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ARTICLE OPEN

Whole-genome sequencing expands diagnostic utility and
improves clinical management in paediatric medicine
Dimitri J Stavropoulos1,2, Daniele Merico3,4, Rebekah Jobling5, Sarah Bowdin5,6,7, Nasim Monfared5,6, Bhooma Thiruvahindrapuram3,4,
Thomas Nalpathamkalam3,4, Giovanna Pellecchia3,4, Ryan KC Yuen3,4, Michael J Szego3,8,9, Robin Z Hayeems10, Randi Zlotnik Shaul8,11,
Michael Brudno4,12,13, Marta Girdea4,12, Brendan Frey13,14,15, Babak Alipanahi14, Sohnee Ahmed5, Riyana Babul-Hirji4,5,15,
Ramses Badilla Porras5, Melissa T Carter5,7, Lauren Chad5, Ayeshah Chaudhry5, David Chitayat5,7,16, Soghra Jougheh Doust5,
Cheryl Cytrynbaum4,5,15, Lucie Dupuis5,15, Resham Ejaz5, Leona Fishman5, Andrea Guerin5, Bita Hashemi5, Mayada Helal5,
Stacy Hewson5,15, Michal Inbar-Feigenberg5, Peter Kannu4,5,7, Natalya Karp5, Raymond H Kim5, Jonathan Kronick5, Eriskay Liston17,
Heather MacDonald18, Saadet Mercimek-Mahmutoglu4,5,7, Roberto Mendoza-Londono4,5,7, Enas Nasr5, Graeme Nimmo5,
Nicole Parkinson17, Nada Quercia5,15, Julian Raiman5,7, Maian Roifman5, Andreas Schulze4,5,7, Andrea Shugar5,15, Cheryl Shuman5,15,
Pierre Sinajon5, Komudi Siriwardena5,7, Rosanna Weksberg4,5,7,15, Grace Yoon5,7, Chris Carew6, Raith Erickson19, Richard A Leach19,
Robert Klein19, Peter N Ray1,4,6,15, M Stephen Meyn4,5,6,15,20, Stephen W Scherer3,4,6,15,20, Ronald D Cohn4,5,6,7,20 and
Christian R Marshall1,6,20

The standard of care for first-tier clinical investigation of the aetiology of congenital malformations and neurodevelopmental
disorders is chromosome microarray analysis (CMA) for copy-number variations (CNVs), often followed by gene(s)-specific
sequencing searching for smaller insertion–deletions (indels) and single-nucleotide variant (SNV) mutations. Whole-genome
sequencing (WGS) has the potential to capture all classes of genetic variation in one experiment; however, the diagnostic yield for
mutation detection of WGS compared to CMA, and other tests, needs to be established. In a prospective study we utilised WGS and
comprehensive medical annotation to assess 100 patients referred to a paediatric genetics service and compared the diagnostic
yield versus standard genetic testing. WGS identified genetic variants meeting clinical diagnostic criteria in 34% of cases,
representing a fourfold increase in diagnostic rate over CMA (8%; P value = 1.42E− 05) alone and more than twofold increase in
CMA plus targeted gene sequencing (13%; P value = 0.0009). WGS identified all rare clinically significant CNVs that were detected by
CMA. In 26 patients, WGS revealed indel and missense mutations presenting in a dominant (63%) or a recessive (37%) manner. We
found four subjects with mutations in at least two genes associated with distinct genetic disorders, including two cases harbouring
a pathogenic CNV and SNV. When considering medically actionable secondary findings in addition to primary WGS findings, 38% of
patients would benefit from genetic counselling. Clinical implementation of WGS as a primary test will provide a higher diagnostic
yield than conventional genetic testing and potentially reduce the time required to reach a genetic diagnosis.

npj Genomic Medicine (2016) 1, 15012; doi:10.1038/npjgenmed.2015.12; published online 13 January 2016

INTRODUCTION
Congenital anomalies are a leading cause of infant mortality, and
developmental disabilities have profound adverse effects on
children, their families, health care systems and societies.1

Collectively, children with these disorders comprise 5–10% of
the general population2 and encompass the largest group referred
for genetic evaluation. These numbers are significant given that
50–80% of the resources used to manage diseases in full-service

paediatric inpatient facilities have a recognised genetic
component.3,4

The ability to provide optimal clinical management for these
individuals is dependent on identifying the underlying genetic
cause in order to determine prognosis, guide treatment and
institute appropriate surveillance and prevention programmes.5

However, it is often difficult to achieve a definitive genetic
diagnosis, for example, in children with developmental delay,
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autism and/or congenital anomalies because their phenotypic
features are often nonspecific and the differential diagnosis can
include hundreds of rare genetic disorders.3,4

The development of chromosome microarray analysis (CMA)
revealed that copy-number variation (CNV) is a major aetiology
for congenital malformations and neurodevelopmental delay.
CMA has now become the first-line diagnostic test for these
disorders, achieving greater than a twofold increase in diagnostic
yield compared with G-band karyotype analysis.6,7 Despite these
successes, 80–85% of patients do not reach a diagnosis by CMA.7

Consequently, physicians often supplement CMA with targeted
testing by sequence analysis of known disease-associated genes
or gene panels. This hypothesis-driven approach, which relies on
the ability to recognise the most likely disorder associated with
the presenting symptoms, often fails to reach a diagnosis.
Recent improvement in cost and accuracy of whole-exome

sequencing (WES) has made it feasible to investigate all known
coding genes for sequence-level mutations. Current estimates
show clinical WES provides a diagnostic yield of ~ 25% for
patients affected with neurological disorders and/or congenital
anomalies.8,9 Although larger clinically relevant CNVs may be
detected through WES,10 the lack of sensitivity and reliability to
detect smaller CNVs (o100 kb) and insertion–deletions (indels),
as well as complex structural variations (SVs) has precluded
its implementation as a single clinical test able to capture all
potential disease-causing genetic variants.8,9 As such, sequential
testing using CMA, WES or targeted gene-based testing often
occurs.
Whole-genome sequencing (WGS) has the potential to identify

nearly all forms of genetic variation.11 Several studies have
demonstrated the advantages of WGS for mutation detection12–15

and WGS analyses of paediatric populations has shown
identification of clinically relevant variants in ~ 40% of those with
autism15 and ~ 60% of those with intellectual disability.16,17 These
observations indicate that WGS is poised to have tremendous
impact for paediatric patients where CMA is currently a standard
first-line diagnostic evaluation. However, challenges such as cost,
processing, clinical interpretation and storage of vast amounts
of data exist18 and evidence is required to demonstrate the
diagnostic utility of WGS.19 Here we performed WGS on 100
consecutive children referred for CMA by clinical geneticists and
examined the diagnostic yield of WGS compared with conven-
tional molecular testing.

RESULTS
Cohort enrolment and description
We recruited 100 consecutive paediatric patients (57% males)
o18 years of age (mean 5.5 years; Supplementary Table 1) who
met criteria for CMA, and WGS was offered in parallel with clinical
CMA testing. These 100 cases came from 201 families that were
approached (95 declining participation and 6 undecided). Eight
percent of families reported consanguinity. Of those families that
enroled, 26% opted out of receiving information about secondary
findings related to medically actionable adult onset disorders.20,21

Patients displayed a wide array of symptoms described by 453
unique HPO terms across the cohort, with 57% having at least one
term associated with developmental delay (Supplementary
Table 2; Supplementary Figures 2 and 3). The most commonly
observed phenotypes were abnormalities of the nervous system
(77%), skeletal system (68%), growth (44%), eye (34%), cardio-
vascular (32%) and musculature (27%; Supplementary Table 3).
Aside from CMA, an average of two additional genetic diagnostic
tests were ordered at the time of WGS analysis (Range 1–13 tests;
Supplementary Table 4).

