single photon emission computed tomography (SPECT) data to help diagnose 

coronary artery disease [33], The results o f the authors multimodal image registration are 

shown in Figure 3.4.
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Figure 3.4: Image registration of CT and SPECT data [33]

Figure 3.4 shows Woo et al.’s original CT data as the top row, visually overlapped 

CT/SPECT data as the middle row, and their automatically stitched results as the bottom 

row. The authors7 fully automated registration method used the geometric features from a 

segmentation o f gated myocardial perfusion volumes to extract blood pools and used 

them as a mask to blend the disparity in overlapping intensities. The authors succeeded in 

automatically registration CT scans with SPECT data with an accuracy of less than 

10mm in 87% of their cases [33].

Contributing to research efforts in medical image registration, Serifovic-Trbalic et 

al. [23] developed an image registration algorithm that combines anisotropic landmarks 

with rotational information. The authors examined the addition of rotational attributes in 

the thin-plate spline model that could enhance the estimation o f the deformations that
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warp one set o f landmarks to another in sequences o f breast images [23]. The authors 

were successful in integrating their method into an intensity-based hierarchical non-rigid 

image registration framework and claimed to have improved the image registration 

accuracy of deformed images o f the breast significantly.

In 2007, Skerl et al. [25] presented a study that evaluated the effect that the 

sequence o f modalities would have on the image registration process for multimodal 

brain scans. The study used 16 CT/MR (magnetic resonance) and PET/MR (positron 

emission tomography) image pairs with known registration standard errors. An example 

o f their data is shown in Figure 3.5.

Figure 3.5a: MR data Figure 3.5b: CT data Figure 3.5c: PET data

Figure 3.5: One slice o f a human head [25]

Figure 3.5 shows an example o f the data used in Skerl et al.’s research. Figure 3.5a is of 

MR modality, Figure 3.5b is of CT modality, and Figure 3.5c is of PET modality. The 

study was restricted to rigid similarity matches between image modalities and 

investigated the effect that the order o f selection of the source and target image 

modalities would have on the resulting registration. The study found that for PET/MR 

and CT/MR image registration, the behavior o f the similarity measures depended 

significantly on which image is the source image, and which image is the target image.



23

Furthermore, the study concluded that for PET/MR and CT/MR image registration 

mutual information, normalized mutual information, and entropy correlation coefficients 

generated accurate similarity matches.

This section has provided an examination o f a subset o f research literature relating 

image registration methods to multimodal medical imaging within a subject. The next 

section will examine research literature supporting the natural extension of the image 

registration problem for medical applications; that of combining medical image 

registration methods to enable comparative studies between subjects, within modality.

3.3 Atlas Based Medical Image Registration

The logical extension o f the medical image registration problem is that of 

registering images taken from different individuals for comparison. This idea originates 

from the observation that there is remarkable consistency between the structures o f the 

human brain between subjects if the images are scaled and oriented relative to the deep 

internal structure o f a common plane [17]. The assumption underlying this method is that 

at a certain level o f abstraction, the topological structure o f the brain is invariant among 

populations. This structure is called an anatomical atlas. Instead of registering images to 

each other, the objective becomes to find the transformation that will map the image to 

the anatomical atlas, while simultaneously accounting for local shape differences.

For example, Friston et al. [9] presented an automated solution to the image registration 

problem of an analyst wishing to match and compare images o f a same modality taken 

from different subjects. The authors presented a spatial normalization technique and used 

it to match images o f the brain to an ideal image, model, or template [9]. The anatomical 

atlas chosen was the space described in the atlas o f Talairach and Toumoux [30]. They 

explained that their technique, which maps images to a common brain space, is practical
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for inter-subject averaging o f PET activation, change distribution analysis and statistical 

parametric mapping.

Similarly, D. Rueckert et al. [22] presented a method for determining the 

anatomical variability o f the human brain across a sample population. However, instead 

o f mapping the images to the brain atlas described by Talairach and Toumoux [30], the 

authors created their own anatomical brain atlas by building a model o f the average 

anatomy o f all subjects after non-rigid registration, and then applying the average 

deformation to the coordinate system of the reference subject. The authors were able to 

construct a statistical deformation model o f the brain based on 25 MR images o f different 

subject with schizophrenia. Their results are illustrated in Figure 3.6.

Figure 3.6: Average brain atlas o f 25 patients [22]

Figure 3.6 shows Rueckert et al.'s results after registering the brain MR images from 25 

patients suffering from schizophrenia. The top row shows the results embedded in the
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coordinate system of the reference subject, and the bottom row shows the results 

embedded in a computed brain atlas coordinate system [22], While there is a significant 

amount o f research literature examining non-rigid inter-subject brain mapping or brain 

atlas matching [27], there is far less academic literature pertaining to using atlas matching 

techniques on other organs in the body.

Park et al. [21] provide one example o f such research literature. Instead o f 

constructing inter-subject brain mappings, the authors examined atlas matching 

techniques for organs and bone structures located inside the abdomen. In particular, the 

authors were interested in the liver, kidneys, and spinal cord. Using 32 CT scans, 31 of 

them were mapped into one individual representation using a thin plate spline as the 

warping technique, and mutual information as the similarity measure. The authors’ 

method required an initial coarse placement of four control points to initialize the 

automatic atlas based registration process. Additional user interaction was required to 

manually segment the four organs in each o f the 32 CT scans. The segments were then 

warped onto the patient coordinate space and a probabilistic atlas was calculated. The 

atlas was subsequently used to aid in the segmentation of low-contrast organs in an 

additional 20 CT scans not included in the original atlas. The authors concluded that by 

incorporating their atlas information into the Bayesian framework, their results showed 

improvements over the current unsupervised segmentation method.

This section has explored some current research literature pertaining to the inter

subject atlas method o f image registration for medical applications. It has examined how 

brain atlas mapping has dominated the research area. It has also explored one o f the few 

examples o f using the atlas method for image registration of parts o f the body other than

the brain.
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3.4 Summary

In this chapter, research papers focusing on panoramic image registration methods have 

been examined. Research papers presenting the natural extension o f the panoramic image 

registration problem to medical image analysis have also been explored. Subsequently, 

the research literature describing the atlas based method of medical image registration for 

comparative studies has been explored. Since the goal of this thesis is to devise an image 

registration method by injecting concepts, principles, and techniques borrowed from the 

fields o f information visualization, scientific visualization, and visual analytics, the 

development o f a method capable o f presenting a scientific visualization, based on 

principles o f information visualization, to enable the visual analysis o f a patient’s medical 

records over time will be devised. To this end, a method of image registration will be 

combined with an information visualization technique to visually encode their 

relationships with respect to time. Consequently, a mechanism to embed medical images 

into a common time-space coordinate system will be devised. The research literature 

presented in this chapter will be used to present a method that permits the spatial and 

temporal registration o f images into a common time-space coordinate system. This

method will be the focus o f the rest o f this thesis.
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Chapter 4

An Interactive Time-Space Narratives of Imagery
The purpose o f this thesis is to generate an image registration method by 

combining information visualization techniques, concepts, and principles with medical 

image registration methods. This chapter will solicit the requirements for the proposed 

method capable o f presenting an interactive visual representation taking the form of a 

time-space narrative based on the information visualization principles presented in 

Chapter 2 and the image registration methods presented in Chapter 3.