Whole-genome sequencing
WGS yielded an average depth coverage of 51.8 × with 99% of the
mapped sequence at 410-fold representation (Supplementary
Table 5). Different WGS technologies will vary in the number of
variants identified. The WGS platform used in this study generated
a total of 3.3 to 4.3 million high-quality variants per sample.
On average, WGS identified 43.5 million SNVs, 248 CNVs using
read depth method and 1,604 structural variations (tandem
duplications and deletions) using abnormal junction and
discordant mate-pair clusters (Supplementary Methods and
Supplementary Tables 6 and 7). Filtering for coding variants, we
detected an average of 20,014 exonic and splicing variants per
individual. As expected, CNVs identified by read depth (median
size 10 kb) were larger than the SVs detected by split read or
mate-pair mapping (median size 495 bp). Approximately 28% of
the CNVs and 2.0% of the SVs impacted gene coding exons. WGS
data are deposited in the European Genome-phenome Archive
(www.ebi.ac.uk/ega/) under accession number EGAS00001001623.

Variant analysis and molecular diagnosis using WGS
We developed a pipeline to prioritise WGS variants (SNVs and
Indels) of clinical significance, interrogating on average 498 rare
damaging events per genome parsed into categories based on
mode of inheritance (Supplementary Methods and Supplementary
Figure 1). Rare CNVs and SVs were analysed for pathogenicity
according to established methods22,23 and candidates were
discussed with the referring clinician to assess whether the
variant(s) were pathogenic or related to the phenotype and
therefore considered to be clinically relevant.
Overall, we identified and returned 38 variants that were related

to the primary indication providing a molecular diagnosis for 34
individuals (34%; 95% confidence interval (CI) 25–44%) (Table 1).
Of the positive diagnoses, 8 (8%) individuals harboured a
pathogenic CNV (Table 2), whereas 28 (28%) carried sequence-
level variants that were diagnostic (Table 3). The majority
of sequence-level variants were autosomal dominant (63%)
compared to recessive (37%) with no X-linked forms found. All
pathogenic CNVs detected by WGS were confirmed with CMA and

Table 1. Molecular diagnosis rates by genetic type and mode of
inheritance

Whole-genome
sequencing

Clinical testing

CMA only All genetic
tests

Undiagnosed 66 92 87
Diagnosis 34 8* 13**
Multiple molecular
diagnosisa

4 0 1

Type of genetic change
CNV only 6 8 7
SNV only 26 — 5
CNV and SNV 2 — 1

Mode of Inheritance
Autosomal
Dominant

24 8 3

Autosomal Recessive 9 0 3
Dominant and
Recessive

1 0 0

Abbreviations: CNV, copy-number variants; SNV, single-nucleotide variant.
aA total of four cases had two distinct molecular diagnosis including two
patients had a pathogenic CNV and SNV (see Tables 2 and 3). χ2 proportion
test *P= 1.42E− 05 and **P= 0.0009.
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all diagnostic sequence-level variants were confirmed with Sanger
sequencing. The diagnostic rate for those with developmental
delay was higher than average 38.6% (22/57) and was lowest
(15.3%) in those presenting with connective tissue disorders
(Supplementary Figure 4 and Supplementary Figure 5). Combining
CNVs and SNVs, we confirmed de novo disease-causing variants in
15% of this case cohort.
We observed that 4% of cases had pathogenic variants at two

distinct disease loci leading to a composite phenotype.8,9 This is
likely an underestimate given that in several patients the
diagnostic findings only explained part of the clinical features
(see patients (1006, 1040, 1062, 1070, 1090 in Tables 2 and 3).
Interestingly, two of our patients harboured a pathogenic CNV and
SNV (1066 and 1102 in Table 2). For several cases, the genomic
diagnosis impacted clinical management and the identification of
at-risk relatives (see Table 3 and Supplementary Table 8 for patient
case examples).

Secondary findings
Although our focus was the investigation of the diagnostic yield of
WGS for the primary presenting clinical symptoms, we also
examined the 56 genes listed in the 2013 American College of
Medical Genetics and Genomics (ACMG) published guidelines for
incidental findings20 and identified 7 variants as potentially
medically actionable and appropriate for return (Table 4). Three
of these seven patients (1027, 1040, and 1078) also had primary
diagnostic variants.

Comparison of CNV calling from WGS versus CMA
An important consideration in the evaluation of WGS as a clinical
test is the sensitivity in detecting clinically relevant CNVs.

We examined the characteristics of CNVs detected by WGS and
CMA (Supplementary Table 7 and Supplementary Figure 7). CMA
identified an average of six CNVs per patient including nine
pathogenic CNVs in eight individuals (ranging in size from 337 kb
to 92 Mb). All of the reported pathogenic changes were detected
by WGS (Table 2). We evaluated concordance of the results
obtained from the clinical microarray analysis with CNVs obtained
from the WGS. CMA detected a total of 578 variants, of which 52%
were detected by WGS consistent with published findings.17,24

The WGS data afforded several advantages over CMA for CNV
detection. First, the resolution of WGS is greater than CMA,
typically detecting 41,500 unbalanced changes that cannot be
found using CMA. The majority of these are small and intergenic
but many impact exons and may therefore be medically relevant.
Although we did not find a plausible diagnosis from one of the
variants beyond the resolution of CMA, we did detect carriers
with clinically relevant exonic deletions in genes associated with
autosomal recessive disorders (e.g., deletion of exons 7–8 of CLN3;
neuronal ceroid lipofuscinosis-3; Supplementary Table 9). An
additional advantage of WGS is demonstrated by using paired-end
sequencing to obtain breakpoint resolution and allele specific
CNVs. For example, both the WGS read depth and CMA detected a
300-kb duplication of uncertain significance (VUS) at 9p24.3 in one
patient, but split read mapping revealed it to be a 503,479-bp
tandem duplication on one allele overlapping a 235,071-bp
deletion on the other allele (data not shown).

Comparison of diagnostic yield of WGS versus CMA and standard
genetic testing
The total diagnostic rate from standard testing (CMA plus targeted
gene sequencing) was less than half of WGS (13% vs. 34%;
P value = 0.0009; Table 1). Of the targeted sequence tests ordered,

Table 2. Clinically significant copy-number variants identified by chromosomal microarray and whole-genome sequencing

Case
ID

Sex Clinical microarray Size
(Kb)

WGS read depth CNV Origina Diagnosis and managementb

1090 F ChrX:60,701–91,873,056 del 91,813 ChrX:176,00–91,866,000 del DN Partial genetic diagnosis. Category 1. Turner
syndrome but hydrocephalus is not explained
by molecular finding.ChrX:91,877,172–155,174,078 dup 63,297 ChrX:92,796,000–155,260,560 dup

1005c M Chr4:33,574–7,608,090 del 7,575 Chr4:68,000–7,616,000 del DN Category 1. Wolf–Hirschhorn syndrome.
1034 F Chr22:18,713,432–21,440,515 del 2,727 Chr22:18,888,000–21,466,000 del DN Category 1. 22q11.2 deletion syndrome,

referred to specialized clinic.
1022 F Chr10:30,822,400–32,872,626 del 2,050 Chr10:30,814,000–32,892,000 del DN Category 2. 10p11.23-p11.2 deletion. ZEB1;

corneal dystrophy, maldevelopment of the
corpus callosum.

1026 M Chr22:35,931,002–37,272,620 del 1,342 Chr22:35,890,000–37,302,000 del N/A Category 3. 1.34-Mb deletion in 22q12.3.
1066 M Chr8:97,145,564–98,301,541 del 1,156 Chr8:97,134,000–98,308,000 del DN Complex phenotype with two genetic disorders.

Category 2. 8q22.1 de novo deletion. Patient also
has paternally inherited CCM2 pathogenic
variant c.1054delG (p.Gly352Val*2) related to
Cerebral cavernous malformation (CCM)
diagnosis (Table 3).

1027 F Chr16:15,507,164–16,400,833 del 894 Chr16:15,480,000–16,296,000 del DN Category 2. 16p13.11 deletion.
1102 M Chr2:51,021,507–51,358,841del 337 Chr2:51,020,000–51,374,000 del DN Complex phenotype with two genetic disorders.

Category 2. Pathogenic 2p16.3 microdeletion
overlapping NRXN1 gene associated with global
developmental delay and Autism Spectrum
disorder but not able to explain episodic
hypotonia and developmental regression
history. Pathogenic ATP1A3 variant c.2452G4A
(p.Glu818Lys) associated with CAPOS Syndrome
explains this phenotype (Table 3).

Abbreviations: DN, de novo; F, female; M, male; N/A, not available.
aOrigin of TransmiAssion: DN; N/A.
bAll findings were relevant to Genetic counselling and were further split into categories based on clinical management: Category 1 (Disease-specific published
management guidelines), Category 2 (Management based on case reports or known function of genes), and Category 3 (No management change).
cIn some cases the WGS CNVs were fragments and had to be manually resolved (see Supplementary Figure 8 for example in case 1005).

WGS in paediatric medicine
DJ Stavropoulos et al

3

© 2016 Center of Excellence in Genomic Medicine Research/Macmillan Publishers Limited npj Genomic Medicine (2016) 15012



Ta
bl
e
3.

C
lin

ic
al
ly

si
g
n
ifi
ca
n
t
se
q
u
en

ce
-le

ve
l
va
ri
an

ts
id
en

ti
fi
ed

b
y
w
h
o
le
-g
en

o
m
e
se
q
u
en

ci
n
g

Ca
se

ID
Se
x

G
en
e

IP
G
en
om

ic
va
ria

nt
(z
yg
os
ity
)

O
rig

in
a

D
ia
gn

os
is
an

d
m
an

ag
em

en
tb

10
04

F
EP
30
0

A
D

c.
57

23
d
u
p
C

(p
.T
h
r1
90

9A
sn
fs
*1
64

)
(h
et
)

N
/A

C
at
eg

o
ry

1.
R
u
b
in
st
ei
n
–
Ta
yb

i
Sy
n
d
ro
m
e
2.

10
06

M
M
C4

R
A
D

c.
75

1A
4

C
(p
.Il
e2

51
Le
u
)
(h
et
)

M
A

Pa
rt
ia
l
g
en

et
ic

d
ia
g
n
o
si
s.
C
at
eg

o
ry

2.
Va

ri
an

t
p
o
te
n
ti
al
ly

re
la
te
d
to

o
b
es
it
y
in

p
ro
b
an

d
.M

o
th
er

al
so

ca
rr
ie
s
va
ri
an

t
an

d
h
as

h
is
to
ry

o
f
o
b
es
it
y.

10
08

M
SM

A
RC

B1
A
D

c.
36

4d
el

(p
.G
lu
12

2A
sn
fs
*2
1)

(h
et
)

N
/A

C
at
eg

o
ry

1.
R
ef
er
re
d
fo
r
p
o
ss
ib
le

N
o
o
n
an

–
C
o
st
el
lo
,f
o
u
n
d
to

h
av
e
C
o
ffi
n
–
Si
ri
s
sy
n
d
ro
m
e.

10
09

M
LA
RP

7
A
R

c.
75

6_
75

7d
el

(p
.A
rg
25

3I
le
*6
)

(h
o
m
)

M
A
/P

C
at
eg

o
ry

2.
Q
u
er
y
R
A
So

p
at
h
y
b
u
t
fo
u
n
d
to

h
av
e
A
la
za
m
i
Sy
n
d
ro
m
e.

10
12

M
KA

T6
B

A
D

c.
30

21
+
1G

4
C
(p
?)

(h
et
)

D
N

C
at
eg

o
ry

1.
K
A
T6

B
-r
el
at
ed

d
is
o
rd
er
.R

ec
o
m
m
en

d
at
io
n
o
f
ye
ar
ly

ev
al
u
at
io
n
s
o
f
d
ev
el
o
p
m
en

ta
l
p
ro
g
re
ss
,c
o
n
tr
ac
tu
re
s
an

d
/o
r
sc
o
lio

si
s
b
y
an

o
rt
h
o
p
ae
d
is
t,
o
p
h
th
al
m
o
lo
g
ic

p
ro
b
le
m
s
su
ch

as
am

b
ly
o
p
ia

(in
SB

B
YS

S)
,t
h
yr
o
id

fu
n
ct
io
n
te
st
s,
h
ea
rt

d
ef
ec
ts
,a

n
d
ki
d
n
ey
s
if
h
yd

ro
n
ep

h
ro
si
s
an

d
/o
r

m
u
lt
ip
le

re
n
al

cy
st
s
ar
e
p
re
se
n
t.

10
15

M
G
D
F5

A
D

c.
84

7G
4
A
(p
.V
al
28

3M
et
)
(h
et
)

D
N

C
at
eg

o
ry

2.
Ty
p
e
C
b
ra
ch

yd
ac
ty
ly
.

10
16

F
PA

N
K2

A
R

c.
82

4_
82

5d
el

(p
.C
ys
27

6T
rp
fs
*1
5)

(h
o
m
)

M
A
/P

C
at
eg

o
ry

2.
N
eu

ro
d
eg

en
er
at
io
n
w
it
h
b
ra
in

ir
o
n
ac
cu

m
u
la
ti
o
n
-1

(N
B
IA
1)
.

10
23

F
N
G
LY
1

A
R

c.
12

01
A
4

T
(p
.A
rg
40

1*
)
(h
o
m
)

M
A
/P

C
at
eg

o
ry

2.
Q
u
er
y
ex
tr
ap

yr
am

id
al

ce
re
b
ra
lp

al
sy

b
u
t
fo
u
n
d
to

h
av
e
co

n
g
en

it
al

d
is
o
rd
er

o
f
d
eg

ly
co

sy
la
ti
o
n
.I
n
it
ia
te
d
sc
re
en

in
g
fo
r
h
ep

at
ic
d
ys
fu
n
ct
io
n

b
as
ed

o
n
th
e
d
ia
g
n
o
si
s
o
f
N
G
LY
1
d
efi

ci
en

cy
.