4.1 Data

The modernization o f our medical institutions has given rise to digitally encoded 

medical records. These records contain data encoded in many forms including numerical 

data such as age, weight, and height, ordinal data such as sequences o f symptoms and 

treatments, categorical data such as age ranges, sex, and ethnicity, temporal data such as 

important dates and times, and image data which can be collected from a number of 

imaging devices in two or more dimensions. Since the focus o f this thesis is to extend the 

research in medical image registration by incorporating the visual encoding of time, a set 

of two-dimensional x-ray images is sufficient to represent a sample set o f data.

The x-ray image modality is a popular form of medical imagery. These images are 

collected by casting radiation through a subject and recording its absorption 

characteristics. The absorption characteristics are represented as two dimensional arrays 

o f spatially related intensity values and are used to depict internal structure such as bone 

structure, soft tissue, and/or metals. An example o f an x-ray image is shown in Figure 4.1.
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Figure 4.1 shows an x-ray o f a subject’s neck from a profile perspective. In this image, 

the spatial relationship between pixels represents the relative locations of the x-rays at the 

time o f data collection. The intensity value o f each pixel represents the absorption 

characteristic o f the material that was penetrated by the x-ray at each location. The 

relative intensities between groups o f pixels are suggestive to the shape and structure of 

the subject’s internal materials such as bones, teeth, soft tissue, and the metallic item 

lodged in his neck.

In addition to the data encoded in the pixel arrays of x-ray images, there is 

information embedded in the file header. The Digital Imaging and Communications in 

Medicine (DICOM) standard is an internationally accepted standard for the file format 

and distribution o f medical images of many modalities, including x-rays. The pertinent 

information contained in a DICOM formatted header is the subject’s name, the type of 

scan, the dimensions of the imagery, annotations, and the date and time at which the scan
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was collected. As such, the sample set o f x-ray images in this thesis will provide both 

imagery data to identify the absorption characteristics o f internal structures, and temporal 

data to identify when the images were taken.

4.2 Visual Representation

Chapter 2 defined a visual representation as the visual encoding of data in such a 

way that its presentation assists the human cognitive activity o f forming a mental model 

or mental image o f something. As such, the goal o f this visual representation is to encode 

the x-ray and temporal data described in the previous section in such a way that its 

presentation assists an analyst to form a mental model or mental image of a patient’s 

medical records. Furthermore, the appropriateness principle, presented in Section 2.3.1, 

states that a visual representation should provide neither more, nor less information than 

is required to perform the current analytical task. Since the current analytical task is to 

reason about a patient’s medical history, and that this reasoning requires both spatial and 

temporal information, it follows that an appropriate visual representation should 

simultaneously present the x-ray images, and their temporal relationships. As seen in 

Section 2.1.1, this type o f visual representation is called a time-space narrative.

4.2.1 Representing Space

Since the x-ray data collection process requires that a patient to be subjected to 

doses o f radiation and that exposure to radiation has been shown to be dangerous, it is 

typical to x-ray as small an area as possible when investigating an affliction. 

Consequently, one o f the tasks that must be performed by an analyst when reading x-ray 

images is that of deriving from them a mental understanding o f what small part of the 

subject’s body the current image represents. This is a step o f the analytical reasoning 

process that can benefit from a scientific visualization to reduce the cognitive effort
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required to put the detailed data into context. As seen in Section 3.1, one of the most 

popular methods for putting detailed data into context is that o f image registration. Image 

registration has been used to put adjacent satellite photos into context for decades but 

does require overlapping scan coverage. If the coverage of a subject’s x-ray image is 

small, and if subsequent images are located far apart (such as an x-ray image o f the head 

and an x-ray image o f the shin) the images may not overlap. For this reason, the feature 

based image registration methods for planar panoramic scenes shown in section 3.1, and 

their analogous image registration methods for medical applications seen in Section 3.2, 

may not be suitable.

However, the principle o f congruence (seen in Section 2.3.4) suggests that the 

structure o f a visual representation should correspond to the structure o f the desired 

mental visualization. Since the mental visualization that we seek is that o f spatially 

aligned x-ray images, an atlas would present a congruent representation. As a result, the 

introduction o f an atlas provides a common coordinate system in which non-overlapping 

x-ray images could be registered by atlas based image registration techniques (seen in 

Section 3.3). Furthermore, the naturalness principle indicates that visual analysis is most 

effective when the properties o f the visual representation closely resemble the 

information being presented. As such, the atlas should take the form of a human body. 

However, registering two dimensional x-ray images to an accurate three-dimensional 

atlas o f the human body, which grows and morphs with the lifecycle o f the subject might 

not be the most effective representation for analysis. The apprehension principle states 

that if a visual representation is too complex, it may obstruct the analysis dialog. Since 

the x-ray images are two-dimensional images, embedding them into a third dimension 

could cause the cognitive cost o f interaction (three-dimensional camera movements) to
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burden the cognitive reasoning system. The apprehension principle also tells us that the 

structure and content of the visual representation should be readily perceived and easily 

comprehended. As a result, a simple and easy atlas to perceive is that of a two 

dimensional anatomical atlas representing the outline of a human body. Such an atlas is 

shown in Figure 4.2.

Figure 4.2 Proposed anatomical atlas

Figure 4.2 shows the proposed two-dimensional anatomical atlas to which x-ray 

images will be stitched to provide a spatially related visual representation of medical 

records. The atlas represents the three most commonly studied planes of the human body; 

the transverse, coronal, and sagittal planes. If the x-ray images are collected from 

drastically different planes than the depicted atlas planes, the atlas image simply needs to 

be changed or expanded. Furthermore, to compensate for the growth and morphing of the 

subject over time, the well known information visualization technique of xy-distortion 

should be implemented. As such, the x-ray images will be geometrically transformed to 

fit the fixed coordinate system of the anatomical atlas and any previously registered 

images will not be required to change as the subject grows.
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The implementation o f the proposed anatomical atlas and its corresponding atlas 

based image registration requirements will provide context for detailed x-ray data and 

consequently reduce the cognitive effort required to discern the geometric relationship 

between the x-ray images and their corresponding locations on a human subject.

4.2.2 Representing Time

Since the analytical task of the visual representation is to reason about a patient’s 

medical history, and that a medical history by definition takes place over time, it follows 

that an effective visual representation should also present the data’s specific temporal 

information. In the context o f this thesis, the times that we wish to represent are the times 

at which medical images about a subject became available. These are the dates and times 

encoded in the image DICOM headers. These data/time stamps are o f critical importance 

as they will be used to organize the x-ray images into a timeline sequence. This sequence 

will be used to see changes over time in the dimension and absorption characteristics of 

areas o f interest in x-ray imagery. For example, given the right sequence and x-ray 

imagery, an analyst will be able to visualize the growth of a tumour or other affliction 

over time. The growth o f such afflictions can be computed based on a timeline which 

must be readily perceived by the analyst. As such, the timeline must be an integral part of 

the representation and, in this thesis, must display the specific data/time at which the 

imagery was collected.

4.3 Interaction

The matching principle states that representations should be suggestive to the user 

performing the appropriate analytical task. In the context of this thesis, it means that it 

should be obvious to the user that he/she can navigate the information contained within 

the representation based on space or based on time. To accommodate such interactions.
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the timeline should be represented as an interactive visual interface. The user must be 

able to automatically playback the timeline, and must be also be able to manually select 

the date and time. Furthermore, the user must be able to interact with the geometric 

information space. To accommodate such interaction, the user must be able to manipulate 

the geometry o f the x-ray images, must be able to zoom to request different perspectives 

on the data, and must be able to pan the information space to investigate the relationship 

between the events unfolding in different areas o f the body. Through its visual 

representation, the software application developed for this thesis will allow the analyst to 

interact with a subject’s medical history, to explore it, and to derive insights or 

understandings that might be helpful for diagnosis.
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Chapter 5 

Method
This chapter presents the method used to geometrically align x-ray images to the 

anatomical atlas presented in Chapter 4. It also presents the method used to organize x- 

ray images into a visually encoded timeline. By combining these two methods, a time

space narrative o f a subject’s medical history can be achieved.

5.1 Geometric Alignment

In this thesis, image registrations are computed based on user defined point pair 

correspondences. Point pair correspondences identify common features between the x-ray 

images and the anatomical atlas. An example o f which is shown in Figure 5.1.

Figure 5.1 : Point pair correspondences between an x-ray image and the atlas

Figure 5.1 shows four point pair correspondences identified between an x-ray image and 

the anatomical atlas. These correspondences identify four common features between the 

two geometric planes. The image registration method implemented in this thesis uses
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these correspondences to embed the x-ray image into the anatomical atlas’ coordinate 

system. To obtain accurate image registration results, it is important that the point pair 

correspondences be sparsely distributed and far from collinear [7].

Although there exists a number of algorithms to automatically select point pair 

correspondences, such as the scale invariant feature transform (SIFT) algorithm discussed 

in the literature review, this thesis implementation requires that the user will manually 

select each feature. This user-centric approach has the advantage o f supporting imagery 

where features are difficult to automatically detect due to inaccurate geometry or unusual 

distortions and decreases the scope of the thesis by avoiding the open problems that exist 

today in automatic feature detection for various data modalities.

In a planar or planar panoramic geometric configuration, sets o f x-ray images are 

related to each other, or to an anatomical atlas, by an invertible transformation matrix 

called a homography [12]. A homography is an invertible transformation from one 

projective plane to another which preserves straight lines. The geometric relationship 

between the pixels o f planar panoramic images can be expressed algebraically 

as p '-  Hp [12] where p  and p' represent pixels o f a common feature between two images 

and H  represents the homography that maps pixel p  to p ' . This equation is shown in its 

expanded form in Figure 5.2.

wx' a b c X
wy' = d e f y
w g h i l

Figure 5.2: Mapping between pixels related by a plane to plane homography [7]

It is assumed that the x-ray images and the anatomical atlas used in this thesis are planar in 

form and that they can be related to each other by a plane to plane homography.



36

5.1.1 Computing Image Registrations Algebraically

Since the x-ray images are related to the anatomical atlas by a plane to plane 

homography, image registration can be achieved by computing the homography H  that 

satisfies the linear system of equations p'= Hp for all feature pairs p  to/?'. Consequently, 

the x-ray image registration method implemented in this thesis consists of:

i. Choosing the anatomical atlas image as the source image.

ii. Choosing an x-ray image as the target image.

iii. Selecting common features between the target image and the source image.

iv. Computing the homography H  which maps all target features to their 

corresponding source features.

v. Applying the homography H  to the x-ray image’s coordinates to embed it into 

the anatomical atlas’ coordinate system.

5.1.2 The Least Squares Problem

The problem that presents itself in this thesis is that o f relating point pair 

correspondences to each other by the linear mapping p'= H p. Unfortunately, finding a 

single homography H  that exactly satisfies the equation for all point pair correspondences 

is likely impossible as there will almost certainly be error in point pair correspondence 

selection. Therefore, a linear function for which all errors p^-H p, are simultaneously 

minimized for all point pair correspondence is sought. However, it is generally 

impossible to find a linear function for which all the errors p' -Hp, are simultaneously

minimized.
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As such, a best fit linear solution is needed. This is accomplished by letting r 

denote the vector o f residual errors p \-H p ,  for all point pair correspondences. The

function is then solved for which the vector norm || r ||2 is made as small as possible [31], 

In practice, to minimize || r ||2 is the same as to minimize|| r ||2 [31]. Therefore what is in 

fact minimized is the sum of squares o f the residual errors p \ - Hp, . More specifically,

n
|| r |] 2= | p '- H p , |2 . This is known as the least squares problem.

/=1

In this thesis, singular value decomposition is the method used to solve the least squares 

problem.

5.1.3 Eigenvectors, Eigenvalues, and Solving the Least Squares Approximation

In order to understand how to solve the least squares approximation of a set of 

linear equations, it must first be clear what is meant by eigenvector, what is meant by 

eigenvalue, and how they approximately solve a system of equations.

Generally, the action o f a matrix on a vector changes both its magnitude and direction. 

However, there are cases where the action o f a matrix on certain vectors changes only 

their magnitude while preserving their direction. Such vectors are called the eigenvectors 

o f that matrix [31]. Each eigenvector must be multiplied by some scalar to affect only its 

magnitude while preserving its direction. Such scalars are called the eigenvalues of their 

corresponding eigenvectors. Algebraically, Ax = Ax for some m atrix^ and eigenvector 

x with scalar eigenvalue A. [31 ].

n

Recall in section 5.1.2 that the minimization o f || r ||2= p '-H p ,  |2 is sought
1=1

and represents the least squares error between the expected coordinates and the actual 

transformed coordinates o f the set o f point pair correspondences. If matrix A denotes the
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matrix of coefficients o f the linear system of equations, and vector x denotes the vector 

o f unknowns, then the solution to the equation Ax = 0 for some non-zero x is sought. 

However it is not usually possible to find a non-zero x that satisfies each equation in the 

system of equations simultaneously [31].

Instead, the right hand o f the equation is substituted for the least squares residual 

error|| r ||2. As such. Ax =|| r ||2. To minimize || r ||2 means to choose the vector x which 

yields the smallest possible value || r ||2. Since what is desired is to preserve the direction 

of vector x affecting only its magnitude, the eigenvalue equation Ax = Ax =\\ r \\2 [31] 

can be o f use. Therefore, to minimize || r ||2, one simply chooses the eigenvector x with 

the smallest possible eigenvalue A, . Fortunately, we know that singular value 

decomposition is a method to compute such an eigenvector.

5.1.4 Singular Value Decomposition and the Least Squares Approximation

Singular value decomposition (SVD) is a method for the factorization o f a matrix 

[10] into a coordinate system where the covariance matrix is diagonal [16], SVD takes as 

input a n x m  matrix A in which n rows represents the equations and m columns 

represents the coefficients o f an over-determined system of equations.

The SVD theorem states that:

nxm ^  n x n ^n x m ^ m x m

Where:

U has left singular vectors as its columns.

D is diagonal with singular values arranged in descending order. 

V 1 has right singular vectors as its rows.