10
29

F
PI
K3
R2

A
D

c.
11

17
G
4
A
(p
.G
ly
37

3A
rg
)

(h
et
)

D
N

C
at
eg

o
ry

2.
M
eg

al
en

ce
p
h
al
y-
p
o
ly
m
ic
ro
g
yr
ia
-p
o
ly
d
ac
ty
ly
-h
yd

ro
ce
p
h
al
u
s
sy
n
d
ro
m
e-
1
(M

PP
H
).
N
o
ch

an
g
e
in

m
an

ag
em

en
t
fo
r
th
e
p
at
ie
n
t
as

sh
e
w
as

o
u
ts
id
e
o
f
th
e
ag

e
ra
n
g
e
o
f
p
ro
p
o
se
d
sc
re
en

in
g
re
co

m
m
en

d
at
io
n
s
fo
r
M
PP

H
at

th
e
ti
m
e
o
f
d
ia
g
n
o
si
s.
H
o
w
ev
er
,s
am

e
m
u
ta
ti
o
n
id
en

ti
fi
ed

in
h
er

si
b
lin

g
w
h
o
is
n
o
w

u
n
d
er
g
o
in
g
q
u
ar
te
rl
y
u
lt
ra
so
u
n
d
su
rv
ei
lla
n
ce

fo
r
W
ilm

s
tu
m
o
u
r.
G
er
m
lin

e
m
o
sa
ci
sm

su
sp
ec
te
d
.

10
32

F
SP
TA

N
1

A
D

c.
69

47
A
4

C
(p
.G
ln
23

16
Pr
o
)

(h
et
)

D
N

C
at
eg

o
ry

1.
Ea
rl
y
in
fa
n
ti
le

ep
ile
p
ti
c
en

ce
p
h
al
o
p
at
h
y
5.

10
40

M
EX
T2

A
D

c.
17

60
C
4
T
(p
.T
h
r5
87

M
et
)

(h
et
)

N
/A

Pa
rt
ia
lg

en
et
ic
d
ia
g
n
o
si
s.
C
at
eg

o
ry

1.
M
u
lt
ip
le

Ex
o
st
o
se
s
Ty
p
e
2.

R
ad

io
g
ra
p
h
s
co

n
fi
m

m
u
lt
ip
le

ex
o
st
o
se
s
co

n
si
st
en

t
w
it
h
EX

T
va
ri
an

t.
N
ee

d
su
rv
ei
lla
n
ce

fo
r
in
cr
ea
se
d
ca
n
ce
r
ri
sk
,a

n
d
m
o
n
it
o
ri
n
g
o
f
ex
o
st
o
se
s
g
ro
w
th
.

10
45

M
TS
EN

54
A
R

c.
91

9G
4
T
(p
.A
la
30

7S
er
)

(h
o
m
)

M
A
/P

C
at
eg

o
ry

1.
Po

n
to
ce
re
b
el
la
r
H
yp

o
p
la
si
a
Ty
p
e
2A

.

10
49

F
N
SD

1
A
D

c.
39

22
-1
G
4

C
(p
?)

(h
et
)

N
/A

C
at
eg

o
ry

1.
Q
u
er
y
M
ar
fa
n
/H

o
m
o
cy
ti
n
u
ri
a
an

d
N
F
ty
p
e
I
b
u
t
fo
u
n
d
to

h
av
e
So

to
s
Sy
n
d
ro
m
e.

R
ef
er
ra
l
to

ap
p
ro
p
ri
at
e
sp
ec
ia
lis
ts

fo
r
m
an

ag
em

en
t
o
f

le
ar
n
in
g
d
is
ab

ili
ty
/s
p
ee

ch
d
el
ay
s,
b
eh

av
io
u
r
p
ro
b
le
m
s,
ca
rd
ia
c
ab

n
o
rm

al
it
ie
s,
re
n
al

an
o
m
al
ie
s,
sc
o
lio

si
s,
se
iz
u
re
s.
N
o
in
te
rv
en

ti
o
n
if
M
R
I
sh
o
w
s

ve
n
tr
ic
u
la
r
d
ila
ta
ti
o
n
w
it
h
o
u
t
ra
is
ed

in
tr
ac
ra
n
ia
l
p
re
ss
u
re
.

10
50

M
CB

L
A
D

c.
10

96
-1
1_

11
09

d
el

(p
?)

(h
et
)

D
N

C
at
eg

o
ry

1.
N
o
o
n
an

Sy
n
d
ro
m
e-
lik
e
d
is
o
rd
er

w
it
h
o
r
w
it
h
o
u
t
ju
ve
n
ile

m
ye
lo
m
o
n
o
cy
ti
c
le
u
ka
em

ia
.R

ec
o
m
m
en

d
at
io
n
in
cl
u
d
es

co
n
ti
n
u
ed

su
rv
ei
lla
n
ce

fo
r

le
u
ka
em

ia
.

10
55

F
PA

CS
1

A
D

c.
60

7C
4

T
(p
.A
rg
20

3T
rp
)
(h
et
)

D
N

C
at
eg

o
ry

2.
A
u
to
so
m
al

d
o
m
in
an

t
m
en

ta
l
re
ta
rd
at
io
n
17

.
10

57
F

SE
TD

5
A
D

c.
15

76
_1

58
0d

el
(p
.G
lu
52

6L
ys
fs
*1
5)

(h
et
)

D
N

C
at
eg

o
ry

2.
Q
u
er
y
R
o
b
in
o
w

sy
n
d
ro
m
e
b
u
t
fo
u
n
d
to

h
av
e
M
en

ta
l
re
ta
rd
at
io
n
au

to
so
m
al

d
o
m
in
an

t
23

.

10
59

M
PI
K3
R1

A
D

c.
19

93
G
4
A
(p
.G
ly
66

5S
er
)

(h
et
)

P
C
at
eg

o
ry

1.
Q
u
er
y
A
xe
n
fe
ld
–
R
ie
g
er

sy
n
d
ro
m
e
b
u
t
fo
u
n
d
to

h
av
e
SH

O
R
T
sy
n
d
ro
m
e.

Fa
th
er

is
al
so

cl
in
ic
al
ly

af
fe
ct
ed

an
d
va
ri
an

t
is
p
at
er
n
al
ly

in
h
er
it
ed

.
R
ec
o
m
m
en

d
ed

sc
re
en

in
g
fo
r
d
ia
b
et
es

an
d
g
la
u
co

m
a
b
as
ed

o
n
th
e
d
ia
g
n
o
si
s
o
f
SH

O
R
T
sy
n
d
ro
m
e.

10
62

M
G
JB
2

A
R

c.
35

d
el
G

(p
.G
ly
12

fs
*2
)
(h
o
m
)

M
A
/P

Pa
rt
ia
l
g
en

et
ic

d
ia
g
n
o
si
s.
C
at
eg

o
ry

1.
C
o
m
p
le
x
p
h
en

o
ty
p
e
w
it
h
au

to
so
m
al

re
ce
ss
iv
e
h
ea
ri
n
g
lo
ss

ca
u
se
d
b
y
G
JB
2
va
ri
an

t.
10

66
M

CC
M
2

A
D

c.
10

54
d
el
G

(p
.G
ly
35

2V
al
*2
)

(h
et
)

P
C
o
m
p
le
x
p
h
en

o
ty
p
e
w
it
h
tw

o
g
en

et
ic
d
is
o
rd
er
s.
C
at
eg

o
ry

1.
Pa

te
rn
al
ly
in
h
er
it
ed

CC
M
2
p
at
h
o
g
en

ic
va
ri
an

t
re
la
te
d
to

C
er
eb

ra
lc
av
er
n
o
u
s
m
al
fo
rm

at
io
n

(C
C
M
)
d
ia
g
n
o
si
s.
Po

te
n
ti
al

p
h
ar
m
ac
o
th
er
ap

y
in
te
rv
en

ti
o
n
s
fo
r
C
C
M
.P

at
ie
n
t
al
so

h
as

8q
22

.1
de

no
vo

1.
16

-M
b
d
el
et
io
n
(T
ab

le
2)

10
70

F
VW

F
A
D

c.
61

87
C
4
T
(p
.P
ro
20

63
Se

r)
(h
o
m
)

M
A
/P

Pa
rt
ia
lg

en
et
ic
d
ia
g
n
o
si
s.
C
at
eg

o
ry

1.
In
it
ia
lly

d
ia
g
n
o
se
d
w
it
h
ac
q
u
ir
ed

Vo
n
W
ill
eb

ra
n
d
b
y
h
ae
m
at
o
lo
g
y.
H
o
w
ev
er
,m

o
le
cu

la
r
fi
n
d
in
g
s
co

n
si
st
en

t
w
it
h
a

g
en

et
ic

ae
ti
o
lo
g
y.

10
78

M
TY
R

A
R

c.
11

18
C
4
A
(p
.T
h
r3
73

Ly
s)

(h
et
)/
c.
12

05
G
4
A

(p
.A
rg
40

2G
ln
)
(h
et
)

M
A
/P

C
o
m
p
le
x
p
h
en

o
ty
p
e
w
it
h
tw

o
re
la
te
d
g
en

et
ic

d
is
o
rd
er
s.
C
at
eg

o
ry

1.
O
cu

lo
cu

ta
n
eo

u
s
al
b
in
is
m

ty
p
e
1.

C
at
eg

o
ry

2.
M
C4

R
va
ri
an

t
m
ay

b
e
co

n
tr
ib
u
te

to
o
b
es
it
y

M
C4

R
A
D

c.
30

7G
4
A
(p
.V
al
10

3I
le
)
(h
et
)

N
/A

10
80

M
CO

L4
A
1

A
D

c.
23

17
G
4
A
(p
.G
ly
77

3A
rg
)

(h
et
)

D
N

C
at
eg

o
ry

1.
M
R
I
d
ia
g
n
o
si
s
o
f
CO

L4
A
1-
re
la
te
d
d
is
o
rd
er

co
n
fi
rm

ed
w
it
h
se
q
u
en

ce
te
st
in
g.

R
ec
o
m
m
en

d
at
io
n
s
fo
r
su
rv
ei
lla
n
ce

b
y
n
eu

ro
lo
g
is
t
fo
r
d
is
ea
se

re
la
te
d
co

m
p
lic
at
io
n
s
in
cl
u
d
in
g
n
eu

ro
lo
g
ic
al
,o

cu
la
r,
ca
rd
ia
c,
re
n
al

an
d
R
ay
n
au

d
's
p
h
en

o
m
en

a.
A
ls
o
re
q
u
ir
es

ag
g
re
ss
iv
e
h
yp

er
te
n
si
o
n
m
an

ag
em

en
t
to

av
o
id

st
ro
ke
s.

10
89

M
PL
VA

P
A
R

c.
10

72
C
4
T
(p
.A
rg
35

8*
)
(h
o
m
)

M
A
/P

C
at
eg

o
ry

3.
N
o
ve
l
p
ro
te
in

lo
si
n
g
en

te
ro
p
at
h
y
d
is
o
rd
er
.

10
93

F
N
G
LY
1

A
R

c.
51

7A
4

G
(p
.A
rg
17

3G
ly
)

(h
o
m
)

M
A
/P

C
o
m
p
le
x
p
h
en

o
ty
p
e
w
it
h
tw

o
re
la
te
d
g
en

et
ic

d
is
o
rd
er
s.
C
at
eg

o
ry

2.
N
G
LY
1—

C
o
n
g
en

it
al

d
is
o
rd
er

o
f
g
ly
co

sy
la
ti
o
n
,t
yp

e
Iv
.C

at
eg

o
ry

1.
C
O
G
5—

C
o
n
g
en

it
al

d
is
o
rd
er

o
f
g
ly
co

sy
la
ti
o
n
,t
yp

e
III
.

CO
G
5

A
R

c.
12

05
C
4
T
(p
.S
er
40

2L
eu

)
(h
o
m
)

M
A
/P

11
02

M
A
TP
1A

3
A
D

c.
24

52
G
4
A
(p
.G
lu
81

8L
ys
)

(h
et
)

D
N

C
o
m
p
le
x
p
h
en

o
ty
p
e
w
it
h
tw

o
g
en

et
ic
d
is
o
rd
er
s.
C
at
eg

o
ry

1.
Pa

th
o
g
en

ic
A
TP
1A

3
va
ri
an

t
as
so
ci
at
ed

w
it
h
C
A
PO

S
Sy
n
d
ro
m
e
ex
p
la
in
s
ep

is
o
d
ic
h
yp

o
to
n
ia

an
d
re
g
re
ss
io
n
h
is
to
ry
.P

at
ie
n
t
al
so

h
as

p
at
h
o
g
en

ic
2p

16
.3

33
7-
kb

d
el
et
io
n
o
ve

rl
ap

p
in
g
N
RX

N
1
g
en

e
as
so
ci
at
ed

w
it
h
g
lo
b
al

d
ev
el
o
p
m
en

ta
ld

el
ay

an
d

A
u
ti
sm

Sp
ec
tr
u
m

d
is
o
rd
er

(T
ab

le
2)
.

11
03

F
VP

S5
3

A
R

c.
14

29
C
4
T
(p
.A
rg
47

7*
)
(h
et
)/

c.
17

16
T4

G
(p
.S
er
57

2A
rg
)

(h
et
)

M
A
/P

C
at
eg

o
ry

2.
Po

n
to
ce
re
b
el
la
r
h
yp

o
p
la
si
a,

ty
p
e
2E

.O
ld
er

si
b
lin

g
w
it
h
sa
m
e
cl
in
ic
al

fe
at
u
re
s,
p
as
se
d
aw

ay
at

ag
e
6
ye
ar
s,
al
so

d
ia
g
n
o
se
d
w
it
h
th
e
sa
m
e

d
is
ea
se

af
te
rw

ar
d
s.
Fo

llo
w
ed

in
th
e
m
et
ab

o
lic

g
en

et
ic
s
cl
in
ic

fo
r
sy
m
p
to
m
at
ic

tr
ea
tm

en
t.

11
07

F
SM

A
RC

A
2

A
D

c.
26

39
C
4
T
(p
.T
h
r8
80

Ile
)
(h
et
)

D
N

C
at
eg

o
ry

1.
N
ic
o
la
id
es
–
B
ar
ai
ts
er

sy
n
d
ro
m
e.