39

• T TCalculating the SVD means finding the eigenvalues and eigenvectors o f AA and A A 

[16]. The eigenvectors o f A A compose the columns o f V, and the eigenvectors o f AA 

are the columns o f U. Furthermore, the singular values in D are the square roots of 

eigenvalues from A A 1 or from A 1 A. Singular value decomposition yields singular values 

as the diagonal entries o f the D matrix, which are arranged in descending order [16]. If 

the SVD of the A matrix is computed, a matrix o f eigenvectors V arranged in descending 

order sorted by eigenvalue is obtained. If the right most eigenvector is taken, the values 

corresponding to the least squares approximation of the system of equations is obtained. 

These will be the values that most accurately describe the transformation from the set of 

domain image points to the set o f range image points.

5.2 Classes of Transformations

There exists a hierarchy of transformation groupings with specific geometric 

properties that are useful when performing x-ray image registrations with respect to an 

anatomical atlas. In this section, these groupings are presented and their implications for 

x-ray image registration are discussed.

Projective

Figure 5.3: Geometric representation of the classes o f transformations [12]
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5.2.1 Translation

Translations are a class o f transformation that permit only displacement [1]. 

Under this class o f transformation, every pixel in the image moves parallel to and the 

same distance as every other pixel in the image [1]. Translations are described 

algebraically as:

V 'i 0 V

ÿ = 0 1 <y y

U  J 0 0 1 l u

Figure 5.4: Translation transformation relating point pair correspondences [12]

This class o f transformation has two degrees of freedom and can be computed from 1 or 

more point pair correspondences [12].

5.2.2 Similarity Transformations

Similarity transformations are transformations that preserve shape [15]. They 

permit isotropic scaling, rotation, and translation and are described algebraically as:

s cos a - s  sin a V

y = s sin a s cos a y

l u 0 0 1 l u

Figure 5.5: Similarity transformation relating point pair correspondences [15]

Similarity transformations have four degrees o f freedom and can be computed from two 

or more point pair correspondences [12].

5.2.3 Euclidean Transformations

Euclidean transformations are transformations that preserve Euclidean distances 

and allow only rotation followed by translation [6], They are in effect a model for rigid
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body motion and are practical for relating images o f a common scale. Euclidean 

transformations are described algebraically as:

cos or - s in  or '/ V
ÿ = sin or cos or ‘y y

10 0 0 1lu
Figure 5.6: Euclidean transformation relating point pair correspondences [6]

This class o f transformation has three degrees o f freedom and can be computed from two 

point pair correspondences [12].

5.2.4 Affine Transformations

Affine transformations are non-singular linear transformations followed by a 

translation [1], They permit isotropic scaling, rotation, translation, stretching, and 

sheering and can be described algebraically as:

Cl b c V
y = d e f y

lu 0 0 1 lu
Figure 5.7: Affine transformation relating point pair correspondences [12]

Affine transformations have six degrees o f freedom and can be computed from three or 

more point pair correspondences [12],

5.2.5 Projective Transformations

Projective transformations are a transformation grouping that permits scaling.

rotation, translation, sheering, stretching, and perspective warping. They are described 

algebraically as:
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a b c V
/ = d e f y

lu g h i lu
Figure 5.8: Projective transformation relating point pair correspondences [12]

Projective transformations have 8 degrees o f freedom and can be computed from four or 

more point pair correspondences [12].

5.3 Estimating Transformations

This section describes how to estimate the transformation matrices that best 

satisfy the system of equations p'~ Hp for each transformation grouping presented in 

Section 5.2.

5.3.1 Choosing an Appropriate Transformation Class

Under-determined systems of equations cannot be solved by least squares 

approximation. As such, an appropriate transformation class based on the number of 

point pair correspondences that have been identified must be chosen. The following table 

illustrates the transformations that are permissible given the number o f identified point

pair correspondences.

N u m b er o f P o in t P a ir  
C o rresp o n d en ces

A va ilab le  C lasses  o f T rans fo rm atio n s

Trans la tion S im ila rity Euclidean A ffine P ro jective

0 pa irs

1 pair •

2 pa irs • • •

3 pa irs • • • •

4 o r m ore  pa irs • • • • .

Table 5.1: Number o f point pair correspondences versus permissible transformations
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5.3.2 Estimating Translations

Consider the list o f point pair correspondences with one or more pairs which map 

feature points on one image to corresponding feature points on a different image: 

p  = (x ,y) p'=  ( * ' , / )

A translation which maps point p  to point p' can be defined as:

P ~  P + T 

Solving forT :

T = p '-p

Expanding and writing it in homogenous matrix form:

w t r
* ! X, - X ,

wt
7 / = y , ' - y ,

w l

In the exactly determined case, where there is only one point pair correspondence, the 

computed translation is the solution fo r(/t , / v ) ‘ . In the over-determined case, where

there are two or more point pairs, one must solve (tx ,ty )' for each point pair. In the

exactly determined case, the exact translation vector is computed. In the over-determined 

case, one must compute the least squares approximation of the set o f all 

(/ ,t ) ‘ computations.1 y I

The computed translation is written as a 3x3 matrix:

T =
l 0
0 1
0 0 1
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Multiplying the current image’s transformation matrix H  by the computed translation 

m atrixT performs the desired translation transform ation ,//^  HT .

Figure 5.9: Image registration based on the translation transformation group

Figure 5.9 shows an example of an image registration computed using one point pair 

correspondence and the translation transformation group.

5.3.3 Estimating Similarity Transformations

Similarity transformations support scaling, rotation, and translation.

Consider the list o f point pair correspondences with two or more pairs which map feature 

points on one image to corresponding feature points on a different image:

P = (x ,y)-+  p '= { x \ÿ )

A similarity transformation which maps points p  to p' can be described as:

p '= S p  (1)

Where S' is a homogenous similarity transformation matrix o f the form:
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a b c s cos a - s in  a *x
d e f - sin a s cos a fy
0 0 1 0 0 1

In the exactly determined case, where there are two point pair correspondences, one can 

solve the equation:

X  = A~' * B

Where:

*i - y , 1 o'

A = y\ *i 0 1
5  = yx

x2 - y  2 1 0 *2

_y 2 x2 0 1 _yi\

Solving X  -  A 1 * B for X  and rearranging into the transformation matrix:

Xu -2f2, X  31

X n *xx X 4i
0 0 1

In the over-determined case, where there are three or more point pair correspondences,

equation (1) can be rewritten as:

S ,* h  = 0

Where:

a
b

1 0 
0 1

e

f

(2)

h being the 6 x 1 vector o f unknown coefficients in S .
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For example, if  five point pair correspondences are considered:

-Ti 1 0
y\ *i 0 1 - v
x2 - y 2 1 0 - x 2' a

y 2 x2 0 1 - y 2 b
x3 - y 3 1 0

h =
c

y 3 x3 0 1 - y 3 d

X4 - y 4 1 0 -V e

y  4 x4 0 1 - y * f .

*5 y  s 1 0 -Xs'

_y$ x5 0 1 - y s .

To solve S, • h = 0 for h , one uses singular value decomposition (SVD) on matrix S, 

and chooses the unit eigenvector o f <S,7 St with the least eigenvalue (this will be the last

column o f the matrix V generated by singular value decomposition).