11
08

F
A
LD

H
18
A
1

A
R

c.
13

21
C
4
T
(p
.A
rg
44

1*
)/

c.
19

1G
4
A
(p
.A
rg
64

H
is
)
(h
et
)

M
A
/P

C
at
eg

o
ry

2.
C
u
ti
s
la
xa
,t
yp

e
III
A
.M

o
le
cu

la
r
d
ia
g
n
o
si
s
ex
p
la
in
s
ae
ti
o
lo
g
y
o
f
si
m
ila
r
fa
ta
ld

is
ea
se

in
si
b
lin

g
an

d
en

ab
le
s
co

u
n
se
lli
n
g
re
g
ar
d
in
g
re
cu

rr
en

ce
ri
sk
s
as

w
el
l
as

d
efi

n
it
iv
e
p
re
n
at
al

d
ia
g
n
o
si
s.

A
b
b
re
vi
at
io
n
s:
A
D
,a

u
to
so
m
al

d
o
m
in
an

t;
A
R
,a

u
to
so
m
al

re
ce
ss
iv
e;

D
N
,d

e
no

vo
;F
,f
em

al
e;

IP
,i
n
h
er
it
an

ce
p
at
te
rn
;
M
,m

al
e;

M
A
,m

at
er
n
al
;N

/A
,n

o
t
av
ai
la
b
le
;P
,p

at
er
n
al
.

a
O
ri
g
in

o
f
Tr
an

sm
is
si
o
n
:D

N
,P
,M

A
an

d
N
/A
.

b
A
ll
fi
n
d
in
g
s
w
er
e
re
le
va
n
t
to

G
en

et
ic

co
u
n
se
lli
n
g
an

d
w
er
e
fu
rt
h
er

sp
lit

in
to

ca
te
g
o
ri
es

b
as
ed

o
n
cl
in
ic
al

m
an

ag
em

en
t:
C
at
eg

o
ry

1
(D
is
ea
se
-s
p
ec
ifi
c
p
u
b
lis
h
ed

m
an

ag
em

en
t
g
u
id
el
in
es
);
C
at
eg

o
ry

2
(M

an
ag

em
en

t
b
as
ed

o
n
ca
se

re
p
o
rt
s
o
r

kn
o
w
n
fu
n
ct
io
n
o
f
g
en

es
);
an

d
C
at
eg

o
ry

3
(N
o
m
an

ag
em

en
t
ch

an
g
e)
.

WGS in paediatric medicine
DJ Stavropoulos et al

4

npj Genomic Medicine (2016) 15012 © 2016 Center of Excellence in Genomic Medicine Research/Macmillan Publishers Limited



17 cases were negative for a diagnosis found through WGS,
including 11 panel tests, highlighting the limitation of using a
hypothesis-driven approach for this cohort. In the majority of
these cases, the causative gene was not included in the panel
testing; however, in one case, clinical panel testing failed to detect
a large 25-bp pathogenic indel in CBL that was detected through
WGS (Supplementary Figure 6 and Case 1050 in Supplementary
Table 8). In two cases, targeted genetic tests led to a clinical
diagnosis that could not be detected by WGS in the current study
design, including microsatellite analysis of parents and offspring
for UPD14 (heterodisomy) and a methylation test for Russell–Silver
syndrome (RSS).

DISCUSSION
Here we provide data that show WGS exceeds other technology
platforms in ability to detect genetic variants involved in
childhood disease. Specifically, in our design we achieved a
diagnostic yield of 34% when testing an unselected paediatric
population that was undergoing CMA as the current standard first-
tier genetic test followed by traditional gene/panel testing
protocols. These results indicate WGS provides a fourfold increase
in molecular diagnosis over CMA alone (8%) and a greater than
twofold increase when all genetic testing protocols (410 tests in
some cases) are considered (13%).
The cohort we investigated was clinically heterogeneous with

~ 57% presenting with developmental delay as a primary clinical
feature. Consistent with previous data,8,9,25 the majority (63%) of
our sequence-level diagnoses were autosomal dominant. Combin-
ing CNVs and SNVs, just under half (14/34) of the diagnoses were
de novo mutations giving a minimum overall spontaneous
mutation rate of 14%. For autosomal recessive transmission, we
confirmed molecular diagnoses from compound heterozygous
variants in only 2/100 patients, which is less than reported
previously8,9,25 and may be reflective of our study design in only
sequencing the proband. The majority of our AR diagnoses arose
from homozygous variants from consanguineous unions (reported
in 8% of cases in this cohort). Similar to other studies,8,9 4% of
cases had more than one locus involved, contributing to a
complex phenotype including two individuals with a pathogenic
CNV and SNV. In an additional five cases, a pathogenic variant was
found that only accounted for part of the phenotype, indicating
that upwards of 9% of individuals in this cohort may have more
than one genetic disorder (see Tables 2 and 3).
Our results demonstrate that the increased diagnostic utility of

WGS can have a significant impact on clinical care and

management that goes beyond genetic counselling (Tables 2
and 3). Specifically, the rapid diagnosis of mutations in the CBL
gene in patient 1050 has important implications for the
surveillance of juvenile myelomonocytic leukaemia, which is
critical for patient management and survival. In the case of
patient 1049, the clinical phenotype was suggestive of a
connective tissue disorder with additional features suggestive of
NF1. However, WGS revealed a diagnosis of Sotos syndrome,
which subsequently changed clinical management of the patient
as the disease trajectory and requirements for surveillance are
inherently different for this disorder. Similarly, detection and
confirmation of mutations in genes such as PIK3R1, EXT2, PIK3R2,
NGLY1, KAT6B and COL4A1 provides indications for monitoring of
disease-specific secondary complications that ultimately lead to
improvement of the patients’ quality of life, and at times can have
a critical impact on survival.
One of the current challenges facing health care providers is

determining the most effective utilisation of CMA versus sequen-
cing gene panels versus WES in patients with developmental
disorders and/or congenital anomalies. A recent study using a
comprehensive genotype-driven approach in children with devel-
opmental delay achieved a diagnostic yield of 31% using WES and
CMA.25 The physicians in our study ordered an average of three
genetic tests (CMA plus two targeted genetic tests) per patient
guided by clinical features, which yielded a diagnostic rate half of
that achieved by WGS. Importantly, hypothesis-free WGS sig-
nificantly outperformed targeted testing of candidate genes in our
cohort: in 17/22 cases, the diagnostic sequence-level variant found
by WGS was not in a gene targeted by hypothesis-driven testing.
The number of prior genetic investigations for the illustrative
cases (Supplementary Table 8) ranged between three and six tests
at a total cost of $3,325–5,280 and would be largely representative
of this type of cohort seen at our hospital. Estimates of others have
shown even higher costs of negative testing ($19,100) in similar
cohorts and have demonstrated the cost of using genomic
sequencing to be ~ $3,000 per individual.26 Although full
economic evaluations are required, our data align with previous
studies where WGS enabled the use of a single diagnostic test in a
heterogeneous clinical cohort. In turn, this approach is likely to
reduce the number of genetic investigations and potentially the
time to diagnosis, ultimately acting as a more cost effective
approach.26,27

Although our study design was prospective, there are several
factors that may have influenced our estimation of the diagnostic
yield of WGS. The diagnostic laboratory at The Hospital for Sick
Children (Toronto, ON, Canada) receives ~ 600 CMA requests from

Table 4. Medically actionable secondary findings

Case ID Sex Gene IP Genomic Variant (Zygosity) Diagnosis

1003 F FBN1 AD c.3509G4A p.Arg1170His (het) Marfan syndrome
1027a F COL3A1 AD c.812G4A p.Arg271Gln (het) Ehlers-Danlos syndrome, type III; Ehlers-Danlos syndrome type IV
1040b M SCN5A AD/AR c.5239G4A p.Val1747Met (het) Brugada syndrome 1; Cardiomyopathy, dilated, 1E; Heart block, nonprogressive;

Heart block, progressive, type IA; Long QT syndrome-3; Sick sinus syndrome 1;
Ventricular fibrillation, familial, 1

1063 F KCNH2 AD c.3278C4T p.Pro1093Leu (het) Long QT syndrome; Short QT syndrome
1067 M SCN5A AD/AR c.5336C4T p.Thr1779Met (het) Brugada syndrome 1; Cardiomyopathy, dilated, 1E; Heart block, nonprogressive;

Heart block, progressive, type IA; Long QT syndrome-3; Sick sinus syndrome 1;
Ventricular fibrillation, familial, 1

1078c M RYR2 AD c.3320C4T p.Thr1107Met (het) Arrhythmogenic right ventricular dysplasia 2; Ventricular tachycardia,
catecholaminergic polymorphic

1091 M DSG2 AD c.2434G4A p.Gly812Ser (het) Arrhythmogenic right ventricular dysplasia 10; Cardiomyopathy, dilated, 1BB

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; F, female; IP, inheritance pattern; M, male.
aA 894 kb (Chr16:15,507,164–16,400,833) pathogenic deletion was also detected in this patient (Table 2).
bPartial diagnosis of Multiple Exostoses Type 2 (Table 3).
cDiagnosis Oculocutaneous albinism type 1 (Table 3).
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clinical genetics per year and typically achieves a diagnostic yield
of 12% (95% CI 9.6–14.9%). The yield of CMA in the current study
was slightly lower (8%) than typically observed, but was similar in
those individuals that were approached and declined WGS. For
the 101 families who were approached and declined participation
there were two predominant reasons. First, ~ 35% of families were
uncomfortable with secondary findings as it pertains to obtaining
life or employment insurance as Canada does not currently have a
nondiscrimination law. Second, 35% of individuals declined since
they felt overwhelmed with the current medical complexity of
their child with most of these patients stemming from the NICU
population. Although there is a chance that our cohort had an
ascertainment bias, enrolment demographics indicate that this
cohort is typical of those submitted for CMA through clinical
genetics over the same timeframe.
One of the unique aspects in our study was the direct

interaction with the referring clinician to adjudicate whether
prioritised variants were medically relevant. This type of iterative
genotype–phenotype comparison is valuable in the interpretation
of a genome but is not amenable to large-scale implementation of
WGS diagnostic testing that would be done at a reference
laboratory. However, the phenotypic description submitted by the
referring physician via PhenoTips (www.phenotips.org) was
sufficient to confidently identify the clinically significant variants
in the vast majority of diagnoses, without the need for further
consultation with the physician. We estimate that approximately
two diagnostic variants benefited from direct clinician consulta-
tion after the genomic data were analysed.
In addition, our design did not allow the prioritisation of de

novo variants since we did not perform WGS on parents. WES-
based studies have shown that the diagnostic yield is higher using
a trio design.9,18 Similarly, although WGS allows the detection of

large stretches of homozygosity due to uniparental isodisomy, we
would need parental genotypes to detect heterodisomy (e.g.,
UPD14 in case 1068). Moreover, our analysis was restricted mainly
to exonic variants due to the inability to clinically interpret the
majority of intronic and intergenic variants. The impact of
common risk variants will also need to be considered as methods
for complex statistical modelling improve. Finally, we did not
detect any pathogenic CNVs beyond the resolution of CMA that
led to a diagnosis in our cohort, but did find some individuals to
be carriers of deletions affecting genes associated with autosomal
recessive disorders (Supplementary Table 9).
Genetics have long been known to have a major role in child

health. McCandless et al.3 found that, taken together, rare genetic
variants and common genetic factors significantly contributed to
the illnesses of 71% of hospitalised children. However, our ability
to achieve molecular diagnoses for children with genetic disorders
has historically been quite limited. Our results indicate that WGS
can now be deployed advantageously as a first-tier molecular test
in those individuals with developmental delay and/or congenital
abnormalities, as we identified medically actionable diagnostic
variants and secondary variants in 38% of children undergoing
clinical CMA, and achieved a diagnosis in one-third of the children.
As comparison datasets increase in size and methods for
annotating the vast non-genic segment (99%) of the genome
improve, so will the utility of WGS in diagnosis, management and
surveillance of paediatric genetic conditions.

MATERIALS AND METHODS
Patient selection/study cohort and phenotype collection
We developed a workflow to recruit patients and test the diagnostic utility
of WGS in the routine clinical care of children and their families (Figure 1).

Figure 1. Overview of study design comparing the diagnostic yield of whole-genome sequencing compared with standard of care genetic
testing. CMA, chromosomal microarray analysis; SNV, single-nucleotide variant; CNV, copy-number variant; HPO, Human Phenotype Ontology;
Dx, diagnostic.
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Patients were recruited in a prospective manner from the Division of
Clinical and Metabolic Genetics at Hospital for Sick Children over a
9-month period (September 2013 to May 2014). Patients and their parents
were eligible to participate in the study if the patient met standard clinical
criteria for CMA analysis. This included children with two or more structural
malformations (major or minor); or unexplained developmental delay/
intellectual disability with or without additional clinical features. We also
required both parents be available for testing and due to the complexity of
the tests, that both parents were fluent in English. DNA was extracted from
peripheral blood. This study was approved by the Research Ethics Board at
The Hospital for Sick Children and informed consent was obtained from all
participants.

Phenotype collection
We used PhenoTips28 (www.phenotips.org) to capture and record
phenotypic data after thorough examination by a clinical geneticist.
PhenoTips is an open source software program for collecting and analysing
phenotypic information for patients with genetic disorders. The software
combines an easy-to-use web browser interface with a standardized
database back end. Phenotypic information is collected and represented
using the Human Phenotype Ontology.29 Collected data include
demographics, medical history, family history, physical and laboratory
measurements, physical findings, and additional notes. Importantly,
phenotypic data for each patient were accessible in a standardized format
by laboratory geneticists and clinical geneticists performing variant
interpretation.

Chromosomal microarray analysis
All cases underwent chromosomal microarray analysis (CMA) using the
4 × 180 K Cytosure ISCA v2 oligonucleotide microarray platform (Oxford
Gene Technology, Oxford, UK) as part of diagnostic service in the CLIA
certified laboratory at The Hospital for Sick Children. Microarray experi-
ments were performed according to the manufacturer’s instructions.
Briefly, DNA from the proband and pooled same-sex reference DNA
(Promega, Madison, WI, USA) were labelled with Cy3-dCTP and Cy5-dCTP,
respectively, and were hybridised to the array slide. The arrays were then
scanned using the Agilent G2505B microarray scanner and resulting data
analysed using the CytoSure Interpret Software version 3.4.3 from Oxford
Gene Technology (Begbroke, Oxfordshire, UK). CNVs on chromosome Y
were removed from the analysis. Identified CNVs were classified according
to ACMG22 guidelines and pathogenic and variant-of-unknown-signifi-
cance—likely pathogenic were considered as clinically significant.