The values taken from the last column in V are then divided by their scale factor w (the 

last value o f the column taken from V ) to return to 2D image coordinates. The values are 

then rearranged into matrix form:

aw
-b w \ v  IV - v  IVV 2\ ’ y  5\ V3 i / v 5l~

V -column cw S = V IV' 2 1  y 5\ V IVy\\ ' y5\ V J V iX
jw 0 0 1
w

Multiplying the current image’s transformation m atrix //by  the computed similarity 

transformation S' performs the desired similarity transformation, H'= HS .
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Figure 5.10: Image registration based on the similarity transformation group

Figure 5.10 shows an example o f an image registration computed using four point pair 

correspondence and the similarity transformation group.

5.3.4 Estimating Euclidean Transformations

Euclidean transformations are a subset o f similarity transformations that are 

restricted to rotation followed by translation. This class o f transformation is surprisingly 

common when relating images to each other. Many surveying applications use a fixed 

range when collecting data. This facilitates the image registration process as all images 

are collected at a common scale. In this thesis implementation, to compute the Euclidean 

transformation E the application must first compute the similarity transformation S  (see 

section 5.3.2). The scale factor embedded within the transformation is subsequently 

removed.

Let S  be the computed similarity transformation based on the point pair 

correspondences p  = (x, x) —> p '= (x ',y ')  .

a b c 5 cos a -  sin or ' /
d e f = sin a s cos a
0 0 1 0 0 1
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Since: sin2 or + cos2 or = 1

2 ?S 2] +cos or = 1

Rearranging and solving forcos(or) : 

cos cr = y j \ - S 2{2

Therefore:

J ' - S , , 1 S', 2

1of cos or - s in  or '*1
E = s* 2 S 23 = sin or cos or

0 0 1 0 0 1

Multiplying the current image’s transformation m atrix //by  the computed Euclidean 

transformation matrix £  performs the desired Euclidean transformation, H '= HE .

Figure 5.11 : Image registration based on Euclidean transformation group

Figure 5.11 shows an example of an image registration computed using two point pair 

correspondence and the Euclidean transformation group.
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5.3.5 Estimating Affine Transformations

Affine transformations support scaling, rotation, stretching, skew, and translation. 

Consider the list of point pair correspondences with three or more pairs which map 

feature points on one image to the corresponding feature points on a different image:

p  = (x ,y)  -> p'=  ( * ' , / )

An affine transformation which maps points p  to p' can be described as:

p ' = A p (1)

Where A is the 3x3 homogenous affine transformation matrix o f the form:

a b c
A = d

0
« /
0 1

Writing p  and p' in homogenous coordinates and expanding (1) for all point pairs:

w,x; a b c

w, y ' = d e f y,
0 0 1 l

(2)

Expanding for x, ',y , ’, and w, yields three parametric equations:

wlxl '=  ax, + byt +c (3)

wly l'=dxl + e y ,+ f  (4)

w, = 1 (5)

Substituting (5) into (3) and (4):

x , '=  axt +by, +c (6)

y ^ d x ,  +ey, + f  (7)

Rearanging (6) and (7):
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ax, +byi + c - x , '=  0 (8)

<&, + f - y i'= o (9)
In the exactly determined case, where there are three point pair correspondences, (8) and 

(9) can be used to form the equation:

X  = A~' *B

Where:

a .Vi i 0 0 o' V
b 0 0 0 X, ■k, i

c
A =

x2 y  2 1 0 0 0
B =

x2’
d 0 0 0 x2 y  2 1 y  2
e X, y  3 1 0 0 0

/ 0 0 0 *3 y  3 1 .y* .

Solving X  -  A 1 * B for X  and rearranging its values to produce the affine matrix A

A =
X»  *2,

*4. *
0

31

5, * 6 1

0 1

In the over-determined case, where there are four or more point pair correspondences, 

(8) and (9) can be written in the form:

oII•«•

where:

A — ~x, y, o o 0 1 JK

i— o o 0 X,. y, 1 - y ,

( 10)

a
b

h =
c
d
e

f

h being the 6x1 vector o f unknown coefficients in A .
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For example, if  five point pair correspondences are considered:

x\ Ti l 0 0 0 -V
0 0 0 *1 y  i l - y t '

x2 y 2 l 0 0 0 - x 2' a
0 0 0 *2 y 2 l - y 2 b

X-i y 3 1 0 0 0 -*3' h =
c

0 0 0 *3 y 3 l - y 3 d

*4 y 4 1 0 0 0 - x 4 e
0 0 0 *4 y 4 l - y 4 f
*5 y 5 1 0 0 0 - X5'
0 0 0 *5 y 3 l - y 3 _

To solve A, •  h = 0 for h , singular value decomposition (SVD) is applied to matrix At

and the unit eigenvector o f A, A, with the least eigenvalue (this will be the last column 

o f the matrix V generated by singular value decomposition) is chosen.

The values taken from the column in V are subsequently divided by their scale w (the 

last value o f the column taken from V ) to convert back to 2D image coordinates. The 

values are rearrange to form the matrix A :

> column

a
b
c
d
e

f
w

'V 2> V IV'21 7̂1 y» t y n
A = y» !Vn V IVr 51 ' r 71 y6i / y n

0 0 i

Multiplying the current image’s transformation matrix H by the computed affine 

transformation matrix A performs the desired affine transformation, H'= HA .
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Figure 5.12: Image registration based on the affine transformation group

Figure 5.12 shows an example of an image registration computed using seven point pair 

correspondences and the affine transformation group.

5.3.6 Estimating Projective Transformations

Projective transformations support scaling, rotation, stretching, skew, translation, 

and image reprojection [12]. Projective transformations are typically useful when the data 

is taken from the same center o f projection and rotated about an axis. Consider the list of 

point pair correspondences with four or more pairs which map feature points on one 

image to the corresponding feature points on a different image:

P = (x,y)^>  p '= (x ',y ')

A homographie transformation H  which maps points p  to p' can be described as:

P ~ Hp

Where H  is a 3x3 homography o f the form:

H =
a b c 
d e f  
g h i

( 1)

Writing p  and p' in homogenous coordinates and expanding (1) for all point pairs:
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~w,x ,r a b c x ,
w x ,' = d e f y,

. w' . g h i i

Expanding (2) for x , ' , y , ' , and w /yields three equations:

w,x,' = ax, +by, +c (3)

wiy i,= dxi Any, + /  (4)

w, = gx, +hy, +i (5)

Substituting (5) into (3) and (4):

(gx, +hy, +i)x, '= ax, + by, + c  (6)

(gx, +hy, + i)y, '= d x ,+  ey, + f  (7)

Rearanging (6) and (7):

ax, + by, +c -  gx, x , h y , x, '-ix, ' = 0 (8)

dx, +ey, + / - g x ,y ,h y ,y , 0 (9)

In the exactly determined case, where there are four point pair correspondences, (8) and 

(9) can be used to form the equation:

X  = A~' * B

f
g

y, 1 0 0
0 0 x. y,

0 -  x,x,
i ~ x,y,

- y ,x , '
- y , y ,  ’ B =

Solving X  = A 1 * B for X  and rearrange its values to produce the homography A :
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A =
* 2 , * 3,

* 4 1 * 5, * 6.
* 7 . * 8 , 1

In the over-determined case, where there are four or more point pair correspondences, (8) 

and (9) can be written to form:

A ,*h  = 0 (10)

x, y k, 1 0 0
0 0 0 x,. y,

0 - x ,x , ' - y ,x , '  - x , '

1 ~x,y,' - y ty,' - y , \

a
b

h =

c
d
e

f
g
h
i

h being the 9x1 vector of unknown coefficients in A . 

For example, if five point pair correspondences are considered:

¿5 =

X, T i 1 0 0 0 - X j X , ' - X , ’
0 0 0 *1 y \

1 - y ty
x 2 y 2 1 0 0 0 - x 2x 2' - y 2 * 2 ' — x2'

0 0 0 x 2 y 2 1 - x 2^ 2 ’ - y 2y 2 ' - y 2 '

x 3 t 3 1 0 0 0 - x 3x 3' - y 3x3 ' ~ * 3

0 0 0 x 3 t 3 1 - t 3t 3 ' - y 2

* 4 t 4 1 0 0 0 - X 4x 4'
- y *

0 0 0 * 4 1 ~ x 4 y * - T 4 T 4 ' - y *

* 5 Ts 1 0 0 0 - x 5x 5' - y$x s' - y $

0 0 0 x 5 t 5 1 - y s

To solve A, •  h = 0 for h , singular value decomposition (SVD) is applied to matrix A, 

and the unit eigenvector o f A ‘ A, with the least eigenvalue (this will be the last column 

of the matrix V generated by singular value decomposition) is chosen [12]. The values
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taken from the column in V are divided by their scale w (the last value o f the column 

taken from V ) to convert back to 2D image coordinates. The values are rearranged to 

form the homography: 

a
b

V.> column

C
d
e

f
g
h

V\\ / f91 v tv" 21 1 V9\ VMIVn
A = Vix IV9X v tvK51 ' y 9\ v * /v n

/v , IV* v tvy81 ' y9l 1

w

Multiplying the current image’s transformation matrix / /b y  the computed homography 

A performs the desired projective transformation, H '-  HA .

Figure 5.13: Image registration based on projective transformation group

Figure 5.13 shows an example of an image registration computed using seven point pair 

correspondence and the projective transformation group.
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5.4 Reconstructing the Timeline

This thesis describes a system designed specifically to facilitate the analytical task of 

reasoning about the spatial and temporal relationships that exist between images. As such, a 

method to organize the images into an appropriate sequence and present their temporal 

information to the user must be devised.

In the context of this thesis, the temporal information that is of interest is the dates and 

time at which each of the subject’s medical images became available. These dates and times 

are typically stored in the x-ray image’s DICOM headers. Consequently, a software method 

was implemented to decode the DICOM headers and to store the date/time stamps into the 

newly geometrically aligned image objects. Subsequently, the list of images is sorted in 

chronological order.

Once a timeline is reconstructed, it must be intuitively displayed to the user. The techniques 

used to present the timeline to the user are shown below in Figure 5.14.

Figure 5.14: Playback o f stitched x-ray imagery in chronological order
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Figure 5.14 shows an example of the playback functionality of the thesis 

implementation. The example shows three x-ray images geometrically aligned with respect to 

the anatomical atlas, rendered over time. On the top left hand side of the application, the 

current date and time is displayed. Docked on the bottom of the application is the interactive 

timeline. The user is able to control the date and time by manipulating the slider and is able to 

animate the sequence of overlaying the spatially and temporally related images by clicking on 

the play button. On the right hand side of the application, the x-ray image’s filenames are 

displayed in chronological order. The combination of these three presentation techniques 

allows the user to interact with and perceive the temporal relationships that exist between x- 

ray images.

5.5 Summary

This chapter has described the method used to stitch x-ray image to an anatomical 

atlas. Subsequently, it has presented the method used to reconstruct a timeline and the 

presentation technique used to communicate the temporally and spatially related x-ray 

images to the user. The next chapter will present an analysis o f the measured uncertainty 

in the implementation o f the image registration method presented in this chapter.
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Chapter 6 

Analysis
This chapter provides an analysis o f the uncertainty in image registration resulting 

from the implementation o f the image registration method presented in Chapter 5. The 

uncertainties in point pair correspondence selection, homography estimation, and the 

error propagation are measured and discussed. Ignoring the errors caused by floating 

point arithmetic (assuming that the arithmetic packages used in the implementation of 

this thesis are numerically stable), the image registration methods implemented in this 

thesis have two overlapping sources o f uncertainty. These are the errors introduced by the 

manual selection o f features, and the uncertainty in the approximation o f homographies 

based on the erroneous features.

6.1 Error in Point Pair Correspondence Selection

The standard error in point pair correspondence selection is a measure o f the 

disparity between the location of an intended feature, and where the user clicks in world 

coordinates to select it. To determine the standard error resulting from the user manually 

selecting feature points, an experimental dataset with known feature locations is created. 

The user is asked to select 100 feature points on the image with random ordering and the 

disparities between user clicks and feature locations are logged. Figure 6.1 shows the 

experimental dataset created to measure the uncertainty in point pair correspondence

selection.
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Figure 6.1: Synthetic data generated to estimate feature selection uncertainty 

The synthetic data seen in Figure 6.1 is used to simulate common types of 

features seen in x-ray images. Features identified in the synthetic data include end-points, 

line intersections, and large changes in intensities. Table 6.1 is the sample data obtained 

by having a user select 25 features with random ordering and repeating the exercise 4 

times for a total o f 100 samples.
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Feature Coordinates Attempt 1 Disparity2 Attempt 2 Disparity2 Attempt 3 Disparity2 Attempt 4 Disparity2

1 (57,59) (57,59) 0 (58,60) 2 (57,59) 0 (57,59) 0

2 (776,59) (776,60) 1 (776,60) 1 (776,60) 1 (776,60) 1

3 (776,464) (776,464) 0 (777,465) 2 (777,465) 2 (777,465) 2

4 (57,464) (58,465) 2 (57,464) 0 (58,465) 2 (58,465) 2

5 (181,85) (182,86) 2 (182.86) 2 (182,86) 2 (181,85) 0

6 (124,112) (125,113) 2 (125,113) 2 (124,113) 1 (125,112) 1

7 (230,136) (231,137) 2 (231,137) 2 (231,137) 2 (231,137) 2

8 (288,112) (288,112) 0 (289,113) 2 (289,113) 2 (289,113) 2

9 (207,112) (208,113) 2 (207,113) 1 (207,112) 0 (208,113) 2

10 (550,131) (550,132) 1 (550,131) 0 (550,132) 1 (550,132) 1

11 (703,130) (704,131) 2 (703,131) 1 (703,131) I (705,132) 4

12 (113,260) (114,261) 2 (114,262) 3 (114.261) 2 (114,261) 2

13 (410,327) (411,184) 1 (410,185) 1 (410,185) 1 (410,185) 1

14 (410,327) (410,327) 0 (411,327) 1 (411,328) 2 (410.328) 1

15 (709,260) (709,261) 1 (709,260) 0 (710,260) 1 (709,260) 0

16 (410,260) (410,260) 0 (410,260) 0 (410,261) 1 (410,261) 1

17 (123,415) (123,415) 0 (124,415) 1 (124,415) 1 (123,415) 0

18 (195,343) (195,344) 1 (196.343) 1 (195,344) 1 (196,343) 1

19 (299,343) (299344) 1 (300,344) 2 (299,343) 0 (299.344) 1

20 (227,415) (228,415) 1 (228,416) 2 (228,415) 1 (228,415) 1

21 (540,353) (540,353) 0 (540,353) 0 (540,353) 0 (540,353) 0

22 (716,353) (717,353) 1 (716,353) 0 (716,353) 0 (717,354) 2

23 (540,416) (540,417) 1 (541,416) 1 (540,417) 1 (540,416) 0

24 (716,416) (717,418) 3 (717,417) 2 (717,417) 2 (717,416) 1

25 (406,109) (407,110) 2 (407,110) 2 (407,110) 2 (406.110) 1

Table 6.1: Measured disparity based on 100 synthetic feature selections
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The standard error for feature selection is computed as:

std.error = 100 1.08 pixels

Figure 6.2: Equation for the standard error in feature selection [31]

By substituting the data from Table 6.1 into the equation for the standard error 

presented in Figure 6.2, we conclude that the user is able to approximately select a screen 

pixel +/-1.08 pixels. As such, the user will likely introduce errors in the set of points used to 

calculate the approximate transformation that registers images into a common coordinate 

system. What follows is an analysis of how the errors in point pair correspondence selection 

affect homography estimation.

6.2 Error in Homography Parameter Estimation

In the context o f this thesis, the standard error resulting from homography 

estimation is a measure o f the disparity between where feature points are after the 

transformation Hp and where they are expected to be, p '.

The standard error for each image registration resulting from the least squares 

approximation o f their transformation matrix is computed as:

std.error =

Figure 6.3: Standard error resulting from least squares approximation [31]

What follows is an analysis of the standard error o f a set of six planar images registered 

to a common coordinate system based on selecting several point pair correspondences for 

each image. The results o f the image registration are recorded in Table 6.2.
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Image Std. Error (pixels)
Source image N/A

2 1.86
3 0.57
4 1.51
5 0.31
6 1.28

Table 6.2: Results from registration error analysis

Table 6.2 shows that the standard error for each image registration was less than two pixels.

Furthermore, the sum of the standard errors is 5.53 pixels. What follows is an analysis of how

the error propagates throughout the scene composed of six image registrations.

6.3 Error Propagation

If images are registered directly to the anatomical atlas, the errors in their homography 

estimations are fixed and do not vary across the scene. However, the user may also register 

images relative to each other. In such cases, the errors in image registration accumulate across 

the sequence of images registrations. To measure how the error is propagated throughout a 

scene, distance measurements are measured between an easily identifiable pixel in the source 

image, and various pixels in each subsequent image. These measurements are compared with 

their equivalent measurements in the ground truth image. Their disparities, representing the 

actual measured errors in the image registrations, are computed and recorded in Table 6.3.
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Image Measurement Distance (registration) Distance (truth) Error (pixels)

1 I 390.03 390.23 0.20

2 137.88 138.13 0.25

3 187.29 187.11 0.18

4 232.30 232.09 0.21

5 333.65 333.45 0.20

2 1 456.97 456.20 0.77

2 341.88 340.83 1.05

3 365.77 366.48 0.71

4 639.76 638.58 1.18

5 985.08 983.85 1.23

3 1 688.05 686.21 1.84

2 502.15 500.36 1.79

3 959.38 958.22 1.16

4 1174.01 1172.78 1.23

5 1165.66 1163.98 1.68

4 1 1065.68 1062.97 2.71

2 1088.00 1085.89 2.11

3 1206.61 1203.70 2.91

4 1295.17 1293.10 2.07

5 1464.32 1461.75 2.57

5 1 2272.95 2269.72 323

2 2563.01 2559.69 3.32

3 2299.42 2296.61 2.81

4 2578.56 2575.84 2.72

5 2326.94 2324.29 2.65

6 1 3173.70 3170.28 3.42

2 3171.12 3167.04 4.08

3 2757.01 2753.85 3.16

4 3099.56 3096.29 3.27

5 3291.12 3287.74 3.38

Table 6.3: Measured cumulative error in image registration

Table 6.3 shows the measurements between easily identifiable pixels in the source image, and 

various pixels in subsequently registered images. The disparities between these measurements 

represent the actual measured errors in the image registrations and are visually represented by 

the graph in Figure 6.4.
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Figure 6.4 shows that if images are registered relative to each other, and not directly to the 

anatomical atlas, the error grows linearly across the sequence of image registrations. This 

result is expected as image registrations are computed based on point pair correspondences 

between adjacent images. The error in one image registration will carry over into the next. The 

maximum error, measured at less than 4 pixels falls within the estimated sum of standard 

errors o f +/-5.53 pixels.

6.4 Perturbation Analysis

In addition to estimating the standard errors caused by estimating the 

transformations, two sensitivity metrics are also computed: the spectral matrix norm, and 

the matrix conditioning number.

The spectral matrix norm, || A ||2, represents the maximum magnification that can be 

undergone by any vector h when acted on by A in the linear system Ah = b .In  the
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context o f this thesis, the spectral matrix norm represents worst case magnification of our 

approximate solution to the system of equations Ah = ||r|| . It is computed as:

|M ||2= m a x i ^
h*o h

— (7 <

Figure 6.5: Equation for the Spectral Matrix Norm [31]

A second measure of the sensitivity of the linear system of equations is the ratio o f the 

largest to smallest singular value in the singular value decomposition of the matrix A . 

This is knows as the conditioning number o f the matrix. Expressed algebraically,

a:(A) = —  [31]. If tc(A) is small, matrix A is said to be well conditioned -  that is to say

that the system is not very sensitive to perturbations in h . If k(A) is large, then matrix A 

is said to be ill conditioned and is potentially very sensitive to perturbations in h [31]. 

What follows are two experiments investigating the relationship between the number of 

point pair correspondences and the condition number o f the image registration. The first 

experiment is performed on a rigid image registration problem, and the second on a non

rigid image registration.

6.4.1 Perturbation Analysis of a Rigid Image Registration

While the time-space image registration method presented in this thesis was 

demonstrated by registering x-ray images to an anatomical atlas, the method also 

supports many different types o f imagery. The following analysis o f the perturbations in 

point pair correspondence selection will be performed on the rigid image registration of 

two digital satellite images. Satellite imagery was selected to ensure a rigid image 

registration scenario.
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Figure 6.6: Rigid image registration performed on two adjacent digital images

# Correspondences Std. Error Spectral Norm Condition Number
5 0.83 3594 1 145 111
8 1.01 4122 937 490
10 1.11 4499 671 698
12 1.19 5834 601 303
24 1.22 9105 599 403

Table 6.4: Number o f feature pairs vs spectral matrix norm and condition number

Table 6.4 shows the results for the rigid image registration of the two images shown in 

Figure 6.6. The image registration was repeated 5 times, each time increasing numbers of 

selected point pair correspondences. The data shows that as the number o f point pair 

correspondences increases, so too does the spectral matrix norm. Meanwhile, the 

condition number decreases. This means that the worst case magnification of our 

solution to the linear system of equations increases with the number of point pair 

correspondences selected while its sensitivity to perturbations decreases. In other words, 

the more point pair correspondences that the user has to select the more potential there is 

to introduce error. However, the more point pair correspondences selected, the less the 

error in a single point pair correspondence will affect the final solution.
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6.4.2 Perturbation Analysis of a Non-Rigid Image Registration

The following analysis o f the perturbations in point pair correspondence selection 

will be performed on the rigid image registration o f two non-rigid MRI brain images. The 

images were selected to ensure a non-rigid image registration scenario. The source image 

is pre-operative, while the target image is post-operative. As a result, the pixels in the 

images do not exactly map under a rigid image registration. However, as with the x-ray to 

anatomical atlas image registrations, rigid registration is sufficient to put the detailed data 

into context. The pixels that have not changed between scans are registered, while the 

pixels that have changed locations become apparent.