Whole-genome sequencing
Genomic DNA was sent to Complete Genomics (Mountain View, CA, USA)
for WGS as described previously.30 Raw sequence reads were reassembled
against a reference genome (GRCh37) and variant calling was completed
using Complete Genomics assembly pipeline 2.4 as previously described.31

This method generates a fragment of ~ 400 bp that is covered by a set of 8
reads totalling 70 bp sequenced. All samples passed internal Complete
Genomics sample checks. Sequence results were received on hard drives
and consisted of raw data plus variant calls in the form of (i) SNV and small
indels, (ii) structural variants (based on abnormal junction and discordant
mate-pair clusters, with size typically 50–75,000 bp), (iii) CNVs (based on
normalised sequencing coverage, with size typically 42,000 bp).

Annotation of sequence-level variants (SNVs and indels)
Complete Genomics (Mountain View, CA, USA) masterVar files were
annotated using a custom pipeline based on Annovar,32 RefSeq gene
models (downloaded from UCSC 2013 February 12), and publicly available
as well as internal databases for allele frequency (1000 Genomes,33 NHLBI-
ESP,34 ExAC browser (Exome Aggregation Consortium (ExAC), Cambridge,
MA, USA (URL: http://exac.broadinstitute.org) January 2015), Internal
Complete Genomics control databases public genomes and Wellderly
population, genomic conservation (UCSC PhyloP and phastCons for
placental mammals and 100 vertebrates35) and variant impact predictors
(SIFT,36 PolyPhen2,37 Mutation Assessor,38 CADD39). We also expanded the
annotation of non-coding regulatory sequence through implementation of
splicing exon inclusion/exclusion predictions.40 Finally we annotated
variants with those reported previously in disease (ClinVar,41 HGMD42)
and genes reported to have abnormal mouse and human phenotype

association,29,43,44 MGI (http://www.informatics.jax.org/). Data set and
software versions are listed in the Supplementary Information.

Diagnostic algorithm and variant interpretation
We developed a pipeline to systematically prioritise clinically significant
variants (see Supplementary Figure 1). We first defined a list of high
quality, rare variants (o5% population frequency) that were exonic (genes
or ncRNA) or predicted to impact splicing. To aid in prioritisation variants
were categorized into ordered tiers based on: (i) sequence quality; (ii) allele
frequency; (iii) conservation and predicted impact on coding and non-
coding sequence; and (iv) human disease and mouse abnormal phenotype
association. Variants were further sorted based on: (v) their zygosity and
gene mode of inheritance; and (vi) HGMD and ClinVar pathogenicity
classification, reflecting implication in human genetic disorders documen-
ted in the literature (see Supplementary Information for detailed
definitions). The ACMG recommendations for clinical interpretation of
sequence variants23 were used to classify variants as pathogenic or likely
pathogenic. Candidate diagnostic variants were selected based on their
likely pathogenicity and explanatory power. Variants deemed diagnostic
by both the assessment team and the referring physician were confirmed
in the proband, and followed up in parental samples by Sanger
sequencing.

Secondary variants
The pipeline described above allowed for the identification of clinically
relevant variants not related to the primary indication. The analysis was the
same as for primary variants except that we focused on variants with the
highest predicted impact (‘LoF’, criterion iii) and those reported to be
pathogenic by HGMD or ClinVar (criterion vi). This included UTR, intronic
and intergenic variants, for which impact prediction is more difficult.
Finally we limited reporting of secondary variants to the 56 genes named
in the 2013 ACMG guidelines on return of incidental findings.20

Clinical interpretation of variants
Analysts (molecular or clinical geneticists) examined variant files and
prioritized clinically relevant variants using sequence quality, allele
frequency, conservation and predicted impact on coding and non-
coding sequence, presence in Clinvar or HGMD, zygosity and genic mode
of inheritance, and relevance to clinical phenotype provided. Candidate
pathogenic variants that were interpreted to be clinically relevant to the
primary or secondary phenotype were discussed with the referring
clinician and designated diagnostic by consensus.

Confirmation of sequence-level variants
Variants that were deemed to be potentially diagnostic after consultation
with the clinician were confirmed with Sanger sequencing in a CLIA/CAP
laboratory and a clinical report was generated. Sanger sequencing
attempted for 58 variants, of which 51 of high quality (tier 2 analytic
quality) had 100% confirmation rate. Parents and siblings were tested to
confirm segregation for the reported pathogenic changes, or rule variants
out if they did not segregate.

WGS CNV detection and annotation
CNVs from Complete Genomics are detected through both read depth and
paired-end sequencing and provided in cnvSegmentsDiploidBeta and
highConfidenceSVEventsBeta files, respectively. The read depth method is
based on deviation from a diploid baseline reference genome and uses
2 kb, GC-corrected windows with a hidden Markov model caller. The
paired-end method by Complete Genomics employs junction detections
on uniquely mapped discordant mate-pairs and can detect CNVs below
2 kb. CNVs were extracted from the cnvSegmentsDiploidBeta by parsing
out segments not equal to diploid of 2 and by excluding the hypervariable
regions. From the highConfidenceSVEventsBeta file we only extracted
deletions and tandem duplications supported by at least 20 mate-pair
reads based on previous sensitivity and specificity calculations24). CNVs
from Chromosome Y were removed. We annotated and analysed the CNV
and SV files separately. Copy number gains and losses from WGS were
annotated for frequency based on 50% reciprocal overlap with CNVs called
in WGS control samples, and overlap with CNVs from the Database of
Genomic Variants (November 2010 and March 2013 versions);45 CNVs were
also annotated for overlapping gene transcripts and exons (RefSeq,
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downloaded March 2013). Rare CNVs from either file were examined in the
context of case phenotype and classified using standard criteria.22

WGS comparison with CMA
The advantage of WGS over CMA for detecting CNVs is the ability to detect
small CNVs, offer precise breakpoint resolution, determine the location and
orientation of duplicated sequences, and find allele specific copy-number
changes.17,24 Although WGS detects a significantly larger number of
unbalanced changes compared to CMA, one of the most important
questions regarding replacement of CMA with WGS in the diagnostic
setting is that of accuracy. Our previous work has shown high
reproducibility of CNV detection using the WGS read depth method
(94%) with lower reproducibility with the paired-end method (73%).24 As
the CNV generated from the WGS read depth method is more comparable
to CMA in terms of the size detection range we determined the
concordance for these methods. Previous studies and our own experience
have shown that CMA lacks specificity and sensitivity in polymorphic
regions overlapping with segmental duplications and affect CNV
concordance between different platforms.46 To minimise these, we
excluded CNVs showing at least 70% overlap with segmental duplications
or having a frequency of least 3% in either data set. These criteria yielded
165 rare CNVs from the CMA, with 84% detected by the read depth
method of WGS. Further analysis of the 26 CNVs not detected by WGS
showed that the majority were in regions overlapped by segmental
duplications and were labelled as ‘hypervariable’ in the WGS data.
Importantly, none of these variants were identified as being clinically
relevant. We examined the breakpoint concordance by comparing the
difference between the CMA proximal and distal breakpoint (within probe
error) to the WGS. Breakpoint analyses of the 139 concordant CNVs
showed ~ 78% fall between the minimum and maximum boundaries of
breakpoints defined by the clinical microarray, and 87% are within 10 kb of
these boundaries (Supplementary Figure 9).

WGS diagnostic yield compared to standard clinical testing
We compared the diagnostic yield of WGS to both CMA and CMA
combined with targeted gene testing. Statistical differences were
calculated using a χ2 proportion test.
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