Figure 6.7: Rigid image registration performed on non-rigid MRI images

# Correspondences Std. Error Spectral Norm Condition Number
5 0.82 882 77 126
10 1.54 1 257 24 304
15 1.25 1 554 34 253
20 1.23 1 798 35 558

Table 6.5: Number o f correspondences vs spectral matrix norm and condition number
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Table 6.5 shows the results for the rigid image registration of the two non-rigid 

MRI brain scan images shown in Figure 6.7. The image registration was repeated 4 times, 

each time increasing numbers o f selected point pair correspondences. The data shows that, 

similarly to the rigid image scenario, as the number o f point pair correspondences 

increases, so too does the spectral matrix norm. However, the condition number does not 

necessarily decrease. This means that the worst case magnification o f our solution to the 

linear system of equations increases with the number o f point pair correspondences 

selected while its sensitivity to perturbations is not necessarily dependant on the number 

o f point pair correspondences selected. In other words, the registration is not only 

sensitive to the number o f point pair correspondences chosen, but also to how 

geometrically different (distorted) the images are at those locations. Therefore, the non

rigid registration was not intended to be captured by the geometric model, and so the 

condition numbers do no vary systematically.

6.5 Summary

This chapter has provided an analysis o f the uncertainty in image registration 

resulting from the implementation o f the methods presented in Chapter 5. The 

uncertainties in point pair correspondence selection, the uncertainties in homography 

estimation, and the error propagation throughout the scene have been measured, 

presented, and discussed. The uncertainty in the manual selection o f point pair 

correspondences was measured to be approximately +/- 1.08 pixels, the uncertainty in 

homography estimation was shown to be unique for each image registration, and the 

errors were shown to grow linearly throughout the scene if the images are registered 

relative to each other, and not directly to the anatomical atlas.
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Chapter 7

Conclusions and Future Work
This chapter presents the conclusions to this thesis by describing what has been 

accomplished. Subsequently, the potential for future work is presented outlining areas of 

research that can expand upon this work.

7.1 Conclusions

This thesis has presented a time-space image registration method obtained by 

combining information visualization techniques, concepts, and principles with the 

method o f atlas based image registration. The method is demonstrated by a software 

application capable o f presenting a time-space narrative of a set o f x-ray images which 

can be geometrically aligned to fit an anatomical atlas. The software application's 

interface is shown below in Figure 7.1.

Figure 7.1: A time-space narrative o f x-ray imagery
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Figure 7.1 shows a visual representation o f the time-space narrative achieved by 

the implementation o f the method presented in this thesis. The tools on the right hand 

side o f the application allow the user to select x-ray images, while the tools on the left 

hand side o f the application allow the user to spatially align images based on feature 

matches or various manual interactions. A timeline is located on the bottom of the 

application. The user is able to interact with the timeline by choosing a date/time of 

interest or by playing back the patients medical history. When playing back the patients 

medical history, the images are overlaid on the anatomical atlas in chronological order. 

This animation gives the user visual queues about the sequence o f the availability of 

information, while the geometrically aligned images give the user queues about the 

spatial relationship between the images and the anatomical atlas.

There were several goals that together formed the scope o f this thesis. The 

primary goal was to expand upon research in the field o f image registration by injecting 

techniques borrowed from the field of information visualization and visual analytics. This 

was accomplished by designing a software application capable o f presenting a time-space 

narrative o f a patient’s medical records based on techniques used in information 

visualization and the principles used in visual analytics. To this end, a method for 

spatially and temporally relating medical images to each other was implemented based on 

rigid image registration using manually selected landmarks, and the ordering o f images 

was based on data/time stamps embedded within their data.

Subsequent to its implementation, an analysis of the quantifiable components of 

the system was performed. The analysis showed that users are able to select screen pixels 

under ideal conditions +/- 1.08 pixels and that the error introduced by the user manually 

selecting point pair correspondences affects the standard error in the homography
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estimation. Based on the point pair correspondences, each image registration will have a 

unique amount o f error. Absolute errors allow us to compare adjacent pair-wise image 

registrations. As the sequence is extended, the relative errors provide the meaningful 

comparison. It was also shown that increasing the number of point pair correspondences 

decreases the sensitivity o f the registration to perturbations in rigid image registration 

scenarios but was not intended to be captured for rigid registrations o f non-rigid imagery.

Furthermore, an intuitive user interface to navigate the information space was 

designed specifically to augment visual analysis. This was accomplished by 

accommodating interactions based on spatial reasoning, and based on reasoning about 

time. Time based interactions were enabled by implementing an interactive timeline with 

automatic playback functionality. Spatial interactions were enabled by allowing the user 

to manipulate the geometry o f individual x-ray images and to register them based on 

feature matches to the anatomical atlas or to each other. In addition, zooming and 

panning functionalities were implemented to request different perspectives on the data. 

Through its visual representation, the software application developed for this thesis 

allows an analyst to interact with a subject’s medical history, to explore it, and to derive 

insights or understandings that may be helpful for diagnosis.

A drawback of the method presented in this thesis is that since the data is 

registered to an artificial coordinate system, an unknown amount o f distortion can be 

introduced through image registration. This distortion can exaggerate or understate 

features in the data that might be pertinent for diagnosis.



72

7.2 Future Work

This thesis has explored research opportunities in atlas based image registration 

by incorporating principles o f visual analysis and techniques of information visualization. 

While the implementation o f this thesis was successful, there is potential for future work. 

The method can be extended to support three-dimensional image registrations allowing 

for three-dimensional anatomical atlases to be presented. Clinical trials can be conducted 

to determine the effectiveness of visual representations for augmenting the analysis of 

medical histories and compare them with the current method of analysis. Multimodal 

imagery could also be supported, expanding upon the software to support the intricacies 

o f each individual modality. Automatic image registration algorithms can be added as 

they become available to remove the requirement for manual point pair correspondence 

selection when geometrically aligning images to the anatomical atlas. The method 

proposed in this thesis can be extended to provide a front-end user interface to navigate 

image and temporal data. The method in this thesis can also be extended to support the 

representation of time-space narratives o f image encoded scientific data and its changes 

over time. Lastly, non-rigid image registration methods can expand on this work to 

provide image morphing capabilities for non-rigid geometric scenarios.
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